/* $Id: PGMAllShw.h 73273 2018-07-20 14:58:52Z vboxsync $ */ /** @file * VBox - Page Manager, Shadow Paging Template - All context code. */ /* * Copyright (C) 2006-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #undef SHWPT #undef PSHWPT #undef SHWPTE #undef PSHWPTE #undef SHWPD #undef PSHWPD #undef SHWPDE #undef PSHWPDE #undef SHW_PDE_PG_MASK #undef SHW_PD_SHIFT #undef SHW_PD_MASK #undef SHW_PTE_PG_MASK #undef SHW_PTE_IS_P #undef SHW_PTE_IS_RW #undef SHW_PTE_IS_US #undef SHW_PTE_IS_A #undef SHW_PTE_IS_D #undef SHW_PTE_IS_P_RW #undef SHW_PTE_IS_TRACK_DIRTY #undef SHW_PTE_GET_HCPHYS #undef SHW_PTE_GET_U #undef SHW_PTE_LOG64 #undef SHW_PTE_SET #undef SHW_PTE_ATOMIC_SET #undef SHW_PTE_ATOMIC_SET2 #undef SHW_PTE_SET_RO #undef SHW_PTE_SET_RW #undef SHW_PT_SHIFT #undef SHW_PT_MASK #undef SHW_TOTAL_PD_ENTRIES #undef SHW_PDPT_SHIFT #undef SHW_PDPT_MASK #undef SHW_PDPE_PG_MASK #if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT # define SHWPT X86PT # define PSHWPT PX86PT # define SHWPTE X86PTE # define PSHWPTE PX86PTE # define SHWPD X86PD # define PSHWPD PX86PD # define SHWPDE X86PDE # define PSHWPDE PX86PDE # define SHW_PDE_PG_MASK X86_PDE_PG_MASK # define SHW_PD_SHIFT X86_PD_SHIFT # define SHW_PD_MASK X86_PD_MASK # define SHW_TOTAL_PD_ENTRIES X86_PG_ENTRIES # define SHW_PTE_PG_MASK X86_PTE_PG_MASK # define SHW_PTE_IS_P(Pte) ( (Pte).n.u1Present ) # define SHW_PTE_IS_RW(Pte) ( (Pte).n.u1Write ) # define SHW_PTE_IS_US(Pte) ( (Pte).n.u1User ) # define SHW_PTE_IS_A(Pte) ( (Pte).n.u1Accessed ) # define SHW_PTE_IS_D(Pte) ( (Pte).n.u1Dirty ) # define SHW_PTE_IS_P_RW(Pte) ( (Pte).n.u1Present && (Pte).n.u1Write ) # define SHW_PTE_IS_TRACK_DIRTY(Pte) ( !!((Pte).u & PGM_PTFLAGS_TRACK_DIRTY) ) # define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PG_MASK ) # define SHW_PTE_LOG64(Pte) ( (uint64_t)(Pte).u ) # define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */ # define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0) # define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU32(&(Pte).u, (uNew)); } while (0) # define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU32(&(Pte).u, (Pte2).u); } while (0) # define SHW_PTE_SET_RO(Pte) do { (Pte).n.u1Write = 0; } while (0) # define SHW_PTE_SET_RW(Pte) do { (Pte).n.u1Write = 1; } while (0) # define SHW_PT_SHIFT X86_PT_SHIFT # define SHW_PT_MASK X86_PT_MASK #elif PGM_SHW_TYPE == PGM_TYPE_EPT # define SHWPT EPTPT # define PSHWPT PEPTPT # define SHWPTE EPTPTE # define PSHWPTE PEPTPTE # define SHWPD EPTPD # define PSHWPD PEPTPD # define SHWPDE EPTPDE # define PSHWPDE PEPTPDE # define SHW_PDE_PG_MASK EPT_PDE_PG_MASK # define SHW_PD_SHIFT EPT_PD_SHIFT # define SHW_PD_MASK EPT_PD_MASK # define SHW_PTE_PG_MASK EPT_PTE_PG_MASK # define SHW_PTE_IS_P(Pte) ( (Pte).n.u1Present ) /* Approximation, works for us. */ # define SHW_PTE_IS_RW(Pte) ( (Pte).n.u1Write ) # define SHW_PTE_IS_US(Pte) ( true ) # define SHW_PTE_IS_A(Pte) ( true ) # define SHW_PTE_IS_D(Pte) ( true ) # define SHW_PTE_IS_P_RW(Pte) ( (Pte).n.u1Present && (Pte).n.u1Write ) # define SHW_PTE_IS_TRACK_DIRTY(Pte) ( false ) # define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PG_MASK ) # define SHW_PTE_LOG64(Pte) ( (Pte).u ) # define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */ # define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0) # define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU64(&(Pte).u, (uNew)); } while (0) # define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).u, (Pte2).u); } while (0) # define SHW_PTE_SET_RO(Pte) do { (Pte).n.u1Write = 0; } while (0) # define SHW_PTE_SET_RW(Pte) do { (Pte).n.u1Write = 1; } while (0) # define SHW_PT_SHIFT EPT_PT_SHIFT # define SHW_PT_MASK EPT_PT_MASK # define SHW_PDPT_SHIFT EPT_PDPT_SHIFT # define SHW_PDPT_MASK EPT_PDPT_MASK # define SHW_PDPE_PG_MASK EPT_PDPE_PG_MASK # define SHW_TOTAL_PD_ENTRIES (EPT_PG_AMD64_ENTRIES*EPT_PG_AMD64_PDPE_ENTRIES) #else # define SHWPT PGMSHWPTPAE # define PSHWPT PPGMSHWPTPAE # define SHWPTE PGMSHWPTEPAE # define PSHWPTE PPGMSHWPTEPAE # define SHWPD X86PDPAE # define PSHWPD PX86PDPAE # define SHWPDE X86PDEPAE # define PSHWPDE PX86PDEPAE # define SHW_PDE_PG_MASK X86_PDE_PAE_PG_MASK # define SHW_PD_SHIFT X86_PD_PAE_SHIFT # define SHW_PD_MASK X86_PD_PAE_MASK # define SHW_PTE_PG_MASK X86_PTE_PAE_PG_MASK # define SHW_PTE_IS_P(Pte) PGMSHWPTEPAE_IS_P(Pte) # define SHW_PTE_IS_RW(Pte) PGMSHWPTEPAE_IS_RW(Pte) # define SHW_PTE_IS_US(Pte) PGMSHWPTEPAE_IS_US(Pte) # define SHW_PTE_IS_A(Pte) PGMSHWPTEPAE_IS_A(Pte) # define SHW_PTE_IS_D(Pte) PGMSHWPTEPAE_IS_D(Pte) # define SHW_PTE_IS_P_RW(Pte) PGMSHWPTEPAE_IS_P_RW(Pte) # define SHW_PTE_IS_TRACK_DIRTY(Pte) PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte) # define SHW_PTE_GET_HCPHYS(Pte) PGMSHWPTEPAE_GET_HCPHYS(Pte) # define SHW_PTE_LOG64(Pte) PGMSHWPTEPAE_GET_LOG(Pte) # define SHW_PTE_GET_U(Pte) PGMSHWPTEPAE_GET_U(Pte) /**< Use with care. */ # define SHW_PTE_SET(Pte, uNew) PGMSHWPTEPAE_SET(Pte, uNew) # define SHW_PTE_ATOMIC_SET(Pte, uNew) PGMSHWPTEPAE_ATOMIC_SET(Pte, uNew) # define SHW_PTE_ATOMIC_SET2(Pte, Pte2) PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2) # define SHW_PTE_SET_RO(Pte) PGMSHWPTEPAE_SET_RO(Pte) # define SHW_PTE_SET_RW(Pte) PGMSHWPTEPAE_SET_RW(Pte) # define SHW_PT_SHIFT X86_PT_PAE_SHIFT # define SHW_PT_MASK X86_PT_PAE_MASK # if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 # define SHW_PDPT_SHIFT X86_PDPT_SHIFT # define SHW_PDPT_MASK X86_PDPT_MASK_AMD64 # define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK # define SHW_TOTAL_PD_ENTRIES (X86_PG_AMD64_ENTRIES * X86_PG_AMD64_PDPE_ENTRIES) # elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE # define SHW_PDPT_SHIFT X86_PDPT_SHIFT # define SHW_PDPT_MASK X86_PDPT_MASK_PAE # define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK # define SHW_TOTAL_PD_ENTRIES (X86_PG_PAE_ENTRIES * X86_PG_PAE_PDPE_ENTRIES) # else # error "Misconfigured PGM_SHW_TYPE or something..." # endif #endif /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ RT_C_DECLS_BEGIN PGM_SHW_DECL(int, GetPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys); PGM_SHW_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags); PGM_SHW_DECL(int, Enter)(PVMCPU pVCpu, bool fIs64BitsPagingMode); PGM_SHW_DECL(int, Exit)(PVMCPU pVCpu); #ifdef IN_RING3 PGM_SHW_DECL(int, Relocate)(PVMCPU pVCpu, RTGCPTR offDelta); #endif RT_C_DECLS_END /** * Enters the shadow mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param fIs64BitsPagingMode New shadow paging mode is for 64 bits? (only relevant for 64 bits guests on a 32 bits AMD-V nested paging host) */ PGM_SHW_DECL(int, Enter)(PVMCPU pVCpu, bool fIs64BitsPagingMode) { #if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) # if PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && HC_ARCH_BITS == 32 /* Must distinguish between 32 and 64 bits guest paging modes as we'll use a different shadow paging root/mode in both cases. */ RTGCPHYS GCPhysCR3 = (fIs64BitsPagingMode) ? RT_BIT_64(63) : RT_BIT_64(62); # else RTGCPHYS GCPhysCR3 = RT_BIT_64(63); NOREF(fIs64BitsPagingMode); # endif PPGMPOOLPAGE pNewShwPageCR3; PVM pVM = pVCpu->CTX_SUFF(pVM); Assert((HMIsNestedPagingActive(pVM) || VM_IS_NEM_ENABLED(pVM)) == pVM->pgm.s.fNestedPaging); Assert(pVM->pgm.s.fNestedPaging); Assert(!pVCpu->pgm.s.pShwPageCR3R3); pgmLock(pVM); int rc = pgmPoolAlloc(pVM, GCPhysCR3, PGMPOOLKIND_ROOT_NESTED, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3); AssertLogRelRCReturnStmt(rc, pgmUnlock(pVM), rc); pVCpu->pgm.s.pShwPageCR3R3 = (R3PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR3(pVM, pNewShwPageCR3); pVCpu->pgm.s.pShwPageCR3RC = (RCPTRTYPE(PPGMPOOLPAGE))MMHyperCCToRC(pVM, pNewShwPageCR3); pVCpu->pgm.s.pShwPageCR3R0 = (R0PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR0(pVM, pNewShwPageCR3); pgmUnlock(pVM); Log(("Enter nested shadow paging mode: root %RHv phys %RHp\n", pVCpu->pgm.s.pShwPageCR3R3, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key)); #else NOREF(pVCpu); NOREF(fIs64BitsPagingMode); #endif return VINF_SUCCESS; } /** * Exits the shadow mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ PGM_SHW_DECL(int, Exit)(PVMCPU pVCpu) { #if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) PVM pVM = pVCpu->CTX_SUFF(pVM); if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); pgmLock(pVM); /* Do *not* unlock this page as we have two of them floating around in the 32-bit host & 64-bit guest case. * We currently assert when you try to free one of them; don't bother to really allow this. * * Note that this is two nested paging root pages max. This isn't a leak. They are reused. */ /* pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); */ pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX); pVCpu->pgm.s.pShwPageCR3R3 = 0; pVCpu->pgm.s.pShwPageCR3R0 = 0; pVCpu->pgm.s.pShwPageCR3RC = 0; pgmUnlock(pVM); Log(("Leave nested shadow paging mode\n")); } #else RT_NOREF_PV(pVCpu); #endif return VINF_SUCCESS; } /** * Gets effective page information (from the VMM page directory). * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtr Guest Context virtual address of the page. * @param pfFlags Where to store the flags. These are X86_PTE_*. * @param pHCPhys Where to store the HC physical address of the page. * This is page aligned. * @remark You should use PGMMapGetPage() for pages in a mapping. */ PGM_SHW_DECL(int, GetPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys) { PVM pVM = pVCpu->CTX_SUFF(pVM); PGM_LOCK_ASSERT_OWNER(pVM); /* * Get the PDE. */ #if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 X86PDEPAE Pde; /* PML4 */ X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr); if (!Pml4e.n.u1Present) return VERR_PAGE_TABLE_NOT_PRESENT; /* PDPT */ PX86PDPT pPDPT; int rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT); if (RT_FAILURE(rc)) return rc; const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; X86PDPE Pdpe = pPDPT->a[iPDPT]; if (!Pdpe.n.u1Present) return VERR_PAGE_TABLE_NOT_PRESENT; /* PD */ PX86PDPAE pPd; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd); if (RT_FAILURE(rc)) return rc; const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; Pde = pPd->a[iPd]; /* Merge accessed, write, user and no-execute bits into the PDE. */ Pde.n.u1Accessed &= Pml4e.n.u1Accessed & Pdpe.lm.u1Accessed; Pde.n.u1Write &= Pml4e.n.u1Write & Pdpe.lm.u1Write; Pde.n.u1User &= Pml4e.n.u1User & Pdpe.lm.u1User; Pde.n.u1NoExecute |= Pml4e.n.u1NoExecute | Pdpe.lm.u1NoExecute; #elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr); #elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; EPTPDE Pde; int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst); if (rc != VINF_SUCCESS) /** @todo this function isn't expected to return informational status codes. Check callers / fix. */ { AssertRC(rc); return rc; } Assert(pPDDst); Pde = pPDDst->a[iPd]; #elif PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr); #else # error "Misconfigured PGM_SHW_TYPE or something..." #endif if (!Pde.n.u1Present) return VERR_PAGE_TABLE_NOT_PRESENT; /* Deal with large pages. */ if (Pde.b.u1Size) { /* * Store the results. * RW and US flags depend on the entire page translation hierarchy - except for * legacy PAE which has a simplified PDPE. */ if (pfFlags) { *pfFlags = (Pde.u & ~SHW_PDE_PG_MASK); #if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 if ( (Pde.u & X86_PTE_PAE_NX) # if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) && CPUMIsGuestNXEnabled(pVCpu) /** @todo why do we have to check the guest state here? */ # endif ) *pfFlags |= X86_PTE_PAE_NX; #endif } if (pHCPhys) *pHCPhys = (Pde.u & SHW_PDE_PG_MASK) + (GCPtr & (RT_BIT(SHW_PD_SHIFT) - 1) & X86_PAGE_4K_BASE_MASK); return VINF_SUCCESS; } /* * Get PT entry. */ PSHWPT pPT; if (!(Pde.u & PGM_PDFLAGS_MAPPING)) { int rc2 = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT); if (RT_FAILURE(rc2)) return rc2; } else /* mapping: */ { #if PGM_SHW_TYPE == PGM_TYPE_AMD64 \ || PGM_SHW_TYPE == PGM_TYPE_EPT \ || defined(PGM_WITHOUT_MAPPINGS) AssertFailed(); /* can't happen */ pPT = NULL; /* shut up MSC */ #else Assert(pgmMapAreMappingsEnabled(pVM)); PPGMMAPPING pMap = pgmGetMapping(pVM, (RTGCPTR)GCPtr); AssertMsgReturn(pMap, ("GCPtr=%RGv\n", GCPtr), VERR_PGM_MAPPING_IPE); # if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT pPT = pMap->aPTs[(GCPtr - pMap->GCPtr) >> X86_PD_SHIFT].CTX_SUFF(pPT); # else /* PAE */ pPT = pMap->aPTs[(GCPtr - pMap->GCPtr) >> X86_PD_SHIFT].CTX_SUFF(paPaePTs); # endif #endif } const unsigned iPt = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK; SHWPTE Pte = pPT->a[iPt]; if (!SHW_PTE_IS_P(Pte)) return VERR_PAGE_NOT_PRESENT; /* * Store the results. * RW and US flags depend on the entire page translation hierarchy - except for * legacy PAE which has a simplified PDPE. */ if (pfFlags) { *pfFlags = (SHW_PTE_GET_U(Pte) & ~SHW_PTE_PG_MASK) & ((Pde.u & (X86_PTE_RW | X86_PTE_US)) | ~(uint64_t)(X86_PTE_RW | X86_PTE_US)); #if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 /* The NX bit is determined by a bitwise OR between the PT and PD */ if ( ((SHW_PTE_GET_U(Pte) | Pde.u) & X86_PTE_PAE_NX) # if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) && CPUMIsGuestNXEnabled(pVCpu) /** @todo why do we have to check the guest state here? */ # endif ) *pfFlags |= X86_PTE_PAE_NX; #endif } if (pHCPhys) *pHCPhys = SHW_PTE_GET_HCPHYS(Pte); return VINF_SUCCESS; } /** * Modify page flags for a range of pages in the shadow context. * * The existing flags are ANDed with the fMask and ORed with the fFlags. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtr Virtual address of the first page in the range. Page aligned! * @param cb Size (in bytes) of the range to apply the modification to. Page aligned! * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course. * @param fMask The AND mask - page flags X86_PTE_*. * Be extremely CAREFUL with ~'ing values because they can be 32-bit! * @param fOpFlags A combination of the PGM_MK_PK_XXX flags. * @remark You must use PGMMapModifyPage() for pages in a mapping. */ PGM_SHW_DECL(int, ModifyPage)(PVMCPU pVCpu, RTGCUINTPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags) { PVM pVM = pVCpu->CTX_SUFF(pVM); int rc; PGM_LOCK_ASSERT_OWNER(pVM); /* * Walk page tables and pages till we're done. */ for (;;) { /* * Get the PDE. */ #if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 X86PDEPAE Pde; /* PML4 */ X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr); if (!Pml4e.n.u1Present) return VERR_PAGE_TABLE_NOT_PRESENT; /* PDPT */ PX86PDPT pPDPT; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT); if (RT_FAILURE(rc)) return rc; const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; X86PDPE Pdpe = pPDPT->a[iPDPT]; if (!Pdpe.n.u1Present) return VERR_PAGE_TABLE_NOT_PRESENT; /* PD */ PX86PDPAE pPd; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd); if (RT_FAILURE(rc)) return rc; const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; Pde = pPd->a[iPd]; #elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr); #elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; EPTPDE Pde; rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst); if (rc != VINF_SUCCESS) { AssertRC(rc); return rc; } Assert(pPDDst); Pde = pPDDst->a[iPd]; #else /* PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT */ X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr); #endif if (!Pde.n.u1Present) return VERR_PAGE_TABLE_NOT_PRESENT; AssertFatal(!Pde.b.u1Size); /* * Map the page table. */ PSHWPT pPT; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT); if (RT_FAILURE(rc)) return rc; unsigned iPTE = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK; while (iPTE < RT_ELEMENTS(pPT->a)) { if (SHW_PTE_IS_P(pPT->a[iPTE])) { SHWPTE const OrgPte = pPT->a[iPTE]; SHWPTE NewPte; SHW_PTE_SET(NewPte, (SHW_PTE_GET_U(OrgPte) & (fMask | SHW_PTE_PG_MASK)) | (fFlags & ~SHW_PTE_PG_MASK)); if (!SHW_PTE_IS_P(NewPte)) { /** @todo Some CSAM code path might end up here and upset * the page pool. */ AssertFailed(); } else if ( SHW_PTE_IS_RW(NewPte) && !SHW_PTE_IS_RW(OrgPte) && !(fOpFlags & PGM_MK_PG_IS_MMIO2) ) { /** @todo Optimize \#PF handling by caching data. We can * then use this when PGM_MK_PG_IS_WRITE_FAULT is * set instead of resolving the guest physical * address yet again. */ RTGCPHYS GCPhys; uint64_t fGstPte; rc = PGMGstGetPage(pVCpu, GCPtr, &fGstPte, &GCPhys); AssertRC(rc); if (RT_SUCCESS(rc)) { Assert((fGstPte & X86_PTE_RW) || !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP /* allow netware hack */)); PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys); Assert(pPage); if (pPage) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); AssertRCReturn(rc, rc); Log(("%s: pgmPhysPageMakeWritable on %RGv / %RGp %R[pgmpage]\n", __PRETTY_FUNCTION__, GCPtr, GCPhys, pPage)); } } } SHW_PTE_ATOMIC_SET2(pPT->a[iPTE], NewPte); #if PGM_SHW_TYPE == PGM_TYPE_EPT HMInvalidatePhysPage(pVM, (RTGCPHYS)GCPtr); #else PGM_INVL_PG_ALL_VCPU(pVM, GCPtr); #endif } /* next page */ cb -= PAGE_SIZE; if (!cb) return VINF_SUCCESS; GCPtr += PAGE_SIZE; iPTE++; } } } #ifdef IN_RING3 /** * Relocate any GC pointers related to shadow mode paging. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param offDelta The relocation offset. */ PGM_SHW_DECL(int, Relocate)(PVMCPU pVCpu, RTGCPTR offDelta) { pVCpu->pgm.s.pShwPageCR3RC += offDelta; return VINF_SUCCESS; } #endif