1 | /* $Id: TMAllVirtual.cpp 58122 2015-10-08 17:11:58Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * TM - Timeout Manager, Virtual Time, All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2015 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_TM
|
---|
23 | #include <VBox/vmm/tm.h>
|
---|
24 | #include <VBox/vmm/dbgftrace.h>
|
---|
25 | #ifdef IN_RING3
|
---|
26 | # ifdef VBOX_WITH_REM
|
---|
27 | # include <VBox/vmm/rem.h>
|
---|
28 | # endif
|
---|
29 | # include <iprt/thread.h>
|
---|
30 | #endif
|
---|
31 | #include "TMInternal.h"
|
---|
32 | #include <VBox/vmm/vm.h>
|
---|
33 | #include <VBox/vmm/vmm.h>
|
---|
34 | #include <VBox/err.h>
|
---|
35 | #include <VBox/log.h>
|
---|
36 | #include <VBox/sup.h>
|
---|
37 |
|
---|
38 | #include <iprt/time.h>
|
---|
39 | #include <iprt/assert.h>
|
---|
40 | #include <iprt/asm.h>
|
---|
41 | #include <iprt/asm-math.h>
|
---|
42 |
|
---|
43 |
|
---|
44 |
|
---|
45 | /**
|
---|
46 | * @interface_method_impl{RTTIMENANOTSDATA,pfnBad}
|
---|
47 | */
|
---|
48 | DECLCALLBACK(DECLEXPORT(void)) tmVirtualNanoTSBad(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev,
|
---|
49 | uint64_t u64PrevNanoTS)
|
---|
50 | {
|
---|
51 | PVM pVM = RT_FROM_MEMBER(pData, VM, CTX_SUFF(tm.s.VirtualGetRawData));
|
---|
52 | pData->cBadPrev++;
|
---|
53 | if ((int64_t)u64DeltaPrev < 0)
|
---|
54 | LogRel(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 pVM=%p\n",
|
---|
55 | u64DeltaPrev, u64PrevNanoTS, u64NanoTS, pVM));
|
---|
56 | else
|
---|
57 | Log(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 pVM=%p (debugging?)\n",
|
---|
58 | u64DeltaPrev, u64PrevNanoTS, u64NanoTS, pVM));
|
---|
59 | }
|
---|
60 |
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * @interface_method_impl{RTTIMENANOTSDATA,pfnRediscover}
|
---|
64 | *
|
---|
65 | * This is the initial worker, so the first call in each context ends up here.
|
---|
66 | * It is also used should the delta rating of the host CPUs change or if the
|
---|
67 | * fGetGipCpu feature the current worker relies upon becomes unavailable. The
|
---|
68 | * last two events may occur as CPUs are taken online.
|
---|
69 | */
|
---|
70 | DECLCALLBACK(DECLEXPORT(uint64_t)) tmVirtualNanoTSRediscover(PRTTIMENANOTSDATA pData)
|
---|
71 | {
|
---|
72 | PVM pVM = RT_FROM_MEMBER(pData, VM, CTX_SUFF(tm.s.VirtualGetRawData));
|
---|
73 |
|
---|
74 | /*
|
---|
75 | * We require a valid GIP for the selection below. Invalid GIP is fatal.
|
---|
76 | */
|
---|
77 | PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
|
---|
78 | AssertFatalMsg(RT_VALID_PTR(pGip), ("pVM=%p pGip=%p\n", pVM, pGip));
|
---|
79 | AssertFatalMsg(pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC, ("pVM=%p pGip=%p u32Magic=%#x\n", pVM, pGip, pGip->u32Magic));
|
---|
80 | AssertFatalMsg(pGip->u32Mode > SUPGIPMODE_INVALID && pGip->u32Mode < SUPGIPMODE_END,
|
---|
81 | ("pVM=%p pGip=%p u32Mode=%#x\n", pVM, pGip, pGip->u32Mode));
|
---|
82 |
|
---|
83 | /*
|
---|
84 | * Determine the new worker.
|
---|
85 | */
|
---|
86 | PFNTIMENANOTSINTERNAL pfnWorker;
|
---|
87 | bool const fLFence = RT_BOOL(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2);
|
---|
88 | switch (pGip->u32Mode)
|
---|
89 | {
|
---|
90 | case SUPGIPMODE_SYNC_TSC:
|
---|
91 | case SUPGIPMODE_INVARIANT_TSC:
|
---|
92 | #if defined(IN_RC) || defined(IN_RING0)
|
---|
93 | if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ROUGHLY_ZERO)
|
---|
94 | pfnWorker = fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta;
|
---|
95 | else
|
---|
96 | pfnWorker = fLFence ? RTTimeNanoTSLFenceSyncInvarWithDelta : RTTimeNanoTSLegacySyncInvarWithDelta;
|
---|
97 | #else
|
---|
98 | if (pGip->fGetGipCpu & SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS)
|
---|
99 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_PRACTICALLY_ZERO
|
---|
100 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
101 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseIdtrLim : RTTimeNanoTSLegacySyncInvarWithDeltaUseIdtrLim;
|
---|
102 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS)
|
---|
103 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_PRACTICALLY_ZERO
|
---|
104 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
105 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseRdtscp : RTTimeNanoTSLegacySyncInvarWithDeltaUseRdtscp;
|
---|
106 | else
|
---|
107 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ROUGHLY_ZERO
|
---|
108 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
109 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicId : RTTimeNanoTSLegacySyncInvarWithDeltaUseApicId;
|
---|
110 | #endif
|
---|
111 | break;
|
---|
112 |
|
---|
113 | case SUPGIPMODE_ASYNC_TSC:
|
---|
114 | #if defined(IN_RC) || defined(IN_RING0)
|
---|
115 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsync : RTTimeNanoTSLegacyAsync;
|
---|
116 | #else
|
---|
117 | if (pGip->fGetGipCpu & SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS)
|
---|
118 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseIdtrLim : RTTimeNanoTSLegacyAsyncUseIdtrLim;
|
---|
119 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS)
|
---|
120 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseRdtscp : RTTimeNanoTSLegacyAsyncUseRdtscp;
|
---|
121 | else
|
---|
122 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseApicId : RTTimeNanoTSLegacyAsyncUseApicId;
|
---|
123 | #endif
|
---|
124 | break;
|
---|
125 |
|
---|
126 | default:
|
---|
127 | AssertFatalMsgFailed(("pVM=%p pGip=%p u32Mode=%#x\n", pVM, pGip, pGip->u32Mode));
|
---|
128 | }
|
---|
129 |
|
---|
130 | /*
|
---|
131 | * Update the pfnVirtualGetRaw pointer and call the worker we selected.
|
---|
132 | */
|
---|
133 | ASMAtomicWritePtr((void * volatile *)&CTX_SUFF(pVM->tm.s.pfnVirtualGetRaw), (void *)(uintptr_t)pfnWorker);
|
---|
134 | return pfnWorker(pData);
|
---|
135 | }
|
---|
136 |
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * @interface_method_impl{RTTIMENANOTSDATA,pfnBadCpuIndex}
|
---|
140 | */
|
---|
141 | DECLEXPORT(uint64_t) tmVirtualNanoTSBadCpuIndex(PRTTIMENANOTSDATA pData, uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu)
|
---|
142 | {
|
---|
143 | PVM pVM = RT_FROM_MEMBER(pData, VM, CTX_SUFF(tm.s.VirtualGetRawData));
|
---|
144 | AssertFatalMsgFailed(("pVM=%p idApic=%#x iCpuSet=%#x iGipCpu=%#x\n", pVM, idApic, iCpuSet, iGipCpu));
|
---|
145 | #ifndef _MSC_VER
|
---|
146 | return UINT64_MAX;
|
---|
147 | #endif
|
---|
148 | }
|
---|
149 |
|
---|
150 |
|
---|
151 | /**
|
---|
152 | * Wrapper around the IPRT GIP time methods.
|
---|
153 | */
|
---|
154 | DECLINLINE(uint64_t) tmVirtualGetRawNanoTS(PVM pVM)
|
---|
155 | {
|
---|
156 | # ifdef IN_RING3
|
---|
157 | uint64_t u64 = CTXALLSUFF(pVM->tm.s.pfnVirtualGetRaw)(&CTXALLSUFF(pVM->tm.s.VirtualGetRawData));
|
---|
158 | # else /* !IN_RING3 */
|
---|
159 | uint32_t cPrevSteps = pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps;
|
---|
160 | uint64_t u64 = pVM->tm.s.CTX_SUFF(pfnVirtualGetRaw)(&pVM->tm.s.CTX_SUFF(VirtualGetRawData));
|
---|
161 | if (cPrevSteps != pVM->tm.s.CTX_SUFF(VirtualGetRawData).c1nsSteps)
|
---|
162 | VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
|
---|
163 | # endif /* !IN_RING3 */
|
---|
164 | /*DBGFTRACE_POS_U64(pVM, u64);*/
|
---|
165 | return u64;
|
---|
166 | }
|
---|
167 |
|
---|
168 |
|
---|
169 | /**
|
---|
170 | * Get the time when we're not running at 100%
|
---|
171 | *
|
---|
172 | * @returns The timestamp.
|
---|
173 | * @param pVM The cross context VM structure.
|
---|
174 | */
|
---|
175 | static uint64_t tmVirtualGetRawNonNormal(PVM pVM)
|
---|
176 | {
|
---|
177 | /*
|
---|
178 | * Recalculate the RTTimeNanoTS() value for the period where
|
---|
179 | * warp drive has been enabled.
|
---|
180 | */
|
---|
181 | uint64_t u64 = tmVirtualGetRawNanoTS(pVM);
|
---|
182 | u64 -= pVM->tm.s.u64VirtualWarpDriveStart;
|
---|
183 | u64 *= pVM->tm.s.u32VirtualWarpDrivePercentage;
|
---|
184 | u64 /= 100;
|
---|
185 | u64 += pVM->tm.s.u64VirtualWarpDriveStart;
|
---|
186 |
|
---|
187 | /*
|
---|
188 | * Now we apply the virtual time offset.
|
---|
189 | * (Which is the negated tmVirtualGetRawNanoTS() value for when the virtual
|
---|
190 | * machine started if it had been running continuously without any suspends.)
|
---|
191 | */
|
---|
192 | u64 -= pVM->tm.s.u64VirtualOffset;
|
---|
193 | return u64;
|
---|
194 | }
|
---|
195 |
|
---|
196 |
|
---|
197 | /**
|
---|
198 | * Get the raw virtual time.
|
---|
199 | *
|
---|
200 | * @returns The current time stamp.
|
---|
201 | * @param pVM The cross context VM structure.
|
---|
202 | */
|
---|
203 | DECLINLINE(uint64_t) tmVirtualGetRaw(PVM pVM)
|
---|
204 | {
|
---|
205 | if (RT_LIKELY(!pVM->tm.s.fVirtualWarpDrive))
|
---|
206 | return tmVirtualGetRawNanoTS(pVM) - pVM->tm.s.u64VirtualOffset;
|
---|
207 | return tmVirtualGetRawNonNormal(pVM);
|
---|
208 | }
|
---|
209 |
|
---|
210 |
|
---|
211 | /**
|
---|
212 | * Inlined version of tmVirtualGetEx.
|
---|
213 | */
|
---|
214 | DECLINLINE(uint64_t) tmVirtualGet(PVM pVM, bool fCheckTimers)
|
---|
215 | {
|
---|
216 | uint64_t u64;
|
---|
217 | if (RT_LIKELY(pVM->tm.s.cVirtualTicking))
|
---|
218 | {
|
---|
219 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGet);
|
---|
220 | u64 = tmVirtualGetRaw(pVM);
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Use the chance to check for expired timers.
|
---|
224 | */
|
---|
225 | if (fCheckTimers)
|
---|
226 | {
|
---|
227 | PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
|
---|
228 | if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
|
---|
229 | && !pVM->tm.s.fRunningQueues
|
---|
230 | && ( pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64
|
---|
231 | || ( pVM->tm.s.fVirtualSyncTicking
|
---|
232 | && pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64 - pVM->tm.s.offVirtualSync
|
---|
233 | )
|
---|
234 | )
|
---|
235 | && !pVM->tm.s.fRunningQueues
|
---|
236 | )
|
---|
237 | {
|
---|
238 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGetSetFF);
|
---|
239 | Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_IS_PENDING(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
240 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
241 | #ifdef IN_RING3
|
---|
242 | # ifdef VBOX_WITH_REM
|
---|
243 | REMR3NotifyTimerPending(pVM, pVCpuDst);
|
---|
244 | # endif
|
---|
245 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
246 | #endif
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|
250 | else
|
---|
251 | u64 = pVM->tm.s.u64Virtual;
|
---|
252 | return u64;
|
---|
253 | }
|
---|
254 |
|
---|
255 |
|
---|
256 | /**
|
---|
257 | * Gets the current TMCLOCK_VIRTUAL time
|
---|
258 | *
|
---|
259 | * @returns The timestamp.
|
---|
260 | * @param pVM The cross context VM structure.
|
---|
261 | *
|
---|
262 | * @remark While the flow of time will never go backwards, the speed of the
|
---|
263 | * progress varies due to inaccurate RTTimeNanoTS and TSC. The latter can be
|
---|
264 | * influenced by power saving (SpeedStep, PowerNow!), while the former
|
---|
265 | * makes use of TSC and kernel timers.
|
---|
266 | */
|
---|
267 | VMM_INT_DECL(uint64_t) TMVirtualGet(PVM pVM)
|
---|
268 | {
|
---|
269 | return tmVirtualGet(pVM, true /*fCheckTimers*/);
|
---|
270 | }
|
---|
271 |
|
---|
272 |
|
---|
273 | /**
|
---|
274 | * Gets the current TMCLOCK_VIRTUAL time without checking
|
---|
275 | * timers or anything.
|
---|
276 | *
|
---|
277 | * Meaning, this has no side effect on FFs like TMVirtualGet may have.
|
---|
278 | *
|
---|
279 | * @returns The timestamp.
|
---|
280 | * @param pVM The cross context VM structure.
|
---|
281 | *
|
---|
282 | * @remarks See TMVirtualGet.
|
---|
283 | */
|
---|
284 | VMM_INT_DECL(uint64_t) TMVirtualGetNoCheck(PVM pVM)
|
---|
285 | {
|
---|
286 | return tmVirtualGet(pVM, false /*fCheckTimers*/);
|
---|
287 | }
|
---|
288 |
|
---|
289 |
|
---|
290 | /**
|
---|
291 | * Converts the dead line interval from TMCLOCK_VIRTUAL to host nano seconds.
|
---|
292 | *
|
---|
293 | * @returns Host nano second count.
|
---|
294 | * @param pVM The cross context VM structure.
|
---|
295 | * @param cVirtTicksToDeadline The TMCLOCK_VIRTUAL interval.
|
---|
296 | */
|
---|
297 | DECLINLINE(uint64_t) tmVirtualVirtToNsDeadline(PVM pVM, uint64_t cVirtTicksToDeadline)
|
---|
298 | {
|
---|
299 | if (RT_UNLIKELY(pVM->tm.s.fVirtualWarpDrive))
|
---|
300 | return ASMMultU64ByU32DivByU32(cVirtTicksToDeadline, 100, pVM->tm.s.u32VirtualWarpDrivePercentage);
|
---|
301 | return cVirtTicksToDeadline;
|
---|
302 | }
|
---|
303 |
|
---|
304 |
|
---|
305 | /**
|
---|
306 | * tmVirtualSyncGetLocked worker for handling catch-up when owning the lock.
|
---|
307 | *
|
---|
308 | * @returns The timestamp.
|
---|
309 | * @param pVM The cross context VM structure.
|
---|
310 | * @param u64 raw virtual time.
|
---|
311 | * @param off offVirtualSync.
|
---|
312 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
313 | * the next virtual sync timer deadline. Can be
|
---|
314 | * NULL.
|
---|
315 | */
|
---|
316 | DECLINLINE(uint64_t) tmVirtualSyncGetHandleCatchUpLocked(PVM pVM, uint64_t u64, uint64_t off, uint64_t *pcNsToDeadline)
|
---|
317 | {
|
---|
318 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
319 |
|
---|
320 | /*
|
---|
321 | * Don't make updates until we've check the timer queue.
|
---|
322 | */
|
---|
323 | bool fUpdatePrev = true;
|
---|
324 | bool fUpdateOff = true;
|
---|
325 | bool fStop = false;
|
---|
326 | const uint64_t u64Prev = pVM->tm.s.u64VirtualSyncCatchUpPrev;
|
---|
327 | uint64_t u64Delta = u64 - u64Prev;
|
---|
328 | if (RT_LIKELY(!(u64Delta >> 32)))
|
---|
329 | {
|
---|
330 | uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
|
---|
331 | if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp)
|
---|
332 | {
|
---|
333 | off -= u64Sub;
|
---|
334 | Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [vsghcul]\n", u64 - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub));
|
---|
335 | }
|
---|
336 | else
|
---|
337 | {
|
---|
338 | /* we've completely caught up. */
|
---|
339 | STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
|
---|
340 | off = pVM->tm.s.offVirtualSyncGivenUp;
|
---|
341 | fStop = true;
|
---|
342 | Log4(("TM: %'RU64/0: caught up [vsghcul]\n", u64));
|
---|
343 | }
|
---|
344 | }
|
---|
345 | else
|
---|
346 | {
|
---|
347 | /* More than 4 seconds since last time (or negative), ignore it. */
|
---|
348 | fUpdateOff = false;
|
---|
349 | fUpdatePrev = !(u64Delta & RT_BIT_64(63));
|
---|
350 | Log(("TMVirtualGetSync: u64Delta=%RX64\n", u64Delta));
|
---|
351 | }
|
---|
352 |
|
---|
353 | /*
|
---|
354 | * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
|
---|
355 | * approach is to never pass the head timer. So, when we do stop the clock and
|
---|
356 | * set the timer pending flag.
|
---|
357 | */
|
---|
358 | u64 -= off;
|
---|
359 |
|
---|
360 | uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
361 | if (u64Last > u64)
|
---|
362 | {
|
---|
363 | u64 = u64Last + 1;
|
---|
364 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
|
---|
365 | }
|
---|
366 |
|
---|
367 | uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
368 | if (u64 < u64Expire)
|
---|
369 | {
|
---|
370 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
371 | if (fUpdateOff)
|
---|
372 | ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
|
---|
373 | if (fStop)
|
---|
374 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
|
---|
375 | if (fUpdatePrev)
|
---|
376 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64);
|
---|
377 | if (pcNsToDeadline)
|
---|
378 | {
|
---|
379 | uint64_t cNsToDeadline = u64Expire - u64;
|
---|
380 | if (pVM->tm.s.fVirtualSyncCatchUp)
|
---|
381 | cNsToDeadline = ASMMultU64ByU32DivByU32(cNsToDeadline, 100,
|
---|
382 | pVM->tm.s.u32VirtualSyncCatchUpPercentage + 100);
|
---|
383 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, cNsToDeadline);
|
---|
384 | }
|
---|
385 | PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
|
---|
386 | }
|
---|
387 | else
|
---|
388 | {
|
---|
389 | u64 = u64Expire;
|
---|
390 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
391 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
|
---|
392 |
|
---|
393 | VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC);
|
---|
394 | PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
|
---|
395 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
396 | Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_IS_PENDING(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
397 | Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsghcul]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
398 | PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
|
---|
399 |
|
---|
400 | if (pcNsToDeadline)
|
---|
401 | *pcNsToDeadline = 0;
|
---|
402 | #ifdef IN_RING3
|
---|
403 | # ifdef VBOX_WITH_REM
|
---|
404 | REMR3NotifyTimerPending(pVM, pVCpuDst);
|
---|
405 | # endif
|
---|
406 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
407 | #endif
|
---|
408 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
409 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
|
---|
410 | }
|
---|
411 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
412 |
|
---|
413 | Log6(("tmVirtualSyncGetHandleCatchUpLocked -> %'RU64\n", u64));
|
---|
414 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetHandleCatchUpLocked");
|
---|
415 | return u64;
|
---|
416 | }
|
---|
417 |
|
---|
418 |
|
---|
419 | /**
|
---|
420 | * tmVirtualSyncGetEx worker for when we get the lock.
|
---|
421 | *
|
---|
422 | * @returns timesamp.
|
---|
423 | * @param pVM The cross context VM structure.
|
---|
424 | * @param u64 The virtual clock timestamp.
|
---|
425 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
426 | * the next virtual sync timer deadline. Can be
|
---|
427 | * NULL.
|
---|
428 | */
|
---|
429 | DECLINLINE(uint64_t) tmVirtualSyncGetLocked(PVM pVM, uint64_t u64, uint64_t *pcNsToDeadline)
|
---|
430 | {
|
---|
431 | /*
|
---|
432 | * Not ticking?
|
---|
433 | */
|
---|
434 | if (!pVM->tm.s.fVirtualSyncTicking)
|
---|
435 | {
|
---|
436 | u64 = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
437 | PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
|
---|
438 | if (pcNsToDeadline)
|
---|
439 | *pcNsToDeadline = 0;
|
---|
440 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
441 | Log6(("tmVirtualSyncGetLocked -> %'RU64 [stopped]\n", u64));
|
---|
442 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetLocked-stopped");
|
---|
443 | return u64;
|
---|
444 | }
|
---|
445 |
|
---|
446 | /*
|
---|
447 | * Handle catch up in a separate function.
|
---|
448 | */
|
---|
449 | uint64_t off = ASMAtomicUoReadU64(&pVM->tm.s.offVirtualSync);
|
---|
450 | if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
451 | return tmVirtualSyncGetHandleCatchUpLocked(pVM, u64, off, pcNsToDeadline);
|
---|
452 |
|
---|
453 | /*
|
---|
454 | * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
|
---|
455 | * approach is to never pass the head timer. So, when we do stop the clock and
|
---|
456 | * set the timer pending flag.
|
---|
457 | */
|
---|
458 | u64 -= off;
|
---|
459 |
|
---|
460 | uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
461 | if (u64Last > u64)
|
---|
462 | {
|
---|
463 | u64 = u64Last + 1;
|
---|
464 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
|
---|
465 | }
|
---|
466 |
|
---|
467 | uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
468 | if (u64 < u64Expire)
|
---|
469 | {
|
---|
470 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
471 | PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
|
---|
472 | if (pcNsToDeadline)
|
---|
473 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, u64Expire - u64);
|
---|
474 | }
|
---|
475 | else
|
---|
476 | {
|
---|
477 | u64 = u64Expire;
|
---|
478 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
479 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
|
---|
480 |
|
---|
481 | VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC);
|
---|
482 | PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
|
---|
483 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
484 | Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, !!VMCPU_FF_IS_PENDING(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
485 | Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsgl]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
486 | PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
|
---|
487 |
|
---|
488 | #ifdef IN_RING3
|
---|
489 | # ifdef VBOX_WITH_REM
|
---|
490 | REMR3NotifyTimerPending(pVM, pVCpuDst);
|
---|
491 | # endif
|
---|
492 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
493 | #endif
|
---|
494 | if (pcNsToDeadline)
|
---|
495 | *pcNsToDeadline = 0;
|
---|
496 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
497 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
|
---|
498 | }
|
---|
499 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
500 | Log6(("tmVirtualSyncGetLocked -> %'RU64\n", u64));
|
---|
501 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetLocked");
|
---|
502 | return u64;
|
---|
503 | }
|
---|
504 |
|
---|
505 |
|
---|
506 | /**
|
---|
507 | * Gets the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
508 | *
|
---|
509 | * @returns The timestamp.
|
---|
510 | * @param pVM The cross context VM structure.
|
---|
511 | * @param fCheckTimers Check timers or not
|
---|
512 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
513 | * the next virtual sync timer deadline. Can be
|
---|
514 | * NULL.
|
---|
515 | * @thread EMT.
|
---|
516 | */
|
---|
517 | DECLINLINE(uint64_t) tmVirtualSyncGetEx(PVM pVM, bool fCheckTimers, uint64_t *pcNsToDeadline)
|
---|
518 | {
|
---|
519 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGet);
|
---|
520 |
|
---|
521 | uint64_t u64;
|
---|
522 | if (!pVM->tm.s.fVirtualSyncTicking)
|
---|
523 | {
|
---|
524 | if (pcNsToDeadline)
|
---|
525 | *pcNsToDeadline = 0;
|
---|
526 | u64 = pVM->tm.s.u64VirtualSync;
|
---|
527 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetEx-stopped1");
|
---|
528 | return u64;
|
---|
529 | }
|
---|
530 |
|
---|
531 | /*
|
---|
532 | * Query the virtual clock and do the usual expired timer check.
|
---|
533 | */
|
---|
534 | Assert(pVM->tm.s.cVirtualTicking);
|
---|
535 | u64 = tmVirtualGetRaw(pVM);
|
---|
536 | if (fCheckTimers)
|
---|
537 | {
|
---|
538 | PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
|
---|
539 | if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
|
---|
540 | && pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64)
|
---|
541 | {
|
---|
542 | Log5(("TMAllVirtual(%u): FF: 0 -> 1\n", __LINE__));
|
---|
543 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
544 | #ifdef IN_RING3
|
---|
545 | # ifdef VBOX_WITH_REM
|
---|
546 | REMR3NotifyTimerPending(pVM, pVCpuDst);
|
---|
547 | # endif
|
---|
548 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo |VMNOTIFYFF_FLAGS_POKE*/);
|
---|
549 | #endif
|
---|
550 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
551 | }
|
---|
552 | }
|
---|
553 |
|
---|
554 | /*
|
---|
555 | * If we can get the lock, get it. The result is much more reliable.
|
---|
556 | *
|
---|
557 | * Note! This is where all clock source devices branch off because they
|
---|
558 | * will be owning the lock already. The 'else' is taken by code
|
---|
559 | * which is less picky or hasn't been adjusted yet
|
---|
560 | */
|
---|
561 | if (PDMCritSectTryEnter(&pVM->tm.s.VirtualSyncLock) == VINF_SUCCESS)
|
---|
562 | return tmVirtualSyncGetLocked(pVM, u64, pcNsToDeadline);
|
---|
563 |
|
---|
564 | /*
|
---|
565 | * When the clock is ticking, not doing catch ups and not running into an
|
---|
566 | * expired time, we can get away without locking. Try this first.
|
---|
567 | */
|
---|
568 | uint64_t off;
|
---|
569 | if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking))
|
---|
570 | {
|
---|
571 | if (!ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
572 | {
|
---|
573 | off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
|
---|
574 | if (RT_LIKELY( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking)
|
---|
575 | && !ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp)
|
---|
576 | && off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync)))
|
---|
577 | {
|
---|
578 | off = u64 - off;
|
---|
579 | uint64_t const u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
580 | if (off < u64Expire)
|
---|
581 | {
|
---|
582 | if (pcNsToDeadline)
|
---|
583 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, u64Expire - off);
|
---|
584 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless);
|
---|
585 | Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless]\n", off));
|
---|
586 | DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-lockless");
|
---|
587 | return off;
|
---|
588 | }
|
---|
589 | }
|
---|
590 | }
|
---|
591 | }
|
---|
592 | else
|
---|
593 | {
|
---|
594 | off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
595 | if (RT_LIKELY(!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking)))
|
---|
596 | {
|
---|
597 | if (pcNsToDeadline)
|
---|
598 | *pcNsToDeadline = 0;
|
---|
599 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless);
|
---|
600 | Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless/stopped]\n", off));
|
---|
601 | DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-stopped2");
|
---|
602 | return off;
|
---|
603 | }
|
---|
604 | }
|
---|
605 |
|
---|
606 | /*
|
---|
607 | * Read the offset and adjust if we're playing catch-up.
|
---|
608 | *
|
---|
609 | * The catch-up adjusting work by us decrementing the offset by a percentage of
|
---|
610 | * the time elapsed since the previous TMVirtualGetSync call.
|
---|
611 | *
|
---|
612 | * It's possible to get a very long or even negative interval between two read
|
---|
613 | * for the following reasons:
|
---|
614 | * - Someone might have suspended the process execution, frequently the case when
|
---|
615 | * debugging the process.
|
---|
616 | * - We might be on a different CPU which TSC isn't quite in sync with the
|
---|
617 | * other CPUs in the system.
|
---|
618 | * - Another thread is racing us and we might have been preempted while inside
|
---|
619 | * this function.
|
---|
620 | *
|
---|
621 | * Assuming nano second virtual time, we can simply ignore any intervals which has
|
---|
622 | * any of the upper 32 bits set.
|
---|
623 | */
|
---|
624 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
625 | int cOuterTries = 42;
|
---|
626 | for (;; cOuterTries--)
|
---|
627 | {
|
---|
628 | /* Try grab the lock, things get simpler when owning the lock. */
|
---|
629 | int rcLock = PDMCritSectTryEnter(&pVM->tm.s.VirtualSyncLock);
|
---|
630 | if (RT_SUCCESS_NP(rcLock))
|
---|
631 | return tmVirtualSyncGetLocked(pVM, u64, pcNsToDeadline);
|
---|
632 |
|
---|
633 | /* Re-check the ticking flag. */
|
---|
634 | if (!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking))
|
---|
635 | {
|
---|
636 | off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
637 | if ( ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking)
|
---|
638 | && cOuterTries > 0)
|
---|
639 | continue;
|
---|
640 | if (pcNsToDeadline)
|
---|
641 | *pcNsToDeadline = 0;
|
---|
642 | Log6(("tmVirtualSyncGetEx -> %'RU64 [stopped]\n", off));
|
---|
643 | DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-stopped3");
|
---|
644 | return off;
|
---|
645 | }
|
---|
646 |
|
---|
647 | off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
|
---|
648 | if (ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
649 | {
|
---|
650 | /* No changes allowed, try get a consistent set of parameters. */
|
---|
651 | uint64_t const u64Prev = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev);
|
---|
652 | uint64_t const offGivenUp = ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp);
|
---|
653 | uint32_t const u32Pct = ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage);
|
---|
654 | if ( ( u64Prev == ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev)
|
---|
655 | && offGivenUp == ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp)
|
---|
656 | && u32Pct == ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage)
|
---|
657 | && ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
658 | || cOuterTries <= 0)
|
---|
659 | {
|
---|
660 | uint64_t u64Delta = u64 - u64Prev;
|
---|
661 | if (RT_LIKELY(!(u64Delta >> 32)))
|
---|
662 | {
|
---|
663 | uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, u32Pct, 100);
|
---|
664 | if (off > u64Sub + offGivenUp)
|
---|
665 | {
|
---|
666 | off -= u64Sub;
|
---|
667 | Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [NoLock]\n", u64 - off, pVM->tm.s.offVirtualSync - offGivenUp, u64Sub));
|
---|
668 | }
|
---|
669 | else
|
---|
670 | {
|
---|
671 | /* we've completely caught up. */
|
---|
672 | STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
|
---|
673 | off = offGivenUp;
|
---|
674 | Log4(("TM: %'RU64/0: caught up [NoLock]\n", u64));
|
---|
675 | }
|
---|
676 | }
|
---|
677 | else
|
---|
678 | /* More than 4 seconds since last time (or negative), ignore it. */
|
---|
679 | Log(("TMVirtualGetSync: u64Delta=%RX64 (NoLock)\n", u64Delta));
|
---|
680 |
|
---|
681 | /* Check that we're still running and in catch up. */
|
---|
682 | if ( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking)
|
---|
683 | && ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
684 | break;
|
---|
685 | if (cOuterTries <= 0)
|
---|
686 | break; /* enough */
|
---|
687 | }
|
---|
688 | }
|
---|
689 | else if ( off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync)
|
---|
690 | && !ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
691 | break; /* Got an consistent offset */
|
---|
692 | else if (cOuterTries <= 0)
|
---|
693 | break; /* enough */
|
---|
694 | }
|
---|
695 | if (cOuterTries <= 0)
|
---|
696 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetELoop);
|
---|
697 |
|
---|
698 | /*
|
---|
699 | * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
|
---|
700 | * approach is to never pass the head timer. So, when we do stop the clock and
|
---|
701 | * set the timer pending flag.
|
---|
702 | */
|
---|
703 | u64 -= off;
|
---|
704 | /** @todo u64VirtualSyncLast */
|
---|
705 | uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
706 | if (u64 >= u64Expire)
|
---|
707 | {
|
---|
708 | PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
|
---|
709 | if (!VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
|
---|
710 | {
|
---|
711 | Log5(("TMAllVirtual(%u): FF: %d -> 1 (NoLock)\n", __LINE__, VMCPU_FF_IS_PENDING(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
712 | VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC); /* Hmm? */
|
---|
713 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
714 | #ifdef IN_RING3
|
---|
715 | # ifdef VBOX_WITH_REM
|
---|
716 | REMR3NotifyTimerPending(pVM, pVCpuDst);
|
---|
717 | # endif
|
---|
718 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
719 | #endif
|
---|
720 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
721 | Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
722 | }
|
---|
723 | else
|
---|
724 | Log4(("TM: %'RU64/-%'8RU64: exp tmr [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
725 | if (pcNsToDeadline)
|
---|
726 | *pcNsToDeadline = 0;
|
---|
727 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
|
---|
728 | }
|
---|
729 | else if (pcNsToDeadline)
|
---|
730 | {
|
---|
731 | uint64_t cNsToDeadline = u64Expire - u64;
|
---|
732 | if (ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
733 | cNsToDeadline = ASMMultU64ByU32DivByU32(cNsToDeadline, 100,
|
---|
734 | ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage) + 100);
|
---|
735 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, cNsToDeadline);
|
---|
736 | }
|
---|
737 |
|
---|
738 | Log6(("tmVirtualSyncGetEx -> %'RU64\n", u64));
|
---|
739 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetEx-nolock");
|
---|
740 | return u64;
|
---|
741 | }
|
---|
742 |
|
---|
743 |
|
---|
744 | /**
|
---|
745 | * Gets the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
746 | *
|
---|
747 | * @returns The timestamp.
|
---|
748 | * @param pVM The cross context VM structure.
|
---|
749 | * @thread EMT.
|
---|
750 | * @remarks May set the timer and virtual sync FFs.
|
---|
751 | */
|
---|
752 | VMM_INT_DECL(uint64_t) TMVirtualSyncGet(PVM pVM)
|
---|
753 | {
|
---|
754 | return tmVirtualSyncGetEx(pVM, true /*fCheckTimers*/, NULL /*pcNsToDeadline*/);
|
---|
755 | }
|
---|
756 |
|
---|
757 |
|
---|
758 | /**
|
---|
759 | * Gets the current TMCLOCK_VIRTUAL_SYNC time without checking timers running on
|
---|
760 | * TMCLOCK_VIRTUAL.
|
---|
761 | *
|
---|
762 | * @returns The timestamp.
|
---|
763 | * @param pVM The cross context VM structure.
|
---|
764 | * @thread EMT.
|
---|
765 | * @remarks May set the timer and virtual sync FFs.
|
---|
766 | */
|
---|
767 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetNoCheck(PVM pVM)
|
---|
768 | {
|
---|
769 | return tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, NULL /*pcNsToDeadline*/);
|
---|
770 | }
|
---|
771 |
|
---|
772 |
|
---|
773 | /**
|
---|
774 | * Gets the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
775 | *
|
---|
776 | * @returns The timestamp.
|
---|
777 | * @param pVM The cross context VM structure.
|
---|
778 | * @param fCheckTimers Check timers on the virtual clock or not.
|
---|
779 | * @thread EMT.
|
---|
780 | * @remarks May set the timer and virtual sync FFs.
|
---|
781 | */
|
---|
782 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetEx(PVM pVM, bool fCheckTimers)
|
---|
783 | {
|
---|
784 | return tmVirtualSyncGetEx(pVM, fCheckTimers, NULL /*pcNsToDeadline*/);
|
---|
785 | }
|
---|
786 |
|
---|
787 |
|
---|
788 | /**
|
---|
789 | * Gets the current TMCLOCK_VIRTUAL_SYNC time and ticks to the next deadline
|
---|
790 | * without checking timers running on TMCLOCK_VIRTUAL.
|
---|
791 | *
|
---|
792 | * @returns The timestamp.
|
---|
793 | * @param pVM The cross context VM structure.
|
---|
794 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
795 | * the next virtual sync timer deadline.
|
---|
796 | * @thread EMT.
|
---|
797 | * @remarks May set the timer and virtual sync FFs.
|
---|
798 | */
|
---|
799 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetWithDeadlineNoCheck(PVM pVM, uint64_t *pcNsToDeadline)
|
---|
800 | {
|
---|
801 | uint64_t cNsToDeadlineTmp; /* try convince the compiler to skip the if tests. */
|
---|
802 | uint64_t u64Now = tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, &cNsToDeadlineTmp);
|
---|
803 | *pcNsToDeadline = cNsToDeadlineTmp;
|
---|
804 | return u64Now;
|
---|
805 | }
|
---|
806 |
|
---|
807 |
|
---|
808 | /**
|
---|
809 | * Gets the number of nano seconds to the next virtual sync deadline.
|
---|
810 | *
|
---|
811 | * @returns The number of TMCLOCK_VIRTUAL ticks.
|
---|
812 | * @param pVM The cross context VM structure.
|
---|
813 | * @thread EMT.
|
---|
814 | * @remarks May set the timer and virtual sync FFs.
|
---|
815 | */
|
---|
816 | VMMDECL(uint64_t) TMVirtualSyncGetNsToDeadline(PVM pVM)
|
---|
817 | {
|
---|
818 | uint64_t cNsToDeadline;
|
---|
819 | tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, &cNsToDeadline);
|
---|
820 | return cNsToDeadline;
|
---|
821 | }
|
---|
822 |
|
---|
823 |
|
---|
824 | /**
|
---|
825 | * Gets the current lag of the synchronous virtual clock (relative to the virtual clock).
|
---|
826 | *
|
---|
827 | * @return The current lag.
|
---|
828 | * @param pVM The cross context VM structure.
|
---|
829 | */
|
---|
830 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetLag(PVM pVM)
|
---|
831 | {
|
---|
832 | return pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp;
|
---|
833 | }
|
---|
834 |
|
---|
835 |
|
---|
836 | /**
|
---|
837 | * Get the current catch-up percent.
|
---|
838 | *
|
---|
839 | * @return The current catch0up percent. 0 means running at the same speed as the virtual clock.
|
---|
840 | * @param pVM The cross context VM structure.
|
---|
841 | */
|
---|
842 | VMM_INT_DECL(uint32_t) TMVirtualSyncGetCatchUpPct(PVM pVM)
|
---|
843 | {
|
---|
844 | if (pVM->tm.s.fVirtualSyncCatchUp)
|
---|
845 | return pVM->tm.s.u32VirtualSyncCatchUpPercentage;
|
---|
846 | return 0;
|
---|
847 | }
|
---|
848 |
|
---|
849 |
|
---|
850 | /**
|
---|
851 | * Gets the current TMCLOCK_VIRTUAL frequency.
|
---|
852 | *
|
---|
853 | * @returns The frequency.
|
---|
854 | * @param pVM The cross context VM structure.
|
---|
855 | */
|
---|
856 | VMM_INT_DECL(uint64_t) TMVirtualGetFreq(PVM pVM)
|
---|
857 | {
|
---|
858 | NOREF(pVM);
|
---|
859 | return TMCLOCK_FREQ_VIRTUAL;
|
---|
860 | }
|
---|
861 |
|
---|
862 |
|
---|
863 | /**
|
---|
864 | * Worker for TMR3PauseClocks.
|
---|
865 | *
|
---|
866 | * @returns VINF_SUCCESS or VERR_TM_VIRTUAL_TICKING_IPE (asserted).
|
---|
867 | * @param pVM The cross context VM structure.
|
---|
868 | */
|
---|
869 | int tmVirtualPauseLocked(PVM pVM)
|
---|
870 | {
|
---|
871 | uint32_t c = ASMAtomicDecU32(&pVM->tm.s.cVirtualTicking);
|
---|
872 | AssertMsgReturn(c < pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_TM_VIRTUAL_TICKING_IPE);
|
---|
873 | if (c == 0)
|
---|
874 | {
|
---|
875 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualPause);
|
---|
876 | pVM->tm.s.u64Virtual = tmVirtualGetRaw(pVM);
|
---|
877 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
|
---|
878 | }
|
---|
879 | return VINF_SUCCESS;
|
---|
880 | }
|
---|
881 |
|
---|
882 |
|
---|
883 | /**
|
---|
884 | * Worker for TMR3ResumeClocks.
|
---|
885 | *
|
---|
886 | * @returns VINF_SUCCESS or VERR_TM_VIRTUAL_TICKING_IPE (asserted).
|
---|
887 | * @param pVM The cross context VM structure.
|
---|
888 | */
|
---|
889 | int tmVirtualResumeLocked(PVM pVM)
|
---|
890 | {
|
---|
891 | uint32_t c = ASMAtomicIncU32(&pVM->tm.s.cVirtualTicking);
|
---|
892 | AssertMsgReturn(c <= pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_TM_VIRTUAL_TICKING_IPE);
|
---|
893 | if (c == 1)
|
---|
894 | {
|
---|
895 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualResume);
|
---|
896 | pVM->tm.s.u64VirtualRawPrev = 0;
|
---|
897 | pVM->tm.s.u64VirtualWarpDriveStart = tmVirtualGetRawNanoTS(pVM);
|
---|
898 | pVM->tm.s.u64VirtualOffset = pVM->tm.s.u64VirtualWarpDriveStart - pVM->tm.s.u64Virtual;
|
---|
899 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
|
---|
900 | }
|
---|
901 | return VINF_SUCCESS;
|
---|
902 | }
|
---|
903 |
|
---|
904 |
|
---|
905 | /**
|
---|
906 | * Converts from virtual ticks to nanoseconds.
|
---|
907 | *
|
---|
908 | * @returns nanoseconds.
|
---|
909 | * @param pVM The cross context VM structure.
|
---|
910 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
911 | * @remark There could be rounding errors here. We just do a simple integer divide
|
---|
912 | * without any adjustments.
|
---|
913 | */
|
---|
914 | VMM_INT_DECL(uint64_t) TMVirtualToNano(PVM pVM, uint64_t u64VirtualTicks)
|
---|
915 | {
|
---|
916 | NOREF(pVM);
|
---|
917 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
918 | return u64VirtualTicks;
|
---|
919 | }
|
---|
920 |
|
---|
921 |
|
---|
922 | /**
|
---|
923 | * Converts from virtual ticks to microseconds.
|
---|
924 | *
|
---|
925 | * @returns microseconds.
|
---|
926 | * @param pVM The cross context VM structure.
|
---|
927 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
928 | * @remark There could be rounding errors here. We just do a simple integer divide
|
---|
929 | * without any adjustments.
|
---|
930 | */
|
---|
931 | VMM_INT_DECL(uint64_t) TMVirtualToMicro(PVM pVM, uint64_t u64VirtualTicks)
|
---|
932 | {
|
---|
933 | NOREF(pVM);
|
---|
934 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
935 | return u64VirtualTicks / 1000;
|
---|
936 | }
|
---|
937 |
|
---|
938 |
|
---|
939 | /**
|
---|
940 | * Converts from virtual ticks to milliseconds.
|
---|
941 | *
|
---|
942 | * @returns milliseconds.
|
---|
943 | * @param pVM The cross context VM structure.
|
---|
944 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
945 | * @remark There could be rounding errors here. We just do a simple integer divide
|
---|
946 | * without any adjustments.
|
---|
947 | */
|
---|
948 | VMM_INT_DECL(uint64_t) TMVirtualToMilli(PVM pVM, uint64_t u64VirtualTicks)
|
---|
949 | {
|
---|
950 | NOREF(pVM);
|
---|
951 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
952 | return u64VirtualTicks / 1000000;
|
---|
953 | }
|
---|
954 |
|
---|
955 |
|
---|
956 | /**
|
---|
957 | * Converts from nanoseconds to virtual ticks.
|
---|
958 | *
|
---|
959 | * @returns virtual ticks.
|
---|
960 | * @param pVM The cross context VM structure.
|
---|
961 | * @param u64NanoTS The nanosecond value ticks to convert.
|
---|
962 | * @remark There could be rounding and overflow errors here.
|
---|
963 | */
|
---|
964 | VMM_INT_DECL(uint64_t) TMVirtualFromNano(PVM pVM, uint64_t u64NanoTS)
|
---|
965 | {
|
---|
966 | NOREF(pVM);
|
---|
967 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
968 | return u64NanoTS;
|
---|
969 | }
|
---|
970 |
|
---|
971 |
|
---|
972 | /**
|
---|
973 | * Converts from microseconds to virtual ticks.
|
---|
974 | *
|
---|
975 | * @returns virtual ticks.
|
---|
976 | * @param pVM The cross context VM structure.
|
---|
977 | * @param u64MicroTS The microsecond value ticks to convert.
|
---|
978 | * @remark There could be rounding and overflow errors here.
|
---|
979 | */
|
---|
980 | VMM_INT_DECL(uint64_t) TMVirtualFromMicro(PVM pVM, uint64_t u64MicroTS)
|
---|
981 | {
|
---|
982 | NOREF(pVM);
|
---|
983 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
984 | return u64MicroTS * 1000;
|
---|
985 | }
|
---|
986 |
|
---|
987 |
|
---|
988 | /**
|
---|
989 | * Converts from milliseconds to virtual ticks.
|
---|
990 | *
|
---|
991 | * @returns virtual ticks.
|
---|
992 | * @param pVM The cross context VM structure.
|
---|
993 | * @param u64MilliTS The millisecond value ticks to convert.
|
---|
994 | * @remark There could be rounding and overflow errors here.
|
---|
995 | */
|
---|
996 | VMM_INT_DECL(uint64_t) TMVirtualFromMilli(PVM pVM, uint64_t u64MilliTS)
|
---|
997 | {
|
---|
998 | NOREF(pVM);
|
---|
999 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
1000 | return u64MilliTS * 1000000;
|
---|
1001 | }
|
---|
1002 |
|
---|