VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllHandler.cpp@ 8170

Last change on this file since 8170 was 8155, checked in by vboxsync, 17 years ago

The Big Sun Rebranding Header Change

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 54.8 KB
Line 
1/* $Id: PGMAllHandler.cpp 8155 2008-04-18 15:16:47Z vboxsync $ */
2/** @file
3 * PGM - Page Manager / Monitor, Access Handlers.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM
27#include <VBox/dbgf.h>
28#include <VBox/pgm.h>
29#include <VBox/iom.h>
30#include <VBox/mm.h>
31#include <VBox/em.h>
32#include <VBox/stam.h>
33#include <VBox/rem.h>
34#include <VBox/dbgf.h>
35#include <VBox/rem.h>
36#include "PGMInternal.h"
37#include <VBox/vm.h>
38
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43#include <VBox/param.h>
44#include <VBox/err.h>
45#include <VBox/selm.h>
46
47
48/*******************************************************************************
49* Internal Functions *
50*******************************************************************************/
51static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam);
52static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur);
53static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur);
54
55
56
57/**
58 * Register a access handler for a physical range.
59 *
60 * @returns VBox status code.
61 * @retval VINF_SUCCESS when successfully installed.
62 * @retval VINF_PGM_GCPHYS_ALIASED when the shadow PTs could be updated because
63 * the guest page aliased or/and mapped by multiple PTs. A CR3 sync has been
64 * flagged together with a pool clearing.
65 * @retval VERR_PGM_HANDLER_PHYSICAL_CONFLICT if the range conflicts with an existing
66 * one. A debug assertion is raised.
67 *
68 * @param pVM VM Handle.
69 * @param enmType Handler type. Any of the PGMPHYSHANDLERTYPE_PHYSICAL* enums.
70 * @param GCPhys Start physical address.
71 * @param GCPhysLast Last physical address. (inclusive)
72 * @param pfnHandlerR3 The R3 handler.
73 * @param pvUserR3 User argument to the R3 handler.
74 * @param pfnHandlerR0 The R0 handler.
75 * @param pvUserR0 User argument to the R0 handler.
76 * @param pfnHandlerGC The GC handler.
77 * @param pvUserGC User argument to the GC handler.
78 * This must be a GC pointer because it will be relocated!
79 * @param pszDesc Pointer to description string. This must not be freed.
80 */
81PGMDECL(int) PGMHandlerPhysicalRegisterEx(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
82 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
83 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
84 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC, RTGCPTR pvUserGC,
85 R3PTRTYPE(const char *) pszDesc)
86{
87 Log(("PGMHandlerPhysicalRegisterEx: enmType=%d GCPhys=%VGp GCPhysLast=%VGp pfnHandlerR3=%VHv pvUserR3=%VHv pfnHandlerR0=%VHv pvUserR0=%VHv pfnHandlerGC=%VGv pvUserGC=%VGv pszDesc=%s\n",
88 enmType, GCPhys, GCPhysLast, pfnHandlerR3, pvUserR3, pfnHandlerR0, pvUserR0, pfnHandlerGC, pvUserGC, HCSTRING(pszDesc)));
89
90 /*
91 * Validate input.
92 */
93 if (GCPhys >= GCPhysLast)
94 {
95 AssertMsgFailed(("GCPhys >= GCPhysLast (%#x >= %#x)\n", GCPhys, GCPhysLast));
96 return VERR_INVALID_PARAMETER;
97 }
98 switch (enmType)
99 {
100 case PGMPHYSHANDLERTYPE_MMIO:
101 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
102 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
103 break;
104 default:
105 AssertMsgFailed(("Invalid input enmType=%d!\n", enmType));
106 return VERR_INVALID_PARAMETER;
107 }
108 if ( (RTGCUINTPTR)pvUserGC >= 0x10000
109 && MMHyperHC2GC(pVM, MMHyperGC2HC(pVM, pvUserGC)) != pvUserGC)
110 {
111 AssertMsgFailed(("Not GC pointer! pvUserGC=%VGv\n", pvUserGC));
112 return VERR_INVALID_PARAMETER;
113 }
114 AssertReturn(pfnHandlerR3 || pfnHandlerR0 || pfnHandlerGC, VERR_INVALID_PARAMETER);
115
116 /*
117 * We require the range to be within registered ram.
118 * There is no apparent need to support ranges which cover more than one ram range.
119 */
120 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
121 while (pRam && GCPhys > pRam->GCPhysLast)
122 pRam = CTXALLSUFF(pRam->pNext);
123 if ( !pRam
124 || GCPhysLast < pRam->GCPhys
125 || GCPhys > pRam->GCPhysLast)
126 {
127#ifdef IN_RING3
128 DBGFR3Info(pVM, "phys", NULL, NULL);
129#endif
130 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
131 return VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
132 }
133
134 /*
135 * Allocate and initialize the new entry.
136 */
137 PPGMPHYSHANDLER pNew;
138 int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
139 if (VBOX_FAILURE(rc))
140 return rc;
141
142 pNew->Core.Key = GCPhys;
143 pNew->Core.KeyLast = GCPhysLast;
144 pNew->enmType = enmType;
145 pNew->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
146 pNew->pfnHandlerR3 = pfnHandlerR3;
147 pNew->pvUserR3 = pvUserR3;
148 pNew->pfnHandlerR0 = pfnHandlerR0;
149 pNew->pvUserR0 = pvUserR0;
150 pNew->pfnHandlerGC = pfnHandlerGC;
151 pNew->pvUserGC = pvUserGC;
152 pNew->pszDesc = pszDesc;
153
154 pgmLock(pVM);
155
156 /*
157 * Try insert into list.
158 */
159 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, &pNew->Core))
160 {
161 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pNew, pRam);
162 if (rc == VINF_PGM_GCPHYS_ALIASED)
163 {
164 pVM->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
165 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
166 }
167 pVM->pgm.s.fPhysCacheFlushPending = true;
168#ifndef IN_RING3
169 REMNotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
170#else
171 REMR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, GCPhysLast - GCPhys + 1, !!pfnHandlerR3);
172#endif
173 pgmUnlock(pVM);
174 if (rc != VINF_SUCCESS)
175 Log(("PGMHandlerPhysicalRegisterEx: returns %Vrc (%VGp-%VGp)\n", rc, GCPhys, GCPhysLast));
176 return rc;
177 }
178
179 pgmUnlock(pVM);
180
181#if defined(IN_RING3) && defined(VBOX_STRICT)
182 DBGFR3Info(pVM, "handlers", "phys nostats", NULL);
183#endif
184 AssertMsgFailed(("Conflict! GCPhys=%VGp GCPhysLast=%VGp pszDesc=%s\n", GCPhys, GCPhysLast, pszDesc));
185 MMHyperFree(pVM, pNew);
186 return VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
187}
188
189
190/**
191 * Sets ram range flags and attempts updating shadow PTs.
192 *
193 * @returns VBox status code.
194 * @retval VINF_SUCCESS when shadow PTs was successfully updated.
195 * @retval VINF_PGM_GCPHYS_ALIASED when the shadow PTs could be updated because
196 * the guest page aliased or/and mapped by multiple PTs.
197 * @param pVM The VM handle.
198 * @param pCur The physical handler.
199 * @param pRam The RAM range.
200 */
201static int pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(PVM pVM, PPGMPHYSHANDLER pCur, PPGMRAMRANGE pRam)
202{
203 /*
204 * Iterate the guest ram pages updating the flags and flushing PT entries
205 * mapping the page.
206 */
207 bool fFlushTLBs = false;
208#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE)
209 int rc = VINF_SUCCESS;
210#else
211 const int rc = VINF_PGM_GCPHYS_ALIASED;
212#endif
213 const unsigned uState = pgmHandlerPhysicalCalcState(pCur);
214 RTUINT cPages = pCur->cPages;
215 RTUINT i = (pCur->Core.Key - pRam->GCPhys) >> PAGE_SHIFT;
216 for (;;)
217 {
218 /* Physical chunk in dynamically allocated range not present? */
219 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(&pRam->aPages[i])))
220 {
221 RTGCPHYS GCPhys = pRam->GCPhys + (i << PAGE_SHIFT);
222#ifdef IN_RING3
223 int rc2 = pgmr3PhysGrowRange(pVM, GCPhys);
224#else
225 int rc2 = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
226#endif
227 if (rc2 != VINF_SUCCESS)
228 return rc2;
229 }
230
231 /* Only do upgrades. */
232 PPGMPAGE pPage = &pRam->aPages[i];
233 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
234 {
235 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
236 Assert(PGM_PAGE_GET_HCPHYS(pPage));
237
238#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
239 /* This code also makes ASSUMPTIONS about the cRefs and stuff. */
240 Assert(MM_RAM_FLAGS_IDX_SHIFT < MM_RAM_FLAGS_CREFS_SHIFT);
241 const uint16_t u16 = pRam->aPages[i].HCPhys >> MM_RAM_FLAGS_IDX_SHIFT; /** @todo PAGE FLAGS */
242 if (u16)
243 {
244 if ((u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) != MM_RAM_FLAGS_CREFS_PHYSEXT)
245 pgmPoolTrackFlushGCPhysPT(pVM,
246 pPage,
247 u16 & MM_RAM_FLAGS_IDX_MASK,
248 u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT));
249 else if (u16 != ((MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | MM_RAM_FLAGS_IDX_OVERFLOWED))
250 pgmPoolTrackFlushGCPhysPTs(pVM, pPage, u16 & MM_RAM_FLAGS_IDX_MASK);
251 else
252 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPage);
253 fFlushTLBs = true;
254 }
255#elif defined(PGMPOOL_WITH_CACHE)
256 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPage);
257 fFlushTLBs = true;
258#endif
259 }
260
261 /* next */
262 if (--cPages == 0)
263 break;
264 i++;
265 }
266
267 if (fFlushTLBs && rc == VINF_SUCCESS)
268 {
269 PGM_INVL_GUEST_TLBS();
270 Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: flushing guest TLBs\n"));
271 }
272 else
273 Log(("pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs: doesn't flush guest TLBs. rc=%Vrc\n", rc));
274 return rc;
275}
276
277
278/**
279 * Register a physical page access handler.
280 *
281 * @returns VBox status code.
282 * @param pVM VM Handle.
283 * @param GCPhys Start physical address.
284 */
285PGMDECL(int) PGMHandlerPhysicalDeregister(PVM pVM, RTGCPHYS GCPhys)
286{
287 /*
288 * Find the handler.
289 */
290 pgmLock(pVM);
291 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
292 if (pCur)
293 {
294 LogFlow(("PGMHandlerPhysicalDeregister: Removing Range %#VGp-%#VGp %s\n",
295 pCur->Core.Key, pCur->Core.KeyLast, HCSTRING(pCur->pszDesc)));
296
297 /*
298 * Clear the page bits and notify the REM about this change.
299 */
300 pgmHandlerPhysicalResetRamFlags(pVM, pCur);
301 pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
302 pgmUnlock(pVM);
303 MMHyperFree(pVM, pCur);
304 return VINF_SUCCESS;
305 }
306 pgmUnlock(pVM);
307
308 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys));
309 return VERR_PGM_HANDLER_NOT_FOUND;
310}
311
312
313/**
314 * Shared code with modify.
315 */
316static void pgmHandlerPhysicalDeregisterNotifyREM(PVM pVM, PPGMPHYSHANDLER pCur)
317{
318 RTGCPHYS GCPhysStart = pCur->Core.Key;
319 RTGCPHYS GCPhysLast = pCur->Core.KeyLast;
320
321 /*
322 * Page align the range.
323 *
324 * Since we've reset (recalculated) the physical handler state of all pages
325 * we can make use of the page states to figure out whether a page should be
326 * included in the REM notification or not.
327 */
328 if ( (pCur->Core.Key & PAGE_OFFSET_MASK)
329 || ((pCur->Core.KeyLast + 1) & PAGE_OFFSET_MASK))
330 {
331 Assert(pCur->enmType != PGMPHYSHANDLERTYPE_MMIO);
332
333 if (GCPhysStart & PAGE_OFFSET_MASK)
334 {
335 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysStart);
336 if ( pPage
337 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
338 {
339 RTGCPHYS GCPhys = (GCPhysStart + (PAGE_SIZE - 1)) & X86_PTE_PAE_PG_MASK;
340 if ( GCPhys > GCPhysLast
341 || GCPhys < GCPhysStart)
342 return;
343 GCPhysStart = GCPhys;
344 }
345 else
346 GCPhysStart &= X86_PTE_PAE_PG_MASK;
347 Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
348 }
349
350 if (GCPhysLast & PAGE_OFFSET_MASK)
351 {
352 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysLast);
353 if ( pPage
354 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE)
355 {
356 RTGCPHYS GCPhys = (GCPhysLast & X86_PTE_PAE_PG_MASK) - 1;
357 if ( GCPhys < GCPhysStart
358 || GCPhys > GCPhysLast)
359 return;
360 GCPhysLast = GCPhys;
361 }
362 else
363 GCPhysLast |= PAGE_OFFSET_MASK;
364 Assert(!pPage || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO); /* these are page aligned atm! */
365 }
366 }
367
368 /*
369 * Tell REM.
370 */
371 const bool fRestoreAsRAM = pCur->pfnHandlerR3
372 && pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
373#ifndef IN_RING3
374 REMNotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
375#else
376 REMR3NotifyHandlerPhysicalDeregister(pVM, pCur->enmType, GCPhysStart, GCPhysLast - GCPhysStart + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
377#endif
378}
379
380
381/**
382 * pgmHandlerPhysicalResetRamFlags helper that checks for
383 * other handlers on edge pages.
384 */
385DECLINLINE(void) pgmHandlerPhysicalRecalcPageState(PPGM pPGM, RTGCPHYS GCPhys, bool fAbove, PPGMRAMRANGE *ppRamHint)
386{
387 /*
388 * Look for other handlers.
389 */
390 unsigned uState = PGM_PAGE_HNDL_PHYS_STATE_NONE;
391 for (;;)
392 {
393 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTXSUFF(pTrees)->PhysHandlers, GCPhys, fAbove);
394 if ( !pCur
395 || ((fAbove ? pCur->Core.Key : pCur->Core.KeyLast) >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
396 break;
397 unsigned uThisState = pgmHandlerPhysicalCalcState(pCur);
398 uState = RT_MAX(uState, uThisState);
399
400 /* next? */
401 RTGCPHYS GCPhysNext = fAbove
402 ? pCur->Core.KeyLast + 1
403 : pCur->Core.Key - 1;
404 if ((GCPhysNext >> PAGE_SHIFT) != (GCPhys >> PAGE_SHIFT))
405 break;
406 GCPhys = GCPhysNext;
407 }
408
409 /*
410 * Update if we found something that is a higher priority
411 * state than the current.
412 */
413 if (uState != PGM_PAGE_HNDL_PHYS_STATE_NONE)
414 {
415 PPGMPAGE pPage;
416 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
417 if ( RT_SUCCESS(rc)
418 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) < uState)
419 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, uState);
420 else
421 AssertRC(rc);
422 }
423}
424
425
426/**
427 * Resets ram range flags.
428 *
429 * @returns VBox status code.
430 * @retval VINF_SUCCESS when shadow PTs was successfully updated.
431 * @param pVM The VM handle.
432 * @param pCur The physical handler.
433 *
434 * @remark We don't start messing with the shadow page tables, as we've already got code
435 * in Trap0e which deals with out of sync handler flags (originally conceived for
436 * global pages).
437 */
438static void pgmHandlerPhysicalResetRamFlags(PVM pVM, PPGMPHYSHANDLER pCur)
439{
440 /*
441 * Iterate the guest ram pages updating the state.
442 */
443 RTUINT cPages = pCur->cPages;
444 RTGCPHYS GCPhys = pCur->Core.Key;
445 PPGMRAMRANGE pRamHint = NULL;
446 PPGM pPGM = &pVM->pgm.s;
447 for (;;)
448 {
449 PPGMPAGE pPage;
450 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, &pRamHint);
451 if (RT_SUCCESS(rc))
452 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_NONE);
453 else
454 AssertRC(rc);
455
456 /* next */
457 if (--cPages == 0)
458 break;
459 GCPhys += PAGE_SIZE;
460 }
461
462 /*
463 * Check for partial start and end pages.
464 */
465 if (pCur->Core.Key & PAGE_OFFSET_MASK)
466 pgmHandlerPhysicalRecalcPageState(pPGM, pCur->Core.Key - 1, false /* fAbove */, &pRamHint);
467 if ((pCur->Core.KeyLast & PAGE_OFFSET_MASK) != PAGE_SIZE - 1)
468 pgmHandlerPhysicalRecalcPageState(pPGM, pCur->Core.KeyLast + 1, true /* fAbove */, &pRamHint);
469}
470
471
472/**
473 * Modify a physical page access handler.
474 *
475 * Modification can only be done to the range it self, not the type or anything else.
476 *
477 * @returns VBox status code.
478 * For all return codes other than VERR_PGM_HANDLER_NOT_FOUND and VINF_SUCCESS the range is deregistered
479 * and a new registration must be performed!
480 * @param pVM VM handle.
481 * @param GCPhysCurrent Current location.
482 * @param GCPhys New location.
483 * @param GCPhysLast New last location.
484 */
485PGMDECL(int) PGMHandlerPhysicalModify(PVM pVM, RTGCPHYS GCPhysCurrent, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast)
486{
487 /*
488 * Remove it.
489 */
490 int rc;
491 pgmLock(pVM);
492 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhysCurrent);
493 if (pCur)
494 {
495 /*
496 * Clear the ram flags. (We're gonna move or free it!)
497 */
498 pgmHandlerPhysicalResetRamFlags(pVM, pCur);
499 const bool fRestoreAsRAM = pCur->pfnHandlerR3
500 && pCur->enmType != PGMPHYSHANDLERTYPE_MMIO; /** @todo this isn't entirely correct. */
501
502 /*
503 * Validate the new range, modify and reinsert.
504 */
505 if (GCPhysLast >= GCPhys)
506 {
507 /*
508 * We require the range to be within registered ram.
509 * There is no apparent need to support ranges which cover more than one ram range.
510 */
511 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
512 while (pRam && GCPhys > pRam->GCPhysLast)
513 pRam = CTXALLSUFF(pRam->pNext);
514 if ( pRam
515 && GCPhys <= pRam->GCPhysLast
516 && GCPhysLast >= pRam->GCPhys)
517 {
518 pCur->Core.Key = GCPhys;
519 pCur->Core.KeyLast = GCPhysLast;
520 pCur->cPages = (GCPhysLast - (GCPhys & X86_PTE_PAE_PG_MASK) + 1) >> PAGE_SHIFT;
521
522 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, &pCur->Core))
523 {
524 /*
525 * Set ram flags, flush shadow PT entries and finally tell REM about this.
526 */
527 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
528 if (rc == VINF_PGM_GCPHYS_ALIASED)
529 {
530 pVM->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
531 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
532 }
533 pVM->pgm.s.fPhysCacheFlushPending = true;
534
535#ifndef IN_RING3
536 REMNotifyHandlerPhysicalModify(pVM, pCur->enmType, GCPhysCurrent, GCPhys,
537 pCur->Core.KeyLast - GCPhys + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
538#else
539 REMR3NotifyHandlerPhysicalModify(pVM, pCur->enmType, GCPhysCurrent, GCPhys,
540 pCur->Core.KeyLast - GCPhys + 1, !!pCur->pfnHandlerR3, fRestoreAsRAM);
541#endif
542 pgmUnlock(pVM);
543 Log(("PGMHandlerPhysicalModify: GCPhysCurrent=%VGp -> GCPhys=%VGp GCPhysLast=%VGp\n",
544 GCPhysCurrent, GCPhys, GCPhysLast));
545 return VINF_SUCCESS;
546 }
547
548 AssertMsgFailed(("Conflict! GCPhys=%VGp GCPhysLast=%VGp\n", GCPhys, GCPhysLast));
549 rc = VERR_PGM_HANDLER_PHYSICAL_CONFLICT;
550 }
551 else
552 {
553 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
554 rc = VERR_PGM_HANDLER_PHYSICAL_NO_RAM_RANGE;
555 }
556 }
557 else
558 {
559 AssertMsgFailed(("Invalid range %VGp-%VGp\n", GCPhys, GCPhysLast));
560 rc = VERR_INVALID_PARAMETER;
561 }
562
563 /*
564 * Invalid new location, free it.
565 * We've only gotta notify REM and free the memory.
566 */
567 pgmHandlerPhysicalDeregisterNotifyREM(pVM, pCur);
568 MMHyperFree(pVM, pCur);
569 }
570 else
571 {
572 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhysCurrent));
573 rc = VERR_PGM_HANDLER_NOT_FOUND;
574 }
575
576 pgmUnlock(pVM);
577 return rc;
578}
579
580
581/**
582 * Changes the callbacks associated with a physical access handler.
583 *
584 * @returns VBox status code.
585 * @param pVM VM Handle.
586 * @param GCPhys Start physical address.
587 * @param pfnHandlerR3 The R3 handler.
588 * @param pvUserR3 User argument to the R3 handler.
589 * @param pfnHandlerR0 The R0 handler.
590 * @param pvUserR0 User argument to the R0 handler.
591 * @param pfnHandlerGC The GC handler.
592 * @param pvUserGC User argument to the GC handler.
593 * This must be a GC pointer because it will be relocated!
594 * @param pszDesc Pointer to description string. This must not be freed.
595 */
596PGMDECL(int) PGMHandlerPhysicalChangeCallbacks(PVM pVM, RTGCPHYS GCPhys,
597 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
598 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
599 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC, RTGCPTR pvUserGC,
600 R3PTRTYPE(const char *) pszDesc)
601{
602 /*
603 * Get the handler.
604 */
605 int rc = VINF_SUCCESS;
606 pgmLock(pVM);
607 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
608 if (pCur)
609 {
610 /*
611 * Change callbacks.
612 */
613 pCur->pfnHandlerR3 = pfnHandlerR3;
614 pCur->pvUserR3 = pvUserR3;
615 pCur->pfnHandlerR0 = pfnHandlerR0;
616 pCur->pvUserR0 = pvUserR0;
617 pCur->pfnHandlerGC = pfnHandlerGC;
618 pCur->pvUserGC = pvUserGC;
619 pCur->pszDesc = pszDesc;
620 }
621 else
622 {
623 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys));
624 rc = VERR_PGM_HANDLER_NOT_FOUND;
625 }
626
627 pgmUnlock(pVM);
628 return rc;
629}
630
631
632/**
633 * Splitts a physical access handler in two.
634 *
635 * @returns VBox status code.
636 * @param pVM VM Handle.
637 * @param GCPhys Start physical address of the handler.
638 * @param GCPhysSplit The split address.
639 */
640PGMDECL(int) PGMHandlerPhysicalSplit(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysSplit)
641{
642 AssertReturn(GCPhys < GCPhysSplit, VERR_INVALID_PARAMETER);
643
644 /*
645 * Do the allocation without owning the lock.
646 */
647 PPGMPHYSHANDLER pNew;
648 int rc = MMHyperAlloc(pVM, sizeof(*pNew), 0, MM_TAG_PGM_HANDLERS, (void **)&pNew);
649 if (VBOX_FAILURE(rc))
650 return rc;
651
652 /*
653 * Get the handler.
654 */
655 pgmLock(pVM);
656 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
657 if (pCur)
658 {
659 if (GCPhysSplit <= pCur->Core.KeyLast)
660 {
661 /*
662 * Create new handler node for the 2nd half.
663 */
664 *pNew = *pCur;
665 pNew->Core.Key = GCPhysSplit;
666 pNew->cPages = (pNew->Core.KeyLast - (pNew->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
667
668 pCur->Core.KeyLast = GCPhysSplit - 1;
669 pCur->cPages = (pCur->Core.KeyLast - (pCur->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
670
671 if (RTAvlroGCPhysInsert(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, &pNew->Core))
672 {
673 LogFlow(("PGMHandlerPhysicalSplit: %VGp-%VGp and %VGp-%VGp\n",
674 pCur->Core.Key, pCur->Core.KeyLast, pNew->Core.Key, pNew->Core.KeyLast));
675 pgmUnlock(pVM);
676 return VINF_SUCCESS;
677 }
678 AssertMsgFailed(("whu?\n"));
679 rc = VERR_INTERNAL_ERROR;
680 }
681 else
682 {
683 AssertMsgFailed(("outside range: %VGp-%VGp split %VGp\n", pCur->Core.Key, pCur->Core.KeyLast, GCPhysSplit));
684 rc = VERR_INVALID_PARAMETER;
685 }
686 }
687 else
688 {
689 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys));
690 rc = VERR_PGM_HANDLER_NOT_FOUND;
691 }
692 pgmUnlock(pVM);
693 MMHyperFree(pVM, pNew);
694 return rc;
695}
696
697
698/**
699 * Joins up two adjacent physical access handlers which has the same callbacks.
700 *
701 * @returns VBox status code.
702 * @param pVM VM Handle.
703 * @param GCPhys1 Start physical address of the first handler.
704 * @param GCPhys2 Start physical address of the second handler.
705 */
706PGMDECL(int) PGMHandlerPhysicalJoin(PVM pVM, RTGCPHYS GCPhys1, RTGCPHYS GCPhys2)
707{
708 /*
709 * Get the handlers.
710 */
711 int rc;
712 pgmLock(pVM);
713 PPGMPHYSHANDLER pCur1 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys1);
714 if (pCur1)
715 {
716 PPGMPHYSHANDLER pCur2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys2);
717 if (pCur2)
718 {
719 /*
720 * Make sure that they are adjacent, and that they've got the same callbacks.
721 */
722 if (pCur1->Core.KeyLast + 1 == pCur2->Core.Key)
723 {
724 if ( pCur1->pfnHandlerGC == pCur2->pfnHandlerGC
725 && pCur1->pfnHandlerR0 == pCur2->pfnHandlerR0
726 && pCur1->pfnHandlerR3 == pCur2->pfnHandlerR3)
727 {
728 PPGMPHYSHANDLER pCur3 = (PPGMPHYSHANDLER)RTAvlroGCPhysRemove(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys2);
729 if (pCur3 == pCur2)
730 {
731 pCur1->Core.KeyLast = pCur2->Core.KeyLast;
732 pCur1->cPages = (pCur1->Core.KeyLast - (pCur1->Core.Key & X86_PTE_PAE_PG_MASK) + PAGE_SIZE) >> PAGE_SHIFT;
733 LogFlow(("PGMHandlerPhysicalJoin: %VGp-%VGp %VGp-%VGp\n",
734 pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
735 pgmUnlock(pVM);
736 MMHyperFree(pVM, pCur2);
737 return VINF_SUCCESS;
738 }
739
740 Assert(pCur3 == pCur2);
741 rc = VERR_INTERNAL_ERROR;
742 }
743 else
744 {
745 AssertMsgFailed(("mismatching handlers\n"));
746 rc = VERR_ACCESS_DENIED;
747 }
748 }
749 else
750 {
751 AssertMsgFailed(("not adjacent: %VGp-%VGp %VGp-%VGp\n",
752 pCur1->Core.Key, pCur1->Core.KeyLast, pCur2->Core.Key, pCur2->Core.KeyLast));
753 rc = VERR_INVALID_PARAMETER;
754 }
755 }
756 else
757 {
758 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys2));
759 rc = VERR_PGM_HANDLER_NOT_FOUND;
760 }
761 }
762 else
763 {
764 AssertMsgFailed(("Didn't find range starting at %VGp\n", GCPhys1));
765 rc = VERR_PGM_HANDLER_NOT_FOUND;
766 }
767 pgmUnlock(pVM);
768 return rc;
769
770}
771
772
773/**
774 * Resets any modifications to individual pages in a physical
775 * page access handler region.
776 *
777 * This is used in pair with PGMHandlerPhysicalPageTempOff().
778 *
779 * @returns VBox status code.
780 * @param pVM VM Handle
781 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
782 */
783PGMDECL(int) PGMHandlerPhysicalReset(PVM pVM, RTGCPHYS GCPhys)
784{
785 pgmLock(pVM);
786
787 /*
788 * Find the handler.
789 */
790 int rc;
791 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
792 if (pCur)
793 {
794 /*
795 * Validate type.
796 */
797 switch (pCur->enmType)
798 {
799 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
800 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
801 {
802 /*
803 * Set the flags and flush shadow PT entries.
804 */
805 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlePhysicalReset);
806 PPGMRAMRANGE pRam = pgmPhysGetRange(&pVM->pgm.s, GCPhys);
807 Assert(pRam);
808 rc = pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs(pVM, pCur, pRam);
809 if (rc == VINF_PGM_GCPHYS_ALIASED)
810 {
811 pVM->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
812 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
813 }
814 pVM->pgm.s.fPhysCacheFlushPending = true;
815
816 rc = VINF_SUCCESS;
817 break;
818 }
819
820 /*
821 * Invalid.
822 */
823 case PGMPHYSHANDLERTYPE_MMIO:
824 AssertMsgFailed(("Can't reset type %d!\n", pCur->enmType));
825 rc = VERR_INTERNAL_ERROR;
826 break;
827
828 default:
829 AssertMsgFailed(("Invalid type %d! Corruption!\n", pCur->enmType));
830 rc = VERR_INTERNAL_ERROR;
831 break;
832 }
833 }
834 else
835 {
836 AssertMsgFailed(("Didn't find MMIO Range starting at %#x\n", GCPhys));
837 rc = VERR_PGM_HANDLER_NOT_FOUND;
838 }
839
840 pgmUnlock(pVM);
841 return rc;
842}
843
844
845/**
846 * Temporarily turns off the access monitoring of a page within a monitored
847 * physical write/all page access handler region.
848 *
849 * Use this when no further \#PFs are required for that page. Be aware that
850 * a page directory sync might reset the flags, and turn on access monitoring
851 * for the page.
852 *
853 * The caller must do required page table modifications.
854 *
855 * @returns VBox status code.
856 * @param pVM VM Handle
857 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
858 * This must be a fully page aligned range or we risk messing up other
859 * handlers installed for the start and end pages.
860 * @param GCPhysPage Physical address of the page to turn off access monitoring for.
861 */
862PGMDECL(int) PGMHandlerPhysicalPageTempOff(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
863{
864 /*
865 * Validate the range.
866 */
867 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
868 if (pCur)
869 {
870 if ( GCPhysPage >= pCur->Core.Key
871 && GCPhysPage <= pCur->Core.KeyLast)
872 {
873 Assert(!(pCur->Core.Key & PAGE_OFFSET_MASK));
874 Assert((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
875
876 AssertReturn( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
877 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL,
878 VERR_ACCESS_DENIED);
879
880 /*
881 * Change the page status.
882 */
883 PPGMPAGE pPage;
884 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
885 AssertRCReturn(rc, rc);
886 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, PGM_PAGE_HNDL_PHYS_STATE_DISABLED);
887 return VINF_SUCCESS;
888 }
889
890 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
891 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
892 return VERR_INVALID_PARAMETER;
893 }
894
895 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
896 return VERR_PGM_HANDLER_NOT_FOUND;
897}
898
899
900/**
901 * Turns access monitoring of a page within a monitored
902 * physical write/all page access handler regio back on.
903 *
904 * The caller must do required page table modifications.
905 *
906 * @returns VBox status code.
907 * @param pVM VM Handle
908 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
909 * This must be a fully page aligned range or we risk messing up other
910 * handlers installed for the start and end pages.
911 * @param GCPhysPage Physical address of the page to turn on access monitoring for.
912 */
913PGMDECL(int) PGMHandlerPhysicalPageReset(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
914{
915 /*
916 * Validate the range.
917 */
918 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
919 if (pCur)
920 {
921 if ( GCPhysPage >= pCur->Core.Key
922 && GCPhysPage <= pCur->Core.KeyLast)
923 {
924 Assert(!(pCur->Core.Key & PAGE_OFFSET_MASK));
925 Assert((pCur->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
926
927 AssertReturn( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
928 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL,
929 VERR_ACCESS_DENIED);
930
931 /*
932 * Change the page status.
933 */
934 PPGMPAGE pPage;
935 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
936 AssertRCReturn(rc, rc);
937 PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, pgmHandlerPhysicalCalcState(pCur));
938 return VINF_SUCCESS;
939 }
940
941 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
942 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
943 return VERR_INVALID_PARAMETER;
944 }
945
946 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
947 return VERR_PGM_HANDLER_NOT_FOUND;
948}
949
950
951/**
952 * Checks if a physical range is handled
953 *
954 * @returns boolean
955 * @param pVM VM Handle
956 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
957 */
958PGMDECL(bool) PGMHandlerPhysicalIsRegistered(PVM pVM, RTGCPHYS GCPhys)
959{
960 /*
961 * Find the handler.
962 */
963 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
964 if (pCur)
965 {
966 if ( GCPhys >= pCur->Core.Key
967 && GCPhys <= pCur->Core.KeyLast)
968 {
969 Assert( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
970 || pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_ALL
971 || pCur->enmType == PGMPHYSHANDLERTYPE_MMIO);
972 return true;
973 }
974 }
975
976 return false;
977}
978
979
980/**
981 * Search for virtual handler with matching physical address
982 *
983 * @returns VBox status code
984 * @param pVM The VM handle.
985 * @param GCPhys GC physical address to search for.
986 * @param ppVirt Where to store the pointer to the virtual handler structure.
987 * @param piPage Where to store the pointer to the index of the cached physical page.
988 */
989int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage)
990{
991 STAM_PROFILE_START(CTXSUFF(&pVM->pgm.s.StatVirtHandleSearchByPhys), a);
992 Assert(ppVirt);
993
994 PPGMPHYS2VIRTHANDLER pCur;
995 pCur = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysToVirtHandlers, GCPhys);
996 if (pCur)
997 {
998 /* found a match! */
999#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1000 AssertRelease(pCur->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD);
1001#endif
1002 *ppVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
1003 *piPage = pCur - &(*ppVirt)->aPhysToVirt[0];
1004
1005 LogFlow(("PHYS2VIRT: found match for %VGp -> %VGv *piPage=%#x\n", GCPhys, (*ppVirt)->GCPtr, *piPage));
1006 STAM_PROFILE_STOP(CTXSUFF(&pVM->pgm.s.StatVirtHandleSearchByPhys), a);
1007 return VINF_SUCCESS;
1008 }
1009
1010 *ppVirt = NULL;
1011 STAM_PROFILE_STOP(CTXSUFF(&pVM->pgm.s.StatVirtHandleSearchByPhys), a);
1012 return VERR_PGM_HANDLER_NOT_FOUND;
1013}
1014
1015
1016/**
1017 * Deal with aliases in phys2virt.
1018 *
1019 * As pointed out by the various todos, this currently only deals with
1020 * aliases where the two ranges match 100%.
1021 *
1022 * @param pVM The VM handle.
1023 * @param pPhys2Virt The node we failed insert.
1024 */
1025static void pgmHandlerVirtualInsertAliased(PVM pVM, PPGMPHYS2VIRTHANDLER pPhys2Virt)
1026{
1027 /*
1028 * First find the node which is conflicting with us.
1029 */
1030 /** @todo Deal with partial overlapping. (Unlikly situation, so I'm too lazy to do anything about it now.) */
1031 /** @todo check if the current head node covers the ground we do. This is highly unlikely
1032 * and I'm too lazy to implement this now as it will require sorting the list and stuff like that. */
1033 PPGMPHYS2VIRTHANDLER pHead = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
1034#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1035 AssertReleaseMsg(pHead != pPhys2Virt, ("%VGp-%VGp offVirtHandler=%#RX32\n",
1036 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler));
1037#endif
1038 if (RT_UNLIKELY(!pHead || pHead->Core.KeyLast != pPhys2Virt->Core.KeyLast))
1039 {
1040 /** @todo do something clever here... */
1041 LogRel(("pgmHandlerVirtualInsertAliased: %VGp-%VGp\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
1042 pPhys2Virt->offNextAlias = 0;
1043 return;
1044 }
1045
1046 /*
1047 * Insert ourselves as the next node.
1048 */
1049 if (!(pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
1050 pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IN_TREE;
1051 else
1052 {
1053 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pHead + (pHead->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
1054 pPhys2Virt->offNextAlias = ((intptr_t)pNext - (intptr_t)pPhys2Virt)
1055 | PGMPHYS2VIRTHANDLER_IN_TREE;
1056 }
1057 pHead->offNextAlias = ((intptr_t)pPhys2Virt - (intptr_t)pHead)
1058 | (pHead->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
1059 Log(("pgmHandlerVirtualInsertAliased: %VGp-%VGp offNextAlias=%#RX32\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
1060}
1061
1062
1063/**
1064 * Resets one virtual handler range.
1065 *
1066 * This is called by HandlerVirtualUpdate when it has detected some kind of
1067 * problem and have started clearing the virtual handler page states (or
1068 * when there have been registration/deregistrations). For this reason this
1069 * function will only update the page status if it's lower than desired.
1070 *
1071 * @returns 0
1072 * @param pNode Pointer to a PGMVIRTHANDLER.
1073 * @param pvUser The VM handle.
1074 */
1075DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1076{
1077 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1078 PVM pVM = (PVM)pvUser;
1079
1080 /*
1081 * Iterate the pages and apply the new state.
1082 */
1083 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1084 PPGMRAMRANGE pRamHint = NULL;
1085 RTGCUINTPTR offPage = ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
1086 RTGCUINTPTR cbLeft = pCur->cb;
1087 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1088 {
1089 PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
1090 if (pPhys2Virt->Core.Key != NIL_RTGCPHYS)
1091 {
1092 /*
1093 * Update the page state wrt virtual handlers.
1094 */
1095 PPGMPAGE pPage;
1096 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, pPhys2Virt->Core.Key, &pPage, &pRamHint);
1097 if ( RT_SUCCESS(rc)
1098 && PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
1099 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, uState);
1100 else
1101 AssertRC(rc);
1102
1103 /*
1104 * Need to insert the page in the Phys2Virt lookup tree?
1105 */
1106 if (pPhys2Virt->Core.KeyLast == NIL_RTGCPHYS)
1107 {
1108#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1109 AssertRelease(!pPhys2Virt->offNextAlias);
1110#endif
1111 unsigned cbPhys = cbLeft;
1112 if (cbPhys > PAGE_SIZE - offPage)
1113 cbPhys = PAGE_SIZE - offPage;
1114 else
1115 Assert(iPage == pCur->cPages - 1);
1116 pPhys2Virt->Core.KeyLast = pPhys2Virt->Core.Key + cbPhys - 1; /* inclusive */
1117 pPhys2Virt->offNextAlias = PGMPHYS2VIRTHANDLER_IS_HEAD | PGMPHYS2VIRTHANDLER_IN_TREE;
1118 if (!RTAvlroGCPhysInsert(&pVM->pgm.s.CTXSUFF(pTrees)->PhysToVirtHandlers, &pPhys2Virt->Core))
1119 pgmHandlerVirtualInsertAliased(pVM, pPhys2Virt);
1120#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
1121 else
1122 AssertReleaseMsg(RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key) == &pPhys2Virt->Core,
1123 ("%VGp-%VGp offNextAlias=%#RX32\n",
1124 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias));
1125#endif
1126 Log2(("PHYS2VIRT: Insert physical range %VGp-%VGp offNextAlias=%#RX32 %s\n",
1127 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
1128 }
1129 }
1130 cbLeft -= PAGE_SIZE - offPage;
1131 offPage = 0;
1132 }
1133
1134 return 0;
1135}
1136
1137
1138#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
1139/**
1140 * Worker for pgmHandlerVirtualDumpPhysPages.
1141 *
1142 * @returns 0 (continue enumeration).
1143 * @param pNode The virtual handler node.
1144 * @param pvUser User argument, unused.
1145 */
1146static DECLCALLBACK(int) pgmHandlerVirtualDumpPhysPagesCallback(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1147{
1148 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
1149 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
1150 Log(("PHYS2VIRT: Range %VGp-%VGp for virtual handler: %s\n", pCur->Core.Key, pCur->Core.KeyLast, pVirt->pszDesc));
1151 return 0;
1152}
1153
1154
1155/**
1156 * Assertion / logging helper for dumping all the
1157 * virtual handlers to the log.
1158 *
1159 * @param pVM Pointer to the shared VM structure.
1160 */
1161void pgmHandlerVirtualDumpPhysPages(PVM pVM)
1162{
1163 RTAvlroGCPhysDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->PhysToVirtHandlers, true /* from left */,
1164 pgmHandlerVirtualDumpPhysPagesCallback, 0);
1165}
1166#endif /* VBOX_STRICT || LOG_ENABLED */
1167
1168#ifdef VBOX_STRICT
1169
1170/**
1171 * State structure used by the PGMAssertHandlerAndFlagsInSync() function
1172 * and its AVL enumerators.
1173 */
1174typedef struct PGMAHAFIS
1175{
1176 /** The current physical address. */
1177 RTGCPHYS GCPhys;
1178 /** The state we've calculated. */
1179 unsigned uVirtStateFound;
1180 /** The state we're matching up to. */
1181 unsigned uVirtState;
1182 /** Number of errors. */
1183 unsigned cErrors;
1184 /** The VM handle. */
1185 PVM pVM;
1186} PGMAHAFIS, *PPGMAHAFIS;
1187
1188
1189#if 0 /* unused */
1190/**
1191 * Verify virtual handler by matching physical address.
1192 *
1193 * @returns 0
1194 * @param pNode Pointer to a PGMVIRTHANDLER.
1195 * @param pvUser Pointer to user parameter.
1196 */
1197static DECLCALLBACK(int) pgmHandlerVirtualVerifyOneByPhysAddr(PAVLROGCPTRNODECORE pNode, void *pvUser)
1198{
1199 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1200 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1201
1202 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1203 {
1204 if ((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == pState->GCPhys)
1205 {
1206 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1207 if (pState->uVirtState < uState)
1208 {
1209 error
1210 }
1211
1212 if (pState->uVirtState == uState)
1213 break; //??
1214 }
1215 }
1216 return 0;
1217}
1218#endif /* unused */
1219
1220
1221/**
1222 * Verify a virtual handler (enumeration callback).
1223 *
1224 * Called by PGMAssertHandlerAndFlagsInSync to check the sanity of all
1225 * the virtual handlers, esp. that the physical addresses matches up.
1226 *
1227 * @returns 0
1228 * @param pNode Pointer to a PGMVIRTHANDLER.
1229 * @param pvUser Pointer to a PPGMAHAFIS structure.
1230 */
1231static DECLCALLBACK(int) pgmHandlerVirtualVerifyOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1232{
1233 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)pNode;
1234 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1235 PVM pVM = pState->pVM;
1236
1237 /*
1238 * Validate the type and calc state.
1239 */
1240 switch (pVirt->enmType)
1241 {
1242 case PGMVIRTHANDLERTYPE_WRITE:
1243 case PGMVIRTHANDLERTYPE_ALL:
1244 break;
1245 default:
1246 AssertMsgFailed(("unknown/wrong enmType=%d\n", pVirt->enmType));
1247 pState->cErrors++;
1248 return 0;
1249 }
1250 const unsigned uState = pgmHandlerVirtualCalcState(pVirt);
1251
1252 /*
1253 * Check key alignment.
1254 */
1255 if ( (pVirt->aPhysToVirt[0].Core.Key & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->GCPtr & PAGE_OFFSET_MASK)
1256 && pVirt->aPhysToVirt[0].Core.Key != NIL_RTGCPHYS)
1257 {
1258 AssertMsgFailed(("virt handler phys has incorrect key! %VGp %VGv %s\n",
1259 pVirt->aPhysToVirt[0].Core.Key, pVirt->GCPtr, HCSTRING(pVirt->pszDesc)));
1260 pState->cErrors++;
1261 }
1262
1263 if ( (pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->GCPtrLast & PAGE_OFFSET_MASK)
1264 && pVirt->aPhysToVirt[pVirt->cPages - 1].Core.Key != NIL_RTGCPHYS)
1265 {
1266 AssertMsgFailed(("virt handler phys has incorrect key! %VGp %VGv %s\n",
1267 pVirt->aPhysToVirt[pVirt->cPages - 1].Core.KeyLast, pVirt->GCPtrLast, HCSTRING(pVirt->pszDesc)));
1268 pState->cErrors++;
1269 }
1270
1271 /*
1272 * Check pages for sanity and state.
1273 */
1274 RTGCUINTPTR GCPtr = (RTGCUINTPTR)pVirt->GCPtr;
1275 for (unsigned iPage = 0; iPage < pVirt->cPages; iPage++, GCPtr += PAGE_SIZE)
1276 {
1277 RTGCPHYS GCPhysGst;
1278 uint64_t fGst;
1279 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, &fGst, &GCPhysGst);
1280 if ( rc == VERR_PAGE_NOT_PRESENT
1281 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
1282 {
1283 if (pVirt->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
1284 {
1285 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysNew=~0 iPage=%#x %VGv %s\n",
1286 pVirt->aPhysToVirt[iPage].Core.Key, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1287 pState->cErrors++;
1288 }
1289 continue;
1290 }
1291
1292 AssertRCReturn(rc, 0);
1293 if ((pVirt->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) != GCPhysGst)
1294 {
1295 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1296 pVirt->aPhysToVirt[iPage].Core.Key, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1297 pState->cErrors++;
1298 continue;
1299 }
1300
1301 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
1302 if (!pPage)
1303 {
1304 AssertMsgFailed(("virt handler getting ram flags. GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1305 GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1306 pState->cErrors++;
1307 continue;
1308 }
1309
1310 if (PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < uState)
1311 {
1312 AssertMsgFailed(("virt handler state mismatch. HCPhys=%VHp GCPhysGst=%VGp iPage=%#x %VGv state=%d expected>=%d %s\n",
1313 pPage->HCPhys, GCPhysGst, iPage, GCPtr, PGM_PAGE_GET_HNDL_VIRT_STATE(pPage), uState, HCSTRING(pVirt->pszDesc)));
1314 pState->cErrors++;
1315 continue;
1316 }
1317 } /* for pages in virtual mapping. */
1318
1319 return 0;
1320}
1321
1322
1323/**
1324 * Asserts that the handlers+guest-page-tables == ramrange-flags and
1325 * that the physical addresses associated with virtual handlers are correct.
1326 *
1327 * @returns Number of mismatches.
1328 * @param pVM The VM handle.
1329 */
1330PGMDECL(unsigned) PGMAssertHandlerAndFlagsInSync(PVM pVM)
1331{
1332 PPGM pPGM = &pVM->pgm.s;
1333 PGMAHAFIS State;
1334 State.GCPhys = 0;
1335 State.uVirtState = 0;
1336 State.uVirtStateFound = 0;
1337 State.cErrors = 0;
1338 State.pVM = pVM;
1339
1340 /*
1341 * Check the RAM flags against the handlers.
1342 */
1343 for (PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges); pRam; pRam = CTXALLSUFF(pRam->pNext))
1344 {
1345 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1346 for (unsigned iPage = 0; iPage < cPages; iPage++)
1347 {
1348 PGMPAGE const *pPage = &pRam->aPages[iPage];
1349 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
1350 {
1351 State.GCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT);
1352
1353 /*
1354 * Physical first - calculate the state based on the handlers
1355 * active on the page, then compare.
1356 */
1357 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
1358 {
1359 /* the first */
1360 PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys);
1361 if (!pPhys)
1362 {
1363 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys, true);
1364 if ( pPhys
1365 && pPhys->Core.Key > (State.GCPhys + PAGE_SIZE - 1))
1366 pPhys = NULL;
1367 Assert(!pPhys || pPhys->Core.Key >= State.GCPhys);
1368 }
1369 if (pPhys)
1370 {
1371 unsigned uState = pgmHandlerPhysicalCalcState(pPhys);
1372
1373 /* more? */
1374 while (pPhys->Core.KeyLast < (State.GCPhys | PAGE_OFFSET_MASK))
1375 {
1376 PPGMPHYSHANDLER pPhys2 = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTXSUFF(pTrees)->PhysHandlers,
1377 pPhys->Core.KeyLast + 1, true);
1378 if ( !pPhys2
1379 || pPhys2->Core.Key > (State.GCPhys | PAGE_OFFSET_MASK))
1380 break;
1381 unsigned uState2 = pgmHandlerPhysicalCalcState(pPhys2);
1382 uState = RT_MAX(uState, uState2);
1383 pPhys = pPhys2;
1384 }
1385
1386 /* compare.*/
1387 if ( PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != uState
1388 && PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
1389 {
1390 AssertMsgFailed(("ram range vs phys handler flags mismatch. GCPhys=%RGp state=%d expected=%d %s\n",
1391 State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), uState, pPhys->pszDesc));
1392 State.cErrors++;
1393 }
1394
1395#ifdef IN_RING3
1396 /* validate that REM is handling it. */
1397 if ( !REMR3IsPageAccessHandled(pVM, State.GCPhys)
1398 /* ignore shadowed ROM for the time being. */ /// @todo PAGE FLAGS
1399 && (pPage->HCPhys & (MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2)) != (MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2))
1400 {
1401 AssertMsgFailed(("ram range vs phys handler REM mismatch. GCPhys=%RGp state=%d %s\n",
1402 State.GCPhys, PGM_PAGE_GET_HNDL_PHYS_STATE(pPage), pPhys->pszDesc));
1403 State.cErrors++;
1404 }
1405#endif
1406 }
1407 else
1408 {
1409 AssertMsgFailed(("ram range vs phys handler mismatch. no handler for GCPhys=%RGp\n", State.GCPhys));
1410 State.cErrors++;
1411 }
1412 }
1413
1414 /*
1415 * Virtual handlers.
1416 */
1417 if (PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
1418 {
1419 State.uVirtState = PGM_PAGE_GET_HNDL_VIRT_STATE(pPage);
1420#if 1
1421 /* locate all the matching physical ranges. */
1422 State.uVirtStateFound = PGM_PAGE_HNDL_VIRT_STATE_NONE;
1423 RTGCPHYS GCPhysKey = State.GCPhys;
1424 for (;;)
1425 {
1426 PPGMPHYS2VIRTHANDLER pPhys2Virt = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGetBestFit(&CTXSUFF(pVM->pgm.s.pTrees)->PhysToVirtHandlers,
1427 GCPhysKey, true /* above-or-equal */);
1428 if ( !pPhys2Virt
1429 || (pPhys2Virt->Core.Key & X86_PTE_PAE_PG_MASK) != State.GCPhys)
1430 break;
1431
1432 /* the head */
1433 GCPhysKey = pPhys2Virt->Core.KeyLast;
1434 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
1435 unsigned uState = pgmHandlerVirtualCalcState(pCur);
1436 State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
1437
1438 /* any aliases */
1439 while (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
1440 {
1441 pPhys2Virt = (PPGMPHYS2VIRTHANDLER)((uintptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
1442 pCur = (PPGMVIRTHANDLER)((uintptr_t)pPhys2Virt + pPhys2Virt->offVirtHandler);
1443 uState = pgmHandlerVirtualCalcState(pCur);
1444 State.uVirtStateFound = RT_MAX(State.uVirtStateFound, uState);
1445 }
1446
1447 /* done? */
1448 if ((GCPhysKey & X86_PTE_PAE_PG_MASK) != State.GCPhys)
1449 break;
1450 }
1451#else
1452 /* very slow */
1453 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOneByPhysAddr, &State);
1454#endif
1455 if (State.uVirtState != State.uVirtStateFound)
1456 {
1457 AssertMsgFailed(("ram range vs virt handler flags mismatch. GCPhys=%RGp uVirtState=%#x uVirtStateFound=%#x\n",
1458 State.GCPhys, State.uVirtState, State.uVirtStateFound));
1459 State.cErrors++;
1460 }
1461 }
1462 }
1463 } /* foreach page in ram range. */
1464 } /* foreach ram range. */
1465
1466 /*
1467 * Check that the physical addresses of the virtual handlers matches up
1468 * and that they are otherwise sane.
1469 */
1470 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmHandlerVirtualVerifyOne, &State);
1471
1472 /*
1473 * Do the reverse check for physical handlers.
1474 */
1475 /** @todo */
1476
1477 return State.cErrors;
1478}
1479
1480#endif /* VBOX_STRICT */
1481
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette