/* $Id: PGMAllPool.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * PGM Shadow Page Pool. */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_POOL #define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */ #include #include #include #include #include "PGMInternal.h" #include #include "PGMInline.h" #include #include #include #include #include #include /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ RT_C_DECLS_BEGIN #if 0 /* unused */ DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind); DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind); #endif /* unused */ static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage); static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage); static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable); static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage); #if defined(LOG_ENABLED) || defined(VBOX_STRICT) static const char *pgmPoolPoolKindToStr(uint8_t enmKind); #endif #if 0 /*defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)*/ static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT); #endif int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage); PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVMCC pVM, uint16_t *piPhysExt); void pgmPoolTrackPhysExtFree(PVMCC pVM, uint16_t iPhysExt); void pgmPoolTrackPhysExtFreeList(PVMCC pVM, uint16_t iPhysExt); RT_C_DECLS_END #if 0 /* unused */ /** * Checks if the specified page pool kind is for a 4MB or 2MB guest page. * * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false. * @param enmKind The page kind. */ DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: return true; default: return false; } } #endif /* unused */ /** * Flushes a chain of pages sharing the same access monitor. * * @param pPool The pool. * @param pPage A page in the chain. */ void pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind)); /* * Find the list head. */ uint16_t idx = pPage->idx; if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { idx = pPage->iMonitoredPrev; Assert(idx != pPage->idx); pPage = &pPool->aPages[idx]; } } /* * Iterate the list flushing each shadow page. */ for (;;) { idx = pPage->iMonitoredNext; Assert(idx != pPage->idx); if (pPage->idx >= PGMPOOL_IDX_FIRST) { int rc2 = pgmPoolFlushPage(pPool, pPage); AssertRC(rc2); } /* next */ if (idx == NIL_PGMPOOL_IDX) break; pPage = &pPool->aPages[idx]; } } /** * Wrapper for getting the current context pointer to the entry being modified. * * @returns VBox status code suitable for scheduling. * @param pVM The cross context VM structure. * @param pvDst Destination address * @param pvSrc Pointer to the mapping of @a GCPhysSrc or NULL depending * on the context (e.g. \#PF in R0 & RC). * @param GCPhysSrc The source guest physical address. * @param cb Size of data to read */ DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVMCC pVM, void *pvDst, void const *pvSrc, RTGCPHYS GCPhysSrc, size_t cb) { #if defined(IN_RING3) NOREF(pVM); NOREF(GCPhysSrc); memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb); return VINF_SUCCESS; #else /** @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */ NOREF(pvSrc); return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb); #endif } /** * Process shadow entries before they are changed by the guest. * * For PT entries we will clear them. For PD entries, we'll simply check * for mapping conflicts and set the SyncCR3 FF if found. * * @param pVCpu The cross context virtual CPU structure. * @param pPool The pool. * @param pPage The head page. * @param GCPhysFault The guest physical fault address. * @param pvAddress Pointer to the mapping of @a GCPhysFault or NULL * depending on the context (e.g. \#PF in R0 & RC). * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries */ static void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, void const *pvAddress, unsigned cbWrite) { AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%u (idx=%u)\n", pPage->iMonitoredPrev, pPage->idx)); const unsigned off = GCPhysFault & GUEST_PAGE_OFFSET_MASK; PVMCC pVM = pPool->CTX_SUFF(pVM); NOREF(pVCpu); LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n", (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))(uintptr_t)pvAddress, GCPhysFault, cbWrite)); if (PGMPOOL_PAGE_IS_NESTED(pPage)) Log7Func(("%RGv phys=%RGp cbWrite=%d\n", (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))(uintptr_t)pvAddress, GCPhysFault, cbWrite)); for (;;) { union { void *pv; PX86PT pPT; PPGMSHWPTPAE pPTPae; PX86PD pPD; PX86PDPAE pPDPae; PX86PDPT pPDPT; PX86PML4 pPML4; #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT PEPTPDPT pEptPdpt; PEPTPD pEptPd; PEPTPT pEptPt; #endif } uShw; LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s write=%#x\n", pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite)); uShw.pv = NULL; switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PTE); LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw)); X86PGUINT const uPde = uShw.pPT->a[iShw].u; if (uPde & X86_PTE_P) { X86PTE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); AssertRC(rc); Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK, iShw); ASMAtomicWriteU32(&uShw.pPT->a[iShw].u, 0); } break; } /* page/2 sized */ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2))) { const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1); LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw)); if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw])) { X86PTE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); AssertRC(rc); Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PG_MASK, iShw); PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0); } } break; } case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: { unsigned iGst = off / sizeof(X86PDE); unsigned iShwPdpt = iGst / 256; unsigned iShw = (iGst % 256) * 2; uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD) { for (unsigned i = 0; i < 2; i++) { X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw + i].u; if (uPde & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw + i, uPde)); pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw + i); ASMAtomicWriteU64(&uShw.pPDPae->a[iShw + i].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 3) && (off & 3) + cbWrite > 4) { const unsigned iShw2 = iShw + 2 + i; if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a)) { X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u; if (uPde2 & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2)); pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0); } } } } } break; } case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PTEPAE); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw])) { X86PTEPAE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); AssertRC(rc); Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK, iShw); PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PTEPAE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a)); if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw2])) { X86PTEPAE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress ? (uint8_t const *)pvAddress + sizeof(GstPte) : NULL, GCPhysFault + sizeof(GstPte), sizeof(GstPte)); AssertRC(rc); Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK, iShw2); PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw2], 0); } } break; } case PGMPOOLKIND_32BIT_PD: { uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging! LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw)); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); X86PGUINT const uPde = uShw.pPD->a[iShw].u; if (uPde & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde)); pgmPoolFree(pVM, uPde & X86_PDE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 3) && (off & 3) + cbWrite > sizeof(X86PTE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE); if ( iShw2 != iShw && iShw2 < RT_ELEMENTS(uShw.pPD->a)) { X86PGUINT const uPde2 = uShw.pPD->a[iShw2].u; if (uPde2 & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2)); pgmPoolFree(pVM, uPde2 & X86_PDE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU32(&uShw.pPD->a[iShw2].u, 0); } } } #if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). - not working any longer... */ if ( uShw.pPD->a[iShw].n.u1Present && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)) { LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u)); pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0); } #endif break; } case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: { uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDEPAE); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); /* * Causes trouble when the guest uses a PDE to refer to the whole page table level * structure. (Invalidate here; faults later on when it tries to change the page * table entries -> recheck; probably only applies to the RC case.) */ X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u; if (uPde & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde)); pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDEPAE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a)); X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u; if (uPde2 & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2)); pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_PAE_PDPT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT)); /* * Hopefully this doesn't happen very often: * - touching unused parts of the page * - messing with the bits of pd pointers without changing the physical address */ /* PDPT roots are not page aligned; 32 byte only! */ const unsigned offPdpt = GCPhysFault - pPage->GCPhys; uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = offPdpt / sizeof(X86PDPE); if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */ { X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u; if (uPdpe & X86_PDPE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u)); pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (offPdpt & 7) && (offPdpt & 7) + cbWrite > sizeof(X86PDPE)) { const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE); if ( iShw2 != iShw && iShw2 < X86_PG_PAE_PDPE_ENTRIES) { X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u; if (uPdpe2 & X86_PDPE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u)); pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0); } } } } break; } case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDEPAE); X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u; if (uPde & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde)); pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDEPAE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a)); X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u; if (uPde2 & X86_PDE_P) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2)); pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT)); /* * Hopefully this doesn't happen very often: * - messing with the bits of pd pointers without changing the physical address */ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDPE); X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u; if (uPdpe & X86_PDPE_P) { LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uPdpe)); pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDPE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE); X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u; if (uPdpe2 & X86_PDPE_P) { LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPdpe2)); pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_64BIT_PML4: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4)); /* * Hopefully this doesn't happen very often: * - messing with the bits of pd pointers without changing the physical address */ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDPE); X86PGPAEUINT const uPml4e = uShw.pPML4->a[iShw].u; if (uPml4e & X86_PML4E_P) { LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uPml4e)); pgmPoolFree(pVM, uPml4e & X86_PML4E_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDPE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E); X86PGPAEUINT const uPml4e2 = uShw.pPML4->a[iShw2].u; if (uPml4e2 & X86_PML4E_P) { LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPml4e2)); pgmPoolFree(pVM, uPml4e2 & X86_PML4E_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0); } } break; } #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: { uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(EPTPML4E); X86PGPAEUINT const uPml4e = uShw.pPML4->a[iShw].u; if (uPml4e & EPT_PRESENT_MASK) { Log7Func(("PML4 iShw=%#x: %RX64 (%RGp) -> freeing it!\n", iShw, uPml4e, pPage->GCPhys)); pgmPoolFree(pVM, uPml4e & X86_PML4E_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PML4E)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E); X86PGPAEUINT const uPml4e2 = uShw.pPML4->a[iShw2].u; if (uPml4e2 & EPT_PRESENT_MASK) { Log7Func(("PML4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPml4e2)); pgmPoolFree(pVM, uPml4e2 & X86_PML4E_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: { uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(EPTPDPTE); X86PGPAEUINT const uPdpte = uShw.pEptPdpt->a[iShw].u; if (uPdpte & EPT_PRESENT_MASK) { Log7Func(("EPT PDPT iShw=%#x: %RX64 (%RGp) -> freeing it!\n", iShw, uPdpte, pPage->GCPhys)); pgmPoolFree(pVM, uPdpte & EPT_PDPTE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pEptPdpt->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(EPTPDPTE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(EPTPDPTE); X86PGPAEUINT const uPdpte2 = uShw.pEptPdpt->a[iShw2].u; if (uPdpte2 & EPT_PRESENT_MASK) { Log7Func(("EPT PDPT iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPdpte2)); pgmPoolFree(pVM, uPdpte2 & EPT_PDPTE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pEptPdpt->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: { uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(EPTPDE); X86PGPAEUINT const uPde = uShw.pEptPd->a[iShw].u; if (uPde & EPT_PRESENT_MASK) { Assert(!(uPde & EPT_E_LEAF)); Log7Func(("EPT PD iShw=%#x: %RX64 (%RGp) -> freeing it!\n", iShw, uPde, pPage->GCPhys)); pgmPoolFree(pVM, uPde & EPT_PDE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteU64(&uShw.pEptPd->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(EPTPDE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(EPTPDE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pEptPd->a)); X86PGPAEUINT const uPde2 = uShw.pEptPd->a[iShw2].u; if (uPde2 & EPT_PRESENT_MASK) { Assert(!(uPde2 & EPT_E_LEAF)); Log7Func(("EPT PD (2): iShw2=%#x: %RX64 (%RGp) -> freeing it!\n", iShw2, uPde2, pPage->GCPhys)); pgmPoolFree(pVM, uPde2 & EPT_PDE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteU64(&uShw.pEptPd->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: { uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); const unsigned iShw = off / sizeof(EPTPTE); X86PGPAEUINT const uPte = uShw.pEptPt->a[iShw].u; STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); if (uPte & EPT_PRESENT_MASK) { EPTPTE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); AssertRC(rc); Log7Func(("EPT PT: iShw=%#x %RX64 (%RGp)\n", iShw, uPte, pPage->GCPhys)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pEptPt->a[iShw].u & EPT_PTE_PG_MASK, GstPte.u & EPT_PTE_PG_MASK, iShw); ASMAtomicWriteU64(&uShw.pEptPt->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(EPTPTE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(EPTPTE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pEptPt->a)); X86PGPAEUINT const uPte2 = uShw.pEptPt->a[iShw2].u; if (uPte2 & EPT_PRESENT_MASK) { EPTPTE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress ? (uint8_t const *)pvAddress + sizeof(GstPte) : NULL, GCPhysFault + sizeof(GstPte), sizeof(GstPte)); AssertRC(rc); Log7Func(("EPT PT (2): iShw=%#x %RX64 (%RGp)\n", iShw2, uPte2, pPage->GCPhys)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pEptPt->a[iShw2].u & EPT_PTE_PG_MASK, GstPte.u & EPT_PTE_PG_MASK, iShw2); ASMAtomicWriteU64(&uShw.pEptPt->a[iShw2].u, 0); } } break; } #endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ default: AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind)); } PGM_DYNMAP_UNUSED_HINT_VM(pVM, uShw.pv); /* next */ if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX) return; pPage = &pPool->aPages[pPage->iMonitoredNext]; } } #ifndef IN_RING3 /** * Checks if a access could be a fork operation in progress. * * Meaning, that the guest is setting up the parent process for Copy-On-Write. * * @returns true if it's likely that we're forking, otherwise false. * @param pPool The pool. * @param pDis The disassembled instruction. * @param offFault The access offset. */ DECLINLINE(bool) pgmRZPoolMonitorIsForking(PPGMPOOL pPool, PDISSTATE pDis, unsigned offFault) { /* * i386 linux is using btr to clear X86_PTE_RW. * The functions involved are (2.6.16 source inspection): * clear_bit * ptep_set_wrprotect * copy_one_pte * copy_pte_range * copy_pmd_range * copy_pud_range * copy_page_range * dup_mmap * dup_mm * copy_mm * copy_process * do_fork */ if ( pDis->pCurInstr->uOpcode == OP_BTR && !(offFault & 4) /** @todo Validate that the bit index is X86_PTE_RW. */ ) { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,Fork)); RT_NOREF_PV(pPool); return true; } return false; } /** * Determine whether the page is likely to have been reused. * * @returns true if we consider the page as being reused for a different purpose. * @returns false if we consider it to still be a paging page. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the register context for the CPU. * @param pDis The disassembly info for the faulting instruction. * @param pvFault The fault address. * @param pPage The pool page being accessed. * * @remark The REP prefix check is left to the caller because of STOSD/W. */ DECLINLINE(bool) pgmRZPoolMonitorIsReused(PVMCC pVM, PVMCPUCC pVCpu, PCPUMCTX pCtx, PDISSTATE pDis, RTGCPTR pvFault, PPGMPOOLPAGE pPage) { /* Locked (CR3, PDPTR*4) should not be reusable. Considering them as such may cause loops booting tst-ubuntu-15_10-64-efi, ++. */ if (pPage->cLocked) { Log2(("pgmRZPoolMonitorIsReused: %RGv (%p) can't have been resued, because it's locked!\n", pvFault, pPage)); return false; } /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */ if ( HMHasPendingIrq(pVM) && pCtx->rsp - pvFault < 32) { /* Fault caused by stack writes while trying to inject an interrupt event. */ Log(("pgmRZPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pCtx->rsp)); return true; } LogFlow(("Reused instr %RGv %d at %RGv param1.fUse=%llx param1.reg=%d\n", pCtx->rip, pDis->pCurInstr->uOpcode, pvFault, pDis->aParams[0].fUse, pDis->aParams[0].x86.Base.idxGenReg)); /* Non-supervisor mode write means it's used for something else. */ if (CPUMGetGuestCPL(pVCpu) == 3) return true; switch (pDis->pCurInstr->uOpcode) { /* call implies the actual push of the return address faulted */ case OP_CALL: Log4(("pgmRZPoolMonitorIsReused: CALL\n")); return true; case OP_PUSH: Log4(("pgmRZPoolMonitorIsReused: PUSH\n")); return true; case OP_PUSHF: Log4(("pgmRZPoolMonitorIsReused: PUSHF\n")); return true; case OP_PUSHA: Log4(("pgmRZPoolMonitorIsReused: PUSHA\n")); return true; case OP_FXSAVE: Log4(("pgmRZPoolMonitorIsReused: FXSAVE\n")); return true; case OP_MOVNTI: /* solaris - block_zero_no_xmm */ Log4(("pgmRZPoolMonitorIsReused: MOVNTI\n")); return true; case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */ Log4(("pgmRZPoolMonitorIsReused: MOVNTDQ\n")); return true; case OP_MOVSWD: case OP_STOSWD: if ( pDis->x86.fPrefix == (DISPREFIX_REP|DISPREFIX_REX) && pCtx->rcx >= 0x40 ) { Assert(pDis->uCpuMode == DISCPUMODE_64BIT); Log(("pgmRZPoolMonitorIsReused: OP_STOSQ\n")); return true; } break; default: /* * Anything having ESP on the left side means stack writes. */ if ( ( (pDis->aParams[0].fUse & DISUSE_REG_GEN32) || (pDis->aParams[0].fUse & DISUSE_REG_GEN64)) && (pDis->aParams[0].x86.Base.idxGenReg == DISGREG_ESP)) { Log4(("pgmRZPoolMonitorIsReused: ESP\n")); return true; } break; } /* * Page table updates are very very unlikely to be crossing page boundraries, * and we don't want to deal with that in pgmPoolMonitorChainChanging and such. */ uint32_t const cbWrite = DISGetParamSize(pDis, &pDis->aParams[0]); if ( (((uintptr_t)pvFault + cbWrite) >> X86_PAGE_SHIFT) != ((uintptr_t)pvFault >> X86_PAGE_SHIFT) ) { Log4(("pgmRZPoolMonitorIsReused: cross page write\n")); return true; } /* * Nobody does an unaligned 8 byte write to a page table, right. */ if (cbWrite >= 8 && ((uintptr_t)pvFault & 7) != 0) { Log4(("pgmRZPoolMonitorIsReused: Unaligned 8+ byte write\n")); return true; } return false; } /** * Flushes the page being accessed. * * @returns VBox status code suitable for scheduling. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param pPool The pool. * @param pPage The pool page (head). * @param pDis The disassembly of the write instruction. * @param pCtx Pointer to the register context for the CPU. * @param GCPhysFault The fault address as guest physical address. * @todo VBOXSTRICTRC */ static int pgmRZPoolAccessPfHandlerFlush(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISSTATE pDis, PCPUMCTX pCtx, RTGCPHYS GCPhysFault) { NOREF(pVM); NOREF(GCPhysFault); /* * First, do the flushing. */ pgmPoolMonitorChainFlush(pPool, pPage); /* * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection). * Must do this in raw mode (!); XP boot will fail otherwise. */ int rc = VINF_SUCCESS; VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, pCtx->rip); if (rc2 == VINF_SUCCESS) { /* do nothing */ } else if (rc2 == VINF_EM_RESCHEDULE) { rc = VBOXSTRICTRC_VAL(rc2); # ifndef IN_RING3 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3); # endif } else if (rc2 == VERR_EM_INTERPRETER) { rc = VINF_EM_RAW_EMULATE_INSTR; STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr)); } else if (RT_FAILURE_NP(rc2)) rc = VBOXSTRICTRC_VAL(rc2); else AssertMsgFailed(("%Rrc\n", VBOXSTRICTRC_VAL(rc2))); /* ASSUMES no complicated stuff here. */ LogFlow(("pgmRZPoolAccessPfHandlerFlush: returns %Rrc (flushed)\n", rc)); return rc; } /** * Handles the STOSD write accesses. * * @returns VBox status code suitable for scheduling. * @param pVM The cross context VM structure. * @param pPool The pool. * @param pPage The pool page (head). * @param pDis The disassembly of the write instruction. * @param pCtx Pointer to the register context for the CPU. * @param GCPhysFault The fault address as guest physical address. * @param pvFault The fault address. */ DECLINLINE(int) pgmRZPoolAccessPfHandlerSTOSD(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISSTATE pDis, PCPUMCTX pCtx, RTGCPHYS GCPhysFault, RTGCPTR pvFault) { unsigned uIncrement = pDis->aParams[0].x86.cb; NOREF(pVM); Assert(pDis->uCpuMode == DISCPUMODE_32BIT || pDis->uCpuMode == DISCPUMODE_64BIT); Assert(pCtx->rcx <= 0x20); # ifdef VBOX_STRICT if (pDis->x86.uOpMode == DISCPUMODE_32BIT) Assert(uIncrement == 4); else Assert(uIncrement == 8); # endif Log3(("pgmRZPoolAccessPfHandlerSTOSD\n")); /* * Increment the modification counter and insert it into the list * of modified pages the first time. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /* * Execute REP STOSD. * * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync * write situation, meaning that it's safe to write here. */ PVMCPUCC pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM)); RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault; while (pCtx->rcx) { pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement); PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pCtx->rax, uIncrement); pu32 += uIncrement; GCPhysFault += uIncrement; pCtx->rdi += uIncrement; pCtx->rcx--; } pCtx->rip += pDis->cbInstr; LogFlow(("pgmRZPoolAccessPfHandlerSTOSD: returns\n")); return VINF_SUCCESS; } /** * Handles the simple write accesses. * * @returns VBox status code suitable for scheduling. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param pPool The pool. * @param pPage The pool page (head). * @param pDis The disassembly of the write instruction. * @param pCtx Pointer to the register context for the CPU. * @param GCPhysFault The fault address as guest physical address. * @param pfReused Reused state (in/out) */ DECLINLINE(int) pgmRZPoolAccessPfHandlerSimple(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISSTATE pDis, PCPUMCTX pCtx, RTGCPHYS GCPhysFault, bool *pfReused) { Log3(("pgmRZPoolAccessPfHandlerSimple\n")); NOREF(pVM); NOREF(pfReused); /* initialized by caller */ /* * Increment the modification counter and insert it into the list * of modified pages the first time. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /* * Clear all the pages. */ uint32_t cbWrite = DISGetParamSize(pDis, &pDis->aParams[0]); if (cbWrite <= 8) pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, cbWrite); else if (cbWrite <= 16) { pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, 8); pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + 8, NULL, cbWrite - 8); } else { Assert(cbWrite <= 32); for (uint32_t off = 0; off < cbWrite; off += 8) pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + off, NULL, RT_MIN(8, cbWrite - off)); } /* * Interpret the instruction. */ VBOXSTRICTRC rc = EMInterpretInstructionDisasState(pVCpu, pDis, pCtx->rip); if (RT_SUCCESS(rc)) AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); /* ASSUMES no complicated stuff here. */ else if (rc == VERR_EM_INTERPRETER) { LogFlow(("pgmRZPoolAccessPfHandlerSimple: Interpretation failed for %04x:%RGv - opcode=%d\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip, pDis->pCurInstr->uOpcode)); rc = VINF_EM_RAW_EMULATE_INSTR; STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr)); } # if 0 /* experimental code */ if (rc == VINF_SUCCESS) { switch (pPage->enmKind) { case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { X86PTEPAE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte)); AssertRC(rc); /* Check the new value written by the guest. If present and with a bogus physical address, then * it's fairly safe to assume the guest is reusing the PT. */ if (GstPte.n.u1Present) { RTHCPHYS HCPhys = -1; int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys); if (rc != VINF_SUCCESS) { *pfReused = true; STAM_COUNTER_INC(&pPool->StatForceFlushReused); } } break; } } } # endif LogFlow(("pgmRZPoolAccessPfHandlerSimple: returns %Rrc\n", VBOXSTRICTRC_VAL(rc))); return VBOXSTRICTRC_VAL(rc); } /** * @callback_method_impl{FNPGMRZPHYSPFHANDLER, * \#PF access handler callback for page table pages.} * * @remarks The @a uUser argument is the index of the PGMPOOLPAGE. */ DECLCALLBACK(VBOXSTRICTRC) pgmRZPoolAccessPfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErrorCode, PCPUMCTX pCtx, RTGCPTR pvFault, RTGCPHYS GCPhysFault, uint64_t uUser) { STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorRZ, a); PPGMPOOL const pPool = pVM->pgm.s.CTX_SUFF(pPool); AssertReturn(uUser < pPool->cCurPages, VERR_PGM_POOL_IPE); PPGMPOOLPAGE const pPage = &pPool->aPages[uUser]; unsigned cMaxModifications; bool fForcedFlush = false; RT_NOREF_PV(uErrorCode); # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT AssertMsg(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_DIRECT, ("pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault)); # endif LogFlow(("pgmRZPoolAccessPfHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault)); PGM_LOCK_VOID(pVM); if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys)) { /* Pool page changed while we were waiting for the lock; ignore. */ Log(("CPU%d: pgmRZPoolAccessPfHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys))); STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a); PGM_UNLOCK(pVM); return VINF_SUCCESS; } # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) { # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT Assert(!PGMPOOL_PAGE_IS_NESTED(pPage)); # endif Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH)); PGM_UNLOCK(pVM); return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */ } # endif # if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); } # endif # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT if (PGMPOOL_PAGE_IS_NESTED(pPage)) { Assert(!CPUMIsGuestInVmxNonRootMode(CPUMQueryGuestCtxPtr(pVCpu))); Log7Func(("Flushing pvFault=%RGv GCPhysFault=%RGp\n", pvFault, GCPhysFault)); pgmPoolMonitorChainFlush(pPool, pPage); PGM_UNLOCK(pVM); return VINF_SUCCESS; } # endif /* * Disassemble the faulting instruction. */ PDISSTATE pDis = &pVCpu->pgm.s.Dis; int rc = EMInterpretDisasCurrent(pVCpu, pDis, NULL); if (RT_UNLIKELY(rc != VINF_SUCCESS)) { AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc)); PGM_UNLOCK(pVM); return rc; } Assert(pPage->enmKind != PGMPOOLKIND_FREE); /* * We should ALWAYS have the list head as user parameter. This * is because we use that page to record the changes. */ Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); # ifdef IN_RING0 /* Maximum nr of modifications depends on the page type. */ if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) cMaxModifications = 4; else cMaxModifications = 24; # else cMaxModifications = 48; # endif /* * Incremental page table updates should weigh more than random ones. * (Only applies when started from offset 0) */ pVCpu->pgm.s.cPoolAccessHandler++; if ( pPage->GCPtrLastAccessHandlerRip >= pCtx->rip - 0x40 /* observed loops in Windows 7 x64 */ && pPage->GCPtrLastAccessHandlerRip < pCtx->rip + 0x40 && pvFault == (pPage->GCPtrLastAccessHandlerFault + pDis->aParams[0].x86.cb) && pVCpu->pgm.s.cPoolAccessHandler == pPage->cLastAccessHandler + 1) { Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind))); Assert(pPage->cModifications < 32000); pPage->cModifications = pPage->cModifications * 2; pPage->GCPtrLastAccessHandlerFault = pvFault; pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler; if (pPage->cModifications >= cMaxModifications) { STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushReinit); fForcedFlush = true; } } if (pPage->cModifications >= cMaxModifications) Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind))); /* * Check if it's worth dealing with. */ bool fReused = false; bool fNotReusedNotForking = false; if ( ( pPage->cModifications < cMaxModifications /** @todo \#define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */ || pgmPoolIsPageLocked(pPage) ) && !(fReused = pgmRZPoolMonitorIsReused(pVM, pVCpu, pCtx, pDis, pvFault, pPage)) && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK)) { /* * Simple instructions, no REP prefix. */ if (!(pDis->x86.fPrefix & (DISPREFIX_REP | DISPREFIX_REPNE))) { rc = pgmRZPoolAccessPfHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pCtx, GCPhysFault, &fReused); if (fReused) goto flushPage; /* A mov instruction to change the first page table entry will be remembered so we can detect * full page table changes early on. This will reduce the amount of unnecessary traps we'll take. */ if ( rc == VINF_SUCCESS && !pPage->cLocked /* only applies to unlocked pages as we can't free locked ones (e.g. cr3 root). */ && pDis->pCurInstr->uOpcode == OP_MOV && (pvFault & PAGE_OFFSET_MASK) == 0) { pPage->GCPtrLastAccessHandlerFault = pvFault; pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler; pPage->GCPtrLastAccessHandlerRip = pCtx->rip; /* Make sure we don't kick out a page too quickly. */ if (pPage->cModifications > 8) pPage->cModifications = 2; } else if (pPage->GCPtrLastAccessHandlerFault == pvFault) { /* ignore the 2nd write to this page table entry. */ pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler; } else { pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR; pPage->GCPtrLastAccessHandlerRip = 0; } STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a); PGM_UNLOCK(pVM); return rc; } /* * Windows is frequently doing small memset() operations (netio test 4k+). * We have to deal with these or we'll kill the cache and performance. */ if ( pDis->pCurInstr->uOpcode == OP_STOSWD && !pCtx->eflags.Bits.u1DF && pDis->x86.uOpMode == pDis->uCpuMode && pDis->x86.uAddrMode == pDis->uCpuMode) { bool fValidStosd = false; if ( pDis->uCpuMode == DISCPUMODE_32BIT && pDis->x86.fPrefix == DISPREFIX_REP && pCtx->ecx <= 0x20 && pCtx->ecx * 4 <= GUEST_PAGE_SIZE - ((uintptr_t)pvFault & GUEST_PAGE_OFFSET_MASK) && !((uintptr_t)pvFault & 3) && (pCtx->eax == 0 || pCtx->eax == 0x80) /* the two values observed. */ ) { fValidStosd = true; pCtx->rcx &= 0xffffffff; /* paranoia */ } else if ( pDis->uCpuMode == DISCPUMODE_64BIT && pDis->x86.fPrefix == (DISPREFIX_REP | DISPREFIX_REX) && pCtx->rcx <= 0x20 && pCtx->rcx * 8 <= GUEST_PAGE_SIZE - ((uintptr_t)pvFault & GUEST_PAGE_OFFSET_MASK) && !((uintptr_t)pvFault & 7) && (pCtx->rax == 0 || pCtx->rax == 0x80) /* the two values observed. */ ) { fValidStosd = true; } if (fValidStosd) { rc = pgmRZPoolAccessPfHandlerSTOSD(pVM, pPool, pPage, pDis, pCtx, GCPhysFault, pvFault); STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZRepStosd, a); PGM_UNLOCK(pVM); return rc; } } /* REP prefix, don't bother. */ STAM_COUNTER_INC(&pPool->StatMonitorPfRZRepPrefix); Log4(("pgmRZPoolAccessPfHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n", pCtx->eax, pCtx->ecx, pCtx->edi, pCtx->esi, (RTGCPTR)pCtx->rip, pDis->pCurInstr->uOpcode, pDis->x86.fPrefix)); fNotReusedNotForking = true; } # if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0) /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring. */ if ( pPage->cModifications >= cMaxModifications && !fForcedFlush && (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) && ( fNotReusedNotForking || ( !pgmRZPoolMonitorIsReused(pVM, pVCpu, pCtx, pDis, pvFault, pPage) && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK)) ) ) { Assert(!pgmPoolIsPageLocked(pPage)); Assert(pPage->fDirty == false); /* Flush any monitored duplicates as we will disable write protection. */ if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPageHead = pPage; /* Find the monitor head. */ while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX) pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev]; while (pPageHead) { unsigned idxNext = pPageHead->iMonitoredNext; if (pPageHead != pPage) { STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush); Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind))); int rc2 = pgmPoolFlushPage(pPool, pPageHead); AssertRC(rc2); } if (idxNext == NIL_PGMPOOL_IDX) break; pPageHead = &pPool->aPages[idxNext]; } } /* The flushing above might fail for locked pages, so double check. */ if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX) { pgmPoolAddDirtyPage(pVM, pPool, pPage); /* Temporarily allow write access to the page table again. */ rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK, pPage->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK); if (rc == VINF_SUCCESS) { rc = PGMShwMakePageWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT); AssertMsg(rc == VINF_SUCCESS /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */ || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT, ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc)); # ifdef VBOX_STRICT pPage->GCPtrDirtyFault = pvFault; # endif STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, a); PGM_UNLOCK(pVM); return rc; } } } # endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && IN_RING0 */ STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushModOverflow); flushPage: /* * Not worth it, so flush it. * * If we considered it to be reused, don't go back to ring-3 * to emulate failed instructions since we usually cannot * interpret then. This may be a bit risky, in which case * the reuse detection must be fixed. */ rc = pgmRZPoolAccessPfHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pCtx, GCPhysFault); if ( rc == VINF_EM_RAW_EMULATE_INSTR && fReused) { Assert(!PGMPOOL_PAGE_IS_NESTED(pPage)); /* temporary, remove later. */ /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */ if (PGMShwGetPage(pVCpu, pCtx->rip, NULL, NULL) == VINF_SUCCESS) rc = VINF_SUCCESS; /* safe to restart the instruction. */ } STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZFlushPage, a); PGM_UNLOCK(pVM); return rc; } #endif /* !IN_RING3 */ /** * @callback_method_impl{FNPGMPHYSHANDLER, * Access handler for shadowed page table pages.} * * @remarks Only uses the VINF_PGM_HANDLER_DO_DEFAULT status. * @note The @a uUser argument is the index of the PGMPOOLPAGE. */ DECLCALLBACK(VBOXSTRICTRC) pgmPoolAccessHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, uint64_t uUser) { PPGMPOOL const pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_START(&pPool->CTX_SUFF_Z(StatMonitor), a); AssertReturn(uUser < pPool->cCurPages, VERR_PGM_POOL_IPE); PPGMPOOLPAGE const pPage = &pPool->aPages[uUser]; LogFlow(("PGM_ALL_CB_DECL: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n", GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind)); NOREF(pvPhys); NOREF(pvBuf); NOREF(enmAccessType); PGM_LOCK_VOID(pVM); #ifdef VBOX_WITH_STATISTICS /* * Collect stats on the access. */ AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Sizes)) == 19); if (cbBuf <= 16 && cbBuf > 0) STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[cbBuf - 1]); else if (cbBuf >= 17 && cbBuf < 32) STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[16]); else if (cbBuf >= 32 && cbBuf < 64) STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[17]); else if (cbBuf >= 64) STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[18]); uint8_t cbAlign; switch (pPage->enmKind) { default: cbAlign = 7; break; case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_32BIT_PD_PHYS: cbAlign = 3; break; } AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Misaligned)) == 7); if ((uint8_t)GCPhys & cbAlign) STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Misaligned)[((uint8_t)GCPhys & cbAlign) - 1]); #endif /* * Make sure the pool page wasn't modified by a different CPU. */ if (PHYS_PAGE_ADDRESS(GCPhys) == PHYS_PAGE_ADDRESS(pPage->GCPhys)) { Assert(pPage->enmKind != PGMPOOLKIND_FREE); /* The max modification count before flushing depends on the context and page type. */ #ifdef IN_RING3 uint16_t const cMaxModifications = 96; /* it's cheaper here, right? */ #else uint16_t cMaxModifications; if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) cMaxModifications = 4; else cMaxModifications = 24; #endif /* * We don't have to be very sophisticated about this since there are relativly few calls here. * However, we must try our best to detect any non-cpu accesses (disk / networking). */ if ( ( pPage->cModifications < cMaxModifications || pgmPoolIsPageLocked(pPage) ) && enmOrigin != PGMACCESSORIGIN_DEVICE && cbBuf <= 16) { /* Clear the shadow entry. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); if (cbBuf <= 8) pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, (uint32_t)cbBuf); else { pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, 8); pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys + 8, (uint8_t *)pvBuf + 8, (uint32_t)cbBuf - 8); } } else pgmPoolMonitorChainFlush(pPool, pPage); STAM_PROFILE_STOP_EX(&pPool->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a); } else Log(("CPU%d: PGM_ALL_CB_DECL pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys))); PGM_UNLOCK(pVM); return VINF_PGM_HANDLER_DO_DEFAULT; } #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT # if defined(VBOX_STRICT) && !defined(IN_RING3) /** * Check references to guest physical memory in a PAE / PAE page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT) { unsigned cErrors = 0; int LastRc = -1; /* initialized to shut up gcc */ unsigned LastPTE = ~0U; /* initialized to shut up gcc */ RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */ PVMCC pVM = pPool->CTX_SUFF(pVM); # ifdef VBOX_STRICT for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); # endif for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) { RTHCPHYS HCPhys = NIL_RTHCPHYS; int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys); if ( rc != VINF_SUCCESS || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys) { Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); LastPTE = i; LastRc = rc; LastHCPhys = HCPhys; cErrors++; RTHCPHYS HCPhysPT = NIL_RTHCPHYS; rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT); AssertRC(rc); for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++) { PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage]; if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage); for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) { if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j]) && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT) { Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j]))); } } PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2); } } } } } AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys)); } /** * Check references to guest physical memory in a PAE / 32-bit page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ static void pgmPoolTrackCheckPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT) { unsigned cErrors = 0; int LastRc = -1; /* initialized to shut up gcc */ unsigned LastPTE = ~0U; /* initialized to shut up gcc */ RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */ PVMCC pVM = pPool->CTX_SUFF(pVM); # ifdef VBOX_STRICT for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); # endif for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) { RTHCPHYS HCPhys = NIL_RTHCPHYS; int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys); if ( rc != VINF_SUCCESS || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys) { Log(("rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); LastPTE = i; LastRc = rc; LastHCPhys = HCPhys; cErrors++; RTHCPHYS HCPhysPT = NIL_RTHCPHYS; rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT); AssertRC(rc); for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++) { PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage]; if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) { PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage); for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) { if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j]) && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT) { Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j]))); } } PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2); } } } } } AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys)); } # endif /* VBOX_STRICT && !IN_RING3 */ /** * Clear references to guest physical memory in a PAE / PAE page table. * * @returns nr of changed PTEs * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. * @param pOldGstPT The old cached guest page table. * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE * @param pfFlush Flush reused page table (out) */ DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT, PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush) { unsigned cChanged = 0; # ifdef VBOX_STRICT for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); # endif *pfFlush = false; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { /* Check the new value written by the guest. If present and with a bogus physical address, then * it's fairly safe to assume the guest is reusing the PT. */ if ( fAllowRemoval && (pGstPT->a[i].u & X86_PTE_P)) { if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK)) { *pfFlush = true; return ++cChanged; } } if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) { /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */ if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK)) { # ifdef VBOX_STRICT RTHCPHYS HCPhys = NIL_RTGCPHYS; int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys); AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); # endif uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX); bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW); uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX); bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW); if ( uHostAttr == uGuestAttr && fHostRW <= fGuestRW) continue; } cChanged++; /* Something was changed, so flush it. */ Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n", i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK, i); PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0); } } return cChanged; } /** * Clear references to guest physical memory in a PAE / PAE page table. * * @returns nr of changed PTEs * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. * @param pOldGstPT The old cached guest page table. * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE * @param pfFlush Flush reused page table (out) */ DECLINLINE(unsigned) pgmPoolTrackFlushPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT, PCX86PT pOldGstPT, bool fAllowRemoval, bool *pfFlush) { unsigned cChanged = 0; # ifdef VBOX_STRICT for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); # endif *pfFlush = false; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { /* Check the new value written by the guest. If present and with a bogus physical address, then * it's fairly safe to assume the guest is reusing the PT. */ if (fAllowRemoval) { X86PGUINT const uPte = pGstPT->a[i].u; if ( (uPte & X86_PTE_P) && !PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), uPte & X86_PTE_PG_MASK)) { *pfFlush = true; return ++cChanged; } } if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) { /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */ if ((pGstPT->a[i].u & X86_PTE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PG_MASK)) { # ifdef VBOX_STRICT RTHCPHYS HCPhys = NIL_RTGCPHYS; int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys); AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %x old %x shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); # endif uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G); bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW); uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G); bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW); if ( uHostAttr == uGuestAttr && fHostRW <= fGuestRW) continue; } cChanged++; /* Something was changed, so flush it. */ Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%x\n", i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK, i); PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0); } } return cChanged; } /** * Flush a dirty page * * @param pVM The cross context VM structure. * @param pPool The pool. * @param idxSlot Dirty array slot index * @param fAllowRemoval Allow a reused page table to be removed */ static void pgmPoolFlushDirtyPage(PVMCC pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false) { AssertCompile(RT_ELEMENTS(pPool->aidxDirtyPages) == RT_ELEMENTS(pPool->aDirtyPages)); Assert(idxSlot < RT_ELEMENTS(pPool->aDirtyPages)); unsigned idxPage = pPool->aidxDirtyPages[idxSlot]; if (idxPage == NIL_PGMPOOL_IDX) return; PPGMPOOLPAGE pPage = &pPool->aPages[idxPage]; Assert(pPage->idx == idxPage); Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot)); Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications)); /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */ int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK); Assert(rc == VINF_SUCCESS); pPage->fDirty = false; # ifdef VBOX_STRICT uint64_t fFlags = 0; RTHCPHYS HCPhys; rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->GCPtrDirtyFault, &fFlags, &HCPhys); AssertMsg( ( rc == VINF_SUCCESS && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key)) /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */ || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT, ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->GCPtrDirtyFault, rc, fFlags)); # endif /* Flush those PTEs that have changed. */ STAM_PROFILE_START(&pPool->StatTrackDeref,a); void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage); void *pvGst; rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); bool fFlush; unsigned cChanges; if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst, (PCX86PTPAE)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush); else { Assert(!PGMPOOL_PAGE_IS_NESTED(pPage)); /* temporary, remove later. */ cChanges = pgmPoolTrackFlushPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst, (PCX86PT)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush); } PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); STAM_PROFILE_STOP(&pPool->StatTrackDeref,a); /* Note: we might want to consider keeping the dirty page active in case there were many changes. */ /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */ Assert(pPage->cModifications); if (cChanges < 4) pPage->cModifications = 1; /* must use > 0 here */ else pPage->cModifications = RT_MAX(1, pPage->cModifications / 2); STAM_COUNTER_INC(&pPool->StatResetDirtyPages); if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages)) pPool->idxFreeDirtyPage = idxSlot; pPool->cDirtyPages--; pPool->aidxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX; Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); if (fFlush) { Assert(fAllowRemoval); Log(("Flush reused page table!\n")); pgmPoolFlushPage(pPool, pPage); STAM_COUNTER_INC(&pPool->StatForceFlushReused); } else Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges)); } # ifndef IN_RING3 /** * Add a new dirty page * * @param pVM The cross context VM structure. * @param pPool The pool. * @param pPage The page. */ void pgmPoolAddDirtyPage(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage) { PGM_LOCK_ASSERT_OWNER(pVM); AssertCompile(RT_ELEMENTS(pPool->aDirtyPages) == 8 || RT_ELEMENTS(pPool->aDirtyPages) == 16); Assert(!pPage->fDirty); Assert(!PGMPOOL_PAGE_IS_NESTED(pPage)); unsigned idxFree = pPool->idxFreeDirtyPage; Assert(idxFree < RT_ELEMENTS(pPool->aDirtyPages)); Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aDirtyPages)) { STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush); pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/); } Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages)); AssertMsg(pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages)); Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree)); /* * Make a copy of the guest page table as we require valid GCPhys addresses * when removing references to physical pages. * (The HCPhys linear lookup is *extremely* expensive!) */ void *pvGst; int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); memcpy(&pPool->aDirtyPages[idxFree].aPage[0], pvGst, pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT ? PAGE_SIZE : PAGE_SIZE / 2); # ifdef VBOX_STRICT void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage); if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst); else pgmPoolTrackCheckPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); # endif PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); STAM_COUNTER_INC(&pPool->StatDirtyPage); pPage->fDirty = true; pPage->idxDirtyEntry = (uint8_t)idxFree; Assert(pPage->idxDirtyEntry == idxFree); pPool->aidxDirtyPages[idxFree] = pPage->idx; pPool->cDirtyPages++; pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aDirtyPages) - 1); if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages) && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX) { unsigned i; for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aDirtyPages) - 1); if (pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX) { pPool->idxFreeDirtyPage = idxFree; break; } } Assert(i != RT_ELEMENTS(pPool->aDirtyPages)); } Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages) || pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX); /* * Clear all references to this shadow table. See @bugref{7298}. */ pgmPoolTrackClearPageUsers(pPool, pPage); } # endif /* !IN_RING3 */ /** * Check if the specified page is dirty (not write monitored) * * @return dirty or not * @param pVM The cross context VM structure. * @param GCPhys Guest physical address */ bool pgmPoolIsDirtyPageSlow(PVMCC pVM, RTGCPHYS GCPhys) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGM_LOCK_ASSERT_OWNER(pVM); if (!pPool->cDirtyPages) return false; GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { unsigned idxPage = pPool->aidxDirtyPages[i]; if (idxPage != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPage = &pPool->aPages[idxPage]; if (pPage->GCPhys == GCPhys) return true; } } return false; } /** * Reset all dirty pages by reinstating page monitoring. * * @param pVM The cross context VM structure. */ void pgmPoolResetDirtyPages(PVMCC pVM) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGM_LOCK_ASSERT_OWNER(pVM); Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); if (!pPool->cDirtyPages) return; Log(("pgmPoolResetDirtyPages\n")); for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/); pPool->idxFreeDirtyPage = 0; if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages) && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX) { unsigned i; for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX) { pPool->idxFreeDirtyPage = i; break; } } AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages)); } Assert(pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages)); return; } /** * Invalidate the PT entry for the specified page * * @param pVM The cross context VM structure. * @param GCPtrPage Guest page to invalidate */ void pgmPoolResetDirtyPage(PVMCC pVM, RTGCPTR GCPtrPage) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGM_LOCK_ASSERT_OWNER(pVM); Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); if (!pPool->cDirtyPages) return; Log(("pgmPoolResetDirtyPage %RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage); for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { /** @todo What was intended here??? This looks incomplete... */ } } /** * Reset all dirty pages by reinstating page monitoring. * * @param pVM The cross context VM structure. * @param GCPhysPT Physical address of the page table */ void pgmPoolInvalidateDirtyPage(PVMCC pVM, RTGCPHYS GCPhysPT) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGM_LOCK_ASSERT_OWNER(pVM); Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); unsigned idxDirtyPage = RT_ELEMENTS(pPool->aDirtyPages); if (!pPool->cDirtyPages) return; GCPhysPT = GCPhysPT & ~(RTGCPHYS)PAGE_OFFSET_MASK; for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { unsigned idxPage = pPool->aidxDirtyPages[i]; if (idxPage != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPage = &pPool->aPages[idxPage]; if (pPage->GCPhys == GCPhysPT) { idxDirtyPage = i; break; } } } if (idxDirtyPage != RT_ELEMENTS(pPool->aDirtyPages)) { pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/); if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages) && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX) { unsigned i; for (i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX) { pPool->idxFreeDirtyPage = i; break; } } AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages)); } } } #endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */ /** * Inserts a page into the GCPhys hash table. * * @param pPool The pool. * @param pPage The page. */ DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys)); Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX); uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); pPage->iNext = pPool->aiHash[iHash]; pPool->aiHash[iHash] = pPage->idx; } /** * Removes a page from the GCPhys hash table. * * @param pPool The pool. * @param pPage The page. */ DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys)); uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); if (pPool->aiHash[iHash] == pPage->idx) pPool->aiHash[iHash] = pPage->iNext; else { uint16_t iPrev = pPool->aiHash[iHash]; for (;;) { const int16_t i = pPool->aPages[iPrev].iNext; if (i == pPage->idx) { pPool->aPages[iPrev].iNext = pPage->iNext; break; } if (i == NIL_PGMPOOL_IDX) { AssertReleaseMsgFailed(("GCPhys=%RGp idx=%d\n", pPage->GCPhys, pPage->idx)); break; } iPrev = i; } } pPage->iNext = NIL_PGMPOOL_IDX; } /** * Frees up one cache page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param iUser The user index. */ static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser) { #ifndef VBOX_VMM_TARGET_ARMV8 const PVMCC pVM = pPool->CTX_SUFF(pVM); #endif Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */ STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne); /* * Select one page from the tail of the age list. */ PPGMPOOLPAGE pPage; for (unsigned iLoop = 0; ; iLoop++) { uint16_t iToFree = pPool->iAgeTail; if (iToFree == iUser && iUser != NIL_PGMPOOL_IDX) iToFree = pPool->aPages[iToFree].iAgePrev; /* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls. if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPool->aPages[iToFree].iAgePrev; for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev) { if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX) continue; iToFree = i; break; } } */ Assert(iToFree != iUser); AssertReleaseMsg(iToFree != NIL_PGMPOOL_IDX, ("iToFree=%#x (iAgeTail=%#x) iUser=%#x iLoop=%u - pPool=%p LB %#zx\n", iToFree, pPool->iAgeTail, iUser, iLoop, pPool, RT_UOFFSETOF_DYN(PGMPOOL, aPages[pPool->cMaxPages]) + pPool->cMaxUsers * sizeof(PGMPOOLUSER) + pPool->cMaxPhysExts * sizeof(PGMPOOLPHYSEXT) )); pPage = &pPool->aPages[iToFree]; /* * Reject any attempts at flushing the currently active shadow CR3 mapping. * Call pgmPoolCacheUsed to move the page to the head of the age list. */ if ( !pgmPoolIsPageLocked(pPage) && pPage->idx >= PGMPOOL_IDX_FIRST /* paranoia (#6349) */) break; LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n")); pgmPoolCacheUsed(pPool, pPage); AssertLogRelReturn(iLoop < 8192, VERR_PGM_POOL_TOO_MANY_LOOPS); } /* * Found a usable page, flush it and return. */ int rc = pgmPoolFlushPage(pPool, pPage); /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */ /** @todo find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */ if (rc == VINF_SUCCESS) PGM_INVL_ALL_VCPU_TLBS(pVM); return rc; } /** * Checks if a kind mismatch is really a page being reused * or if it's just normal remappings. * * @returns true if reused and the cached page (enmKind1) should be flushed * @returns false if not reused. * @param enmKind1 The kind of the cached page. * @param enmKind2 The kind of the requested page. */ static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2) { switch (enmKind1) { /* * Never reuse them. There is no remapping in non-paging mode. */ case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */ return false; /* * It's perfectly fine to reuse these, except for PAE and non-paging stuff. */ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: Assert(!PGMPOOL_PAGE_IS_KIND_NESTED(enmKind2)); switch (enmKind2) { case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: return true; default: return false; } /* * It's perfectly fine to reuse these, except for PAE and non-paging stuff. */ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: Assert(!PGMPOOL_PAGE_IS_KIND_NESTED(enmKind2)); switch (enmKind2) { case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: return true; default: return false; } #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: return PGMPOOL_PAGE_IS_KIND_NESTED(enmKind2); case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: return false; #endif /* * These cannot be flushed, and it's common to reuse the PDs as PTs. */ case PGMPOOLKIND_ROOT_NESTED: return false; default: AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1)); } } /** * Attempts to satisfy a pgmPoolAlloc request from the cache. * * @returns VBox status code. * @retval VINF_PGM_CACHED_PAGE on success. * @retval VERR_FILE_NOT_FOUND if not found. * @param pPool The pool. * @param GCPhys The GC physical address of the page we're gonna shadow. * @param enmKind The kind of mapping. * @param enmAccess Access type for the mapping (only relevant for big pages) * @param fA20Enabled Whether the CPU has the A20 gate enabled. * @param iUser The shadow page pool index of the user table. This is * NIL_PGMPOOL_IDX for root pages. * @param iUserTable The index into the user table (shadowed). Ignored if * root page * @param ppPage Where to store the pointer to the page. */ static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage) { /* * Look up the GCPhys in the hash. */ unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%d iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i)); if (i != NIL_PGMPOOL_IDX) { do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys)); if (pPage->GCPhys == GCPhys) { if ( (PGMPOOLKIND)pPage->enmKind == enmKind && (PGMPOOLACCESS)pPage->enmAccess == enmAccess && pPage->fA20Enabled == fA20Enabled) { /* Put it at the start of the use list to make sure pgmPoolTrackAddUser * doesn't flush it in case there are no more free use records. */ pgmPoolCacheUsed(pPool, pPage); int rc = VINF_SUCCESS; if (iUser != NIL_PGMPOOL_IDX) rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable); if (RT_SUCCESS(rc)) { Assert((PGMPOOLKIND)pPage->enmKind == enmKind); *ppPage = pPage; if (pPage->cModifications) pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */ STAM_COUNTER_INC(&pPool->StatCacheHits); return VINF_PGM_CACHED_PAGE; } return rc; } if ((PGMPOOLKIND)pPage->enmKind != enmKind) { /* * The kind is different. In some cases we should now flush the page * as it has been reused, but in most cases this is normal remapping * of PDs as PT or big pages using the GCPhys field in a slightly * different way than the other kinds. */ if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind)) { STAM_COUNTER_INC(&pPool->StatCacheKindMismatches); pgmPoolFlushPage(pPool, pPage); break; } } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); } Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind))); STAM_COUNTER_INC(&pPool->StatCacheMisses); return VERR_FILE_NOT_FOUND; } /** * Inserts a page into the cache. * * @param pPool The pool. * @param pPage The cached page. * @param fCanBeCached Set if the page is fit for caching from the caller's point of view. */ static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached) { /* * Insert into the GCPhys hash if the page is fit for that. */ Assert(!pPage->fCached); if (fCanBeCached) { pPage->fCached = true; pgmPoolHashInsert(pPool, pPage); Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); STAM_COUNTER_INC(&pPool->StatCacheCacheable); } else { Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); STAM_COUNTER_INC(&pPool->StatCacheUncacheable); } /* * Insert at the head of the age list. */ pPage->iAgePrev = NIL_PGMPOOL_IDX; pPage->iAgeNext = pPool->iAgeHead; if (pPool->iAgeHead != NIL_PGMPOOL_IDX) pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx; else pPool->iAgeTail = pPage->idx; pPool->iAgeHead = pPage->idx; } /** * Flushes a cached page. * * @param pPool The pool. * @param pPage The cached page. */ static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys)); /* * Remove the page from the hash. */ if (pPage->fCached) { pPage->fCached = false; pgmPoolHashRemove(pPool, pPage); } else Assert(pPage->iNext == NIL_PGMPOOL_IDX); /* * Remove it from the age list. */ if (pPage->iAgeNext != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev; else pPool->iAgeTail = pPage->iAgePrev; if (pPage->iAgePrev != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext; else pPool->iAgeHead = pPage->iAgeNext; pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; } /** * Looks for pages sharing the monitor. * * @returns Pointer to the head page. * @returns NULL if not found. * @param pPool The Pool * @param pNewPage The page which is going to be monitored. */ static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage) { /* * Look up the GCPhys in the hash. */ RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; if (i == NIL_PGMPOOL_IDX) return NULL; do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if ( pPage->GCPhys - GCPhys < PAGE_SIZE && pPage != pNewPage) { switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: #endif { /* find the head */ while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { Assert(pPage->iMonitoredPrev != pPage->idx); pPage = &pPool->aPages[pPage->iMonitoredPrev]; } return pPage; } /* ignore, no monitoring. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: #endif break; default: AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); return NULL; } /** * Enabled write monitoring of a guest page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param pPage The cached page. */ static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK)); /* * Filter out the relevant kinds. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: break; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: /* Nothing to monitor here. */ return VINF_SUCCESS; case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* Nothing to monitor here. */ return VINF_SUCCESS; #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: break; case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: /* Nothing to monitor here. */ return VINF_SUCCESS; #endif default: AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); } /* * Install handler. */ int rc; PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage); if (pPageHead) { Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx); Assert(pPageHead->iMonitoredPrev != pPage->idx); #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPageHead->fDirty) pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirtyEntry, false /* do not remove */); #endif pPage->iMonitoredPrev = pPageHead->idx; pPage->iMonitoredNext = pPageHead->iMonitoredNext; if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX) pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx; pPageHead->iMonitoredNext = pPage->idx; rc = VINF_SUCCESS; if (PGMPOOL_PAGE_IS_NESTED(pPage)) Log7Func(("Adding to monitoring list GCPhysPage=%RGp\n", pPage->GCPhys)); } else { if (PGMPOOL_PAGE_IS_NESTED(pPage)) Log7Func(("Started monitoring GCPhysPage=%RGp HCPhys=%RHp enmKind=%s\n", pPage->GCPhys, pPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind))); Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); PVMCC pVM = pPool->CTX_SUFF(pVM); const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; rc = PGMHandlerPhysicalRegister(pVM, GCPhysPage, GCPhysPage + PAGE_OFFSET_MASK, pPool->hAccessHandlerType, pPage - &pPool->aPages[0], NIL_RTR3PTR /*pszDesc*/); /** @todo we should probably deal with out-of-memory conditions here, but for now increasing * the heap size should suffice. */ AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc)); PVMCPU pVCpu = VMMGetCpu(pVM); AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("fSyncFlags=%x syncff=%d\n", pVCpu->pgm.s.fSyncFlags, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))); } pPage->fMonitored = true; return rc; } /** * Disables write monitoring of a guest page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param pPage The cached page. */ static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Filter out the relevant kinds. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: break; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: /* Nothing to monitor here. */ Assert(!pPage->fMonitored); return VINF_SUCCESS; #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: break; case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: /* Nothing to monitor here. */ Assert(!pPage->fMonitored); return VINF_SUCCESS; #endif default: AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); } Assert(pPage->fMonitored); /* * Remove the page from the monitored list or uninstall it if last. */ const PVMCC pVM = pPool->CTX_SUFF(pVM); int rc; if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext]; pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX; rc = PGMHandlerPhysicalChangeUserArg(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK, pPage->iMonitoredNext); AssertFatalRCSuccess(rc); pPage->iMonitoredNext = NIL_PGMPOOL_IDX; } else { pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext; if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; } pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; rc = VINF_SUCCESS; } } else { rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK); AssertFatalRC(rc); PVMCPU pVCpu = VMMGetCpu(pVM); AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions)); } pPage->fMonitored = false; /* * Remove it from the list of modified pages (if in it). */ pgmPoolMonitorModifiedRemove(pPool, pPage); if (PGMPOOL_PAGE_IS_NESTED(pPage)) Log7Func(("Stopped monitoring %RGp\n", pPage->GCPhys)); return rc; } /** * Inserts the page into the list of modified pages. * * @param pPool The pool. * @param pPage The page. */ void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx)); AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX && pPage->iModifiedPrev == NIL_PGMPOOL_IDX && pPool->iModifiedHead != pPage->idx, ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n", pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications, pPool->iModifiedHead, pPool->cModifiedPages)); pPage->iModifiedNext = pPool->iModifiedHead; if (pPool->iModifiedHead != NIL_PGMPOOL_IDX) pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx; pPool->iModifiedHead = pPage->idx; pPool->cModifiedPages++; #ifdef VBOX_WITH_STATISTICS if (pPool->cModifiedPages > pPool->cModifiedPagesHigh) pPool->cModifiedPagesHigh = pPool->cModifiedPages; #endif } /** * Removes the page from the list of modified pages and resets the * modification counter. * * @param pPool The pool. * @param pPage The page which is believed to be in the list of modified pages. */ static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications)); if (pPool->iModifiedHead == pPage->idx) { Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); pPool->iModifiedHead = pPage->iModifiedNext; if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iModifiedNext = NIL_PGMPOOL_IDX; } pPool->cModifiedPages--; } else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext; if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev; pPage->iModifiedNext = NIL_PGMPOOL_IDX; } pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPool->cModifiedPages--; } else Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); pPage->cModifications = 0; } /** * Zaps the list of modified pages, resetting their modification counters in the process. * * @param pVM The cross context VM structure. */ static void pgmPoolMonitorModifiedClearAll(PVMCC pVM) { PGM_LOCK_VOID(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages)); unsigned cPages = 0; NOREF(cPages); #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT pgmPoolResetDirtyPages(pVM); #endif uint16_t idx = pPool->iModifiedHead; pPool->iModifiedHead = NIL_PGMPOOL_IDX; while (idx != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPage = &pPool->aPages[idx]; idx = pPage->iModifiedNext; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; Assert(++cPages); } AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages)); pPool->cModifiedPages = 0; PGM_UNLOCK(pVM); } /** * Handle SyncCR3 pool tasks * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only) * @param pVCpu The cross context virtual CPU structure. * @remark Should only be used when monitoring is available, thus placed in * the PGMPOOL_WITH_MONITORING \#ifdef. */ int pgmPoolSyncCR3(PVMCPUCC pVCpu) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); LogFlow(("pgmPoolSyncCR3 fSyncFlags=%x\n", pVCpu->pgm.s.fSyncFlags)); /* * When monitoring shadowed pages, we reset the modification counters on CR3 sync. * Occasionally we will have to clear all the shadow page tables because we wanted * to monitor a page which was mapped by too many shadowed page tables. This operation * sometimes referred to as a 'lightweight flush'. */ # ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) pgmR3PoolClearAll(pVM, false /*fFlushRemTlb*/); # else /* !IN_RING3 */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) { Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n")); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */ /* Make sure all other VCPUs return to ring 3. */ if (pVM->cCpus > 1) { VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING); PGM_INVL_ALL_VCPU_TLBS(pVM); } return VINF_PGM_SYNC_CR3; } # endif /* !IN_RING3 */ else { pgmPoolMonitorModifiedClearAll(pVM); /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) { Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n")); return pgmPoolSyncCR3(pVCpu); } } return VINF_SUCCESS; } /** * Frees up at least one user entry. * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * * @param pPool The pool. * @param iUser The user index. */ static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser) { STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser); /* * Just free cached pages in a braindead fashion. */ /** @todo walk the age list backwards and free the first with usage. */ int rc = VINF_SUCCESS; do { int rc2 = pgmPoolCacheFreeOne(pPool, iUser); if (RT_FAILURE(rc2) && rc == VINF_SUCCESS) rc = rc2; } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX); return rc; } /** * Inserts a page into the cache. * * This will create user node for the page, insert it into the GCPhys * hash, and insert it into the age list. * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * * @param pPool The pool. * @param pPage The cached page. * @param GCPhys The GC physical address of the page we're gonna shadow. * @param iUser The user index. * @param iUserTable The user table index. */ DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable) { int rc = VINF_SUCCESS; PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser=%d iUserTable=%x\n", GCPhys, iUser, iUserTable)); RT_NOREF_PV(GCPhys); if (iUser != NIL_PGMPOOL_IDX) { #ifdef VBOX_STRICT /* * Check that the entry doesn't already exists. */ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPage->iUserHead; do { Assert(i < pPool->cMaxUsers); AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable)); i = paUsers[i].iNext; } while (i != NIL_PGMPOOL_USER_INDEX); } #endif /* * Find free a user node. */ uint16_t i = pPool->iUserFreeHead; if (i == NIL_PGMPOOL_USER_INDEX) { rc = pgmPoolTrackFreeOneUser(pPool, iUser); if (RT_FAILURE(rc)) return rc; i = pPool->iUserFreeHead; } /* * Unlink the user node from the free list, * initialize and insert it into the user list. */ pPool->iUserFreeHead = paUsers[i].iNext; paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX; paUsers[i].iUser = iUser; paUsers[i].iUserTable = iUserTable; pPage->iUserHead = i; } else pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; /* * Insert into cache and enable monitoring of the guest page if enabled. * * Until we implement caching of all levels, including the CR3 one, we'll * have to make sure we don't try monitor & cache any recursive reuse of * a monitored CR3 page. Because all windows versions are doing this we'll * have to be able to do combined access monitoring, CR3 + PT and * PD + PT (guest PAE). * * Update: * We're now cooperating with the CR3 monitor if an uncachable page is found. */ const bool fCanBeMonitored = true; pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */ if (fCanBeMonitored) { rc = pgmPoolMonitorInsert(pPool, pPage); AssertRC(rc); } return rc; } /** * Adds a user reference to a page. * * This will move the page to the head of the * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * * @param pPool The pool. * @param pPage The cached page. * @param iUser The user index. * @param iUserTable The user table. */ static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) { Log3(("pgmPoolTrackAddUser: GCPhys=%RGp iUser=%x iUserTable=%x\n", pPage->GCPhys, iUser, iUserTable)); PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); Assert(iUser != NIL_PGMPOOL_IDX); # ifdef VBOX_STRICT /* * Check that the entry doesn't already exists. We only allow multiple * users of top-level paging structures (SHW_POOL_ROOT_IDX). */ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPage->iUserHead; do { Assert(i < pPool->cMaxUsers); /** @todo this assertion looks odd... Shouldn't it be && here? */ AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable)); i = paUsers[i].iNext; } while (i != NIL_PGMPOOL_USER_INDEX); } # endif /* * Allocate a user node. */ uint16_t i = pPool->iUserFreeHead; if (i == NIL_PGMPOOL_USER_INDEX) { int rc = pgmPoolTrackFreeOneUser(pPool, iUser); if (RT_FAILURE(rc)) return rc; i = pPool->iUserFreeHead; } pPool->iUserFreeHead = paUsers[i].iNext; /* * Initialize the user node and insert it. */ paUsers[i].iNext = pPage->iUserHead; paUsers[i].iUser = iUser; paUsers[i].iUserTable = iUserTable; pPage->iUserHead = i; # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirtyEntry, false /* do not remove */); # endif /* * Tell the cache to update its replacement stats for this page. */ pgmPoolCacheUsed(pPool, pPage); return VINF_SUCCESS; } /** * Frees a user record associated with a page. * * This does not clear the entry in the user table, it simply replaces the * user record to the chain of free records. * * @param pPool The pool. * @param pPage The shadow page. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). * * @remarks Don't call this for root pages. */ static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) { Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable)); PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); Assert(iUser != NIL_PGMPOOL_IDX); /* * Unlink and free the specified user entry. */ /* Special: For PAE and 32-bit paging, there is usually no more than one user. */ uint16_t i = pPage->iUserHead; if ( i != NIL_PGMPOOL_USER_INDEX && paUsers[i].iUser == iUser && paUsers[i].iUserTable == iUserTable) { pPage->iUserHead = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; return; } /* General: Linear search. */ uint16_t iPrev = NIL_PGMPOOL_USER_INDEX; while (i != NIL_PGMPOOL_USER_INDEX) { if ( paUsers[i].iUser == iUser && paUsers[i].iUserTable == iUserTable) { if (iPrev != NIL_PGMPOOL_USER_INDEX) paUsers[iPrev].iNext = paUsers[i].iNext; else pPage->iUserHead = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; return; } iPrev = i; i = paUsers[i].iNext; } /* Fatal: didn't find it */ AssertFatalMsgFailed(("Didn't find the user entry! iUser=%d iUserTable=%#x GCPhys=%RGp\n", iUser, iUserTable, pPage->GCPhys)); } #if 0 /* unused */ /** * Gets the entry size of a shadow table. * * @param enmKind The kind of page. * * @returns The size of the entry in bytes. That is, 4 or 8. * @returns If the kind is not for a table, an assertion is raised and 0 is * returned. */ DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_32BIT_PD_PHYS: return 4; case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: return 8; default: AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); } } #endif /* unused */ #if 0 /* unused */ /** * Gets the entry size of a guest table. * * @param enmKind The kind of page. * * @returns The size of the entry in bytes. That is, 0, 4 or 8. * @returns If the kind is not for a table, an assertion is raised and 0 is * returned. */ DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: return 4; case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PDPT: return 8; case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: /** @todo can we return 0? (nobody is calling this...) */ AssertFailed(); return 0; default: AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); } } #endif /* unused */ /** * Checks one shadow page table entry for a mapping of a physical page. * * @returns true / false indicating removal of all relevant PTEs * * @param pVM The cross context VM structure. * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param iShw The shadow page table. * @param iPte Page table entry or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown */ static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t iPte) { LogFlow(("pgmPoolTrackFlushGCPhysPTInt: pPhysPage=%RHp iShw=%d iPte=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, iPte)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); bool fRet = false; /* * Assert sanity. */ Assert(iPte != NIL_PGMPOOL_PHYSEXT_IDX_PTE); AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw)); PPGMPOOLPAGE pPage = &pPool->aPages[iShw]; /* * Then, clear the actual mappings to the page in the shadow PT. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: { const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); uint32_t u32AndMask = 0; uint32_t u32OrMask = 0; if (!fFlushPTEs) { /* Note! Disregarding the PGMPHYSHANDLER_F_NOT_IN_HM bit here. Should be harmless. */ switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage)) { case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */ case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */ u32OrMask = X86_PTE_RW; u32AndMask = UINT32_MAX; fRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */ u32OrMask = 0; u32AndMask = ~X86_PTE_RW; fRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; default: /* We will end up here when called with an "ALL" access handler. */ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); break; } } else STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); /* Update the counter if we're removing references. */ if (!u32AndMask) { Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; } if ((pPT->a[iPte].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32\n", iPte, pPT->a[iPte])); X86PTE Pte; Pte.u = (pPT->a[iPte].u & u32AndMask) | u32OrMask; if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY) Pte.u &= ~(X86PGUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */ ASMAtomicWriteU32(&pPT->a[iPte].u, Pte.u); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); return fRet; } #ifdef LOG_ENABLED Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { Log(("i=%d cFound=%d\n", i, ++cFound)); } #endif AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u32=%RX32 poolkind=%x\n", pPage->iFirstPresent, pPage->cPresent, u32, pPage->enmKind)); /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/ break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: /* physical mask the same as PAE; RW bit as well; be careful! */ #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: # ifdef PGM_WITH_LARGE_PAGES case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: # endif #endif { const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); uint64_t u64OrMask = 0; uint64_t u64AndMask = 0; if (!fFlushPTEs) { /* Note! Disregarding the PGMPHYSHANDLER_F_NOT_IN_HM bit here. Should be harmless. */ switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage)) { case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */ case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */ u64OrMask = X86_PTE_RW; u64AndMask = UINT64_MAX; fRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */ u64OrMask = 0; u64AndMask = ~(uint64_t)X86_PTE_RW; fRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; default: /* We will end up here when called with an "ALL" access handler. */ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); break; } } else STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); /* Update the counter if we're removing references. */ if (!u64AndMask) { Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; } if ((PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64) { Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64\n", iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte]))); X86PTEPAE Pte; Pte.u = (PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & u64AndMask) | u64OrMask; if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY) Pte.u &= ~(X86PGPAEUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */ PGMSHWPTEPAE_ATOMIC_SET(pPT->a[iPte], Pte.u); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); return fRet; } #ifdef LOG_ENABLED Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); Log(("Found %RX64 expected %RX64\n", PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX), u64)); for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++) if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64) Log(("i=%d cFound=%d\n", i, ++cFound)); #endif AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u64=%RX64 poolkind=%x iPte=%d PT=%RX64\n", pPage->iFirstPresent, pPage->cPresent, u64, pPage->enmKind, iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte]))); /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/ break; } #ifdef PGM_WITH_LARGE_PAGES /* Large page case only. */ case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: { Assert(pVM->pgm.s.fNestedPaging); const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS; PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage); Assert( pPage->enmKind != PGMPOOLKIND_EPT_PD_FOR_EPT_PD || (pPD->a[iPte].u & EPT_E_LEAF)); if ((pPD->a[iPte].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) { Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte])); STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); pPD->a[iPte].u = 0; PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD); /* Update the counter as we're removing references. */ Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; return fRet; } # ifdef LOG_ENABLED LogRel(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++) if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) { cFound++; LogRel(("i=%d cFound=%d\n", i, cFound)); } # endif AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d enmKind=%d\n", pPage->iFirstPresent, pPage->cPresent, pPage->enmKind)); /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/ break; } /* AMD-V nested paging */ /** @todo merge with EPT as we only check the parts that are identical. */ case PGMPOOLKIND_PAE_PD_PHYS: { Assert(pVM->pgm.s.fNestedPaging); const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS; PX86PDPAE pPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); if ((pPD->a[iPte].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) { Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte])); STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); pPD->a[iPte].u = 0; PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD); /* Update the counter as we're removing references. */ Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; return fRet; } # ifdef LOG_ENABLED Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++) if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) Log(("i=%d cFound=%d\n", i, ++cFound)); # endif AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/ break; } #endif /* PGM_WITH_LARGE_PAGES */ default: AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw)); } /* not reached. */ #ifndef _MSC_VER return fRet; #endif } /** * Scans one shadow page table for mappings of a physical page. * * @param pVM The cross context VM structure. * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param iShw The shadow page table. */ static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); /* We should only come here with when there's only one reference to this physical page. */ Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1); Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw)); STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f); bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, PGM_PAGE_GET_PTE_INDEX(pPhysPage)); if (!fKeptPTEs) PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f); } /** * Flushes a list of shadow page tables mapping the same physical page. * * @param pVM The cross context VM structure. * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param iPhysExt The physical cross reference extent list to flush. */ static void pgmPoolTrackFlushGCPhysPTs(PVMCC pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt) { PGM_LOCK_ASSERT_OWNER(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); bool fKeepList = false; STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f); Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt=%u\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt)); const uint16_t iPhysExtStart = iPhysExt; PPGMPOOLPHYSEXT pPhysExt; do { Assert(iPhysExt < pPool->cMaxPhysExts); pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) { if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX) { bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], pPhysExt->apte[i]); if (!fKeptPTEs) { pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } else fKeepList = true; } } /* next */ iPhysExt = pPhysExt->iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); if (!fKeepList) { /* insert the list into the free list and clear the ram range entry. */ pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExtStart; /* Invalidate the tracking data. */ PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); } STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f); } /** * Flushes all shadow page table mappings of the given guest page. * * This is typically called when the host page backing the guest one has been * replaced or when the page protection was changed due to a guest access * caught by the monitoring. * * @returns VBox status code. * @retval VINF_SUCCESS if all references has been successfully cleared. * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page * pool cleaning. FF and sync flags are set. * * @param pVM The cross context VM structure. * @param GCPhysPage GC physical address of the page in question * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be * flushed, it is NOT touched if this isn't necessary. * The caller MUST initialized this to @a false. */ int pgmPoolTrackUpdateGCPhys(PVMCC pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs) { PVMCPUCC pVCpu = VMMGetCpu(pVM); PGM_LOCK_VOID(pVM); int rc = VINF_SUCCESS; #ifdef PGM_WITH_LARGE_PAGES /* Is this page part of a large page? */ if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE) { RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK; GCPhysPage &= X86_PDE_PAE_PG_MASK; /* Fetch the large page base. */ PPGMPAGE pLargePage; if (GCPhysBase != GCPhysPage) { pLargePage = pgmPhysGetPage(pVM, GCPhysBase); AssertFatal(pLargePage); } else pLargePage = pPhysPage; Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage)); if (PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE) { /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */ PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE_DISABLED); pVM->pgm.s.cLargePagesDisabled++; /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */ rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pLargePage, fFlushPTEs, pfFlushTLBs); *pfFlushTLBs = true; PGM_UNLOCK(pVM); return rc; } } #else NOREF(GCPhysPage); #endif /* PGM_WITH_LARGE_PAGES */ const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage); if (u16) { /* * The zero page is currently screwing up the tracking and we'll * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC * is defined, zero pages won't normally be mapped. Some kind of solution * will be needed for this problem of course, but it will have to wait... */ # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* end up guruing after pgmR0PhysAllocateLargePage otherwise. */ if ( PGM_PAGE_IS_ZERO(pPhysPage) || PGM_PAGE_IS_BALLOONED(pPhysPage)) # else if (PGM_PAGE_IS_BALLOONED(pPhysPage)) # endif rc = VINF_PGM_GCPHYS_ALIASED; else { if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT) { Assert(PGMPOOL_TD_GET_CREFS(u16) == 1); pgmPoolTrackFlushGCPhysPT(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16)); } else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED)) pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16)); else rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage); *pfFlushTLBs = true; } } if (rc == VINF_PGM_GCPHYS_ALIASED) { pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); rc = VINF_PGM_SYNC_CR3; } PGM_UNLOCK(pVM); return rc; } /** * Scans all shadow page tables for mappings of a physical page. * * This may be slow, but it's most likely more efficient than cleaning * out the entire page pool / cache. * * @returns VBox status code. * @retval VINF_SUCCESS if all references has been successfully cleared. * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and * a page pool cleaning. * * @param pVM The cross context VM structure. * @param pPhysPage The guest page in question. */ int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s); LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n", pPool->cUsedPages, pPool->cPresent, pPhysPage)); /* * There is a limit to what makes sense. */ if ( pPool->cPresent > 1024 && pVM->cCpus == 1) { LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent)); STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); return VINF_PGM_GCPHYS_ALIASED; } /* * Iterate all the pages until we've encountered all that in use. * This is simple but not quite optimal solution. */ const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage); unsigned cLeft = pPool->cUsedPages; unsigned iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if ( pPage->GCPhys != NIL_RTGCPHYS && pPage->cPresent) { Assert(!PGMPOOL_PAGE_IS_NESTED(pPage)); /* see if it hits */ switch (pPage->enmKind) { /* * We only care about shadow page tables. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: { const uint32_t u32 = (uint32_t)u64; unsigned cPresent = pPage->cPresent; PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) { const X86PGUINT uPte = pPT->a[i].u; if (uPte & X86_PTE_P) { if ((uPte & X86_PTE_PG_MASK) == u32) { //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i])); ASMAtomicWriteU32(&pPT->a[i].u, 0); /* Update the counter as we're removing references. */ Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; } if (!--cPresent) break; } } PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { unsigned cPresent = pPage->cPresent; PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) if (PGMSHWPTEPAE_IS_P(pPT->a[i])) { if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & X86_PTE_PAE_PG_MASK) == u64) { //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i])); PGMSHWPTEPAE_ATOMIC_SET(pPT->a[i], 0); /// @todo why not atomic? /* Update the counter as we're removing references. */ Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; } if (!--cPresent) break; } PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); break; } case PGMPOOLKIND_EPT_PT_FOR_PHYS: { unsigned cPresent = pPage->cPresent; PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) { X86PGPAEUINT const uPte = pPT->a[i].u; if (uPte & EPT_E_READ) { if ((uPte & EPT_PTE_PG_MASK) == u64) { //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i])); ASMAtomicWriteU64(&pPT->a[i].u, 0); /* Update the counter as we're removing references. */ Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; } if (!--cPresent) break; } } PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); break; } } if (!--cLeft) break; } } PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); /* * There is a limit to what makes sense. The above search is very expensive, so force a pgm pool flush. */ if (pPool->cPresent > 1024) { LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent)); return VINF_PGM_GCPHYS_ALIASED; } return VINF_SUCCESS; } /** * Clears the user entry in a user table. * * This is used to remove all references to a page when flushing it. */ static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser) { Assert(pUser->iUser != NIL_PGMPOOL_IDX); Assert(pUser->iUser < pPool->cCurPages); uint32_t iUserTable = pUser->iUserTable; /* * Map the user page. Ignore references made by fictitious pages. */ PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser]; LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind))); union { uint64_t *pau64; uint32_t *pau32; } u; if (pUserPage->idx < PGMPOOL_IDX_FIRST) { Assert(!pUserPage->pvPageR3); return; } u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage); /* Safety precaution in case we change the paging for other modes too in the future. */ Assert(!pgmPoolIsPageLocked(pPage)); RT_NOREF_PV(pPage); #ifdef VBOX_STRICT /* * Some sanity checks. */ switch (pUserPage->enmKind) { case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_32BIT_PD_PHYS: Assert(iUserTable < X86_PG_ENTRIES); break; case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: case PGMPOOLKIND_PAE_PDPT_PHYS: Assert(iUserTable < 4); Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); break; case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PD_PHYS: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: Assert(iUserTable < X86_PG_PAE_ENTRIES); Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); break; case PGMPOOLKIND_64BIT_PML4: Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); /* GCPhys >> PAGE_SHIFT is the index here */ break; case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_ROOT_NESTED: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: Assert(iUserTable < EPT_PG_ENTRIES); break; # endif default: AssertMsgFailed(("enmKind=%d GCPhys=%RGp\n", pUserPage->enmKind, pPage->GCPhys)); break; } #endif /* VBOX_STRICT */ /* * Clear the entry in the user page. */ switch (pUserPage->enmKind) { /* 32-bit entries */ case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_32BIT_PD_PHYS: ASMAtomicWriteU32(&u.pau32[iUserTable], 0); break; /* 64-bit entries */ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: #endif ASMAtomicWriteU64(&u.pau64[iUserTable], 0); break; default: AssertFatalMsgFailed(("enmKind=%d iUser=%d iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable)); } PGM_DYNMAP_UNUSED_HINT_VM(pPool->CTX_SUFF(pVM), u.pau64); } /** * Clears all users of a page. */ static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Free all the user records. */ LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys)); PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); uint16_t i = pPage->iUserHead; while (i != NIL_PGMPOOL_USER_INDEX) { /* Clear enter in user table. */ pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]); /* Free it. */ const uint16_t iNext = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; /* Next. */ i = iNext; } pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; } /** * Allocates a new physical cross reference extent. * * @returns Pointer to the allocated extent on success. NULL if we're out of them. * @param pVM The cross context VM structure. * @param piPhysExt Where to store the phys ext index. */ PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVMCC pVM, uint16_t *piPhysExt) { PGM_LOCK_ASSERT_OWNER(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); uint16_t iPhysExt = pPool->iPhysExtFreeHead; if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX) { STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures); return NULL; } PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; pPool->iPhysExtFreeHead = pPhysExt->iNext; pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX; *piPhysExt = iPhysExt; return pPhysExt; } /** * Frees a physical cross reference extent. * * @param pVM The cross context VM structure. * @param iPhysExt The extent to free. */ void pgmPoolTrackPhysExtFree(PVMCC pVM, uint16_t iPhysExt) { PGM_LOCK_ASSERT_OWNER(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(iPhysExt < pPool->cMaxPhysExts); PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) { pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExt; } /** * Frees a physical cross reference extent. * * @param pVM The cross context VM structure. * @param iPhysExt The extent to free. */ void pgmPoolTrackPhysExtFreeList(PVMCC pVM, uint16_t iPhysExt) { PGM_LOCK_ASSERT_OWNER(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); const uint16_t iPhysExtStart = iPhysExt; PPGMPOOLPHYSEXT pPhysExt; do { Assert(iPhysExt < pPool->cMaxPhysExts); pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) { pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } /* next */ iPhysExt = pPhysExt->iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExtStart; } /** * Insert a reference into a list of physical cross reference extents. * * @returns The new tracking data for PGMPAGE. * * @param pVM The cross context VM structure. * @param iPhysExt The physical extent index of the list head. * @param iShwPT The shadow page table index. * @param iPte Page table entry * */ static uint16_t pgmPoolTrackPhysExtInsert(PVMCC pVM, uint16_t iPhysExt, uint16_t iShwPT, uint16_t iPte) { PGM_LOCK_ASSERT_OWNER(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); /* * Special common cases. */ if (paPhysExts[iPhysExt].aidx[1] == NIL_PGMPOOL_IDX) { paPhysExts[iPhysExt].aidx[1] = iShwPT; paPhysExts[iPhysExt].apte[1] = iPte; STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany); LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,%d pte %d,}\n", iPhysExt, iShwPT, iPte)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); } if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX) { paPhysExts[iPhysExt].aidx[2] = iShwPT; paPhysExts[iPhysExt].apte[2] = iPte; STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany); LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d pte %d}\n", iPhysExt, iShwPT, iPte)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); } AssertCompile(RT_ELEMENTS(paPhysExts[iPhysExt].aidx) == 3); /* * General treatment. */ const uint16_t iPhysExtStart = iPhysExt; unsigned cMax = 15; for (;;) { Assert(iPhysExt < pPool->cMaxPhysExts); for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX) { paPhysExts[iPhysExt].aidx[i] = iShwPT; paPhysExts[iPhysExt].apte[i] = iPte; STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany); LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d pte %d} i=%d cMax=%d\n", iPhysExt, iShwPT, iPte, i, cMax)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart); } if (!--cMax) { STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackOverflows); pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); } /* advance */ iPhysExt = paPhysExts[iPhysExt].iNext; if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX) break; } /* * Add another extent to the list. */ PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); if (!pNew) { STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackNoExtentsLeft); pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); } pNew->iNext = iPhysExtStart; pNew->aidx[0] = iShwPT; pNew->apte[0] = iPte; LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d pte %d}->%d\n", iPhysExt, iShwPT, iPte, iPhysExtStart)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); } /** * Add a reference to guest physical page where extents are in use. * * @returns The new tracking data for PGMPAGE. * * @param pVM The cross context VM structure. * @param pPhysPage Pointer to the aPages entry in the ram range. * @param u16 The ram range flags (top 16-bits). * @param iShwPT The shadow page table index. * @param iPte Page table entry */ uint16_t pgmPoolTrackPhysExtAddref(PVMCC pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte) { PGM_LOCK_VOID(pVM); if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT) { /* * Convert to extent list. */ Assert(PGMPOOL_TD_GET_CREFS(u16) == 1); uint16_t iPhysExt; PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); if (pPhysExt) { LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT)); STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliased); pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16); pPhysExt->apte[0] = PGM_PAGE_GET_PTE_INDEX(pPhysPage); pPhysExt->aidx[1] = iShwPT; pPhysExt->apte[1] = iPte; u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); } else u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); } else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED)) { /* * Insert into the extent list. */ u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT, iPte); } else STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedLots); PGM_UNLOCK(pVM); return u16; } /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPage The page. * @param pPhysPage Pointer to the aPages entry in the ram range. * @param iPte Shadow PTE index */ void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage, uint16_t iPte) { PVMCC pVM = pPool->CTX_SUFF(pVM); const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage); AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx)); uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage); if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED) { PGM_LOCK_VOID(pVM); uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX; PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); do { Assert(iPhysExt < pPool->cMaxPhysExts); /* * Look for the shadow page and check if it's all freed. */ for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) { if ( paPhysExts[iPhysExt].aidx[i] == pPage->idx && paPhysExts[iPhysExt].apte[i] == iPte) { paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX; paPhysExts[iPhysExt].apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX) { Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx)); PGM_UNLOCK(pVM); return; } /* we can free the node. */ const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext; if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX) { /* lonely node */ pgmPoolTrackPhysExtFree(pVM, iPhysExt); Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx)); PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); } else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX) { /* head */ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx)); PGM_PAGE_SET_TRACKING(pVM, pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext)); pgmPoolTrackPhysExtFree(pVM, iPhysExt); } else { /* in list */ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d in list\n", pPhysPage, pPage->idx)); paPhysExts[iPhysExtPrev].iNext = iPhysExtNext; pgmPoolTrackPhysExtFree(pVM, iPhysExt); } iPhysExt = iPhysExtNext; PGM_UNLOCK(pVM); return; } } /* next */ iPhysExtPrev = iPhysExt; iPhysExt = paPhysExts[iPhysExt].iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); PGM_UNLOCK(pVM); AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx)); } else /* nothing to do */ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage)); } /** * Clear references to guest physical memory. * * This is the same as pgmPoolTracDerefGCPhysHint except that the guest * physical address is assumed to be correct, so the linear search can be * skipped and we can assert at an earlier point. * * @param pPool The pool. * @param pPage The page. * @param HCPhys The host physical address corresponding to the guest page. * @param GCPhys The guest physical address corresponding to HCPhys. * @param iPte Shadow PTE index */ static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys, uint16_t iPte) { /* * Lookup the page and check if it checks out before derefing it. */ PVMCC pVM = pPool->CTX_SUFF(pVM); PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhys); if (pPhysPage) { Assert(PGM_PAGE_GET_HCPHYS(pPhysPage)); #ifdef LOG_ENABLED RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(pPhysPage); Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys)); #endif if (PGM_PAGE_GET_HCPHYS(pPhysPage) == HCPhys) { Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte); return; } AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp; found page has HCPhys=%RHp iPte=%u fIsNested=%RTbool\n", HCPhys, GCPhys, PGM_PAGE_GET_HCPHYS(pPhysPage), iPte, PGMPOOL_PAGE_IS_NESTED(pPage))); } AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys)); } /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPage The page. * @param HCPhys The host physical address corresponding to the guest page. * @param GCPhysHint The guest physical address which may corresponding to HCPhys. * @param iPte Shadow pte index */ void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte) { Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint)); /* * Try the hint first. */ RTHCPHYS HCPhysHinted; PVMCC pVM = pPool->CTX_SUFF(pVM); PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysHint); if (pPhysPage) { HCPhysHinted = PGM_PAGE_GET_HCPHYS(pPhysPage); Assert(HCPhysHinted); if (HCPhysHinted == HCPhys) { Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte); return; } } else HCPhysHinted = UINT64_C(0xdeadbeefdeadbeef); /* * Damn, the hint didn't work. We'll have to do an expensive linear search. */ STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches); uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U); Assert(pVM->pgm.s.apRamRanges[0] == NULL); for (uint32_t idx = 1; idx <= idRamRangeMax; idx++) { PPGMRAMRANGE const pRam = pVM->CTX_EXPR(pgm, pgmr0, pgm).s.apRamRanges[idx]; AssertContinue(pRam); unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) { Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n", HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT))); Assert(pPage->cPresent); Assert(pPool->cPresent); pPage->cPresent--; pPool->cPresent--; pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage], iPte); return; } } AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp (Hinted page has HCPhys = %RHp)\n", HCPhys, GCPhysHint, HCPhysHinted)); } /** * Clear references to guest physical memory in a 32-bit / 32-bit page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT) { RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { const X86PGUINT uPte = pShwPT->a[i].u; Assert(!(uPte & RT_BIT_32(10))); if (uPte & X86_PTE_P) { Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n", i, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & fPgMask, i); if (!pPage->cPresent) break; } } } /** * Clear references to guest physical memory in a PAE / 32-bit page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table (just a half one). */ DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT) { RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000)); if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) { Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n", i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i); if (!pPage->cPresent) break; } } } /** * Clear references to guest physical memory in a PAE / PAE page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT) { RTGCPHYS const fPgMask = pPage->fA20Enabled ? X86_PTE_PAE_PG_MASK : X86_PTE_PAE_PG_MASK & ~RT_BIT_64(20); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000)); if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) { Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n", i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i); if (!pPage->cPresent) break; } } } /** * Clear references to guest physical memory in a 32-bit / 4MB page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT) { RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20); RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) { const X86PGUINT uPte = pShwPT->a[i].u; Assert(!(uPte & RT_BIT_32(10))); if (uPte & X86_PTE_P) { Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n", i, uPte & X86_PTE_PG_MASK, GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, uPte & X86_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i); if (!pPage->cPresent) break; } } } /** * Clear references to guest physical memory in a PAE / 2/4MB page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT) { RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20); RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) { Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000)); if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) { Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n", i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys & GCPhysA20Mask, i); if (!pPage->cPresent) break; } } } /** * Clear references to shadowed pages in an EPT page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page directory pointer table (mapping of the * page). */ DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT) { RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20); RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) { X86PGPAEUINT const uPte = pShwPT->a[i].u; Assert((uPte & UINT64_C(0xfff0000000000f80)) == 0); if (uPte & EPT_E_READ) { Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n", i, uPte & EPT_PTE_PG_MASK, pPage->GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, uPte & EPT_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i); if (!pPage->cPresent) break; } } } #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT /** * Clears references to shadowed pages in a SLAT EPT page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ DECLINLINE(void) pgmPoolTrackDerefNestedPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT, PCEPTPT pGstPT) { Assert(PGMPOOL_PAGE_IS_NESTED(pPage)); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { X86PGPAEUINT const uShwPte = pShwPT->a[i].u; Assert((uShwPte & UINT64_C(0xfff0000000000f80)) == 0); /* Access, Dirty, UserX (not supported) and ignored bits 7, 11. */ if (uShwPte & EPT_PRESENT_MASK) { Log7Func(("Shw=%RX64 GstPte=%RX64\n", uShwPte, pGstPT->a[i].u)); pgmPoolTracDerefGCPhys(pPool, pPage, uShwPte & EPT_PTE_PG_MASK, pGstPT->a[i].u & EPT_PTE_PG_MASK, i); if (!pPage->cPresent) break; } } } /** * Clear references to guest physical memory in a SLAT 2MB EPT page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefNestedPTEPT2MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT) { Assert(pPage->fA20Enabled); RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) { X86PGPAEUINT const uShwPte = pShwPT->a[i].u; Assert((uShwPte & UINT64_C(0xfff0000000000f80)) == 0); /* Access, Dirty, UserX (not supported) and ignored bits 7, 11. */ if (uShwPte & EPT_PRESENT_MASK) { Log7Func(("Shw=%RX64 GstPte=%RX64\n", uShwPte, GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, uShwPte & EPT_PTE_PG_MASK, GCPhys, i); if (!pPage->cPresent) break; } } } /** * Clear references to shadowed pages in a SLAT EPT page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). * @param pGstPD The guest page directory. */ DECLINLINE(void) pgmPoolTrackDerefNestedPDEpt(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD, PCEPTPD pGstPD) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { X86PGPAEUINT const uPde = pShwPD->a[i].u; #ifdef PGM_WITH_LARGE_PAGES AssertMsg((uPde & UINT64_C(0xfff0000000000f00)) == 0, ("uPde=%RX64\n", uPde)); #else AssertMsg((uPde & UINT64_C(0xfff0000000000f80)) == 0, ("uPde=%RX64\n", uPde)); #endif if (uPde & EPT_PRESENT_MASK) { #ifdef PGM_WITH_LARGE_PAGES if (uPde & EPT_E_LEAF) { Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n", i, uPde & EPT_PDE2M_PG_MASK, pPage->GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, uPde & EPT_PDE2M_PG_MASK, pGstPD->a[i].u & EPT_PDE2M_PG_MASK, i); } else #endif { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & EPT_PDE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK)); } } } } /** * Clear references to shadowed pages in a SLAT EPT PML4 table. * * @param pPool The pool. * @param pPage The page. * @param pShwPml4 The shadow PML4 table. */ DECLINLINE(void) pgmPoolTrackDerefNestedPML4(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPML4 pShwPml4) { Assert(PGMPOOL_PAGE_IS_NESTED(pPage)); for (unsigned i = 0; i < RT_ELEMENTS(pShwPml4->a); i++) { X86PGPAEUINT const uPml4e = pShwPml4->a[i].u; AssertMsg((uPml4e & (EPT_PML4E_MBZ_MASK | 0xfff0000000000f00)) == 0, ("uPml4e=%RX64\n", uPml4e)); if (uPml4e & EPT_PRESENT_MASK) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPml4e & EPT_PML4E_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", uPml4e & X86_PML4E_PG_MASK)); } } } #endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ /** * Clear references to shadowed pages in a 32 bits page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { X86PGUINT const uPde = pShwPD->a[i].u; if (uPde & X86_PDE_P) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK)); } } } /** * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { X86PGPAEUINT const uPde = pShwPD->a[i].u; if (uPde & X86_PDE_P) { #ifdef PGM_WITH_LARGE_PAGES if (uPde & X86_PDE_PS) { Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n", i, uPde & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, uPde & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */, i); } else #endif { Assert((uPde & (X86_PDE_PAE_MBZ_MASK_NX | UINT64_C(0x7ff0000000000000))) == 0); PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & X86_PDE_PAE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", uPde & X86_PDE_PAE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } } /** * Clear references to shadowed pages in a PAE page directory pointer table. * * @param pPool The pool. * @param pPage The page. * @param pShwPDPT The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT) { for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++) { X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u; Assert((uPdpe & (X86_PDPE_PAE_MBZ_MASK | UINT64_C(0x7ff0000000000200))) == 0); if (uPdpe & X86_PDPE_P) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK)); } } } /** * Clear references to shadowed pages in a 64-bit page directory pointer table. * * @param pPool The pool. * @param pPage The page. * @param pShwPDPT The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++) { X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u; Assert((uPdpe & (X86_PDPE_LM_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0); if (uPdpe & X86_PDPE_P) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in a 64-bit level 4 page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPML4 The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++) { X86PGPAEUINT const uPml4e = pShwPML4->a[i].u; Assert((uPml4e & (X86_PML4E_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0); if (uPml4e & X86_PML4E_P) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPml4e & X86_PDPE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", uPml4e & X86_PML4E_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in an EPT page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { X86PGPAEUINT const uPde = pShwPD->a[i].u; #ifdef PGM_WITH_LARGE_PAGES AssertMsg((uPde & UINT64_C(0xfff0000000000f00)) == 0, ("uPde=%RX64\n", uPde)); #else AssertMsg((uPde & UINT64_C(0xfff0000000000f80)) == 0, ("uPde=%RX64\n", uPde)); #endif if (uPde & EPT_E_READ) { #ifdef PGM_WITH_LARGE_PAGES if (uPde & EPT_E_LEAF) { Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n", i, uPde & EPT_PDE2M_PG_MASK, pPage->GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, uPde & EPT_PDE2M_PG_MASK, pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */, i); } else #endif { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & EPT_PDE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK)); } /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in an EPT page directory pointer table. * * @param pPool The pool. * @param pPage The page. * @param pShwPDPT The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++) { X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u; Assert((uPdpe & UINT64_C(0xfff0000000000f80)) == 0); if (uPdpe & EPT_E_READ) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & EPT_PDPTE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", uPdpe & EPT_PDPTE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clears all references made by this page. * * This includes other shadow pages and GC physical addresses. * * @param pPool The pool. * @param pPage The page. */ static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Map the shadow page and take action according to the page kind. */ PVMCC pVM = pPool->CTX_SUFF(pVM); void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage); switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PPGMSHWPTPAE)pvShw); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw); break; case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_32BIT_PD: pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw); break; case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PDPT_PHYS: pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw); break; case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw); break; case PGMPOOLKIND_64BIT_PML4: pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw); break; case PGMPOOLKIND_EPT_PT_FOR_PHYS: pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw); break; case PGMPOOLKIND_EPT_PD_FOR_PHYS: pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw); break; case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw); break; #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: { void *pvGst; int const rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefNestedPTEPT(pPool, pPage, (PEPTPT)pvShw, (PCEPTPT)pvGst); break; } case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: pgmPoolTrackDerefNestedPTEPT2MB(pPool, pPage, (PEPTPT)pvShw); break; case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: { void *pvGst; int const rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefNestedPDEpt(pPool, pPage, (PEPTPD)pvShw, (PCEPTPD)pvGst); break; } case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw); break; case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: pgmPoolTrackDerefNestedPML4(pPool, pPage, (PEPTPML4)pvShw); break; #endif default: AssertFatalMsgFailed(("enmKind=%d GCPhys=%RGp\n", pPage->enmKind, pPage->GCPhys)); } /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */ STAM_PROFILE_START(&pPool->StatZeroPage, z); RT_BZERO(pvShw, PAGE_SIZE); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); pPage->fZeroed = true; Assert(!pPage->cPresent); PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); } /** * Flushes a pool page. * * This moves the page to the free list after removing all user references to it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param pPage The shadow page. * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!) */ int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush) { PVMCC pVM = pPool->CTX_SUFF(pVM); bool fFlushRequired = false; int rc = VINF_SUCCESS; STAM_PROFILE_START(&pPool->StatFlushPage, f); LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); if (PGMPOOL_PAGE_IS_NESTED(pPage)) Log7Func(("pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); /* * Reject any attempts at flushing any of the special root pages (shall * not happen). */ AssertMsgReturn(pPage->idx >= PGMPOOL_IDX_FIRST, ("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx), VINF_SUCCESS); PGM_LOCK_VOID(pVM); /* * Quietly reject any attempts at flushing the currently active shadow CR3 mapping */ if (pgmPoolIsPageLocked(pPage)) { #if !defined(VBOX_VMM_TARGET_ARMV8) AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT || pPage->enmKind == PGMPOOLKIND_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD || pPage->enmKind == PGMPOOLKIND_ROOT_NESTED, ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind)); #endif Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx)); PGM_UNLOCK(pVM); return VINF_SUCCESS; } /* * Mark the page as being in need of an ASMMemZeroPage(). */ pPage->fZeroed = false; #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirtyEntry, false /* do not remove */); #endif /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) fFlushRequired = true; /* * Clear the page. */ pgmPoolTrackClearPageUsers(pPool, pPage); STAM_PROFILE_START(&pPool->StatTrackDeref,a); pgmPoolTrackDeref(pPool, pPage); STAM_PROFILE_STOP(&pPool->StatTrackDeref,a); /* * Flush it from the cache. */ pgmPoolCacheFlushPage(pPool, pPage); /* * Deregistering the monitoring. */ if (pPage->fMonitored) rc = pgmPoolMonitorFlush(pPool, pPage); /* * Free the page. */ Assert(pPage->iNext == NIL_PGMPOOL_IDX); pPage->iNext = pPool->iFreeHead; pPool->iFreeHead = pPage->idx; pPage->enmKind = PGMPOOLKIND_FREE; pPage->enmAccess = PGMPOOLACCESS_DONTCARE; pPage->GCPhys = NIL_RTGCPHYS; pPage->fReusedFlushPending = false; pPool->cUsedPages--; /* Flush the TLBs of all VCPUs if required. */ if ( fFlushRequired && fFlush) { PGM_INVL_ALL_VCPU_TLBS(pVM); } PGM_UNLOCK(pVM); STAM_PROFILE_STOP(&pPool->StatFlushPage, f); return rc; } /** * Frees a usage of a pool page. * * The caller is responsible to updating the user table so that it no longer * references the shadow page. * * @param pPool The pool. * @param pPage The shadow page. * @param iUser The shadow page pool index of the user table. * NIL_PGMPOOL_IDX for root pages. * @param iUserTable The index into the user table (shadowed). Ignored if * root page. */ void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) { PVMCC pVM = pPool->CTX_SUFF(pVM); STAM_PROFILE_START(&pPool->StatFree, a); LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%d iUserTable=%#x\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable)); AssertReturnVoid(pPage->idx >= PGMPOOL_IDX_FIRST); /* paranoia (#6349) */ PGM_LOCK_VOID(pVM); if (iUser != NIL_PGMPOOL_IDX) pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable); if (!pPage->fCached) pgmPoolFlushPage(pPool, pPage); PGM_UNLOCK(pVM); STAM_PROFILE_STOP(&pPool->StatFree, a); } /** * Makes one or more free page free. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * * @param pPool The pool. * @param enmKind Page table kind * @param iUser The user of the page. */ static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser) { PVMCC pVM = pPool->CTX_SUFF(pVM); LogFlow(("pgmPoolMakeMoreFreePages: enmKind=%d iUser=%d\n", enmKind, iUser)); NOREF(enmKind); /* * If the pool isn't full grown yet, expand it. */ if (pPool->cCurPages < pPool->cMaxPages) { STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a); #ifdef IN_RING3 int rc = PGMR3PoolGrow(pVM, VMMGetCpu(pVM)); #else int rc = PGMR0PoolGrow(pVM, VMMGetCpuId(pVM)); #endif if (RT_FAILURE(rc)) return rc; STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a); if (pPool->iFreeHead != NIL_PGMPOOL_IDX) return VINF_SUCCESS; } /* * Free one cached page. */ return pgmPoolCacheFreeOne(pPool, iUser); } /** * Allocates a page from the pool. * * This page may actually be a cached page and not in need of any processing * on the callers part. * * @returns VBox status code. * @retval VINF_SUCCESS if a NEW page was allocated. * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned. * * @param pVM The cross context VM structure. * @param GCPhys The GC physical address of the page we're gonna shadow. * For 4MB and 2MB PD entries, it's the first address the * shadow PT is covering. * @param enmKind The kind of mapping. * @param enmAccess Access type for the mapping (only relevant for big pages) * @param fA20Enabled Whether the A20 gate is enabled or not. * @param iUser The shadow page pool index of the user table. Root * pages should pass NIL_PGMPOOL_IDX. * @param iUserTable The index into the user table (shadowed). Ignored for * root pages (iUser == NIL_PGMPOOL_IDX). * @param fLockPage Lock the page * @param ppPage Where to store the pointer to the page. NULL is stored here on failure. */ int pgmPoolAlloc(PVMCC pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled, uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_ADV_START(&pPool->StatAlloc, a); LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%d iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable)); *ppPage = NULL; /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates * (TRPMR3SyncIDT) because of FF priority. Try fix that? * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */ #if defined(VBOX_STRICT) && defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) PVMCPUCC pVCpu = VMMGetCpu(pVM); Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_DIRECT || PGMPOOL_PAGE_IS_KIND_NESTED(enmKind)); #endif PGM_LOCK_VOID(pVM); if (pPool->fCacheEnabled) { int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, fA20Enabled, iUser, iUserTable, ppPage); if (RT_SUCCESS(rc2)) { if (fLockPage) pgmPoolLockPage(pPool, *ppPage); PGM_UNLOCK(pVM); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx)); return rc2; } } /* * Allocate a new one. */ int rc = VINF_SUCCESS; uint16_t iNew = pPool->iFreeHead; if (iNew == NIL_PGMPOOL_IDX) { rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser); if (RT_FAILURE(rc)) { PGM_UNLOCK(pVM); Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc)); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); return rc; } iNew = pPool->iFreeHead; AssertReleaseMsgReturn(iNew != NIL_PGMPOOL_IDX, ("iNew=%#x\n", iNew), VERR_PGM_POOL_IPE); } /* unlink the free head */ PPGMPOOLPAGE pPage = &pPool->aPages[iNew]; pPool->iFreeHead = pPage->iNext; pPage->iNext = NIL_PGMPOOL_IDX; /* * Initialize it. */ pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */ pPage->enmKind = enmKind; pPage->enmAccess = enmAccess; pPage->GCPhys = GCPhys; pPage->fA20Enabled = fA20Enabled; pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */ pPage->fMonitored = false; pPage->fCached = false; pPage->fDirty = false; pPage->fReusedFlushPending = false; pPage->cModifications = 0; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cPresent = 0; pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; pPage->idxDirtyEntry = 0; pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR; pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR; pPage->cLastAccessHandler = 0; pPage->cLocked = 0; # ifdef VBOX_STRICT pPage->GCPtrDirtyFault = NIL_RTGCPTR; # endif /* * Insert into the tracking and cache. If this fails, free the page. */ int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable); if (RT_FAILURE(rc3)) { pPool->cUsedPages--; pPage->enmKind = PGMPOOLKIND_FREE; pPage->enmAccess = PGMPOOLACCESS_DONTCARE; pPage->GCPhys = NIL_RTGCPHYS; pPage->iNext = pPool->iFreeHead; pPool->iFreeHead = pPage->idx; PGM_UNLOCK(pVM); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3)); return rc3; } /* * Commit the allocation, clear the page and return. */ #ifdef VBOX_WITH_STATISTICS if (pPool->cUsedPages > pPool->cUsedPagesHigh) pPool->cUsedPagesHigh = pPool->cUsedPages; #endif if (!pPage->fZeroed) { STAM_PROFILE_START(&pPool->StatZeroPage, z); void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); RT_BZERO(pv, PAGE_SIZE); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); } *ppPage = pPage; if (fLockPage) pgmPoolLockPage(pPool, pPage); PGM_UNLOCK(pVM); LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n", rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored)); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); return rc; } /** * Frees a usage of a pool page. * * @param pVM The cross context VM structure. * @param HCPhys The HC physical address of the shadow page. * @param iUser The shadow page pool index of the user table. * NIL_PGMPOOL_IDX if root page. * @param iUserTable The index into the user table (shadowed). Ignored if * root page. */ void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable) { LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%d iUserTable=%#x\n", HCPhys, iUser, iUserTable)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable); } /** * Internal worker for finding a 'in-use' shadow page give by it's physical address. * * @returns Pointer to the shadow page structure. * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. */ PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys) { PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM)); /* * Look up the page. */ PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK); AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0)); return pPage; } /** * Internal worker for finding a page for debugging purposes, no assertions. * * @returns Pointer to the shadow page structure. NULL on if not found. * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. */ PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys) { PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM)); return (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK); } /** * Internal worker for PGM_HCPHYS_2_PTR. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param HCPhys The HC physical address of the shadow page. * @param ppv Where to return the address. */ int pgmPoolHCPhys2Ptr(PVM pVM, RTHCPHYS HCPhys, void **ppv) { PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pVM->pgm.s.CTX_SUFF(pPool)->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK); AssertMsgReturn(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0), VERR_PGM_POOL_GET_PAGE_FAILED); *ppv = (uint8_t *)pPage->CTX_SUFF(pvPage) + (HCPhys & PAGE_OFFSET_MASK); return VINF_SUCCESS; } #ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */ /** * Flush the specified page if present * * @param pVM The cross context VM structure. * @param GCPhys Guest physical address of the page to flush */ void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); VM_ASSERT_EMT(pVM); /* * Look up the GCPhys in the hash. */ GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; if (i == NIL_PGMPOOL_IDX) return; do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if (pPage->GCPhys - GCPhys < PAGE_SIZE) { Assert(!PGMPOOL_PAGE_IS_NESTED(pPage)); /* Temporary to see if it hits. Remove later. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: { Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys)); # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage); else # endif STAM_COUNTER_INC(&pPool->StatForceFlushPage); Assert(!pgmPoolIsPageLocked(pPage)); pgmPoolMonitorChainFlush(pPool, pPage); return; } /* ignore, no monitoring. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: break; default: AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); return; } /** * Reset CPU on hot plugging. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu) { pgmR3ExitShadowModeBeforePoolFlush(pVCpu); pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); } /** * Flushes the entire cache. * * It will assert a global CR3 flush (FF) and assumes the caller is aware of * this and execute this CR3 flush. * * @param pVM The cross context VM structure. */ void pgmR3PoolReset(PVM pVM) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGM_LOCK_ASSERT_OWNER(pVM); STAM_PROFILE_START(&pPool->StatR3Reset, a); LogFlow(("pgmR3PoolReset:\n")); /* * If there are no pages in the pool, there is nothing to do. */ if (pPool->cCurPages <= PGMPOOL_IDX_FIRST) { STAM_PROFILE_STOP(&pPool->StatR3Reset, a); return; } /* * Exit the shadow mode since we're going to clear everything, * including the root page. */ VMCC_FOR_EACH_VMCPU(pVM) pgmR3ExitShadowModeBeforePoolFlush(pVCpu); VMCC_FOR_EACH_VMCPU_END(pVM); /* * Nuke the free list and reinsert all pages into it. */ for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if (pPage->fMonitored) pgmPoolMonitorFlush(pPool, pPage); pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; pPage->GCPhys = NIL_RTGCPHYS; pPage->enmKind = PGMPOOLKIND_FREE; pPage->enmAccess = PGMPOOLACCESS_DONTCARE; Assert(pPage->idx == i); pPage->iNext = i + 1; pPage->fA20Enabled = true; pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */ pPage->fSeenNonGlobal = false; pPage->fMonitored = false; pPage->fDirty = false; pPage->fCached = false; pPage->fReusedFlushPending = false; pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; pPage->cPresent = 0; pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; pPage->cModifications = 0; pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; pPage->idxDirtyEntry = 0; pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR; pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR; pPage->cLastAccessHandler = 0; pPage->cLocked = 0; # ifdef VBOX_STRICT pPage->GCPtrDirtyFault = NIL_RTGCPTR; # endif } pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX; pPool->iFreeHead = PGMPOOL_IDX_FIRST; pPool->cUsedPages = 0; /* * Zap and reinitialize the user records. */ pPool->cPresent = 0; pPool->iUserFreeHead = 0; PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); const unsigned cMaxUsers = pPool->cMaxUsers; for (unsigned i = 0; i < cMaxUsers; i++) { paUsers[i].iNext = i + 1; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iUserTable = 0xfffffffe; } paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; /* * Clear all the GCPhys links and rebuild the phys ext free list. */ uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U); Assert(pVM->pgm.s.apRamRanges[0] == NULL); for (uint32_t idx = 1; idx <= idRamRangeMax; idx++) { PPGMRAMRANGE const pRam = pVM->CTX_EXPR(pgm, pgmr0, pgm).s.apRamRanges[idx]; AssertContinue(pRam); unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0); } pPool->iPhysExtFreeHead = 0; PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); const unsigned cMaxPhysExts = pPool->cMaxPhysExts; for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; /* * Just zap the modified list. */ pPool->cModifiedPages = 0; pPool->iModifiedHead = NIL_PGMPOOL_IDX; /* * Clear the GCPhys hash and the age list. */ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++) pPool->aiHash[i] = NIL_PGMPOOL_IDX; pPool->iAgeHead = NIL_PGMPOOL_IDX; pPool->iAgeTail = NIL_PGMPOOL_IDX; # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT /* Clear all dirty pages. */ pPool->idxFreeDirtyPage = 0; pPool->cDirtyPages = 0; for (unsigned i = 0; i < RT_ELEMENTS(pPool->aidxDirtyPages); i++) pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX; # endif /* * Reinsert active pages into the hash and ensure monitoring chains are correct. */ VMCC_FOR_EACH_VMCPU(pVM) { /* * Re-enter the shadowing mode and assert Sync CR3 FF. */ pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); } VMCC_FOR_EACH_VMCPU_END(pVM); STAM_PROFILE_STOP(&pPool->StatR3Reset, a); } #endif /* IN_RING3 */ #if defined(LOG_ENABLED) || defined(VBOX_STRICT) /** * Stringifies a PGMPOOLKIND value. */ static const char *pgmPoolPoolKindToStr(uint8_t enmKind) { switch ((PGMPOOLKIND)enmKind) { case PGMPOOLKIND_INVALID: return "PGMPOOLKIND_INVALID"; case PGMPOOLKIND_FREE: return "PGMPOOLKIND_FREE"; case PGMPOOLKIND_32BIT_PT_FOR_PHYS: return "PGMPOOLKIND_32BIT_PT_FOR_PHYS"; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT"; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB"; case PGMPOOLKIND_PAE_PT_FOR_PHYS: return "PGMPOOLKIND_PAE_PT_FOR_PHYS"; case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT"; case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB"; case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT"; case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB"; case PGMPOOLKIND_32BIT_PD: return "PGMPOOLKIND_32BIT_PD"; case PGMPOOLKIND_32BIT_PD_PHYS: return "PGMPOOLKIND_32BIT_PD_PHYS"; case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD"; case PGMPOOLKIND_PAE_PD_PHYS: return "PGMPOOLKIND_PAE_PD_PHYS"; case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT"; case PGMPOOLKIND_PAE_PDPT: return "PGMPOOLKIND_PAE_PDPT"; case PGMPOOLKIND_PAE_PDPT_PHYS: return "PGMPOOLKIND_PAE_PDPT_PHYS"; case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT"; case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS"; case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD"; case PGMPOOLKIND_64BIT_PD_FOR_PHYS: return "PGMPOOLKIND_64BIT_PD_FOR_PHYS"; case PGMPOOLKIND_64BIT_PML4: return "PGMPOOLKIND_64BIT_PML4"; case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS"; case PGMPOOLKIND_EPT_PD_FOR_PHYS: return "PGMPOOLKIND_EPT_PD_FOR_PHYS"; case PGMPOOLKIND_EPT_PT_FOR_PHYS: return "PGMPOOLKIND_EPT_PT_FOR_PHYS"; case PGMPOOLKIND_ROOT_NESTED: return "PGMPOOLKIND_ROOT_NESTED"; case PGMPOOLKIND_EPT_PT_FOR_EPT_PT: return "PGMPOOLKIND_EPT_PT_FOR_EPT_PT"; case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB: return "PGMPOOLKIND_EPT_PT_FOR_EPT_2MB"; case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: return "PGMPOOLKIND_EPT_PD_FOR_EPT_PD"; case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT: return "PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT"; case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4: return "PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4"; } return "Unknown kind!"; } #endif /* LOG_ENABLED || VBOX_STRICT */