1 | /* $Id: PGMAllGstSlatEpt.cpp.h 97242 2022-10-20 06:00:20Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * VBox - Page Manager, Guest EPT SLAT - All context code.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2021-2022 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 | #if PGM_SLAT_TYPE != PGM_SLAT_TYPE_EPT
|
---|
29 | # error "Unsupported SLAT type."
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Checks if the EPT PTE permissions are valid.
|
---|
34 | *
|
---|
35 | * @returns @c true if valid, @c false otherwise.
|
---|
36 | * @param uEntry The EPT page table entry to check.
|
---|
37 | * @param uLevel The page table walk level.
|
---|
38 | */
|
---|
39 | DECLINLINE(bool) PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(PCVMCPUCC pVCpu, uint64_t uEntry)
|
---|
40 | {
|
---|
41 | if (!(uEntry & EPT_E_READ))
|
---|
42 | {
|
---|
43 | Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
|
---|
44 | Assert(!RT_BF_GET(pVCpu->pgm.s.uEptVpidCapMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY));
|
---|
45 | NOREF(pVCpu);
|
---|
46 | if (uEntry & (EPT_E_WRITE | EPT_E_EXECUTE))
|
---|
47 | return false;
|
---|
48 | }
|
---|
49 | return true;
|
---|
50 | }
|
---|
51 |
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Checks if the EPT memory type is valid.
|
---|
55 | *
|
---|
56 | * @returns @c true if valid, @c false otherwise.
|
---|
57 | * @param uEntry The EPT page table entry to check.
|
---|
58 | * @param uLevel The page table walk level.
|
---|
59 | */
|
---|
60 | DECLINLINE(bool) PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(uint64_t uEntry, uint8_t uLevel)
|
---|
61 | {
|
---|
62 | Assert(uLevel <= 3 && uLevel >= 1); NOREF(uLevel);
|
---|
63 | uint8_t const fEptMemTypeMask = uEntry & VMX_BF_EPT_PT_MEMTYPE_MASK;
|
---|
64 | switch (fEptMemTypeMask)
|
---|
65 | {
|
---|
66 | case EPT_E_MEMTYPE_WB:
|
---|
67 | case EPT_E_MEMTYPE_UC:
|
---|
68 | case EPT_E_MEMTYPE_WP:
|
---|
69 | case EPT_E_MEMTYPE_WT:
|
---|
70 | case EPT_E_MEMTYPE_WC:
|
---|
71 | return true;
|
---|
72 | }
|
---|
73 | return false;
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | /**
|
---|
78 | * Updates page walk result info when a not-present page is encountered.
|
---|
79 | *
|
---|
80 | * @returns VERR_PAGE_TABLE_NOT_PRESENT.
|
---|
81 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
82 | * @param pWalk The page walk info to update.
|
---|
83 | * @param uEntry The EPT PTE that is not present.
|
---|
84 | * @param uLevel The page table walk level.
|
---|
85 | */
|
---|
86 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(PCVMCPUCC pVCpu, PPGMPTWALK pWalk, uint64_t uEntry, uint8_t uLevel)
|
---|
87 | {
|
---|
88 | static PGMWALKFAIL const s_afEptViolations[] = { PGM_WALKFAIL_EPT_VIOLATION, PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE };
|
---|
89 | uint8_t const fEptVeSupported = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxEptXcptVe;
|
---|
90 | uint8_t const fConvertible = RT_BOOL(uLevel == 1 || (uEntry & EPT_E_BIT_LEAF));
|
---|
91 | uint8_t const idxViolationType = fEptVeSupported & fConvertible & !RT_BF_GET(uEntry, VMX_BF_EPT_PT_SUPPRESS_VE);
|
---|
92 |
|
---|
93 | pWalk->fNotPresent = true;
|
---|
94 | pWalk->uLevel = uLevel;
|
---|
95 | pWalk->fFailed = s_afEptViolations[idxViolationType];
|
---|
96 | return VERR_PAGE_TABLE_NOT_PRESENT;
|
---|
97 | }
|
---|
98 |
|
---|
99 |
|
---|
100 | /**
|
---|
101 | * Updates page walk result info when a bad physical address is encountered.
|
---|
102 | *
|
---|
103 | * @returns VERR_PAGE_TABLE_NOT_PRESENT .
|
---|
104 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
105 | * @param pWalk The page walk info to update.
|
---|
106 | * @param uLevel The page table walk level.
|
---|
107 | * @param rc The error code that caused this bad physical address situation.
|
---|
108 | */
|
---|
109 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(PCVMCPUCC pVCpu, PPGMPTWALK pWalk, uint8_t uLevel, int rc)
|
---|
110 | {
|
---|
111 | AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu);
|
---|
112 | pWalk->fBadPhysAddr = true;
|
---|
113 | pWalk->uLevel = uLevel;
|
---|
114 | pWalk->fFailed = PGM_WALKFAIL_EPT_VIOLATION;
|
---|
115 | return VERR_PAGE_TABLE_NOT_PRESENT;
|
---|
116 | }
|
---|
117 |
|
---|
118 |
|
---|
119 | /**
|
---|
120 | * Updates page walk result info when reserved bits are encountered.
|
---|
121 | *
|
---|
122 | * @returns VERR_PAGE_TABLE_NOT_PRESENT.
|
---|
123 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
124 | * @param pWalk The page walk info to update.
|
---|
125 | * @param uLevel The page table walk level.
|
---|
126 | */
|
---|
127 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint8_t uLevel)
|
---|
128 | {
|
---|
129 | NOREF(pVCpu);
|
---|
130 | pWalk->fRsvdError = true;
|
---|
131 | pWalk->uLevel = uLevel;
|
---|
132 | pWalk->fFailed = PGM_WALKFAIL_EPT_MISCONFIG;
|
---|
133 | return VERR_PAGE_TABLE_NOT_PRESENT;
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Walks the guest's EPT page table (second-level address translation).
|
---|
139 | *
|
---|
140 | * @returns VBox status code.
|
---|
141 | * @retval VINF_SUCCESS on success.
|
---|
142 | * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details.
|
---|
143 | *
|
---|
144 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
145 | * @param GCPhysNested The nested-guest physical address to walk.
|
---|
146 | * @param fIsLinearAddrValid Whether the linear-address in @c GCPtrNested caused
|
---|
147 | * this page walk.
|
---|
148 | * @param GCPtrNested The nested-guest linear address that caused this
|
---|
149 | * translation. If @c fIsLinearAddrValid is false, pass
|
---|
150 | * 0.
|
---|
151 | * @param pWalk The page walk info.
|
---|
152 | * @param pSlatWalk The SLAT mode specific page walk info.
|
---|
153 | */
|
---|
154 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(Walk)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNested, bool fIsLinearAddrValid, RTGCPTR GCPtrNested,
|
---|
155 | PPGMPTWALK pWalk, PSLATPTWALK pSlatWalk)
|
---|
156 | {
|
---|
157 | Assert(fIsLinearAddrValid || GCPtrNested == 0);
|
---|
158 |
|
---|
159 | /*
|
---|
160 | * Init walk structures.
|
---|
161 | */
|
---|
162 | RT_ZERO(*pWalk);
|
---|
163 | RT_ZERO(*pSlatWalk);
|
---|
164 |
|
---|
165 | pWalk->GCPtr = GCPtrNested;
|
---|
166 | pWalk->GCPhysNested = GCPhysNested;
|
---|
167 | pWalk->fIsLinearAddrValid = fIsLinearAddrValid;
|
---|
168 | pWalk->fIsSlat = true;
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * Figure out EPT attributes that are cumulative (logical-AND) across page walks.
|
---|
172 | * - R, W, X_SUPER are unconditionally cumulative.
|
---|
173 | * See Intel spec. Table 26-7 "Exit Qualification for EPT Violations".
|
---|
174 | *
|
---|
175 | * - X_USER is cumulative but relevant only when mode-based execute control for EPT
|
---|
176 | * which we currently don't support it (asserted below).
|
---|
177 | *
|
---|
178 | * - MEMTYPE is not cumulative and only applicable to the final paging entry.
|
---|
179 | *
|
---|
180 | * - A, D EPT bits map to the regular page-table bit positions. Thus, they're not
|
---|
181 | * included in the mask below and handled separately. Accessed bits are
|
---|
182 | * cumulative but dirty bits are not cumulative as they're only applicable to
|
---|
183 | * the final paging entry.
|
---|
184 | */
|
---|
185 | Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
|
---|
186 | uint64_t const fEptAndMask = ( PGM_PTATTRS_EPT_R_MASK
|
---|
187 | | PGM_PTATTRS_EPT_W_MASK
|
---|
188 | | PGM_PTATTRS_EPT_X_SUPER_MASK) & PGM_PTATTRS_EPT_MASK;
|
---|
189 |
|
---|
190 | /*
|
---|
191 | * Do the walk.
|
---|
192 | */
|
---|
193 | uint64_t fEffective;
|
---|
194 | {
|
---|
195 | /*
|
---|
196 | * EPTP.
|
---|
197 | *
|
---|
198 | * We currently only support 4-level EPT paging.
|
---|
199 | * EPT 5-level paging was documented at some point (bit 7 of MSR_IA32_VMX_EPT_VPID_CAP)
|
---|
200 | * but for some reason seems to have been removed from subsequent specs.
|
---|
201 | */
|
---|
202 | int const rc = pgmGstGetEptPML4PtrEx(pVCpu, &pSlatWalk->pPml4);
|
---|
203 | if (RT_SUCCESS(rc))
|
---|
204 | { /* likely */ }
|
---|
205 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc);
|
---|
206 | }
|
---|
207 | {
|
---|
208 | /*
|
---|
209 | * PML4E.
|
---|
210 | */
|
---|
211 | PEPTPML4E pPml4e;
|
---|
212 | pSlatWalk->pPml4e = pPml4e = &pSlatWalk->pPml4->a[(GCPhysNested >> SLAT_PML4_SHIFT) & SLAT_PML4_MASK];
|
---|
213 | EPTPML4E Pml4e;
|
---|
214 | pSlatWalk->Pml4e.u = Pml4e.u = pPml4e->u;
|
---|
215 |
|
---|
216 | if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pml4e)) { /* probable */ }
|
---|
217 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pml4e.u, 4);
|
---|
218 |
|
---|
219 | if (RT_LIKELY( SLAT_IS_PML4E_VALID(pVCpu, Pml4e)
|
---|
220 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pml4e.u)))
|
---|
221 | { /* likely */ }
|
---|
222 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 4);
|
---|
223 |
|
---|
224 | uint64_t const fEptAttrs = Pml4e.u & EPT_PML4E_ATTR_MASK;
|
---|
225 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
226 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
227 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
228 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
229 | uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask;
|
---|
230 | fEffective = RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
231 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
232 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
233 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
234 | | fEptAndBits;
|
---|
235 | pWalk->fEffective = fEffective;
|
---|
236 |
|
---|
237 | int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & EPT_PML4E_PG_MASK, &pSlatWalk->pPdpt);
|
---|
238 | if (RT_SUCCESS(rc)) { /* probable */ }
|
---|
239 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
|
---|
240 | }
|
---|
241 | {
|
---|
242 | /*
|
---|
243 | * PDPTE.
|
---|
244 | */
|
---|
245 | PEPTPDPTE pPdpte;
|
---|
246 | pSlatWalk->pPdpte = pPdpte = &pSlatWalk->pPdpt->a[(GCPhysNested >> SLAT_PDPT_SHIFT) & SLAT_PDPT_MASK];
|
---|
247 | EPTPDPTE Pdpte;
|
---|
248 | pSlatWalk->Pdpte.u = Pdpte.u = pPdpte->u;
|
---|
249 |
|
---|
250 | if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pdpte)) { /* probable */ }
|
---|
251 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pdpte.u, 3);
|
---|
252 |
|
---|
253 | /* The order of the following "if" and "else if" statements matter. */
|
---|
254 | if ( SLAT_IS_PDPE_VALID(pVCpu, Pdpte)
|
---|
255 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pdpte.u))
|
---|
256 | {
|
---|
257 | uint64_t const fEptAttrs = Pdpte.u & EPT_PDPTE_ATTR_MASK;
|
---|
258 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
259 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
260 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
261 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
262 | uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask;
|
---|
263 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
264 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
265 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
266 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
267 | | fEptAndBits;
|
---|
268 | pWalk->fEffective = fEffective;
|
---|
269 | }
|
---|
270 | else if ( SLAT_IS_BIG_PDPE_VALID(pVCpu, Pdpte)
|
---|
271 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pdpte.u)
|
---|
272 | && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pdpte.u, 3))
|
---|
273 | {
|
---|
274 | uint64_t const fEptAttrs = Pdpte.u & EPT_PDPTE1G_ATTR_MASK;
|
---|
275 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
276 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
277 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
278 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
279 | uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY);
|
---|
280 | uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE);
|
---|
281 | uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask;
|
---|
282 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
283 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
284 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
285 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
286 | | fEptAndBits;
|
---|
287 | fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty)
|
---|
288 | | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType);
|
---|
289 | pWalk->fEffective = fEffective;
|
---|
290 |
|
---|
291 | pWalk->fGigantPage = true;
|
---|
292 | pWalk->fSucceeded = true;
|
---|
293 | pWalk->GCPhys = SLAT_GET_PDPE1G_GCPHYS(pVCpu, Pdpte)
|
---|
294 | | (GCPhysNested & SLAT_PAGE_1G_OFFSET_MASK);
|
---|
295 | PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->GCPhys);
|
---|
296 | return VINF_SUCCESS;
|
---|
297 | }
|
---|
298 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 3);
|
---|
299 |
|
---|
300 | int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpte.u & EPT_PDPTE_PG_MASK, &pSlatWalk->pPd);
|
---|
301 | if (RT_SUCCESS(rc)) { /* probable */ }
|
---|
302 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
|
---|
303 | }
|
---|
304 | {
|
---|
305 | /*
|
---|
306 | * PDE.
|
---|
307 | */
|
---|
308 | PSLATPDE pPde;
|
---|
309 | pSlatWalk->pPde = pPde = &pSlatWalk->pPd->a[(GCPhysNested >> SLAT_PD_SHIFT) & SLAT_PD_MASK];
|
---|
310 | SLATPDE Pde;
|
---|
311 | pSlatWalk->Pde.u = Pde.u = pPde->u;
|
---|
312 |
|
---|
313 | if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pde)) { /* probable */ }
|
---|
314 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pde.u, 2);
|
---|
315 |
|
---|
316 | /* The order of the following "if" and "else if" statements matter. */
|
---|
317 | if ( SLAT_IS_PDE_VALID(pVCpu, Pde)
|
---|
318 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pde.u))
|
---|
319 | {
|
---|
320 | uint64_t const fEptAttrs = Pde.u & EPT_PDE_ATTR_MASK;
|
---|
321 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
322 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
323 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
324 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
325 | uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask;
|
---|
326 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
327 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
328 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
329 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
330 | | fEptAndBits;
|
---|
331 | pWalk->fEffective = fEffective;
|
---|
332 | }
|
---|
333 | else if ( SLAT_IS_BIG_PDE_VALID(pVCpu, Pde)
|
---|
334 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pde.u)
|
---|
335 | && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pde.u, 2))
|
---|
336 | {
|
---|
337 | uint64_t const fEptAttrs = Pde.u & EPT_PDE2M_ATTR_MASK;
|
---|
338 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
339 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
340 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
341 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
342 | uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY);
|
---|
343 | uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE);
|
---|
344 | uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask;
|
---|
345 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
346 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
347 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
348 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
349 | | fEptAndBits;
|
---|
350 | fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty)
|
---|
351 | | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType);
|
---|
352 | pWalk->fEffective = fEffective;
|
---|
353 |
|
---|
354 | pWalk->fBigPage = true;
|
---|
355 | pWalk->fSucceeded = true;
|
---|
356 | pWalk->GCPhys = SLAT_GET_PDE2M_GCPHYS(pVCpu, Pde)
|
---|
357 | | (GCPhysNested & SLAT_PAGE_2M_OFFSET_MASK);
|
---|
358 | PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->GCPhys);
|
---|
359 | return VINF_SUCCESS;
|
---|
360 | }
|
---|
361 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 2);
|
---|
362 |
|
---|
363 | int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pde.u & EPT_PDE_PG_MASK, &pSlatWalk->pPt);
|
---|
364 | if (RT_SUCCESS(rc)) { /* probable */ }
|
---|
365 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc);
|
---|
366 | }
|
---|
367 | {
|
---|
368 | /*
|
---|
369 | * PTE.
|
---|
370 | */
|
---|
371 | PSLATPTE pPte;
|
---|
372 | pSlatWalk->pPte = pPte = &pSlatWalk->pPt->a[(GCPhysNested >> SLAT_PT_SHIFT) & SLAT_PT_MASK];
|
---|
373 | SLATPTE Pte;
|
---|
374 | pSlatWalk->Pte.u = Pte.u = pPte->u;
|
---|
375 |
|
---|
376 | if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pte)) { /* probable */ }
|
---|
377 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pte.u, 1);
|
---|
378 |
|
---|
379 | if ( SLAT_IS_PTE_VALID(pVCpu, Pte)
|
---|
380 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pte.u)
|
---|
381 | && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pte.u, 1))
|
---|
382 | { /* likely*/ }
|
---|
383 | else
|
---|
384 | return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 1);
|
---|
385 |
|
---|
386 | uint64_t const fEptAttrs = Pte.u & EPT_PTE_ATTR_MASK;
|
---|
387 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
388 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
389 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
390 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
391 | uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY);
|
---|
392 | uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE);
|
---|
393 | uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask;
|
---|
394 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
395 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
396 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
397 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
398 | | fEptAndBits;
|
---|
399 | fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty)
|
---|
400 | | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType);
|
---|
401 | pWalk->fEffective = fEffective;
|
---|
402 |
|
---|
403 | pWalk->fSucceeded = true;
|
---|
404 | pWalk->GCPhys = SLAT_GET_PTE_GCPHYS(pVCpu, Pte) | (GCPhysNested & GUEST_PAGE_OFFSET_MASK);
|
---|
405 | return VINF_SUCCESS;
|
---|
406 | }
|
---|
407 | }
|
---|
408 |
|
---|