VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 26616

Last change on this file since 26616 was 26616, checked in by vboxsync, 15 years ago

More large page work (disabled)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 122.7 KB
Line 
1/* $Id: PGMAllPhys.cpp 26616 2010-02-17 15:44:15Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM_PHYS
26#include <VBox/pgm.h>
27#include <VBox/trpm.h>
28#include <VBox/vmm.h>
29#include <VBox/iom.h>
30#include <VBox/em.h>
31#include <VBox/rem.h>
32#include "../PGMInternal.h"
33#include <VBox/vm.h>
34#include "../PGMInline.h"
35#include <VBox/param.h>
36#include <VBox/err.h>
37#include <iprt/assert.h>
38#include <iprt/string.h>
39#include <iprt/asm.h>
40#include <VBox/log.h>
41#ifdef IN_RING3
42# include <iprt/thread.h>
43#endif
44
45
46/*******************************************************************************
47* Defined Constants And Macros *
48*******************************************************************************/
49/** Enable the physical TLB. */
50#define PGM_WITH_PHYS_TLB
51
52
53
54#ifndef IN_RING3
55
56/**
57 * \#PF Handler callback for Guest ROM range write access.
58 * We simply ignore the writes or fall back to the recompiler if we don't support the instruction.
59 *
60 * @returns VBox status code (appropritate for trap handling and GC return).
61 * @param pVM VM Handle.
62 * @param uErrorCode CPU Error code.
63 * @param pRegFrame Trap register frame.
64 * @param pvFault The fault address (cr2).
65 * @param GCPhysFault The GC physical address corresponding to pvFault.
66 * @param pvUser User argument. Pointer to the ROM range structure.
67 */
68VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
69{
70 int rc;
71 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
72 uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT;
73 PVMCPU pVCpu = VMMGetCpu(pVM);
74
75 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
76 switch (pRom->aPages[iPage].enmProt)
77 {
78 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
79 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
80 {
81 /*
82 * If it's a simple instruction which doesn't change the cpu state
83 * we will simply skip it. Otherwise we'll have to defer it to REM.
84 */
85 uint32_t cbOp;
86 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
87 rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, &cbOp);
88 if ( RT_SUCCESS(rc)
89 && pDis->mode == CPUMODE_32BIT /** @todo why does this matter? */
90 && !(pDis->prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG)))
91 {
92 switch (pDis->opcode)
93 {
94 /** @todo Find other instructions we can safely skip, possibly
95 * adding this kind of detection to DIS or EM. */
96 case OP_MOV:
97 pRegFrame->rip += cbOp;
98 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZGuestROMWriteHandled);
99 return VINF_SUCCESS;
100 }
101 }
102 else if (RT_UNLIKELY(rc == VERR_INTERNAL_ERROR))
103 return rc;
104 break;
105 }
106
107 case PGMROMPROT_READ_RAM_WRITE_RAM:
108 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
109 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
110 AssertRC(rc);
111 break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */
112
113 case PGMROMPROT_READ_ROM_WRITE_RAM:
114 /* Handle it in ring-3 because it's *way* easier there. */
115 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
116 break;
117
118 default:
119 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
120 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
121 VERR_INTERNAL_ERROR);
122 }
123
124 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZGuestROMWriteUnhandled);
125 return VINF_EM_RAW_EMULATE_INSTR;
126}
127
128#endif /* IN_RING3 */
129
130/**
131 * Checks if Address Gate 20 is enabled or not.
132 *
133 * @returns true if enabled.
134 * @returns false if disabled.
135 * @param pVCpu VMCPU handle.
136 */
137VMMDECL(bool) PGMPhysIsA20Enabled(PVMCPU pVCpu)
138{
139 LogFlow(("PGMPhysIsA20Enabled %d\n", pVCpu->pgm.s.fA20Enabled));
140 return pVCpu->pgm.s.fA20Enabled;
141}
142
143
144/**
145 * Validates a GC physical address.
146 *
147 * @returns true if valid.
148 * @returns false if invalid.
149 * @param pVM The VM handle.
150 * @param GCPhys The physical address to validate.
151 */
152VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
153{
154 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
155 return pPage != NULL;
156}
157
158
159/**
160 * Checks if a GC physical address is a normal page,
161 * i.e. not ROM, MMIO or reserved.
162 *
163 * @returns true if normal.
164 * @returns false if invalid, ROM, MMIO or reserved page.
165 * @param pVM The VM handle.
166 * @param GCPhys The physical address to check.
167 */
168VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
169{
170 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
171 return pPage
172 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
173}
174
175
176/**
177 * Converts a GC physical address to a HC physical address.
178 *
179 * @returns VINF_SUCCESS on success.
180 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
181 * page but has no physical backing.
182 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
183 * GC physical address.
184 *
185 * @param pVM The VM handle.
186 * @param GCPhys The GC physical address to convert.
187 * @param pHCPhys Where to store the HC physical address on success.
188 */
189VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
190{
191 pgmLock(pVM);
192 PPGMPAGE pPage;
193 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
194 if (RT_SUCCESS(rc))
195 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
196 pgmUnlock(pVM);
197 return rc;
198}
199
200
201/**
202 * Invalidates all page mapping TLBs.
203 *
204 * @param pVM The VM handle.
205 */
206VMMDECL(void) PGMPhysInvalidatePageMapTLB(PVM pVM)
207{
208 pgmLock(pVM);
209 STAM_COUNTER_INC(&pVM->pgm.s.StatPageMapTlbFlushes);
210 /* Clear the shared R0/R3 TLB completely. */
211 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
212 {
213 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
214 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
215 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
216 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
217 }
218 /* @todo clear the RC TLB whenever we add it. */
219 pgmUnlock(pVM);
220}
221
222/**
223 * Invalidates a page mapping TLB entry
224 *
225 * @param pVM The VM handle.
226 * @param GCPhys GCPhys entry to flush
227 */
228VMMDECL(void) PGMPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys)
229{
230 Assert(PGMIsLocked(pVM));
231
232 STAM_COUNTER_INC(&pVM->pgm.s.StatPageMapTlbFlushEntry);
233 /* Clear the shared R0/R3 TLB entry. */
234#ifdef IN_RC
235 unsigned idx = PGM_PAGER3MAPTLB_IDX(GCPhys);
236 pVM->pgm.s.PhysTlbHC.aEntries[idx].GCPhys = NIL_RTGCPHYS;
237 pVM->pgm.s.PhysTlbHC.aEntries[idx].pPage = 0;
238 pVM->pgm.s.PhysTlbHC.aEntries[idx].pMap = 0;
239 pVM->pgm.s.PhysTlbHC.aEntries[idx].pv = 0;
240#else
241 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
242 pTlbe->GCPhys = NIL_RTGCPHYS;
243 pTlbe->pPage = 0;
244 pTlbe->pMap = 0;
245 pTlbe->pv = 0;
246#endif
247 /* @todo clear the RC TLB whenever we add it. */
248}
249
250/**
251 * Makes sure that there is at least one handy page ready for use.
252 *
253 * This will also take the appropriate actions when reaching water-marks.
254 *
255 * @returns VBox status code.
256 * @retval VINF_SUCCESS on success.
257 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
258 *
259 * @param pVM The VM handle.
260 *
261 * @remarks Must be called from within the PGM critical section. It may
262 * nip back to ring-3/0 in some cases.
263 */
264static int pgmPhysEnsureHandyPage(PVM pVM)
265{
266 AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages));
267
268 /*
269 * Do we need to do anything special?
270 */
271#ifdef IN_RING3
272 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_R3_ALLOC))
273#else
274 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_RZ_TO_R3))
275#endif
276 {
277 /*
278 * Allocate pages only if we're out of them, or in ring-3, almost out.
279 */
280#ifdef IN_RING3
281 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_R3_ALLOC)
282#else
283 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_ALLOC)
284#endif
285 {
286 Log(("PGM: cHandyPages=%u out of %u -> allocate more; VM_FF_PGM_NO_MEMORY=%RTbool\n",
287 pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages), VM_FF_ISSET(pVM, VM_FF_PGM_NO_MEMORY) ));
288#ifdef IN_RING3
289 int rc = PGMR3PhysAllocateHandyPages(pVM);
290#else
291 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES, 0);
292#endif
293 if (RT_UNLIKELY(rc != VINF_SUCCESS))
294 {
295 if (RT_FAILURE(rc))
296 return rc;
297 AssertMsgReturn(rc == VINF_EM_NO_MEMORY, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
298 if (!pVM->pgm.s.cHandyPages)
299 {
300 LogRel(("PGM: no more handy pages!\n"));
301 return VERR_EM_NO_MEMORY;
302 }
303 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
304 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NO_MEMORY));
305#ifdef IN_RING3
306 REMR3NotifyFF(pVM);
307#else
308 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); /* paranoia */
309#endif
310 }
311 AssertMsgReturn( pVM->pgm.s.cHandyPages > 0
312 && pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages),
313 ("%u\n", pVM->pgm.s.cHandyPages),
314 VERR_INTERNAL_ERROR);
315 }
316 else
317 {
318 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_SET_FF)
319 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
320#ifndef IN_RING3
321 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_TO_R3)
322 {
323 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
324 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
325 }
326#endif
327 }
328 }
329
330 return VINF_SUCCESS;
331}
332
333
334/**
335 * Replace a zero or shared page with new page that we can write to.
336 *
337 * @returns The following VBox status codes.
338 * @retval VINF_SUCCESS on success, pPage is modified.
339 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
340 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
341 *
342 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
343 *
344 * @param pVM The VM address.
345 * @param pPage The physical page tracking structure. This will
346 * be modified on success.
347 * @param GCPhys The address of the page.
348 *
349 * @remarks Must be called from within the PGM critical section. It may
350 * nip back to ring-3/0 in some cases.
351 *
352 * @remarks This function shouldn't really fail, however if it does
353 * it probably means we've screwed up the size of handy pages and/or
354 * the low-water mark. Or, that some device I/O is causing a lot of
355 * pages to be allocated while while the host is in a low-memory
356 * condition. This latter should be handled elsewhere and in a more
357 * controlled manner, it's on the @bugref{3170} todo list...
358 */
359int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
360{
361 LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
362
363 /*
364 * Prereqs.
365 */
366 Assert(PGMIsLocked(pVM));
367 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
368 Assert(!PGM_PAGE_IS_MMIO(pPage));
369
370
371 /*
372 * Flush any shadow page table mappings of the page.
373 * When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any.
374 */
375 bool fFlushTLBs = false;
376 int rc = pgmPoolTrackFlushGCPhys(pVM, pPage, &fFlushTLBs);
377 AssertMsgReturn(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc), RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_STATUS);
378
379 /*
380 * Ensure that we've got a page handy, take it and use it.
381 */
382 int rc2 = pgmPhysEnsureHandyPage(pVM);
383 if (RT_FAILURE(rc2))
384 {
385 if (fFlushTLBs)
386 PGM_INVL_ALL_VCPU_TLBS(pVM);
387 Assert(rc2 == VERR_EM_NO_MEMORY);
388 return rc2;
389 }
390 /* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */
391 Assert(PGMIsLocked(pVM));
392 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
393 Assert(!PGM_PAGE_IS_MMIO(pPage));
394
395 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
396 AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage));
397 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
398 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
399 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
400 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
401
402 /*
403 * There are one or two action to be taken the next time we allocate handy pages:
404 * - Tell the GMM (global memory manager) what the page is being used for.
405 * (Speeds up replacement operations - sharing and defragmenting.)
406 * - If the current backing is shared, it must be freed.
407 */
408 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
409 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
410
411 if (PGM_PAGE_IS_SHARED(pPage))
412 {
413 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
414 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
415 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
416
417 Log2(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
418 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
419 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageReplaceShared));
420 pVM->pgm.s.cSharedPages--;
421 AssertMsgFailed(("TODO: copy shared page content")); /** @todo err.. what about copying the page content? */
422 }
423 else
424 {
425 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
426 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
427 pVM->pgm.s.cZeroPages--;
428 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
429 }
430
431 /*
432 * Do the PGMPAGE modifications.
433 */
434 pVM->pgm.s.cPrivatePages++;
435 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
436 PGM_PAGE_SET_PAGEID(pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
437 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
438 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PT);
439 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
440
441 if ( fFlushTLBs
442 && rc != VINF_PGM_GCPHYS_ALIASED)
443 PGM_INVL_ALL_VCPU_TLBS(pVM);
444 return rc;
445}
446
447/**
448 * Replace a 2 MB range of zero pages with new pages that we can write to.
449 *
450 * @returns The following VBox status codes.
451 * @retval VINF_SUCCESS on success, pPage is modified.
452 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
453 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
454 *
455 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
456 *
457 * @param pVM The VM address.
458 * @param GCPhys The address of the page.
459 *
460 * @remarks Must be called from within the PGM critical section. It may
461 * nip back to ring-3/0 in some cases.
462 *
463 * @remarks This function shouldn't really fail, however if it does
464 * it probably means we've screwed up the size of handy pages and/or
465 * the low-water mark. Or, that some device I/O is causing a lot of
466 * pages to be allocated while while the host is in a low-memory
467 * condition. This latter should be handled elsewhere and in a more
468 * controlled manner, it's on the @bugref{3170} todo list...
469 */
470int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys)
471{
472 LogFlow(("pgmPhysAllocLargePage: %RGp\n", GCPhys));
473
474 /*
475 * Prereqs.
476 */
477 Assert(PGMIsLocked(pVM));
478 Assert((GCPhys & X86_PD_PAE_MASK) == 0);
479
480#ifdef IN_RING3
481 int rc = PGMR3PhysAllocateLargeHandyPage(pVM, GCPhys);
482#else
483 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE, GCPhys);
484#endif
485 return rc;
486}
487
488/**
489 * Deal with a write monitored page.
490 *
491 * @returns VBox strict status code.
492 *
493 * @param pVM The VM address.
494 * @param pPage The physical page tracking structure.
495 *
496 * @remarks Called from within the PGM critical section.
497 */
498void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage)
499{
500 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED);
501 PGM_PAGE_SET_WRITTEN_TO(pPage);
502 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
503 Assert(pVM->pgm.s.cMonitoredPages > 0);
504 pVM->pgm.s.cMonitoredPages--;
505 pVM->pgm.s.cWrittenToPages++;
506}
507
508
509/**
510 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
511 *
512 * @returns VBox strict status code.
513 * @retval VINF_SUCCESS on success.
514 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
516 *
517 * @param pVM The VM address.
518 * @param pPage The physical page tracking structure.
519 * @param GCPhys The address of the page.
520 *
521 * @remarks Called from within the PGM critical section.
522 */
523int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
524{
525 switch (PGM_PAGE_GET_STATE(pPage))
526 {
527 case PGM_PAGE_STATE_WRITE_MONITORED:
528 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
529 /* fall thru */
530 default: /* to shut up GCC */
531 case PGM_PAGE_STATE_ALLOCATED:
532 return VINF_SUCCESS;
533
534 /*
535 * Zero pages can be dummy pages for MMIO or reserved memory,
536 * so we need to check the flags before joining cause with
537 * shared page replacement.
538 */
539 case PGM_PAGE_STATE_ZERO:
540 if (PGM_PAGE_IS_MMIO(pPage))
541 return VERR_PGM_PHYS_PAGE_RESERVED;
542 /* fall thru */
543 case PGM_PAGE_STATE_SHARED:
544 return pgmPhysAllocPage(pVM, pPage, GCPhys);
545 }
546}
547
548
549/**
550 * Wrapper for pgmPhysPageMakeWritable which enters the critsect.
551 *
552 * @returns VBox strict status code.
553 * @retval VINF_SUCCESS on success.
554 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
555 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
556 *
557 * @param pVM The VM address.
558 * @param pPage The physical page tracking structure.
559 * @param GCPhys The address of the page.
560 */
561int pgmPhysPageMakeWritableUnlocked(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
562{
563 int rc = pgmLock(pVM);
564 if (RT_SUCCESS(rc))
565 {
566 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
567 pgmUnlock(pVM);
568 }
569 return rc;
570}
571
572
573/**
574 * Internal usage: Map the page specified by its GMM ID.
575 *
576 * This is similar to pgmPhysPageMap
577 *
578 * @returns VBox status code.
579 *
580 * @param pVM The VM handle.
581 * @param idPage The Page ID.
582 * @param HCPhys The physical address (for RC).
583 * @param ppv Where to store the mapping address.
584 *
585 * @remarks Called from within the PGM critical section. The mapping is only
586 * valid while your inside this section.
587 */
588int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
589{
590 /*
591 * Validation.
592 */
593 Assert(PGMIsLocked(pVM));
594 AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
595 const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
596 AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
597
598#ifdef IN_RC
599 /*
600 * Map it by HCPhys.
601 */
602 return PGMDynMapHCPage(pVM, HCPhys, ppv);
603
604#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
605 /*
606 * Map it by HCPhys.
607 */
608 return pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
609
610#else
611 /*
612 * Find/make Chunk TLB entry for the mapping chunk.
613 */
614 PPGMCHUNKR3MAP pMap;
615 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
616 if (pTlbe->idChunk == idChunk)
617 {
618 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
619 pMap = pTlbe->pChunk;
620 }
621 else
622 {
623 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
624
625 /*
626 * Find the chunk, map it if necessary.
627 */
628 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
629 if (!pMap)
630 {
631# ifdef IN_RING0
632 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
633 AssertRCReturn(rc, rc);
634 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
635 Assert(pMap);
636# else
637 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
638 if (RT_FAILURE(rc))
639 return rc;
640# endif
641 }
642
643 /*
644 * Enter it into the Chunk TLB.
645 */
646 pTlbe->idChunk = idChunk;
647 pTlbe->pChunk = pMap;
648 pMap->iAge = 0;
649 }
650
651 *ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
652 return VINF_SUCCESS;
653#endif
654}
655
656
657/**
658 * Maps a page into the current virtual address space so it can be accessed.
659 *
660 * @returns VBox status code.
661 * @retval VINF_SUCCESS on success.
662 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
663 *
664 * @param pVM The VM address.
665 * @param pPage The physical page tracking structure.
666 * @param GCPhys The address of the page.
667 * @param ppMap Where to store the address of the mapping tracking structure.
668 * @param ppv Where to store the mapping address of the page. The page
669 * offset is masked off!
670 *
671 * @remarks Called from within the PGM critical section.
672 */
673static int pgmPhysPageMapCommon(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
674{
675 Assert(PGMIsLocked(pVM));
676
677#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
678 /*
679 * Just some sketchy GC/R0-darwin code.
680 */
681 *ppMap = NULL;
682 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
683 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
684# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
685 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
686# else
687 PGMDynMapHCPage(pVM, HCPhys, ppv);
688# endif
689 return VINF_SUCCESS;
690
691#else /* IN_RING3 || IN_RING0 */
692
693
694 /*
695 * Special case: ZERO and MMIO2 pages.
696 */
697 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
698 if (idChunk == NIL_GMM_CHUNKID)
699 {
700 AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR_2);
701 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2)
702 {
703 /* Lookup the MMIO2 range and use pvR3 to calc the address. */
704 PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
705 AssertMsgReturn(pRam || !pRam->pvR3, ("pRam=%p pPage=%R[pgmpage]\n", pRam, pPage), VERR_INTERNAL_ERROR_2);
706 *ppv = (void *)((uintptr_t)pRam->pvR3 + (uintptr_t)((GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK) - pRam->GCPhys));
707 }
708 else if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
709 {
710 /** @todo deal with aliased MMIO2 pages somehow...
711 * One solution would be to seed MMIO2 pages to GMM and get unique Page IDs for
712 * them, that would also avoid this mess. It would actually be kind of
713 * elegant... */
714 AssertLogRelMsgFailedReturn(("%RGp\n", GCPhys), VERR_INTERNAL_ERROR_3);
715 }
716 else
717 {
718 /** @todo handle MMIO2 */
719 AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage), VERR_INTERNAL_ERROR_2);
720 AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg,
721 ("pPage=%R[pgmpage]\n", pPage),
722 VERR_INTERNAL_ERROR_2);
723 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
724 }
725 *ppMap = NULL;
726 return VINF_SUCCESS;
727 }
728
729 /*
730 * Find/make Chunk TLB entry for the mapping chunk.
731 */
732 PPGMCHUNKR3MAP pMap;
733 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
734 if (pTlbe->idChunk == idChunk)
735 {
736 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbHits));
737 pMap = pTlbe->pChunk;
738 }
739 else
740 {
741 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
742
743 /*
744 * Find the chunk, map it if necessary.
745 */
746 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
747 if (!pMap)
748 {
749#ifdef IN_RING0
750 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
751 AssertRCReturn(rc, rc);
752 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
753 Assert(pMap);
754#else
755 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
756 if (RT_FAILURE(rc))
757 return rc;
758#endif
759 }
760
761 /*
762 * Enter it into the Chunk TLB.
763 */
764 pTlbe->idChunk = idChunk;
765 pTlbe->pChunk = pMap;
766 pMap->iAge = 0;
767 }
768
769 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
770 *ppMap = pMap;
771 return VINF_SUCCESS;
772#endif /* IN_RING3 */
773}
774
775
776/**
777 * Combination of pgmPhysPageMakeWritable and pgmPhysPageMapWritable.
778 *
779 * This is typically used is paths where we cannot use the TLB methods (like ROM
780 * pages) or where there is no point in using them since we won't get many hits.
781 *
782 * @returns VBox strict status code.
783 * @retval VINF_SUCCESS on success.
784 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
785 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
786 *
787 * @param pVM The VM address.
788 * @param pPage The physical page tracking structure.
789 * @param GCPhys The address of the page.
790 * @param ppv Where to store the mapping address of the page. The page
791 * offset is masked off!
792 *
793 * @remarks Called from within the PGM critical section. The mapping is only
794 * valid while your inside this section.
795 */
796int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
797{
798 int rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
799 if (RT_SUCCESS(rc))
800 {
801 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
802 PPGMPAGEMAP pMapIgnore;
803 int rc2 = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
804 if (RT_FAILURE(rc2)) /* preserve rc */
805 rc = rc2;
806 }
807 return rc;
808}
809
810
811/**
812 * Maps a page into the current virtual address space so it can be accessed for
813 * both writing and reading.
814 *
815 * This is typically used is paths where we cannot use the TLB methods (like ROM
816 * pages) or where there is no point in using them since we won't get many hits.
817 *
818 * @returns VBox status code.
819 * @retval VINF_SUCCESS on success.
820 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
821 *
822 * @param pVM The VM address.
823 * @param pPage The physical page tracking structure. Must be in the
824 * allocated state.
825 * @param GCPhys The address of the page.
826 * @param ppv Where to store the mapping address of the page. The page
827 * offset is masked off!
828 *
829 * @remarks Called from within the PGM critical section. The mapping is only
830 * valid while your inside this section.
831 */
832int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
833{
834 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
835 PPGMPAGEMAP pMapIgnore;
836 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
837}
838
839
840/**
841 * Maps a page into the current virtual address space so it can be accessed for
842 * reading.
843 *
844 * This is typically used is paths where we cannot use the TLB methods (like ROM
845 * pages) or where there is no point in using them since we won't get many hits.
846 *
847 * @returns VBox status code.
848 * @retval VINF_SUCCESS on success.
849 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
850 *
851 * @param pVM The VM address.
852 * @param pPage The physical page tracking structure.
853 * @param GCPhys The address of the page.
854 * @param ppv Where to store the mapping address of the page. The page
855 * offset is masked off!
856 *
857 * @remarks Called from within the PGM critical section. The mapping is only
858 * valid while your inside this section.
859 */
860int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv)
861{
862 PPGMPAGEMAP pMapIgnore;
863 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, (void **)ppv);
864}
865
866
867#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
868/**
869 * Load a guest page into the ring-3 physical TLB.
870 *
871 * @returns VBox status code.
872 * @retval VINF_SUCCESS on success
873 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
874 * @param pPGM The PGM instance pointer.
875 * @param GCPhys The guest physical address in question.
876 */
877int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys)
878{
879 Assert(PGMIsLocked(PGM2VM(pPGM)));
880 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
881
882 /*
883 * Find the ram range.
884 * 99.8% of requests are expected to be in the first range.
885 */
886 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
887 RTGCPHYS off = GCPhys - pRam->GCPhys;
888 if (RT_UNLIKELY(off >= pRam->cb))
889 {
890 do
891 {
892 pRam = pRam->CTX_SUFF(pNext);
893 if (!pRam)
894 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
895 off = GCPhys - pRam->GCPhys;
896 } while (off >= pRam->cb);
897 }
898
899 /*
900 * Map the page.
901 * Make a special case for the zero page as it is kind of special.
902 */
903 PPGMPAGE pPage = &pRam->aPages[off >> PAGE_SHIFT];
904 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
905 if (!PGM_PAGE_IS_ZERO(pPage))
906 {
907 void *pv;
908 PPGMPAGEMAP pMap;
909 int rc = pgmPhysPageMapCommon(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
910 if (RT_FAILURE(rc))
911 return rc;
912 pTlbe->pMap = pMap;
913 pTlbe->pv = pv;
914 Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
915 }
916 else
917 {
918 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
919 pTlbe->pMap = NULL;
920 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
921 }
922#ifdef PGM_WITH_PHYS_TLB
923 pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
924#else
925 pTlbe->GCPhys = NIL_RTGCPHYS;
926#endif
927 pTlbe->pPage = pPage;
928 return VINF_SUCCESS;
929}
930
931
932/**
933 * Load a guest page into the ring-3 physical TLB.
934 *
935 * @returns VBox status code.
936 * @retval VINF_SUCCESS on success
937 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
938 *
939 * @param pPGM The PGM instance pointer.
940 * @param pPage Pointer to the PGMPAGE structure corresponding to
941 * GCPhys.
942 * @param GCPhys The guest physical address in question.
943 */
944int pgmPhysPageLoadIntoTlbWithPage(PPGM pPGM, PPGMPAGE pPage, RTGCPHYS GCPhys)
945{
946 Assert(PGMIsLocked(PGM2VM(pPGM)));
947 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbMisses));
948
949 /*
950 * Map the page.
951 * Make a special case for the zero page as it is kind of special.
952 */
953 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
954 if (!PGM_PAGE_IS_ZERO(pPage))
955 {
956 void *pv;
957 PPGMPAGEMAP pMap;
958 int rc = pgmPhysPageMapCommon(PGM2VM(pPGM), pPage, GCPhys, &pMap, &pv);
959 if (RT_FAILURE(rc))
960 return rc;
961 pTlbe->pMap = pMap;
962 pTlbe->pv = pv;
963 Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
964 }
965 else
966 {
967 Assert(PGM_PAGE_GET_HCPHYS(pPage) == pPGM->HCPhysZeroPg);
968 pTlbe->pMap = NULL;
969 pTlbe->pv = pPGM->CTXALLSUFF(pvZeroPg);
970 }
971#ifdef PGM_WITH_PHYS_TLB
972 pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
973#else
974 pTlbe->GCPhys = NIL_RTGCPHYS;
975#endif
976 pTlbe->pPage = pPage;
977 return VINF_SUCCESS;
978}
979#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
980
981
982/**
983 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
984 * own the PGM lock and therefore not need to lock the mapped page.
985 *
986 * @returns VBox status code.
987 * @retval VINF_SUCCESS on success.
988 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
989 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
990 *
991 * @param pVM The VM handle.
992 * @param GCPhys The guest physical address of the page that should be mapped.
993 * @param pPage Pointer to the PGMPAGE structure for the page.
994 * @param ppv Where to store the address corresponding to GCPhys.
995 *
996 * @internal
997 */
998int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
999{
1000 int rc;
1001 AssertReturn(pPage, VERR_INTERNAL_ERROR);
1002 Assert(PGMIsLocked(pVM));
1003
1004 /*
1005 * Make sure the page is writable.
1006 */
1007 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1008 {
1009 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1010 if (RT_FAILURE(rc))
1011 return rc;
1012 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1013 }
1014 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1015
1016 /*
1017 * Get the mapping address.
1018 */
1019#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1020 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK));
1021#else
1022 PPGMPAGEMAPTLBE pTlbe;
1023 rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
1024 if (RT_FAILURE(rc))
1025 return rc;
1026 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1027#endif
1028 return VINF_SUCCESS;
1029}
1030
1031
1032/**
1033 * Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
1034 * own the PGM lock and therefore not need to lock the mapped page.
1035 *
1036 * @returns VBox status code.
1037 * @retval VINF_SUCCESS on success.
1038 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1039 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1040 *
1041 * @param pVM The VM handle.
1042 * @param GCPhys The guest physical address of the page that should be mapped.
1043 * @param pPage Pointer to the PGMPAGE structure for the page.
1044 * @param ppv Where to store the address corresponding to GCPhys.
1045 *
1046 * @internal
1047 */
1048int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv)
1049{
1050 AssertReturn(pPage, VERR_INTERNAL_ERROR);
1051 Assert(PGMIsLocked(pVM));
1052 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1053
1054 /*
1055 * Get the mapping address.
1056 */
1057#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1058 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
1059#else
1060 PPGMPAGEMAPTLBE pTlbe;
1061 int rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
1062 if (RT_FAILURE(rc))
1063 return rc;
1064 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1065#endif
1066 return VINF_SUCCESS;
1067}
1068
1069
1070/**
1071 * Requests the mapping of a guest page into the current context.
1072 *
1073 * This API should only be used for very short term, as it will consume
1074 * scarse resources (R0 and GC) in the mapping cache. When you're done
1075 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1076 *
1077 * This API will assume your intention is to write to the page, and will
1078 * therefore replace shared and zero pages. If you do not intend to modify
1079 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
1080 *
1081 * @returns VBox status code.
1082 * @retval VINF_SUCCESS on success.
1083 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1084 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1085 *
1086 * @param pVM The VM handle.
1087 * @param GCPhys The guest physical address of the page that should be mapped.
1088 * @param ppv Where to store the address corresponding to GCPhys.
1089 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1090 *
1091 * @remarks The caller is responsible for dealing with access handlers.
1092 * @todo Add an informational return code for pages with access handlers?
1093 *
1094 * @remark Avoid calling this API from within critical sections (other than the
1095 * PGM one) because of the deadlock risk. External threads may need to
1096 * delegate jobs to the EMTs.
1097 * @thread Any thread.
1098 */
1099VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1100{
1101#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1102
1103 /*
1104 * Find the page and make sure it's writable.
1105 */
1106 PPGMPAGE pPage;
1107 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1108 if (RT_SUCCESS(rc))
1109 {
1110 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1111 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1112 if (RT_SUCCESS(rc))
1113 {
1114 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
1115# if 0
1116 pLock->pvMap = 0;
1117 pLock->pvPage = pPage;
1118# else
1119 pLock->u32Dummy = UINT32_MAX;
1120# endif
1121 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1122 rc = VINF_SUCCESS;
1123 }
1124 }
1125
1126#else /* IN_RING3 || IN_RING0 */
1127 int rc = pgmLock(pVM);
1128 AssertRCReturn(rc, rc);
1129
1130 /*
1131 * Query the Physical TLB entry for the page (may fail).
1132 */
1133 PPGMPAGEMAPTLBE pTlbe;
1134 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
1135 if (RT_SUCCESS(rc))
1136 {
1137 /*
1138 * If the page is shared, the zero page, or being write monitored
1139 * it must be converted to an page that's writable if possible.
1140 */
1141 PPGMPAGE pPage = pTlbe->pPage;
1142 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1143 {
1144 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1145 if (RT_SUCCESS(rc))
1146 {
1147 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1148 rc = pgmPhysPageQueryTlbeWithPage(&pVM->pgm.s, pPage, GCPhys, &pTlbe);
1149 }
1150 }
1151 if (RT_SUCCESS(rc))
1152 {
1153 /*
1154 * Now, just perform the locking and calculate the return address.
1155 */
1156 PPGMPAGEMAP pMap = pTlbe->pMap;
1157 if (pMap)
1158 pMap->cRefs++;
1159
1160 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
1161 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1162 {
1163 if (cLocks == 0)
1164 pVM->pgm.s.cWriteLockedPages++;
1165 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1166 }
1167 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
1168 {
1169 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1170 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
1171 if (pMap)
1172 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1173 }
1174
1175 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1176 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
1177 pLock->pvMap = pMap;
1178 }
1179 }
1180
1181 pgmUnlock(pVM);
1182#endif /* IN_RING3 || IN_RING0 */
1183 return rc;
1184}
1185
1186
1187/**
1188 * Requests the mapping of a guest page into the current context.
1189 *
1190 * This API should only be used for very short term, as it will consume
1191 * scarse resources (R0 and GC) in the mapping cache. When you're done
1192 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1193 *
1194 * @returns VBox status code.
1195 * @retval VINF_SUCCESS on success.
1196 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1197 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1198 *
1199 * @param pVM The VM handle.
1200 * @param GCPhys The guest physical address of the page that should be mapped.
1201 * @param ppv Where to store the address corresponding to GCPhys.
1202 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1203 *
1204 * @remarks The caller is responsible for dealing with access handlers.
1205 * @todo Add an informational return code for pages with access handlers?
1206 *
1207 * @remark Avoid calling this API from within critical sections (other than
1208 * the PGM one) because of the deadlock risk.
1209 * @thread Any thread.
1210 */
1211VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
1212{
1213#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1214
1215 /*
1216 * Find the page and make sure it's readable.
1217 */
1218 PPGMPAGE pPage;
1219 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1220 if (RT_SUCCESS(rc))
1221 {
1222 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage)))
1223 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1224 else
1225 {
1226 *ppv = pgmDynMapHCPageOff(&pVM->pgm.s, PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK)); /** @todo add a read only flag? */
1227# if 0
1228 pLock->pvMap = 0;
1229 pLock->pvPage = pPage;
1230# else
1231 pLock->u32Dummy = UINT32_MAX;
1232# endif
1233 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1234 rc = VINF_SUCCESS;
1235 }
1236 }
1237
1238#else /* IN_RING3 || IN_RING0 */
1239 int rc = pgmLock(pVM);
1240 AssertRCReturn(rc, rc);
1241
1242 /*
1243 * Query the Physical TLB entry for the page (may fail).
1244 */
1245 PPGMPAGEMAPTLBE pTlbe;
1246 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
1247 if (RT_SUCCESS(rc))
1248 {
1249 /* MMIO pages doesn't have any readable backing. */
1250 PPGMPAGE pPage = pTlbe->pPage;
1251 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage)))
1252 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1253 else
1254 {
1255 /*
1256 * Now, just perform the locking and calculate the return address.
1257 */
1258 PPGMPAGEMAP pMap = pTlbe->pMap;
1259 if (pMap)
1260 pMap->cRefs++;
1261
1262 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
1263 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1264 {
1265 if (cLocks == 0)
1266 pVM->pgm.s.cReadLockedPages++;
1267 PGM_PAGE_INC_READ_LOCKS(pPage);
1268 }
1269 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
1270 {
1271 PGM_PAGE_INC_READ_LOCKS(pPage);
1272 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
1273 if (pMap)
1274 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1275 }
1276
1277 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1278 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
1279 pLock->pvMap = pMap;
1280 }
1281 }
1282
1283 pgmUnlock(pVM);
1284#endif /* IN_RING3 || IN_RING0 */
1285 return rc;
1286}
1287
1288
1289/**
1290 * Requests the mapping of a guest page given by virtual address into the current context.
1291 *
1292 * This API should only be used for very short term, as it will consume
1293 * scarse resources (R0 and GC) in the mapping cache. When you're done
1294 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1295 *
1296 * This API will assume your intention is to write to the page, and will
1297 * therefore replace shared and zero pages. If you do not intend to modify
1298 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
1299 *
1300 * @returns VBox status code.
1301 * @retval VINF_SUCCESS on success.
1302 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1303 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1304 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1305 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1306 *
1307 * @param pVCpu VMCPU handle.
1308 * @param GCPhys The guest physical address of the page that should be mapped.
1309 * @param ppv Where to store the address corresponding to GCPhys.
1310 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1311 *
1312 * @remark Avoid calling this API from within critical sections (other than
1313 * the PGM one) because of the deadlock risk.
1314 * @thread EMT
1315 */
1316VMMDECL(int) PGMPhysGCPtr2CCPtr(PVMCPU pVCpu, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
1317{
1318 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
1319 RTGCPHYS GCPhys;
1320 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
1321 if (RT_SUCCESS(rc))
1322 rc = PGMPhysGCPhys2CCPtr(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
1323 return rc;
1324}
1325
1326
1327/**
1328 * Requests the mapping of a guest page given by virtual address into the current context.
1329 *
1330 * This API should only be used for very short term, as it will consume
1331 * scarse resources (R0 and GC) in the mapping cache. When you're done
1332 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1333 *
1334 * @returns VBox status code.
1335 * @retval VINF_SUCCESS on success.
1336 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1337 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1338 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1339 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1340 *
1341 * @param pVCpu VMCPU handle.
1342 * @param GCPhys The guest physical address of the page that should be mapped.
1343 * @param ppv Where to store the address corresponding to GCPhys.
1344 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1345 *
1346 * @remark Avoid calling this API from within critical sections (other than
1347 * the PGM one) because of the deadlock risk.
1348 * @thread EMT
1349 */
1350VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVMCPU pVCpu, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
1351{
1352 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
1353 RTGCPHYS GCPhys;
1354 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
1355 if (RT_SUCCESS(rc))
1356 rc = PGMPhysGCPhys2CCPtrReadOnly(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
1357 return rc;
1358}
1359
1360
1361/**
1362 * Release the mapping of a guest page.
1363 *
1364 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
1365 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
1366 *
1367 * @param pVM The VM handle.
1368 * @param pLock The lock structure initialized by the mapping function.
1369 */
1370VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
1371{
1372#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1373 /* currently nothing to do here. */
1374 Assert(pLock->u32Dummy == UINT32_MAX);
1375 pLock->u32Dummy = 0;
1376
1377#else /* IN_RING3 */
1378 PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
1379 PPGMPAGE pPage = (PPGMPAGE)(pLock->uPageAndType & ~PGMPAGEMAPLOCK_TYPE_MASK);
1380 bool fWriteLock = (pLock->uPageAndType & PGMPAGEMAPLOCK_TYPE_MASK) == PGMPAGEMAPLOCK_TYPE_WRITE;
1381
1382 pLock->uPageAndType = 0;
1383 pLock->pvMap = NULL;
1384
1385 pgmLock(pVM);
1386 if (fWriteLock)
1387 {
1388 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
1389 Assert(cLocks > 0);
1390 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
1391 {
1392 if (cLocks == 1)
1393 {
1394 Assert(pVM->pgm.s.cWriteLockedPages > 0);
1395 pVM->pgm.s.cWriteLockedPages--;
1396 }
1397 PGM_PAGE_DEC_WRITE_LOCKS(pPage);
1398 }
1399
1400 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1401 {
1402 PGM_PAGE_SET_WRITTEN_TO(pPage);
1403 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1404 Assert(pVM->pgm.s.cMonitoredPages > 0);
1405 pVM->pgm.s.cMonitoredPages--;
1406 pVM->pgm.s.cWrittenToPages++;
1407 }
1408 }
1409 else
1410 {
1411 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
1412 Assert(cLocks > 0);
1413 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
1414 {
1415 if (cLocks == 1)
1416 {
1417 Assert(pVM->pgm.s.cReadLockedPages > 0);
1418 pVM->pgm.s.cReadLockedPages--;
1419 }
1420 PGM_PAGE_DEC_READ_LOCKS(pPage);
1421 }
1422 }
1423
1424 if (pMap)
1425 {
1426 Assert(pMap->cRefs >= 1);
1427 pMap->cRefs--;
1428 pMap->iAge = 0;
1429 }
1430 pgmUnlock(pVM);
1431#endif /* IN_RING3 */
1432}
1433
1434
1435/**
1436 * Converts a GC physical address to a HC ring-3 pointer.
1437 *
1438 * @returns VINF_SUCCESS on success.
1439 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
1440 * page but has no physical backing.
1441 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
1442 * GC physical address.
1443 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
1444 * a dynamic ram chunk boundary
1445 *
1446 * @param pVM The VM handle.
1447 * @param GCPhys The GC physical address to convert.
1448 * @param cbRange Physical range
1449 * @param pR3Ptr Where to store the R3 pointer on success.
1450 *
1451 * @deprecated Avoid when possible!
1452 */
1453VMMDECL(int) PGMPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, PRTR3PTR pR3Ptr)
1454{
1455/** @todo this is kind of hacky and needs some more work. */
1456#ifndef DEBUG_sandervl
1457 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1458#endif
1459
1460 Log(("PGMPhysGCPhys2R3Ptr(,%RGp,%#x,): dont use this API!\n", GCPhys, cbRange)); /** @todo eliminate this API! */
1461#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1462 AssertFailedReturn(VERR_NOT_IMPLEMENTED);
1463#else
1464 pgmLock(pVM);
1465
1466 PPGMRAMRANGE pRam;
1467 PPGMPAGE pPage;
1468 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
1469 if (RT_SUCCESS(rc))
1470 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)pR3Ptr);
1471
1472 pgmUnlock(pVM);
1473 Assert(rc <= VINF_SUCCESS);
1474 return rc;
1475#endif
1476}
1477
1478
1479#ifdef VBOX_STRICT
1480/**
1481 * PGMPhysGCPhys2R3Ptr convenience for use with assertions.
1482 *
1483 * @returns The R3Ptr, NIL_RTR3PTR on failure.
1484 * @param pVM The VM handle.
1485 * @param GCPhys The GC Physical addresss.
1486 * @param cbRange Physical range.
1487 *
1488 * @deprecated Avoid when possible.
1489 */
1490VMMDECL(RTR3PTR) PGMPhysGCPhys2R3PtrAssert(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange)
1491{
1492 RTR3PTR R3Ptr;
1493 int rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys, cbRange, &R3Ptr);
1494 if (RT_SUCCESS(rc))
1495 return R3Ptr;
1496 return NIL_RTR3PTR;
1497}
1498#endif /* VBOX_STRICT */
1499
1500
1501/**
1502 * Converts a guest pointer to a GC physical address.
1503 *
1504 * This uses the current CR3/CR0/CR4 of the guest.
1505 *
1506 * @returns VBox status code.
1507 * @param pVCpu The VMCPU Handle
1508 * @param GCPtr The guest pointer to convert.
1509 * @param pGCPhys Where to store the GC physical address.
1510 */
1511VMMDECL(int) PGMPhysGCPtr2GCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
1512{
1513 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
1514 if (pGCPhys && RT_SUCCESS(rc))
1515 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
1516 return rc;
1517}
1518
1519
1520/**
1521 * Converts a guest pointer to a HC physical address.
1522 *
1523 * This uses the current CR3/CR0/CR4 of the guest.
1524 *
1525 * @returns VBox status code.
1526 * @param pVCpu The VMCPU Handle
1527 * @param GCPtr The guest pointer to convert.
1528 * @param pHCPhys Where to store the HC physical address.
1529 */
1530VMMDECL(int) PGMPhysGCPtr2HCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
1531{
1532 PVM pVM = pVCpu->CTX_SUFF(pVM);
1533 RTGCPHYS GCPhys;
1534 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1535 if (RT_SUCCESS(rc))
1536 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
1537 return rc;
1538}
1539
1540
1541/**
1542 * Converts a guest pointer to a R3 pointer.
1543 *
1544 * This uses the current CR3/CR0/CR4 of the guest.
1545 *
1546 * @returns VBox status code.
1547 * @param pVCpu The VMCPU Handle
1548 * @param GCPtr The guest pointer to convert.
1549 * @param pR3Ptr Where to store the R3 virtual address.
1550 *
1551 * @deprecated Don't use this.
1552 */
1553VMMDECL(int) PGMPhysGCPtr2R3Ptr(PVMCPU pVCpu, RTGCPTR GCPtr, PRTR3PTR pR3Ptr)
1554{
1555 PVM pVM = pVCpu->CTX_SUFF(pVM);
1556 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
1557 RTGCPHYS GCPhys;
1558 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
1559 if (RT_SUCCESS(rc))
1560 rc = PGMPhysGCPhys2R3Ptr(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), 1 /* we always stay within one page */, pR3Ptr);
1561 return rc;
1562}
1563
1564
1565
1566#undef LOG_GROUP
1567#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
1568
1569
1570#ifdef IN_RING3
1571/**
1572 * Cache PGMPhys memory access
1573 *
1574 * @param pVM VM Handle.
1575 * @param pCache Cache structure pointer
1576 * @param GCPhys GC physical address
1577 * @param pbHC HC pointer corresponding to physical page
1578 *
1579 * @thread EMT.
1580 */
1581static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
1582{
1583 uint32_t iCacheIndex;
1584
1585 Assert(VM_IS_EMT(pVM));
1586
1587 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
1588 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
1589
1590 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
1591
1592 ASMBitSet(&pCache->aEntries, iCacheIndex);
1593
1594 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
1595 pCache->Entry[iCacheIndex].pbR3 = pbR3;
1596}
1597#endif /* IN_RING3 */
1598
1599
1600/**
1601 * Deals with reading from a page with one or more ALL access handlers.
1602 *
1603 * @returns VBox status code. Can be ignored in ring-3.
1604 * @retval VINF_SUCCESS.
1605 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1606 *
1607 * @param pVM The VM handle.
1608 * @param pPage The page descriptor.
1609 * @param GCPhys The physical address to start reading at.
1610 * @param pvBuf Where to put the bits we read.
1611 * @param cb How much to read - less or equal to a page.
1612 */
1613static int pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb)
1614{
1615 /*
1616 * The most frequent access here is MMIO and shadowed ROM.
1617 * The current code ASSUMES all these access handlers covers full pages!
1618 */
1619
1620 /*
1621 * Whatever we do we need the source page, map it first.
1622 */
1623 const void *pvSrc = NULL;
1624 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc);
1625 if (RT_FAILURE(rc))
1626 {
1627 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
1628 GCPhys, pPage, rc));
1629 memset(pvBuf, 0xff, cb);
1630 return VINF_SUCCESS;
1631 }
1632 rc = VINF_PGM_HANDLER_DO_DEFAULT;
1633
1634 /*
1635 * Deal with any physical handlers.
1636 */
1637 PPGMPHYSHANDLER pPhys = NULL;
1638 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL)
1639 {
1640#ifdef IN_RING3
1641 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1642 AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1643 Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast);
1644 Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0);
1645 Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1646 Assert(pPhys->CTX_SUFF(pfnHandler));
1647
1648 PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
1649 void *pvUser = pPhys->CTX_SUFF(pvUser);
1650
1651 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) ));
1652 STAM_PROFILE_START(&pPhys->Stat, h);
1653 Assert(PGMIsLockOwner(pVM));
1654 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
1655 pgmUnlock(pVM);
1656 rc = pfnHandler(pVM, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pvUser);
1657 pgmLock(pVM);
1658# ifdef VBOX_WITH_STATISTICS
1659 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1660 if (pPhys)
1661 STAM_PROFILE_STOP(&pPhys->Stat, h);
1662# else
1663 pPhys = NULL; /* might not be valid anymore. */
1664# endif
1665 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys));
1666#else
1667 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1668 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1669 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1670#endif
1671 }
1672
1673 /*
1674 * Deal with any virtual handlers.
1675 */
1676 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL)
1677 {
1678 unsigned iPage;
1679 PPGMVIRTHANDLER pVirt;
1680
1681 int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iPage);
1682 AssertReleaseMsg(RT_SUCCESS(rc2), ("GCPhys=%RGp cb=%#x rc2=%Rrc\n", GCPhys, cb, rc2));
1683 Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0);
1684 Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1685 Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast);
1686
1687#ifdef IN_RING3
1688 if (pVirt->pfnHandlerR3)
1689 {
1690 if (!pPhys)
1691 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
1692 else
1693 Log(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) ));
1694 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
1695 + (iPage << PAGE_SHIFT)
1696 + (GCPhys & PAGE_OFFSET_MASK);
1697
1698 STAM_PROFILE_START(&pVirt->Stat, h);
1699 rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, /*pVirt->CTX_SUFF(pvUser)*/ NULL);
1700 STAM_PROFILE_STOP(&pVirt->Stat, h);
1701 if (rc2 == VINF_SUCCESS)
1702 rc = VINF_SUCCESS;
1703 AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc2, GCPhys, pPage, pVirt->pszDesc));
1704 }
1705 else
1706 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s [no handler]\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
1707#else
1708 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1709 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb));
1710 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1711#endif
1712 }
1713
1714 /*
1715 * Take the default action.
1716 */
1717 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1718 memcpy(pvBuf, pvSrc, cb);
1719 return rc;
1720}
1721
1722
1723/**
1724 * Read physical memory.
1725 *
1726 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
1727 * want to ignore those.
1728 *
1729 * @returns VBox status code. Can be ignored in ring-3.
1730 * @retval VINF_SUCCESS.
1731 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1732 *
1733 * @param pVM VM Handle.
1734 * @param GCPhys Physical address start reading from.
1735 * @param pvBuf Where to put the read bits.
1736 * @param cbRead How many bytes to read.
1737 */
1738VMMDECL(int) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
1739{
1740 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
1741 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
1742
1743 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysRead));
1744 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysReadBytes), cbRead);
1745
1746 pgmLock(pVM);
1747
1748 /*
1749 * Copy loop on ram ranges.
1750 */
1751 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1752 for (;;)
1753 {
1754 /* Find range. */
1755 while (pRam && GCPhys > pRam->GCPhysLast)
1756 pRam = pRam->CTX_SUFF(pNext);
1757 /* Inside range or not? */
1758 if (pRam && GCPhys >= pRam->GCPhys)
1759 {
1760 /*
1761 * Must work our way thru this page by page.
1762 */
1763 RTGCPHYS off = GCPhys - pRam->GCPhys;
1764 while (off < pRam->cb)
1765 {
1766 unsigned iPage = off >> PAGE_SHIFT;
1767 PPGMPAGE pPage = &pRam->aPages[iPage];
1768 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
1769 if (cb > cbRead)
1770 cb = cbRead;
1771
1772 /*
1773 * Any ALL access handlers?
1774 */
1775 if (RT_UNLIKELY(PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)))
1776 {
1777 int rc = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
1778 if (RT_FAILURE(rc))
1779 {
1780 pgmUnlock(pVM);
1781 return rc;
1782 }
1783 }
1784 else
1785 {
1786 /*
1787 * Get the pointer to the page.
1788 */
1789 const void *pvSrc;
1790 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
1791 if (RT_SUCCESS(rc))
1792 memcpy(pvBuf, pvSrc, cb);
1793 else
1794 {
1795 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
1796 pRam->GCPhys + off, pPage, rc));
1797 memset(pvBuf, 0xff, cb);
1798 }
1799 }
1800
1801 /* next page */
1802 if (cb >= cbRead)
1803 {
1804 pgmUnlock(pVM);
1805 return VINF_SUCCESS;
1806 }
1807 cbRead -= cb;
1808 off += cb;
1809 pvBuf = (char *)pvBuf + cb;
1810 } /* walk pages in ram range. */
1811
1812 GCPhys = pRam->GCPhysLast + 1;
1813 }
1814 else
1815 {
1816 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
1817
1818 /*
1819 * Unassigned address space.
1820 */
1821 if (!pRam)
1822 break;
1823 size_t cb = pRam->GCPhys - GCPhys;
1824 if (cb >= cbRead)
1825 {
1826 memset(pvBuf, 0xff, cbRead);
1827 break;
1828 }
1829 memset(pvBuf, 0xff, cb);
1830
1831 cbRead -= cb;
1832 pvBuf = (char *)pvBuf + cb;
1833 GCPhys += cb;
1834 }
1835 } /* Ram range walk */
1836
1837 pgmUnlock(pVM);
1838 return VINF_SUCCESS;
1839}
1840
1841
1842/**
1843 * Deals with writing to a page with one or more WRITE or ALL access handlers.
1844 *
1845 * @returns VBox status code. Can be ignored in ring-3.
1846 * @retval VINF_SUCCESS.
1847 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
1848 *
1849 * @param pVM The VM handle.
1850 * @param pPage The page descriptor.
1851 * @param GCPhys The physical address to start writing at.
1852 * @param pvBuf What to write.
1853 * @param cbWrite How much to write - less or equal to a page.
1854 */
1855static int pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite)
1856{
1857 void *pvDst = NULL;
1858 int rc;
1859
1860 /*
1861 * Give priority to physical handlers (like #PF does).
1862 *
1863 * Hope for a lonely physical handler first that covers the whole
1864 * write area. This should be a pretty frequent case with MMIO and
1865 * the heavy usage of full page handlers in the page pool.
1866 */
1867 if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
1868 || PGM_PAGE_IS_MMIO(pPage) /* screw virtual handlers on MMIO pages */)
1869 {
1870 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1871 if (pCur)
1872 {
1873 Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
1874 Assert(pCur->CTX_SUFF(pfnHandler));
1875
1876 size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
1877 if (cbRange > cbWrite)
1878 cbRange = cbWrite;
1879
1880#ifndef IN_RING3
1881 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1882 NOREF(cbRange);
1883 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
1884 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1885
1886#else /* IN_RING3 */
1887 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
1888 if (!PGM_PAGE_IS_MMIO(pPage))
1889 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
1890 else
1891 rc = VINF_SUCCESS;
1892 if (RT_SUCCESS(rc))
1893 {
1894 PFNPGMR3PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
1895 void *pvUser = pCur->CTX_SUFF(pvUser);
1896
1897 STAM_PROFILE_START(&pCur->Stat, h);
1898 Assert(PGMIsLockOwner(pVM));
1899 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
1900 pgmUnlock(pVM);
1901 rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
1902 pgmLock(pVM);
1903# ifdef VBOX_WITH_STATISTICS
1904 pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
1905 if (pCur)
1906 STAM_PROFILE_STOP(&pCur->Stat, h);
1907# else
1908 pCur = NULL; /* might not be valid anymore. */
1909# endif
1910 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1911 memcpy(pvDst, pvBuf, cbRange);
1912 else
1913 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pCur) ? pCur->pszDesc : ""));
1914 }
1915 else
1916 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
1917 GCPhys, pPage, rc), rc);
1918 if (RT_LIKELY(cbRange == cbWrite))
1919 return VINF_SUCCESS;
1920
1921 /* more fun to be had below */
1922 cbWrite -= cbRange;
1923 GCPhys += cbRange;
1924 pvBuf = (uint8_t *)pvBuf + cbRange;
1925 pvDst = (uint8_t *)pvDst + cbRange;
1926#endif /* IN_RING3 */
1927 }
1928 /* else: the handler is somewhere else in the page, deal with it below. */
1929 Assert(!PGM_PAGE_IS_MMIO(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
1930 }
1931 /*
1932 * A virtual handler without any interfering physical handlers.
1933 * Hopefully it'll conver the whole write.
1934 */
1935 else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
1936 {
1937 unsigned iPage;
1938 PPGMVIRTHANDLER pCur;
1939 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pCur, &iPage);
1940 if (RT_SUCCESS(rc))
1941 {
1942 size_t cbRange = (PAGE_OFFSET_MASK & pCur->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
1943 if (cbRange > cbWrite)
1944 cbRange = cbWrite;
1945
1946#ifndef IN_RING3
1947 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
1948 NOREF(cbRange);
1949 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
1950 return VERR_PGM_PHYS_WR_HIT_HANDLER;
1951
1952#else /* IN_RING3 */
1953
1954 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
1955 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
1956 if (RT_SUCCESS(rc))
1957 {
1958 rc = VINF_PGM_HANDLER_DO_DEFAULT;
1959 if (pCur->pfnHandlerR3)
1960 {
1961 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pCur->Core.Key & PAGE_BASE_GC_MASK)
1962 + (iPage << PAGE_SHIFT)
1963 + (GCPhys & PAGE_OFFSET_MASK);
1964
1965 STAM_PROFILE_START(&pCur->Stat, h);
1966 rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
1967 STAM_PROFILE_STOP(&pCur->Stat, h);
1968 }
1969 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
1970 memcpy(pvDst, pvBuf, cbRange);
1971 else
1972 AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc));
1973 }
1974 else
1975 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
1976 GCPhys, pPage, rc), rc);
1977 if (RT_LIKELY(cbRange == cbWrite))
1978 return VINF_SUCCESS;
1979
1980 /* more fun to be had below */
1981 cbWrite -= cbRange;
1982 GCPhys += cbRange;
1983 pvBuf = (uint8_t *)pvBuf + cbRange;
1984 pvDst = (uint8_t *)pvDst + cbRange;
1985#endif
1986 }
1987 /* else: the handler is somewhere else in the page, deal with it below. */
1988 }
1989
1990 /*
1991 * Deal with all the odd ends.
1992 */
1993
1994 /* We need a writable destination page. */
1995 if (!pvDst)
1996 {
1997 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst);
1998 AssertLogRelMsgReturn(RT_SUCCESS(rc),
1999 ("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2000 GCPhys, pPage, rc), rc);
2001 }
2002
2003 /* The loop state (big + ugly). */
2004 unsigned iVirtPage = 0;
2005 PPGMVIRTHANDLER pVirt = NULL;
2006 uint32_t offVirt = PAGE_SIZE;
2007 uint32_t offVirtLast = PAGE_SIZE;
2008 bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
2009
2010 PPGMPHYSHANDLER pPhys = NULL;
2011 uint32_t offPhys = PAGE_SIZE;
2012 uint32_t offPhysLast = PAGE_SIZE;
2013 bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
2014
2015 /* The loop. */
2016 for (;;)
2017 {
2018 /*
2019 * Find the closest handler at or above GCPhys.
2020 */
2021 if (fMoreVirt && !pVirt)
2022 {
2023 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iVirtPage);
2024 if (RT_SUCCESS(rc))
2025 {
2026 offVirt = 0;
2027 offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2028 }
2029 else
2030 {
2031 PPGMPHYS2VIRTHANDLER pVirtPhys;
2032 pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
2033 GCPhys, true /* fAbove */);
2034 if ( pVirtPhys
2035 && (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT))
2036 {
2037 /* ASSUME that pVirtPhys only covers one page. */
2038 Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
2039 Assert(pVirtPhys->Core.Key > GCPhys);
2040
2041 pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
2042 iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
2043 offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2044 offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2045 }
2046 else
2047 {
2048 pVirt = NULL;
2049 fMoreVirt = false;
2050 offVirt = offVirtLast = PAGE_SIZE;
2051 }
2052 }
2053 }
2054
2055 if (fMorePhys && !pPhys)
2056 {
2057 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2058 if (pPhys)
2059 {
2060 offPhys = 0;
2061 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2062 }
2063 else
2064 {
2065 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
2066 GCPhys, true /* fAbove */);
2067 if ( pPhys
2068 && pPhys->Core.Key <= GCPhys + (cbWrite - 1))
2069 {
2070 offPhys = pPhys->Core.Key - GCPhys;
2071 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2072 }
2073 else
2074 {
2075 pPhys = NULL;
2076 fMorePhys = false;
2077 offPhys = offPhysLast = PAGE_SIZE;
2078 }
2079 }
2080 }
2081
2082 /*
2083 * Handle access to space without handlers (that's easy).
2084 */
2085 rc = VINF_PGM_HANDLER_DO_DEFAULT;
2086 uint32_t cbRange = (uint32_t)cbWrite;
2087 if (offPhys && offVirt)
2088 {
2089 if (cbRange > offPhys)
2090 cbRange = offPhys;
2091 if (cbRange > offVirt)
2092 cbRange = offVirt;
2093 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage));
2094 }
2095 /*
2096 * Physical handler.
2097 */
2098 else if (!offPhys && offVirt)
2099 {
2100 if (cbRange > offPhysLast + 1)
2101 cbRange = offPhysLast + 1;
2102 if (cbRange > offVirt)
2103 cbRange = offVirt;
2104#ifdef IN_RING3
2105 PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
2106 void *pvUser = pPhys->CTX_SUFF(pvUser);
2107
2108 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) ));
2109 STAM_PROFILE_START(&pPhys->Stat, h);
2110 Assert(PGMIsLockOwner(pVM));
2111 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2112 pgmUnlock(pVM);
2113 rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
2114 pgmLock(pVM);
2115# ifdef VBOX_WITH_STATISTICS
2116 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2117 if (pPhys)
2118 STAM_PROFILE_STOP(&pPhys->Stat, h);
2119# else
2120 pPhys = NULL; /* might not be valid anymore. */
2121# endif
2122 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : ""));
2123#else
2124 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2125 NOREF(cbRange);
2126 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2127 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2128#endif
2129 }
2130 /*
2131 * Virtual handler.
2132 */
2133 else if (offPhys && !offVirt)
2134 {
2135 if (cbRange > offVirtLast + 1)
2136 cbRange = offVirtLast + 1;
2137 if (cbRange > offPhys)
2138 cbRange = offPhys;
2139#ifdef IN_RING3
2140 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2141 if (pVirt->pfnHandlerR3)
2142 {
2143 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2144 + (iVirtPage << PAGE_SHIFT)
2145 + (GCPhys & PAGE_OFFSET_MASK);
2146 STAM_PROFILE_START(&pVirt->Stat, h);
2147 rc = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2148 STAM_PROFILE_STOP(&pVirt->Stat, h);
2149 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
2150 }
2151 pVirt = NULL;
2152#else
2153 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2154 NOREF(cbRange);
2155 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2156 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2157#endif
2158 }
2159 /*
2160 * Both... give the physical one priority.
2161 */
2162 else
2163 {
2164 Assert(!offPhys && !offVirt);
2165 if (cbRange > offVirtLast + 1)
2166 cbRange = offVirtLast + 1;
2167 if (cbRange > offPhysLast + 1)
2168 cbRange = offPhysLast + 1;
2169
2170#ifdef IN_RING3
2171 if (pVirt->pfnHandlerR3)
2172 Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
2173 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) ));
2174
2175 PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler);
2176 void *pvUser = pPhys->CTX_SUFF(pvUser);
2177
2178 STAM_PROFILE_START(&pPhys->Stat, h);
2179 Assert(PGMIsLockOwner(pVM));
2180 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2181 pgmUnlock(pVM);
2182 rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser);
2183 pgmLock(pVM);
2184# ifdef VBOX_WITH_STATISTICS
2185 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys);
2186 if (pPhys)
2187 STAM_PROFILE_STOP(&pPhys->Stat, h);
2188# else
2189 pPhys = NULL; /* might not be valid anymore. */
2190# endif
2191 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : ""));
2192 if (pVirt->pfnHandlerR3)
2193 {
2194
2195 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2196 + (iVirtPage << PAGE_SHIFT)
2197 + (GCPhys & PAGE_OFFSET_MASK);
2198 STAM_PROFILE_START(&pVirt->Stat, h2);
2199 int rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL);
2200 STAM_PROFILE_STOP(&pVirt->Stat, h2);
2201 if (rc2 == VINF_SUCCESS && rc == VINF_PGM_HANDLER_DO_DEFAULT)
2202 rc = VINF_SUCCESS;
2203 else
2204 AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc));
2205 }
2206 pPhys = NULL;
2207 pVirt = NULL;
2208#else
2209 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */
2210 NOREF(cbRange);
2211 //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange));
2212 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2213#endif
2214 }
2215 if (rc == VINF_PGM_HANDLER_DO_DEFAULT)
2216 memcpy(pvDst, pvBuf, cbRange);
2217
2218 /*
2219 * Advance if we've got more stuff to do.
2220 */
2221 if (cbRange >= cbWrite)
2222 return VINF_SUCCESS;
2223
2224 cbWrite -= cbRange;
2225 GCPhys += cbRange;
2226 pvBuf = (uint8_t *)pvBuf + cbRange;
2227 pvDst = (uint8_t *)pvDst + cbRange;
2228
2229 offPhys -= cbRange;
2230 offPhysLast -= cbRange;
2231 offVirt -= cbRange;
2232 offVirtLast -= cbRange;
2233 }
2234}
2235
2236
2237/**
2238 * Write to physical memory.
2239 *
2240 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
2241 * want to ignore those.
2242 *
2243 * @returns VBox status code. Can be ignored in ring-3.
2244 * @retval VINF_SUCCESS.
2245 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
2246 *
2247 * @param pVM VM Handle.
2248 * @param GCPhys Physical address to write to.
2249 * @param pvBuf What to write.
2250 * @param cbWrite How many bytes to write.
2251 */
2252VMMDECL(int) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
2253{
2254 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n"));
2255 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
2256 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
2257
2258 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysWrite));
2259 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysWriteBytes), cbWrite);
2260
2261 pgmLock(pVM);
2262
2263 /*
2264 * Copy loop on ram ranges.
2265 */
2266 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2267 for (;;)
2268 {
2269 /* Find range. */
2270 while (pRam && GCPhys > pRam->GCPhysLast)
2271 pRam = pRam->CTX_SUFF(pNext);
2272 /* Inside range or not? */
2273 if (pRam && GCPhys >= pRam->GCPhys)
2274 {
2275 /*
2276 * Must work our way thru this page by page.
2277 */
2278 RTGCPTR off = GCPhys - pRam->GCPhys;
2279 while (off < pRam->cb)
2280 {
2281 RTGCPTR iPage = off >> PAGE_SHIFT;
2282 PPGMPAGE pPage = &pRam->aPages[iPage];
2283 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2284 if (cb > cbWrite)
2285 cb = cbWrite;
2286
2287 /*
2288 * Any active WRITE or ALL access handlers?
2289 */
2290 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2291 {
2292 int rc = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb);
2293 if (RT_FAILURE(rc))
2294 {
2295 pgmUnlock(pVM);
2296 return rc;
2297 }
2298 }
2299 else
2300 {
2301 /*
2302 * Get the pointer to the page.
2303 */
2304 void *pvDst;
2305 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
2306 if (RT_SUCCESS(rc))
2307 memcpy(pvDst, pvBuf, cb);
2308 else
2309 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2310 pRam->GCPhys + off, pPage, rc));
2311 }
2312
2313 /* next page */
2314 if (cb >= cbWrite)
2315 {
2316 pgmUnlock(pVM);
2317 return VINF_SUCCESS;
2318 }
2319
2320 cbWrite -= cb;
2321 off += cb;
2322 pvBuf = (const char *)pvBuf + cb;
2323 } /* walk pages in ram range */
2324
2325 GCPhys = pRam->GCPhysLast + 1;
2326 }
2327 else
2328 {
2329 /*
2330 * Unassigned address space, skip it.
2331 */
2332 if (!pRam)
2333 break;
2334 size_t cb = pRam->GCPhys - GCPhys;
2335 if (cb >= cbWrite)
2336 break;
2337 cbWrite -= cb;
2338 pvBuf = (const char *)pvBuf + cb;
2339 GCPhys += cb;
2340 }
2341 } /* Ram range walk */
2342
2343 pgmUnlock(pVM);
2344 return VINF_SUCCESS;
2345}
2346
2347
2348/**
2349 * Read from guest physical memory by GC physical address, bypassing
2350 * MMIO and access handlers.
2351 *
2352 * @returns VBox status.
2353 * @param pVM VM handle.
2354 * @param pvDst The destination address.
2355 * @param GCPhysSrc The source address (GC physical address).
2356 * @param cb The number of bytes to read.
2357 */
2358VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
2359{
2360 /*
2361 * Treat the first page as a special case.
2362 */
2363 if (!cb)
2364 return VINF_SUCCESS;
2365
2366 /* map the 1st page */
2367 void const *pvSrc;
2368 PGMPAGEMAPLOCK Lock;
2369 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
2370 if (RT_FAILURE(rc))
2371 return rc;
2372
2373 /* optimize for the case where access is completely within the first page. */
2374 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
2375 if (RT_LIKELY(cb <= cbPage))
2376 {
2377 memcpy(pvDst, pvSrc, cb);
2378 PGMPhysReleasePageMappingLock(pVM, &Lock);
2379 return VINF_SUCCESS;
2380 }
2381
2382 /* copy to the end of the page. */
2383 memcpy(pvDst, pvSrc, cbPage);
2384 PGMPhysReleasePageMappingLock(pVM, &Lock);
2385 GCPhysSrc += cbPage;
2386 pvDst = (uint8_t *)pvDst + cbPage;
2387 cb -= cbPage;
2388
2389 /*
2390 * Page by page.
2391 */
2392 for (;;)
2393 {
2394 /* map the page */
2395 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
2396 if (RT_FAILURE(rc))
2397 return rc;
2398
2399 /* last page? */
2400 if (cb <= PAGE_SIZE)
2401 {
2402 memcpy(pvDst, pvSrc, cb);
2403 PGMPhysReleasePageMappingLock(pVM, &Lock);
2404 return VINF_SUCCESS;
2405 }
2406
2407 /* copy the entire page and advance */
2408 memcpy(pvDst, pvSrc, PAGE_SIZE);
2409 PGMPhysReleasePageMappingLock(pVM, &Lock);
2410 GCPhysSrc += PAGE_SIZE;
2411 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
2412 cb -= PAGE_SIZE;
2413 }
2414 /* won't ever get here. */
2415}
2416
2417
2418/**
2419 * Write to guest physical memory referenced by GC pointer.
2420 * Write memory to GC physical address in guest physical memory.
2421 *
2422 * This will bypass MMIO and access handlers.
2423 *
2424 * @returns VBox status.
2425 * @param pVM VM handle.
2426 * @param GCPhysDst The GC physical address of the destination.
2427 * @param pvSrc The source buffer.
2428 * @param cb The number of bytes to write.
2429 */
2430VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
2431{
2432 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
2433
2434 /*
2435 * Treat the first page as a special case.
2436 */
2437 if (!cb)
2438 return VINF_SUCCESS;
2439
2440 /* map the 1st page */
2441 void *pvDst;
2442 PGMPAGEMAPLOCK Lock;
2443 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
2444 if (RT_FAILURE(rc))
2445 return rc;
2446
2447 /* optimize for the case where access is completely within the first page. */
2448 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
2449 if (RT_LIKELY(cb <= cbPage))
2450 {
2451 memcpy(pvDst, pvSrc, cb);
2452 PGMPhysReleasePageMappingLock(pVM, &Lock);
2453 return VINF_SUCCESS;
2454 }
2455
2456 /* copy to the end of the page. */
2457 memcpy(pvDst, pvSrc, cbPage);
2458 PGMPhysReleasePageMappingLock(pVM, &Lock);
2459 GCPhysDst += cbPage;
2460 pvSrc = (const uint8_t *)pvSrc + cbPage;
2461 cb -= cbPage;
2462
2463 /*
2464 * Page by page.
2465 */
2466 for (;;)
2467 {
2468 /* map the page */
2469 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
2470 if (RT_FAILURE(rc))
2471 return rc;
2472
2473 /* last page? */
2474 if (cb <= PAGE_SIZE)
2475 {
2476 memcpy(pvDst, pvSrc, cb);
2477 PGMPhysReleasePageMappingLock(pVM, &Lock);
2478 return VINF_SUCCESS;
2479 }
2480
2481 /* copy the entire page and advance */
2482 memcpy(pvDst, pvSrc, PAGE_SIZE);
2483 PGMPhysReleasePageMappingLock(pVM, &Lock);
2484 GCPhysDst += PAGE_SIZE;
2485 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2486 cb -= PAGE_SIZE;
2487 }
2488 /* won't ever get here. */
2489}
2490
2491
2492/**
2493 * Read from guest physical memory referenced by GC pointer.
2494 *
2495 * This function uses the current CR3/CR0/CR4 of the guest and will
2496 * bypass access handlers and not set any accessed bits.
2497 *
2498 * @returns VBox status.
2499 * @param pVCpu The VMCPU handle.
2500 * @param pvDst The destination address.
2501 * @param GCPtrSrc The source address (GC pointer).
2502 * @param cb The number of bytes to read.
2503 */
2504VMMDECL(int) PGMPhysSimpleReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2505{
2506 PVM pVM = pVCpu->CTX_SUFF(pVM);
2507
2508 /*
2509 * Treat the first page as a special case.
2510 */
2511 if (!cb)
2512 return VINF_SUCCESS;
2513
2514 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleRead));
2515 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleReadBytes), cb);
2516
2517 /* Take the PGM lock here, because many called functions take the lock for a very short period. That's counter-productive
2518 * when many VCPUs are fighting for the lock.
2519 */
2520 pgmLock(pVM);
2521
2522 /* map the 1st page */
2523 void const *pvSrc;
2524 PGMPAGEMAPLOCK Lock;
2525 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
2526 if (RT_FAILURE(rc))
2527 {
2528 pgmUnlock(pVM);
2529 return rc;
2530 }
2531
2532 /* optimize for the case where access is completely within the first page. */
2533 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2534 if (RT_LIKELY(cb <= cbPage))
2535 {
2536 memcpy(pvDst, pvSrc, cb);
2537 PGMPhysReleasePageMappingLock(pVM, &Lock);
2538 pgmUnlock(pVM);
2539 return VINF_SUCCESS;
2540 }
2541
2542 /* copy to the end of the page. */
2543 memcpy(pvDst, pvSrc, cbPage);
2544 PGMPhysReleasePageMappingLock(pVM, &Lock);
2545 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
2546 pvDst = (uint8_t *)pvDst + cbPage;
2547 cb -= cbPage;
2548
2549 /*
2550 * Page by page.
2551 */
2552 for (;;)
2553 {
2554 /* map the page */
2555 rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
2556 if (RT_FAILURE(rc))
2557 {
2558 pgmUnlock(pVM);
2559 return rc;
2560 }
2561
2562 /* last page? */
2563 if (cb <= PAGE_SIZE)
2564 {
2565 memcpy(pvDst, pvSrc, cb);
2566 PGMPhysReleasePageMappingLock(pVM, &Lock);
2567 pgmUnlock(pVM);
2568 return VINF_SUCCESS;
2569 }
2570
2571 /* copy the entire page and advance */
2572 memcpy(pvDst, pvSrc, PAGE_SIZE);
2573 PGMPhysReleasePageMappingLock(pVM, &Lock);
2574 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
2575 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
2576 cb -= PAGE_SIZE;
2577 }
2578 /* won't ever get here. */
2579}
2580
2581
2582/**
2583 * Write to guest physical memory referenced by GC pointer.
2584 *
2585 * This function uses the current CR3/CR0/CR4 of the guest and will
2586 * bypass access handlers and not set dirty or accessed bits.
2587 *
2588 * @returns VBox status.
2589 * @param pVCpu The VMCPU handle.
2590 * @param GCPtrDst The destination address (GC pointer).
2591 * @param pvSrc The source address.
2592 * @param cb The number of bytes to write.
2593 */
2594VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2595{
2596 PVM pVM = pVCpu->CTX_SUFF(pVM);
2597
2598 /*
2599 * Treat the first page as a special case.
2600 */
2601 if (!cb)
2602 return VINF_SUCCESS;
2603
2604 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleWrite));
2605 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_MID_Z(Stat,PhysSimpleWriteBytes), cb);
2606
2607 /* map the 1st page */
2608 void *pvDst;
2609 PGMPAGEMAPLOCK Lock;
2610 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2611 if (RT_FAILURE(rc))
2612 return rc;
2613
2614 /* optimize for the case where access is completely within the first page. */
2615 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2616 if (RT_LIKELY(cb <= cbPage))
2617 {
2618 memcpy(pvDst, pvSrc, cb);
2619 PGMPhysReleasePageMappingLock(pVM, &Lock);
2620 return VINF_SUCCESS;
2621 }
2622
2623 /* copy to the end of the page. */
2624 memcpy(pvDst, pvSrc, cbPage);
2625 PGMPhysReleasePageMappingLock(pVM, &Lock);
2626 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
2627 pvSrc = (const uint8_t *)pvSrc + cbPage;
2628 cb -= cbPage;
2629
2630 /*
2631 * Page by page.
2632 */
2633 for (;;)
2634 {
2635 /* map the page */
2636 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2637 if (RT_FAILURE(rc))
2638 return rc;
2639
2640 /* last page? */
2641 if (cb <= PAGE_SIZE)
2642 {
2643 memcpy(pvDst, pvSrc, cb);
2644 PGMPhysReleasePageMappingLock(pVM, &Lock);
2645 return VINF_SUCCESS;
2646 }
2647
2648 /* copy the entire page and advance */
2649 memcpy(pvDst, pvSrc, PAGE_SIZE);
2650 PGMPhysReleasePageMappingLock(pVM, &Lock);
2651 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2652 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2653 cb -= PAGE_SIZE;
2654 }
2655 /* won't ever get here. */
2656}
2657
2658
2659/**
2660 * Write to guest physical memory referenced by GC pointer and update the PTE.
2661 *
2662 * This function uses the current CR3/CR0/CR4 of the guest and will
2663 * bypass access handlers but will set any dirty and accessed bits in the PTE.
2664 *
2665 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
2666 *
2667 * @returns VBox status.
2668 * @param pVCpu The VMCPU handle.
2669 * @param GCPtrDst The destination address (GC pointer).
2670 * @param pvSrc The source address.
2671 * @param cb The number of bytes to write.
2672 */
2673VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2674{
2675 PVM pVM = pVCpu->CTX_SUFF(pVM);
2676
2677 /*
2678 * Treat the first page as a special case.
2679 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
2680 */
2681 if (!cb)
2682 return VINF_SUCCESS;
2683
2684 /* map the 1st page */
2685 void *pvDst;
2686 PGMPAGEMAPLOCK Lock;
2687 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2688 if (RT_FAILURE(rc))
2689 return rc;
2690
2691 /* optimize for the case where access is completely within the first page. */
2692 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2693 if (RT_LIKELY(cb <= cbPage))
2694 {
2695 memcpy(pvDst, pvSrc, cb);
2696 PGMPhysReleasePageMappingLock(pVM, &Lock);
2697 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2698 return VINF_SUCCESS;
2699 }
2700
2701 /* copy to the end of the page. */
2702 memcpy(pvDst, pvSrc, cbPage);
2703 PGMPhysReleasePageMappingLock(pVM, &Lock);
2704 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2705 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
2706 pvSrc = (const uint8_t *)pvSrc + cbPage;
2707 cb -= cbPage;
2708
2709 /*
2710 * Page by page.
2711 */
2712 for (;;)
2713 {
2714 /* map the page */
2715 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
2716 if (RT_FAILURE(rc))
2717 return rc;
2718
2719 /* last page? */
2720 if (cb <= PAGE_SIZE)
2721 {
2722 memcpy(pvDst, pvSrc, cb);
2723 PGMPhysReleasePageMappingLock(pVM, &Lock);
2724 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2725 return VINF_SUCCESS;
2726 }
2727
2728 /* copy the entire page and advance */
2729 memcpy(pvDst, pvSrc, PAGE_SIZE);
2730 PGMPhysReleasePageMappingLock(pVM, &Lock);
2731 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
2732 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
2733 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
2734 cb -= PAGE_SIZE;
2735 }
2736 /* won't ever get here. */
2737}
2738
2739
2740/**
2741 * Read from guest physical memory referenced by GC pointer.
2742 *
2743 * This function uses the current CR3/CR0/CR4 of the guest and will
2744 * respect access handlers and set accessed bits.
2745 *
2746 * @returns VBox status.
2747 * @param pVCpu The VMCPU handle.
2748 * @param pvDst The destination address.
2749 * @param GCPtrSrc The source address (GC pointer).
2750 * @param cb The number of bytes to read.
2751 * @thread The vCPU EMT.
2752 */
2753VMMDECL(int) PGMPhysReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
2754{
2755 RTGCPHYS GCPhys;
2756 uint64_t fFlags;
2757 int rc;
2758 PVM pVM = pVCpu->CTX_SUFF(pVM);
2759
2760 /*
2761 * Anything to do?
2762 */
2763 if (!cb)
2764 return VINF_SUCCESS;
2765
2766 LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
2767
2768 /*
2769 * Optimize reads within a single page.
2770 */
2771 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2772 {
2773 /* Convert virtual to physical address + flags */
2774 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
2775 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
2776 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
2777
2778 /* mark the guest page as accessed. */
2779 if (!(fFlags & X86_PTE_A))
2780 {
2781 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2782 AssertRC(rc);
2783 }
2784
2785 return PGMPhysRead(pVM, GCPhys, pvDst, cb);
2786 }
2787
2788 /*
2789 * Page by page.
2790 */
2791 for (;;)
2792 {
2793 /* Convert virtual to physical address + flags */
2794 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
2795 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
2796 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
2797
2798 /* mark the guest page as accessed. */
2799 if (!(fFlags & X86_PTE_A))
2800 {
2801 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
2802 AssertRC(rc);
2803 }
2804
2805 /* copy */
2806 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
2807 rc = PGMPhysRead(pVM, GCPhys, pvDst, cbRead);
2808 if (cbRead >= cb || RT_FAILURE(rc))
2809 return rc;
2810
2811 /* next */
2812 cb -= cbRead;
2813 pvDst = (uint8_t *)pvDst + cbRead;
2814 GCPtrSrc += cbRead;
2815 }
2816}
2817
2818
2819/**
2820 * Write to guest physical memory referenced by GC pointer.
2821 *
2822 * This function uses the current CR3/CR0/CR4 of the guest and will
2823 * respect access handlers and set dirty and accessed bits.
2824 *
2825 * @returns VBox status.
2826 * @retval VINF_SUCCESS.
2827 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3.
2828 *
2829 * @param pVCpu The VMCPU handle.
2830 * @param GCPtrDst The destination address (GC pointer).
2831 * @param pvSrc The source address.
2832 * @param cb The number of bytes to write.
2833 */
2834VMMDECL(int) PGMPhysWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
2835{
2836 RTGCPHYS GCPhys;
2837 uint64_t fFlags;
2838 int rc;
2839 PVM pVM = pVCpu->CTX_SUFF(pVM);
2840
2841 /*
2842 * Anything to do?
2843 */
2844 if (!cb)
2845 return VINF_SUCCESS;
2846
2847 LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
2848
2849 /*
2850 * Optimize writes within a single page.
2851 */
2852 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
2853 {
2854 /* Convert virtual to physical address + flags */
2855 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
2856 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
2857 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
2858
2859 /* Mention when we ignore X86_PTE_RW... */
2860 if (!(fFlags & X86_PTE_RW))
2861 Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
2862
2863 /* Mark the guest page as accessed and dirty if necessary. */
2864 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
2865 {
2866 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2867 AssertRC(rc);
2868 }
2869
2870 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb);
2871 }
2872
2873 /*
2874 * Page by page.
2875 */
2876 for (;;)
2877 {
2878 /* Convert virtual to physical address + flags */
2879 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
2880 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
2881 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
2882
2883 /* Mention when we ignore X86_PTE_RW... */
2884 if (!(fFlags & X86_PTE_RW))
2885 Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
2886
2887 /* Mark the guest page as accessed and dirty if necessary. */
2888 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
2889 {
2890 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
2891 AssertRC(rc);
2892 }
2893
2894 /* copy */
2895 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
2896 rc = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite);
2897 if (cbWrite >= cb || RT_FAILURE(rc))
2898 return rc;
2899
2900 /* next */
2901 cb -= cbWrite;
2902 pvSrc = (uint8_t *)pvSrc + cbWrite;
2903 GCPtrDst += cbWrite;
2904 }
2905}
2906
2907
2908/**
2909 * Performs a read of guest virtual memory for instruction emulation.
2910 *
2911 * This will check permissions, raise exceptions and update the access bits.
2912 *
2913 * The current implementation will bypass all access handlers. It may later be
2914 * changed to at least respect MMIO.
2915 *
2916 *
2917 * @returns VBox status code suitable to scheduling.
2918 * @retval VINF_SUCCESS if the read was performed successfully.
2919 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
2920 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
2921 *
2922 * @param pVCpu The VMCPU handle.
2923 * @param pCtxCore The context core.
2924 * @param pvDst Where to put the bytes we've read.
2925 * @param GCPtrSrc The source address.
2926 * @param cb The number of bytes to read. Not more than a page.
2927 *
2928 * @remark This function will dynamically map physical pages in GC. This may unmap
2929 * mappings done by the caller. Be careful!
2930 */
2931VMMDECL(int) PGMPhysInterpretedRead(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
2932{
2933 PVM pVM = pVCpu->CTX_SUFF(pVM);
2934 Assert(cb <= PAGE_SIZE);
2935
2936/** @todo r=bird: This isn't perfect!
2937 * -# It's not checking for reserved bits being 1.
2938 * -# It's not correctly dealing with the access bit.
2939 * -# It's not respecting MMIO memory or any other access handlers.
2940 */
2941 /*
2942 * 1. Translate virtual to physical. This may fault.
2943 * 2. Map the physical address.
2944 * 3. Do the read operation.
2945 * 4. Set access bits if required.
2946 */
2947 int rc;
2948 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
2949 if (cb <= cb1)
2950 {
2951 /*
2952 * Not crossing pages.
2953 */
2954 RTGCPHYS GCPhys;
2955 uint64_t fFlags;
2956 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
2957 if (RT_SUCCESS(rc))
2958 {
2959 /** @todo we should check reserved bits ... */
2960 void *pvSrc;
2961 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pvSrc);
2962 switch (rc)
2963 {
2964 case VINF_SUCCESS:
2965 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
2966 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
2967 break;
2968 case VERR_PGM_PHYS_PAGE_RESERVED:
2969 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
2970 memset(pvDst, 0, cb); /** @todo this is wrong, it should be 0xff */
2971 break;
2972 default:
2973 return rc;
2974 }
2975
2976 /** @todo access bit emulation isn't 100% correct. */
2977 if (!(fFlags & X86_PTE_A))
2978 {
2979 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
2980 AssertRC(rc);
2981 }
2982 return VINF_SUCCESS;
2983 }
2984 }
2985 else
2986 {
2987 /*
2988 * Crosses pages.
2989 */
2990 size_t cb2 = cb - cb1;
2991 uint64_t fFlags1;
2992 RTGCPHYS GCPhys1;
2993 uint64_t fFlags2;
2994 RTGCPHYS GCPhys2;
2995 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
2996 if (RT_SUCCESS(rc))
2997 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
2998 if (RT_SUCCESS(rc))
2999 {
3000 /** @todo we should check reserved bits ... */
3001 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
3002 void *pvSrc1;
3003 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys1, &pvSrc1);
3004 switch (rc)
3005 {
3006 case VINF_SUCCESS:
3007 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3008 break;
3009 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3010 memset(pvDst, 0, cb1); /** @todo this is wrong, it should be 0xff */
3011 break;
3012 default:
3013 return rc;
3014 }
3015
3016 void *pvSrc2;
3017 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys2, &pvSrc2);
3018 switch (rc)
3019 {
3020 case VINF_SUCCESS:
3021 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
3022 break;
3023 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3024 memset((uint8_t *)pvDst + cb1, 0, cb2); /** @todo this is wrong, it should be 0xff */
3025 break;
3026 default:
3027 return rc;
3028 }
3029
3030 if (!(fFlags1 & X86_PTE_A))
3031 {
3032 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3033 AssertRC(rc);
3034 }
3035 if (!(fFlags2 & X86_PTE_A))
3036 {
3037 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3038 AssertRC(rc);
3039 }
3040 return VINF_SUCCESS;
3041 }
3042 }
3043
3044 /*
3045 * Raise a #PF.
3046 */
3047 uint32_t uErr;
3048
3049 /* Get the current privilege level. */
3050 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore);
3051 switch (rc)
3052 {
3053 case VINF_SUCCESS:
3054 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3055 break;
3056
3057 case VERR_PAGE_NOT_PRESENT:
3058 case VERR_PAGE_TABLE_NOT_PRESENT:
3059 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3060 break;
3061
3062 default:
3063 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3064 return rc;
3065 }
3066 Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
3067 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3068}
3069
3070
3071/**
3072 * Performs a read of guest virtual memory for instruction emulation.
3073 *
3074 * This will check permissions, raise exceptions and update the access bits.
3075 *
3076 * The current implementation will bypass all access handlers. It may later be
3077 * changed to at least respect MMIO.
3078 *
3079 *
3080 * @returns VBox status code suitable to scheduling.
3081 * @retval VINF_SUCCESS if the read was performed successfully.
3082 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3083 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3084 *
3085 * @param pVCpu The VMCPU handle.
3086 * @param pCtxCore The context core.
3087 * @param pvDst Where to put the bytes we've read.
3088 * @param GCPtrSrc The source address.
3089 * @param cb The number of bytes to read. Not more than a page.
3090 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3091 * an appropriate error status will be returned (no
3092 * informational at all).
3093 *
3094 *
3095 * @remarks Takes the PGM lock.
3096 * @remarks A page fault on the 2nd page of the access will be raised without
3097 * writing the bits on the first page since we're ASSUMING that the
3098 * caller is emulating an instruction access.
3099 * @remarks This function will dynamically map physical pages in GC. This may
3100 * unmap mappings done by the caller. Be careful!
3101 */
3102VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb, bool fRaiseTrap)
3103{
3104 PVM pVM = pVCpu->CTX_SUFF(pVM);
3105 Assert(cb <= PAGE_SIZE);
3106
3107 /*
3108 * 1. Translate virtual to physical. This may fault.
3109 * 2. Map the physical address.
3110 * 3. Do the read operation.
3111 * 4. Set access bits if required.
3112 */
3113 int rc;
3114 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3115 if (cb <= cb1)
3116 {
3117 /*
3118 * Not crossing pages.
3119 */
3120 RTGCPHYS GCPhys;
3121 uint64_t fFlags;
3122 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
3123 if (RT_SUCCESS(rc))
3124 {
3125 if (1) /** @todo we should check reserved bits ... */
3126 {
3127 const void *pvSrc;
3128 PGMPAGEMAPLOCK Lock;
3129 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock);
3130 switch (rc)
3131 {
3132 case VINF_SUCCESS:
3133 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n",
3134 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb));
3135 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3136 break;
3137 case VERR_PGM_PHYS_PAGE_RESERVED:
3138 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3139 memset(pvDst, 0xff, cb);
3140 break;
3141 default:
3142 AssertMsgFailed(("%Rrc\n", rc));
3143 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3144 return rc;
3145 }
3146 PGMPhysReleasePageMappingLock(pVM, &Lock);
3147
3148 if (!(fFlags & X86_PTE_A))
3149 {
3150 /** @todo access bit emulation isn't 100% correct. */
3151 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3152 AssertRC(rc);
3153 }
3154 return VINF_SUCCESS;
3155 }
3156 }
3157 }
3158 else
3159 {
3160 /*
3161 * Crosses pages.
3162 */
3163 size_t cb2 = cb - cb1;
3164 uint64_t fFlags1;
3165 RTGCPHYS GCPhys1;
3166 uint64_t fFlags2;
3167 RTGCPHYS GCPhys2;
3168 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
3169 if (RT_SUCCESS(rc))
3170 {
3171 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3172 if (RT_SUCCESS(rc))
3173 {
3174 if (1) /** @todo we should check reserved bits ... */
3175 {
3176 const void *pvSrc;
3177 PGMPAGEMAPLOCK Lock;
3178 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock);
3179 switch (rc)
3180 {
3181 case VINF_SUCCESS:
3182 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n",
3183 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1));
3184 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3185 PGMPhysReleasePageMappingLock(pVM, &Lock);
3186 break;
3187 case VERR_PGM_PHYS_PAGE_RESERVED:
3188 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3189 memset(pvDst, 0xff, cb1);
3190 break;
3191 default:
3192 AssertMsgFailed(("%Rrc\n", rc));
3193 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3194 return rc;
3195 }
3196
3197 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock);
3198 switch (rc)
3199 {
3200 case VINF_SUCCESS:
3201 memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2);
3202 PGMPhysReleasePageMappingLock(pVM, &Lock);
3203 break;
3204 case VERR_PGM_PHYS_PAGE_RESERVED:
3205 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3206 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
3207 break;
3208 default:
3209 AssertMsgFailed(("%Rrc\n", rc));
3210 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3211 return rc;
3212 }
3213
3214 if (!(fFlags1 & X86_PTE_A))
3215 {
3216 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3217 AssertRC(rc);
3218 }
3219 if (!(fFlags2 & X86_PTE_A))
3220 {
3221 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3222 AssertRC(rc);
3223 }
3224 return VINF_SUCCESS;
3225 }
3226 /* sort out which page */
3227 }
3228 else
3229 GCPtrSrc += cb1; /* fault on 2nd page */
3230 }
3231 }
3232
3233 /*
3234 * Raise a #PF if we're allowed to do that.
3235 */
3236 /* Calc the error bits. */
3237 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore);
3238 uint32_t uErr;
3239 switch (rc)
3240 {
3241 case VINF_SUCCESS:
3242 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3243 rc = VERR_ACCESS_DENIED;
3244 break;
3245
3246 case VERR_PAGE_NOT_PRESENT:
3247 case VERR_PAGE_TABLE_NOT_PRESENT:
3248 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3249 break;
3250
3251 default:
3252 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3253 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3254 return rc;
3255 }
3256 if (fRaiseTrap)
3257 {
3258 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr));
3259 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3260 }
3261 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr));
3262 return rc;
3263}
3264
3265
3266/**
3267 * Performs a write to guest virtual memory for instruction emulation.
3268 *
3269 * This will check permissions, raise exceptions and update the dirty and access
3270 * bits.
3271 *
3272 * @returns VBox status code suitable to scheduling.
3273 * @retval VINF_SUCCESS if the read was performed successfully.
3274 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3275 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3276 *
3277 * @param pVCpu The VMCPU handle.
3278 * @param pCtxCore The context core.
3279 * @param GCPtrDst The destination address.
3280 * @param pvSrc What to write.
3281 * @param cb The number of bytes to write. Not more than a page.
3282 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3283 * an appropriate error status will be returned (no
3284 * informational at all).
3285 *
3286 * @remarks Takes the PGM lock.
3287 * @remarks A page fault on the 2nd page of the access will be raised without
3288 * writing the bits on the first page since we're ASSUMING that the
3289 * caller is emulating an instruction access.
3290 * @remarks This function will dynamically map physical pages in GC. This may
3291 * unmap mappings done by the caller. Be careful!
3292 */
3293VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb, bool fRaiseTrap)
3294{
3295 Assert(cb <= PAGE_SIZE);
3296 PVM pVM = pVCpu->CTX_SUFF(pVM);
3297
3298 /*
3299 * 1. Translate virtual to physical. This may fault.
3300 * 2. Map the physical address.
3301 * 3. Do the write operation.
3302 * 4. Set access bits if required.
3303 */
3304 int rc;
3305 unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK);
3306 if (cb <= cb1)
3307 {
3308 /*
3309 * Not crossing pages.
3310 */
3311 RTGCPHYS GCPhys;
3312 uint64_t fFlags;
3313 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags, &GCPhys);
3314 if (RT_SUCCESS(rc))
3315 {
3316 if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */
3317 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
3318 && CPUMGetGuestCPL(pVCpu, pCtxCore) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */
3319 {
3320 void *pvDst;
3321 PGMPAGEMAPLOCK Lock;
3322 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock);
3323 switch (rc)
3324 {
3325 case VINF_SUCCESS:
3326 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
3327 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb));
3328 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
3329 PGMPhysReleasePageMappingLock(pVM, &Lock);
3330 break;
3331 case VERR_PGM_PHYS_PAGE_RESERVED:
3332 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3333 /* bit bucket */
3334 break;
3335 default:
3336 AssertMsgFailed(("%Rrc\n", rc));
3337 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3338 return rc;
3339 }
3340
3341 if (!(fFlags & (X86_PTE_A | X86_PTE_D)))
3342 {
3343 /** @todo dirty & access bit emulation isn't 100% correct. */
3344 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3345 AssertRC(rc);
3346 }
3347 return VINF_SUCCESS;
3348 }
3349 rc = VERR_ACCESS_DENIED;
3350 }
3351 }
3352 else
3353 {
3354 /*
3355 * Crosses pages.
3356 */
3357 size_t cb2 = cb - cb1;
3358 uint64_t fFlags1;
3359 RTGCPHYS GCPhys1;
3360 uint64_t fFlags2;
3361 RTGCPHYS GCPhys2;
3362 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags1, &GCPhys1);
3363 if (RT_SUCCESS(rc))
3364 {
3365 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst + cb1, &fFlags2, &GCPhys2);
3366 if (RT_SUCCESS(rc))
3367 {
3368 if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */
3369 && (fFlags2 & X86_PTE_RW))
3370 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
3371 && CPUMGetGuestCPL(pVCpu, pCtxCore) <= 2) )
3372 {
3373 void *pvDst;
3374 PGMPAGEMAPLOCK Lock;
3375 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock);
3376 switch (rc)
3377 {
3378 case VINF_SUCCESS:
3379 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
3380 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1));
3381 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1);
3382 PGMPhysReleasePageMappingLock(pVM, &Lock);
3383 break;
3384 case VERR_PGM_PHYS_PAGE_RESERVED:
3385 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3386 /* bit bucket */
3387 break;
3388 default:
3389 AssertMsgFailed(("%Rrc\n", rc));
3390 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3391 return rc;
3392 }
3393
3394 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock);
3395 switch (rc)
3396 {
3397 case VINF_SUCCESS:
3398 memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2);
3399 PGMPhysReleasePageMappingLock(pVM, &Lock);
3400 break;
3401 case VERR_PGM_PHYS_PAGE_RESERVED:
3402 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3403 /* bit bucket */
3404 break;
3405 default:
3406 AssertMsgFailed(("%Rrc\n", rc));
3407 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3408 return rc;
3409 }
3410
3411 if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW)))
3412 {
3413 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
3414 AssertRC(rc);
3415 }
3416 if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW)))
3417 {
3418 rc = PGMGstModifyPage(pVCpu, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
3419 AssertRC(rc);
3420 }
3421 return VINF_SUCCESS;
3422 }
3423 if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW)
3424 GCPtrDst += cb1; /* fault on the 2nd page. */
3425 rc = VERR_ACCESS_DENIED;
3426 }
3427 else
3428 GCPtrDst += cb1; /* fault on the 2nd page. */
3429 }
3430 }
3431
3432 /*
3433 * Raise a #PF if we're allowed to do that.
3434 */
3435 /* Calc the error bits. */
3436 uint32_t uErr;
3437 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore);
3438 switch (rc)
3439 {
3440 case VINF_SUCCESS:
3441 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3442 rc = VERR_ACCESS_DENIED;
3443 break;
3444
3445 case VERR_ACCESS_DENIED:
3446 uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW;
3447 break;
3448
3449 case VERR_PAGE_NOT_PRESENT:
3450 case VERR_PAGE_TABLE_NOT_PRESENT:
3451 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3452 break;
3453
3454 default:
3455 AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb));
3456 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
3457 return rc;
3458 }
3459 if (fRaiseTrap)
3460 {
3461 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr));
3462 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst);
3463 }
3464 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr));
3465 return rc;
3466}
3467
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette