/* $Id: TMAllVirtual.cpp 44528 2013-02-04 14:27:54Z vboxsync $ */ /** @file * TM - Timeout Manager, Virtual Time, All Contexts. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_TM #include #include #ifdef IN_RING3 # ifdef VBOX_WITH_REM # include # endif # include #endif #include "TMInternal.h" #include #include #include #include #include #include #include #include #include /** * Helper function that's used by the assembly routines when something goes bust. * * @param pData Pointer to the data structure. * @param u64NanoTS The calculated nano ts. * @param u64DeltaPrev The delta relative to the previously returned timestamp. * @param u64PrevNanoTS The previously returned timestamp (as it was read it). */ DECLEXPORT(void) tmVirtualNanoTSBad(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS) { //PVM pVM = (PVM)((uint8_t *)pData - RT_OFFSETOF(VM, CTXALLSUFF(s.tm.VirtualGetRawData))); pData->cBadPrev++; if ((int64_t)u64DeltaPrev < 0) LogRel(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64\n", u64DeltaPrev, u64PrevNanoTS, u64NanoTS)); else Log(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 (debugging?)\n", u64DeltaPrev, u64PrevNanoTS, u64NanoTS)); } /** * Called the first time somebody asks for the time or when the GIP * is mapped/unmapped. * * This should never ever happen. */ DECLEXPORT(uint64_t) tmVirtualNanoTSRediscover(PRTTIMENANOTSDATA pData) { NOREF(pData); //PVM pVM = (PVM)((uint8_t *)pData - RT_OFFSETOF(VM, CTXALLSUFF(s.tm.VirtualGetRawData))); PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; AssertFatalMsgFailed(("pGip=%p u32Magic=%#x\n", pGip, VALID_PTR(pGip) ? pGip->u32Magic : 0)); #ifndef _MSC_VER return 0; /* gcc false positive warning */ #endif } #if 1 /** * Wrapper around the IPRT GIP time methods. */ DECLINLINE(uint64_t) tmVirtualGetRawNanoTS(PVM pVM) { # ifdef IN_RING3 uint64_t u64 = CTXALLSUFF(pVM->tm.s.pfnVirtualGetRaw)(&CTXALLSUFF(pVM->tm.s.VirtualGetRawData)); # else /* !IN_RING3 */ uint32_t cPrevSteps = pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps; uint64_t u64 = pVM->tm.s.CTX_SUFF(pfnVirtualGetRaw)(&pVM->tm.s.CTX_SUFF(VirtualGetRawData)); if (cPrevSteps != pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps) VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); # endif /* !IN_RING3 */ /*DBGFTRACE_POS_U64(pVM, u64);*/ return u64; } #else /** * This is (mostly) the same as rtTimeNanoTSInternal() except * for the two globals which live in TM. * * @returns Nanosecond timestamp. * @param pVM Pointer to the VM. */ static uint64_t tmVirtualGetRawNanoTS(PVM pVM) { uint64_t u64Delta; uint32_t u32NanoTSFactor0; uint64_t u64TSC; uint64_t u64NanoTS; uint32_t u32UpdateIntervalTSC; uint64_t u64PrevNanoTS; /* * Read the GIP data and the previous value. */ for (;;) { uint32_t u32TransactionId; PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; #ifdef IN_RING3 if (RT_UNLIKELY(!pGip || pGip->u32Magic != SUPGLOBALINFOPAGE_MAGIC)) return RTTimeSystemNanoTS(); #endif if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) { u32TransactionId = pGip->aCPUs[0].u32TransactionId; #ifdef RT_OS_L4 Assert((u32TransactionId & 1) == 0); #endif u32UpdateIntervalTSC = pGip->aCPUs[0].u32UpdateIntervalTSC; u64NanoTS = pGip->aCPUs[0].u64NanoTS; u64TSC = pGip->aCPUs[0].u64TSC; u32NanoTSFactor0 = pGip->u32UpdateIntervalNS; u64Delta = ASMReadTSC(); u64PrevNanoTS = ASMAtomicReadU64(&pVM->tm.s.u64VirtualRawPrev); if (RT_UNLIKELY( pGip->aCPUs[0].u32TransactionId != u32TransactionId || (u32TransactionId & 1))) continue; } else { /* SUPGIPMODE_ASYNC_TSC */ PSUPGIPCPU pGipCpu; uint8_t u8ApicId = ASMGetApicId(); if (RT_LIKELY(u8ApicId < RT_ELEMENTS(pGip->aCPUs))) pGipCpu = &pGip->aCPUs[u8ApicId]; else { AssertMsgFailed(("%x\n", u8ApicId)); pGipCpu = &pGip->aCPUs[0]; } u32TransactionId = pGipCpu->u32TransactionId; #ifdef RT_OS_L4 Assert((u32TransactionId & 1) == 0); #endif u32UpdateIntervalTSC = pGipCpu->u32UpdateIntervalTSC; u64NanoTS = pGipCpu->u64NanoTS; u64TSC = pGipCpu->u64TSC; u32NanoTSFactor0 = pGip->u32UpdateIntervalNS; u64Delta = ASMReadTSC(); u64PrevNanoTS = ASMAtomicReadU64(&pVM->tm.s.u64VirtualRawPrev); #ifdef IN_RC Assert(!(ASMGetFlags() & X86_EFL_IF)); #else if (RT_UNLIKELY(u8ApicId != ASMGetApicId())) continue; if (RT_UNLIKELY( pGipCpu->u32TransactionId != u32TransactionId || (u32TransactionId & 1))) continue; #endif } break; } /* * Calc NanoTS delta. */ u64Delta -= u64TSC; if (u64Delta > u32UpdateIntervalTSC) { /* * We've expired the interval, cap it. If we're here for the 2nd * time without any GIP update in-between, the checks against * pVM->tm.s.u64VirtualRawPrev below will force 1ns stepping. */ u64Delta = u32UpdateIntervalTSC; } #if !defined(_MSC_VER) || defined(RT_ARCH_AMD64) /* GCC makes very pretty code from these two inline calls, while MSC cannot. */ u64Delta = ASMMult2xU32RetU64((uint32_t)u64Delta, u32NanoTSFactor0); u64Delta = ASMDivU64ByU32RetU32(u64Delta, u32UpdateIntervalTSC); #else __asm { mov eax, dword ptr [u64Delta] mul dword ptr [u32NanoTSFactor0] div dword ptr [u32UpdateIntervalTSC] mov dword ptr [u64Delta], eax xor edx, edx mov dword ptr [u64Delta + 4], edx } #endif /* * Calculate the time and compare it with the previously returned value. * * Since this function is called *very* frequently when the VM is running * and then mostly on EMT, we can restrict the valid range of the delta * (-1s to 2*GipUpdates) and simplify/optimize the default path. */ u64NanoTS += u64Delta; uint64_t u64DeltaPrev = u64NanoTS - u64PrevNanoTS; if (RT_LIKELY(u64DeltaPrev < 1000000000 /* 1s */)) /* frequent - less than 1s since last call. */; else if ( (int64_t)u64DeltaPrev < 0 && (int64_t)u64DeltaPrev + u32NanoTSFactor0 * 2 > 0) { /* occasional - u64NanoTS is in the 'past' relative to previous returns. */ ASMAtomicIncU32(&pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps); u64NanoTS = u64PrevNanoTS + 1; #ifndef IN_RING3 VM_FF_SET(pVM, VM_FF_TO_R3); /* S10 hack */ #endif } else if (u64PrevNanoTS) { /* Something has gone bust, if negative offset it's real bad. */ ASMAtomicIncU32(&pVM->tm.s.CTX_SUFF(VirtualGetRawData).cBadPrev); if ((int64_t)u64DeltaPrev < 0) LogRel(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 u64Delta=%#RX64\n", u64DeltaPrev, u64PrevNanoTS, u64NanoTS, u64Delta)); else Log(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 u64Delta=%#RX64 (debugging?)\n", u64DeltaPrev, u64PrevNanoTS, u64NanoTS, u64Delta)); #ifdef DEBUG_bird /** @todo there are some hickups during boot and reset that can cause 2-5 seconds delays. Investigate... */ AssertMsg(u64PrevNanoTS > UINT64_C(100000000000) /* 100s */, ("u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 u64Delta=%#RX64\n", u64DeltaPrev, u64PrevNanoTS, u64NanoTS, u64Delta)); #endif } /* else: We're resuming (see TMVirtualResume). */ if (RT_LIKELY(ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualRawPrev, u64NanoTS, u64PrevNanoTS))) return u64NanoTS; /* * Attempt updating the previous value, provided we're still ahead of it. * * There is no point in recalculating u64NanoTS because we got preempted or if * we raced somebody while the GIP was updated, since these are events * that might occur at any point in the return path as well. */ for (int cTries = 50;;) { u64PrevNanoTS = ASMAtomicReadU64(&pVM->tm.s.u64VirtualRawPrev); if (u64PrevNanoTS >= u64NanoTS) break; if (ASMAtomicCmpXchgU64(&pVM->tm.s.u64VirtualRawPrev, u64NanoTS, u64PrevNanoTS)) break; AssertBreak(--cTries <= 0); if (cTries < 25 && !VM_IS_EMT(pVM)) /* give up early */ break; } return u64NanoTS; } #endif /** * Get the time when we're not running at 100% * * @returns The timestamp. * @param pVM Pointer to the VM. */ static uint64_t tmVirtualGetRawNonNormal(PVM pVM) { /* * Recalculate the RTTimeNanoTS() value for the period where * warp drive has been enabled. */ uint64_t u64 = tmVirtualGetRawNanoTS(pVM); u64 -= pVM->tm.s.u64VirtualWarpDriveStart; u64 *= pVM->tm.s.u32VirtualWarpDrivePercentage; u64 /= 100; u64 += pVM->tm.s.u64VirtualWarpDriveStart; /* * Now we apply the virtual time offset. * (Which is the negated tmVirtualGetRawNanoTS() value for when the virtual * machine started if it had been running continuously without any suspends.) */ u64 -= pVM->tm.s.u64VirtualOffset; return u64; } /** * Get the raw virtual time. * * @returns The current time stamp. * @param pVM Pointer to the VM. */ DECLINLINE(uint64_t) tmVirtualGetRaw(PVM pVM) { if (RT_LIKELY(!pVM->tm.s.fVirtualWarpDrive)) return tmVirtualGetRawNanoTS(pVM) - pVM->tm.s.u64VirtualOffset; return tmVirtualGetRawNonNormal(pVM); } /** * Inlined version of tmVirtualGetEx. */ DECLINLINE(uint64_t) tmVirtualGet(PVM pVM, bool fCheckTimers) { uint64_t u64; if (RT_LIKELY(pVM->tm.s.cVirtualTicking)) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGet); u64 = tmVirtualGetRaw(pVM); /* * Use the chance to check for expired timers. */ if (fCheckTimers) { PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu]; if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER) && !pVM->tm.s.fRunningQueues && ( pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64 || ( pVM->tm.s.fVirtualSyncTicking && pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64 - pVM->tm.s.offVirtualSync ) ) && !pVM->tm.s.fRunningQueues ) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGetSetFF); Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER))); VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); #ifdef IN_RING3 # ifdef VBOX_WITH_REM REMR3NotifyTimerPending(pVM, pVCpuDst); # endif VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM); #endif } } } else u64 = pVM->tm.s.u64Virtual; return u64; } /** * Gets the current TMCLOCK_VIRTUAL time * * @returns The timestamp. * @param pVM Pointer to the VM. * * @remark While the flow of time will never go backwards, the speed of the * progress varies due to inaccurate RTTimeNanoTS and TSC. The latter can be * influenced by power saving (SpeedStep, PowerNow!), while the former * makes use of TSC and kernel timers. */ VMM_INT_DECL(uint64_t) TMVirtualGet(PVM pVM) { return tmVirtualGet(pVM, true /*fCheckTimers*/); } /** * Gets the current TMCLOCK_VIRTUAL time without checking * timers or anything. * * Meaning, this has no side effect on FFs like TMVirtualGet may have. * * @returns The timestamp. * @param pVM Pointer to the VM. * * @remarks See TMVirtualGet. */ VMM_INT_DECL(uint64_t) TMVirtualGetNoCheck(PVM pVM) { return tmVirtualGet(pVM, false /*fCheckTimers*/); } /** * Converts the dead line interval from TMCLOCK_VIRTUAL to host nano seconds. * * @returns Host nano second count. * @param pVM Pointer to the VM. * @param cVirtTicksToDeadline The TMCLOCK_VIRTUAL interval. */ DECLINLINE(uint64_t) tmVirtualVirtToNsDeadline(PVM pVM, uint64_t cVirtTicksToDeadline) { if (RT_UNLIKELY(pVM->tm.s.fVirtualWarpDrive)) return ASMMultU64ByU32DivByU32(cVirtTicksToDeadline, 100, pVM->tm.s.u32VirtualWarpDrivePercentage); return cVirtTicksToDeadline; } /** * tmVirtualSyncGetLocked worker for handling catch-up when owning the lock. * * @returns The timestamp. * @param pVM Pointer to the VM. * @param u64 raw virtual time. * @param off offVirtualSync. * @param pcNsToDeadline Where to return the number of nano seconds to * the next virtual sync timer deadline. Can be * NULL. */ DECLINLINE(uint64_t) tmVirtualSyncGetHandleCatchUpLocked(PVM pVM, uint64_t u64, uint64_t off, uint64_t *pcNsToDeadline) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked); /* * Don't make updates until we've check the timer queue. */ bool fUpdatePrev = true; bool fUpdateOff = true; bool fStop = false; const uint64_t u64Prev = pVM->tm.s.u64VirtualSyncCatchUpPrev; uint64_t u64Delta = u64 - u64Prev; if (RT_LIKELY(!(u64Delta >> 32))) { uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100); if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp) { off -= u64Sub; Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [vsghcul]\n", u64 - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub)); } else { /* we've completely caught up. */ STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); off = pVM->tm.s.offVirtualSyncGivenUp; fStop = true; Log4(("TM: %'RU64/0: caught up [vsghcul]\n", u64)); } } else { /* More than 4 seconds since last time (or negative), ignore it. */ fUpdateOff = false; fUpdatePrev = !(u64Delta & RT_BIT_64(63)); Log(("TMVirtualGetSync: u64Delta=%RX64\n", u64Delta)); } /* * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current * approach is to never pass the head timer. So, when we do stop the clock and * set the timer pending flag. */ u64 -= off; uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync); if (u64Last > u64) { u64 = u64Last + 1; STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast); } uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire); if (u64 < u64Expire) { ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64); if (fUpdateOff) ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off); if (fStop) ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); if (fUpdatePrev) ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64); if (pcNsToDeadline) { uint64_t cNsToDeadline = u64Expire - u64; if (pVM->tm.s.fVirtualSyncCatchUp) cNsToDeadline = ASMMultU64ByU32DivByU32(cNsToDeadline, 100, pVM->tm.s.u32VirtualSyncCatchUpPercentage + 100); *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, cNsToDeadline); } PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock); } else { u64 = u64Expire; ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false); VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC); PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu]; VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER))); Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsghcul]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp)); PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock); if (pcNsToDeadline) *pcNsToDeadline = 0; #ifdef IN_RING3 # ifdef VBOX_WITH_REM REMR3NotifyTimerPending(pVM, pVCpuDst); # endif VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM); #endif STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF); STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired); } STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked); Log6(("tmVirtualSyncGetHandleCatchUpLocked -> %'RU64\n", u64)); DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetHandleCatchUpLocked"); return u64; } /** * tmVirtualSyncGetEx worker for when we get the lock. * * @returns timesamp. * @param pVM Pointer to the VM. * @param u64 The virtual clock timestamp. * @param pcNsToDeadline Where to return the number of nano seconds to * the next virtual sync timer deadline. Can be * NULL. */ DECLINLINE(uint64_t) tmVirtualSyncGetLocked(PVM pVM, uint64_t u64, uint64_t *pcNsToDeadline) { /* * Not ticking? */ if (!pVM->tm.s.fVirtualSyncTicking) { u64 = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync); PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock); if (pcNsToDeadline) *pcNsToDeadline = 0; STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked); Log6(("tmVirtualSyncGetLocked -> %'RU64 [stopped]\n", u64)); DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetLocked-stopped"); return u64; } /* * Handle catch up in a separate function. */ uint64_t off = ASMAtomicUoReadU64(&pVM->tm.s.offVirtualSync); if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp)) return tmVirtualSyncGetHandleCatchUpLocked(pVM, u64, off, pcNsToDeadline); /* * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current * approach is to never pass the head timer. So, when we do stop the clock and * set the timer pending flag. */ u64 -= off; uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync); if (u64Last > u64) { u64 = u64Last + 1; STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast); } uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire); if (u64 < u64Expire) { ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64); PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock); if (pcNsToDeadline) *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, u64Expire - u64); } else { u64 = u64Expire; ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false); VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC); PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu]; VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, !!VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER))); Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsgl]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp)); PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock); #ifdef IN_RING3 # ifdef VBOX_WITH_REM REMR3NotifyTimerPending(pVM, pVCpuDst); # endif VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM); #endif if (pcNsToDeadline) *pcNsToDeadline = 0; STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF); STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired); } STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked); Log6(("tmVirtualSyncGetLocked -> %'RU64\n", u64)); DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetLocked"); return u64; } /** * Gets the current TMCLOCK_VIRTUAL_SYNC time. * * @returns The timestamp. * @param pVM Pointer to the VM. * @param fCheckTimers Check timers or not * @param pcNsToDeadline Where to return the number of nano seconds to * the next virtual sync timer deadline. Can be * NULL. * @thread EMT. */ DECLINLINE(uint64_t) tmVirtualSyncGetEx(PVM pVM, bool fCheckTimers, uint64_t *pcNsToDeadline) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGet); uint64_t u64; if (!pVM->tm.s.fVirtualSyncTicking) { if (pcNsToDeadline) *pcNsToDeadline = 0; u64 = pVM->tm.s.u64VirtualSync; DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetEx-stopped1"); return u64; } /* * Query the virtual clock and do the usual expired timer check. */ Assert(pVM->tm.s.cVirtualTicking); u64 = tmVirtualGetRaw(pVM); if (fCheckTimers) { PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu]; if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER) && pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64) { Log5(("TMAllVirtual(%u): FF: 0 -> 1\n", __LINE__)); VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); #ifdef IN_RING3 # ifdef VBOX_WITH_REM REMR3NotifyTimerPending(pVM, pVCpuDst); # endif VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo |VMNOTIFYFF_FLAGS_POKE*/); #endif STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF); } } /* * If we can get the lock, get it. The result is much more reliable. * * Note! This is where all clock source devices branch off because they * will be owning the lock already. The 'else' is taken by code * which is less picky or hasn't been adjusted yet */ if (PDMCritSectTryEnter(&pVM->tm.s.VirtualSyncLock) == VINF_SUCCESS) return tmVirtualSyncGetLocked(pVM, u64, pcNsToDeadline); /* * When the clock is ticking, not doing catch ups and not running into an * expired time, we can get away without locking. Try this first. */ uint64_t off; if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking)) { if (!ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp)) { off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync); if (RT_LIKELY( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking) && !ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp) && off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync))) { off = u64 - off; uint64_t const u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire); if (off < u64Expire) { if (pcNsToDeadline) *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, u64Expire - off); STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless); Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless]\n", off)); DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-lockless"); return off; } } } } else { off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync); if (RT_LIKELY(!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking))) { if (pcNsToDeadline) *pcNsToDeadline = 0; STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless); Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless/stopped]\n", off)); DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-stopped2"); return off; } } /* * Read the offset and adjust if we're playing catch-up. * * The catch-up adjusting work by us decrementing the offset by a percentage of * the time elapsed since the previous TMVirtualGetSync call. * * It's possible to get a very long or even negative interval between two read * for the following reasons: * - Someone might have suspended the process execution, frequently the case when * debugging the process. * - We might be on a different CPU which TSC isn't quite in sync with the * other CPUs in the system. * - Another thread is racing us and we might have been preempted while inside * this function. * * Assuming nano second virtual time, we can simply ignore any intervals which has * any of the upper 32 bits set. */ AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000); int cOuterTries = 42; for (;; cOuterTries--) { /* Try grab the lock, things get simpler when owning the lock. */ int rcLock = PDMCritSectTryEnter(&pVM->tm.s.VirtualSyncLock); if (RT_SUCCESS_NP(rcLock)) return tmVirtualSyncGetLocked(pVM, u64, pcNsToDeadline); /* Re-check the ticking flag. */ if (!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking)) { off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync); if ( ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking) && cOuterTries > 0) continue; if (pcNsToDeadline) *pcNsToDeadline = 0; Log6(("tmVirtualSyncGetEx -> %'RU64 [stopped]\n", off)); DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-stopped3"); return off; } off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync); if (ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp)) { /* No changes allowed, try get a consistent set of parameters. */ uint64_t const u64Prev = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev); uint64_t const offGivenUp = ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp); uint32_t const u32Pct = ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage); if ( ( u64Prev == ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev) && offGivenUp == ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp) && u32Pct == ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage) && ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp)) || cOuterTries <= 0) { uint64_t u64Delta = u64 - u64Prev; if (RT_LIKELY(!(u64Delta >> 32))) { uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, u32Pct, 100); if (off > u64Sub + offGivenUp) { off -= u64Sub; Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [NoLock]\n", u64 - off, pVM->tm.s.offVirtualSync - offGivenUp, u64Sub)); } else { /* we've completely caught up. */ STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); off = offGivenUp; Log4(("TM: %'RU64/0: caught up [NoLock]\n", u64)); } } else /* More than 4 seconds since last time (or negative), ignore it. */ Log(("TMVirtualGetSync: u64Delta=%RX64 (NoLock)\n", u64Delta)); /* Check that we're still running and in catch up. */ if ( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking) && ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp)) break; if (cOuterTries <= 0) break; /* enough */ } } else if ( off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) && !ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp)) break; /* Got an consistent offset */ else if (cOuterTries <= 0) break; /* enough */ } if (cOuterTries <= 0) STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetELoop); /* * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current * approach is to never pass the head timer. So, when we do stop the clock and * set the timer pending flag. */ u64 -= off; /** @todo u64VirtualSyncLast */ uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire); if (u64 >= u64Expire) { PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu]; if (!VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)) { Log5(("TMAllVirtual(%u): FF: %d -> 1 (NoLock)\n", __LINE__, VMCPU_FF_ISPENDING(pVCpuDst, VMCPU_FF_TIMER))); VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC); /* Hmm? */ VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); #ifdef IN_RING3 # ifdef VBOX_WITH_REM REMR3NotifyTimerPending(pVM, pVCpuDst); # endif VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM); #endif STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF); Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp)); } else Log4(("TM: %'RU64/-%'8RU64: exp tmr [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp)); if (pcNsToDeadline) *pcNsToDeadline = 0; STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired); } else if (pcNsToDeadline) { uint64_t cNsToDeadline = u64Expire - u64; if (ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp)) cNsToDeadline = ASMMultU64ByU32DivByU32(cNsToDeadline, 100, ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage) + 100); *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, cNsToDeadline); } Log6(("tmVirtualSyncGetEx -> %'RU64\n", u64)); DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetEx-nolock"); return u64; } /** * Gets the current TMCLOCK_VIRTUAL_SYNC time. * * @returns The timestamp. * @param pVM Pointer to the VM. * @thread EMT. * @remarks May set the timer and virtual sync FFs. */ VMM_INT_DECL(uint64_t) TMVirtualSyncGet(PVM pVM) { return tmVirtualSyncGetEx(pVM, true /*fCheckTimers*/, NULL /*pcNsToDeadline*/); } /** * Gets the current TMCLOCK_VIRTUAL_SYNC time without checking timers running on * TMCLOCK_VIRTUAL. * * @returns The timestamp. * @param pVM Pointer to the VM. * @thread EMT. * @remarks May set the timer and virtual sync FFs. */ VMM_INT_DECL(uint64_t) TMVirtualSyncGetNoCheck(PVM pVM) { return tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, NULL /*pcNsToDeadline*/); } /** * Gets the current TMCLOCK_VIRTUAL_SYNC time. * * @returns The timestamp. * @param pVM Pointer to the VM. * @param fCheckTimers Check timers on the virtual clock or not. * @thread EMT. * @remarks May set the timer and virtual sync FFs. */ VMM_INT_DECL(uint64_t) TMVirtualSyncGetEx(PVM pVM, bool fCheckTimers) { return tmVirtualSyncGetEx(pVM, fCheckTimers, NULL /*pcNsToDeadline*/); } /** * Gets the current TMCLOCK_VIRTUAL_SYNC time and ticks to the next deadline * without checking timers running on TMCLOCK_VIRTUAL. * * @returns The timestamp. * @param pVM Pointer to the VM. * @param pcNsToDeadline Where to return the number of nano seconds to * the next virtual sync timer deadline. * @thread EMT. * @remarks May set the timer and virtual sync FFs. */ VMM_INT_DECL(uint64_t) TMVirtualSyncGetWithDeadlineNoCheck(PVM pVM, uint64_t *pcNsToDeadline) { uint64_t cNsToDeadlineTmp; /* try convince the compiler to skip the if tests. */ uint64_t u64Now = tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, &cNsToDeadlineTmp); *pcNsToDeadline = cNsToDeadlineTmp; return u64Now; } /** * Gets the number of nano seconds to the next virtual sync deadline. * * @returns The number of TMCLOCK_VIRTUAL ticks. * @param pVM Pointer to the VM. * @thread EMT. * @remarks May set the timer and virtual sync FFs. */ VMM_INT_DECL(uint64_t) TMVirtualSyncGetNsToDeadline(PVM pVM) { uint64_t cNsToDeadline; tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, &cNsToDeadline); return cNsToDeadline; } /** * Gets the current lag of the synchronous virtual clock (relative to the virtual clock). * * @return The current lag. * @param pVM Pointer to the VM. */ VMM_INT_DECL(uint64_t) TMVirtualSyncGetLag(PVM pVM) { return pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp; } /** * Get the current catch-up percent. * * @return The current catch0up percent. 0 means running at the same speed as the virtual clock. * @param pVM Pointer to the VM. */ VMM_INT_DECL(uint32_t) TMVirtualSyncGetCatchUpPct(PVM pVM) { if (pVM->tm.s.fVirtualSyncCatchUp) return pVM->tm.s.u32VirtualSyncCatchUpPercentage; return 0; } /** * Gets the current TMCLOCK_VIRTUAL frequency. * * @returns The frequency. * @param pVM Pointer to the VM. */ VMM_INT_DECL(uint64_t) TMVirtualGetFreq(PVM pVM) { NOREF(pVM); return TMCLOCK_FREQ_VIRTUAL; } /** * Worker for TMR3PauseClocks. * * @returns VINF_SUCCESS or VERR_TM_VIRTUAL_TICKING_IPE (asserted). * @param pVM Pointer to the VM. */ int tmVirtualPauseLocked(PVM pVM) { uint32_t c = ASMAtomicDecU32(&pVM->tm.s.cVirtualTicking); AssertMsgReturn(c < pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_TM_VIRTUAL_TICKING_IPE); if (c == 0) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualPause); pVM->tm.s.u64Virtual = tmVirtualGetRaw(pVM); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false); } return VINF_SUCCESS; } /** * Worker for TMR3ResumeClocks. * * @returns VINF_SUCCESS or VERR_TM_VIRTUAL_TICKING_IPE (asserted). * @param pVM Pointer to the VM. */ int tmVirtualResumeLocked(PVM pVM) { uint32_t c = ASMAtomicIncU32(&pVM->tm.s.cVirtualTicking); AssertMsgReturn(c <= pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_TM_VIRTUAL_TICKING_IPE); if (c == 1) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualResume); pVM->tm.s.u64VirtualRawPrev = 0; pVM->tm.s.u64VirtualWarpDriveStart = tmVirtualGetRawNanoTS(pVM); pVM->tm.s.u64VirtualOffset = pVM->tm.s.u64VirtualWarpDriveStart - pVM->tm.s.u64Virtual; ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true); } return VINF_SUCCESS; } /** * Converts from virtual ticks to nanoseconds. * * @returns nanoseconds. * @param pVM Pointer to the VM. * @param u64VirtualTicks The virtual ticks to convert. * @remark There could be rounding errors here. We just do a simple integer divide * without any adjustments. */ VMM_INT_DECL(uint64_t) TMVirtualToNano(PVM pVM, uint64_t u64VirtualTicks) { NOREF(pVM); AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000); return u64VirtualTicks; } /** * Converts from virtual ticks to microseconds. * * @returns microseconds. * @param pVM Pointer to the VM. * @param u64VirtualTicks The virtual ticks to convert. * @remark There could be rounding errors here. We just do a simple integer divide * without any adjustments. */ VMM_INT_DECL(uint64_t) TMVirtualToMicro(PVM pVM, uint64_t u64VirtualTicks) { NOREF(pVM); AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000); return u64VirtualTicks / 1000; } /** * Converts from virtual ticks to milliseconds. * * @returns milliseconds. * @param pVM Pointer to the VM. * @param u64VirtualTicks The virtual ticks to convert. * @remark There could be rounding errors here. We just do a simple integer divide * without any adjustments. */ VMM_INT_DECL(uint64_t) TMVirtualToMilli(PVM pVM, uint64_t u64VirtualTicks) { NOREF(pVM); AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000); return u64VirtualTicks / 1000000; } /** * Converts from nanoseconds to virtual ticks. * * @returns virtual ticks. * @param pVM Pointer to the VM. * @param u64NanoTS The nanosecond value ticks to convert. * @remark There could be rounding and overflow errors here. */ VMM_INT_DECL(uint64_t) TMVirtualFromNano(PVM pVM, uint64_t u64NanoTS) { NOREF(pVM); AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000); return u64NanoTS; } /** * Converts from microseconds to virtual ticks. * * @returns virtual ticks. * @param pVM Pointer to the VM. * @param u64MicroTS The microsecond value ticks to convert. * @remark There could be rounding and overflow errors here. */ VMM_INT_DECL(uint64_t) TMVirtualFromMicro(PVM pVM, uint64_t u64MicroTS) { NOREF(pVM); AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000); return u64MicroTS * 1000; } /** * Converts from milliseconds to virtual ticks. * * @returns virtual ticks. * @param pVM Pointer to the VM. * @param u64MilliTS The millisecond value ticks to convert. * @remark There could be rounding and overflow errors here. */ VMM_INT_DECL(uint64_t) TMVirtualFromMilli(PVM pVM, uint64_t u64MilliTS) { NOREF(pVM); AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000); return u64MilliTS * 1000000; }