/* $Id: PGMAllPhys.cpp 40280 2012-02-28 19:47:00Z vboxsync $ */ /** @file * PGM - Page Manager and Monitor, Physical Memory Addressing. */ /* * Copyright (C) 2006-2011 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_PHYS #include #include #include #include #include #ifdef VBOX_WITH_REM # include #endif #include "PGMInternal.h" #include #include "PGMInline.h" #include #include #include #include #include #include #ifdef IN_RING3 # include #endif /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** Enable the physical TLB. */ #define PGM_WITH_PHYS_TLB #ifndef IN_RING3 /** * \#PF Handler callback for physical memory accesses without a RC/R0 handler. * This simply pushes everything to the HC handler. * * @returns VBox status code (appropriate for trap handling and GC return). * @param pVM VM Handle. * @param uErrorCode CPU Error code. * @param pRegFrame Trap register frame. * @param pvFault The fault address (cr2). * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pvUser User argument. */ VMMDECL(int) pgmPhysHandlerRedirectToHC(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) { NOREF(pVM); NOREF(uErrorCode); NOREF(pRegFrame); NOREF(pvFault); NOREF(GCPhysFault); NOREF(pvUser); return (uErrorCode & X86_TRAP_PF_RW) ? VINF_IOM_R3_MMIO_WRITE : VINF_IOM_R3_MMIO_READ; } /** * \#PF Handler callback for Guest ROM range write access. * We simply ignore the writes or fall back to the recompiler if we don't support the instruction. * * @returns VBox status code (appropriate for trap handling and GC return). * @param pVM VM Handle. * @param uErrorCode CPU Error code. * @param pRegFrame Trap register frame. * @param pvFault The fault address (cr2). * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pvUser User argument. Pointer to the ROM range structure. */ VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) { int rc; PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser; uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT; PVMCPU pVCpu = VMMGetCpu(pVM); NOREF(uErrorCode); NOREF(pvFault); Assert(iPage < (pRom->cb >> PAGE_SHIFT)); switch (pRom->aPages[iPage].enmProt) { case PGMROMPROT_READ_ROM_WRITE_IGNORE: case PGMROMPROT_READ_RAM_WRITE_IGNORE: { /* * If it's a simple instruction which doesn't change the cpu state * we will simply skip it. Otherwise we'll have to defer it to REM. */ uint32_t cbOp; PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState; rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, &cbOp); if ( RT_SUCCESS(rc) && pDis->mode == CPUMODE_32BIT /** @todo why does this matter? */ && !(pDis->prefix & (PREFIX_REPNE | PREFIX_REP | PREFIX_SEG))) { switch (pDis->opcode) { /** @todo Find other instructions we can safely skip, possibly * adding this kind of detection to DIS or EM. */ case OP_MOV: pRegFrame->rip += cbOp; STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteHandled); return VINF_SUCCESS; } } else if (RT_UNLIKELY(rc == VERR_EM_INTERNAL_DISAS_ERROR)) return rc; break; } case PGMROMPROT_READ_RAM_WRITE_RAM: pRom->aPages[iPage].LiveSave.fWrittenTo = true; rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK); AssertRC(rc); break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */ case PGMROMPROT_READ_ROM_WRITE_RAM: /* Handle it in ring-3 because it's *way* easier there. */ pRom->aPages[iPage].LiveSave.fWrittenTo = true; break; default: AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n", pRom->aPages[iPage].enmProt, iPage, GCPhysFault), VERR_IPE_NOT_REACHED_DEFAULT_CASE); } STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteUnhandled); return VINF_EM_RAW_EMULATE_INSTR; } #endif /* IN_RING3 */ /** * Invalidates the RAM range TLBs. * * @param pVM The VM handle. */ void pgmPhysInvalidRamRangeTlbs(PVM pVM) { pgmLock(pVM); for (uint32_t i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++) { pVM->pgm.s.apRamRangesTlbR3[i] = NIL_RTR3PTR; pVM->pgm.s.apRamRangesTlbR0[i] = NIL_RTR0PTR; pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR; } pgmUnlock(pVM); } /** * Tests if a value of type RTGCPHYS is negative if the type had been signed * instead of unsigned. * * @returns @c true if negative, @c false if positive or zero. * @param a_GCPhys The value to test. * @todo Move me to iprt/types.h. */ #define RTGCPHYS_IS_NEGATIVE(a_GCPhys) ((a_GCPhys) & ((RTGCPHYS)1 << (sizeof(RTGCPHYS)*8 - 1))) /** * Slow worker for pgmPhysGetRange. * * @copydoc pgmPhysGetRange */ PPGMRAMRANGE pgmPhysGetRangeSlow(PVM pVM, RTGCPHYS GCPhys) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses)); PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam; return pRam; } if (RTGCPHYS_IS_NEGATIVE(off)) pRam = pRam->CTX_SUFF(pLeft); else pRam = pRam->CTX_SUFF(pRight); } return NULL; } /** * Slow worker for pgmPhysGetRangeAtOrAbove. * * @copydoc pgmPhysGetRangeAtOrAbove */ PPGMRAMRANGE pgmPhysGetRangeAtOrAboveSlow(PVM pVM, RTGCPHYS GCPhys) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses)); PPGMRAMRANGE pLastLeft = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam; return pRam; } if (RTGCPHYS_IS_NEGATIVE(off)) { pLastLeft = pRam; pRam = pRam->CTX_SUFF(pLeft); } else pRam = pRam->CTX_SUFF(pRight); } return pLastLeft; } /** * Slow worker for pgmPhysGetPage. * * @copydoc pgmPhysGetPage */ PPGMPAGE pgmPhysGetPageSlow(PVM pVM, RTGCPHYS GCPhys) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses)); PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam; return &pRam->aPages[off >> PAGE_SHIFT]; } if (RTGCPHYS_IS_NEGATIVE(off)) pRam = pRam->CTX_SUFF(pLeft); else pRam = pRam->CTX_SUFF(pRight); } return NULL; } /** * Slow worker for pgmPhysGetPageEx. * * @copydoc pgmPhysGetPageEx */ int pgmPhysGetPageExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses)); PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam; *ppPage = &pRam->aPages[off >> PAGE_SHIFT]; return VINF_SUCCESS; } if (RTGCPHYS_IS_NEGATIVE(off)) pRam = pRam->CTX_SUFF(pLeft); else pRam = pRam->CTX_SUFF(pRight); } *ppPage = NULL; return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Slow worker for pgmPhysGetPageAndRangeEx. * * @copydoc pgmPhysGetPageAndRangeEx */ int pgmPhysGetPageAndRangeExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses)); PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam; *ppRam = pRam; *ppPage = &pRam->aPages[off >> PAGE_SHIFT]; return VINF_SUCCESS; } if (RTGCPHYS_IS_NEGATIVE(off)) pRam = pRam->CTX_SUFF(pLeft); else pRam = pRam->CTX_SUFF(pRight); } *ppRam = NULL; *ppPage = NULL; return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Checks if Address Gate 20 is enabled or not. * * @returns true if enabled. * @returns false if disabled. * @param pVCpu VMCPU handle. */ VMMDECL(bool) PGMPhysIsA20Enabled(PVMCPU pVCpu) { LogFlow(("PGMPhysIsA20Enabled %d\n", pVCpu->pgm.s.fA20Enabled)); return pVCpu->pgm.s.fA20Enabled; } /** * Validates a GC physical address. * * @returns true if valid. * @returns false if invalid. * @param pVM The VM handle. * @param GCPhys The physical address to validate. */ VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys) { PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys); return pPage != NULL; } /** * Checks if a GC physical address is a normal page, * i.e. not ROM, MMIO or reserved. * * @returns true if normal. * @returns false if invalid, ROM, MMIO or reserved page. * @param pVM The VM handle. * @param GCPhys The physical address to check. */ VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys) { PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys); return pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM; } /** * Converts a GC physical address to a HC physical address. * * @returns VINF_SUCCESS on success. * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical * page but has no physical backing. * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid * GC physical address. * * @param pVM The VM handle. * @param GCPhys The GC physical address to convert. * @param pHCPhys Where to store the HC physical address on success. */ VMMDECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys) { pgmLock(pVM); PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); if (RT_SUCCESS(rc)) *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK); pgmUnlock(pVM); return rc; } /** * Invalidates all page mapping TLBs. * * @param pVM The VM handle. */ void pgmPhysInvalidatePageMapTLB(PVM pVM) { pgmLock(pVM); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushes); /* Clear the shared R0/R3 TLB completely. */ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++) { pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS; pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0; pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0; pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0; } /** @todo clear the RC TLB whenever we add it. */ pgmUnlock(pVM); } /** * Invalidates a page mapping TLB entry * * @param pVM The VM handle. * @param GCPhys GCPhys entry to flush */ void pgmPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys) { PGM_LOCK_ASSERT_OWNER(pVM); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushEntry); #ifdef IN_RC unsigned idx = PGM_PAGER3MAPTLB_IDX(GCPhys); pVM->pgm.s.PhysTlbHC.aEntries[idx].GCPhys = NIL_RTGCPHYS; pVM->pgm.s.PhysTlbHC.aEntries[idx].pPage = 0; pVM->pgm.s.PhysTlbHC.aEntries[idx].pMap = 0; pVM->pgm.s.PhysTlbHC.aEntries[idx].pv = 0; #else /* Clear the shared R0/R3 TLB entry. */ PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)]; pTlbe->GCPhys = NIL_RTGCPHYS; pTlbe->pPage = 0; pTlbe->pMap = 0; pTlbe->pv = 0; #endif /** @todo clear the RC TLB whenever we add it. */ } /** * Makes sure that there is at least one handy page ready for use. * * This will also take the appropriate actions when reaching water-marks. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_EM_NO_MEMORY if we're really out of memory. * * @param pVM The VM handle. * * @remarks Must be called from within the PGM critical section. It may * nip back to ring-3/0 in some cases. */ static int pgmPhysEnsureHandyPage(PVM pVM) { AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages)); /* * Do we need to do anything special? */ #ifdef IN_RING3 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_R3_ALLOC)) #else if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_RZ_TO_R3)) #endif { /* * Allocate pages only if we're out of them, or in ring-3, almost out. */ #ifdef IN_RING3 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_R3_ALLOC) #else if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_ALLOC) #endif { Log(("PGM: cHandyPages=%u out of %u -> allocate more; VM_FF_PGM_NO_MEMORY=%RTbool\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages), VM_FF_ISSET(pVM, VM_FF_PGM_NO_MEMORY) )); #ifdef IN_RING3 int rc = PGMR3PhysAllocateHandyPages(pVM); #else int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES, 0); #endif if (RT_UNLIKELY(rc != VINF_SUCCESS)) { if (RT_FAILURE(rc)) return rc; AssertMsgReturn(rc == VINF_EM_NO_MEMORY, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS); if (!pVM->pgm.s.cHandyPages) { LogRel(("PGM: no more handy pages!\n")); return VERR_EM_NO_MEMORY; } Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NEED_HANDY_PAGES)); Assert(VM_FF_ISSET(pVM, VM_FF_PGM_NO_MEMORY)); #ifdef IN_RING3 # ifdef VBOX_WITH_REM REMR3NotifyFF(pVM); # endif #else VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); /* paranoia */ #endif } AssertMsgReturn( pVM->pgm.s.cHandyPages > 0 && pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%u\n", pVM->pgm.s.cHandyPages), VERR_PGM_HANDY_PAGE_IPE); } else { if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_SET_FF) VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES); #ifndef IN_RING3 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_TO_R3) { Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages))); VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); } #endif } } return VINF_SUCCESS; } /** * Replace a zero or shared page with new page that we can write to. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success, pPage is modified. * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending. * @retval VERR_EM_NO_MEMORY if we're totally out of memory. * * @todo Propagate VERR_EM_NO_MEMORY up the call tree. * * @param pVM The VM address. * @param pPage The physical page tracking structure. This will * be modified on success. * @param GCPhys The address of the page. * * @remarks Must be called from within the PGM critical section. It may * nip back to ring-3/0 in some cases. * * @remarks This function shouldn't really fail, however if it does * it probably means we've screwed up the size of handy pages and/or * the low-water mark. Or, that some device I/O is causing a lot of * pages to be allocated while while the host is in a low-memory * condition. This latter should be handled elsewhere and in a more * controlled manner, it's on the @bugref{3170} todo list... */ int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys) { LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys)); /* * Prereqs. */ PGM_LOCK_ASSERT_OWNER(pVM); AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys)); Assert(!PGM_PAGE_IS_MMIO(pPage)); # ifdef PGM_WITH_LARGE_PAGES /* * Try allocate a large page if applicable. */ if ( PGMIsUsingLargePages(pVM) && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) { RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK; PPGMPAGE pBasePage; int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pBasePage); AssertRCReturn(rc, rc); /* paranoia; can't happen. */ if (PGM_PAGE_GET_PDE_TYPE(pBasePage) == PGM_PAGE_PDE_TYPE_DONTCARE) { rc = pgmPhysAllocLargePage(pVM, GCPhys); if (rc == VINF_SUCCESS) return rc; } /* Mark the base as type page table, so we don't check over and over again. */ PGM_PAGE_SET_PDE_TYPE(pVM, pBasePage, PGM_PAGE_PDE_TYPE_PT); /* fall back to 4KB pages. */ } # endif /* * Flush any shadow page table mappings of the page. * When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any. */ bool fFlushTLBs = false; int rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhys, pPage, true /*fFlushTLBs*/, &fFlushTLBs); AssertMsgReturn(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc), RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_STATUS); /* * Ensure that we've got a page handy, take it and use it. */ int rc2 = pgmPhysEnsureHandyPage(pVM); if (RT_FAILURE(rc2)) { if (fFlushTLBs) PGM_INVL_ALL_VCPU_TLBS(pVM); Assert(rc2 == VERR_EM_NO_MEMORY); return rc2; } /* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */ PGM_LOCK_ASSERT_OWNER(pVM); AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys)); Assert(!PGM_PAGE_IS_MMIO(pPage)); uint32_t iHandyPage = --pVM->pgm.s.cHandyPages; AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage)); Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS); Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK)); Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID); Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID); /* * There are one or two action to be taken the next time we allocate handy pages: * - Tell the GMM (global memory manager) what the page is being used for. * (Speeds up replacement operations - sharing and defragmenting.) * - If the current backing is shared, it must be freed. */ const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys; pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; void const *pvSharedPage = NULL; if (PGM_PAGE_IS_SHARED(pPage)) { /* Mark this shared page for freeing/dereferencing. */ pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage); Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID); Log(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage), GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys)); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageReplaceShared)); pVM->pgm.s.cSharedPages--; /* Grab the address of the page so we can make a copy later on. (safe) */ rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvSharedPage); AssertRC(rc); } else { Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys)); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero); pVM->pgm.s.cZeroPages--; } /* * Do the PGMPAGE modifications. */ pVM->pgm.s.cPrivatePages++; PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys); PGM_PAGE_SET_PAGEID(pVM, pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PT); pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys); /* Copy the shared page contents to the replacement page. */ if (pvSharedPage) { /* Get the virtual address of the new page. */ PGMPAGEMAPLOCK PgMpLck; void *pvNewPage; rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvNewPage, &PgMpLck); AssertRC(rc); if (RT_SUCCESS(rc)) { memcpy(pvNewPage, pvSharedPage, PAGE_SIZE); /** @todo todo write ASMMemCopyPage */ pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); } } if ( fFlushTLBs && rc != VINF_PGM_GCPHYS_ALIASED) PGM_INVL_ALL_VCPU_TLBS(pVM); return rc; } #ifdef PGM_WITH_LARGE_PAGES /** * Replace a 2 MB range of zero pages with new pages that we can write to. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success, pPage is modified. * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending. * @retval VERR_EM_NO_MEMORY if we're totally out of memory. * * @todo Propagate VERR_EM_NO_MEMORY up the call tree. * * @param pVM The VM address. * @param GCPhys The address of the page. * * @remarks Must be called from within the PGM critical section. It may * nip back to ring-3/0 in some cases. */ int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys) { RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK; LogFlow(("pgmPhysAllocLargePage: %RGp base %RGp\n", GCPhys, GCPhysBase)); /* * Prereqs. */ PGM_LOCK_ASSERT_OWNER(pVM); Assert(PGMIsUsingLargePages(pVM)); PPGMPAGE pFirstPage; int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pFirstPage); if ( RT_SUCCESS(rc) && PGM_PAGE_GET_TYPE(pFirstPage) == PGMPAGETYPE_RAM) { unsigned uPDEType = PGM_PAGE_GET_PDE_TYPE(pFirstPage); /* Don't call this function for already allocated pages. */ Assert(uPDEType != PGM_PAGE_PDE_TYPE_PDE); if ( uPDEType == PGM_PAGE_PDE_TYPE_DONTCARE && PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ZERO) { /* Lazy approach: check all pages in the 2 MB range. * The whole range must be ram and unallocated. */ GCPhys = GCPhysBase; unsigned iPage; for (iPage = 0; iPage < _2M/PAGE_SIZE; iPage++) { PPGMPAGE pSubPage; rc = pgmPhysGetPageEx(pVM, GCPhys, &pSubPage); if ( RT_FAILURE(rc) || PGM_PAGE_GET_TYPE(pSubPage) != PGMPAGETYPE_RAM /* Anything other than ram implies monitoring. */ || PGM_PAGE_GET_STATE(pSubPage) != PGM_PAGE_STATE_ZERO) /* Allocated, monitored or shared means we can't use a large page here */ { LogFlow(("Found page %RGp with wrong attributes (type=%d; state=%d); cancel check. rc=%d\n", GCPhys, PGM_PAGE_GET_TYPE(pSubPage), PGM_PAGE_GET_STATE(pSubPage), rc)); break; } Assert(PGM_PAGE_GET_PDE_TYPE(pSubPage) == PGM_PAGE_PDE_TYPE_DONTCARE); GCPhys += PAGE_SIZE; } if (iPage != _2M/PAGE_SIZE) { /* Failed. Mark as requiring a PT so we don't check the whole thing again in the future. */ STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRefused); PGM_PAGE_SET_PDE_TYPE(pVM, pFirstPage, PGM_PAGE_PDE_TYPE_PT); return VERR_PGM_INVALID_LARGE_PAGE_RANGE; } /* * Do the allocation. */ # ifdef IN_RING3 rc = PGMR3PhysAllocateLargeHandyPage(pVM, GCPhysBase); # else rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE, GCPhysBase); # endif if (RT_SUCCESS(rc)) { Assert(PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ALLOCATED); pVM->pgm.s.cLargePages++; return VINF_SUCCESS; } /* If we fail once, it most likely means the host's memory is too fragmented; don't bother trying again. */ LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc)); PGMSetLargePageUsage(pVM, false); return rc; } } return VERR_PGM_INVALID_LARGE_PAGE_RANGE; } /** * Recheck the entire 2 MB range to see if we can use it again as a large page. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success, the large page can be used again * @retval VERR_PGM_INVALID_LARGE_PAGE_RANGE if it can't be reused * * @param pVM The VM address. * @param GCPhys The address of the page. * @param pLargePage Page structure of the base page */ int pgmPhysRecheckLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage) { STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRecheck); GCPhys &= X86_PDE2M_PAE_PG_MASK; /* Check the base page. */ Assert(PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED); if ( PGM_PAGE_GET_STATE(pLargePage) != PGM_PAGE_STATE_ALLOCATED || PGM_PAGE_GET_TYPE(pLargePage) != PGMPAGETYPE_RAM || PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage) != PGM_PAGE_HNDL_PHYS_STATE_NONE) { LogFlow(("pgmPhysRecheckLargePage: checks failed for base page %x %x %x\n", PGM_PAGE_GET_STATE(pLargePage), PGM_PAGE_GET_TYPE(pLargePage), PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage))); return VERR_PGM_INVALID_LARGE_PAGE_RANGE; } STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a); /* Check all remaining pages in the 2 MB range. */ unsigned i; GCPhys += PAGE_SIZE; for (i = 1; i < _2M/PAGE_SIZE; i++) { PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); AssertRCBreak(rc); if ( PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED || PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM || PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE) { LogFlow(("pgmPhysRecheckLargePage: checks failed for page %d; %x %x %x\n", i, PGM_PAGE_GET_STATE(pPage), PGM_PAGE_GET_TYPE(pPage), PGM_PAGE_GET_HNDL_PHYS_STATE(pPage))); break; } GCPhys += PAGE_SIZE; } STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a); if (i == _2M/PAGE_SIZE) { PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE); pVM->pgm.s.cLargePagesDisabled--; Log(("pgmPhysRecheckLargePage: page %RGp can be reused!\n", GCPhys - _2M)); return VINF_SUCCESS; } return VERR_PGM_INVALID_LARGE_PAGE_RANGE; } #endif /* PGM_WITH_LARGE_PAGES */ /** * Deal with a write monitored page. * * @returns VBox strict status code. * * @param pVM The VM address. * @param pPage The physical page tracking structure. * * @remarks Called from within the PGM critical section. */ void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED); PGM_PAGE_SET_WRITTEN_TO(pVM, pPage); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED); Assert(pVM->pgm.s.cMonitoredPages > 0); pVM->pgm.s.cMonitoredPages--; pVM->pgm.s.cWrittenToPages++; } /** * Deal with pages that are not writable, i.e. not in the ALLOCATED state. * * @returns VBox strict status code. * @retval VINF_SUCCESS on success. * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * * @param pVM The VM address. * @param pPage The physical page tracking structure. * @param GCPhys The address of the page. * * @remarks Called from within the PGM critical section. */ int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys) { PGM_LOCK_ASSERT_OWNER(pVM); switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_WRITE_MONITORED: pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage); /* fall thru */ default: /* to shut up GCC */ case PGM_PAGE_STATE_ALLOCATED: return VINF_SUCCESS; /* * Zero pages can be dummy pages for MMIO or reserved memory, * so we need to check the flags before joining cause with * shared page replacement. */ case PGM_PAGE_STATE_ZERO: if (PGM_PAGE_IS_MMIO(pPage)) return VERR_PGM_PHYS_PAGE_RESERVED; /* fall thru */ case PGM_PAGE_STATE_SHARED: return pgmPhysAllocPage(pVM, pPage, GCPhys); /* Not allowed to write to ballooned pages. */ case PGM_PAGE_STATE_BALLOONED: return VERR_PGM_PHYS_PAGE_BALLOONED; } } /** * Internal usage: Map the page specified by its GMM ID. * * This is similar to pgmPhysPageMap * * @returns VBox status code. * * @param pVM The VM handle. * @param idPage The Page ID. * @param HCPhys The physical address (for RC). * @param ppv Where to store the mapping address. * * @remarks Called from within the PGM critical section. The mapping is only * valid while you are inside this section. */ int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv) { /* * Validation. */ PGM_LOCK_ASSERT_OWNER(pVM); AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT; AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER); #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* * Map it by HCPhys. */ return pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS); #else /* * Find/make Chunk TLB entry for the mapping chunk. */ PPGMCHUNKR3MAP pMap; PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)]; if (pTlbe->idChunk == idChunk) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits)); pMap = pTlbe->pChunk; } else { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses)); /* * Find the chunk, map it if necessary. */ pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk); if (pMap) pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow; else { # ifdef IN_RING0 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk); AssertRCReturn(rc, rc); pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk); Assert(pMap); # else int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap); if (RT_FAILURE(rc)) return rc; # endif } /* * Enter it into the Chunk TLB. */ pTlbe->idChunk = idChunk; pTlbe->pChunk = pMap; } *ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT); return VINF_SUCCESS; #endif } /** * Maps a page into the current virtual address space so it can be accessed. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * * @param pVM The VM address. * @param pPage The physical page tracking structure. * @param GCPhys The address of the page. * @param ppMap Where to store the address of the mapping tracking structure. * @param ppv Where to store the mapping address of the page. The page * offset is masked off! * * @remarks Called from within the PGM critical section. */ static int pgmPhysPageMapCommon(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv) { PGM_LOCK_ASSERT_OWNER(pVM); #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* * Just some sketchy GC/R0-darwin code. */ *ppMap = NULL; RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage); Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg); pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS); NOREF(GCPhys); return VINF_SUCCESS; #else /* IN_RING3 || IN_RING0 */ /* * Special case: ZERO and MMIO2 pages. */ const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage); if (idChunk == NIL_GMM_CHUNKID) { AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage), VERR_PGM_PHYS_PAGE_MAP_IPE_1); if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2) { /* Lookup the MMIO2 range and use pvR3 to calc the address. */ PPGMRAMRANGE pRam = pgmPhysGetRange(pVM, GCPhys); AssertMsgReturn(pRam || !pRam->pvR3, ("pRam=%p pPage=%R[pgmpage]\n", pRam, pPage), VERR_PGM_PHYS_PAGE_MAP_IPE_2); *ppv = (void *)((uintptr_t)pRam->pvR3 + (uintptr_t)((GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK) - pRam->GCPhys)); } else if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO) { /** @todo deal with aliased MMIO2 pages somehow... * One solution would be to seed MMIO2 pages to GMM and get unique Page IDs for * them, that would also avoid this mess. It would actually be kind of * elegant... */ AssertLogRelMsgFailedReturn(("%RGp\n", GCPhys), VERR_PGM_MAP_MMIO2_ALIAS_MMIO); } else { /** @todo handle MMIO2 */ AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage), VERR_PGM_PHYS_PAGE_MAP_IPE_3); AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg, ("pPage=%R[pgmpage]\n", pPage), VERR_PGM_PHYS_PAGE_MAP_IPE_4); *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg); } *ppMap = NULL; return VINF_SUCCESS; } /* * Find/make Chunk TLB entry for the mapping chunk. */ PPGMCHUNKR3MAP pMap; PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)]; if (pTlbe->idChunk == idChunk) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits)); pMap = pTlbe->pChunk; AssertPtr(pMap->pv); } else { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses)); /* * Find the chunk, map it if necessary. */ pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk); if (pMap) { AssertPtr(pMap->pv); pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow; } else { #ifdef IN_RING0 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk); AssertRCReturn(rc, rc); pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk); Assert(pMap); #else int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap); if (RT_FAILURE(rc)) return rc; #endif AssertPtr(pMap->pv); } /* * Enter it into the Chunk TLB. */ pTlbe->idChunk = idChunk; pTlbe->pChunk = pMap; } *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT); *ppMap = pMap; return VINF_SUCCESS; #endif /* IN_RING3 */ } /** * Combination of pgmPhysPageMakeWritable and pgmPhysPageMapWritable. * * This is typically used is paths where we cannot use the TLB methods (like ROM * pages) or where there is no point in using them since we won't get many hits. * * @returns VBox strict status code. * @retval VINF_SUCCESS on success. * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * * @param pVM The VM address. * @param pPage The physical page tracking structure. * @param GCPhys The address of the page. * @param ppv Where to store the mapping address of the page. The page * offset is masked off! * * @remarks Called from within the PGM critical section. The mapping is only * valid while you are inside section. */ int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv) { int rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (RT_SUCCESS(rc)) { AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc)); PPGMPAGEMAP pMapIgnore; int rc2 = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv); if (RT_FAILURE(rc2)) /* preserve rc */ rc = rc2; } return rc; } /** * Maps a page into the current virtual address space so it can be accessed for * both writing and reading. * * This is typically used is paths where we cannot use the TLB methods (like ROM * pages) or where there is no point in using them since we won't get many hits. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * * @param pVM The VM address. * @param pPage The physical page tracking structure. Must be in the * allocated state. * @param GCPhys The address of the page. * @param ppv Where to store the mapping address of the page. The page * offset is masked off! * * @remarks Called from within the PGM critical section. The mapping is only * valid while you are inside section. */ int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); PPGMPAGEMAP pMapIgnore; return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv); } /** * Maps a page into the current virtual address space so it can be accessed for * reading. * * This is typically used is paths where we cannot use the TLB methods (like ROM * pages) or where there is no point in using them since we won't get many hits. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * * @param pVM The VM address. * @param pPage The physical page tracking structure. * @param GCPhys The address of the page. * @param ppv Where to store the mapping address of the page. The page * offset is masked off! * * @remarks Called from within the PGM critical section. The mapping is only * valid while you are inside this section. */ int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv) { PPGMPAGEMAP pMapIgnore; return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, (void **)ppv); } #if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /** * Load a guest page into the ring-3 physical TLB. * * @returns VBox status code. * @retval VINF_SUCCESS on success * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * @param pPGM The PGM instance pointer. * @param GCPhys The guest physical address in question. */ int pgmPhysPageLoadIntoTlb(PVM pVM, RTGCPHYS GCPhys) { PGM_LOCK_ASSERT_OWNER(pVM); /* * Find the ram range and page and hand it over to the with-page function. * 99.8% of requests are expected to be in the first range. */ PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys); if (!pPage) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses)); return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } return pgmPhysPageLoadIntoTlbWithPage(pVM, pPage, GCPhys); } /** * Load a guest page into the ring-3 physical TLB. * * @returns VBox status code. * @retval VINF_SUCCESS on success * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param pPage Pointer to the PGMPAGE structure corresponding to * GCPhys. * @param GCPhys The guest physical address in question. */ int pgmPhysPageLoadIntoTlbWithPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys) { PGM_LOCK_ASSERT_OWNER(pVM); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses)); /* * Map the page. * Make a special case for the zero page as it is kind of special. */ PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)]; if ( !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage)) { void *pv; PPGMPAGEMAP pMap; int rc = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMap, &pv); if (RT_FAILURE(rc)) return rc; pTlbe->pMap = pMap; pTlbe->pv = pv; Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK)); } else { AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg, ("%RGp/%R[pgmpage]\n", GCPhys, pPage)); pTlbe->pMap = NULL; pTlbe->pv = pVM->pgm.s.CTXALLSUFF(pvZeroPg); } #ifdef PGM_WITH_PHYS_TLB if ( PGM_PAGE_GET_TYPE(pPage) < PGMPAGETYPE_ROM_SHADOW || PGM_PAGE_GET_TYPE(pPage) > PGMPAGETYPE_ROM) pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK; else pTlbe->GCPhys = NIL_RTGCPHYS; /* ROM: Problematic because of the two pages. :-/ */ #else pTlbe->GCPhys = NIL_RTGCPHYS; #endif pTlbe->pPage = pPage; return VINF_SUCCESS; } #endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */ /** * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to * own the PGM lock and therefore not need to lock the mapped page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param pPage Pointer to the PGMPAGE structure for the page. * @param ppv Where to store the address corresponding to GCPhys. * * @internal * @deprecated Use pgmPhysGCPhys2CCPtrInternalEx. */ int pgmPhysGCPhys2CCPtrInternalDepr(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv) { int rc; AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM); PGM_LOCK_ASSERT_OWNER(pVM); pVM->pgm.s.cDeprecatedPageLocks++; /* * Make sure the page is writable. */ if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (RT_FAILURE(rc)) return rc; AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc)); } Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0); /* * Get the mapping address. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) void *pv; rc = pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), PGM_PAGE_GET_HCPHYS(pPage), &pv RTLOG_COMMA_SRC_POS); if (RT_FAILURE(rc)) return rc; *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); #else PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe); if (RT_FAILURE(rc)) return rc; *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); #endif return VINF_SUCCESS; } #if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /** * Locks a page mapping for writing. * * @param pVM The VM handle. * @param pPage The page. * @param pTlbe The mapping TLB entry for the page. * @param pLock The lock structure (output). */ DECLINLINE(void) pgmPhysPageMapLockForWriting(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock) { PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cWriteLockedPages++; PGM_PAGE_INC_WRITE_LOCKS(pPage); } else if (cLocks != PGM_PAGE_MAX_LOCKS) { PGM_PAGE_INC_WRITE_LOCKS(pPage); AssertMsgFailed(("%R[pgmpage] is entering permanent write locked state!\n", pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE; pLock->pvMap = pMap; } /** * Locks a page mapping for reading. * * @param pVM The VM handle. * @param pPage The page. * @param pTlbe The mapping TLB entry for the page. * @param pLock The lock structure (output). */ DECLINLINE(void) pgmPhysPageMapLockForReading(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock) { PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cReadLockedPages++; PGM_PAGE_INC_READ_LOCKS(pPage); } else if (cLocks != PGM_PAGE_MAX_LOCKS) { PGM_PAGE_INC_READ_LOCKS(pPage); AssertMsgFailed(("%R[pgmpage] is entering permanent read locked state!\n", pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ; pLock->pvMap = pMap; } #endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */ /** * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to * own the PGM lock and have access to the page structure. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param pPage Pointer to the PGMPAGE structure for the page. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that * pgmPhysReleaseInternalPageMappingLock needs. * * @internal */ int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) { int rc; AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM); PGM_LOCK_ASSERT_OWNER(pVM); /* * Make sure the page is writable. */ if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (RT_FAILURE(rc)) return rc; AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc)); } Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0); /* * Do the job. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) void *pv; PVMCPU pVCpu = VMMGetCpu(pVM); rc = pgmRZDynMapHCPageInlined(pVCpu, PGM_PAGE_GET_HCPHYS(pPage), &pv RTLOG_COMMA_SRC_POS); if (RT_FAILURE(rc)) return rc; *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); pLock->pvPage = pv; pLock->pVCpu = pVCpu; #else PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe); if (RT_FAILURE(rc)) return rc; pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock); *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); #endif return VINF_SUCCESS; } /** * Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to * own the PGM lock and have access to the page structure. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param pPage Pointer to the PGMPAGE structure for the page. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that * pgmPhysReleaseInternalPageMappingLock needs. * * @internal */ int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv, PPGMPAGEMAPLOCK pLock) { AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM); PGM_LOCK_ASSERT_OWNER(pVM); Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0); /* * Do the job. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) void *pv; PVMCPU pVCpu = VMMGetCpu(pVM); int rc = pgmRZDynMapHCPageInlined(pVCpu, PGM_PAGE_GET_HCPHYS(pPage), &pv RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */ if (RT_FAILURE(rc)) return rc; *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); pLock->pvPage = pv; pLock->pVCpu = pVCpu; #else PPGMPAGEMAPTLBE pTlbe; int rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe); if (RT_FAILURE(rc)) return rc; pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock); *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); #endif return VINF_SUCCESS; } /** * Requests the mapping of a guest page into the current context. * * This API should only be used for very short term, as it will consume scarse * resources (R0 and GC) in the mapping cache. When you're done with the page, * call PGMPhysReleasePageMappingLock() ASAP to release it. * * This API will assume your intention is to write to the page, and will * therefore replace shared and zero pages. If you do not intend to modify * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be * mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that * PGMPhysReleasePageMappingLock needs. * * @remarks The caller is responsible for dealing with access handlers. * @todo Add an informational return code for pages with access handlers? * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. External threads may * need to delegate jobs to the EMTs. * @remarks Only one page is mapped! Make no assumption about what's after or * before the returned page! * @thread Any thread. */ VMMDECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) { int rc = pgmLock(pVM); AssertRCReturn(rc, rc); #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* * Find the page and make sure it's writable. */ PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); if (RT_SUCCESS(rc)) { if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)) rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (RT_SUCCESS(rc)) { AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc)); PVMCPU pVCpu = VMMGetCpu(pVM); void *pv; rc = pgmRZDynMapHCPageInlined(pVCpu, PGM_PAGE_GET_HCPHYS(pPage), &pv RTLOG_COMMA_SRC_POS); if (RT_SUCCESS(rc)) { AssertRCSuccess(rc); pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); *ppv = pv; pLock->pvPage = pv; pLock->pVCpu = pVCpu; } } } #else /* IN_RING3 || IN_RING0 */ /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); if (RT_SUCCESS(rc)) { /* * If the page is shared, the zero page, or being write monitored * it must be converted to a page that's writable if possible. */ PPGMPAGE pPage = pTlbe->pPage; if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (RT_SUCCESS(rc)) { AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc)); rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe); } } if (RT_SUCCESS(rc)) { /* * Now, just perform the locking and calculate the return address. */ pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock); *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); } } #endif /* IN_RING3 || IN_RING0 */ pgmUnlock(pVM); return rc; } /** * Requests the mapping of a guest page into the current context. * * This API should only be used for very short term, as it will consume scarse * resources (R0 and GC) in the mapping cache. When you're done with the page, * call PGMPhysReleasePageMappingLock() ASAP to release it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The VM handle. * @param GCPhys The guest physical address of the page that should be * mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that * PGMPhysReleasePageMappingLock needs. * * @remarks The caller is responsible for dealing with access handlers. * @todo Add an informational return code for pages with access handlers? * * @remarks Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @remarks Only one page is mapped! Make no assumption about what's after or * before the returned page! * @thread Any thread. */ VMMDECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock) { int rc = pgmLock(pVM); AssertRCReturn(rc, rc); #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* * Find the page and make sure it's readable. */ PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); if (RT_SUCCESS(rc)) { if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage))) rc = VERR_PGM_PHYS_PAGE_RESERVED; else { PVMCPU pVCpu = VMMGetCpu(pVM); void *pv; rc = pgmRZDynMapHCPageInlined(pVCpu, PGM_PAGE_GET_HCPHYS(pPage), &pv RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */ if (RT_SUCCESS(rc)) { AssertRCSuccess(rc); pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); *ppv = pv; pLock->pvPage = pv; pLock->pVCpu = pVCpu; } } } #else /* IN_RING3 || IN_RING0 */ /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); if (RT_SUCCESS(rc)) { /* MMIO pages doesn't have any readable backing. */ PPGMPAGE pPage = pTlbe->pPage; if (RT_UNLIKELY(PGM_PAGE_IS_MMIO(pPage))) rc = VERR_PGM_PHYS_PAGE_RESERVED; else { /* * Now, just perform the locking and calculate the return address. */ pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock); *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); } } #endif /* IN_RING3 || IN_RING0 */ pgmUnlock(pVM); return rc; } /** * Requests the mapping of a guest page given by virtual address into the current context. * * This API should only be used for very short term, as it will consume * scarse resources (R0 and GC) in the mapping cache. When you're done * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it. * * This API will assume your intention is to write to the page, and will * therefore replace shared and zero pages. If you do not intend to modify * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present. * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVCpu VMCPU handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread EMT */ VMMDECL(int) PGMPhysGCPtr2CCPtr(PVMCPU pVCpu, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock) { VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM)); RTGCPHYS GCPhys; int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys); if (RT_SUCCESS(rc)) rc = PGMPhysGCPhys2CCPtr(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock); return rc; } /** * Requests the mapping of a guest page given by virtual address into the current context. * * This API should only be used for very short term, as it will consume * scarse resources (R0 and GC) in the mapping cache. When you're done * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present. * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVCpu VMCPU handle. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread EMT */ VMMDECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVMCPU pVCpu, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock) { VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM)); RTGCPHYS GCPhys; int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys); if (RT_SUCCESS(rc)) rc = PGMPhysGCPhys2CCPtrReadOnly(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock); return rc; } /** * Release the mapping of a guest page. * * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly. * * @param pVM The VM handle. * @param pLock The lock structure initialized by the mapping function. */ VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock) { #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) Assert(pLock->pvPage != NULL); Assert(pLock->pVCpu == VMMGetCpu(pVM)); PGM_DYNMAP_UNUSED_HINT(pLock->pVCpu, pLock->pvPage); pLock->pVCpu = NULL; pLock->pvPage = NULL; #else PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap; PPGMPAGE pPage = (PPGMPAGE)(pLock->uPageAndType & ~PGMPAGEMAPLOCK_TYPE_MASK); bool fWriteLock = (pLock->uPageAndType & PGMPAGEMAPLOCK_TYPE_MASK) == PGMPAGEMAPLOCK_TYPE_WRITE; pLock->uPageAndType = 0; pLock->pvMap = NULL; pgmLock(pVM); if (fWriteLock) { unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage); Assert(cLocks > 0); if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS)) { if (cLocks == 1) { Assert(pVM->pgm.s.cWriteLockedPages > 0); pVM->pgm.s.cWriteLockedPages--; } PGM_PAGE_DEC_WRITE_LOCKS(pPage); } if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED) { PGM_PAGE_SET_WRITTEN_TO(pVM, pPage); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED); Assert(pVM->pgm.s.cMonitoredPages > 0); pVM->pgm.s.cMonitoredPages--; pVM->pgm.s.cWrittenToPages++; } } else { unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage); Assert(cLocks > 0); if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS)) { if (cLocks == 1) { Assert(pVM->pgm.s.cReadLockedPages > 0); pVM->pgm.s.cReadLockedPages--; } PGM_PAGE_DEC_READ_LOCKS(pPage); } } if (pMap) { Assert(pMap->cRefs >= 1); pMap->cRefs--; } pgmUnlock(pVM); #endif /* IN_RING3 */ } /** * Release the internal mapping of a guest page. * * This is the counter part of pgmPhysGCPhys2CCPtrInternalEx and * pgmPhysGCPhys2CCPtrInternalReadOnly. * * @param pVM The VM handle. * @param pLock The lock structure initialized by the mapping function. * * @remarks Caller must hold the PGM lock. */ void pgmPhysReleaseInternalPageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock) { PGM_LOCK_ASSERT_OWNER(pVM); PGMPhysReleasePageMappingLock(pVM, pLock); /* lazy for now */ } /** * Converts a GC physical address to a HC ring-3 pointer. * * @returns VINF_SUCCESS on success. * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical * page but has no physical backing. * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid * GC physical address. * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses * a dynamic ram chunk boundary * * @param pVM The VM handle. * @param GCPhys The GC physical address to convert. * @param pR3Ptr Where to store the R3 pointer on success. * * @deprecated Avoid when possible! */ int pgmPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr) { /** @todo this is kind of hacky and needs some more work. */ #ifndef DEBUG_sandervl VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */ #endif Log(("pgmPhysGCPhys2R3Ptr(,%RGp,): dont use this API!\n", GCPhys)); /** @todo eliminate this API! */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) NOREF(pVM); NOREF(pR3Ptr); AssertFailedReturn(VERR_NOT_IMPLEMENTED); #else pgmLock(pVM); PPGMRAMRANGE pRam; PPGMPAGE pPage; int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam); if (RT_SUCCESS(rc)) rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr); pgmUnlock(pVM); Assert(rc <= VINF_SUCCESS); return rc; #endif } #if 0 /*defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)*/ /** * Maps and locks a guest CR3 or PD (PAE) page. * * @returns VINF_SUCCESS on success. * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical * page but has no physical backing. * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid * GC physical address. * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses * a dynamic ram chunk boundary * * @param pVM The VM handle. * @param GCPhys The GC physical address to convert. * @param pR3Ptr Where to store the R3 pointer on success. This may or * may not be valid in ring-0 depending on the * VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 build option. * * @remarks The caller must own the PGM lock. */ int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr) { PPGMRAMRANGE pRam; PPGMPAGE pPage; int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam); if (RT_SUCCESS(rc)) rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr); Assert(rc <= VINF_SUCCESS); return rc; } int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr) { } #endif /** * Converts a guest pointer to a GC physical address. * * This uses the current CR3/CR0/CR4 of the guest. * * @returns VBox status code. * @param pVCpu The VMCPU Handle * @param GCPtr The guest pointer to convert. * @param pGCPhys Where to store the GC physical address. */ VMMDECL(int) PGMPhysGCPtr2GCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTGCPHYS pGCPhys) { int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, pGCPhys); if (pGCPhys && RT_SUCCESS(rc)) *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK; return rc; } /** * Converts a guest pointer to a HC physical address. * * This uses the current CR3/CR0/CR4 of the guest. * * @returns VBox status code. * @param pVCpu The VMCPU Handle * @param GCPtr The guest pointer to convert. * @param pHCPhys Where to store the HC physical address. */ VMMDECL(int) PGMPhysGCPtr2HCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTHCPHYS pHCPhys) { PVM pVM = pVCpu->CTX_SUFF(pVM); RTGCPHYS GCPhys; int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys); if (RT_SUCCESS(rc)) rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys); return rc; } #undef LOG_GROUP #define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS #if defined(IN_RING3) && defined(SOME_UNUSED_FUNCTION) /** * Cache PGMPhys memory access * * @param pVM VM Handle. * @param pCache Cache structure pointer * @param GCPhys GC physical address * @param pbHC HC pointer corresponding to physical page * * @thread EMT. */ static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3) { uint32_t iCacheIndex; Assert(VM_IS_EMT(pVM)); GCPhys = PHYS_PAGE_ADDRESS(GCPhys); pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3); iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK); ASMBitSet(&pCache->aEntries, iCacheIndex); pCache->Entry[iCacheIndex].GCPhys = GCPhys; pCache->Entry[iCacheIndex].pbR3 = pbR3; } #endif /* IN_RING3 */ /** * Deals with reading from a page with one or more ALL access handlers. * * @returns VBox status code. Can be ignored in ring-3. * @retval VINF_SUCCESS. * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3. * * @param pVM The VM handle. * @param pPage The page descriptor. * @param GCPhys The physical address to start reading at. * @param pvBuf Where to put the bits we read. * @param cb How much to read - less or equal to a page. */ static int pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb) { /* * The most frequent access here is MMIO and shadowed ROM. * The current code ASSUMES all these access handlers covers full pages! */ /* * Whatever we do we need the source page, map it first. */ PGMPAGEMAPLOCK PgMpLck; const void *pvSrc = NULL; int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc, &PgMpLck); if (RT_FAILURE(rc)) { AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n", GCPhys, pPage, rc)); memset(pvBuf, 0xff, cb); return VINF_SUCCESS; } rc = VINF_PGM_HANDLER_DO_DEFAULT; /* * Deal with any physical handlers. */ #ifdef IN_RING3 PPGMPHYSHANDLER pPhys = NULL; #endif if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL) { #ifdef IN_RING3 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys); AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb)); Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast); Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0); Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); Assert(pPhys->CTX_SUFF(pfnHandler)); PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler); void *pvUser = pPhys->CTX_SUFF(pvUser); Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) )); STAM_PROFILE_START(&pPhys->Stat, h); PGM_LOCK_ASSERT_OWNER(pVM); /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */ pgmUnlock(pVM); rc = pfnHandler(pVM, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, pvUser); pgmLock(pVM); # ifdef VBOX_WITH_STATISTICS pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys); if (pPhys) STAM_PROFILE_STOP(&pPhys->Stat, h); # else pPhys = NULL; /* might not be valid anymore. */ # endif AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys)); #else /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */ //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb)); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VERR_PGM_PHYS_WR_HIT_HANDLER; #endif } /* * Deal with any virtual handlers. */ if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL) { unsigned iPage; PPGMVIRTHANDLER pVirt; int rc2 = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iPage); AssertReleaseMsg(RT_SUCCESS(rc2), ("GCPhys=%RGp cb=%#x rc2=%Rrc\n", GCPhys, cb, rc2)); Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0); Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast); #ifdef IN_RING3 if (pVirt->pfnHandlerR3) { if (!pPhys) Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) )); else Log(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) )); RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK) + (iPage << PAGE_SHIFT) + (GCPhys & PAGE_OFFSET_MASK); STAM_PROFILE_START(&pVirt->Stat, h); rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, /*pVirt->CTX_SUFF(pvUser)*/ NULL); STAM_PROFILE_STOP(&pVirt->Stat, h); if (rc2 == VINF_SUCCESS) rc = VINF_SUCCESS; AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc2, GCPhys, pPage, pVirt->pszDesc)); } else Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s [no handler]\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) )); #else /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */ //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cb=%#x\n", GCPhys, cb)); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VERR_PGM_PHYS_WR_HIT_HANDLER; #endif } /* * Take the default action. */ if (rc == VINF_PGM_HANDLER_DO_DEFAULT) memcpy(pvBuf, pvSrc, cb); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return rc; } /** * Read physical memory. * * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you * want to ignore those. * * @returns VBox status code. Can be ignored in ring-3. * @retval VINF_SUCCESS. * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3. * * @param pVM VM Handle. * @param GCPhys Physical address start reading from. * @param pvBuf Where to put the read bits. * @param cbRead How many bytes to read. */ VMMDECL(int) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead) { AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS); LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead)); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysRead)); STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysReadBytes), cbRead); pgmLock(pVM); /* * Copy loop on ram ranges. */ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); for (;;) { /* Inside range or not? */ if (pRam && GCPhys >= pRam->GCPhys) { /* * Must work our way thru this page by page. */ RTGCPHYS off = GCPhys - pRam->GCPhys; while (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; PPGMPAGE pPage = &pRam->aPages[iPage]; size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb > cbRead) cb = cbRead; /* * Any ALL access handlers? */ if (RT_UNLIKELY(PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))) { int rc = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb); if (RT_FAILURE(rc)) { pgmUnlock(pVM); return rc; } } else { /* * Get the pointer to the page. */ PGMPAGEMAPLOCK PgMpLck; const void *pvSrc; int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck); if (RT_SUCCESS(rc)) { memcpy(pvBuf, pvSrc, cb); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); } else { AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n", pRam->GCPhys + off, pPage, rc)); memset(pvBuf, 0xff, cb); } } /* next page */ if (cb >= cbRead) { pgmUnlock(pVM); return VINF_SUCCESS; } cbRead -= cb; off += cb; pvBuf = (char *)pvBuf + cb; } /* walk pages in ram range. */ GCPhys = pRam->GCPhysLast + 1; } else { LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead)); /* * Unassigned address space. */ size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0; if (cb >= cbRead) { memset(pvBuf, 0xff, cbRead); break; } memset(pvBuf, 0xff, cb); cbRead -= cb; pvBuf = (char *)pvBuf + cb; GCPhys += cb; } /* Advance range if necessary. */ while (pRam && GCPhys > pRam->GCPhysLast) pRam = pRam->CTX_SUFF(pNext); } /* Ram range walk */ pgmUnlock(pVM); return VINF_SUCCESS; } /** * Deals with writing to a page with one or more WRITE or ALL access handlers. * * @returns VBox status code. Can be ignored in ring-3. * @retval VINF_SUCCESS. * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3. * * @param pVM The VM handle. * @param pPage The page descriptor. * @param GCPhys The physical address to start writing at. * @param pvBuf What to write. * @param cbWrite How much to write - less or equal to a page. */ static int pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite) { PGMPAGEMAPLOCK PgMpLck; void *pvDst = NULL; int rc; /* * Give priority to physical handlers (like #PF does). * * Hope for a lonely physical handler first that covers the whole * write area. This should be a pretty frequent case with MMIO and * the heavy usage of full page handlers in the page pool. */ if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) || PGM_PAGE_IS_MMIO(pPage) /* screw virtual handlers on MMIO pages */) { PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhys); if (pCur) { Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast); Assert(pCur->CTX_SUFF(pfnHandler)); size_t cbRange = pCur->Core.KeyLast - GCPhys + 1; if (cbRange > cbWrite) cbRange = cbWrite; #ifndef IN_RING3 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */ NOREF(cbRange); //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange)); return VERR_PGM_PHYS_WR_HIT_HANDLER; #else /* IN_RING3 */ Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) )); if (!PGM_PAGE_IS_MMIO(pPage)) rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck); else rc = VINF_SUCCESS; if (RT_SUCCESS(rc)) { PFNPGMR3PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler); void *pvUser = pCur->CTX_SUFF(pvUser); STAM_PROFILE_START(&pCur->Stat, h); PGM_LOCK_ASSERT_OWNER(pVM); /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */ pgmUnlock(pVM); rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser); pgmLock(pVM); # ifdef VBOX_WITH_STATISTICS pCur = pgmHandlerPhysicalLookup(pVM, GCPhys); if (pCur) STAM_PROFILE_STOP(&pCur->Stat, h); # else pCur = NULL; /* might not be valid anymore. */ # endif if (rc == VINF_PGM_HANDLER_DO_DEFAULT && pvDst) { if (pvDst) memcpy(pvDst, pvBuf, cbRange); } else AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pCur) ? pCur->pszDesc : "")); } else AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", GCPhys, pPage, rc), rc); if (RT_LIKELY(cbRange == cbWrite)) { if (pvDst) pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VINF_SUCCESS; } /* more fun to be had below */ cbWrite -= cbRange; GCPhys += cbRange; pvBuf = (uint8_t *)pvBuf + cbRange; pvDst = (uint8_t *)pvDst + cbRange; #endif /* IN_RING3 */ } /* else: the handler is somewhere else in the page, deal with it below. */ Assert(!PGM_PAGE_IS_MMIO(pPage)); /* MMIO handlers are all PAGE_SIZEed! */ } /* * A virtual handler without any interfering physical handlers. * Hopefully it'll cover the whole write. */ else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage)) { unsigned iPage; PPGMVIRTHANDLER pCur; rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pCur, &iPage); if (RT_SUCCESS(rc)) { size_t cbRange = (PAGE_OFFSET_MASK & pCur->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1; if (cbRange > cbWrite) cbRange = cbWrite; #ifndef IN_RING3 /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */ NOREF(cbRange); //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange)); return VERR_PGM_PHYS_WR_HIT_HANDLER; #else /* IN_RING3 */ Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) )); rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck); if (RT_SUCCESS(rc)) { rc = VINF_PGM_HANDLER_DO_DEFAULT; if (pCur->pfnHandlerR3) { RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pCur->Core.Key & PAGE_BASE_GC_MASK) + (iPage << PAGE_SHIFT) + (GCPhys & PAGE_OFFSET_MASK); STAM_PROFILE_START(&pCur->Stat, h); rc = pCur->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL); STAM_PROFILE_STOP(&pCur->Stat, h); } if (rc == VINF_PGM_HANDLER_DO_DEFAULT) memcpy(pvDst, pvBuf, cbRange); else AssertLogRelMsg(rc == VINF_SUCCESS, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pCur->pszDesc)); } else AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", GCPhys, pPage, rc), rc); if (RT_LIKELY(cbRange == cbWrite)) { pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VINF_SUCCESS; } /* more fun to be had below */ cbWrite -= cbRange; GCPhys += cbRange; pvBuf = (uint8_t *)pvBuf + cbRange; pvDst = (uint8_t *)pvDst + cbRange; #endif } /* else: the handler is somewhere else in the page, deal with it below. */ } /* * Deal with all the odd ends. */ /* We need a writable destination page. */ if (!pvDst) { rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck); AssertLogRelMsgReturn(RT_SUCCESS(rc), ("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", GCPhys, pPage, rc), rc); } /* The loop state (big + ugly). */ unsigned iVirtPage = 0; PPGMVIRTHANDLER pVirt = NULL; uint32_t offVirt = PAGE_SIZE; uint32_t offVirtLast = PAGE_SIZE; bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage); PPGMPHYSHANDLER pPhys = NULL; uint32_t offPhys = PAGE_SIZE; uint32_t offPhysLast = PAGE_SIZE; bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage); /* The loop. */ for (;;) { /* * Find the closest handler at or above GCPhys. */ if (fMoreVirt && !pVirt) { rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &pVirt, &iVirtPage); if (RT_SUCCESS(rc)) { offVirt = 0; offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK); } else { PPGMPHYS2VIRTHANDLER pVirtPhys; pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers, GCPhys, true /* fAbove */); if ( pVirtPhys && (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT)) { /* ASSUME that pVirtPhys only covers one page. */ Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT)); Assert(pVirtPhys->Core.Key > GCPhys); pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler); iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0); offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK); offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK); } else { pVirt = NULL; fMoreVirt = false; offVirt = offVirtLast = PAGE_SIZE; } } } if (fMorePhys && !pPhys) { pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys); if (pPhys) { offPhys = 0; offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */ } else { pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhys, true /* fAbove */); if ( pPhys && pPhys->Core.Key <= GCPhys + (cbWrite - 1)) { offPhys = pPhys->Core.Key - GCPhys; offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */ } else { pPhys = NULL; fMorePhys = false; offPhys = offPhysLast = PAGE_SIZE; } } } /* * Handle access to space without handlers (that's easy). */ rc = VINF_PGM_HANDLER_DO_DEFAULT; uint32_t cbRange = (uint32_t)cbWrite; if (offPhys && offVirt) { if (cbRange > offPhys) cbRange = offPhys; if (cbRange > offVirt) cbRange = offVirt; Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage)); } /* * Physical handler. */ else if (!offPhys && offVirt) { if (cbRange > offPhysLast + 1) cbRange = offPhysLast + 1; if (cbRange > offVirt) cbRange = offVirt; #ifdef IN_RING3 PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler); void *pvUser = pPhys->CTX_SUFF(pvUser); Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) )); STAM_PROFILE_START(&pPhys->Stat, h); PGM_LOCK_ASSERT_OWNER(pVM); /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */ pgmUnlock(pVM); rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser); pgmLock(pVM); # ifdef VBOX_WITH_STATISTICS pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys); if (pPhys) STAM_PROFILE_STOP(&pPhys->Stat, h); # else pPhys = NULL; /* might not be valid anymore. */ # endif AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : "")); #else /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */ NOREF(cbRange); //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange)); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VERR_PGM_PHYS_WR_HIT_HANDLER; #endif } /* * Virtual handler. */ else if (offPhys && !offVirt) { if (cbRange > offVirtLast + 1) cbRange = offVirtLast + 1; if (cbRange > offPhys) cbRange = offPhys; #ifdef IN_RING3 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) )); if (pVirt->pfnHandlerR3) { RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK) + (iVirtPage << PAGE_SHIFT) + (GCPhys & PAGE_OFFSET_MASK); STAM_PROFILE_START(&pVirt->Stat, h); rc = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL); STAM_PROFILE_STOP(&pVirt->Stat, h); AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc)); } pVirt = NULL; #else /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */ NOREF(cbRange); //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange)); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VERR_PGM_PHYS_WR_HIT_HANDLER; #endif } /* * Both... give the physical one priority. */ else { Assert(!offPhys && !offVirt); if (cbRange > offVirtLast + 1) cbRange = offVirtLast + 1; if (cbRange > offPhysLast + 1) cbRange = offPhysLast + 1; #ifdef IN_RING3 if (pVirt->pfnHandlerR3) Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange)); Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) )); PFNPGMR3PHYSHANDLER pfnHandler = pPhys->CTX_SUFF(pfnHandler); void *pvUser = pPhys->CTX_SUFF(pvUser); STAM_PROFILE_START(&pPhys->Stat, h); PGM_LOCK_ASSERT_OWNER(pVM); /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */ pgmUnlock(pVM); rc = pfnHandler(pVM, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, pvUser); pgmLock(pVM); # ifdef VBOX_WITH_STATISTICS pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys); if (pPhys) STAM_PROFILE_STOP(&pPhys->Stat, h); # else pPhys = NULL; /* might not be valid anymore. */ # endif AssertLogRelMsg(rc == VINF_SUCCESS || rc == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, (pPhys) ? pPhys->pszDesc : "")); if (pVirt->pfnHandlerR3) { RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK) + (iVirtPage << PAGE_SHIFT) + (GCPhys & PAGE_OFFSET_MASK); STAM_PROFILE_START(&pVirt->Stat, h2); int rc2 = pVirt->CTX_SUFF(pfnHandler)(pVM, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, /*pCur->CTX_SUFF(pvUser)*/ NULL); STAM_PROFILE_STOP(&pVirt->Stat, h2); if (rc2 == VINF_SUCCESS && rc == VINF_PGM_HANDLER_DO_DEFAULT) rc = VINF_SUCCESS; else AssertLogRelMsg(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_HANDLER_DO_DEFAULT, ("rc=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n", rc, GCPhys, pPage, pVirt->pszDesc)); } pPhys = NULL; pVirt = NULL; #else /* In R0 and RC the callbacks cannot handle this context, so we'll fail. */ NOREF(cbRange); //AssertReleaseMsgFailed(("Wrong API! GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange)); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VERR_PGM_PHYS_WR_HIT_HANDLER; #endif } if (rc == VINF_PGM_HANDLER_DO_DEFAULT) memcpy(pvDst, pvBuf, cbRange); /* * Advance if we've got more stuff to do. */ if (cbRange >= cbWrite) { pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); return VINF_SUCCESS; } cbWrite -= cbRange; GCPhys += cbRange; pvBuf = (uint8_t *)pvBuf + cbRange; pvDst = (uint8_t *)pvDst + cbRange; offPhys -= cbRange; offPhysLast -= cbRange; offVirt -= cbRange; offVirtLast -= cbRange; } } /** * Write to physical memory. * * This API respects access handlers and MMIO. Use PGMPhysSimpleWriteGCPhys() if you * want to ignore those. * * @returns VBox status code. Can be ignored in ring-3. * @retval VINF_SUCCESS. * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3. * * @param pVM VM Handle. * @param GCPhys Physical address to write to. * @param pvBuf What to write. * @param cbWrite How many bytes to write. */ VMMDECL(int) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite) { AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()!\n")); AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS); LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite)); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWrite)); STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWriteBytes), cbWrite); pgmLock(pVM); /* * Copy loop on ram ranges. */ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); for (;;) { /* Inside range or not? */ if (pRam && GCPhys >= pRam->GCPhys) { /* * Must work our way thru this page by page. */ RTGCPTR off = GCPhys - pRam->GCPhys; while (off < pRam->cb) { RTGCPTR iPage = off >> PAGE_SHIFT; PPGMPAGE pPage = &pRam->aPages[iPage]; size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb > cbWrite) cb = cbWrite; /* * Any active WRITE or ALL access handlers? */ if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) { int rc = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb); if (RT_FAILURE(rc)) { pgmUnlock(pVM); return rc; } } else { /* * Get the pointer to the page. */ PGMPAGEMAPLOCK PgMpLck; void *pvDst; int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck); if (RT_SUCCESS(rc)) { Assert(!PGM_PAGE_IS_BALLOONED(pPage)); memcpy(pvDst, pvBuf, cb); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); } /* Ignore writes to ballooned pages. */ else if (!PGM_PAGE_IS_BALLOONED(pPage)) AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", pRam->GCPhys + off, pPage, rc)); } /* next page */ if (cb >= cbWrite) { pgmUnlock(pVM); return VINF_SUCCESS; } cbWrite -= cb; off += cb; pvBuf = (const char *)pvBuf + cb; } /* walk pages in ram range */ GCPhys = pRam->GCPhysLast + 1; } else { /* * Unassigned address space, skip it. */ if (!pRam) break; size_t cb = pRam->GCPhys - GCPhys; if (cb >= cbWrite) break; cbWrite -= cb; pvBuf = (const char *)pvBuf + cb; GCPhys += cb; } /* Advance range if necessary. */ while (pRam && GCPhys > pRam->GCPhysLast) pRam = pRam->CTX_SUFF(pNext); } /* Ram range walk */ pgmUnlock(pVM); return VINF_SUCCESS; } /** * Read from guest physical memory by GC physical address, bypassing * MMIO and access handlers. * * @returns VBox status. * @param pVM VM handle. * @param pvDst The destination address. * @param GCPhysSrc The source address (GC physical address). * @param cb The number of bytes to read. */ VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb) { /* * Treat the first page as a special case. */ if (!cb) return VINF_SUCCESS; /* map the 1st page */ void const *pvSrc; PGMPAGEMAPLOCK Lock; int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock); if (RT_FAILURE(rc)) return rc; /* optimize for the case where access is completely within the first page. */ size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK); if (RT_LIKELY(cb <= cbPage)) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); return VINF_SUCCESS; } /* copy to the end of the page. */ memcpy(pvDst, pvSrc, cbPage); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPhysSrc += cbPage; pvDst = (uint8_t *)pvDst + cbPage; cb -= cbPage; /* * Page by page. */ for (;;) { /* map the page */ rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock); if (RT_FAILURE(rc)) return rc; /* last page? */ if (cb <= PAGE_SIZE) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); return VINF_SUCCESS; } /* copy the entire page and advance */ memcpy(pvDst, pvSrc, PAGE_SIZE); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPhysSrc += PAGE_SIZE; pvDst = (uint8_t *)pvDst + PAGE_SIZE; cb -= PAGE_SIZE; } /* won't ever get here. */ } /** * Write to guest physical memory referenced by GC pointer. * Write memory to GC physical address in guest physical memory. * * This will bypass MMIO and access handlers. * * @returns VBox status. * @param pVM VM handle. * @param GCPhysDst The GC physical address of the destination. * @param pvSrc The source buffer. * @param cb The number of bytes to write. */ VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb) { LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb)); /* * Treat the first page as a special case. */ if (!cb) return VINF_SUCCESS; /* map the 1st page */ void *pvDst; PGMPAGEMAPLOCK Lock; int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock); if (RT_FAILURE(rc)) return rc; /* optimize for the case where access is completely within the first page. */ size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK); if (RT_LIKELY(cb <= cbPage)) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); return VINF_SUCCESS; } /* copy to the end of the page. */ memcpy(pvDst, pvSrc, cbPage); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPhysDst += cbPage; pvSrc = (const uint8_t *)pvSrc + cbPage; cb -= cbPage; /* * Page by page. */ for (;;) { /* map the page */ rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock); if (RT_FAILURE(rc)) return rc; /* last page? */ if (cb <= PAGE_SIZE) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); return VINF_SUCCESS; } /* copy the entire page and advance */ memcpy(pvDst, pvSrc, PAGE_SIZE); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPhysDst += PAGE_SIZE; pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE; cb -= PAGE_SIZE; } /* won't ever get here. */ } /** * Read from guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * bypass access handlers and not set any accessed bits. * * @returns VBox status. * @param pVCpu Handle to the current virtual CPU. * @param pvDst The destination address. * @param GCPtrSrc The source address (GC pointer). * @param cb The number of bytes to read. */ VMMDECL(int) PGMPhysSimpleReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb) { PVM pVM = pVCpu->CTX_SUFF(pVM); /** @todo fix the macro / state handling: VMCPU_ASSERT_EMT_OR_GURU(pVCpu); */ /* * Treat the first page as a special case. */ if (!cb) return VINF_SUCCESS; STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleRead)); STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleReadBytes), cb); /* Take the PGM lock here, because many called functions take the lock for a very short period. That's counter-productive * when many VCPUs are fighting for the lock. */ pgmLock(pVM); /* map the 1st page */ void const *pvSrc; PGMPAGEMAPLOCK Lock; int rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock); if (RT_FAILURE(rc)) { pgmUnlock(pVM); return rc; } /* optimize for the case where access is completely within the first page. */ size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK); if (RT_LIKELY(cb <= cbPage)) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); pgmUnlock(pVM); return VINF_SUCCESS; } /* copy to the end of the page. */ memcpy(pvDst, pvSrc, cbPage); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage); pvDst = (uint8_t *)pvDst + cbPage; cb -= cbPage; /* * Page by page. */ for (;;) { /* map the page */ rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock); if (RT_FAILURE(rc)) { pgmUnlock(pVM); return rc; } /* last page? */ if (cb <= PAGE_SIZE) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); pgmUnlock(pVM); return VINF_SUCCESS; } /* copy the entire page and advance */ memcpy(pvDst, pvSrc, PAGE_SIZE); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE); pvDst = (uint8_t *)pvDst + PAGE_SIZE; cb -= PAGE_SIZE; } /* won't ever get here. */ } /** * Write to guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * bypass access handlers and not set dirty or accessed bits. * * @returns VBox status. * @param pVCpu Handle to the current virtual CPU. * @param GCPtrDst The destination address (GC pointer). * @param pvSrc The source address. * @param cb The number of bytes to write. */ VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb) { PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT(pVCpu); /* * Treat the first page as a special case. */ if (!cb) return VINF_SUCCESS; STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWrite)); STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWriteBytes), cb); /* map the 1st page */ void *pvDst; PGMPAGEMAPLOCK Lock; int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock); if (RT_FAILURE(rc)) return rc; /* optimize for the case where access is completely within the first page. */ size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK); if (RT_LIKELY(cb <= cbPage)) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); return VINF_SUCCESS; } /* copy to the end of the page. */ memcpy(pvDst, pvSrc, cbPage); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage); pvSrc = (const uint8_t *)pvSrc + cbPage; cb -= cbPage; /* * Page by page. */ for (;;) { /* map the page */ rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock); if (RT_FAILURE(rc)) return rc; /* last page? */ if (cb <= PAGE_SIZE) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); return VINF_SUCCESS; } /* copy the entire page and advance */ memcpy(pvDst, pvSrc, PAGE_SIZE); PGMPhysReleasePageMappingLock(pVM, &Lock); GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE); pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE; cb -= PAGE_SIZE; } /* won't ever get here. */ } /** * Write to guest physical memory referenced by GC pointer and update the PTE. * * This function uses the current CR3/CR0/CR4 of the guest and will * bypass access handlers but will set any dirty and accessed bits in the PTE. * * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr(). * * @returns VBox status. * @param pVCpu Handle to the current virtual CPU. * @param GCPtrDst The destination address (GC pointer). * @param pvSrc The source address. * @param cb The number of bytes to write. */ VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb) { PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT(pVCpu); /* * Treat the first page as a special case. * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage. */ if (!cb) return VINF_SUCCESS; /* map the 1st page */ void *pvDst; PGMPAGEMAPLOCK Lock; int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock); if (RT_FAILURE(rc)) return rc; /* optimize for the case where access is completely within the first page. */ size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK); if (RT_LIKELY(cb <= cbPage)) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); return VINF_SUCCESS; } /* copy to the end of the page. */ memcpy(pvDst, pvSrc, cbPage); PGMPhysReleasePageMappingLock(pVM, &Lock); rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage); pvSrc = (const uint8_t *)pvSrc + cbPage; cb -= cbPage; /* * Page by page. */ for (;;) { /* map the page */ rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock); if (RT_FAILURE(rc)) return rc; /* last page? */ if (cb <= PAGE_SIZE) { memcpy(pvDst, pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); return VINF_SUCCESS; } /* copy the entire page and advance */ memcpy(pvDst, pvSrc, PAGE_SIZE); PGMPhysReleasePageMappingLock(pVM, &Lock); rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE); pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE; cb -= PAGE_SIZE; } /* won't ever get here. */ } /** * Read from guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * respect access handlers and set accessed bits. * * @returns VBox status. * @param pVCpu Handle to the current virtual CPU. * @param pvDst The destination address. * @param GCPtrSrc The source address (GC pointer). * @param cb The number of bytes to read. * @thread The vCPU EMT. */ VMMDECL(int) PGMPhysReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb) { RTGCPHYS GCPhys; uint64_t fFlags; int rc; PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT(pVCpu); /* * Anything to do? */ if (!cb) return VINF_SUCCESS; LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb)); /* * Optimize reads within a single page. */ if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE) { /* Convert virtual to physical address + flags */ rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys); AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc); GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK; /* mark the guest page as accessed. */ if (!(fFlags & X86_PTE_A)) { rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A)); AssertRC(rc); } return PGMPhysRead(pVM, GCPhys, pvDst, cb); } /* * Page by page. */ for (;;) { /* Convert virtual to physical address + flags */ rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys); AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc); GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK; /* mark the guest page as accessed. */ if (!(fFlags & X86_PTE_A)) { rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A)); AssertRC(rc); } /* copy */ size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK); rc = PGMPhysRead(pVM, GCPhys, pvDst, cbRead); if (cbRead >= cb || RT_FAILURE(rc)) return rc; /* next */ cb -= cbRead; pvDst = (uint8_t *)pvDst + cbRead; GCPtrSrc += cbRead; } } /** * Write to guest physical memory referenced by GC pointer. * * This function uses the current CR3/CR0/CR4 of the guest and will * respect access handlers and set dirty and accessed bits. * * @returns VBox status. * @retval VINF_SUCCESS. * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in R0 and GC, NEVER in R3. * * @param pVCpu Handle to the current virtual CPU. * @param GCPtrDst The destination address (GC pointer). * @param pvSrc The source address. * @param cb The number of bytes to write. */ VMMDECL(int) PGMPhysWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb) { RTGCPHYS GCPhys; uint64_t fFlags; int rc; PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT(pVCpu); /* * Anything to do? */ if (!cb) return VINF_SUCCESS; LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb)); /* * Optimize writes within a single page. */ if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE) { /* Convert virtual to physical address + flags */ rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys); AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc); GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK; /* Mention when we ignore X86_PTE_RW... */ if (!(fFlags & X86_PTE_RW)) Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb)); /* Mark the guest page as accessed and dirty if necessary. */ if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D)) { rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); } return PGMPhysWrite(pVM, GCPhys, pvSrc, cb); } /* * Page by page. */ for (;;) { /* Convert virtual to physical address + flags */ rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys); AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc); GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK; /* Mention when we ignore X86_PTE_RW... */ if (!(fFlags & X86_PTE_RW)) Log(("PGMPhysGCPtr2GCPhys: Writing to RO page %RGv %#x\n", GCPtrDst, cb)); /* Mark the guest page as accessed and dirty if necessary. */ if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D)) { rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); } /* copy */ size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK); rc = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite); if (cbWrite >= cb || RT_FAILURE(rc)) return rc; /* next */ cb -= cbWrite; pvSrc = (uint8_t *)pvSrc + cbWrite; GCPtrDst += cbWrite; } } /** * Performs a read of guest virtual memory for instruction emulation. * * This will check permissions, raise exceptions and update the access bits. * * The current implementation will bypass all access handlers. It may later be * changed to at least respect MMIO. * * * @returns VBox status code suitable to scheduling. * @retval VINF_SUCCESS if the read was performed successfully. * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet. * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched. * * @param pVCpu Handle to the current virtual CPU. * @param pCtxCore The context core. * @param pvDst Where to put the bytes we've read. * @param GCPtrSrc The source address. * @param cb The number of bytes to read. Not more than a page. * * @remark This function will dynamically map physical pages in GC. This may unmap * mappings done by the caller. Be careful! */ VMMDECL(int) PGMPhysInterpretedRead(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb) { PVM pVM = pVCpu->CTX_SUFF(pVM); Assert(cb <= PAGE_SIZE); VMCPU_ASSERT_EMT(pVCpu); /** @todo r=bird: This isn't perfect! * -# It's not checking for reserved bits being 1. * -# It's not correctly dealing with the access bit. * -# It's not respecting MMIO memory or any other access handlers. */ /* * 1. Translate virtual to physical. This may fault. * 2. Map the physical address. * 3. Do the read operation. * 4. Set access bits if required. */ int rc; unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK); if (cb <= cb1) { /* * Not crossing pages. */ RTGCPHYS GCPhys; uint64_t fFlags; rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys); if (RT_SUCCESS(rc)) { /** @todo we should check reserved bits ... */ PGMPAGEMAPLOCK PgMpLck; void const *pvSrc; rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &PgMpLck); switch (rc) { case VINF_SUCCESS: Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb)); memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb); PGMPhysReleasePageMappingLock(pVM, &PgMpLck); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset(pvDst, 0xff, cb); break; default: Assert(RT_FAILURE_NP(rc)); return rc; } /** @todo access bit emulation isn't 100% correct. */ if (!(fFlags & X86_PTE_A)) { rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } return VINF_SUCCESS; } } else { /* * Crosses pages. */ size_t cb2 = cb - cb1; uint64_t fFlags1; RTGCPHYS GCPhys1; uint64_t fFlags2; RTGCPHYS GCPhys2; rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1); if (RT_SUCCESS(rc)) { rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2); if (RT_SUCCESS(rc)) { /** @todo we should check reserved bits ... */ AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc)); PGMPAGEMAPLOCK PgMpLck; void const *pvSrc1; rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc1, &PgMpLck); switch (rc) { case VINF_SUCCESS: memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1); PGMPhysReleasePageMappingLock(pVM, &PgMpLck); break; case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset(pvDst, 0xff, cb1); break; default: Assert(RT_FAILURE_NP(rc)); return rc; } void const *pvSrc2; rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc2, &PgMpLck); switch (rc) { case VINF_SUCCESS: memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2); PGMPhysReleasePageMappingLock(pVM, &PgMpLck); break; case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset((uint8_t *)pvDst + cb1, 0xff, cb2); break; default: Assert(RT_FAILURE_NP(rc)); return rc; } if (!(fFlags1 & X86_PTE_A)) { rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } if (!(fFlags2 & X86_PTE_A)) { rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } return VINF_SUCCESS; } } } /* * Raise a #PF. */ uint32_t uErr; /* Get the current privilege level. */ uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore); switch (rc) { case VINF_SUCCESS: uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD; break; case VERR_PAGE_NOT_PRESENT: case VERR_PAGE_TABLE_NOT_PRESENT: uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0; break; default: AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb)); return rc; } Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr)); return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc); } /** * Performs a read of guest virtual memory for instruction emulation. * * This will check permissions, raise exceptions and update the access bits. * * The current implementation will bypass all access handlers. It may later be * changed to at least respect MMIO. * * * @returns VBox status code suitable to scheduling. * @retval VINF_SUCCESS if the read was performed successfully. * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet. * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched. * * @param pVCpu Handle to the current virtual CPU. * @param pCtxCore The context core. * @param pvDst Where to put the bytes we've read. * @param GCPtrSrc The source address. * @param cb The number of bytes to read. Not more than a page. * @param fRaiseTrap If set the trap will be raised on as per spec, if clear * an appropriate error status will be returned (no * informational at all). * * * @remarks Takes the PGM lock. * @remarks A page fault on the 2nd page of the access will be raised without * writing the bits on the first page since we're ASSUMING that the * caller is emulating an instruction access. * @remarks This function will dynamically map physical pages in GC. This may * unmap mappings done by the caller. Be careful! */ VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb, bool fRaiseTrap) { PVM pVM = pVCpu->CTX_SUFF(pVM); Assert(cb <= PAGE_SIZE); VMCPU_ASSERT_EMT(pVCpu); /* * 1. Translate virtual to physical. This may fault. * 2. Map the physical address. * 3. Do the read operation. * 4. Set access bits if required. */ int rc; unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK); if (cb <= cb1) { /* * Not crossing pages. */ RTGCPHYS GCPhys; uint64_t fFlags; rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys); if (RT_SUCCESS(rc)) { if (1) /** @todo we should check reserved bits ... */ { const void *pvSrc; PGMPAGEMAPLOCK Lock; rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock); switch (rc) { case VINF_SUCCESS: Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n", pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb)); memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb); PGMPhysReleasePageMappingLock(pVM, &Lock); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset(pvDst, 0xff, cb); break; default: AssertMsgFailed(("%Rrc\n", rc)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } if (!(fFlags & X86_PTE_A)) { /** @todo access bit emulation isn't 100% correct. */ rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } return VINF_SUCCESS; } } } else { /* * Crosses pages. */ size_t cb2 = cb - cb1; uint64_t fFlags1; RTGCPHYS GCPhys1; uint64_t fFlags2; RTGCPHYS GCPhys2; rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1); if (RT_SUCCESS(rc)) { rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2); if (RT_SUCCESS(rc)) { if (1) /** @todo we should check reserved bits ... */ { const void *pvSrc; PGMPAGEMAPLOCK Lock; rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock); switch (rc) { case VINF_SUCCESS: Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n", pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1)); memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1); PGMPhysReleasePageMappingLock(pVM, &Lock); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset(pvDst, 0xff, cb1); break; default: AssertMsgFailed(("%Rrc\n", rc)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock); switch (rc) { case VINF_SUCCESS: memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2); PGMPhysReleasePageMappingLock(pVM, &Lock); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: memset((uint8_t *)pvDst + cb1, 0xff, cb2); break; default: AssertMsgFailed(("%Rrc\n", rc)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } if (!(fFlags1 & X86_PTE_A)) { rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } if (!(fFlags2 & X86_PTE_A)) { rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A); AssertRC(rc); } return VINF_SUCCESS; } /* sort out which page */ } else GCPtrSrc += cb1; /* fault on 2nd page */ } } /* * Raise a #PF if we're allowed to do that. */ /* Calc the error bits. */ uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore); uint32_t uErr; switch (rc) { case VINF_SUCCESS: uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD; rc = VERR_ACCESS_DENIED; break; case VERR_PAGE_NOT_PRESENT: case VERR_PAGE_TABLE_NOT_PRESENT: uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0; break; default: AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } if (fRaiseTrap) { Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr)); return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc); } Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr)); return rc; } /** * Performs a write to guest virtual memory for instruction emulation. * * This will check permissions, raise exceptions and update the dirty and access * bits. * * @returns VBox status code suitable to scheduling. * @retval VINF_SUCCESS if the read was performed successfully. * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet. * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched. * * @param pVCpu Handle to the current virtual CPU. * @param pCtxCore The context core. * @param GCPtrDst The destination address. * @param pvSrc What to write. * @param cb The number of bytes to write. Not more than a page. * @param fRaiseTrap If set the trap will be raised on as per spec, if clear * an appropriate error status will be returned (no * informational at all). * * @remarks Takes the PGM lock. * @remarks A page fault on the 2nd page of the access will be raised without * writing the bits on the first page since we're ASSUMING that the * caller is emulating an instruction access. * @remarks This function will dynamically map physical pages in GC. This may * unmap mappings done by the caller. Be careful! */ VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb, bool fRaiseTrap) { Assert(cb <= PAGE_SIZE); PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT(pVCpu); /* * 1. Translate virtual to physical. This may fault. * 2. Map the physical address. * 3. Do the write operation. * 4. Set access bits if required. */ /** @todo Since this method is frequently used by EMInterpret or IOM * upon a write fault to an write access monitored page, we can * reuse the guest page table walking from the \#PF code. */ int rc; unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK); if (cb <= cb1) { /* * Not crossing pages. */ RTGCPHYS GCPhys; uint64_t fFlags; rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags, &GCPhys); if (RT_SUCCESS(rc)) { if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */ || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP) && CPUMGetGuestCPL(pVCpu, pCtxCore) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */ { void *pvDst; PGMPAGEMAPLOCK Lock; rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock); switch (rc) { case VINF_SUCCESS: Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n", (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb)); memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb); PGMPhysReleasePageMappingLock(pVM, &Lock); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: /* bit bucket */ break; default: AssertMsgFailed(("%Rrc\n", rc)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } if (!(fFlags & (X86_PTE_A | X86_PTE_D))) { /** @todo dirty & access bit emulation isn't 100% correct. */ rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc); } return VINF_SUCCESS; } rc = VERR_ACCESS_DENIED; } } else { /* * Crosses pages. */ size_t cb2 = cb - cb1; uint64_t fFlags1; RTGCPHYS GCPhys1; uint64_t fFlags2; RTGCPHYS GCPhys2; rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags1, &GCPhys1); if (RT_SUCCESS(rc)) { rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst + cb1, &fFlags2, &GCPhys2); if (RT_SUCCESS(rc)) { if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */ && (fFlags2 & X86_PTE_RW)) || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP) && CPUMGetGuestCPL(pVCpu, pCtxCore) <= 2) ) { void *pvDst; PGMPAGEMAPLOCK Lock; rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock); switch (rc) { case VINF_SUCCESS: Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n", (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1)); memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1); PGMPhysReleasePageMappingLock(pVM, &Lock); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: /* bit bucket */ break; default: AssertMsgFailed(("%Rrc\n", rc)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock); switch (rc) { case VINF_SUCCESS: memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2); PGMPhysReleasePageMappingLock(pVM, &Lock); break; case VERR_PGM_PHYS_PAGE_RESERVED: case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS: /* bit bucket */ break; default: AssertMsgFailed(("%Rrc\n", rc)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW))) { rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW)); AssertRC(rc); } if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW))) { rc = PGMGstModifyPage(pVCpu, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW)); AssertRC(rc); } return VINF_SUCCESS; } if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW) GCPtrDst += cb1; /* fault on the 2nd page. */ rc = VERR_ACCESS_DENIED; } else GCPtrDst += cb1; /* fault on the 2nd page. */ } } /* * Raise a #PF if we're allowed to do that. */ /* Calc the error bits. */ uint32_t uErr; uint32_t cpl = CPUMGetGuestCPL(pVCpu, pCtxCore); switch (rc) { case VINF_SUCCESS: uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD; rc = VERR_ACCESS_DENIED; break; case VERR_ACCESS_DENIED: uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW; break; case VERR_PAGE_NOT_PRESENT: case VERR_PAGE_TABLE_NOT_PRESENT: uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0; break; default: AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb)); AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } if (fRaiseTrap) { Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr)); return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst); } Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr)); return rc; } /** * Return the page type of the specified physical address. * * @returns The page type. * @param pVM VM Handle. * @param GCPhys Guest physical address */ VMMDECL(PGMPAGETYPE) PGMPhysGetPageType(PVM pVM, RTGCPHYS GCPhys) { pgmLock(pVM); PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys); PGMPAGETYPE enmPgType = pPage ? (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage) : PGMPAGETYPE_INVALID; pgmUnlock(pVM); return enmPgType; }