VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPhys.cpp@ 58437

Last change on this file since 58437 was 58170, checked in by vboxsync, 9 years ago

doxygen: fixes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 165.0 KB
Line 
1/* $Id: PGMAllPhys.cpp 58170 2015-10-12 09:27:14Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/trpm.h>
25#include <VBox/vmm/vmm.h>
26#include <VBox/vmm/iom.h>
27#include <VBox/vmm/em.h>
28#ifdef VBOX_WITH_REM
29# include <VBox/vmm/rem.h>
30#endif
31#include "PGMInternal.h"
32#include <VBox/vmm/vm.h>
33#include "PGMInline.h"
34#include <VBox/param.h>
35#include <VBox/err.h>
36#include <iprt/assert.h>
37#include <iprt/string.h>
38#include <iprt/asm-amd64-x86.h>
39#include <VBox/log.h>
40#ifdef IN_RING3
41# include <iprt/thread.h>
42#endif
43
44
45/*********************************************************************************************************************************
46* Defined Constants And Macros *
47*********************************************************************************************************************************/
48/** Enable the physical TLB. */
49#define PGM_WITH_PHYS_TLB
50
51/** @def PGM_HANDLER_PHYS_IS_VALID_STATUS
52 * Checks if valid physical access handler return code (normal handler, not PF).
53 *
54 * Checks if the given strict status code is one of the expected ones for a
55 * physical access handler in the current context.
56 *
57 * @returns true or false.
58 * @param a_rcStrict The status code.
59 * @param a_fWrite Whether it is a write or read being serviced.
60 *
61 * @remarks We wish to keep the list of statuses here as short as possible.
62 * When changing, please make sure to update the PGMPhysRead,
63 * PGMPhysWrite, PGMPhysReadGCPtr and PGMPhysWriteGCPtr docs too.
64 */
65#ifdef IN_RING3
66# define PGM_HANDLER_PHYS_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
67 ( (a_rcStrict) == VINF_SUCCESS \
68 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT)
69#elif defined(IN_RING0) || defined(IN_RC)
70# define PGM_HANDLER_PHYS_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
71 ( (a_rcStrict) == VINF_SUCCESS \
72 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT \
73 \
74 || (a_rcStrict) == ((a_fWrite) ? VINF_IOM_R3_MMIO_WRITE : VINF_IOM_R3_MMIO_READ) \
75 || (a_rcStrict) == VINF_IOM_R3_MMIO_READ_WRITE \
76 \
77 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_IO_BLOCK : false) \
78 \
79 || (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR \
80 || (a_rcStrict) == VINF_EM_DBG_STOP \
81 || (a_rcStrict) == VINF_EM_DBG_BREAKPOINT \
82 || (a_rcStrict) == VINF_EM_OFF \
83 || (a_rcStrict) == VINF_EM_SUSPEND \
84 || (a_rcStrict) == VINF_EM_RESET \
85 )
86#else
87# error "Context?"
88#endif
89
90/** @def PGM_HANDLER_VIRT_IS_VALID_STATUS
91 * Checks if valid virtual access handler return code (normal handler, not PF).
92 *
93 * Checks if the given strict status code is one of the expected ones for a
94 * virtual access handler in the current context.
95 *
96 * @returns true or false.
97 * @param a_rcStrict The status code.
98 * @param a_fWrite Whether it is a write or read being serviced.
99 *
100 * @remarks We wish to keep the list of statuses here as short as possible.
101 * When changing, please make sure to update the PGMPhysRead,
102 * PGMPhysWrite, PGMPhysReadGCPtr and PGMPhysWriteGCPtr docs too.
103 */
104#ifdef IN_RING3
105# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
106 ( (a_rcStrict) == VINF_SUCCESS \
107 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT)
108#elif defined(IN_RING0)
109# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
110 (false /* no virtual handlers in ring-0! */ )
111#elif defined(IN_RC)
112# define PGM_HANDLER_VIRT_IS_VALID_STATUS(a_rcStrict, a_fWrite) \
113 ( (a_rcStrict) == VINF_SUCCESS \
114 || (a_rcStrict) == VINF_PGM_HANDLER_DO_DEFAULT \
115 \
116 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT : 0) \
117 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT : 0) \
118 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT : 0) \
119 || ((a_fWrite) ? (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT : 0) \
120 || ((a_fWrite) ? (a_rcStrict) == VINF_SELM_SYNC_GDT : 0) \
121 || ((a_fWrite) ? (a_rcStrict) == VINF_CSAM_PENDING_ACTION : 0) \
122 || (a_rcStrict) == VINF_PATM_CHECK_PATCH_PAGE \
123 \
124 || (a_rcStrict) == VINF_EM_RAW_EMULATE_INSTR \
125 || (a_rcStrict) == VINF_EM_DBG_STOP \
126 || (a_rcStrict) == VINF_EM_DBG_BREAKPOINT \
127 )
128#else
129# error "Context?"
130#endif
131
132
133
134#ifndef IN_RING3
135
136/**
137 * @callback_method_impl{FNPGMPHYSHANDLER,
138 * Dummy for forcing ring-3 handling of the access.}
139 */
140DECLEXPORT(VBOXSTRICTRC)
141pgmPhysHandlerRedirectToHC(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
142 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
143{
144 NOREF(pVM); NOREF(pVCpu); NOREF(GCPhys); NOREF(pvPhys); NOREF(pvBuf); NOREF(cbBuf);
145 NOREF(enmAccessType); NOREF(enmOrigin); NOREF(pvUser);
146 return VINF_EM_RAW_EMULATE_INSTR;
147}
148
149
150/**
151 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
152 * Dummy for forcing ring-3 handling of the access.}
153 */
154VMMDECL(VBOXSTRICTRC) pgmPhysPfHandlerRedirectToHC(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
155 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
156{
157 NOREF(pVM); NOREF(pVCpu); NOREF(uErrorCode); NOREF(pRegFrame); NOREF(pvFault); NOREF(GCPhysFault); NOREF(pvUser);
158 return VINF_EM_RAW_EMULATE_INSTR;
159}
160
161
162/**
163 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
164 * \#PF access handler callback for guest ROM range write access.}
165 *
166 * @remarks The @a pvUser argument points to the PGMROMRANGE.
167 */
168DECLEXPORT(VBOXSTRICTRC) pgmPhysRomWritePfHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
169 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
170{
171 int rc;
172 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
173 uint32_t iPage = (GCPhysFault - pRom->GCPhys) >> PAGE_SHIFT;
174 NOREF(uErrorCode); NOREF(pvFault);
175
176 Assert(uErrorCode & X86_TRAP_PF_RW); /* This shall not be used for read access! */
177
178 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
179 switch (pRom->aPages[iPage].enmProt)
180 {
181 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
182 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
183 {
184 /*
185 * If it's a simple instruction which doesn't change the cpu state
186 * we will simply skip it. Otherwise we'll have to defer it to REM.
187 */
188 uint32_t cbOp;
189 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
190 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
191 if ( RT_SUCCESS(rc)
192 && pDis->uCpuMode == DISCPUMODE_32BIT /** @todo why does this matter? */
193 && !(pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP | DISPREFIX_SEG)))
194 {
195 switch (pDis->bOpCode)
196 {
197 /** @todo Find other instructions we can safely skip, possibly
198 * adding this kind of detection to DIS or EM. */
199 case OP_MOV:
200 pRegFrame->rip += cbOp;
201 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteHandled);
202 return VINF_SUCCESS;
203 }
204 }
205 break;
206 }
207
208 case PGMROMPROT_READ_RAM_WRITE_RAM:
209 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
210 rc = PGMHandlerPhysicalPageTempOff(pVM, pRom->GCPhys, GCPhysFault & X86_PTE_PG_MASK);
211 AssertRC(rc);
212 break; /** @todo Must edit the shadow PT and restart the instruction, not use the interpreter! */
213
214 case PGMROMPROT_READ_ROM_WRITE_RAM:
215 /* Handle it in ring-3 because it's *way* easier there. */
216 pRom->aPages[iPage].LiveSave.fWrittenTo = true;
217 break;
218
219 default:
220 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhysFault=%RGp\n",
221 pRom->aPages[iPage].enmProt, iPage, GCPhysFault),
222 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
223 }
224
225 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestROMWriteUnhandled);
226 return VINF_EM_RAW_EMULATE_INSTR;
227}
228
229#endif /* !IN_RING3 */
230
231
232/**
233 * @callback_method_impl{FNPGMPHYSHANDLER,
234 * Access handler callback for ROM write accesses.}
235 *
236 * @remarks The @a pvUser argument points to the PGMROMRANGE.
237 */
238PGM_ALL_CB2_DECL(VBOXSTRICTRC)
239pgmPhysRomWriteHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
240 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
241{
242 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
243 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
244 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
245 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
246 Log5(("pgmPhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
247 NOREF(pVCpu); NOREF(pvPhys); NOREF(enmOrigin);
248
249 if (enmAccessType == PGMACCESSTYPE_READ)
250 {
251 switch (pRomPage->enmProt)
252 {
253 /*
254 * Take the default action.
255 */
256 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
257 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
258 case PGMROMPROT_READ_ROM_WRITE_RAM:
259 case PGMROMPROT_READ_RAM_WRITE_RAM:
260 return VINF_PGM_HANDLER_DO_DEFAULT;
261
262 default:
263 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
264 pRom->aPages[iPage].enmProt, iPage, GCPhys),
265 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
266 }
267 }
268 else
269 {
270 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
271 switch (pRomPage->enmProt)
272 {
273 /*
274 * Ignore writes.
275 */
276 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
277 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
278 return VINF_SUCCESS;
279
280 /*
281 * Write to the RAM page.
282 */
283 case PGMROMPROT_READ_ROM_WRITE_RAM:
284 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
285 {
286 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
287 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
288
289 /*
290 * Take the lock, do lazy allocation, map the page and copy the data.
291 *
292 * Note that we have to bypass the mapping TLB since it works on
293 * guest physical addresses and entering the shadow page would
294 * kind of screw things up...
295 */
296 int rc = pgmLock(pVM);
297 AssertRC(rc);
298
299 PPGMPAGE pShadowPage = &pRomPage->Shadow;
300 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
301 {
302 pShadowPage = pgmPhysGetPage(pVM, GCPhys);
303 AssertLogRelReturn(pShadowPage, VERR_PGM_PHYS_PAGE_GET_IPE);
304 }
305
306 void *pvDstPage;
307 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
308 if (RT_SUCCESS(rc))
309 {
310 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
311 pRomPage->LiveSave.fWrittenTo = true;
312
313 AssertMsg( rc == VINF_SUCCESS
314 || ( rc == VINF_PGM_SYNC_CR3
315 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
316 , ("%Rrc\n", rc));
317 rc = VINF_SUCCESS;
318 }
319
320 pgmUnlock(pVM);
321 return rc;
322 }
323
324 default:
325 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
326 pRom->aPages[iPage].enmProt, iPage, GCPhys),
327 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
328 }
329 }
330}
331
332
333/**
334 * Invalidates the RAM range TLBs.
335 *
336 * @param pVM The cross context VM structure.
337 */
338void pgmPhysInvalidRamRangeTlbs(PVM pVM)
339{
340 pgmLock(pVM);
341 for (uint32_t i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
342 {
343 pVM->pgm.s.apRamRangesTlbR3[i] = NIL_RTR3PTR;
344 pVM->pgm.s.apRamRangesTlbR0[i] = NIL_RTR0PTR;
345 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
346 }
347 pgmUnlock(pVM);
348}
349
350
351/**
352 * Tests if a value of type RTGCPHYS is negative if the type had been signed
353 * instead of unsigned.
354 *
355 * @returns @c true if negative, @c false if positive or zero.
356 * @param a_GCPhys The value to test.
357 * @todo Move me to iprt/types.h.
358 */
359#define RTGCPHYS_IS_NEGATIVE(a_GCPhys) ((a_GCPhys) & ((RTGCPHYS)1 << (sizeof(RTGCPHYS)*8 - 1)))
360
361
362/**
363 * Slow worker for pgmPhysGetRange.
364 *
365 * @copydoc pgmPhysGetRange
366 */
367PPGMRAMRANGE pgmPhysGetRangeSlow(PVM pVM, RTGCPHYS GCPhys)
368{
369 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
370
371 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
372 while (pRam)
373 {
374 RTGCPHYS off = GCPhys - pRam->GCPhys;
375 if (off < pRam->cb)
376 {
377 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
378 return pRam;
379 }
380 if (RTGCPHYS_IS_NEGATIVE(off))
381 pRam = pRam->CTX_SUFF(pLeft);
382 else
383 pRam = pRam->CTX_SUFF(pRight);
384 }
385 return NULL;
386}
387
388
389/**
390 * Slow worker for pgmPhysGetRangeAtOrAbove.
391 *
392 * @copydoc pgmPhysGetRangeAtOrAbove
393 */
394PPGMRAMRANGE pgmPhysGetRangeAtOrAboveSlow(PVM pVM, RTGCPHYS GCPhys)
395{
396 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
397
398 PPGMRAMRANGE pLastLeft = NULL;
399 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
400 while (pRam)
401 {
402 RTGCPHYS off = GCPhys - pRam->GCPhys;
403 if (off < pRam->cb)
404 {
405 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
406 return pRam;
407 }
408 if (RTGCPHYS_IS_NEGATIVE(off))
409 {
410 pLastLeft = pRam;
411 pRam = pRam->CTX_SUFF(pLeft);
412 }
413 else
414 pRam = pRam->CTX_SUFF(pRight);
415 }
416 return pLastLeft;
417}
418
419
420/**
421 * Slow worker for pgmPhysGetPage.
422 *
423 * @copydoc pgmPhysGetPage
424 */
425PPGMPAGE pgmPhysGetPageSlow(PVM pVM, RTGCPHYS GCPhys)
426{
427 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
428
429 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
430 while (pRam)
431 {
432 RTGCPHYS off = GCPhys - pRam->GCPhys;
433 if (off < pRam->cb)
434 {
435 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
436 return &pRam->aPages[off >> PAGE_SHIFT];
437 }
438
439 if (RTGCPHYS_IS_NEGATIVE(off))
440 pRam = pRam->CTX_SUFF(pLeft);
441 else
442 pRam = pRam->CTX_SUFF(pRight);
443 }
444 return NULL;
445}
446
447
448/**
449 * Slow worker for pgmPhysGetPageEx.
450 *
451 * @copydoc pgmPhysGetPageEx
452 */
453int pgmPhysGetPageExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
454{
455 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
456
457 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
458 while (pRam)
459 {
460 RTGCPHYS off = GCPhys - pRam->GCPhys;
461 if (off < pRam->cb)
462 {
463 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
464 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
465 return VINF_SUCCESS;
466 }
467
468 if (RTGCPHYS_IS_NEGATIVE(off))
469 pRam = pRam->CTX_SUFF(pLeft);
470 else
471 pRam = pRam->CTX_SUFF(pRight);
472 }
473
474 *ppPage = NULL;
475 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
476}
477
478
479/**
480 * Slow worker for pgmPhysGetPageAndRangeEx.
481 *
482 * @copydoc pgmPhysGetPageAndRangeEx
483 */
484int pgmPhysGetPageAndRangeExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
485{
486 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,RamRangeTlbMisses));
487
488 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangeTree);
489 while (pRam)
490 {
491 RTGCPHYS off = GCPhys - pRam->GCPhys;
492 if (off < pRam->cb)
493 {
494 pVM->pgm.s.CTX_SUFF(apRamRangesTlb)[PGM_RAMRANGE_TLB_IDX(GCPhys)] = pRam;
495 *ppRam = pRam;
496 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
497 return VINF_SUCCESS;
498 }
499
500 if (RTGCPHYS_IS_NEGATIVE(off))
501 pRam = pRam->CTX_SUFF(pLeft);
502 else
503 pRam = pRam->CTX_SUFF(pRight);
504 }
505
506 *ppRam = NULL;
507 *ppPage = NULL;
508 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
509}
510
511
512/**
513 * Checks if Address Gate 20 is enabled or not.
514 *
515 * @returns true if enabled.
516 * @returns false if disabled.
517 * @param pVCpu The cross context virtual CPU structure.
518 */
519VMMDECL(bool) PGMPhysIsA20Enabled(PVMCPU pVCpu)
520{
521 LogFlow(("PGMPhysIsA20Enabled %d\n", pVCpu->pgm.s.fA20Enabled));
522 return pVCpu->pgm.s.fA20Enabled;
523}
524
525
526/**
527 * Validates a GC physical address.
528 *
529 * @returns true if valid.
530 * @returns false if invalid.
531 * @param pVM The cross context VM structure.
532 * @param GCPhys The physical address to validate.
533 */
534VMMDECL(bool) PGMPhysIsGCPhysValid(PVM pVM, RTGCPHYS GCPhys)
535{
536 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
537 return pPage != NULL;
538}
539
540
541/**
542 * Checks if a GC physical address is a normal page,
543 * i.e. not ROM, MMIO or reserved.
544 *
545 * @returns true if normal.
546 * @returns false if invalid, ROM, MMIO or reserved page.
547 * @param pVM The cross context VM structure.
548 * @param GCPhys The physical address to check.
549 */
550VMMDECL(bool) PGMPhysIsGCPhysNormal(PVM pVM, RTGCPHYS GCPhys)
551{
552 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
553 return pPage
554 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM;
555}
556
557
558/**
559 * Converts a GC physical address to a HC physical address.
560 *
561 * @returns VINF_SUCCESS on success.
562 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
563 * page but has no physical backing.
564 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
565 * GC physical address.
566 *
567 * @param pVM The cross context VM structure.
568 * @param GCPhys The GC physical address to convert.
569 * @param pHCPhys Where to store the HC physical address on success.
570 */
571VMM_INT_DECL(int) PGMPhysGCPhys2HCPhys(PVM pVM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
572{
573 pgmLock(pVM);
574 PPGMPAGE pPage;
575 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
576 if (RT_SUCCESS(rc))
577 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
578 pgmUnlock(pVM);
579 return rc;
580}
581
582
583/**
584 * Invalidates all page mapping TLBs.
585 *
586 * @param pVM The cross context VM structure.
587 */
588void pgmPhysInvalidatePageMapTLB(PVM pVM)
589{
590 pgmLock(pVM);
591 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushes);
592
593 /* Clear the shared R0/R3 TLB completely. */
594 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
595 {
596 pVM->pgm.s.PhysTlbHC.aEntries[i].GCPhys = NIL_RTGCPHYS;
597 pVM->pgm.s.PhysTlbHC.aEntries[i].pPage = 0;
598 pVM->pgm.s.PhysTlbHC.aEntries[i].pMap = 0;
599 pVM->pgm.s.PhysTlbHC.aEntries[i].pv = 0;
600 }
601
602 /** @todo clear the RC TLB whenever we add it. */
603
604 pgmUnlock(pVM);
605}
606
607
608/**
609 * Invalidates a page mapping TLB entry
610 *
611 * @param pVM The cross context VM structure.
612 * @param GCPhys GCPhys entry to flush
613 */
614void pgmPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys)
615{
616 PGM_LOCK_ASSERT_OWNER(pVM);
617
618 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatPageMapTlbFlushEntry);
619
620#ifdef IN_RC
621 unsigned idx = PGM_PAGER3MAPTLB_IDX(GCPhys);
622 pVM->pgm.s.PhysTlbHC.aEntries[idx].GCPhys = NIL_RTGCPHYS;
623 pVM->pgm.s.PhysTlbHC.aEntries[idx].pPage = 0;
624 pVM->pgm.s.PhysTlbHC.aEntries[idx].pMap = 0;
625 pVM->pgm.s.PhysTlbHC.aEntries[idx].pv = 0;
626#else
627 /* Clear the shared R0/R3 TLB entry. */
628 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
629 pTlbe->GCPhys = NIL_RTGCPHYS;
630 pTlbe->pPage = 0;
631 pTlbe->pMap = 0;
632 pTlbe->pv = 0;
633#endif
634
635 /** @todo clear the RC TLB whenever we add it. */
636}
637
638/**
639 * Makes sure that there is at least one handy page ready for use.
640 *
641 * This will also take the appropriate actions when reaching water-marks.
642 *
643 * @returns VBox status code.
644 * @retval VINF_SUCCESS on success.
645 * @retval VERR_EM_NO_MEMORY if we're really out of memory.
646 *
647 * @param pVM The cross context VM structure.
648 *
649 * @remarks Must be called from within the PGM critical section. It may
650 * nip back to ring-3/0 in some cases.
651 */
652static int pgmPhysEnsureHandyPage(PVM pVM)
653{
654 AssertMsg(pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", pVM->pgm.s.cHandyPages));
655
656 /*
657 * Do we need to do anything special?
658 */
659#ifdef IN_RING3
660 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_R3_ALLOC))
661#else
662 if (pVM->pgm.s.cHandyPages <= RT_MAX(PGM_HANDY_PAGES_SET_FF, PGM_HANDY_PAGES_RZ_TO_R3))
663#endif
664 {
665 /*
666 * Allocate pages only if we're out of them, or in ring-3, almost out.
667 */
668#ifdef IN_RING3
669 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_R3_ALLOC)
670#else
671 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_ALLOC)
672#endif
673 {
674 Log(("PGM: cHandyPages=%u out of %u -> allocate more; VM_FF_PGM_NO_MEMORY=%RTbool\n",
675 pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages), VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY) ));
676#ifdef IN_RING3
677 int rc = PGMR3PhysAllocateHandyPages(pVM);
678#else
679 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES, 0);
680#endif
681 if (RT_UNLIKELY(rc != VINF_SUCCESS))
682 {
683 if (RT_FAILURE(rc))
684 return rc;
685 AssertMsgReturn(rc == VINF_EM_NO_MEMORY, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
686 if (!pVM->pgm.s.cHandyPages)
687 {
688 LogRel(("PGM: no more handy pages!\n"));
689 return VERR_EM_NO_MEMORY;
690 }
691 Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES));
692 Assert(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY));
693#ifdef IN_RING3
694# ifdef VBOX_WITH_REM
695 REMR3NotifyFF(pVM);
696# endif
697#else
698 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3); /* paranoia */
699#endif
700 }
701 AssertMsgReturn( pVM->pgm.s.cHandyPages > 0
702 && pVM->pgm.s.cHandyPages <= RT_ELEMENTS(pVM->pgm.s.aHandyPages),
703 ("%u\n", pVM->pgm.s.cHandyPages),
704 VERR_PGM_HANDY_PAGE_IPE);
705 }
706 else
707 {
708 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_SET_FF)
709 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
710#ifndef IN_RING3
711 if (pVM->pgm.s.cHandyPages <= PGM_HANDY_PAGES_RZ_TO_R3)
712 {
713 Log(("PGM: VM_FF_TO_R3 - cHandyPages=%u out of %u\n", pVM->pgm.s.cHandyPages, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
714 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
715 }
716#endif
717 }
718 }
719
720 return VINF_SUCCESS;
721}
722
723
724/**
725 * Replace a zero or shared page with new page that we can write to.
726 *
727 * @returns The following VBox status codes.
728 * @retval VINF_SUCCESS on success, pPage is modified.
729 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
730 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
731 *
732 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
733 *
734 * @param pVM The cross context VM structure.
735 * @param pPage The physical page tracking structure. This will
736 * be modified on success.
737 * @param GCPhys The address of the page.
738 *
739 * @remarks Must be called from within the PGM critical section. It may
740 * nip back to ring-3/0 in some cases.
741 *
742 * @remarks This function shouldn't really fail, however if it does
743 * it probably means we've screwed up the size of handy pages and/or
744 * the low-water mark. Or, that some device I/O is causing a lot of
745 * pages to be allocated while while the host is in a low-memory
746 * condition. This latter should be handled elsewhere and in a more
747 * controlled manner, it's on the @bugref{3170} todo list...
748 */
749int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
750{
751 LogFlow(("pgmPhysAllocPage: %R[pgmpage] %RGp\n", pPage, GCPhys));
752
753 /*
754 * Prereqs.
755 */
756 PGM_LOCK_ASSERT_OWNER(pVM);
757 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
758 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
759
760# ifdef PGM_WITH_LARGE_PAGES
761 /*
762 * Try allocate a large page if applicable.
763 */
764 if ( PGMIsUsingLargePages(pVM)
765 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
766 {
767 RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
768 PPGMPAGE pBasePage;
769
770 int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pBasePage);
771 AssertRCReturn(rc, rc); /* paranoia; can't happen. */
772 if (PGM_PAGE_GET_PDE_TYPE(pBasePage) == PGM_PAGE_PDE_TYPE_DONTCARE)
773 {
774 rc = pgmPhysAllocLargePage(pVM, GCPhys);
775 if (rc == VINF_SUCCESS)
776 return rc;
777 }
778 /* Mark the base as type page table, so we don't check over and over again. */
779 PGM_PAGE_SET_PDE_TYPE(pVM, pBasePage, PGM_PAGE_PDE_TYPE_PT);
780
781 /* fall back to 4KB pages. */
782 }
783# endif
784
785 /*
786 * Flush any shadow page table mappings of the page.
787 * When VBOX_WITH_NEW_LAZY_PAGE_ALLOC isn't defined, there shouldn't be any.
788 */
789 bool fFlushTLBs = false;
790 int rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhys, pPage, true /*fFlushTLBs*/, &fFlushTLBs);
791 AssertMsgReturn(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc), RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_STATUS);
792
793 /*
794 * Ensure that we've got a page handy, take it and use it.
795 */
796 int rc2 = pgmPhysEnsureHandyPage(pVM);
797 if (RT_FAILURE(rc2))
798 {
799 if (fFlushTLBs)
800 PGM_INVL_ALL_VCPU_TLBS(pVM);
801 Assert(rc2 == VERR_EM_NO_MEMORY);
802 return rc2;
803 }
804 /* re-assert preconditions since pgmPhysEnsureHandyPage may do a context switch. */
805 PGM_LOCK_ASSERT_OWNER(pVM);
806 AssertMsg(PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_SHARED(pPage), ("%R[pgmpage] %RGp\n", pPage, GCPhys));
807 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage));
808
809 uint32_t iHandyPage = --pVM->pgm.s.cHandyPages;
810 AssertMsg(iHandyPage < RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d\n", iHandyPage));
811 Assert(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys != NIL_RTHCPHYS);
812 Assert(!(pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys & ~X86_PTE_PAE_PG_MASK));
813 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idPage != NIL_GMM_PAGEID);
814 Assert(pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage == NIL_GMM_PAGEID);
815
816 /*
817 * There are one or two action to be taken the next time we allocate handy pages:
818 * - Tell the GMM (global memory manager) what the page is being used for.
819 * (Speeds up replacement operations - sharing and defragmenting.)
820 * - If the current backing is shared, it must be freed.
821 */
822 const RTHCPHYS HCPhys = pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys;
823 pVM->pgm.s.aHandyPages[iHandyPage].HCPhysGCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
824
825 void const *pvSharedPage = NULL;
826 if (PGM_PAGE_IS_SHARED(pPage))
827 {
828 /* Mark this shared page for freeing/dereferencing. */
829 pVM->pgm.s.aHandyPages[iHandyPage].idSharedPage = PGM_PAGE_GET_PAGEID(pPage);
830 Assert(PGM_PAGE_GET_PAGEID(pPage) != NIL_GMM_PAGEID);
831
832 Log(("PGM: Replaced shared page %#x at %RGp with %#x / %RHp\n", PGM_PAGE_GET_PAGEID(pPage),
833 GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
834 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageReplaceShared));
835 pVM->pgm.s.cSharedPages--;
836
837 /* Grab the address of the page so we can make a copy later on. (safe) */
838 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvSharedPage);
839 AssertRC(rc);
840 }
841 else
842 {
843 Log2(("PGM: Replaced zero page %RGp with %#x / %RHp\n", GCPhys, pVM->pgm.s.aHandyPages[iHandyPage].idPage, HCPhys));
844 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
845 pVM->pgm.s.cZeroPages--;
846 }
847
848 /*
849 * Do the PGMPAGE modifications.
850 */
851 pVM->pgm.s.cPrivatePages++;
852 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
853 PGM_PAGE_SET_PAGEID(pVM, pPage, pVM->pgm.s.aHandyPages[iHandyPage].idPage);
854 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
855 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PT);
856 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
857
858 /* Copy the shared page contents to the replacement page. */
859 if (pvSharedPage)
860 {
861 /* Get the virtual address of the new page. */
862 PGMPAGEMAPLOCK PgMpLck;
863 void *pvNewPage;
864 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvNewPage, &PgMpLck); AssertRC(rc);
865 if (RT_SUCCESS(rc))
866 {
867 memcpy(pvNewPage, pvSharedPage, PAGE_SIZE); /** @todo todo write ASMMemCopyPage */
868 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
869 }
870 }
871
872 if ( fFlushTLBs
873 && rc != VINF_PGM_GCPHYS_ALIASED)
874 PGM_INVL_ALL_VCPU_TLBS(pVM);
875 return rc;
876}
877
878#ifdef PGM_WITH_LARGE_PAGES
879
880/**
881 * Replace a 2 MB range of zero pages with new pages that we can write to.
882 *
883 * @returns The following VBox status codes.
884 * @retval VINF_SUCCESS on success, pPage is modified.
885 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
886 * @retval VERR_EM_NO_MEMORY if we're totally out of memory.
887 *
888 * @todo Propagate VERR_EM_NO_MEMORY up the call tree.
889 *
890 * @param pVM The cross context VM structure.
891 * @param GCPhys The address of the page.
892 *
893 * @remarks Must be called from within the PGM critical section. It may
894 * nip back to ring-3/0 in some cases.
895 */
896int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys)
897{
898 RTGCPHYS GCPhysBase = GCPhys & X86_PDE2M_PAE_PG_MASK;
899 LogFlow(("pgmPhysAllocLargePage: %RGp base %RGp\n", GCPhys, GCPhysBase));
900
901 /*
902 * Prereqs.
903 */
904 PGM_LOCK_ASSERT_OWNER(pVM);
905 Assert(PGMIsUsingLargePages(pVM));
906
907 PPGMPAGE pFirstPage;
908 int rc = pgmPhysGetPageEx(pVM, GCPhysBase, &pFirstPage);
909 if ( RT_SUCCESS(rc)
910 && PGM_PAGE_GET_TYPE(pFirstPage) == PGMPAGETYPE_RAM)
911 {
912 unsigned uPDEType = PGM_PAGE_GET_PDE_TYPE(pFirstPage);
913
914 /* Don't call this function for already allocated pages. */
915 Assert(uPDEType != PGM_PAGE_PDE_TYPE_PDE);
916
917 if ( uPDEType == PGM_PAGE_PDE_TYPE_DONTCARE
918 && PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ZERO)
919 {
920 /* Lazy approach: check all pages in the 2 MB range.
921 * The whole range must be ram and unallocated. */
922 GCPhys = GCPhysBase;
923 unsigned iPage;
924 for (iPage = 0; iPage < _2M/PAGE_SIZE; iPage++)
925 {
926 PPGMPAGE pSubPage;
927 rc = pgmPhysGetPageEx(pVM, GCPhys, &pSubPage);
928 if ( RT_FAILURE(rc)
929 || PGM_PAGE_GET_TYPE(pSubPage) != PGMPAGETYPE_RAM /* Anything other than ram implies monitoring. */
930 || PGM_PAGE_GET_STATE(pSubPage) != PGM_PAGE_STATE_ZERO) /* Allocated, monitored or shared means we can't use a large page here */
931 {
932 LogFlow(("Found page %RGp with wrong attributes (type=%d; state=%d); cancel check. rc=%d\n", GCPhys, PGM_PAGE_GET_TYPE(pSubPage), PGM_PAGE_GET_STATE(pSubPage), rc));
933 break;
934 }
935 Assert(PGM_PAGE_GET_PDE_TYPE(pSubPage) == PGM_PAGE_PDE_TYPE_DONTCARE);
936 GCPhys += PAGE_SIZE;
937 }
938 if (iPage != _2M/PAGE_SIZE)
939 {
940 /* Failed. Mark as requiring a PT so we don't check the whole thing again in the future. */
941 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRefused);
942 PGM_PAGE_SET_PDE_TYPE(pVM, pFirstPage, PGM_PAGE_PDE_TYPE_PT);
943 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
944 }
945
946 /*
947 * Do the allocation.
948 */
949# ifdef IN_RING3
950 rc = PGMR3PhysAllocateLargeHandyPage(pVM, GCPhysBase);
951# else
952 rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE, GCPhysBase);
953# endif
954 if (RT_SUCCESS(rc))
955 {
956 Assert(PGM_PAGE_GET_STATE(pFirstPage) == PGM_PAGE_STATE_ALLOCATED);
957 pVM->pgm.s.cLargePages++;
958 return VINF_SUCCESS;
959 }
960
961 /* If we fail once, it most likely means the host's memory is too
962 fragmented; don't bother trying again. */
963 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
964 PGMSetLargePageUsage(pVM, false);
965 return rc;
966 }
967 }
968 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
969}
970
971
972/**
973 * Recheck the entire 2 MB range to see if we can use it again as a large page.
974 *
975 * @returns The following VBox status codes.
976 * @retval VINF_SUCCESS on success, the large page can be used again
977 * @retval VERR_PGM_INVALID_LARGE_PAGE_RANGE if it can't be reused
978 *
979 * @param pVM The cross context VM structure.
980 * @param GCPhys The address of the page.
981 * @param pLargePage Page structure of the base page
982 */
983int pgmPhysRecheckLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage)
984{
985 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageRecheck);
986
987 GCPhys &= X86_PDE2M_PAE_PG_MASK;
988
989 /* Check the base page. */
990 Assert(PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED);
991 if ( PGM_PAGE_GET_STATE(pLargePage) != PGM_PAGE_STATE_ALLOCATED
992 || PGM_PAGE_GET_TYPE(pLargePage) != PGMPAGETYPE_RAM
993 || PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
994 {
995 LogFlow(("pgmPhysRecheckLargePage: checks failed for base page %x %x %x\n", PGM_PAGE_GET_STATE(pLargePage), PGM_PAGE_GET_TYPE(pLargePage), PGM_PAGE_GET_HNDL_PHYS_STATE(pLargePage)));
996 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
997 }
998
999 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
1000 /* Check all remaining pages in the 2 MB range. */
1001 unsigned i;
1002 GCPhys += PAGE_SIZE;
1003 for (i = 1; i < _2M/PAGE_SIZE; i++)
1004 {
1005 PPGMPAGE pPage;
1006 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1007 AssertRCBreak(rc);
1008
1009 if ( PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1010 || PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
1011 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
1012 || PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
1013 {
1014 LogFlow(("pgmPhysRecheckLargePage: checks failed for page %d; %x %x %x\n", i, PGM_PAGE_GET_STATE(pPage), PGM_PAGE_GET_TYPE(pPage), PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)));
1015 break;
1016 }
1017
1018 GCPhys += PAGE_SIZE;
1019 }
1020 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,IsValidLargePage), a);
1021
1022 if (i == _2M/PAGE_SIZE)
1023 {
1024 PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE);
1025 pVM->pgm.s.cLargePagesDisabled--;
1026 Log(("pgmPhysRecheckLargePage: page %RGp can be reused!\n", GCPhys - _2M));
1027 return VINF_SUCCESS;
1028 }
1029
1030 return VERR_PGM_INVALID_LARGE_PAGE_RANGE;
1031}
1032
1033#endif /* PGM_WITH_LARGE_PAGES */
1034
1035/**
1036 * Deal with a write monitored page.
1037 *
1038 * @returns VBox strict status code.
1039 *
1040 * @param pVM The cross context VM structure.
1041 * @param pPage The physical page tracking structure.
1042 *
1043 * @remarks Called from within the PGM critical section.
1044 */
1045void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage)
1046{
1047 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED);
1048 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
1049 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
1050 Assert(pVM->pgm.s.cMonitoredPages > 0);
1051 pVM->pgm.s.cMonitoredPages--;
1052 pVM->pgm.s.cWrittenToPages++;
1053}
1054
1055
1056/**
1057 * Deal with pages that are not writable, i.e. not in the ALLOCATED state.
1058 *
1059 * @returns VBox strict status code.
1060 * @retval VINF_SUCCESS on success.
1061 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
1062 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1063 *
1064 * @param pVM The cross context VM structure.
1065 * @param pPage The physical page tracking structure.
1066 * @param GCPhys The address of the page.
1067 *
1068 * @remarks Called from within the PGM critical section.
1069 */
1070int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1071{
1072 PGM_LOCK_ASSERT_OWNER(pVM);
1073 switch (PGM_PAGE_GET_STATE(pPage))
1074 {
1075 case PGM_PAGE_STATE_WRITE_MONITORED:
1076 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
1077 /* fall thru */
1078 default: /* to shut up GCC */
1079 case PGM_PAGE_STATE_ALLOCATED:
1080 return VINF_SUCCESS;
1081
1082 /*
1083 * Zero pages can be dummy pages for MMIO or reserved memory,
1084 * so we need to check the flags before joining cause with
1085 * shared page replacement.
1086 */
1087 case PGM_PAGE_STATE_ZERO:
1088 if (PGM_PAGE_IS_MMIO(pPage))
1089 return VERR_PGM_PHYS_PAGE_RESERVED;
1090 /* fall thru */
1091 case PGM_PAGE_STATE_SHARED:
1092 return pgmPhysAllocPage(pVM, pPage, GCPhys);
1093
1094 /* Not allowed to write to ballooned pages. */
1095 case PGM_PAGE_STATE_BALLOONED:
1096 return VERR_PGM_PHYS_PAGE_BALLOONED;
1097 }
1098}
1099
1100
1101/**
1102 * Internal usage: Map the page specified by its GMM ID.
1103 *
1104 * This is similar to pgmPhysPageMap
1105 *
1106 * @returns VBox status code.
1107 *
1108 * @param pVM The cross context VM structure.
1109 * @param idPage The Page ID.
1110 * @param HCPhys The physical address (for RC).
1111 * @param ppv Where to store the mapping address.
1112 *
1113 * @remarks Called from within the PGM critical section. The mapping is only
1114 * valid while you are inside this section.
1115 */
1116int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv)
1117{
1118 /*
1119 * Validation.
1120 */
1121 PGM_LOCK_ASSERT_OWNER(pVM);
1122 AssertReturn(HCPhys && !(HCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1123 const uint32_t idChunk = idPage >> GMM_CHUNKID_SHIFT;
1124 AssertReturn(idChunk != NIL_GMM_CHUNKID, VERR_INVALID_PARAMETER);
1125
1126#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1127 /*
1128 * Map it by HCPhys.
1129 */
1130 return pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
1131
1132#else
1133 /*
1134 * Find/make Chunk TLB entry for the mapping chunk.
1135 */
1136 PPGMCHUNKR3MAP pMap;
1137 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
1138 if (pTlbe->idChunk == idChunk)
1139 {
1140 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
1141 pMap = pTlbe->pChunk;
1142 }
1143 else
1144 {
1145 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
1146
1147 /*
1148 * Find the chunk, map it if necessary.
1149 */
1150 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1151 if (pMap)
1152 pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
1153 else
1154 {
1155# ifdef IN_RING0
1156 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
1157 AssertRCReturn(rc, rc);
1158 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1159 Assert(pMap);
1160# else
1161 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
1162 if (RT_FAILURE(rc))
1163 return rc;
1164# endif
1165 }
1166
1167 /*
1168 * Enter it into the Chunk TLB.
1169 */
1170 pTlbe->idChunk = idChunk;
1171 pTlbe->pChunk = pMap;
1172 }
1173
1174 *ppv = (uint8_t *)pMap->pv + ((idPage &GMM_PAGEID_IDX_MASK) << PAGE_SHIFT);
1175 return VINF_SUCCESS;
1176#endif
1177}
1178
1179
1180/**
1181 * Maps a page into the current virtual address space so it can be accessed.
1182 *
1183 * @returns VBox status code.
1184 * @retval VINF_SUCCESS on success.
1185 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1186 *
1187 * @param pVM The cross context VM structure.
1188 * @param pPage The physical page tracking structure.
1189 * @param GCPhys The address of the page.
1190 * @param ppMap Where to store the address of the mapping tracking structure.
1191 * @param ppv Where to store the mapping address of the page. The page
1192 * offset is masked off!
1193 *
1194 * @remarks Called from within the PGM critical section.
1195 */
1196static int pgmPhysPageMapCommon(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv)
1197{
1198 PGM_LOCK_ASSERT_OWNER(pVM);
1199 NOREF(GCPhys);
1200
1201#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1202 /*
1203 * Just some sketchy GC/R0-darwin code.
1204 */
1205 *ppMap = NULL;
1206 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
1207 Assert(HCPhys != pVM->pgm.s.HCPhysZeroPg);
1208 pgmRZDynMapHCPageInlined(VMMGetCpu(pVM), HCPhys, ppv RTLOG_COMMA_SRC_POS);
1209 return VINF_SUCCESS;
1210
1211#else /* IN_RING3 || IN_RING0 */
1212
1213
1214 /*
1215 * Special cases: MMIO2, ZERO and specially aliased MMIO pages.
1216 */
1217 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2
1218 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
1219 {
1220 /* Decode the page id to a page in a MMIO2 ram range. */
1221 uint8_t idMmio2 = PGM_MMIO2_PAGEID_GET_MMIO2_ID(PGM_PAGE_GET_PAGEID(pPage));
1222 uint32_t iPage = PGM_MMIO2_PAGEID_GET_IDX(PGM_PAGE_GET_PAGEID(pPage));
1223 AssertLogRelMsgReturn((uint8_t)(idMmio2 - 1U) < RT_ELEMENTS(pVM->pgm.s.CTX_SUFF(apMmio2Ranges)),
1224 ("idMmio2=%u size=%u type=%u GCPHys=%#RGp Id=%u State=%u", idMmio2,
1225 RT_ELEMENTS(pVM->pgm.s.CTX_SUFF(apMmio2Ranges)), PGM_PAGE_GET_TYPE(pPage), GCPhys,
1226 pPage->s.idPage, pPage->s.uStateY),
1227 VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1228 PPGMMMIO2RANGE pMmio2Range = pVM->pgm.s.CTX_SUFF(apMmio2Ranges)[idMmio2 - 1];
1229 AssertLogRelReturn(pMmio2Range, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1230 AssertLogRelReturn(pMmio2Range->idMmio2 == idMmio2, VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1231 AssertLogRelReturn(iPage < (pMmio2Range->RamRange.cb >> PAGE_SHIFT), VERR_PGM_PHYS_PAGE_MAP_MMIO2_IPE);
1232 *ppv = (uint8_t *)pMmio2Range->RamRange.pvR3 + ((uintptr_t)iPage << PAGE_SHIFT);
1233 *ppMap = NULL;
1234 return VINF_SUCCESS;
1235 }
1236
1237 const uint32_t idChunk = PGM_PAGE_GET_CHUNKID(pPage);
1238 if (idChunk == NIL_GMM_CHUNKID)
1239 {
1240 AssertMsgReturn(PGM_PAGE_GET_PAGEID(pPage) == NIL_GMM_PAGEID, ("pPage=%R[pgmpage]\n", pPage),
1241 VERR_PGM_PHYS_PAGE_MAP_IPE_1);
1242 if (!PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1243 {
1244 AssertMsgReturn(PGM_PAGE_IS_ZERO(pPage), ("pPage=%R[pgmpage]\n", pPage),
1245 VERR_PGM_PHYS_PAGE_MAP_IPE_3);
1246 AssertMsgReturn(PGM_PAGE_GET_HCPHYS(pPage)== pVM->pgm.s.HCPhysZeroPg, ("pPage=%R[pgmpage]\n", pPage),
1247 VERR_PGM_PHYS_PAGE_MAP_IPE_4);
1248 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1249 }
1250 else
1251# ifdef VBOX_WITH_2ND_IEM_STEP
1252 *ppv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1253# else
1254 {
1255 /* This kind of screws up the TLB entry if accessed from a different section afterwards. */
1256 static uint8_t s_abPlayItSafe[0x1000*2]; /* I don't dare return the zero page at the moment. */
1257 *ppv = (uint8_t *)((uintptr_t)&s_abPlayItSafe[0x1000] & ~(uintptr_t)0xfff);
1258 }
1259# endif
1260 *ppMap = NULL;
1261 return VINF_SUCCESS;
1262 }
1263
1264 /*
1265 * Find/make Chunk TLB entry for the mapping chunk.
1266 */
1267 PPGMCHUNKR3MAP pMap;
1268 PPGMCHUNKR3MAPTLBE pTlbe = &pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(idChunk)];
1269 if (pTlbe->idChunk == idChunk)
1270 {
1271 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbHits));
1272 pMap = pTlbe->pChunk;
1273 AssertPtr(pMap->pv);
1274 }
1275 else
1276 {
1277 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,ChunkR3MapTlbMisses));
1278
1279 /*
1280 * Find the chunk, map it if necessary.
1281 */
1282 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1283 if (pMap)
1284 {
1285 AssertPtr(pMap->pv);
1286 pMap->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
1287 }
1288 else
1289 {
1290#ifdef IN_RING0
1291 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_MAP_CHUNK, idChunk);
1292 AssertRCReturn(rc, rc);
1293 pMap = (PPGMCHUNKR3MAP)RTAvlU32Get(&pVM->pgm.s.ChunkR3Map.pTree, idChunk);
1294 Assert(pMap);
1295#else
1296 int rc = pgmR3PhysChunkMap(pVM, idChunk, &pMap);
1297 if (RT_FAILURE(rc))
1298 return rc;
1299#endif
1300 AssertPtr(pMap->pv);
1301 }
1302
1303 /*
1304 * Enter it into the Chunk TLB.
1305 */
1306 pTlbe->idChunk = idChunk;
1307 pTlbe->pChunk = pMap;
1308 }
1309
1310 *ppv = (uint8_t *)pMap->pv + (PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) << PAGE_SHIFT);
1311 *ppMap = pMap;
1312 return VINF_SUCCESS;
1313#endif /* IN_RING3 */
1314}
1315
1316
1317/**
1318 * Combination of pgmPhysPageMakeWritable and pgmPhysPageMapWritable.
1319 *
1320 * This is typically used is paths where we cannot use the TLB methods (like ROM
1321 * pages) or where there is no point in using them since we won't get many hits.
1322 *
1323 * @returns VBox strict status code.
1324 * @retval VINF_SUCCESS on success.
1325 * @retval VINF_PGM_SYNC_CR3 on success and a page pool flush is pending.
1326 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1327 *
1328 * @param pVM The cross context VM structure.
1329 * @param pPage The physical page tracking structure.
1330 * @param GCPhys The address of the page.
1331 * @param ppv Where to store the mapping address of the page. The page
1332 * offset is masked off!
1333 *
1334 * @remarks Called from within the PGM critical section. The mapping is only
1335 * valid while you are inside section.
1336 */
1337int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1338{
1339 int rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1340 if (RT_SUCCESS(rc))
1341 {
1342 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
1343 PPGMPAGEMAP pMapIgnore;
1344 int rc2 = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
1345 if (RT_FAILURE(rc2)) /* preserve rc */
1346 rc = rc2;
1347 }
1348 return rc;
1349}
1350
1351
1352/**
1353 * Maps a page into the current virtual address space so it can be accessed for
1354 * both writing and reading.
1355 *
1356 * This is typically used is paths where we cannot use the TLB methods (like ROM
1357 * pages) or where there is no point in using them since we won't get many hits.
1358 *
1359 * @returns VBox status code.
1360 * @retval VINF_SUCCESS on success.
1361 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1362 *
1363 * @param pVM The cross context VM structure.
1364 * @param pPage The physical page tracking structure. Must be in the
1365 * allocated state.
1366 * @param GCPhys The address of the page.
1367 * @param ppv Where to store the mapping address of the page. The page
1368 * offset is masked off!
1369 *
1370 * @remarks Called from within the PGM critical section. The mapping is only
1371 * valid while you are inside section.
1372 */
1373int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1374{
1375 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
1376 PPGMPAGEMAP pMapIgnore;
1377 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, ppv);
1378}
1379
1380
1381/**
1382 * Maps a page into the current virtual address space so it can be accessed for
1383 * reading.
1384 *
1385 * This is typically used is paths where we cannot use the TLB methods (like ROM
1386 * pages) or where there is no point in using them since we won't get many hits.
1387 *
1388 * @returns VBox status code.
1389 * @retval VINF_SUCCESS on success.
1390 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1391 *
1392 * @param pVM The cross context VM structure.
1393 * @param pPage The physical page tracking structure.
1394 * @param GCPhys The address of the page.
1395 * @param ppv Where to store the mapping address of the page. The page
1396 * offset is masked off!
1397 *
1398 * @remarks Called from within the PGM critical section. The mapping is only
1399 * valid while you are inside this section.
1400 */
1401int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv)
1402{
1403 PPGMPAGEMAP pMapIgnore;
1404 return pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMapIgnore, (void **)ppv);
1405}
1406
1407#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1408
1409/**
1410 * Load a guest page into the ring-3 physical TLB.
1411 *
1412 * @returns VBox status code.
1413 * @retval VINF_SUCCESS on success
1414 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1415 * @param pPGM The PGM instance pointer.
1416 * @param GCPhys The guest physical address in question.
1417 */
1418int pgmPhysPageLoadIntoTlb(PVM pVM, RTGCPHYS GCPhys)
1419{
1420 PGM_LOCK_ASSERT_OWNER(pVM);
1421
1422 /*
1423 * Find the ram range and page and hand it over to the with-page function.
1424 * 99.8% of requests are expected to be in the first range.
1425 */
1426 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
1427 if (!pPage)
1428 {
1429 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
1430 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1431 }
1432
1433 return pgmPhysPageLoadIntoTlbWithPage(pVM, pPage, GCPhys);
1434}
1435
1436
1437/**
1438 * Load a guest page into the ring-3 physical TLB.
1439 *
1440 * @returns VBox status code.
1441 * @retval VINF_SUCCESS on success
1442 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1443 *
1444 * @param pVM The cross context VM structure.
1445 * @param pPage Pointer to the PGMPAGE structure corresponding to
1446 * GCPhys.
1447 * @param GCPhys The guest physical address in question.
1448 */
1449int pgmPhysPageLoadIntoTlbWithPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys)
1450{
1451 PGM_LOCK_ASSERT_OWNER(pVM);
1452 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageMapTlbMisses));
1453
1454 /*
1455 * Map the page.
1456 * Make a special case for the zero page as it is kind of special.
1457 */
1458 PPGMPAGEMAPTLBE pTlbe = &pVM->pgm.s.CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
1459 if ( !PGM_PAGE_IS_ZERO(pPage)
1460 && !PGM_PAGE_IS_BALLOONED(pPage))
1461 {
1462 void *pv;
1463 PPGMPAGEMAP pMap;
1464 int rc = pgmPhysPageMapCommon(pVM, pPage, GCPhys, &pMap, &pv);
1465 if (RT_FAILURE(rc))
1466 return rc;
1467 pTlbe->pMap = pMap;
1468 pTlbe->pv = pv;
1469 Assert(!((uintptr_t)pTlbe->pv & PAGE_OFFSET_MASK));
1470 }
1471 else
1472 {
1473 AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == pVM->pgm.s.HCPhysZeroPg, ("%RGp/%R[pgmpage]\n", GCPhys, pPage));
1474 pTlbe->pMap = NULL;
1475 pTlbe->pv = pVM->pgm.s.CTXALLSUFF(pvZeroPg);
1476 }
1477#ifdef PGM_WITH_PHYS_TLB
1478 if ( PGM_PAGE_GET_TYPE(pPage) < PGMPAGETYPE_ROM_SHADOW
1479 || PGM_PAGE_GET_TYPE(pPage) > PGMPAGETYPE_ROM)
1480 pTlbe->GCPhys = GCPhys & X86_PTE_PAE_PG_MASK;
1481 else
1482 pTlbe->GCPhys = NIL_RTGCPHYS; /* ROM: Problematic because of the two pages. :-/ */
1483#else
1484 pTlbe->GCPhys = NIL_RTGCPHYS;
1485#endif
1486 pTlbe->pPage = pPage;
1487 return VINF_SUCCESS;
1488}
1489
1490#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1491
1492/**
1493 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
1494 * own the PGM lock and therefore not need to lock the mapped page.
1495 *
1496 * @returns VBox status code.
1497 * @retval VINF_SUCCESS on success.
1498 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1499 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1500 *
1501 * @param pVM The cross context VM structure.
1502 * @param GCPhys The guest physical address of the page that should be mapped.
1503 * @param pPage Pointer to the PGMPAGE structure for the page.
1504 * @param ppv Where to store the address corresponding to GCPhys.
1505 *
1506 * @internal
1507 * @deprecated Use pgmPhysGCPhys2CCPtrInternalEx.
1508 */
1509int pgmPhysGCPhys2CCPtrInternalDepr(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv)
1510{
1511 int rc;
1512 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1513 PGM_LOCK_ASSERT_OWNER(pVM);
1514 pVM->pgm.s.cDeprecatedPageLocks++;
1515
1516 /*
1517 * Make sure the page is writable.
1518 */
1519 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1520 {
1521 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1522 if (RT_FAILURE(rc))
1523 return rc;
1524 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1525 }
1526 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1527
1528 /*
1529 * Get the mapping address.
1530 */
1531#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1532 void *pv;
1533 rc = pgmRZDynMapHCPageInlined(VMMGetCpu(pVM),
1534 PGM_PAGE_GET_HCPHYS(pPage),
1535 &pv
1536 RTLOG_COMMA_SRC_POS);
1537 if (RT_FAILURE(rc))
1538 return rc;
1539 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1540#else
1541 PPGMPAGEMAPTLBE pTlbe;
1542 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1543 if (RT_FAILURE(rc))
1544 return rc;
1545 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1546#endif
1547 return VINF_SUCCESS;
1548}
1549
1550#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1551
1552/**
1553 * Locks a page mapping for writing.
1554 *
1555 * @param pVM The cross context VM structure.
1556 * @param pPage The page.
1557 * @param pTlbe The mapping TLB entry for the page.
1558 * @param pLock The lock structure (output).
1559 */
1560DECLINLINE(void) pgmPhysPageMapLockForWriting(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
1561{
1562 PPGMPAGEMAP pMap = pTlbe->pMap;
1563 if (pMap)
1564 pMap->cRefs++;
1565
1566 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
1567 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1568 {
1569 if (cLocks == 0)
1570 pVM->pgm.s.cWriteLockedPages++;
1571 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1572 }
1573 else if (cLocks != PGM_PAGE_MAX_LOCKS)
1574 {
1575 PGM_PAGE_INC_WRITE_LOCKS(pPage);
1576 AssertMsgFailed(("%R[pgmpage] is entering permanent write locked state!\n", pPage));
1577 if (pMap)
1578 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1579 }
1580
1581 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
1582 pLock->pvMap = pMap;
1583}
1584
1585/**
1586 * Locks a page mapping for reading.
1587 *
1588 * @param pVM The cross context VM structure.
1589 * @param pPage The page.
1590 * @param pTlbe The mapping TLB entry for the page.
1591 * @param pLock The lock structure (output).
1592 */
1593DECLINLINE(void) pgmPhysPageMapLockForReading(PVM pVM, PPGMPAGE pPage, PPGMPAGEMAPTLBE pTlbe, PPGMPAGEMAPLOCK pLock)
1594{
1595 PPGMPAGEMAP pMap = pTlbe->pMap;
1596 if (pMap)
1597 pMap->cRefs++;
1598
1599 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
1600 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
1601 {
1602 if (cLocks == 0)
1603 pVM->pgm.s.cReadLockedPages++;
1604 PGM_PAGE_INC_READ_LOCKS(pPage);
1605 }
1606 else if (cLocks != PGM_PAGE_MAX_LOCKS)
1607 {
1608 PGM_PAGE_INC_READ_LOCKS(pPage);
1609 AssertMsgFailed(("%R[pgmpage] is entering permanent read locked state!\n", pPage));
1610 if (pMap)
1611 pMap->cRefs++; /* Extra ref to prevent it from going away. */
1612 }
1613
1614 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
1615 pLock->pvMap = pMap;
1616}
1617
1618#endif /* !IN_RC && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1619
1620
1621/**
1622 * Internal version of PGMPhysGCPhys2CCPtr that expects the caller to
1623 * own the PGM lock and have access to the page structure.
1624 *
1625 * @returns VBox status code.
1626 * @retval VINF_SUCCESS on success.
1627 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1628 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1629 *
1630 * @param pVM The cross context VM structure.
1631 * @param GCPhys The guest physical address of the page that should be mapped.
1632 * @param pPage Pointer to the PGMPAGE structure for the page.
1633 * @param ppv Where to store the address corresponding to GCPhys.
1634 * @param pLock Where to store the lock information that
1635 * pgmPhysReleaseInternalPageMappingLock needs.
1636 *
1637 * @internal
1638 */
1639int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1640{
1641 int rc;
1642 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1643 PGM_LOCK_ASSERT_OWNER(pVM);
1644
1645 /*
1646 * Make sure the page is writable.
1647 */
1648 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1649 {
1650 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1651 if (RT_FAILURE(rc))
1652 return rc;
1653 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1654 }
1655 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1656
1657 /*
1658 * Do the job.
1659 */
1660#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1661 void *pv;
1662 PVMCPU pVCpu = VMMGetCpu(pVM);
1663 rc = pgmRZDynMapHCPageInlined(pVCpu,
1664 PGM_PAGE_GET_HCPHYS(pPage),
1665 &pv
1666 RTLOG_COMMA_SRC_POS);
1667 if (RT_FAILURE(rc))
1668 return rc;
1669 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1670 pLock->pvPage = pv;
1671 pLock->pVCpu = pVCpu;
1672
1673#else
1674 PPGMPAGEMAPTLBE pTlbe;
1675 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1676 if (RT_FAILURE(rc))
1677 return rc;
1678 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
1679 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1680#endif
1681 return VINF_SUCCESS;
1682}
1683
1684
1685/**
1686 * Internal version of PGMPhysGCPhys2CCPtrReadOnly that expects the caller to
1687 * own the PGM lock and have access to the page structure.
1688 *
1689 * @returns VBox status code.
1690 * @retval VINF_SUCCESS on success.
1691 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1692 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1693 *
1694 * @param pVM The cross context VM structure.
1695 * @param GCPhys The guest physical address of the page that should be mapped.
1696 * @param pPage Pointer to the PGMPAGE structure for the page.
1697 * @param ppv Where to store the address corresponding to GCPhys.
1698 * @param pLock Where to store the lock information that
1699 * pgmPhysReleaseInternalPageMappingLock needs.
1700 *
1701 * @internal
1702 */
1703int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv, PPGMPAGEMAPLOCK pLock)
1704{
1705 AssertReturn(pPage, VERR_PGM_PHYS_NULL_PAGE_PARAM);
1706 PGM_LOCK_ASSERT_OWNER(pVM);
1707 Assert(PGM_PAGE_GET_HCPHYS(pPage) != 0);
1708
1709 /*
1710 * Do the job.
1711 */
1712#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1713 void *pv;
1714 PVMCPU pVCpu = VMMGetCpu(pVM);
1715 int rc = pgmRZDynMapHCPageInlined(pVCpu,
1716 PGM_PAGE_GET_HCPHYS(pPage),
1717 &pv
1718 RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
1719 if (RT_FAILURE(rc))
1720 return rc;
1721 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1722 pLock->pvPage = pv;
1723 pLock->pVCpu = pVCpu;
1724
1725#else
1726 PPGMPAGEMAPTLBE pTlbe;
1727 int rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1728 if (RT_FAILURE(rc))
1729 return rc;
1730 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
1731 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1732#endif
1733 return VINF_SUCCESS;
1734}
1735
1736
1737/**
1738 * Requests the mapping of a guest page into the current context.
1739 *
1740 * This API should only be used for very short term, as it will consume scarse
1741 * resources (R0 and GC) in the mapping cache. When you're done with the page,
1742 * call PGMPhysReleasePageMappingLock() ASAP to release it.
1743 *
1744 * This API will assume your intention is to write to the page, and will
1745 * therefore replace shared and zero pages. If you do not intend to modify
1746 * the page, use the PGMPhysGCPhys2CCPtrReadOnly() API.
1747 *
1748 * @returns VBox status code.
1749 * @retval VINF_SUCCESS on success.
1750 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1751 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1752 *
1753 * @param pVM The cross context VM structure.
1754 * @param GCPhys The guest physical address of the page that should be
1755 * mapped.
1756 * @param ppv Where to store the address corresponding to GCPhys.
1757 * @param pLock Where to store the lock information that
1758 * PGMPhysReleasePageMappingLock needs.
1759 *
1760 * @remarks The caller is responsible for dealing with access handlers.
1761 * @todo Add an informational return code for pages with access handlers?
1762 *
1763 * @remark Avoid calling this API from within critical sections (other than
1764 * the PGM one) because of the deadlock risk. External threads may
1765 * need to delegate jobs to the EMTs.
1766 * @remarks Only one page is mapped! Make no assumption about what's after or
1767 * before the returned page!
1768 * @thread Any thread.
1769 */
1770VMM_INT_DECL(int) PGMPhysGCPhys2CCPtr(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
1771{
1772 int rc = pgmLock(pVM);
1773 AssertRCReturn(rc, rc);
1774
1775#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1776 /*
1777 * Find the page and make sure it's writable.
1778 */
1779 PPGMPAGE pPage;
1780 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1781 if (RT_SUCCESS(rc))
1782 {
1783 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1784 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1785 if (RT_SUCCESS(rc))
1786 {
1787 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1788
1789 PVMCPU pVCpu = VMMGetCpu(pVM);
1790 void *pv;
1791 rc = pgmRZDynMapHCPageInlined(pVCpu,
1792 PGM_PAGE_GET_HCPHYS(pPage),
1793 &pv
1794 RTLOG_COMMA_SRC_POS);
1795 if (RT_SUCCESS(rc))
1796 {
1797 AssertRCSuccess(rc);
1798
1799 pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1800 *ppv = pv;
1801 pLock->pvPage = pv;
1802 pLock->pVCpu = pVCpu;
1803 }
1804 }
1805 }
1806
1807#else /* IN_RING3 || IN_RING0 */
1808 /*
1809 * Query the Physical TLB entry for the page (may fail).
1810 */
1811 PPGMPAGEMAPTLBE pTlbe;
1812 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
1813 if (RT_SUCCESS(rc))
1814 {
1815 /*
1816 * If the page is shared, the zero page, or being write monitored
1817 * it must be converted to a page that's writable if possible.
1818 */
1819 PPGMPAGE pPage = pTlbe->pPage;
1820 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
1821 {
1822 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1823 if (RT_SUCCESS(rc))
1824 {
1825 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* not returned */, ("%Rrc\n", rc));
1826 rc = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
1827 }
1828 }
1829 if (RT_SUCCESS(rc))
1830 {
1831 /*
1832 * Now, just perform the locking and calculate the return address.
1833 */
1834 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
1835 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1836 }
1837 }
1838
1839#endif /* IN_RING3 || IN_RING0 */
1840 pgmUnlock(pVM);
1841 return rc;
1842}
1843
1844
1845/**
1846 * Requests the mapping of a guest page into the current context.
1847 *
1848 * This API should only be used for very short term, as it will consume scarse
1849 * resources (R0 and GC) in the mapping cache. When you're done with the page,
1850 * call PGMPhysReleasePageMappingLock() ASAP to release it.
1851 *
1852 * @returns VBox status code.
1853 * @retval VINF_SUCCESS on success.
1854 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1855 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1856 *
1857 * @param pVM The cross context VM structure.
1858 * @param GCPhys The guest physical address of the page that should be
1859 * mapped.
1860 * @param ppv Where to store the address corresponding to GCPhys.
1861 * @param pLock Where to store the lock information that
1862 * PGMPhysReleasePageMappingLock needs.
1863 *
1864 * @remarks The caller is responsible for dealing with access handlers.
1865 * @todo Add an informational return code for pages with access handlers?
1866 *
1867 * @remarks Avoid calling this API from within critical sections (other than
1868 * the PGM one) because of the deadlock risk.
1869 * @remarks Only one page is mapped! Make no assumption about what's after or
1870 * before the returned page!
1871 * @thread Any thread.
1872 */
1873VMM_INT_DECL(int) PGMPhysGCPhys2CCPtrReadOnly(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
1874{
1875 int rc = pgmLock(pVM);
1876 AssertRCReturn(rc, rc);
1877
1878#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1879 /*
1880 * Find the page and make sure it's readable.
1881 */
1882 PPGMPAGE pPage;
1883 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1884 if (RT_SUCCESS(rc))
1885 {
1886 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
1887 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1888 else
1889 {
1890 PVMCPU pVCpu = VMMGetCpu(pVM);
1891 void *pv;
1892 rc = pgmRZDynMapHCPageInlined(pVCpu,
1893 PGM_PAGE_GET_HCPHYS(pPage),
1894 &pv
1895 RTLOG_COMMA_SRC_POS); /** @todo add a read only flag? */
1896 if (RT_SUCCESS(rc))
1897 {
1898 AssertRCSuccess(rc);
1899
1900 pv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1901 *ppv = pv;
1902 pLock->pvPage = pv;
1903 pLock->pVCpu = pVCpu;
1904 }
1905 }
1906 }
1907
1908#else /* IN_RING3 || IN_RING0 */
1909 /*
1910 * Query the Physical TLB entry for the page (may fail).
1911 */
1912 PPGMPAGEMAPTLBE pTlbe;
1913 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
1914 if (RT_SUCCESS(rc))
1915 {
1916 /* MMIO pages doesn't have any readable backing. */
1917 PPGMPAGE pPage = pTlbe->pPage;
1918 if (RT_UNLIKELY(PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)))
1919 rc = VERR_PGM_PHYS_PAGE_RESERVED;
1920 else
1921 {
1922 /*
1923 * Now, just perform the locking and calculate the return address.
1924 */
1925 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
1926 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
1927 }
1928 }
1929
1930#endif /* IN_RING3 || IN_RING0 */
1931 pgmUnlock(pVM);
1932 return rc;
1933}
1934
1935
1936/**
1937 * Requests the mapping of a guest page given by virtual address into the current context.
1938 *
1939 * This API should only be used for very short term, as it will consume
1940 * scarse resources (R0 and GC) in the mapping cache. When you're done
1941 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1942 *
1943 * This API will assume your intention is to write to the page, and will
1944 * therefore replace shared and zero pages. If you do not intend to modify
1945 * the page, use the PGMPhysGCPtr2CCPtrReadOnly() API.
1946 *
1947 * @returns VBox status code.
1948 * @retval VINF_SUCCESS on success.
1949 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1950 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1951 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1952 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1953 *
1954 * @param pVCpu The cross context virtual CPU structure.
1955 * @param GCPtr The guest physical address of the page that should be
1956 * mapped.
1957 * @param ppv Where to store the address corresponding to GCPhys.
1958 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1959 *
1960 * @remark Avoid calling this API from within critical sections (other than
1961 * the PGM one) because of the deadlock risk.
1962 * @thread EMT
1963 */
1964VMM_INT_DECL(int) PGMPhysGCPtr2CCPtr(PVMCPU pVCpu, RTGCPTR GCPtr, void **ppv, PPGMPAGEMAPLOCK pLock)
1965{
1966 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
1967 RTGCPHYS GCPhys;
1968 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
1969 if (RT_SUCCESS(rc))
1970 rc = PGMPhysGCPhys2CCPtr(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
1971 return rc;
1972}
1973
1974
1975/**
1976 * Requests the mapping of a guest page given by virtual address into the current context.
1977 *
1978 * This API should only be used for very short term, as it will consume
1979 * scarse resources (R0 and GC) in the mapping cache. When you're done
1980 * with the page, call PGMPhysReleasePageMappingLock() ASAP to release it.
1981 *
1982 * @returns VBox status code.
1983 * @retval VINF_SUCCESS on success.
1984 * @retval VERR_PAGE_TABLE_NOT_PRESENT if the page directory for the virtual address isn't present.
1985 * @retval VERR_PAGE_NOT_PRESENT if the page at the virtual address isn't present.
1986 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical backing.
1987 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
1988 *
1989 * @param pVCpu The cross context virtual CPU structure.
1990 * @param GCPtr The guest physical address of the page that should be
1991 * mapped.
1992 * @param ppv Where to store the address corresponding to GCPtr.
1993 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
1994 *
1995 * @remark Avoid calling this API from within critical sections (other than
1996 * the PGM one) because of the deadlock risk.
1997 * @thread EMT
1998 */
1999VMM_INT_DECL(int) PGMPhysGCPtr2CCPtrReadOnly(PVMCPU pVCpu, RTGCPTR GCPtr, void const **ppv, PPGMPAGEMAPLOCK pLock)
2000{
2001 VM_ASSERT_EMT(pVCpu->CTX_SUFF(pVM));
2002 RTGCPHYS GCPhys;
2003 int rc = PGMPhysGCPtr2GCPhys(pVCpu, GCPtr, &GCPhys);
2004 if (RT_SUCCESS(rc))
2005 rc = PGMPhysGCPhys2CCPtrReadOnly(pVCpu->CTX_SUFF(pVM), GCPhys, ppv, pLock);
2006 return rc;
2007}
2008
2009
2010/**
2011 * Release the mapping of a guest page.
2012 *
2013 * This is the counter part of PGMPhysGCPhys2CCPtr, PGMPhysGCPhys2CCPtrReadOnly
2014 * PGMPhysGCPtr2CCPtr and PGMPhysGCPtr2CCPtrReadOnly.
2015 *
2016 * @param pVM The cross context VM structure.
2017 * @param pLock The lock structure initialized by the mapping function.
2018 */
2019VMMDECL(void) PGMPhysReleasePageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
2020{
2021#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2022 Assert(pLock->pvPage != NULL);
2023 Assert(pLock->pVCpu == VMMGetCpu(pVM));
2024 PGM_DYNMAP_UNUSED_HINT(pLock->pVCpu, pLock->pvPage);
2025 pLock->pVCpu = NULL;
2026 pLock->pvPage = NULL;
2027
2028#else
2029 PPGMPAGEMAP pMap = (PPGMPAGEMAP)pLock->pvMap;
2030 PPGMPAGE pPage = (PPGMPAGE)(pLock->uPageAndType & ~PGMPAGEMAPLOCK_TYPE_MASK);
2031 bool fWriteLock = (pLock->uPageAndType & PGMPAGEMAPLOCK_TYPE_MASK) == PGMPAGEMAPLOCK_TYPE_WRITE;
2032
2033 pLock->uPageAndType = 0;
2034 pLock->pvMap = NULL;
2035
2036 pgmLock(pVM);
2037 if (fWriteLock)
2038 {
2039 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
2040 Assert(cLocks > 0);
2041 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
2042 {
2043 if (cLocks == 1)
2044 {
2045 Assert(pVM->pgm.s.cWriteLockedPages > 0);
2046 pVM->pgm.s.cWriteLockedPages--;
2047 }
2048 PGM_PAGE_DEC_WRITE_LOCKS(pPage);
2049 }
2050
2051 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
2052 {
2053 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
2054 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
2055 Assert(pVM->pgm.s.cMonitoredPages > 0);
2056 pVM->pgm.s.cMonitoredPages--;
2057 pVM->pgm.s.cWrittenToPages++;
2058 }
2059 }
2060 else
2061 {
2062 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
2063 Assert(cLocks > 0);
2064 if (RT_LIKELY(cLocks > 0 && cLocks < PGM_PAGE_MAX_LOCKS))
2065 {
2066 if (cLocks == 1)
2067 {
2068 Assert(pVM->pgm.s.cReadLockedPages > 0);
2069 pVM->pgm.s.cReadLockedPages--;
2070 }
2071 PGM_PAGE_DEC_READ_LOCKS(pPage);
2072 }
2073 }
2074
2075 if (pMap)
2076 {
2077 Assert(pMap->cRefs >= 1);
2078 pMap->cRefs--;
2079 }
2080 pgmUnlock(pVM);
2081#endif /* IN_RING3 */
2082}
2083
2084
2085/**
2086 * Release the internal mapping of a guest page.
2087 *
2088 * This is the counter part of pgmPhysGCPhys2CCPtrInternalEx and
2089 * pgmPhysGCPhys2CCPtrInternalReadOnly.
2090 *
2091 * @param pVM The cross context VM structure.
2092 * @param pLock The lock structure initialized by the mapping function.
2093 *
2094 * @remarks Caller must hold the PGM lock.
2095 */
2096void pgmPhysReleaseInternalPageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock)
2097{
2098 PGM_LOCK_ASSERT_OWNER(pVM);
2099 PGMPhysReleasePageMappingLock(pVM, pLock); /* lazy for now */
2100}
2101
2102
2103/**
2104 * Converts a GC physical address to a HC ring-3 pointer.
2105 *
2106 * @returns VINF_SUCCESS on success.
2107 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
2108 * page but has no physical backing.
2109 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
2110 * GC physical address.
2111 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
2112 * a dynamic ram chunk boundary
2113 *
2114 * @param pVM The cross context VM structure.
2115 * @param GCPhys The GC physical address to convert.
2116 * @param pR3Ptr Where to store the R3 pointer on success.
2117 *
2118 * @deprecated Avoid when possible!
2119 */
2120int pgmPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2121{
2122/** @todo this is kind of hacky and needs some more work. */
2123#ifndef DEBUG_sandervl
2124 VM_ASSERT_EMT(pVM); /* no longer safe for use outside the EMT thread! */
2125#endif
2126
2127 Log(("pgmPhysGCPhys2R3Ptr(,%RGp,): dont use this API!\n", GCPhys)); /** @todo eliminate this API! */
2128#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2129 NOREF(pVM); NOREF(pR3Ptr);
2130 AssertFailedReturn(VERR_NOT_IMPLEMENTED);
2131#else
2132 pgmLock(pVM);
2133
2134 PPGMRAMRANGE pRam;
2135 PPGMPAGE pPage;
2136 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
2137 if (RT_SUCCESS(rc))
2138 rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
2139
2140 pgmUnlock(pVM);
2141 Assert(rc <= VINF_SUCCESS);
2142 return rc;
2143#endif
2144}
2145
2146#if 0 /*defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)*/
2147
2148/**
2149 * Maps and locks a guest CR3 or PD (PAE) page.
2150 *
2151 * @returns VINF_SUCCESS on success.
2152 * @returns VERR_PGM_PHYS_PAGE_RESERVED it it's a valid GC physical
2153 * page but has no physical backing.
2154 * @returns VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid
2155 * GC physical address.
2156 * @returns VERR_PGM_GCPHYS_RANGE_CROSSES_BOUNDARY if the range crosses
2157 * a dynamic ram chunk boundary
2158 *
2159 * @param pVM The cross context VM structure.
2160 * @param GCPhys The GC physical address to convert.
2161 * @param pR3Ptr Where to store the R3 pointer on success. This may or
2162 * may not be valid in ring-0 depending on the
2163 * VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 build option.
2164 *
2165 * @remarks The caller must own the PGM lock.
2166 */
2167int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2168{
2169
2170 PPGMRAMRANGE pRam;
2171 PPGMPAGE pPage;
2172 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
2173 if (RT_SUCCESS(rc))
2174 rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)pR3Ptr);
2175 Assert(rc <= VINF_SUCCESS);
2176 return rc;
2177}
2178
2179
2180int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr)
2181{
2182
2183}
2184
2185#endif
2186
2187/**
2188 * Converts a guest pointer to a GC physical address.
2189 *
2190 * This uses the current CR3/CR0/CR4 of the guest.
2191 *
2192 * @returns VBox status code.
2193 * @param pVCpu The cross context virtual CPU structure.
2194 * @param GCPtr The guest pointer to convert.
2195 * @param pGCPhys Where to store the GC physical address.
2196 */
2197VMMDECL(int) PGMPhysGCPtr2GCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTGCPHYS pGCPhys)
2198{
2199 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, pGCPhys);
2200 if (pGCPhys && RT_SUCCESS(rc))
2201 *pGCPhys |= (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
2202 return rc;
2203}
2204
2205
2206/**
2207 * Converts a guest pointer to a HC physical address.
2208 *
2209 * This uses the current CR3/CR0/CR4 of the guest.
2210 *
2211 * @returns VBox status code.
2212 * @param pVCpu The cross context virtual CPU structure.
2213 * @param GCPtr The guest pointer to convert.
2214 * @param pHCPhys Where to store the HC physical address.
2215 */
2216VMM_INT_DECL(int) PGMPhysGCPtr2HCPhys(PVMCPU pVCpu, RTGCPTR GCPtr, PRTHCPHYS pHCPhys)
2217{
2218 PVM pVM = pVCpu->CTX_SUFF(pVM);
2219 RTGCPHYS GCPhys;
2220 int rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtr, NULL, &GCPhys);
2221 if (RT_SUCCESS(rc))
2222 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys | ((RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK), pHCPhys);
2223 return rc;
2224}
2225
2226
2227
2228#undef LOG_GROUP
2229#define LOG_GROUP LOG_GROUP_PGM_PHYS_ACCESS
2230
2231
2232#if defined(IN_RING3) && defined(SOME_UNUSED_FUNCTION)
2233/**
2234 * Cache PGMPhys memory access
2235 *
2236 * @param pVM The cross context VM structure.
2237 * @param pCache Cache structure pointer
2238 * @param GCPhys GC physical address
2239 * @param pbHC HC pointer corresponding to physical page
2240 *
2241 * @thread EMT.
2242 */
2243static void pgmPhysCacheAdd(PVM pVM, PGMPHYSCACHE *pCache, RTGCPHYS GCPhys, uint8_t *pbR3)
2244{
2245 uint32_t iCacheIndex;
2246
2247 Assert(VM_IS_EMT(pVM));
2248
2249 GCPhys = PHYS_PAGE_ADDRESS(GCPhys);
2250 pbR3 = (uint8_t *)PAGE_ADDRESS(pbR3);
2251
2252 iCacheIndex = ((GCPhys >> PAGE_SHIFT) & PGM_MAX_PHYSCACHE_ENTRIES_MASK);
2253
2254 ASMBitSet(&pCache->aEntries, iCacheIndex);
2255
2256 pCache->Entry[iCacheIndex].GCPhys = GCPhys;
2257 pCache->Entry[iCacheIndex].pbR3 = pbR3;
2258}
2259#endif /* IN_RING3 */
2260
2261
2262/**
2263 * Deals with reading from a page with one or more ALL access handlers.
2264 *
2265 * @returns Strict VBox status code in ring-0 and raw-mode, ignorable in ring-3.
2266 * See PGM_HANDLER_PHYS_IS_VALID_STATUS and
2267 * PGM_HANDLER_VIRT_IS_VALID_STATUS for details.
2268 *
2269 * @param pVM The cross context VM structure.
2270 * @param pPage The page descriptor.
2271 * @param GCPhys The physical address to start reading at.
2272 * @param pvBuf Where to put the bits we read.
2273 * @param cb How much to read - less or equal to a page.
2274 * @param enmOrigin The origin of this call.
2275 */
2276static VBOXSTRICTRC pgmPhysReadHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void *pvBuf, size_t cb,
2277 PGMACCESSORIGIN enmOrigin)
2278{
2279 /*
2280 * The most frequent access here is MMIO and shadowed ROM.
2281 * The current code ASSUMES all these access handlers covers full pages!
2282 */
2283
2284 /*
2285 * Whatever we do we need the source page, map it first.
2286 */
2287 PGMPAGEMAPLOCK PgMpLck;
2288 const void *pvSrc = NULL;
2289 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvSrc, &PgMpLck);
2290/** @todo Check how this can work for MMIO pages? */
2291 if (RT_FAILURE(rc))
2292 {
2293 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
2294 GCPhys, pPage, rc));
2295 memset(pvBuf, 0xff, cb);
2296 return VINF_SUCCESS;
2297 }
2298
2299 VBOXSTRICTRC rcStrict = VINF_PGM_HANDLER_DO_DEFAULT;
2300
2301 /*
2302 * Deal with any physical handlers.
2303 */
2304 PVMCPU pVCpu = VMMGetCpu(pVM);
2305 PPGMPHYSHANDLER pPhys = NULL;
2306 if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL
2307 || PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
2308 {
2309 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2310 AssertReleaseMsg(pPhys, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
2311 Assert(GCPhys >= pPhys->Core.Key && GCPhys <= pPhys->Core.KeyLast);
2312 Assert((pPhys->Core.Key & PAGE_OFFSET_MASK) == 0);
2313 Assert((pPhys->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
2314#ifndef IN_RING3
2315 if (enmOrigin != PGMACCESSORIGIN_IEM)
2316 {
2317 /* Cannot reliably handle informational status codes in this context */
2318 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2319 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2320 }
2321#endif
2322 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler); Assert(pfnHandler);
2323 void *pvUser = pPhys->CTX_SUFF(pvUser);
2324
2325 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cb, pPage, R3STRING(pPhys->pszDesc) ));
2326 STAM_PROFILE_START(&pPhys->Stat, h);
2327 PGM_LOCK_ASSERT_OWNER(pVM);
2328
2329 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2330 pgmUnlock(pVM);
2331 rcStrict = pfnHandler(pVM, pVCpu, GCPhys, (void *)pvSrc, pvBuf, cb, PGMACCESSTYPE_READ, enmOrigin, pvUser);
2332 pgmLock(pVM);
2333
2334#ifdef VBOX_WITH_STATISTICS
2335 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2336 if (pPhys)
2337 STAM_PROFILE_STOP(&pPhys->Stat, h);
2338#else
2339 pPhys = NULL; /* might not be valid anymore. */
2340#endif
2341 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict, false),
2342 ("rcStrict=%Rrc GCPhys=%RGp\n", VBOXSTRICTRC_VAL(rcStrict), GCPhys));
2343 if ( rcStrict != VINF_PGM_HANDLER_DO_DEFAULT
2344 && !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2345 {
2346 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2347 return rcStrict;
2348 }
2349 }
2350
2351#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2352 /*
2353 * Deal with any virtual handlers.
2354 */
2355 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL)
2356 {
2357 unsigned iPage;
2358 PPGMVIRTHANDLER pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iPage);
2359 AssertReleaseMsg(pVirt, ("GCPhys=%RGp cb=%#x\n", GCPhys, cb));
2360 Assert((pVirt->Core.Key & PAGE_OFFSET_MASK) == 0);
2361 Assert((pVirt->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
2362 Assert(GCPhys >= pVirt->aPhysToVirt[iPage].Core.Key && GCPhys <= pVirt->aPhysToVirt[iPage].Core.KeyLast);
2363
2364# ifndef IN_RING3
2365 if (enmOrigin != PGMACCESSORIGIN_IEM)
2366 {
2367 /* Cannot reliably handle informational status codes in this context */
2368 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2369 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2370 }
2371# endif
2372 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2373 if (!pPhys)
2374 Log5(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] virt %s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc) ));
2375 else
2376 Log(("pgmPhysReadHandler: GCPhys=%RGp cb=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cb, pPage, R3STRING(pVirt->pszDesc), R3STRING(pPhys->pszDesc) ));
2377 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2378 + (iPage << PAGE_SHIFT)
2379 + (GCPhys & PAGE_OFFSET_MASK);
2380
2381 STAM_PROFILE_START(&pVirt->Stat, h);
2382 VBOXSTRICTRC rcStrict2 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, (void *)pvSrc, pvBuf, cb,
2383 PGMACCESSTYPE_READ, enmOrigin, pVirt->CTX_SUFF(pvUser));
2384 STAM_PROFILE_STOP(&pVirt->Stat, h);
2385
2386 /* Merge status codes. */
2387 if (rcStrict2 == VINF_SUCCESS)
2388 {
2389 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2390 rcStrict = VINF_SUCCESS;
2391 }
2392 else if (rcStrict2 != VINF_PGM_HANDLER_DO_DEFAULT)
2393 {
2394 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict2, false),
2395 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2396 VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pVirt->pszDesc));
2397 if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2398 {
2399 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2400 return rcStrict2;
2401 }
2402 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2403 rcStrict = rcStrict2;
2404 else
2405 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
2406 }
2407 }
2408#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
2409
2410 /*
2411 * Take the default action.
2412 */
2413 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2414 {
2415 memcpy(pvBuf, pvSrc, cb);
2416 rcStrict = VINF_SUCCESS;
2417 }
2418 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2419 return rcStrict;
2420}
2421
2422
2423/**
2424 * Read physical memory.
2425 *
2426 * This API respects access handlers and MMIO. Use PGMPhysSimpleReadGCPhys() if you
2427 * want to ignore those.
2428 *
2429 * @returns Strict VBox status code in raw-mode and ring-0, normal VBox status
2430 * code in ring-3. Use PGM_PHYS_RW_IS_SUCCESS to check.
2431 * @retval VINF_SUCCESS in all context - read completed.
2432 *
2433 * @retval VINF_EM_OFF in RC and R0 - read completed.
2434 * @retval VINF_EM_SUSPEND in RC and R0 - read completed.
2435 * @retval VINF_EM_RESET in RC and R0 - read completed.
2436 * @retval VINF_EM_HALT in RC and R0 - read completed.
2437 * @retval VINF_SELM_SYNC_GDT in RC only - read completed.
2438 *
2439 * @retval VINF_EM_DBG_STOP in RC and R0 - read completed.
2440 * @retval VINF_EM_DBG_BREAKPOINT in RC and R0 - read completed.
2441 * @retval VINF_EM_RAW_EMULATE_INSTR in RC and R0 only.
2442 *
2443 * @retval VINF_IOM_R3_MMIO_READ in RC and R0.
2444 * @retval VINF_IOM_R3_MMIO_READ_WRITE in RC and R0.
2445 *
2446 * @retval VINF_PATM_CHECK_PATCH_PAGE in RC only.
2447 *
2448 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in RC and R0 for access origins that
2449 * haven't been cleared for strict status codes yet.
2450 *
2451 * @param pVM The cross context VM structure.
2452 * @param GCPhys Physical address start reading from.
2453 * @param pvBuf Where to put the read bits.
2454 * @param cbRead How many bytes to read.
2455 * @param enmOrigin The origin of this call.
2456 */
2457VMMDECL(VBOXSTRICTRC) PGMPhysRead(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
2458{
2459 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
2460 LogFlow(("PGMPhysRead: %RGp %d\n", GCPhys, cbRead));
2461
2462 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysRead));
2463 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysReadBytes), cbRead);
2464
2465 pgmLock(pVM);
2466
2467 /*
2468 * Copy loop on ram ranges.
2469 */
2470 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2471 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2472 for (;;)
2473 {
2474 /* Inside range or not? */
2475 if (pRam && GCPhys >= pRam->GCPhys)
2476 {
2477 /*
2478 * Must work our way thru this page by page.
2479 */
2480 RTGCPHYS off = GCPhys - pRam->GCPhys;
2481 while (off < pRam->cb)
2482 {
2483 unsigned iPage = off >> PAGE_SHIFT;
2484 PPGMPAGE pPage = &pRam->aPages[iPage];
2485 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
2486 if (cb > cbRead)
2487 cb = cbRead;
2488
2489 /*
2490 * Normal page? Get the pointer to it.
2491 */
2492 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
2493 && !PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
2494 {
2495 /*
2496 * Get the pointer to the page.
2497 */
2498 PGMPAGEMAPLOCK PgMpLck;
2499 const void *pvSrc;
2500 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
2501 if (RT_SUCCESS(rc))
2502 {
2503 memcpy(pvBuf, pvSrc, cb);
2504 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2505 }
2506 else
2507 {
2508 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
2509 pRam->GCPhys + off, pPage, rc));
2510 memset(pvBuf, 0xff, cb);
2511 }
2512 }
2513 /*
2514 * Have ALL/MMIO access handlers.
2515 */
2516 else
2517 {
2518 VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
2519 if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2520 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
2521 else
2522 {
2523 pgmUnlock(pVM);
2524 return rcStrict2;
2525 }
2526 }
2527
2528 /* next page */
2529 if (cb >= cbRead)
2530 {
2531 pgmUnlock(pVM);
2532 return rcStrict;
2533 }
2534 cbRead -= cb;
2535 off += cb;
2536 pvBuf = (char *)pvBuf + cb;
2537 } /* walk pages in ram range. */
2538
2539 GCPhys = pRam->GCPhysLast + 1;
2540 }
2541 else
2542 {
2543 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
2544
2545 /*
2546 * Unassigned address space.
2547 */
2548 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
2549 if (cb >= cbRead)
2550 {
2551 memset(pvBuf, 0xff, cbRead);
2552 break;
2553 }
2554 memset(pvBuf, 0xff, cb);
2555
2556 cbRead -= cb;
2557 pvBuf = (char *)pvBuf + cb;
2558 GCPhys += cb;
2559 }
2560
2561 /* Advance range if necessary. */
2562 while (pRam && GCPhys > pRam->GCPhysLast)
2563 pRam = pRam->CTX_SUFF(pNext);
2564 } /* Ram range walk */
2565
2566 pgmUnlock(pVM);
2567 return rcStrict;
2568}
2569
2570
2571/**
2572 * Deals with writing to a page with one or more WRITE or ALL access handlers.
2573 *
2574 * @returns Strict VBox status code in ring-0 and raw-mode, ignorable in ring-3.
2575 * See PGM_HANDLER_PHYS_IS_VALID_STATUS and
2576 * PGM_HANDLER_VIRT_IS_VALID_STATUS for details.
2577 *
2578 * @param pVM The cross context VM structure.
2579 * @param pPage The page descriptor.
2580 * @param GCPhys The physical address to start writing at.
2581 * @param pvBuf What to write.
2582 * @param cbWrite How much to write - less or equal to a page.
2583 * @param enmOrigin The origin of this call.
2584 */
2585static VBOXSTRICTRC pgmPhysWriteHandler(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const *pvBuf, size_t cbWrite,
2586 PGMACCESSORIGIN enmOrigin)
2587{
2588 PGMPAGEMAPLOCK PgMpLck;
2589 void *pvDst = NULL;
2590 VBOXSTRICTRC rcStrict;
2591
2592 /*
2593 * Give priority to physical handlers (like #PF does).
2594 *
2595 * Hope for a lonely physical handler first that covers the whole
2596 * write area. This should be a pretty frequent case with MMIO and
2597 * the heavy usage of full page handlers in the page pool.
2598 */
2599 PVMCPU pVCpu = VMMGetCpu(pVM);
2600 if ( !PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage)
2601 || PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) /* screw virtual handlers on MMIO pages */)
2602 {
2603 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
2604 if (pCur)
2605 {
2606 Assert(GCPhys >= pCur->Core.Key && GCPhys <= pCur->Core.KeyLast);
2607#ifndef IN_RING3
2608 if (enmOrigin != PGMACCESSORIGIN_IEM)
2609 /* Cannot reliably handle informational status codes in this context */
2610 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2611#endif
2612 size_t cbRange = pCur->Core.KeyLast - GCPhys + 1;
2613 if (cbRange > cbWrite)
2614 cbRange = cbWrite;
2615
2616 Assert(PGMPHYSHANDLER_GET_TYPE(pVM, pCur)->CTX_SUFF(pfnHandler));
2617 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n",
2618 GCPhys, cbRange, pPage, R3STRING(pCur->pszDesc) ));
2619 if (!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
2620 rcStrict = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2621 else
2622 rcStrict = VINF_SUCCESS;
2623 if (RT_SUCCESS(rcStrict))
2624 {
2625 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pCur)->CTX_SUFF(pfnHandler);
2626 void *pvUser = pCur->CTX_SUFF(pvUser);
2627 STAM_PROFILE_START(&pCur->Stat, h);
2628
2629 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2630 PGM_LOCK_ASSERT_OWNER(pVM);
2631 pgmUnlock(pVM);
2632 rcStrict = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2633 pgmLock(pVM);
2634
2635#ifdef VBOX_WITH_STATISTICS
2636 pCur = pgmHandlerPhysicalLookup(pVM, GCPhys);
2637 if (pCur)
2638 STAM_PROFILE_STOP(&pCur->Stat, h);
2639#else
2640 pCur = NULL; /* might not be valid anymore. */
2641#endif
2642 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2643 {
2644 if (pvDst)
2645 memcpy(pvDst, pvBuf, cbRange);
2646 rcStrict = VINF_SUCCESS;
2647 }
2648 else
2649 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict, true),
2650 ("rcStrict=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2651 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pCur ? R3STRING(pCur->pszDesc) : ""));
2652 }
2653 else
2654 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2655 GCPhys, pPage, VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
2656 if (RT_LIKELY(cbRange == cbWrite) || !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2657 {
2658 if (pvDst)
2659 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2660 return rcStrict;
2661 }
2662
2663 /* more fun to be had below */
2664 cbWrite -= cbRange;
2665 GCPhys += cbRange;
2666 pvBuf = (uint8_t *)pvBuf + cbRange;
2667 pvDst = (uint8_t *)pvDst + cbRange;
2668 }
2669 else /* The handler is somewhere else in the page, deal with it below. */
2670 rcStrict = VINF_SUCCESS;
2671 Assert(!PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)); /* MMIO handlers are all PAGE_SIZEed! */
2672 }
2673#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2674 /*
2675 * A virtual handler without any interfering physical handlers.
2676 * Hopefully it'll cover the whole write.
2677 */
2678 else if (!PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage))
2679 {
2680 unsigned iPage;
2681 PPGMVIRTHANDLER pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iPage);
2682 if (pVirt)
2683 {
2684# ifndef IN_RING3
2685 if (enmOrigin != PGMACCESSORIGIN_IEM)
2686 /* Cannot reliably handle informational status codes in this context */
2687 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2688# endif
2689 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2690 size_t cbRange = (PAGE_OFFSET_MASK & pVirt->Core.KeyLast) - (PAGE_OFFSET_MASK & GCPhys) + 1;
2691 if (cbRange > cbWrite)
2692 cbRange = cbWrite;
2693
2694 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] virt %s\n",
2695 GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2696 rcStrict = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2697 if (RT_SUCCESS(rcStrict))
2698 {
2699 Assert(pVirtType->CTX_SUFF(pfnHandler));
2700 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2701 + (iPage << PAGE_SHIFT)
2702 + (GCPhys & PAGE_OFFSET_MASK);
2703
2704 STAM_PROFILE_START(&pVirt->Stat, h);
2705 rcStrict = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange,
2706 PGMACCESSTYPE_WRITE, enmOrigin, pVirt->CTX_SUFF(pvUser));
2707 STAM_PROFILE_STOP(&pVirt->Stat, h);
2708 if (rcStrict == VINF_PGM_HANDLER_DO_DEFAULT)
2709 {
2710 memcpy(pvDst, pvBuf, cbRange);
2711 rcStrict = VINF_SUCCESS;
2712 }
2713 else
2714 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict, true),
2715 ("rcStrict=%Rrc GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2716 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, R3STRING(pVirt->pszDesc)));
2717 }
2718 else
2719 AssertLogRelMsgFailedReturn(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
2720 GCPhys, pPage, VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
2721 if (RT_LIKELY(cbRange == cbWrite) || !PGM_PHYS_RW_IS_SUCCESS(rcStrict))
2722 {
2723 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2724 return rcStrict;
2725 }
2726
2727 /* more fun to be had below */
2728 cbWrite -= cbRange;
2729 GCPhys += cbRange;
2730 pvBuf = (uint8_t *)pvBuf + cbRange;
2731 pvDst = (uint8_t *)pvDst + cbRange;
2732 }
2733 else /* The handler is somewhere else in the page, deal with it below. */
2734 rcStrict = VINF_SUCCESS;
2735 }
2736#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
2737 else
2738 rcStrict = VINF_SUCCESS;
2739
2740
2741 /*
2742 * Deal with all the odd ends.
2743 */
2744 Assert(rcStrict != VINF_PGM_HANDLER_DO_DEFAULT);
2745
2746 /* We need a writable destination page. */
2747 if (!pvDst)
2748 {
2749 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDst, &PgMpLck);
2750 AssertLogRelMsgReturn(RT_SUCCESS(rc2),
2751 ("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", GCPhys, pPage, rc2),
2752 rc2);
2753 }
2754
2755 /* The loop state (big + ugly). */
2756#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2757 unsigned iVirtPage = 0;
2758 PPGMVIRTHANDLER pVirt = NULL;
2759 uint32_t offVirt = PAGE_SIZE;
2760 uint32_t offVirtLast = PAGE_SIZE;
2761 bool fMoreVirt = PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage);
2762#else
2763 uint32_t const offVirt = UINT32_MAX;
2764#endif
2765
2766 PPGMPHYSHANDLER pPhys = NULL;
2767 uint32_t offPhys = PAGE_SIZE;
2768 uint32_t offPhysLast = PAGE_SIZE;
2769 bool fMorePhys = PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage);
2770
2771 /* The loop. */
2772 for (;;)
2773 {
2774#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2775 /*
2776 * Find the closest handler at or above GCPhys.
2777 */
2778 if (fMoreVirt && !pVirt)
2779 {
2780 pVirt = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys, &iVirtPage);
2781 if (pVirt)
2782 {
2783 offVirt = 0;
2784 offVirtLast = (pVirt->aPhysToVirt[iVirtPage].Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2785 }
2786 else
2787 {
2788 PPGMPHYS2VIRTHANDLER pVirtPhys;
2789 pVirtPhys = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysToVirtHandlers,
2790 GCPhys, true /* fAbove */);
2791 if ( pVirtPhys
2792 && (pVirtPhys->Core.Key >> PAGE_SHIFT) == (GCPhys >> PAGE_SHIFT))
2793 {
2794 /* ASSUME that pVirtPhys only covers one page. */
2795 Assert((pVirtPhys->Core.Key >> PAGE_SHIFT) == (pVirtPhys->Core.KeyLast >> PAGE_SHIFT));
2796 Assert(pVirtPhys->Core.Key > GCPhys);
2797
2798 pVirt = (PPGMVIRTHANDLER)((uintptr_t)pVirtPhys + pVirtPhys->offVirtHandler);
2799 iVirtPage = pVirtPhys - &pVirt->aPhysToVirt[0]; Assert(iVirtPage == 0);
2800 offVirt = (pVirtPhys->Core.Key & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2801 offVirtLast = (pVirtPhys->Core.KeyLast & PAGE_OFFSET_MASK) - (GCPhys & PAGE_OFFSET_MASK);
2802 }
2803 else
2804 {
2805 pVirt = NULL;
2806 fMoreVirt = false;
2807 offVirt = offVirtLast = PAGE_SIZE;
2808 }
2809 }
2810 }
2811#endif
2812
2813 if (fMorePhys && !pPhys)
2814 {
2815 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2816 if (pPhys)
2817 {
2818 offPhys = 0;
2819 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2820 }
2821 else
2822 {
2823 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers,
2824 GCPhys, true /* fAbove */);
2825 if ( pPhys
2826 && pPhys->Core.Key <= GCPhys + (cbWrite - 1))
2827 {
2828 offPhys = pPhys->Core.Key - GCPhys;
2829 offPhysLast = pPhys->Core.KeyLast - GCPhys; /* ASSUMES < 4GB handlers... */
2830 }
2831 else
2832 {
2833 pPhys = NULL;
2834 fMorePhys = false;
2835 offPhys = offPhysLast = PAGE_SIZE;
2836 }
2837 }
2838 }
2839
2840 /*
2841 * Handle access to space without handlers (that's easy).
2842 */
2843 VBOXSTRICTRC rcStrict2 = VINF_PGM_HANDLER_DO_DEFAULT;
2844 uint32_t cbRange = (uint32_t)cbWrite;
2845 if (offPhys && offVirt)
2846 {
2847 if (cbRange > offPhys)
2848 cbRange = offPhys;
2849 if (cbRange > offVirt)
2850 cbRange = offVirt;
2851 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] miss\n", GCPhys, cbRange, pPage));
2852 }
2853 /*
2854 * Physical handler.
2855 */
2856 else if (!offPhys && offVirt)
2857 {
2858#ifndef IN_RING3
2859 if (enmOrigin != PGMACCESSORIGIN_IEM)
2860 /* Cannot reliably handle informational status codes in this context */
2861 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2862#endif
2863 if (cbRange > offPhysLast + 1)
2864 cbRange = offPhysLast + 1;
2865 if (cbRange > offVirt)
2866 cbRange = offVirt;
2867
2868 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler);
2869 void *pvUser = pPhys->CTX_SUFF(pvUser);
2870
2871 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc) ));
2872 STAM_PROFILE_START(&pPhys->Stat, h);
2873
2874 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2875 PGM_LOCK_ASSERT_OWNER(pVM);
2876 pgmUnlock(pVM);
2877 rcStrict2 = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2878 pgmLock(pVM);
2879
2880#ifdef VBOX_WITH_STATISTICS
2881 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2882 if (pPhys)
2883 STAM_PROFILE_STOP(&pPhys->Stat, h);
2884#else
2885 pPhys = NULL; /* might not be valid anymore. */
2886#endif
2887 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict2, true),
2888 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2889 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2890 }
2891#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
2892 /*
2893 * Virtual handler.
2894 */
2895 else if (offPhys && !offVirt)
2896 {
2897# ifndef IN_RING3
2898 if (enmOrigin != PGMACCESSORIGIN_IEM)
2899 /* Cannot reliably handle informational status codes in this context */
2900 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2901# endif
2902 if (cbRange > offVirtLast + 1)
2903 cbRange = offVirtLast + 1;
2904 if (cbRange > offPhys)
2905 cbRange = offPhys;
2906
2907 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2908 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys %s\n", GCPhys, cbRange, pPage, R3STRING(pVirt->pszDesc) ));
2909 Assert(pVirtType->CTX_SUFF(pfnHandler));
2910 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2911 + (iVirtPage << PAGE_SHIFT)
2912 + (GCPhys & PAGE_OFFSET_MASK);
2913 STAM_PROFILE_START(&pVirt->Stat, h);
2914 rcStrict2 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE,
2915 enmOrigin, pVirt->CTX_SUFF(pvUser));
2916 STAM_PROFILE_STOP(&pVirt->Stat, h);
2917 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict2, true),
2918 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2919 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2920 pVirt = NULL;
2921 }
2922 /*
2923 * Both... give the physical one priority.
2924 */
2925 else
2926 {
2927# ifndef IN_RING3
2928 if (enmOrigin != PGMACCESSORIGIN_IEM)
2929 /* Cannot reliably handle informational status codes in this context */
2930 return VERR_PGM_PHYS_WR_HIT_HANDLER;
2931# endif
2932 Assert(!offPhys && !offVirt);
2933 if (cbRange > offVirtLast + 1)
2934 cbRange = offVirtLast + 1;
2935 if (cbRange > offPhysLast + 1)
2936 cbRange = offPhysLast + 1;
2937
2938 PPGMVIRTHANDLERTYPEINT pVirtType = PGMVIRTANDLER_GET_TYPE(pVM, pVirt);
2939 if (pVirtType->pfnHandlerR3)
2940 Log(("pgmPhysWriteHandler: overlapping phys and virt handlers at %RGp %R[pgmpage]; cbRange=%#x\n", GCPhys, pPage, cbRange));
2941 Log5(("pgmPhysWriteHandler: GCPhys=%RGp cbRange=%#x pPage=%R[pgmpage] phys/virt %s/%s\n", GCPhys, cbRange, pPage, R3STRING(pPhys->pszDesc), R3STRING(pVirt->pszDesc) ));
2942
2943 PFNPGMPHYSHANDLER pfnHandler = PGMPHYSHANDLER_GET_TYPE(pVM, pPhys)->CTX_SUFF(pfnHandler);
2944 void *pvUser = pPhys->CTX_SUFF(pvUser);
2945 STAM_PROFILE_START(&pPhys->Stat, h);
2946
2947 /* Release the PGM lock as MMIO handlers take the IOM lock. (deadlock prevention) */
2948 PGM_LOCK_ASSERT_OWNER(pVM);
2949 pgmUnlock(pVM);
2950 rcStrict2 = pfnHandler(pVM, pVCpu, GCPhys, pvDst, (void *)pvBuf, cbRange, PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2951 pgmLock(pVM);
2952
2953# ifdef VBOX_WITH_STATISTICS
2954 pPhys = pgmHandlerPhysicalLookup(pVM, GCPhys);
2955 if (pPhys)
2956 STAM_PROFILE_STOP(&pPhys->Stat, h);
2957# else
2958 pPhys = NULL; /* might not be valid anymore. */
2959# endif
2960 AssertLogRelMsg(PGM_HANDLER_PHYS_IS_VALID_STATUS(rcStrict2, true),
2961 ("rcStrict2=%Rrc (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n", VBOXSTRICTRC_VAL(rcStrict2),
2962 VBOXSTRICTRC_VAL(rcStrict), GCPhys, pPage, pPhys ? R3STRING(pPhys->pszDesc) : ""));
2963 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT || PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
2964 {
2965 Assert(pVirtType->CTX_SUFF(pfnHandler));
2966 RTGCUINTPTR GCPtr = ((RTGCUINTPTR)pVirt->Core.Key & PAGE_BASE_GC_MASK)
2967 + (iVirtPage << PAGE_SHIFT)
2968 + (GCPhys & PAGE_OFFSET_MASK);
2969 pvUser = pVirt->CTX_SUFF(pvUser);
2970
2971 STAM_PROFILE_START(&pVirt->Stat, h2);
2972 VBOXSTRICTRC rcStrict3 = pVirtType->CTX_SUFF(pfnHandler)(pVM, pVCpu, GCPtr, pvDst, (void *)pvBuf, cbRange,
2973 PGMACCESSTYPE_WRITE, enmOrigin, pvUser);
2974 STAM_PROFILE_STOP(&pVirt->Stat, h2);
2975
2976 /* Merge the 3rd status into the 2nd. */
2977 if (rcStrict3 == VINF_SUCCESS)
2978 {
2979 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
2980 rcStrict2 = VINF_SUCCESS;
2981 }
2982 else if (rcStrict3 != VINF_PGM_HANDLER_DO_DEFAULT)
2983 {
2984 AssertLogRelMsg(PGM_HANDLER_VIRT_IS_VALID_STATUS(rcStrict3, true),
2985 ("rcStrict3=%Rrc (rcStrict2=%Rrc) (rcStrict=%Rrc) GCPhys=%RGp pPage=%R[pgmpage] %s\n",
2986 VBOXSTRICTRC_VAL(rcStrict3), VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict),
2987 GCPhys, pPage, R3STRING(pVirt->pszDesc) ));
2988 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
2989 rcStrict2 = rcStrict3;
2990 else if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict3))
2991 rcStrict2 = rcStrict3;
2992 else
2993 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict2, rcStrict3);
2994 }
2995 }
2996 pPhys = NULL;
2997 pVirt = NULL;
2998 }
2999#endif /* !IN_RING0 && VBOX_WITH_RAW_MODE */
3000
3001
3002 /*
3003 * Execute the default action and merge the status codes.
3004 */
3005 if (rcStrict2 == VINF_PGM_HANDLER_DO_DEFAULT)
3006 {
3007 memcpy(pvDst, pvBuf, cbRange);
3008 rcStrict2 = VINF_SUCCESS;
3009 }
3010 else if (!PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
3011 {
3012 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3013 return rcStrict2;
3014 }
3015 else
3016 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
3017
3018 /*
3019 * Advance if we've got more stuff to do.
3020 */
3021 if (cbRange >= cbWrite)
3022 {
3023 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3024 return rcStrict;
3025 }
3026
3027
3028 cbWrite -= cbRange;
3029 GCPhys += cbRange;
3030 pvBuf = (uint8_t *)pvBuf + cbRange;
3031 pvDst = (uint8_t *)pvDst + cbRange;
3032
3033 offPhys -= cbRange;
3034 offPhysLast -= cbRange;
3035#if !defined(IN_RING0) && defined(VBOX_WITH_RAW_MODE)
3036 offVirt -= cbRange;
3037 offVirtLast -= cbRange;
3038#endif
3039 }
3040}
3041
3042
3043/**
3044 * Write to physical memory.
3045 *
3046 * This API respects access handlers and MMIO. Use PGMPhysSimpleWriteGCPhys() if you
3047 * want to ignore those.
3048 *
3049 * @returns Strict VBox status code in raw-mode and ring-0, normal VBox status
3050 * code in ring-3. Use PGM_PHYS_RW_IS_SUCCESS to check.
3051 * @retval VINF_SUCCESS in all context - write completed.
3052 *
3053 * @retval VINF_EM_OFF in RC and R0 - write completed.
3054 * @retval VINF_EM_SUSPEND in RC and R0 - write completed.
3055 * @retval VINF_EM_RESET in RC and R0 - write completed.
3056 * @retval VINF_EM_HALT in RC and R0 - write completed.
3057 * @retval VINF_SELM_SYNC_GDT in RC only - write completed.
3058 *
3059 * @retval VINF_EM_DBG_STOP in RC and R0 - write completed.
3060 * @retval VINF_EM_DBG_BREAKPOINT in RC and R0 - write completed.
3061 * @retval VINF_EM_RAW_EMULATE_INSTR in RC and R0 only.
3062 *
3063 * @retval VINF_IOM_R3_MMIO_WRITE in RC and R0.
3064 * @retval VINF_IOM_R3_MMIO_READ_WRITE in RC and R0.
3065 *
3066 * @retval VINF_EM_RAW_EMULATE_IO_BLOCK in R0 only.
3067 *
3068 * @retval VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT in RC only - write completed.
3069 * @retval VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT in RC only.
3070 * @retval VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT in RC only.
3071 * @retval VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT in RC only.
3072 * @retval VINF_CSAM_PENDING_ACTION in RC only.
3073 * @retval VINF_PATM_CHECK_PATCH_PAGE in RC only.
3074 *
3075 * @retval VERR_PGM_PHYS_WR_HIT_HANDLER in RC and R0 for access origins that
3076 * haven't been cleared for strict status codes yet.
3077 *
3078 *
3079 * @param pVM The cross context VM structure.
3080 * @param GCPhys Physical address to write to.
3081 * @param pvBuf What to write.
3082 * @param cbWrite How many bytes to write.
3083 * @param enmOrigin Who is calling.
3084 */
3085VMMDECL(VBOXSTRICTRC) PGMPhysWrite(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
3086{
3087 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMPhysWrite after pgmR3Save()! enmOrigin=%d\n", enmOrigin));
3088 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
3089 LogFlow(("PGMPhysWrite: %RGp %d\n", GCPhys, cbWrite));
3090
3091 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWrite));
3092 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysWriteBytes), cbWrite);
3093
3094 pgmLock(pVM);
3095
3096 /*
3097 * Copy loop on ram ranges.
3098 */
3099 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3100 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
3101 for (;;)
3102 {
3103 /* Inside range or not? */
3104 if (pRam && GCPhys >= pRam->GCPhys)
3105 {
3106 /*
3107 * Must work our way thru this page by page.
3108 */
3109 RTGCPTR off = GCPhys - pRam->GCPhys;
3110 while (off < pRam->cb)
3111 {
3112 RTGCPTR iPage = off >> PAGE_SHIFT;
3113 PPGMPAGE pPage = &pRam->aPages[iPage];
3114 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
3115 if (cb > cbWrite)
3116 cb = cbWrite;
3117
3118 /*
3119 * Normal page? Get the pointer to it.
3120 */
3121 if ( !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
3122 && !PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
3123 {
3124 PGMPAGEMAPLOCK PgMpLck;
3125 void *pvDst;
3126 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
3127 if (RT_SUCCESS(rc))
3128 {
3129 Assert(!PGM_PAGE_IS_BALLOONED(pPage));
3130 memcpy(pvDst, pvBuf, cb);
3131 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
3132 }
3133 /* Ignore writes to ballooned pages. */
3134 else if (!PGM_PAGE_IS_BALLOONED(pPage))
3135 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
3136 pRam->GCPhys + off, pPage, rc));
3137 }
3138 /*
3139 * Active WRITE or ALL access handlers.
3140 */
3141 else
3142 {
3143 VBOXSTRICTRC rcStrict2 = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
3144 if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
3145 PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
3146 else
3147 {
3148 pgmUnlock(pVM);
3149 return rcStrict2;
3150 }
3151 }
3152
3153 /* next page */
3154 if (cb >= cbWrite)
3155 {
3156 pgmUnlock(pVM);
3157 return rcStrict;
3158 }
3159
3160 cbWrite -= cb;
3161 off += cb;
3162 pvBuf = (const char *)pvBuf + cb;
3163 } /* walk pages in ram range */
3164
3165 GCPhys = pRam->GCPhysLast + 1;
3166 }
3167 else
3168 {
3169 /*
3170 * Unassigned address space, skip it.
3171 */
3172 if (!pRam)
3173 break;
3174 size_t cb = pRam->GCPhys - GCPhys;
3175 if (cb >= cbWrite)
3176 break;
3177 cbWrite -= cb;
3178 pvBuf = (const char *)pvBuf + cb;
3179 GCPhys += cb;
3180 }
3181
3182 /* Advance range if necessary. */
3183 while (pRam && GCPhys > pRam->GCPhysLast)
3184 pRam = pRam->CTX_SUFF(pNext);
3185 } /* Ram range walk */
3186
3187 pgmUnlock(pVM);
3188 return rcStrict;
3189}
3190
3191
3192/**
3193 * Read from guest physical memory by GC physical address, bypassing
3194 * MMIO and access handlers.
3195 *
3196 * @returns VBox status code.
3197 * @param pVM The cross context VM structure.
3198 * @param pvDst The destination address.
3199 * @param GCPhysSrc The source address (GC physical address).
3200 * @param cb The number of bytes to read.
3201 */
3202VMMDECL(int) PGMPhysSimpleReadGCPhys(PVM pVM, void *pvDst, RTGCPHYS GCPhysSrc, size_t cb)
3203{
3204 /*
3205 * Treat the first page as a special case.
3206 */
3207 if (!cb)
3208 return VINF_SUCCESS;
3209
3210 /* map the 1st page */
3211 void const *pvSrc;
3212 PGMPAGEMAPLOCK Lock;
3213 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
3214 if (RT_FAILURE(rc))
3215 return rc;
3216
3217 /* optimize for the case where access is completely within the first page. */
3218 size_t cbPage = PAGE_SIZE - (GCPhysSrc & PAGE_OFFSET_MASK);
3219 if (RT_LIKELY(cb <= cbPage))
3220 {
3221 memcpy(pvDst, pvSrc, cb);
3222 PGMPhysReleasePageMappingLock(pVM, &Lock);
3223 return VINF_SUCCESS;
3224 }
3225
3226 /* copy to the end of the page. */
3227 memcpy(pvDst, pvSrc, cbPage);
3228 PGMPhysReleasePageMappingLock(pVM, &Lock);
3229 GCPhysSrc += cbPage;
3230 pvDst = (uint8_t *)pvDst + cbPage;
3231 cb -= cbPage;
3232
3233 /*
3234 * Page by page.
3235 */
3236 for (;;)
3237 {
3238 /* map the page */
3239 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysSrc, &pvSrc, &Lock);
3240 if (RT_FAILURE(rc))
3241 return rc;
3242
3243 /* last page? */
3244 if (cb <= PAGE_SIZE)
3245 {
3246 memcpy(pvDst, pvSrc, cb);
3247 PGMPhysReleasePageMappingLock(pVM, &Lock);
3248 return VINF_SUCCESS;
3249 }
3250
3251 /* copy the entire page and advance */
3252 memcpy(pvDst, pvSrc, PAGE_SIZE);
3253 PGMPhysReleasePageMappingLock(pVM, &Lock);
3254 GCPhysSrc += PAGE_SIZE;
3255 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
3256 cb -= PAGE_SIZE;
3257 }
3258 /* won't ever get here. */
3259}
3260
3261
3262/**
3263 * Write to guest physical memory referenced by GC pointer.
3264 * Write memory to GC physical address in guest physical memory.
3265 *
3266 * This will bypass MMIO and access handlers.
3267 *
3268 * @returns VBox status code.
3269 * @param pVM The cross context VM structure.
3270 * @param GCPhysDst The GC physical address of the destination.
3271 * @param pvSrc The source buffer.
3272 * @param cb The number of bytes to write.
3273 */
3274VMMDECL(int) PGMPhysSimpleWriteGCPhys(PVM pVM, RTGCPHYS GCPhysDst, const void *pvSrc, size_t cb)
3275{
3276 LogFlow(("PGMPhysSimpleWriteGCPhys: %RGp %zu\n", GCPhysDst, cb));
3277
3278 /*
3279 * Treat the first page as a special case.
3280 */
3281 if (!cb)
3282 return VINF_SUCCESS;
3283
3284 /* map the 1st page */
3285 void *pvDst;
3286 PGMPAGEMAPLOCK Lock;
3287 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
3288 if (RT_FAILURE(rc))
3289 return rc;
3290
3291 /* optimize for the case where access is completely within the first page. */
3292 size_t cbPage = PAGE_SIZE - (GCPhysDst & PAGE_OFFSET_MASK);
3293 if (RT_LIKELY(cb <= cbPage))
3294 {
3295 memcpy(pvDst, pvSrc, cb);
3296 PGMPhysReleasePageMappingLock(pVM, &Lock);
3297 return VINF_SUCCESS;
3298 }
3299
3300 /* copy to the end of the page. */
3301 memcpy(pvDst, pvSrc, cbPage);
3302 PGMPhysReleasePageMappingLock(pVM, &Lock);
3303 GCPhysDst += cbPage;
3304 pvSrc = (const uint8_t *)pvSrc + cbPage;
3305 cb -= cbPage;
3306
3307 /*
3308 * Page by page.
3309 */
3310 for (;;)
3311 {
3312 /* map the page */
3313 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysDst, &pvDst, &Lock);
3314 if (RT_FAILURE(rc))
3315 return rc;
3316
3317 /* last page? */
3318 if (cb <= PAGE_SIZE)
3319 {
3320 memcpy(pvDst, pvSrc, cb);
3321 PGMPhysReleasePageMappingLock(pVM, &Lock);
3322 return VINF_SUCCESS;
3323 }
3324
3325 /* copy the entire page and advance */
3326 memcpy(pvDst, pvSrc, PAGE_SIZE);
3327 PGMPhysReleasePageMappingLock(pVM, &Lock);
3328 GCPhysDst += PAGE_SIZE;
3329 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3330 cb -= PAGE_SIZE;
3331 }
3332 /* won't ever get here. */
3333}
3334
3335
3336/**
3337 * Read from guest physical memory referenced by GC pointer.
3338 *
3339 * This function uses the current CR3/CR0/CR4 of the guest and will
3340 * bypass access handlers and not set any accessed bits.
3341 *
3342 * @returns VBox status code.
3343 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3344 * @param pvDst The destination address.
3345 * @param GCPtrSrc The source address (GC pointer).
3346 * @param cb The number of bytes to read.
3347 */
3348VMMDECL(int) PGMPhysSimpleReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
3349{
3350 PVM pVM = pVCpu->CTX_SUFF(pVM);
3351/** @todo fix the macro / state handling: VMCPU_ASSERT_EMT_OR_GURU(pVCpu); */
3352
3353 /*
3354 * Treat the first page as a special case.
3355 */
3356 if (!cb)
3357 return VINF_SUCCESS;
3358
3359 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleRead));
3360 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleReadBytes), cb);
3361
3362 /* Take the PGM lock here, because many called functions take the lock for a very short period. That's counter-productive
3363 * when many VCPUs are fighting for the lock.
3364 */
3365 pgmLock(pVM);
3366
3367 /* map the 1st page */
3368 void const *pvSrc;
3369 PGMPAGEMAPLOCK Lock;
3370 int rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
3371 if (RT_FAILURE(rc))
3372 {
3373 pgmUnlock(pVM);
3374 return rc;
3375 }
3376
3377 /* optimize for the case where access is completely within the first page. */
3378 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
3379 if (RT_LIKELY(cb <= cbPage))
3380 {
3381 memcpy(pvDst, pvSrc, cb);
3382 PGMPhysReleasePageMappingLock(pVM, &Lock);
3383 pgmUnlock(pVM);
3384 return VINF_SUCCESS;
3385 }
3386
3387 /* copy to the end of the page. */
3388 memcpy(pvDst, pvSrc, cbPage);
3389 PGMPhysReleasePageMappingLock(pVM, &Lock);
3390 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + cbPage);
3391 pvDst = (uint8_t *)pvDst + cbPage;
3392 cb -= cbPage;
3393
3394 /*
3395 * Page by page.
3396 */
3397 for (;;)
3398 {
3399 /* map the page */
3400 rc = PGMPhysGCPtr2CCPtrReadOnly(pVCpu, GCPtrSrc, &pvSrc, &Lock);
3401 if (RT_FAILURE(rc))
3402 {
3403 pgmUnlock(pVM);
3404 return rc;
3405 }
3406
3407 /* last page? */
3408 if (cb <= PAGE_SIZE)
3409 {
3410 memcpy(pvDst, pvSrc, cb);
3411 PGMPhysReleasePageMappingLock(pVM, &Lock);
3412 pgmUnlock(pVM);
3413 return VINF_SUCCESS;
3414 }
3415
3416 /* copy the entire page and advance */
3417 memcpy(pvDst, pvSrc, PAGE_SIZE);
3418 PGMPhysReleasePageMappingLock(pVM, &Lock);
3419 GCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCPtrSrc + PAGE_SIZE);
3420 pvDst = (uint8_t *)pvDst + PAGE_SIZE;
3421 cb -= PAGE_SIZE;
3422 }
3423 /* won't ever get here. */
3424}
3425
3426
3427/**
3428 * Write to guest physical memory referenced by GC pointer.
3429 *
3430 * This function uses the current CR3/CR0/CR4 of the guest and will
3431 * bypass access handlers and not set dirty or accessed bits.
3432 *
3433 * @returns VBox status code.
3434 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3435 * @param GCPtrDst The destination address (GC pointer).
3436 * @param pvSrc The source address.
3437 * @param cb The number of bytes to write.
3438 */
3439VMMDECL(int) PGMPhysSimpleWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3440{
3441 PVM pVM = pVCpu->CTX_SUFF(pVM);
3442 VMCPU_ASSERT_EMT(pVCpu);
3443
3444 /*
3445 * Treat the first page as a special case.
3446 */
3447 if (!cb)
3448 return VINF_SUCCESS;
3449
3450 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWrite));
3451 STAM_COUNTER_ADD(&pVM->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PhysSimpleWriteBytes), cb);
3452
3453 /* map the 1st page */
3454 void *pvDst;
3455 PGMPAGEMAPLOCK Lock;
3456 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3457 if (RT_FAILURE(rc))
3458 return rc;
3459
3460 /* optimize for the case where access is completely within the first page. */
3461 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3462 if (RT_LIKELY(cb <= cbPage))
3463 {
3464 memcpy(pvDst, pvSrc, cb);
3465 PGMPhysReleasePageMappingLock(pVM, &Lock);
3466 return VINF_SUCCESS;
3467 }
3468
3469 /* copy to the end of the page. */
3470 memcpy(pvDst, pvSrc, cbPage);
3471 PGMPhysReleasePageMappingLock(pVM, &Lock);
3472 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3473 pvSrc = (const uint8_t *)pvSrc + cbPage;
3474 cb -= cbPage;
3475
3476 /*
3477 * Page by page.
3478 */
3479 for (;;)
3480 {
3481 /* map the page */
3482 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3483 if (RT_FAILURE(rc))
3484 return rc;
3485
3486 /* last page? */
3487 if (cb <= PAGE_SIZE)
3488 {
3489 memcpy(pvDst, pvSrc, cb);
3490 PGMPhysReleasePageMappingLock(pVM, &Lock);
3491 return VINF_SUCCESS;
3492 }
3493
3494 /* copy the entire page and advance */
3495 memcpy(pvDst, pvSrc, PAGE_SIZE);
3496 PGMPhysReleasePageMappingLock(pVM, &Lock);
3497 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3498 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3499 cb -= PAGE_SIZE;
3500 }
3501 /* won't ever get here. */
3502}
3503
3504
3505/**
3506 * Write to guest physical memory referenced by GC pointer and update the PTE.
3507 *
3508 * This function uses the current CR3/CR0/CR4 of the guest and will
3509 * bypass access handlers but will set any dirty and accessed bits in the PTE.
3510 *
3511 * If you don't want to set the dirty bit, use PGMPhysSimpleWriteGCPtr().
3512 *
3513 * @returns VBox status code.
3514 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3515 * @param GCPtrDst The destination address (GC pointer).
3516 * @param pvSrc The source address.
3517 * @param cb The number of bytes to write.
3518 */
3519VMMDECL(int) PGMPhysSimpleDirtyWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
3520{
3521 PVM pVM = pVCpu->CTX_SUFF(pVM);
3522 VMCPU_ASSERT_EMT(pVCpu);
3523
3524 /*
3525 * Treat the first page as a special case.
3526 * Btw. this is the same code as in PGMPhyssimpleWriteGCPtr excep for the PGMGstModifyPage.
3527 */
3528 if (!cb)
3529 return VINF_SUCCESS;
3530
3531 /* map the 1st page */
3532 void *pvDst;
3533 PGMPAGEMAPLOCK Lock;
3534 int rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3535 if (RT_FAILURE(rc))
3536 return rc;
3537
3538 /* optimize for the case where access is completely within the first page. */
3539 size_t cbPage = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3540 if (RT_LIKELY(cb <= cbPage))
3541 {
3542 memcpy(pvDst, pvSrc, cb);
3543 PGMPhysReleasePageMappingLock(pVM, &Lock);
3544 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3545 return VINF_SUCCESS;
3546 }
3547
3548 /* copy to the end of the page. */
3549 memcpy(pvDst, pvSrc, cbPage);
3550 PGMPhysReleasePageMappingLock(pVM, &Lock);
3551 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3552 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbPage);
3553 pvSrc = (const uint8_t *)pvSrc + cbPage;
3554 cb -= cbPage;
3555
3556 /*
3557 * Page by page.
3558 */
3559 for (;;)
3560 {
3561 /* map the page */
3562 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrDst, &pvDst, &Lock);
3563 if (RT_FAILURE(rc))
3564 return rc;
3565
3566 /* last page? */
3567 if (cb <= PAGE_SIZE)
3568 {
3569 memcpy(pvDst, pvSrc, cb);
3570 PGMPhysReleasePageMappingLock(pVM, &Lock);
3571 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3572 return VINF_SUCCESS;
3573 }
3574
3575 /* copy the entire page and advance */
3576 memcpy(pvDst, pvSrc, PAGE_SIZE);
3577 PGMPhysReleasePageMappingLock(pVM, &Lock);
3578 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D)); AssertRC(rc);
3579 GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + PAGE_SIZE);
3580 pvSrc = (const uint8_t *)pvSrc + PAGE_SIZE;
3581 cb -= PAGE_SIZE;
3582 }
3583 /* won't ever get here. */
3584}
3585
3586
3587/**
3588 * Read from guest physical memory referenced by GC pointer.
3589 *
3590 * This function uses the current CR3/CR0/CR4 of the guest and will
3591 * respect access handlers and set accessed bits.
3592 *
3593 * @returns Strict VBox status, see PGMPhysRead for details.
3594 * @retval VERR_PAGE_TABLE_NOT_PRESENT if there is no page mapped at the
3595 * specified virtual address.
3596 *
3597 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3598 * @param pvDst The destination address.
3599 * @param GCPtrSrc The source address (GC pointer).
3600 * @param cb The number of bytes to read.
3601 * @param enmOrigin Who is calling.
3602 * @thread EMT(pVCpu)
3603 */
3604VMMDECL(VBOXSTRICTRC) PGMPhysReadGCPtr(PVMCPU pVCpu, void *pvDst, RTGCPTR GCPtrSrc, size_t cb, PGMACCESSORIGIN enmOrigin)
3605{
3606 RTGCPHYS GCPhys;
3607 uint64_t fFlags;
3608 int rc;
3609 PVM pVM = pVCpu->CTX_SUFF(pVM);
3610 VMCPU_ASSERT_EMT(pVCpu);
3611
3612 /*
3613 * Anything to do?
3614 */
3615 if (!cb)
3616 return VINF_SUCCESS;
3617
3618 LogFlow(("PGMPhysReadGCPtr: %RGv %zu\n", GCPtrSrc, cb));
3619
3620 /*
3621 * Optimize reads within a single page.
3622 */
3623 if (((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3624 {
3625 /* Convert virtual to physical address + flags */
3626 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3627 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3628 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3629
3630 /* mark the guest page as accessed. */
3631 if (!(fFlags & X86_PTE_A))
3632 {
3633 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3634 AssertRC(rc);
3635 }
3636
3637 return PGMPhysRead(pVM, GCPhys, pvDst, cb, enmOrigin);
3638 }
3639
3640 /*
3641 * Page by page.
3642 */
3643 for (;;)
3644 {
3645 /* Convert virtual to physical address + flags */
3646 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrSrc, &fFlags, &GCPhys);
3647 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrSrc), rc);
3648 GCPhys |= (RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK;
3649
3650 /* mark the guest page as accessed. */
3651 if (!(fFlags & X86_PTE_A))
3652 {
3653 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)(X86_PTE_A));
3654 AssertRC(rc);
3655 }
3656
3657 /* copy */
3658 size_t cbRead = PAGE_SIZE - ((RTGCUINTPTR)GCPtrSrc & PAGE_OFFSET_MASK);
3659 if (cbRead < cb)
3660 {
3661 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, GCPhys, pvDst, cbRead, enmOrigin);
3662 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3663 { /* likely */ }
3664 else
3665 return rcStrict;
3666 }
3667 else /* Last page (cbRead is PAGE_SIZE, we only need cb!) */
3668 return PGMPhysRead(pVM, GCPhys, pvDst, cb, enmOrigin);
3669
3670 /* next */
3671 Assert(cb > cbRead);
3672 cb -= cbRead;
3673 pvDst = (uint8_t *)pvDst + cbRead;
3674 GCPtrSrc += cbRead;
3675 }
3676}
3677
3678
3679/**
3680 * Write to guest physical memory referenced by GC pointer.
3681 *
3682 * This function uses the current CR3/CR0/CR4 of the guest and will
3683 * respect access handlers and set dirty and accessed bits.
3684 *
3685 * @returns Strict VBox status, see PGMPhysWrite for details.
3686 * @retval VERR_PAGE_TABLE_NOT_PRESENT if there is no page mapped at the
3687 * specified virtual address.
3688 *
3689 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3690 * @param GCPtrDst The destination address (GC pointer).
3691 * @param pvSrc The source address.
3692 * @param cb The number of bytes to write.
3693 * @param enmOrigin Who is calling.
3694 */
3695VMMDECL(VBOXSTRICTRC) PGMPhysWriteGCPtr(PVMCPU pVCpu, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb, PGMACCESSORIGIN enmOrigin)
3696{
3697 RTGCPHYS GCPhys;
3698 uint64_t fFlags;
3699 int rc;
3700 PVM pVM = pVCpu->CTX_SUFF(pVM);
3701 VMCPU_ASSERT_EMT(pVCpu);
3702
3703 /*
3704 * Anything to do?
3705 */
3706 if (!cb)
3707 return VINF_SUCCESS;
3708
3709 LogFlow(("PGMPhysWriteGCPtr: %RGv %zu\n", GCPtrDst, cb));
3710
3711 /*
3712 * Optimize writes within a single page.
3713 */
3714 if (((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK) + cb <= PAGE_SIZE)
3715 {
3716 /* Convert virtual to physical address + flags */
3717 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3718 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3719 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3720
3721 /* Mention when we ignore X86_PTE_RW... */
3722 if (!(fFlags & X86_PTE_RW))
3723 Log(("PGMPhysWriteGCPtr: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3724
3725 /* Mark the guest page as accessed and dirty if necessary. */
3726 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3727 {
3728 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3729 AssertRC(rc);
3730 }
3731
3732 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb, enmOrigin);
3733 }
3734
3735 /*
3736 * Page by page.
3737 */
3738 for (;;)
3739 {
3740 /* Convert virtual to physical address + flags */
3741 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, (RTGCUINTPTR)GCPtrDst, &fFlags, &GCPhys);
3742 AssertMsgRCReturn(rc, ("GetPage failed with %Rrc for %RGv\n", rc, GCPtrDst), rc);
3743 GCPhys |= (RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK;
3744
3745 /* Mention when we ignore X86_PTE_RW... */
3746 if (!(fFlags & X86_PTE_RW))
3747 Log(("PGMPhysWriteGCPtr: Writing to RO page %RGv %#x\n", GCPtrDst, cb));
3748
3749 /* Mark the guest page as accessed and dirty if necessary. */
3750 if ((fFlags & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
3751 {
3752 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
3753 AssertRC(rc);
3754 }
3755
3756 /* copy */
3757 size_t cbWrite = PAGE_SIZE - ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK);
3758 if (cbWrite < cb)
3759 {
3760 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, GCPhys, pvSrc, cbWrite, enmOrigin);
3761 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3762 { /* likely */ }
3763 else
3764 return rcStrict;
3765 }
3766 else /* Last page (cbWrite is PAGE_SIZE, we only need cb!) */
3767 return PGMPhysWrite(pVM, GCPhys, pvSrc, cb, enmOrigin);
3768
3769 /* next */
3770 Assert(cb > cbWrite);
3771 cb -= cbWrite;
3772 pvSrc = (uint8_t *)pvSrc + cbWrite;
3773 GCPtrDst += cbWrite;
3774 }
3775}
3776
3777
3778/**
3779 * Performs a read of guest virtual memory for instruction emulation.
3780 *
3781 * This will check permissions, raise exceptions and update the access bits.
3782 *
3783 * The current implementation will bypass all access handlers. It may later be
3784 * changed to at least respect MMIO.
3785 *
3786 *
3787 * @returns VBox status code suitable to scheduling.
3788 * @retval VINF_SUCCESS if the read was performed successfully.
3789 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3790 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3791 *
3792 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3793 * @param pCtxCore The context core.
3794 * @param pvDst Where to put the bytes we've read.
3795 * @param GCPtrSrc The source address.
3796 * @param cb The number of bytes to read. Not more than a page.
3797 *
3798 * @remark This function will dynamically map physical pages in GC. This may unmap
3799 * mappings done by the caller. Be careful!
3800 */
3801VMMDECL(int) PGMPhysInterpretedRead(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb)
3802{
3803 PVM pVM = pVCpu->CTX_SUFF(pVM);
3804 Assert(cb <= PAGE_SIZE);
3805 VMCPU_ASSERT_EMT(pVCpu);
3806
3807/** @todo r=bird: This isn't perfect!
3808 * -# It's not checking for reserved bits being 1.
3809 * -# It's not correctly dealing with the access bit.
3810 * -# It's not respecting MMIO memory or any other access handlers.
3811 */
3812 /*
3813 * 1. Translate virtual to physical. This may fault.
3814 * 2. Map the physical address.
3815 * 3. Do the read operation.
3816 * 4. Set access bits if required.
3817 */
3818 int rc;
3819 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3820 if (cb <= cb1)
3821 {
3822 /*
3823 * Not crossing pages.
3824 */
3825 RTGCPHYS GCPhys;
3826 uint64_t fFlags;
3827 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
3828 if (RT_SUCCESS(rc))
3829 {
3830 /** @todo we should check reserved bits ... */
3831 PGMPAGEMAPLOCK PgMpLck;
3832 void const *pvSrc;
3833 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &PgMpLck);
3834 switch (rc)
3835 {
3836 case VINF_SUCCESS:
3837 Log(("PGMPhysInterpretedRead: pvDst=%p pvSrc=%p cb=%d\n", pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb));
3838 memcpy(pvDst, (uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
3839 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3840 break;
3841 case VERR_PGM_PHYS_PAGE_RESERVED:
3842 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3843 memset(pvDst, 0xff, cb);
3844 break;
3845 default:
3846 Assert(RT_FAILURE_NP(rc));
3847 return rc;
3848 }
3849
3850 /** @todo access bit emulation isn't 100% correct. */
3851 if (!(fFlags & X86_PTE_A))
3852 {
3853 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3854 AssertRC(rc);
3855 }
3856 return VINF_SUCCESS;
3857 }
3858 }
3859 else
3860 {
3861 /*
3862 * Crosses pages.
3863 */
3864 size_t cb2 = cb - cb1;
3865 uint64_t fFlags1;
3866 RTGCPHYS GCPhys1;
3867 uint64_t fFlags2;
3868 RTGCPHYS GCPhys2;
3869 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
3870 if (RT_SUCCESS(rc))
3871 {
3872 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
3873 if (RT_SUCCESS(rc))
3874 {
3875 /** @todo we should check reserved bits ... */
3876 AssertMsgFailed(("cb=%d cb1=%d cb2=%d GCPtrSrc=%RGv\n", cb, cb1, cb2, GCPtrSrc));
3877 PGMPAGEMAPLOCK PgMpLck;
3878 void const *pvSrc1;
3879 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc1, &PgMpLck);
3880 switch (rc)
3881 {
3882 case VINF_SUCCESS:
3883 memcpy(pvDst, (uint8_t *)pvSrc1 + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
3884 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3885 break;
3886 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3887 memset(pvDst, 0xff, cb1);
3888 break;
3889 default:
3890 Assert(RT_FAILURE_NP(rc));
3891 return rc;
3892 }
3893
3894 void const *pvSrc2;
3895 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc2, &PgMpLck);
3896 switch (rc)
3897 {
3898 case VINF_SUCCESS:
3899 memcpy((uint8_t *)pvDst + cb1, pvSrc2, cb2);
3900 PGMPhysReleasePageMappingLock(pVM, &PgMpLck);
3901 break;
3902 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
3903 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
3904 break;
3905 default:
3906 Assert(RT_FAILURE_NP(rc));
3907 return rc;
3908 }
3909
3910 if (!(fFlags1 & X86_PTE_A))
3911 {
3912 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3913 AssertRC(rc);
3914 }
3915 if (!(fFlags2 & X86_PTE_A))
3916 {
3917 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
3918 AssertRC(rc);
3919 }
3920 return VINF_SUCCESS;
3921 }
3922 }
3923 }
3924
3925 /*
3926 * Raise a #PF.
3927 */
3928 uint32_t uErr;
3929
3930 /* Get the current privilege level. */
3931 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
3932 switch (rc)
3933 {
3934 case VINF_SUCCESS:
3935 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
3936 break;
3937
3938 case VERR_PAGE_NOT_PRESENT:
3939 case VERR_PAGE_TABLE_NOT_PRESENT:
3940 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
3941 break;
3942
3943 default:
3944 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
3945 return rc;
3946 }
3947 Log(("PGMPhysInterpretedRead: GCPtrSrc=%RGv cb=%#x -> #PF(%#x)\n", GCPtrSrc, cb, uErr));
3948 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
3949}
3950
3951
3952/**
3953 * Performs a read of guest virtual memory for instruction emulation.
3954 *
3955 * This will check permissions, raise exceptions and update the access bits.
3956 *
3957 * The current implementation will bypass all access handlers. It may later be
3958 * changed to at least respect MMIO.
3959 *
3960 *
3961 * @returns VBox status code suitable to scheduling.
3962 * @retval VINF_SUCCESS if the read was performed successfully.
3963 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
3964 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
3965 *
3966 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3967 * @param pCtxCore The context core.
3968 * @param pvDst Where to put the bytes we've read.
3969 * @param GCPtrSrc The source address.
3970 * @param cb The number of bytes to read. Not more than a page.
3971 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
3972 * an appropriate error status will be returned (no
3973 * informational at all).
3974 *
3975 *
3976 * @remarks Takes the PGM lock.
3977 * @remarks A page fault on the 2nd page of the access will be raised without
3978 * writing the bits on the first page since we're ASSUMING that the
3979 * caller is emulating an instruction access.
3980 * @remarks This function will dynamically map physical pages in GC. This may
3981 * unmap mappings done by the caller. Be careful!
3982 */
3983VMMDECL(int) PGMPhysInterpretedReadNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCUINTPTR GCPtrSrc, size_t cb,
3984 bool fRaiseTrap)
3985{
3986 PVM pVM = pVCpu->CTX_SUFF(pVM);
3987 Assert(cb <= PAGE_SIZE);
3988 VMCPU_ASSERT_EMT(pVCpu);
3989
3990 /*
3991 * 1. Translate virtual to physical. This may fault.
3992 * 2. Map the physical address.
3993 * 3. Do the read operation.
3994 * 4. Set access bits if required.
3995 */
3996 int rc;
3997 unsigned cb1 = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
3998 if (cb <= cb1)
3999 {
4000 /*
4001 * Not crossing pages.
4002 */
4003 RTGCPHYS GCPhys;
4004 uint64_t fFlags;
4005 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags, &GCPhys);
4006 if (RT_SUCCESS(rc))
4007 {
4008 if (1) /** @todo we should check reserved bits ... */
4009 {
4010 const void *pvSrc;
4011 PGMPAGEMAPLOCK Lock;
4012 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvSrc, &Lock);
4013 switch (rc)
4014 {
4015 case VINF_SUCCESS:
4016 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d\n",
4017 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb));
4018 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
4019 PGMPhysReleasePageMappingLock(pVM, &Lock);
4020 break;
4021 case VERR_PGM_PHYS_PAGE_RESERVED:
4022 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4023 memset(pvDst, 0xff, cb);
4024 break;
4025 default:
4026 AssertMsgFailed(("%Rrc\n", rc));
4027 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4028 return rc;
4029 }
4030
4031 if (!(fFlags & X86_PTE_A))
4032 {
4033 /** @todo access bit emulation isn't 100% correct. */
4034 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4035 AssertRC(rc);
4036 }
4037 return VINF_SUCCESS;
4038 }
4039 }
4040 }
4041 else
4042 {
4043 /*
4044 * Crosses pages.
4045 */
4046 size_t cb2 = cb - cb1;
4047 uint64_t fFlags1;
4048 RTGCPHYS GCPhys1;
4049 uint64_t fFlags2;
4050 RTGCPHYS GCPhys2;
4051 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc, &fFlags1, &GCPhys1);
4052 if (RT_SUCCESS(rc))
4053 {
4054 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrSrc + cb1, &fFlags2, &GCPhys2);
4055 if (RT_SUCCESS(rc))
4056 {
4057 if (1) /** @todo we should check reserved bits ... */
4058 {
4059 const void *pvSrc;
4060 PGMPAGEMAPLOCK Lock;
4061 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys1, &pvSrc, &Lock);
4062 switch (rc)
4063 {
4064 case VINF_SUCCESS:
4065 Log(("PGMPhysInterpretedReadNoHandlers: pvDst=%p pvSrc=%p (%RGv) cb=%d [2]\n",
4066 pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), GCPtrSrc, cb1));
4067 memcpy(pvDst, (const uint8_t *)pvSrc + (GCPtrSrc & PAGE_OFFSET_MASK), cb1);
4068 PGMPhysReleasePageMappingLock(pVM, &Lock);
4069 break;
4070 case VERR_PGM_PHYS_PAGE_RESERVED:
4071 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4072 memset(pvDst, 0xff, cb1);
4073 break;
4074 default:
4075 AssertMsgFailed(("%Rrc\n", rc));
4076 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4077 return rc;
4078 }
4079
4080 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys2, &pvSrc, &Lock);
4081 switch (rc)
4082 {
4083 case VINF_SUCCESS:
4084 memcpy((uint8_t *)pvDst + cb1, pvSrc, cb2);
4085 PGMPhysReleasePageMappingLock(pVM, &Lock);
4086 break;
4087 case VERR_PGM_PHYS_PAGE_RESERVED:
4088 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4089 memset((uint8_t *)pvDst + cb1, 0xff, cb2);
4090 break;
4091 default:
4092 AssertMsgFailed(("%Rrc\n", rc));
4093 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4094 return rc;
4095 }
4096
4097 if (!(fFlags1 & X86_PTE_A))
4098 {
4099 rc = PGMGstModifyPage(pVCpu, GCPtrSrc, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4100 AssertRC(rc);
4101 }
4102 if (!(fFlags2 & X86_PTE_A))
4103 {
4104 rc = PGMGstModifyPage(pVCpu, GCPtrSrc + cb1, 1, X86_PTE_A, ~(uint64_t)X86_PTE_A);
4105 AssertRC(rc);
4106 }
4107 return VINF_SUCCESS;
4108 }
4109 /* sort out which page */
4110 }
4111 else
4112 GCPtrSrc += cb1; /* fault on 2nd page */
4113 }
4114 }
4115
4116 /*
4117 * Raise a #PF if we're allowed to do that.
4118 */
4119 /* Calc the error bits. */
4120 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
4121 uint32_t uErr;
4122 switch (rc)
4123 {
4124 case VINF_SUCCESS:
4125 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
4126 rc = VERR_ACCESS_DENIED;
4127 break;
4128
4129 case VERR_PAGE_NOT_PRESENT:
4130 case VERR_PAGE_TABLE_NOT_PRESENT:
4131 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
4132 break;
4133
4134 default:
4135 AssertMsgFailed(("rc=%Rrc GCPtrSrc=%RGv cb=%#x\n", rc, GCPtrSrc, cb));
4136 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4137 return rc;
4138 }
4139 if (fRaiseTrap)
4140 {
4141 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrSrc, cb, uErr));
4142 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrSrc);
4143 }
4144 Log(("PGMPhysInterpretedReadNoHandlers: GCPtrSrc=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrSrc, cb, uErr));
4145 return rc;
4146}
4147
4148
4149/**
4150 * Performs a write to guest virtual memory for instruction emulation.
4151 *
4152 * This will check permissions, raise exceptions and update the dirty and access
4153 * bits.
4154 *
4155 * @returns VBox status code suitable to scheduling.
4156 * @retval VINF_SUCCESS if the read was performed successfully.
4157 * @retval VINF_EM_RAW_GUEST_TRAP if an exception was raised but not dispatched yet.
4158 * @retval VINF_TRPM_XCPT_DISPATCHED if an exception was raised and dispatched.
4159 *
4160 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4161 * @param pCtxCore The context core.
4162 * @param GCPtrDst The destination address.
4163 * @param pvSrc What to write.
4164 * @param cb The number of bytes to write. Not more than a page.
4165 * @param fRaiseTrap If set the trap will be raised on as per spec, if clear
4166 * an appropriate error status will be returned (no
4167 * informational at all).
4168 *
4169 * @remarks Takes the PGM lock.
4170 * @remarks A page fault on the 2nd page of the access will be raised without
4171 * writing the bits on the first page since we're ASSUMING that the
4172 * caller is emulating an instruction access.
4173 * @remarks This function will dynamically map physical pages in GC. This may
4174 * unmap mappings done by the caller. Be careful!
4175 */
4176VMMDECL(int) PGMPhysInterpretedWriteNoHandlers(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc,
4177 size_t cb, bool fRaiseTrap)
4178{
4179 Assert(cb <= PAGE_SIZE);
4180 PVM pVM = pVCpu->CTX_SUFF(pVM);
4181 VMCPU_ASSERT_EMT(pVCpu);
4182
4183 /*
4184 * 1. Translate virtual to physical. This may fault.
4185 * 2. Map the physical address.
4186 * 3. Do the write operation.
4187 * 4. Set access bits if required.
4188 */
4189 /** @todo Since this method is frequently used by EMInterpret or IOM
4190 * upon a write fault to an write access monitored page, we can
4191 * reuse the guest page table walking from the \#PF code. */
4192 int rc;
4193 unsigned cb1 = PAGE_SIZE - (GCPtrDst & PAGE_OFFSET_MASK);
4194 if (cb <= cb1)
4195 {
4196 /*
4197 * Not crossing pages.
4198 */
4199 RTGCPHYS GCPhys;
4200 uint64_t fFlags;
4201 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags, &GCPhys);
4202 if (RT_SUCCESS(rc))
4203 {
4204 if ( (fFlags & X86_PTE_RW) /** @todo Also check reserved bits. */
4205 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
4206 && CPUMGetGuestCPL(pVCpu) <= 2) ) /** @todo it's 2, right? Check cpl check below as well. */
4207 {
4208 void *pvDst;
4209 PGMPAGEMAPLOCK Lock;
4210 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, &pvDst, &Lock);
4211 switch (rc)
4212 {
4213 case VINF_SUCCESS:
4214 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
4215 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb));
4216 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
4217 PGMPhysReleasePageMappingLock(pVM, &Lock);
4218 break;
4219 case VERR_PGM_PHYS_PAGE_RESERVED:
4220 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4221 /* bit bucket */
4222 break;
4223 default:
4224 AssertMsgFailed(("%Rrc\n", rc));
4225 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4226 return rc;
4227 }
4228
4229 if (!(fFlags & (X86_PTE_A | X86_PTE_D)))
4230 {
4231 /** @todo dirty & access bit emulation isn't 100% correct. */
4232 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, X86_PTE_A | X86_PTE_D, ~(uint64_t)(X86_PTE_A | X86_PTE_D));
4233 AssertRC(rc);
4234 }
4235 return VINF_SUCCESS;
4236 }
4237 rc = VERR_ACCESS_DENIED;
4238 }
4239 }
4240 else
4241 {
4242 /*
4243 * Crosses pages.
4244 */
4245 size_t cb2 = cb - cb1;
4246 uint64_t fFlags1;
4247 RTGCPHYS GCPhys1;
4248 uint64_t fFlags2;
4249 RTGCPHYS GCPhys2;
4250 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst, &fFlags1, &GCPhys1);
4251 if (RT_SUCCESS(rc))
4252 {
4253 rc = PGM_GST_PFN(GetPage,pVCpu)(pVCpu, GCPtrDst + cb1, &fFlags2, &GCPhys2);
4254 if (RT_SUCCESS(rc))
4255 {
4256 if ( ( (fFlags1 & X86_PTE_RW) /** @todo Also check reserved bits. */
4257 && (fFlags2 & X86_PTE_RW))
4258 || ( !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP)
4259 && CPUMGetGuestCPL(pVCpu) <= 2) )
4260 {
4261 void *pvDst;
4262 PGMPAGEMAPLOCK Lock;
4263 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys1, &pvDst, &Lock);
4264 switch (rc)
4265 {
4266 case VINF_SUCCESS:
4267 Log(("PGMPhysInterpretedWriteNoHandlers: pvDst=%p (%RGv) pvSrc=%p cb=%d\n",
4268 (uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), GCPtrDst, pvSrc, cb1));
4269 memcpy((uint8_t *)pvDst + (GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb1);
4270 PGMPhysReleasePageMappingLock(pVM, &Lock);
4271 break;
4272 case VERR_PGM_PHYS_PAGE_RESERVED:
4273 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4274 /* bit bucket */
4275 break;
4276 default:
4277 AssertMsgFailed(("%Rrc\n", rc));
4278 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4279 return rc;
4280 }
4281
4282 rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys2, &pvDst, &Lock);
4283 switch (rc)
4284 {
4285 case VINF_SUCCESS:
4286 memcpy(pvDst, (const uint8_t *)pvSrc + cb1, cb2);
4287 PGMPhysReleasePageMappingLock(pVM, &Lock);
4288 break;
4289 case VERR_PGM_PHYS_PAGE_RESERVED:
4290 case VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS:
4291 /* bit bucket */
4292 break;
4293 default:
4294 AssertMsgFailed(("%Rrc\n", rc));
4295 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4296 return rc;
4297 }
4298
4299 if (!(fFlags1 & (X86_PTE_A | X86_PTE_RW)))
4300 {
4301 rc = PGMGstModifyPage(pVCpu, GCPtrDst, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
4302 AssertRC(rc);
4303 }
4304 if (!(fFlags2 & (X86_PTE_A | X86_PTE_RW)))
4305 {
4306 rc = PGMGstModifyPage(pVCpu, GCPtrDst + cb1, 1, (X86_PTE_A | X86_PTE_RW), ~(uint64_t)(X86_PTE_A | X86_PTE_RW));
4307 AssertRC(rc);
4308 }
4309 return VINF_SUCCESS;
4310 }
4311 if ((fFlags1 & (X86_PTE_RW)) == X86_PTE_RW)
4312 GCPtrDst += cb1; /* fault on the 2nd page. */
4313 rc = VERR_ACCESS_DENIED;
4314 }
4315 else
4316 GCPtrDst += cb1; /* fault on the 2nd page. */
4317 }
4318 }
4319
4320 /*
4321 * Raise a #PF if we're allowed to do that.
4322 */
4323 /* Calc the error bits. */
4324 uint32_t uErr;
4325 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
4326 switch (rc)
4327 {
4328 case VINF_SUCCESS:
4329 uErr = (cpl >= 2) ? X86_TRAP_PF_RSVD | X86_TRAP_PF_US : X86_TRAP_PF_RSVD;
4330 rc = VERR_ACCESS_DENIED;
4331 break;
4332
4333 case VERR_ACCESS_DENIED:
4334 uErr = (cpl >= 2) ? X86_TRAP_PF_RW | X86_TRAP_PF_US : X86_TRAP_PF_RW;
4335 break;
4336
4337 case VERR_PAGE_NOT_PRESENT:
4338 case VERR_PAGE_TABLE_NOT_PRESENT:
4339 uErr = (cpl >= 2) ? X86_TRAP_PF_US : 0;
4340 break;
4341
4342 default:
4343 AssertMsgFailed(("rc=%Rrc GCPtrDst=%RGv cb=%#x\n", rc, GCPtrDst, cb));
4344 AssertReturn(RT_FAILURE(rc), VERR_IPE_UNEXPECTED_INFO_STATUS);
4345 return rc;
4346 }
4347 if (fRaiseTrap)
4348 {
4349 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> Raised #PF(%#x)\n", GCPtrDst, cb, uErr));
4350 return TRPMRaiseXcptErrCR2(pVCpu, pCtxCore, X86_XCPT_PF, uErr, GCPtrDst);
4351 }
4352 Log(("PGMPhysInterpretedWriteNoHandlers: GCPtrDst=%RGv cb=%#x -> #PF(%#x) [!raised]\n", GCPtrDst, cb, uErr));
4353 return rc;
4354}
4355
4356
4357/**
4358 * Return the page type of the specified physical address.
4359 *
4360 * @returns The page type.
4361 * @param pVM The cross context VM structure.
4362 * @param GCPhys Guest physical address
4363 */
4364VMM_INT_DECL(PGMPAGETYPE) PGMPhysGetPageType(PVM pVM, RTGCPHYS GCPhys)
4365{
4366 pgmLock(pVM);
4367 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4368 PGMPAGETYPE enmPgType = pPage ? (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage) : PGMPAGETYPE_INVALID;
4369 pgmUnlock(pVM);
4370
4371 return enmPgType;
4372}
4373
4374
4375
4376
4377/**
4378 * Converts a GC physical address to a HC ring-3 pointer, with some
4379 * additional checks.
4380 *
4381 * @returns VBox status code (no informational statuses).
4382 * @retval VINF_SUCCESS on success.
4383 * @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4384 * access handler of some kind.
4385 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4386 * accesses or is odd in any way.
4387 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4388 *
4389 * @param pVM The cross context VM structure.
4390 * @param pVCpu The cross context virtual CPU structure of the
4391 * calling EMT.
4392 * @param GCPhys The GC physical address to convert. This API mask
4393 * the A20 line when necessary.
4394 * @param fWritable Whether write access is required.
4395 * @param fByPassHandlers Whether to bypass access handlers.
4396 * @param ppv Where to store the pointer corresponding to GCPhys
4397 * on success.
4398 * @param pLock
4399 *
4400 * @remarks This is more or a less a copy of PGMR3PhysTlbGCPhys2Ptr.
4401 * @thread EMT(pVCpu).
4402 */
4403VMM_INT_DECL(int) PGMPhysIemGCPhys2Ptr(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers,
4404 void **ppv, PPGMPAGEMAPLOCK pLock)
4405{
4406 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
4407
4408 pgmLock(pVM);
4409
4410 PPGMRAMRANGE pRam;
4411 PPGMPAGE pPage;
4412 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4413 if (RT_SUCCESS(rc))
4414 {
4415 if (PGM_PAGE_IS_BALLOONED(pPage))
4416 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4417 else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
4418 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4419 else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
4420 || (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
4421 rc = VINF_SUCCESS;
4422 else
4423 {
4424 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4425 {
4426 Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
4427 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4428 }
4429 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
4430 {
4431 Assert(!fByPassHandlers);
4432 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4433 }
4434 }
4435 if (RT_SUCCESS(rc))
4436 {
4437 int rc2;
4438
4439 /* Make sure what we return is writable. */
4440 if (fWritable)
4441 switch (PGM_PAGE_GET_STATE(pPage))
4442 {
4443 case PGM_PAGE_STATE_ALLOCATED:
4444 break;
4445 case PGM_PAGE_STATE_BALLOONED:
4446 AssertFailed();
4447 case PGM_PAGE_STATE_ZERO:
4448 case PGM_PAGE_STATE_SHARED:
4449 case PGM_PAGE_STATE_WRITE_MONITORED:
4450 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4451 AssertLogRelRCReturn(rc2, rc2);
4452 break;
4453 }
4454
4455#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4456 void *pv;
4457 rc = pgmRZDynMapHCPageInlined(pVCpu,
4458 PGM_PAGE_GET_HCPHYS(pPage),
4459 &pv
4460 RTLOG_COMMA_SRC_POS);
4461 if (RT_FAILURE(rc))
4462 return rc;
4463 *ppv = (void *)((uintptr_t)pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4464 pLock->pvPage = pv;
4465 pLock->pVCpu = pVCpu;
4466
4467#else
4468 /* Get a ring-3 mapping of the address. */
4469 PPGMPAGER3MAPTLBE pTlbe;
4470 rc2 = pgmPhysPageQueryTlbeWithPage(pVM, pPage, GCPhys, &pTlbe);
4471 AssertLogRelRCReturn(rc2, rc2);
4472
4473 /* Lock it and calculate the address. */
4474 if (fWritable)
4475 pgmPhysPageMapLockForWriting(pVM, pPage, pTlbe, pLock);
4476 else
4477 pgmPhysPageMapLockForReading(pVM, pPage, pTlbe, pLock);
4478 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4479#endif
4480
4481 Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4482 }
4483 else
4484 Log6(("PGMPhysIemGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4485
4486 /* else: handler catching all access, no pointer returned. */
4487 }
4488 else
4489 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4490
4491 pgmUnlock(pVM);
4492 return rc;
4493}
4494
4495
4496/**
4497 * Checks if the give GCPhys page requires special handling for the given access
4498 * because it's MMIO or otherwise monitored.
4499 *
4500 * @returns VBox status code (no informational statuses).
4501 * @retval VINF_SUCCESS on success.
4502 * @retval VERR_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4503 * access handler of some kind.
4504 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4505 * accesses or is odd in any way.
4506 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4507 *
4508 * @param pVM The cross context VM structure.
4509 * @param GCPhys The GC physical address to convert. Since this is
4510 * only used for filling the REM TLB, the A20 mask must
4511 * be applied before calling this API.
4512 * @param fWritable Whether write access is required.
4513 * @param fByPassHandlers Whether to bypass access handlers.
4514 *
4515 * @remarks This is a watered down version PGMPhysIemGCPhys2Ptr and really just
4516 * a stop gap thing that should be removed once there is a better TLB
4517 * for virtual address accesses.
4518 */
4519VMM_INT_DECL(int) PGMPhysIemQueryAccess(PVM pVM, RTGCPHYS GCPhys, bool fWritable, bool fByPassHandlers)
4520{
4521 pgmLock(pVM);
4522 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
4523
4524 PPGMRAMRANGE pRam;
4525 PPGMPAGE pPage;
4526 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4527 if (RT_SUCCESS(rc))
4528 {
4529 if (PGM_PAGE_IS_BALLOONED(pPage))
4530 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4531 else if (PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
4532 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4533 else if ( !PGM_PAGE_HAS_ANY_HANDLERS(pPage)
4534 || (fByPassHandlers && !PGM_PAGE_IS_MMIO(pPage)) )
4535 rc = VINF_SUCCESS;
4536 else
4537 {
4538 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4539 {
4540 Assert(!fByPassHandlers || PGM_PAGE_IS_MMIO(pPage));
4541 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4542 }
4543 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && fWritable)
4544 {
4545 Assert(!fByPassHandlers);
4546 rc = VERR_PGM_PHYS_TLB_CATCH_WRITE;
4547 }
4548 }
4549 }
4550
4551 pgmUnlock(pVM);
4552 return rc;
4553}
4554
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette