1 | /* $Id: PGMAllGstSlatEpt.cpp.h 94983 2022-05-11 09:17:50Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * VBox - Page Manager, Guest EPT SLAT - All context code.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2021-2022 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | #if PGM_GST_TYPE == PGM_TYPE_EPT
|
---|
19 | DECLINLINE(bool) PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(PCVMCPUCC pVCpu, uint64_t uEntry)
|
---|
20 | {
|
---|
21 | if (!(uEntry & EPT_E_READ))
|
---|
22 | {
|
---|
23 | Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
|
---|
24 | Assert(!RT_BF_GET(pVCpu->pgm.s.uEptVpidCapMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY));
|
---|
25 | NOREF(pVCpu);
|
---|
26 | if (uEntry & (EPT_E_WRITE | EPT_E_EXECUTE))
|
---|
27 | return false;
|
---|
28 | }
|
---|
29 | return true;
|
---|
30 | }
|
---|
31 |
|
---|
32 |
|
---|
33 | DECLINLINE(bool) PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(uint64_t uEntry, uint8_t uLevel)
|
---|
34 | {
|
---|
35 | Assert(uLevel <= 3 && uLevel >= 1); NOREF(uLevel);
|
---|
36 | uint8_t const fEptMemTypeMask = uEntry & VMX_BF_EPT_PT_MEMTYPE_MASK;
|
---|
37 | switch (fEptMemTypeMask)
|
---|
38 | {
|
---|
39 | case EPT_E_MEMTYPE_WB:
|
---|
40 | case EPT_E_MEMTYPE_UC:
|
---|
41 | case EPT_E_MEMTYPE_WP:
|
---|
42 | case EPT_E_MEMTYPE_WT:
|
---|
43 | case EPT_E_MEMTYPE_WC:
|
---|
44 | return true;
|
---|
45 | }
|
---|
46 | return false;
|
---|
47 | }
|
---|
48 |
|
---|
49 |
|
---|
50 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(PCVMCPUCC pVCpu, PPGMPTWALK pWalk, uint64_t uEntry, uint8_t uLevel)
|
---|
51 | {
|
---|
52 | static PGMWALKFAIL const s_afEptViolations[] = { PGM_WALKFAIL_EPT_VIOLATION, PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE };
|
---|
53 | uint8_t const fEptVeSupported = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxEptXcptVe;
|
---|
54 | uint8_t const fConvertible = RT_BOOL(uLevel == 1 || (uEntry & EPT_E_BIT_LEAF));
|
---|
55 | uint8_t const idxViolationType = fEptVeSupported & fConvertible & !RT_BF_GET(uEntry, VMX_BF_EPT_PT_SUPPRESS_VE);
|
---|
56 |
|
---|
57 | pWalk->fNotPresent = true;
|
---|
58 | pWalk->uLevel = uLevel;
|
---|
59 | pWalk->fFailed = s_afEptViolations[idxViolationType];
|
---|
60 | return VERR_PAGE_TABLE_NOT_PRESENT;
|
---|
61 | }
|
---|
62 |
|
---|
63 |
|
---|
64 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(PCVMCPUCC pVCpu, PPGMPTWALK pWalk, uint8_t uLevel, int rc)
|
---|
65 | {
|
---|
66 | AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu);
|
---|
67 | pWalk->fBadPhysAddr = true;
|
---|
68 | pWalk->uLevel = uLevel;
|
---|
69 | pWalk->fFailed = PGM_WALKFAIL_EPT_VIOLATION;
|
---|
70 | return VERR_PAGE_TABLE_NOT_PRESENT;
|
---|
71 | }
|
---|
72 |
|
---|
73 |
|
---|
74 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint8_t uLevel)
|
---|
75 | {
|
---|
76 | NOREF(pVCpu);
|
---|
77 | pWalk->fRsvdError = true;
|
---|
78 | pWalk->uLevel = uLevel;
|
---|
79 | pWalk->fFailed = PGM_WALKFAIL_EPT_MISCONFIG;
|
---|
80 | return VERR_PAGE_TABLE_NOT_PRESENT;
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | /**
|
---|
85 | * Performs an EPT walk (second-level address translation).
|
---|
86 | *
|
---|
87 | * @returns VBox status code.
|
---|
88 | * @retval VINF_SUCCESS on success.
|
---|
89 | * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details.
|
---|
90 | *
|
---|
91 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
92 | * @param GCPhysNested The nested-guest physical address to walk.
|
---|
93 | * @param fIsLinearAddrValid Whether the linear-address in @c GCPtrNested caused
|
---|
94 | * this page walk.
|
---|
95 | * @param GCPtrNested The nested-guest linear address that caused this
|
---|
96 | * page walk. If @c fIsLinearAddrValid is false, pass
|
---|
97 | * 0.
|
---|
98 | * @param pWalk The page walk info.
|
---|
99 | * @param pGstWalk The guest mode specific page walk info.
|
---|
100 | */
|
---|
101 | DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(Walk)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNested, bool fIsLinearAddrValid, RTGCPTR GCPtrNested,
|
---|
102 | PPGMPTWALK pWalk, PGSTPTWALK pGstWalk)
|
---|
103 | {
|
---|
104 | Assert(fIsLinearAddrValid || GCPtrNested == 0);
|
---|
105 |
|
---|
106 | /*
|
---|
107 | * Init walk structures.
|
---|
108 | */
|
---|
109 | RT_ZERO(*pWalk);
|
---|
110 | RT_ZERO(*pGstWalk);
|
---|
111 |
|
---|
112 | pWalk->GCPtr = GCPtrNested;
|
---|
113 | pWalk->GCPhysNested = GCPhysNested;
|
---|
114 | pWalk->fIsLinearAddrValid = fIsLinearAddrValid;
|
---|
115 | pWalk->fIsSlat = true;
|
---|
116 |
|
---|
117 | /*
|
---|
118 | * Figure out EPT attributes that are cumulative (logical-AND) across page walks.
|
---|
119 | * - R, W, X_SUPER are unconditionally cumulative.
|
---|
120 | * See Intel spec. Table 26-7 "Exit Qualification for EPT Violations".
|
---|
121 | *
|
---|
122 | * - X_USER is cumulative but relevant only when mode-based execute control for EPT
|
---|
123 | * which we currently don't support it (asserted below).
|
---|
124 | *
|
---|
125 | * - MEMTYPE is not cumulative and only applicable to the final paging entry.
|
---|
126 | *
|
---|
127 | * - A, D EPT bits map to the regular page-table bit positions. Thus, they're not
|
---|
128 | * included in the mask below and handled separately. Accessed bits are
|
---|
129 | * cumulative but dirty bits are not cumulative as they're only applicable to
|
---|
130 | * the final paging entry.
|
---|
131 | */
|
---|
132 | Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
|
---|
133 | uint64_t const fCumulativeEpt = PGM_PTATTRS_EPT_R_MASK
|
---|
134 | | PGM_PTATTRS_EPT_W_MASK
|
---|
135 | | PGM_PTATTRS_EPT_X_SUPER_MASK;
|
---|
136 | Assert(!(fCumulativeEpt & ~PGM_PTATTRS_EPT_MASK));
|
---|
137 |
|
---|
138 | /*
|
---|
139 | * Do the walk.
|
---|
140 | */
|
---|
141 | uint64_t fEffective;
|
---|
142 | {
|
---|
143 | /*
|
---|
144 | * EPTP.
|
---|
145 | *
|
---|
146 | * We currently only support 4-level EPT paging.
|
---|
147 | * EPT 5-level paging was documented at some point (bit 7 of MSR_IA32_VMX_EPT_VPID_CAP)
|
---|
148 | * but for some reason seems to have been removed from subsequent specs.
|
---|
149 | */
|
---|
150 | int const rc = pgmGstGetEptPML4PtrEx(pVCpu, &pGstWalk->pPml4);
|
---|
151 | if (RT_SUCCESS(rc))
|
---|
152 | { /* likely */ }
|
---|
153 | else
|
---|
154 | return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc);
|
---|
155 | }
|
---|
156 | {
|
---|
157 | /*
|
---|
158 | * PML4E.
|
---|
159 | */
|
---|
160 | PEPTPML4E pPml4e;
|
---|
161 | pGstWalk->pPml4e = pPml4e = &pGstWalk->pPml4->a[(GCPhysNested >> EPT_PML4_SHIFT) & EPT_PML4_MASK];
|
---|
162 | EPTPML4E Pml4e;
|
---|
163 | pGstWalk->Pml4e.u = Pml4e.u = pPml4e->u;
|
---|
164 |
|
---|
165 | if (GST_IS_PGENTRY_PRESENT(pVCpu, Pml4e)) { /* probable */ }
|
---|
166 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pml4e.u, 4);
|
---|
167 |
|
---|
168 | if (RT_LIKELY( GST_IS_PML4E_VALID(pVCpu, Pml4e)
|
---|
169 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pml4e.u)))
|
---|
170 | { /* likely */ }
|
---|
171 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 4);
|
---|
172 |
|
---|
173 | Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
|
---|
174 | uint64_t const fEptAttrs = Pml4e.u & EPT_PML4E_ATTR_MASK;
|
---|
175 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
176 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
177 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
178 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
179 | uint64_t const fEffectiveEpt = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fCumulativeEpt;
|
---|
180 | fEffective = RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
181 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
182 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
183 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
184 | | fEffectiveEpt;
|
---|
185 | pWalk->fEffective = fEffective;
|
---|
186 |
|
---|
187 | int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & EPT_PML4E_PG_MASK, &pGstWalk->pPdpt);
|
---|
188 | if (RT_SUCCESS(rc)) { /* probable */ }
|
---|
189 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
|
---|
190 | }
|
---|
191 | {
|
---|
192 | /*
|
---|
193 | * PDPTE.
|
---|
194 | */
|
---|
195 | PEPTPDPTE pPdpte;
|
---|
196 | pGstWalk->pPdpte = pPdpte = &pGstWalk->pPdpt->a[(GCPhysNested >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
|
---|
197 | EPTPDPTE Pdpte;
|
---|
198 | pGstWalk->Pdpte.u = Pdpte.u = pPdpte->u;
|
---|
199 |
|
---|
200 | if (GST_IS_PGENTRY_PRESENT(pVCpu, Pdpte)) { /* probable */ }
|
---|
201 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pdpte.u, 3);
|
---|
202 |
|
---|
203 | /* The order of the following "if" and "else if" statements matter. */
|
---|
204 | if ( GST_IS_PDPE_VALID(pVCpu, Pdpte)
|
---|
205 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pdpte.u))
|
---|
206 | {
|
---|
207 | uint64_t const fEptAttrs = Pdpte.u & EPT_PDPTE_ATTR_MASK;
|
---|
208 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
209 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
210 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
211 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
212 | uint64_t const fEffectiveEpt = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fCumulativeEpt;
|
---|
213 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
214 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
215 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
216 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
217 | | fEffectiveEpt;
|
---|
218 | pWalk->fEffective = fEffective;
|
---|
219 | }
|
---|
220 | else if ( GST_IS_BIG_PDPE_VALID(pVCpu, Pdpte)
|
---|
221 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pdpte.u)
|
---|
222 | && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pdpte.u, 3))
|
---|
223 | {
|
---|
224 | uint64_t const fEptAttrs = Pdpte.u & EPT_PDPTE1G_ATTR_MASK;
|
---|
225 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
226 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
227 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
228 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
229 | uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY);
|
---|
230 | uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE);
|
---|
231 | uint64_t const fEffectiveEpt = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fCumulativeEpt;
|
---|
232 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
233 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
234 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
235 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
236 | | fEffectiveEpt;
|
---|
237 | fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty)
|
---|
238 | | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType);
|
---|
239 | pWalk->fEffective = fEffective;
|
---|
240 |
|
---|
241 | pWalk->fGigantPage = true;
|
---|
242 | pWalk->fSucceeded = true;
|
---|
243 | pWalk->GCPhys = GST_GET_BIG_PDPE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pdpte)
|
---|
244 | | (GCPhysNested & GST_GIGANT_PAGE_OFFSET_MASK);
|
---|
245 | PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->GCPhys);
|
---|
246 | return VINF_SUCCESS;
|
---|
247 | }
|
---|
248 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 3);
|
---|
249 |
|
---|
250 | int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpte.u & EPT_PDPTE_PG_MASK, &pGstWalk->pPd);
|
---|
251 | if (RT_SUCCESS(rc)) { /* probable */ }
|
---|
252 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc);
|
---|
253 | }
|
---|
254 | {
|
---|
255 | /*
|
---|
256 | * PDE.
|
---|
257 | */
|
---|
258 | PGSTPDE pPde;
|
---|
259 | pGstWalk->pPde = pPde = &pGstWalk->pPd->a[(GCPhysNested >> GST_PD_SHIFT) & GST_PD_MASK];
|
---|
260 | GSTPDE Pde;
|
---|
261 | pGstWalk->Pde.u = Pde.u = pPde->u;
|
---|
262 |
|
---|
263 | if (GST_IS_PGENTRY_PRESENT(pVCpu, Pde)) { /* probable */ }
|
---|
264 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pde.u, 2);
|
---|
265 |
|
---|
266 | /* The order of the following "if" and "else if" statements matter. */
|
---|
267 | if ( GST_IS_PDE_VALID(pVCpu, Pde)
|
---|
268 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pde.u))
|
---|
269 | {
|
---|
270 | uint64_t const fEptAttrs = Pde.u & EPT_PDE_ATTR_MASK;
|
---|
271 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
272 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
273 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
274 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
275 | uint64_t const fEffectiveEpt = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fCumulativeEpt;
|
---|
276 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
277 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
278 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
279 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
280 | | fEffectiveEpt;
|
---|
281 | pWalk->fEffective = fEffective;
|
---|
282 | }
|
---|
283 | else if ( GST_IS_BIG_PDE_VALID(pVCpu, Pde)
|
---|
284 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pde.u)
|
---|
285 | && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pde.u, 2))
|
---|
286 | {
|
---|
287 | uint64_t const fEptAttrs = Pde.u & EPT_PDE2M_ATTR_MASK;
|
---|
288 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
289 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
290 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
291 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
292 | uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY);
|
---|
293 | uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE);
|
---|
294 | uint64_t const fEffectiveEpt = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fCumulativeEpt;
|
---|
295 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
296 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
297 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
298 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
299 | | fEffectiveEpt;
|
---|
300 | fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty)
|
---|
301 | | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType);
|
---|
302 | pWalk->fEffective = fEffective;
|
---|
303 |
|
---|
304 | pWalk->fBigPage = true;
|
---|
305 | pWalk->fSucceeded = true;
|
---|
306 | pWalk->GCPhys = GST_GET_BIG_PDE_GCPHYS(pVCpu->CTX_SUFF(pVM), Pde)
|
---|
307 | | (GCPhysNested & GST_BIG_PAGE_OFFSET_MASK);
|
---|
308 | PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->GCPhys);
|
---|
309 | return VINF_SUCCESS;
|
---|
310 | }
|
---|
311 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 2);
|
---|
312 |
|
---|
313 | int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GST_GET_PDE_GCPHYS(Pde), &pGstWalk->pPt);
|
---|
314 | if (RT_SUCCESS(rc)) { /* probable */ }
|
---|
315 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc);
|
---|
316 | }
|
---|
317 | {
|
---|
318 | /*
|
---|
319 | * PTE.
|
---|
320 | */
|
---|
321 | PGSTPTE pPte;
|
---|
322 | pGstWalk->pPte = pPte = &pGstWalk->pPt->a[(GCPhysNested >> GST_PT_SHIFT) & GST_PT_MASK];
|
---|
323 | GSTPTE Pte;
|
---|
324 | pGstWalk->Pte.u = Pte.u = pPte->u;
|
---|
325 |
|
---|
326 | if (GST_IS_PGENTRY_PRESENT(pVCpu, Pte)) { /* probable */ }
|
---|
327 | else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pte.u, 1);
|
---|
328 |
|
---|
329 | if ( GST_IS_PTE_VALID(pVCpu, Pte)
|
---|
330 | && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pte.u)
|
---|
331 | && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pte.u, 1))
|
---|
332 | { /* likely*/ }
|
---|
333 | else
|
---|
334 | return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 1);
|
---|
335 |
|
---|
336 | uint64_t const fEptAttrs = Pte.u & EPT_PTE_ATTR_MASK;
|
---|
337 | uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ);
|
---|
338 | uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE);
|
---|
339 | uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE);
|
---|
340 | uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED);
|
---|
341 | uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY);
|
---|
342 | uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE);
|
---|
343 | uint64_t const fEffectiveEpt = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fCumulativeEpt;
|
---|
344 | fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead)
|
---|
345 | | RT_BF_MAKE(PGM_PTATTRS_W, fWrite)
|
---|
346 | | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute)
|
---|
347 | | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed)
|
---|
348 | | fEffectiveEpt;
|
---|
349 | fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty)
|
---|
350 | | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType);
|
---|
351 | pWalk->fEffective = fEffective;
|
---|
352 |
|
---|
353 | pWalk->fSucceeded = true;
|
---|
354 | pWalk->GCPhys = GST_GET_PTE_GCPHYS(Pte) | (GCPhysNested & GUEST_PAGE_OFFSET_MASK);
|
---|
355 | return VINF_SUCCESS;
|
---|
356 | }
|
---|
357 | }
|
---|
358 | #else
|
---|
359 | # error "Guest paging type must be EPT."
|
---|
360 | #endif
|
---|
361 |
|
---|