VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 86018

Last change on this file since 86018 was 82968, checked in by vboxsync, 5 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 198.3 KB
Line 
1/* $Id: PGMAllBth.h 82968 2020-02-04 10:35:17Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
6 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
7 * bird: WTF does this mean these days? Looking at PGMAll.cpp it's
8 *
9 * @remarks This file is one big \#ifdef-orgy!
10 *
11 */
12
13/*
14 * Copyright (C) 2006-2020 Oracle Corporation
15 *
16 * This file is part of VirtualBox Open Source Edition (OSE), as
17 * available from http://www.virtualbox.org. This file is free software;
18 * you can redistribute it and/or modify it under the terms of the GNU
19 * General Public License (GPL) as published by the Free Software
20 * Foundation, in version 2 as it comes in the "COPYING" file of the
21 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
22 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
23 */
24
25#ifdef _MSC_VER
26/** @todo we're generating unnecessary code in nested/ept shadow mode and for
27 * real/prot-guest+RC mode. */
28# pragma warning(disable: 4505)
29#endif
30
31
32/*********************************************************************************************************************************
33* Internal Functions *
34*********************************************************************************************************************************/
35RT_C_DECLS_BEGIN
36PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
37#ifndef IN_RING3
38PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
39#endif
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46#else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu);
57
58#ifdef IN_RING3
59PGM_BTH_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
60#endif
61RT_C_DECLS_END
62
63
64
65
66/*
67 * Filter out some illegal combinations of guest and shadow paging, so we can
68 * remove redundant checks inside functions.
69 */
70#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \
71 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
72# error "Invalid combination; PAE guest implies PAE shadow"
73#endif
74
75#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
76 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \
77 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
78# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
79#endif
80
81#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
82 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \
83 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
84# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
85#endif
86
87#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \
88 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
89# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
90#endif
91
92
93/**
94 * Enters the shadow+guest mode.
95 *
96 * @returns VBox status code.
97 * @param pVCpu The cross context virtual CPU structure.
98 * @param GCPhysCR3 The physical address from the CR3 register.
99 */
100PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
101{
102 /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches;
103 * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables.
104 */
105#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
106 || PGM_SHW_TYPE == PGM_TYPE_PAE \
107 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
108 && ( PGM_GST_TYPE == PGM_TYPE_REAL \
109 || PGM_GST_TYPE == PGM_TYPE_PROT))
110
111 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
112
113 Assert((HMIsNestedPagingActive(pVM) || VM_IS_NEM_ENABLED(pVM)) == pVM->pgm.s.fNestedPaging);
114 Assert(!pVM->pgm.s.fNestedPaging);
115
116 pgmLock(pVM);
117 /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes),
118 * but any calls to GC need a proper shadow page setup as well.
119 */
120 /* Free the previous root mapping if still active. */
121 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
122 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
123 if (pOldShwPageCR3)
124 {
125 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
126
127 /* Mark the page as unlocked; allow flushing again. */
128 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
129
130# ifndef PGM_WITHOUT_MAPPINGS
131 /* Remove the hypervisor mappings from the shadow page table. */
132 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
133# endif
134
135 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
136 pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR;
137 pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR;
138 }
139
140 /* construct a fake address. */
141 GCPhysCR3 = RT_BIT_64(63);
142 PPGMPOOLPAGE pNewShwPageCR3;
143 int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
144 NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/,
145 &pNewShwPageCR3);
146 AssertRCReturn(rc, rc);
147
148 pVCpu->pgm.s.pShwPageCR3R3 = (R3PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR3(pVM, pNewShwPageCR3);
149 pVCpu->pgm.s.pShwPageCR3R0 = (R0PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR0(pVM, pNewShwPageCR3);
150
151 /* Mark the page as locked; disallow flushing. */
152 pgmPoolLockPage(pPool, pNewShwPageCR3);
153
154 /* Set the current hypervisor CR3. */
155 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
156
157# ifndef PGM_WITHOUT_MAPPINGS
158 /* Apply all hypervisor mappings to the new CR3. */
159 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
160# endif
161
162 pgmUnlock(pVM);
163 return rc;
164#else
165 NOREF(pVCpu); NOREF(GCPhysCR3);
166 return VINF_SUCCESS;
167#endif
168}
169
170
171#ifndef IN_RING3
172
173# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
174/**
175 * Deal with a guest page fault.
176 *
177 * @returns Strict VBox status code.
178 * @retval VINF_EM_RAW_GUEST_TRAP
179 * @retval VINF_EM_RAW_EMULATE_INSTR
180 *
181 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
182 * @param pGstWalk The guest page table walk result.
183 * @param uErr The error code.
184 */
185PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPUCC pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
186{
187# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
188 /*
189 * Check for write conflicts with our hypervisor mapping.
190 *
191 * If the guest happens to access a non-present page, where our hypervisor
192 * is currently mapped, then we'll create a #PF storm in the guest.
193 */
194 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
195 && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM))
196 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
197 {
198 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
199 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
200 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
201 return VINF_EM_RAW_EMULATE_INSTR;
202 }
203# endif
204
205 /*
206 * Calc the error code for the guest trap.
207 */
208 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
209 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
210 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
211 if ( pGstWalk->Core.fRsvdError
212 || pGstWalk->Core.fBadPhysAddr)
213 {
214 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
215 Assert(!pGstWalk->Core.fNotPresent);
216 }
217 else if (!pGstWalk->Core.fNotPresent)
218 uNewErr |= X86_TRAP_PF_P;
219 TRPMSetErrorCode(pVCpu, uNewErr);
220
221 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
222 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
223 return VINF_EM_RAW_GUEST_TRAP;
224}
225# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
226
227
228#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
229/**
230 * Deal with a guest page fault.
231 *
232 * The caller has taken the PGM lock.
233 *
234 * @returns Strict VBox status code.
235 *
236 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
237 * @param uErr The error code.
238 * @param pRegFrame The register frame.
239 * @param pvFault The fault address.
240 * @param pPage The guest page at @a pvFault.
241 * @param pGstWalk The guest page table walk result.
242 * @param pfLockTaken PGM lock taken here or not (out). This is true
243 * when we're called.
244 */
245static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
246 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
247# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
248 , PGSTPTWALK pGstWalk
249# endif
250 )
251{
252# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
253 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
254# endif
255 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
256 VBOXSTRICTRC rcStrict;
257
258 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
259 {
260 /*
261 * Physical page access handler.
262 */
263# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
264 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
265# else
266 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
267# endif
268 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
269 if (pCur)
270 {
271 PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
272
273# ifdef PGM_SYNC_N_PAGES
274 /*
275 * If the region is write protected and we got a page not present fault, then sync
276 * the pages. If the fault was caused by a read, then restart the instruction.
277 * In case of write access continue to the GC write handler.
278 *
279 * ASSUMES that there is only one handler per page or that they have similar write properties.
280 */
281 if ( !(uErr & X86_TRAP_PF_P)
282 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
283 {
284# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
285 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
286# else
287 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
288# endif
289 if ( RT_FAILURE(rcStrict)
290 || !(uErr & X86_TRAP_PF_RW)
291 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
292 {
293 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
294 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
295 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
296 return rcStrict;
297 }
298 }
299# endif
300# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
301 /*
302 * If the access was not thru a #PF(RSVD|...) resync the page.
303 */
304 if ( !(uErr & X86_TRAP_PF_RSVD)
305 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
306# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
307 && pGstWalk->Core.fEffectiveRW
308 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
309# endif
310 )
311 {
312# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
313 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
314# else
315 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
316# endif
317 if ( RT_FAILURE(rcStrict)
318 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
319 {
320 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
321 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
322 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
323 return rcStrict;
324 }
325 }
326# endif
327
328 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
329 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
330 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
331 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
332 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
333 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
334 else
335 {
336 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
337 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
338 }
339
340 if (pCurType->CTX_SUFF(pfnPfHandler))
341 {
342 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
343 void *pvUser = pCur->CTX_SUFF(pvUser);
344
345 STAM_PROFILE_START(&pCur->Stat, h);
346 if (pCur->hType != pPool->hAccessHandlerType)
347 {
348 pgmUnlock(pVM);
349 *pfLockTaken = false;
350 }
351
352 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
353
354# ifdef VBOX_WITH_STATISTICS
355 pgmLock(pVM);
356 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
357 if (pCur)
358 STAM_PROFILE_STOP(&pCur->Stat, h);
359 pgmUnlock(pVM);
360# endif
361 }
362 else
363 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
364
365 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
366 return rcStrict;
367 }
368 }
369
370 /*
371 * There is a handled area of the page, but this fault doesn't belong to it.
372 * We must emulate the instruction.
373 *
374 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
375 * we first check if this was a page-not-present fault for a page with only
376 * write access handlers. Restart the instruction if it wasn't a write access.
377 */
378 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
379
380 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
381 && !(uErr & X86_TRAP_PF_P))
382 {
383# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
384 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
385# else
386 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
387# endif
388 if ( RT_FAILURE(rcStrict)
389 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
390 || !(uErr & X86_TRAP_PF_RW))
391 {
392 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
393 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
394 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
395 return rcStrict;
396 }
397 }
398
399 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
400 * It's writing to an unhandled part of the LDT page several million times.
401 */
402 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
403 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
404 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
405 return rcStrict;
406} /* if any kind of handler */
407# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/
408
409
410/**
411 * \#PF Handler for raw-mode guest execution.
412 *
413 * @returns VBox status code (appropriate for trap handling and GC return).
414 *
415 * @param pVCpu The cross context virtual CPU structure.
416 * @param uErr The trap error code.
417 * @param pRegFrame Trap register frame.
418 * @param pvFault The fault address.
419 * @param pfLockTaken PGM lock taken here or not (out)
420 */
421PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
422{
423 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
424
425 *pfLockTaken = false;
426
427# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
428 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
429 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
430 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
431 && PGM_SHW_TYPE != PGM_TYPE_NONE
432 int rc;
433
434# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
435 /*
436 * Walk the guest page translation tables and check if it's a guest fault.
437 */
438 GSTPTWALK GstWalk;
439 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
440 if (RT_FAILURE_NP(rc))
441 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
442
443 /* assert some GstWalk sanity. */
444# if PGM_GST_TYPE == PGM_TYPE_AMD64
445 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
446# endif
447# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
448 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
449# endif
450 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
451 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
452 Assert(GstWalk.Core.fSucceeded);
453
454 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
455 {
456 if ( ( (uErr & X86_TRAP_PF_RW)
457 && !GstWalk.Core.fEffectiveRW
458 && ( (uErr & X86_TRAP_PF_US)
459 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
460 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
461 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
462 )
463 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
464 }
465
466 /*
467 * Set the accessed and dirty flags.
468 */
469# if PGM_GST_TYPE == PGM_TYPE_AMD64
470 GstWalk.Pml4e.u |= X86_PML4E_A;
471 GstWalk.pPml4e->u |= X86_PML4E_A;
472 GstWalk.Pdpe.u |= X86_PDPE_A;
473 GstWalk.pPdpe->u |= X86_PDPE_A;
474# endif
475 if (GstWalk.Core.fBigPage)
476 {
477 Assert(GstWalk.Pde.b.u1Size);
478 if (uErr & X86_TRAP_PF_RW)
479 {
480 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
481 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
482 }
483 else
484 {
485 GstWalk.Pde.u |= X86_PDE4M_A;
486 GstWalk.pPde->u |= X86_PDE4M_A;
487 }
488 }
489 else
490 {
491 Assert(!GstWalk.Pde.b.u1Size);
492 GstWalk.Pde.u |= X86_PDE_A;
493 GstWalk.pPde->u |= X86_PDE_A;
494 if (uErr & X86_TRAP_PF_RW)
495 {
496# ifdef VBOX_WITH_STATISTICS
497 if (!GstWalk.Pte.n.u1Dirty)
498 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
499 else
500 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
501# endif
502 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
503 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
504 }
505 else
506 {
507 GstWalk.Pte.u |= X86_PTE_A;
508 GstWalk.pPte->u |= X86_PTE_A;
509 }
510 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
511 }
512 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
513 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
514# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
515 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
516# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
517
518 /* Take the big lock now. */
519 *pfLockTaken = true;
520 pgmLock(pVM);
521
522# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
523 /*
524 * If it is a reserved bit fault we know that it is an MMIO (access
525 * handler) related fault and can skip some 200 lines of code.
526 */
527 if (uErr & X86_TRAP_PF_RSVD)
528 {
529 Assert(uErr & X86_TRAP_PF_P);
530 PPGMPAGE pPage;
531# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
532 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
533 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
534 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
535 pfLockTaken, &GstWalk));
536 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
537# else
538 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
539 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
540 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
541 pfLockTaken));
542 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
543# endif
544 AssertRC(rc);
545 PGM_INVL_PG(pVCpu, pvFault);
546 return rc; /* Restart with the corrected entry. */
547 }
548# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
549
550 /*
551 * Fetch the guest PDE, PDPE and PML4E.
552 */
553# if PGM_SHW_TYPE == PGM_TYPE_32BIT
554 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
555 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
556
557# elif PGM_SHW_TYPE == PGM_TYPE_PAE
558 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
559 PX86PDPAE pPDDst;
560# if PGM_GST_TYPE == PGM_TYPE_PAE
561 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
562# else
563 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
564# endif
565 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
566
567# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
568 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
569 PX86PDPAE pPDDst;
570# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
571 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
572 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
573# else
574 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
575# endif
576 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
577
578# elif PGM_SHW_TYPE == PGM_TYPE_EPT
579 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
580 PEPTPD pPDDst;
581 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
582 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
583# endif
584 Assert(pPDDst);
585
586# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
587 /*
588 * Dirty page handling.
589 *
590 * If we successfully correct the write protection fault due to dirty bit
591 * tracking, then return immediately.
592 */
593 if (uErr & X86_TRAP_PF_RW) /* write fault? */
594 {
595 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
596 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
597 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
598 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
599 {
600 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
601 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
602 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
603 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
604 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
605 return VINF_SUCCESS;
606 }
607#ifdef DEBUG_bird
608 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests.
609 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto.
610#endif
611 }
612
613# if 0 /* rarely useful; leave for debugging. */
614 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
615# endif
616# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
617
618 /*
619 * A common case is the not-present error caused by lazy page table syncing.
620 *
621 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
622 * here so we can safely assume that the shadow PT is present when calling
623 * SyncPage later.
624 *
625 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
626 * of mapping conflict and defer to SyncCR3 in R3.
627 * (Again, we do NOT support access handlers for non-present guest pages.)
628 *
629 */
630# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
631 Assert(GstWalk.Pde.n.u1Present);
632# endif
633 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
634 && !pPDDst->a[iPDDst].n.u1Present)
635 {
636 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
637# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
638 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
639 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
640# else
641 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
642 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
643# endif
644 if (RT_SUCCESS(rc))
645 return rc;
646 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
647 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
648 return VINF_PGM_SYNC_CR3;
649 }
650
651# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
652 /*
653 * Check if this address is within any of our mappings.
654 *
655 * This is *very* fast and it's gonna save us a bit of effort below and prevent
656 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
657 * (BTW, it's impossible to have physical access handlers in a mapping.)
658 */
659 if (pgmMapAreMappingsEnabled(pVM))
660 {
661 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
662 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
663 {
664 if (pvFault < pMapping->GCPtr)
665 break;
666 if (pvFault - pMapping->GCPtr < pMapping->cb)
667 {
668 /*
669 * The first thing we check is if we've got an undetected conflict.
670 */
671 if (pgmMapAreMappingsFloating(pVM))
672 {
673 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
674 while (iPT-- > 0)
675 if (GstWalk.pPde[iPT].n.u1Present)
676 {
677 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
678 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
679 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
680 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
681 return VINF_PGM_SYNC_CR3;
682 }
683 }
684
685 /*
686 * Pretend we're not here and let the guest handle the trap.
687 */
688 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
689 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
690 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
691 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
692 return VINF_EM_RAW_GUEST_TRAP;
693 }
694 }
695 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
696# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
697
698 /*
699 * Check if this fault address is flagged for special treatment,
700 * which means we'll have to figure out the physical address and
701 * check flags associated with it.
702 *
703 * ASSUME that we can limit any special access handling to pages
704 * in page tables which the guest believes to be present.
705 */
706# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
707 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
708# else
709 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
710# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
711 PPGMPAGE pPage;
712 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
713 if (RT_FAILURE(rc))
714 {
715 /*
716 * When the guest accesses invalid physical memory (e.g. probing
717 * of RAM or accessing a remapped MMIO range), then we'll fall
718 * back to the recompiler to emulate the instruction.
719 */
720 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
721 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
722 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
723 return VINF_EM_RAW_EMULATE_INSTR;
724 }
725
726 /*
727 * Any handlers for this page?
728 */
729 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
730# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
731 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
732 &GstWalk));
733# else
734 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
735# endif
736
737 /*
738 * We are here only if page is present in Guest page tables and
739 * trap is not handled by our handlers.
740 *
741 * Check it for page out-of-sync situation.
742 */
743 if (!(uErr & X86_TRAP_PF_P))
744 {
745 /*
746 * Page is not present in our page tables. Try to sync it!
747 */
748 if (uErr & X86_TRAP_PF_US)
749 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
750 else /* supervisor */
751 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
752
753 if (PGM_PAGE_IS_BALLOONED(pPage))
754 {
755 /* Emulate reads from ballooned pages as they are not present in
756 our shadow page tables. (Required for e.g. Solaris guests; soft
757 ecc, random nr generator.) */
758 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
759 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
760 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
761 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
762 return rc;
763 }
764
765# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
766 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
767# else
768 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
769# endif
770 if (RT_SUCCESS(rc))
771 {
772 /* The page was successfully synced, return to the guest. */
773 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
774 return VINF_SUCCESS;
775 }
776 }
777 else /* uErr & X86_TRAP_PF_P: */
778 {
779 /*
780 * Write protected pages are made writable when the guest makes the
781 * first write to it. This happens for pages that are shared, write
782 * monitored or not yet allocated.
783 *
784 * We may also end up here when CR0.WP=0 in the guest.
785 *
786 * Also, a side effect of not flushing global PDEs are out of sync
787 * pages due to physical monitored regions, that are no longer valid.
788 * Assume for now it only applies to the read/write flag.
789 */
790 if (uErr & X86_TRAP_PF_RW)
791 {
792 /*
793 * Check if it is a read-only page.
794 */
795 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
796 {
797 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
798 Assert(!PGM_PAGE_IS_ZERO(pPage));
799 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
800 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
801
802 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
803 if (rc != VINF_SUCCESS)
804 {
805 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
806 return rc;
807 }
808 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
809 return VINF_EM_NO_MEMORY;
810 }
811
812# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
813 /*
814 * Check to see if we need to emulate the instruction if CR0.WP=0.
815 */
816 if ( !GstWalk.Core.fEffectiveRW
817 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
818 && CPUMGetGuestCPL(pVCpu) < 3)
819 {
820 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
821
822 /*
823 * The Netware WP0+RO+US hack.
824 *
825 * Netware sometimes(/always?) runs with WP0. It has been observed doing
826 * excessive write accesses to pages which are mapped with US=1 and RW=0
827 * while WP=0. This causes a lot of exits and extremely slow execution.
828 * To avoid trapping and emulating every write here, we change the shadow
829 * page table entry to map it as US=0 and RW=1 until user mode tries to
830 * access it again (see further below). We count these shadow page table
831 * changes so we can avoid having to clear the page pool every time the WP
832 * bit changes to 1 (see PGMCr0WpEnabled()).
833 */
834# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
835 if ( GstWalk.Core.fEffectiveUS
836 && !GstWalk.Core.fEffectiveRW
837 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
838 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
839 {
840 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, GstWalk.Core.fBigPage));
841 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, GstWalk.Core.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
842 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
843 {
844 PGM_INVL_PG(pVCpu, pvFault);
845 pVCpu->pgm.s.cNetwareWp0Hacks++;
846 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; });
847 return rc;
848 }
849 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
850 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
851 }
852# endif
853
854 /* Interpret the access. */
855 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
856 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), GstWalk.Core.fBigPage, GstWalk.Core.fEffectiveUS));
857 if (RT_SUCCESS(rc))
858 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
859 else
860 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
861 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
862 return rc;
863 }
864# endif
865 /// @todo count the above case; else
866 if (uErr & X86_TRAP_PF_US)
867 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
868 else /* supervisor */
869 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
870
871 /*
872 * Sync the page.
873 *
874 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
875 * page is not present, which is not true in this case.
876 */
877# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
878 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
879# else
880 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
881# endif
882 if (RT_SUCCESS(rc))
883 {
884 /*
885 * Page was successfully synced, return to guest but invalidate
886 * the TLB first as the page is very likely to be in it.
887 */
888# if PGM_SHW_TYPE == PGM_TYPE_EPT
889 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
890# else
891 PGM_INVL_PG(pVCpu, pvFault);
892# endif
893# ifdef VBOX_STRICT
894 RTGCPHYS GCPhys2 = RTGCPHYS_MAX;
895 uint64_t fPageGst = UINT64_MAX;
896 if (!pVM->pgm.s.fNestedPaging)
897 {
898 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
899 AssertMsg(RT_SUCCESS(rc) && ((fPageGst & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
900 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
901 }
902# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
903 uint64_t fPageShw = 0;
904 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
905 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
906 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GCPhys2, fPageGst, pvFault));
907# endif
908# endif /* VBOX_STRICT */
909 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
910 return VINF_SUCCESS;
911 }
912 }
913# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
914 /*
915 * Check for Netware WP0+RO+US hack from above and undo it when user
916 * mode accesses the page again.
917 */
918 else if ( GstWalk.Core.fEffectiveUS
919 && !GstWalk.Core.fEffectiveRW
920 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
921 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
922 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
923 && CPUMGetGuestCPL(pVCpu) == 3
924 && pVM->cCpus == 1
925 )
926 {
927 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
928 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
929 if (RT_SUCCESS(rc))
930 {
931 PGM_INVL_PG(pVCpu, pvFault);
932 pVCpu->pgm.s.cNetwareWp0Hacks--;
933 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; });
934 return VINF_SUCCESS;
935 }
936 }
937# endif /* PGM_WITH_PAGING */
938
939 /** @todo else: why are we here? */
940
941# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
942 /*
943 * Check for VMM page flags vs. Guest page flags consistency.
944 * Currently only for debug purposes.
945 */
946 if (RT_SUCCESS(rc))
947 {
948 /* Get guest page flags. */
949 uint64_t fPageGst;
950 int rc2 = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
951 if (RT_SUCCESS(rc2))
952 {
953 uint64_t fPageShw = 0;
954 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
955
956#if 0
957 /*
958 * Compare page flags.
959 * Note: we have AVL, A, D bits desynced.
960 */
961 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
962 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
963 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
964 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
965 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
966 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
967 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
968 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
969 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
97001:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
97101:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0
972
97301:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
97401:01:15.625516 00:08:43.268051 Location :
975e:\vbox\svn\trunk\srcPage flags mismatch!
976pvFault=fffff801b0d7b000
977 uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P
978GCPhys=0000000019b52000
979fPageShw=0
980fPageGst=77b0000000000121
981rc=0
982#endif
983
984 }
985 else
986 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
987 }
988 else
989 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
990# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
991 }
992
993
994 /*
995 * If we get here it is because something failed above, i.e. most like guru
996 * meditiation time.
997 */
998 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
999 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1000 return rc;
1001
1002# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */
1003 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1004 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
1005 return VERR_PGM_NOT_USED_IN_MODE;
1006# endif
1007}
1008
1009#endif /* !IN_RING3 */
1010
1011
1012/**
1013 * Emulation of the invlpg instruction.
1014 *
1015 *
1016 * @returns VBox status code.
1017 *
1018 * @param pVCpu The cross context virtual CPU structure.
1019 * @param GCPtrPage Page to invalidate.
1020 *
1021 * @remark ASSUMES that the guest is updating before invalidating. This order
1022 * isn't required by the CPU, so this is speculative and could cause
1023 * trouble.
1024 * @remark No TLB shootdown is done on any other VCPU as we assume that
1025 * invlpg emulation is the *only* reason for calling this function.
1026 * (The guest has to shoot down TLB entries on other CPUs itself)
1027 * Currently true, but keep in mind!
1028 *
1029 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1030 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1031 */
1032PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
1033{
1034#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1035 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
1036 && PGM_SHW_TYPE != PGM_TYPE_NONE
1037 int rc;
1038 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1039 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1040
1041 PGM_LOCK_ASSERT_OWNER(pVM);
1042
1043 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1044
1045 /*
1046 * Get the shadow PD entry and skip out if this PD isn't present.
1047 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1048 */
1049# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1050 const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT;
1051 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1052
1053 /* Fetch the pgm pool shadow descriptor. */
1054 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1055# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1056 if (!pShwPde)
1057 {
1058 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1059 return VINF_SUCCESS;
1060 }
1061# else
1062 Assert(pShwPde);
1063# endif
1064
1065# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1066 const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT;
1067 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1068
1069 /* If the shadow PDPE isn't present, then skip the invalidate. */
1070# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1071 if (!pPdptDst || !pPdptDst->a[iPdpt].n.u1Present)
1072# else
1073 if (!pPdptDst->a[iPdpt].n.u1Present)
1074# endif
1075 {
1076 Assert(!pPdptDst || !(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1077 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1078 PGM_INVL_PG(pVCpu, GCPtrPage);
1079 return VINF_SUCCESS;
1080 }
1081
1082 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1083 PPGMPOOLPAGE pShwPde = NULL;
1084 PX86PDPAE pPDDst;
1085
1086 /* Fetch the pgm pool shadow descriptor. */
1087 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1088 AssertRCSuccessReturn(rc, rc);
1089 Assert(pShwPde);
1090
1091 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1092 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1093
1094# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1095 /* PML4 */
1096 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1097 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1098 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1099 PX86PDPAE pPDDst;
1100 PX86PDPT pPdptDst;
1101 PX86PML4E pPml4eDst;
1102 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1103 if (rc != VINF_SUCCESS)
1104 {
1105 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1106 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1107 PGM_INVL_PG(pVCpu, GCPtrPage);
1108 return VINF_SUCCESS;
1109 }
1110 Assert(pPDDst);
1111
1112 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1113 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1114
1115 if (!pPdpeDst->n.u1Present)
1116 {
1117 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1118 PGM_INVL_PG(pVCpu, GCPtrPage);
1119 return VINF_SUCCESS;
1120 }
1121
1122 /* Fetch the pgm pool shadow descriptor. */
1123 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1124 Assert(pShwPde);
1125
1126# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1127
1128 const SHWPDE PdeDst = *pPdeDst;
1129 if (!PdeDst.n.u1Present)
1130 {
1131 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1132 PGM_INVL_PG(pVCpu, GCPtrPage);
1133 return VINF_SUCCESS;
1134 }
1135
1136 /*
1137 * Get the guest PD entry and calc big page.
1138 */
1139# if PGM_GST_TYPE == PGM_TYPE_32BIT
1140 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1141 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
1142 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1143# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1144 unsigned iPDSrc = 0;
1145# if PGM_GST_TYPE == PGM_TYPE_PAE
1146 X86PDPE PdpeSrcIgn;
1147 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1148# else /* AMD64 */
1149 PX86PML4E pPml4eSrcIgn;
1150 X86PDPE PdpeSrcIgn;
1151 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1152# endif
1153 GSTPDE PdeSrc;
1154
1155 if (pPDSrc)
1156 PdeSrc = pPDSrc->a[iPDSrc];
1157 else
1158 PdeSrc.u = 0;
1159# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1160 const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE);
1161 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1162 if (fWasBigPage != fIsBigPage)
1163 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1164
1165# ifdef IN_RING3
1166 /*
1167 * If a CR3 Sync is pending we may ignore the invalidate page operation
1168 * depending on the kind of sync and if it's a global page or not.
1169 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1170 */
1171# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1172 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1173 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1174 && fIsBigPage
1175 && PdeSrc.b.u1Global
1176 )
1177 )
1178# else
1179 if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1180# endif
1181 {
1182 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1183 return VINF_SUCCESS;
1184 }
1185# endif /* IN_RING3 */
1186
1187 /*
1188 * Deal with the Guest PDE.
1189 */
1190 rc = VINF_SUCCESS;
1191 if (PdeSrc.n.u1Present)
1192 {
1193 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1194 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1195# ifndef PGM_WITHOUT_MAPPING
1196 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1197 {
1198 /*
1199 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1200 */
1201 Assert(pgmMapAreMappingsEnabled(pVM));
1202 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1203 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1204 }
1205 else
1206# endif /* !PGM_WITHOUT_MAPPING */
1207 if (!fIsBigPage)
1208 {
1209 /*
1210 * 4KB - page.
1211 */
1212 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1213 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1214
1215# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1216 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1217 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1218# endif
1219 if (pShwPage->GCPhys == GCPhys)
1220 {
1221 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1222 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1223
1224 PGSTPT pPTSrc;
1225 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1226 if (RT_SUCCESS(rc))
1227 {
1228 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1229 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1230 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1231 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1232 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1233 GCPtrPage, PteSrc.n.u1Present,
1234 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1235 PteSrc.n.u1User & PdeSrc.n.u1User,
1236 (uint64_t)PteSrc.u,
1237 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1238 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1239 }
1240 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1241 PGM_INVL_PG(pVCpu, GCPtrPage);
1242 }
1243 else
1244 {
1245 /*
1246 * The page table address changed.
1247 */
1248 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1249 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1250 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1251 ASMAtomicWriteSize(pPdeDst, 0);
1252 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1253 PGM_INVL_VCPU_TLBS(pVCpu);
1254 }
1255 }
1256 else
1257 {
1258 /*
1259 * 2/4MB - page.
1260 */
1261 /* Before freeing the page, check if anything really changed. */
1262 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1263 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1264# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1265 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1266 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1267# endif
1268 if ( pShwPage->GCPhys == GCPhys
1269 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1270 {
1271 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1272 /** @todo This test is wrong as it cannot check the G bit!
1273 * FIXME */
1274 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1275 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1276 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1277 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1278 {
1279 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1280 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1281 return VINF_SUCCESS;
1282 }
1283 }
1284
1285 /*
1286 * Ok, the page table is present and it's been changed in the guest.
1287 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1288 * We could do this for some flushes in GC too, but we need an algorithm for
1289 * deciding which 4MB pages containing code likely to be executed very soon.
1290 */
1291 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1292 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1293 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1294 ASMAtomicWriteSize(pPdeDst, 0);
1295 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1296 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1297 }
1298 }
1299 else
1300 {
1301 /*
1302 * Page directory is not present, mark shadow PDE not present.
1303 */
1304 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1305 {
1306 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1307 ASMAtomicWriteSize(pPdeDst, 0);
1308 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1309 PGM_INVL_PG(pVCpu, GCPtrPage);
1310 }
1311 else
1312 {
1313 Assert(pgmMapAreMappingsEnabled(pVM));
1314 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1315 }
1316 }
1317 return rc;
1318
1319#else /* guest real and protected mode, nested + ept, none. */
1320 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1321 NOREF(pVCpu); NOREF(GCPtrPage);
1322 return VINF_SUCCESS;
1323#endif
1324}
1325
1326#if PGM_SHW_TYPE != PGM_TYPE_NONE
1327
1328/**
1329 * Update the tracking of shadowed pages.
1330 *
1331 * @param pVCpu The cross context virtual CPU structure.
1332 * @param pShwPage The shadow page.
1333 * @param HCPhys The physical page we is being dereferenced.
1334 * @param iPte Shadow PTE index
1335 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1336 */
1337DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1338 RTGCPHYS GCPhysPage)
1339{
1340 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1341
1342# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1343 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1344 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1345
1346 /* Use the hint we retrieved from the cached guest PT. */
1347 if (pShwPage->fDirty)
1348 {
1349 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1350
1351 Assert(pShwPage->cPresent);
1352 Assert(pPool->cPresent);
1353 pShwPage->cPresent--;
1354 pPool->cPresent--;
1355
1356 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1357 AssertRelease(pPhysPage);
1358 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1359 return;
1360 }
1361# else
1362 NOREF(GCPhysPage);
1363# endif
1364
1365 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1366 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1367
1368 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1369 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1370 * 2. write protect all shadowed pages. I.e. implement caching.
1371 */
1372 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1373
1374 /*
1375 * Find the guest address.
1376 */
1377 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1378 pRam;
1379 pRam = pRam->CTX_SUFF(pNext))
1380 {
1381 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1382 while (iPage-- > 0)
1383 {
1384 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1385 {
1386 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1387
1388 Assert(pShwPage->cPresent);
1389 Assert(pPool->cPresent);
1390 pShwPage->cPresent--;
1391 pPool->cPresent--;
1392
1393 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1394 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1395 return;
1396 }
1397 }
1398 }
1399
1400 for (;;)
1401 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1402}
1403
1404
1405/**
1406 * Update the tracking of shadowed pages.
1407 *
1408 * @param pVCpu The cross context virtual CPU structure.
1409 * @param pShwPage The shadow page.
1410 * @param u16 The top 16-bit of the pPage->HCPhys.
1411 * @param pPage Pointer to the guest page. this will be modified.
1412 * @param iPTDst The index into the shadow table.
1413 */
1414DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1415{
1416 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1417
1418 /*
1419 * Just deal with the simple first time here.
1420 */
1421 if (!u16)
1422 {
1423 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1424 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1425 /* Save the page table index. */
1426 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1427 }
1428 else
1429 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1430
1431 /* write back */
1432 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1433 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1434
1435 /* update statistics. */
1436 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1437 pShwPage->cPresent++;
1438 if (pShwPage->iFirstPresent > iPTDst)
1439 pShwPage->iFirstPresent = iPTDst;
1440}
1441
1442
1443/**
1444 * Modifies a shadow PTE to account for access handlers.
1445 *
1446 * @param pVM The cross context VM structure.
1447 * @param pPage The page in question.
1448 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1449 * A (accessed) bit so it can be emulated correctly.
1450 * @param pPteDst The shadow PTE (output). This is temporary storage and
1451 * does not need to be set atomically.
1452 */
1453DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVMCC pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1454{
1455 NOREF(pVM); RT_NOREF_PV(fPteSrc);
1456
1457 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1458 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1459 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1460 {
1461 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1462# if PGM_SHW_TYPE == PGM_TYPE_EPT
1463 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1464 pPteDst->n.u1Present = 1;
1465 pPteDst->n.u1Execute = 1;
1466 pPteDst->n.u1IgnorePAT = 1;
1467 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1468 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1469# else
1470 if (fPteSrc & X86_PTE_A)
1471 {
1472 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1473 SHW_PTE_SET_RO(*pPteDst);
1474 }
1475 else
1476 SHW_PTE_SET(*pPteDst, 0);
1477# endif
1478 }
1479# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1480# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1481 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1482 && ( BTH_IS_NP_ACTIVE(pVM)
1483 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1484# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1485 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1486# endif
1487 )
1488 {
1489 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1490# if PGM_SHW_TYPE == PGM_TYPE_EPT
1491 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1492 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1493 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1494 pPteDst->n.u1Present = 0;
1495 pPteDst->n.u1Write = 1;
1496 pPteDst->n.u1Execute = 0;
1497 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1498 pPteDst->n.u3EMT = 7;
1499# else
1500 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1501 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1502# endif
1503 }
1504# endif
1505# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1506 else
1507 {
1508 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1509 SHW_PTE_SET(*pPteDst, 0);
1510 }
1511 /** @todo count these kinds of entries. */
1512}
1513
1514
1515/**
1516 * Creates a 4K shadow page for a guest page.
1517 *
1518 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1519 * physical address. The PdeSrc argument only the flags are used. No page
1520 * structured will be mapped in this function.
1521 *
1522 * @param pVCpu The cross context virtual CPU structure.
1523 * @param pPteDst Destination page table entry.
1524 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1525 * Can safely assume that only the flags are being used.
1526 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1527 * @param pShwPage Pointer to the shadow page.
1528 * @param iPTDst The index into the shadow table.
1529 *
1530 * @remark Not used for 2/4MB pages!
1531 */
1532# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1533static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1534 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1535# else
1536static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1537 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1538# endif
1539{
1540 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1541 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1542
1543# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1544 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1545 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1546
1547 if (pShwPage->fDirty)
1548 {
1549 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1550 PGSTPT pGstPT;
1551
1552 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1553 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1554 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1555 pGstPT->a[iPTDst].u = PteSrc.u;
1556 }
1557# else
1558 Assert(!pShwPage->fDirty);
1559# endif
1560
1561# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1562 if ( PteSrc.n.u1Present
1563 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1564# endif
1565 {
1566# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1567 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1568# endif
1569 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1570
1571 /*
1572 * Find the ram range.
1573 */
1574 PPGMPAGE pPage;
1575 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1576 if (RT_SUCCESS(rc))
1577 {
1578 /* Ignore ballooned pages.
1579 Don't return errors or use a fatal assert here as part of a
1580 shadow sync range might included ballooned pages. */
1581 if (PGM_PAGE_IS_BALLOONED(pPage))
1582 {
1583 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1584 return;
1585 }
1586
1587# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1588 /* Make the page writable if necessary. */
1589 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1590 && ( PGM_PAGE_IS_ZERO(pPage)
1591# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1592 || ( PteSrc.n.u1Write
1593# else
1594 || ( 1
1595# endif
1596 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1597# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1598 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1599# endif
1600# ifdef VBOX_WITH_PAGE_SHARING
1601 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1602# endif
1603 )
1604 )
1605 )
1606 {
1607 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1608 AssertRC(rc);
1609 }
1610# endif
1611
1612 /*
1613 * Make page table entry.
1614 */
1615 SHWPTE PteDst;
1616# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1617 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1618# else
1619 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1620# endif
1621 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1622 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1623 else
1624 {
1625# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1626 /*
1627 * If the page or page directory entry is not marked accessed,
1628 * we mark the page not present.
1629 */
1630 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1631 {
1632 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1633 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1634 SHW_PTE_SET(PteDst, 0);
1635 }
1636 /*
1637 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1638 * when the page is modified.
1639 */
1640 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1641 {
1642 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1643 SHW_PTE_SET(PteDst,
1644 fGstShwPteFlags
1645 | PGM_PAGE_GET_HCPHYS(pPage)
1646 | PGM_PTFLAGS_TRACK_DIRTY);
1647 SHW_PTE_SET_RO(PteDst);
1648 }
1649 else
1650# endif
1651 {
1652 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1653# if PGM_SHW_TYPE == PGM_TYPE_EPT
1654 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1655 PteDst.n.u1Present = 1;
1656 PteDst.n.u1Write = 1;
1657 PteDst.n.u1Execute = 1;
1658 PteDst.n.u1IgnorePAT = 1;
1659 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1660 /* PteDst.n.u1Size = 0 */
1661# else
1662 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1663# endif
1664 }
1665
1666 /*
1667 * Make sure only allocated pages are mapped writable.
1668 */
1669 if ( SHW_PTE_IS_P_RW(PteDst)
1670 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1671 {
1672 /* Still applies to shared pages. */
1673 Assert(!PGM_PAGE_IS_ZERO(pPage));
1674 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1675 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1676 }
1677 }
1678
1679 /*
1680 * Keep user track up to date.
1681 */
1682 if (SHW_PTE_IS_P(PteDst))
1683 {
1684 if (!SHW_PTE_IS_P(*pPteDst))
1685 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1686 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1687 {
1688 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1689 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1690 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1691 }
1692 }
1693 else if (SHW_PTE_IS_P(*pPteDst))
1694 {
1695 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1696 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1697 }
1698
1699 /*
1700 * Update statistics and commit the entry.
1701 */
1702# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1703 if (!PteSrc.n.u1Global)
1704 pShwPage->fSeenNonGlobal = true;
1705# endif
1706 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1707 return;
1708 }
1709
1710/** @todo count these three different kinds. */
1711 Log2(("SyncPageWorker: invalid address in Pte\n"));
1712 }
1713# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1714 else if (!PteSrc.n.u1Present)
1715 Log2(("SyncPageWorker: page not present in Pte\n"));
1716 else
1717 Log2(("SyncPageWorker: invalid Pte\n"));
1718# endif
1719
1720 /*
1721 * The page is not present or the PTE is bad. Replace the shadow PTE by
1722 * an empty entry, making sure to keep the user tracking up to date.
1723 */
1724 if (SHW_PTE_IS_P(*pPteDst))
1725 {
1726 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1727 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1728 }
1729 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1730}
1731
1732
1733/**
1734 * Syncs a guest OS page.
1735 *
1736 * There are no conflicts at this point, neither is there any need for
1737 * page table allocations.
1738 *
1739 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1740 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1741 *
1742 * @returns VBox status code.
1743 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1744 * @param pVCpu The cross context virtual CPU structure.
1745 * @param PdeSrc Page directory entry of the guest.
1746 * @param GCPtrPage Guest context page address.
1747 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1748 * @param uErr Fault error (X86_TRAP_PF_*).
1749 */
1750static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1751{
1752 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1753 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1754 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1755 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage);
1756
1757 PGM_LOCK_ASSERT_OWNER(pVM);
1758
1759# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1760 || PGM_GST_TYPE == PGM_TYPE_PAE \
1761 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1762 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
1763
1764 /*
1765 * Assert preconditions.
1766 */
1767 Assert(PdeSrc.n.u1Present);
1768 Assert(cPages);
1769# if 0 /* rarely useful; leave for debugging. */
1770 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1771# endif
1772
1773 /*
1774 * Get the shadow PDE, find the shadow page table in the pool.
1775 */
1776# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1777 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1778 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1779
1780 /* Fetch the pgm pool shadow descriptor. */
1781 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1782 Assert(pShwPde);
1783
1784# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1785 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1786 PPGMPOOLPAGE pShwPde = NULL;
1787 PX86PDPAE pPDDst;
1788
1789 /* Fetch the pgm pool shadow descriptor. */
1790 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1791 AssertRCSuccessReturn(rc2, rc2);
1792 Assert(pShwPde);
1793
1794 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1795 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1796
1797# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1798 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1799 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1800 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1801 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1802
1803 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1804 AssertRCSuccessReturn(rc2, rc2);
1805 Assert(pPDDst && pPdptDst);
1806 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1807# endif
1808 SHWPDE PdeDst = *pPdeDst;
1809
1810 /*
1811 * - In the guest SMP case we could have blocked while another VCPU reused
1812 * this page table.
1813 * - With W7-64 we may also take this path when the A bit is cleared on
1814 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1815 * relevant TLB entries. If we're write monitoring any page mapped by
1816 * the modified entry, we may end up here with a "stale" TLB entry.
1817 */
1818 if (!PdeDst.n.u1Present)
1819 {
1820 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1821 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1822 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1823 if (uErr & X86_TRAP_PF_P)
1824 PGM_INVL_PG(pVCpu, GCPtrPage);
1825 return VINF_SUCCESS; /* force the instruction to be executed again. */
1826 }
1827
1828 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1829 Assert(pShwPage);
1830
1831# if PGM_GST_TYPE == PGM_TYPE_AMD64
1832 /* Fetch the pgm pool shadow descriptor. */
1833 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1834 Assert(pShwPde);
1835# endif
1836
1837 /*
1838 * Check that the page is present and that the shadow PDE isn't out of sync.
1839 */
1840 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1841 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1842 RTGCPHYS GCPhys;
1843 if (!fBigPage)
1844 {
1845 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1846# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1847 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1848 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1849# endif
1850 }
1851 else
1852 {
1853 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1854# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1855 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1856 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1857# endif
1858 }
1859 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1860 if ( fPdeValid
1861 && pShwPage->GCPhys == GCPhys
1862 && PdeSrc.n.u1Present
1863 && PdeSrc.n.u1User == PdeDst.n.u1User
1864 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1865# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1866 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1867# endif
1868 )
1869 {
1870 /*
1871 * Check that the PDE is marked accessed already.
1872 * Since we set the accessed bit *before* getting here on a #PF, this
1873 * check is only meant for dealing with non-#PF'ing paths.
1874 */
1875 if (PdeSrc.n.u1Accessed)
1876 {
1877 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1878 if (!fBigPage)
1879 {
1880 /*
1881 * 4KB Page - Map the guest page table.
1882 */
1883 PGSTPT pPTSrc;
1884 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1885 if (RT_SUCCESS(rc))
1886 {
1887# ifdef PGM_SYNC_N_PAGES
1888 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1889 if ( cPages > 1
1890 && !(uErr & X86_TRAP_PF_P)
1891 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
1892 {
1893 /*
1894 * This code path is currently only taken when the caller is PGMTrap0eHandler
1895 * for non-present pages!
1896 *
1897 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1898 * deal with locality.
1899 */
1900 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1901# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1902 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1903 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1904# else
1905 const unsigned offPTSrc = 0;
1906# endif
1907 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1908 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1909 iPTDst = 0;
1910 else
1911 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1912
1913 for (; iPTDst < iPTDstEnd; iPTDst++)
1914 {
1915 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
1916
1917 if ( pPteSrc->n.u1Present
1918 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1919 {
1920 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1921 NOREF(GCPtrCurPage);
1922 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
1923 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1924 GCPtrCurPage, pPteSrc->n.u1Present,
1925 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
1926 pPteSrc->n.u1User & PdeSrc.n.u1User,
1927 (uint64_t)pPteSrc->u,
1928 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1929 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1930 }
1931 }
1932 }
1933 else
1934# endif /* PGM_SYNC_N_PAGES */
1935 {
1936 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1937 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1938 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1939 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1940 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1941 GCPtrPage, PteSrc.n.u1Present,
1942 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1943 PteSrc.n.u1User & PdeSrc.n.u1User,
1944 (uint64_t)PteSrc.u,
1945 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1946 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1947 }
1948 }
1949 else /* MMIO or invalid page: emulated in #PF handler. */
1950 {
1951 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1952 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1953 }
1954 }
1955 else
1956 {
1957 /*
1958 * 4/2MB page - lazy syncing shadow 4K pages.
1959 * (There are many causes of getting here, it's no longer only CSAM.)
1960 */
1961 /* Calculate the GC physical address of this 4KB shadow page. */
1962 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
1963 /* Find ram range. */
1964 PPGMPAGE pPage;
1965 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
1966 if (RT_SUCCESS(rc))
1967 {
1968 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1969
1970# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1971 /* Try to make the page writable if necessary. */
1972 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1973 && ( PGM_PAGE_IS_ZERO(pPage)
1974 || ( PdeSrc.n.u1Write
1975 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1976# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1977 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1978# endif
1979# ifdef VBOX_WITH_PAGE_SHARING
1980 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1981# endif
1982 )
1983 )
1984 )
1985 {
1986 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1987 AssertRC(rc);
1988 }
1989# endif
1990
1991 /*
1992 * Make shadow PTE entry.
1993 */
1994 SHWPTE PteDst;
1995 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1996 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
1997 else
1998 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
1999
2000 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2001 if ( SHW_PTE_IS_P(PteDst)
2002 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2003 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2004
2005 /* Make sure only allocated pages are mapped writable. */
2006 if ( SHW_PTE_IS_P_RW(PteDst)
2007 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2008 {
2009 /* Still applies to shared pages. */
2010 Assert(!PGM_PAGE_IS_ZERO(pPage));
2011 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2012 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2013 }
2014
2015 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2016
2017 /*
2018 * If the page is not flagged as dirty and is writable, then make it read-only
2019 * at PD level, so we can set the dirty bit when the page is modified.
2020 *
2021 * ASSUMES that page access handlers are implemented on page table entry level.
2022 * Thus we will first catch the dirty access and set PDE.D and restart. If
2023 * there is an access handler, we'll trap again and let it work on the problem.
2024 */
2025 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2026 * As for invlpg, it simply frees the whole shadow PT.
2027 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2028 if ( !PdeSrc.b.u1Dirty
2029 && PdeSrc.b.u1Write)
2030 {
2031 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2032 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2033 PdeDst.n.u1Write = 0;
2034 }
2035 else
2036 {
2037 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2038 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2039 }
2040 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2041 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2042 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2043 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2044 }
2045 else
2046 {
2047 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2048 /** @todo must wipe the shadow page table entry in this
2049 * case. */
2050 }
2051 }
2052 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2053 return VINF_SUCCESS;
2054 }
2055
2056 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2057 }
2058 else if (fPdeValid)
2059 {
2060 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2061 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2062 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2063 }
2064 else
2065 {
2066/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2067 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2068 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2069 }
2070
2071 /*
2072 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2073 * Yea, I'm lazy.
2074 */
2075 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2076 ASMAtomicWriteSize(pPdeDst, 0);
2077
2078 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2079 PGM_INVL_VCPU_TLBS(pVCpu);
2080 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2081
2082
2083# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2084 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2085 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2086 NOREF(PdeSrc);
2087
2088# ifdef PGM_SYNC_N_PAGES
2089 /*
2090 * Get the shadow PDE, find the shadow page table in the pool.
2091 */
2092# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2093 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2094
2095# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2096 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2097
2098# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2099 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2100 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2101 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2102 X86PDEPAE PdeDst;
2103 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2104
2105 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2106 AssertRCSuccessReturn(rc, rc);
2107 Assert(pPDDst && pPdptDst);
2108 PdeDst = pPDDst->a[iPDDst];
2109# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2110 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2111 PEPTPD pPDDst;
2112 EPTPDE PdeDst;
2113
2114 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2115 if (rc != VINF_SUCCESS)
2116 {
2117 AssertRC(rc);
2118 return rc;
2119 }
2120 Assert(pPDDst);
2121 PdeDst = pPDDst->a[iPDDst];
2122# endif
2123 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2124 if (!PdeDst.n.u1Present)
2125 {
2126 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2127 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2128 return VINF_SUCCESS; /* force the instruction to be executed again. */
2129 }
2130
2131 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2132 if (PdeDst.n.u1Size)
2133 {
2134 Assert(pVM->pgm.s.fNestedPaging);
2135 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2136 return VINF_SUCCESS;
2137 }
2138
2139 /* Mask away the page offset. */
2140 GCPtrPage &= ~((RTGCPTR)0xfff);
2141
2142 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2143 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2144
2145 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2146 if ( cPages > 1
2147 && !(uErr & X86_TRAP_PF_P)
2148 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2149 {
2150 /*
2151 * This code path is currently only taken when the caller is PGMTrap0eHandler
2152 * for non-present pages!
2153 *
2154 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2155 * deal with locality.
2156 */
2157 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2158 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2159 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2160 iPTDst = 0;
2161 else
2162 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2163 for (; iPTDst < iPTDstEnd; iPTDst++)
2164 {
2165 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2166 {
2167 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2168 | (iPTDst << PAGE_SHIFT));
2169
2170 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2171 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2172 GCPtrCurPage,
2173 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2174 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2175
2176 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2177 break;
2178 }
2179 else
2180 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2181 }
2182 }
2183 else
2184# endif /* PGM_SYNC_N_PAGES */
2185 {
2186 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2187 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2188 | (iPTDst << PAGE_SHIFT));
2189
2190 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2191
2192 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2193 GCPtrPage,
2194 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2195 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2196 }
2197 return VINF_SUCCESS;
2198
2199# else
2200 NOREF(PdeSrc);
2201 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2202 return VERR_PGM_NOT_USED_IN_MODE;
2203# endif
2204}
2205
2206#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
2207#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
2208
2209/**
2210 * CheckPageFault helper for returning a page fault indicating a non-present
2211 * (NP) entry in the page translation structures.
2212 *
2213 * @returns VINF_EM_RAW_GUEST_TRAP.
2214 * @param pVCpu The cross context virtual CPU structure.
2215 * @param uErr The error code of the shadow fault. Corrections to
2216 * TRPM's copy will be made if necessary.
2217 * @param GCPtrPage For logging.
2218 * @param uPageFaultLevel For logging.
2219 */
2220DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2221{
2222 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2223 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2224 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2225 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2226 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2227
2228 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2229 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2230 return VINF_EM_RAW_GUEST_TRAP;
2231}
2232
2233
2234/**
2235 * CheckPageFault helper for returning a page fault indicating a reserved bit
2236 * (RSVD) error in the page translation structures.
2237 *
2238 * @returns VINF_EM_RAW_GUEST_TRAP.
2239 * @param pVCpu The cross context virtual CPU structure.
2240 * @param uErr The error code of the shadow fault. Corrections to
2241 * TRPM's copy will be made if necessary.
2242 * @param GCPtrPage For logging.
2243 * @param uPageFaultLevel For logging.
2244 */
2245DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2246{
2247 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2248 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2249 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2250
2251 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2252 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2253 return VINF_EM_RAW_GUEST_TRAP;
2254}
2255
2256
2257/**
2258 * CheckPageFault helper for returning a page protection fault (P).
2259 *
2260 * @returns VINF_EM_RAW_GUEST_TRAP.
2261 * @param pVCpu The cross context virtual CPU structure.
2262 * @param uErr The error code of the shadow fault. Corrections to
2263 * TRPM's copy will be made if necessary.
2264 * @param GCPtrPage For logging.
2265 * @param uPageFaultLevel For logging.
2266 */
2267DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPUCC pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2268{
2269 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2270 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2271 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2272 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2273
2274 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2275 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2276 return VINF_EM_RAW_GUEST_TRAP;
2277}
2278
2279
2280/**
2281 * Handle dirty bit tracking faults.
2282 *
2283 * @returns VBox status code.
2284 * @param pVCpu The cross context virtual CPU structure.
2285 * @param uErr Page fault error code.
2286 * @param pPdeSrc Guest page directory entry.
2287 * @param pPdeDst Shadow page directory entry.
2288 * @param GCPtrPage Guest context page address.
2289 */
2290static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2291 RTGCPTR GCPtrPage)
2292{
2293 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2294 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2295 NOREF(uErr);
2296
2297 PGM_LOCK_ASSERT_OWNER(pVM);
2298
2299 /*
2300 * Handle big page.
2301 */
2302 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2303 {
2304 if ( pPdeDst->n.u1Present
2305 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2306 {
2307 SHWPDE PdeDst = *pPdeDst;
2308
2309 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2310 Assert(pPdeSrc->b.u1Write);
2311
2312 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2313 * fault again and take this path to only invalidate the entry (see below).
2314 */
2315 PdeDst.n.u1Write = 1;
2316 PdeDst.n.u1Accessed = 1;
2317 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2318 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2319 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2320 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2321 }
2322
2323# ifdef IN_RING0
2324 /* Check for stale TLB entry; only applies to the SMP guest case. */
2325 if ( pVM->cCpus > 1
2326 && pPdeDst->n.u1Write
2327 && pPdeDst->n.u1Accessed)
2328 {
2329 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2330 if (pShwPage)
2331 {
2332 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2333 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2334 if (SHW_PTE_IS_P_RW(*pPteDst))
2335 {
2336 /* Stale TLB entry. */
2337 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2338 PGM_INVL_PG(pVCpu, GCPtrPage);
2339 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2340 }
2341 }
2342 }
2343# endif /* IN_RING0 */
2344 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2345 }
2346
2347 /*
2348 * Map the guest page table.
2349 */
2350 PGSTPT pPTSrc;
2351 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2352 if (RT_FAILURE(rc))
2353 {
2354 AssertRC(rc);
2355 return rc;
2356 }
2357
2358 if (pPdeDst->n.u1Present)
2359 {
2360 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2361 const GSTPTE PteSrc = *pPteSrc;
2362
2363 /*
2364 * Map shadow page table.
2365 */
2366 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2367 if (pShwPage)
2368 {
2369 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2370 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2371 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2372 {
2373 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2374 {
2375 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2376 SHWPTE PteDst = *pPteDst;
2377
2378 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2379 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2380
2381 Assert(PteSrc.n.u1Write);
2382
2383 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2384 * entry will not harm; write access will simply fault again and
2385 * take this path to only invalidate the entry.
2386 */
2387 if (RT_LIKELY(pPage))
2388 {
2389 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2390 {
2391 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2392 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2393 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2394 SHW_PTE_SET_RO(PteDst);
2395 }
2396 else
2397 {
2398 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2399 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2400 {
2401 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2402 AssertRC(rc);
2403 }
2404 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2405 SHW_PTE_SET_RW(PteDst);
2406 else
2407 {
2408 /* Still applies to shared pages. */
2409 Assert(!PGM_PAGE_IS_ZERO(pPage));
2410 SHW_PTE_SET_RO(PteDst);
2411 }
2412 }
2413 }
2414 else
2415 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2416
2417 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2418 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2419 PGM_INVL_PG(pVCpu, GCPtrPage);
2420 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2421 }
2422
2423# ifdef IN_RING0
2424 /* Check for stale TLB entry; only applies to the SMP guest case. */
2425 if ( pVM->cCpus > 1
2426 && SHW_PTE_IS_RW(*pPteDst)
2427 && SHW_PTE_IS_A(*pPteDst))
2428 {
2429 /* Stale TLB entry. */
2430 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2431 PGM_INVL_PG(pVCpu, GCPtrPage);
2432 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2433 }
2434# endif
2435 }
2436 }
2437 else
2438 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2439 }
2440
2441 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2442}
2443
2444#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
2445
2446/**
2447 * Sync a shadow page table.
2448 *
2449 * The shadow page table is not present in the shadow PDE.
2450 *
2451 * Handles mapping conflicts.
2452 *
2453 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2454 * conflict), and Trap0eHandler.
2455 *
2456 * A precondition for this method is that the shadow PDE is not present. The
2457 * caller must take the PGM lock before checking this and continue to hold it
2458 * when calling this method.
2459 *
2460 * @returns VBox status code.
2461 * @param pVCpu The cross context virtual CPU structure.
2462 * @param iPDSrc Page directory index.
2463 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2464 * Assume this is a temporary mapping.
2465 * @param GCPtrPage GC Pointer of the page that caused the fault
2466 */
2467static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2468{
2469 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2470 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2471
2472#if 0 /* rarely useful; leave for debugging. */
2473 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2474#endif
2475 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
2476
2477 PGM_LOCK_ASSERT_OWNER(pVM);
2478
2479#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2480 || PGM_GST_TYPE == PGM_TYPE_PAE \
2481 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2482 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
2483 && PGM_SHW_TYPE != PGM_TYPE_NONE
2484 int rc = VINF_SUCCESS;
2485
2486 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2487
2488 /*
2489 * Some input validation first.
2490 */
2491 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2492
2493 /*
2494 * Get the relevant shadow PDE entry.
2495 */
2496# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2497 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2498 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2499
2500 /* Fetch the pgm pool shadow descriptor. */
2501 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2502 Assert(pShwPde);
2503
2504# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2505 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2506 PPGMPOOLPAGE pShwPde = NULL;
2507 PX86PDPAE pPDDst;
2508 PSHWPDE pPdeDst;
2509
2510 /* Fetch the pgm pool shadow descriptor. */
2511 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2512 AssertRCSuccessReturn(rc, rc);
2513 Assert(pShwPde);
2514
2515 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2516 pPdeDst = &pPDDst->a[iPDDst];
2517
2518# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2519 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2520 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2521 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2522 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2523 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2524 AssertRCSuccessReturn(rc, rc);
2525 Assert(pPDDst);
2526 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2527# endif
2528 SHWPDE PdeDst = *pPdeDst;
2529
2530# if PGM_GST_TYPE == PGM_TYPE_AMD64
2531 /* Fetch the pgm pool shadow descriptor. */
2532 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2533 Assert(pShwPde);
2534# endif
2535
2536# ifndef PGM_WITHOUT_MAPPINGS
2537 /*
2538 * Check for conflicts.
2539 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2540 * R3: Simply resolve the conflict.
2541 */
2542 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2543 {
2544 Assert(pgmMapAreMappingsEnabled(pVM));
2545# ifndef IN_RING3
2546 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2547 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2548 return VERR_ADDRESS_CONFLICT;
2549
2550# else /* IN_RING3 */
2551 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2552 Assert(pMapping);
2553# if PGM_GST_TYPE == PGM_TYPE_32BIT
2554 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2555# elif PGM_GST_TYPE == PGM_TYPE_PAE
2556 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2557# else
2558 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2559# endif
2560 if (RT_FAILURE(rc))
2561 {
2562 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2563 return rc;
2564 }
2565 PdeDst = *pPdeDst;
2566# endif /* IN_RING3 */
2567 }
2568# endif /* !PGM_WITHOUT_MAPPINGS */
2569 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2570
2571 /*
2572 * Sync the page directory entry.
2573 */
2574 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2575 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2576 if ( PdeSrc.n.u1Present
2577 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2578 {
2579 /*
2580 * Allocate & map the page table.
2581 */
2582 PSHWPT pPTDst;
2583 PPGMPOOLPAGE pShwPage;
2584 RTGCPHYS GCPhys;
2585 if (fPageTable)
2586 {
2587 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2588# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2589 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2590 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2591# endif
2592 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2593 pShwPde->idx, iPDDst, false /*fLockPage*/,
2594 &pShwPage);
2595 }
2596 else
2597 {
2598 PGMPOOLACCESS enmAccess;
2599# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2600 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2601# else
2602 const bool fNoExecute = false;
2603# endif
2604
2605 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2606# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2607 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2608 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2609# endif
2610 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2611 if (PdeSrc.n.u1User)
2612 {
2613 if (PdeSrc.n.u1Write)
2614 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2615 else
2616 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2617 }
2618 else
2619 {
2620 if (PdeSrc.n.u1Write)
2621 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2622 else
2623 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2624 }
2625 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2626 pShwPde->idx, iPDDst, false /*fLockPage*/,
2627 &pShwPage);
2628 }
2629 if (rc == VINF_SUCCESS)
2630 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2631 else if (rc == VINF_PGM_CACHED_PAGE)
2632 {
2633 /*
2634 * The PT was cached, just hook it up.
2635 */
2636 if (fPageTable)
2637 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2638 else
2639 {
2640 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2641 /* (see explanation and assumptions further down.) */
2642 if ( !PdeSrc.b.u1Dirty
2643 && PdeSrc.b.u1Write)
2644 {
2645 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2646 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2647 PdeDst.b.u1Write = 0;
2648 }
2649 }
2650 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2651 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2652 return VINF_SUCCESS;
2653 }
2654 else
2655 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2656 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2657 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2658 * irrelevant at this point. */
2659 PdeDst.u &= X86_PDE_AVL_MASK;
2660 PdeDst.u |= pShwPage->Core.Key;
2661
2662 /*
2663 * Page directory has been accessed (this is a fault situation, remember).
2664 */
2665 /** @todo
2666 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2667 * fault situation. What's more, the Trap0eHandler has already set the
2668 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2669 * might need setting the accessed flag.
2670 *
2671 * The best idea is to leave this change to the caller and add an
2672 * assertion that it's set already. */
2673 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2674 if (fPageTable)
2675 {
2676 /*
2677 * Page table - 4KB.
2678 *
2679 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2680 */
2681 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2682 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2683 PGSTPT pPTSrc;
2684 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2685 if (RT_SUCCESS(rc))
2686 {
2687 /*
2688 * Start by syncing the page directory entry so CSAM's TLB trick works.
2689 */
2690 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2691 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2692 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2693 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2694
2695 /*
2696 * Directory/page user or supervisor privilege: (same goes for read/write)
2697 *
2698 * Directory Page Combined
2699 * U/S U/S U/S
2700 * 0 0 0
2701 * 0 1 0
2702 * 1 0 0
2703 * 1 1 1
2704 *
2705 * Simple AND operation. Table listed for completeness.
2706 *
2707 */
2708 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2709# ifdef PGM_SYNC_N_PAGES
2710 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2711 unsigned iPTDst = iPTBase;
2712 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2713 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2714 iPTDst = 0;
2715 else
2716 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2717# else /* !PGM_SYNC_N_PAGES */
2718 unsigned iPTDst = 0;
2719 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2720# endif /* !PGM_SYNC_N_PAGES */
2721 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2722 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2723# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2724 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2725 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2726# else
2727 const unsigned offPTSrc = 0;
2728# endif
2729 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2730 {
2731 const unsigned iPTSrc = iPTDst + offPTSrc;
2732 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2733
2734 if (PteSrc.n.u1Present)
2735 {
2736 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2737 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2738 GCPtrCur,
2739 PteSrc.n.u1Present,
2740 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2741 PteSrc.n.u1User & PdeSrc.n.u1User,
2742 (uint64_t)PteSrc.u,
2743 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2744 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2745 }
2746 /* else: the page table was cleared by the pool */
2747 } /* for PTEs */
2748 }
2749 }
2750 else
2751 {
2752 /*
2753 * Big page - 2/4MB.
2754 *
2755 * We'll walk the ram range list in parallel and optimize lookups.
2756 * We will only sync one shadow page table at a time.
2757 */
2758 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2759
2760 /**
2761 * @todo It might be more efficient to sync only a part of the 4MB
2762 * page (similar to what we do for 4KB PDs).
2763 */
2764
2765 /*
2766 * Start by syncing the page directory entry.
2767 */
2768 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2769 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2770
2771 /*
2772 * If the page is not flagged as dirty and is writable, then make it read-only
2773 * at PD level, so we can set the dirty bit when the page is modified.
2774 *
2775 * ASSUMES that page access handlers are implemented on page table entry level.
2776 * Thus we will first catch the dirty access and set PDE.D and restart. If
2777 * there is an access handler, we'll trap again and let it work on the problem.
2778 */
2779 /** @todo move the above stuff to a section in the PGM documentation. */
2780 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2781 if ( !PdeSrc.b.u1Dirty
2782 && PdeSrc.b.u1Write)
2783 {
2784 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2785 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2786 PdeDst.b.u1Write = 0;
2787 }
2788 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2789 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2790
2791 /*
2792 * Fill the shadow page table.
2793 */
2794 /* Get address and flags from the source PDE. */
2795 SHWPTE PteDstBase;
2796 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2797
2798 /* Loop thru the entries in the shadow PT. */
2799 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2800 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2801 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2802 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2803 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2804 unsigned iPTDst = 0;
2805 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2806 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2807 {
2808 if (pRam && GCPhys >= pRam->GCPhys)
2809 {
2810# ifndef PGM_WITH_A20
2811 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2812# endif
2813 do
2814 {
2815 /* Make shadow PTE. */
2816# ifdef PGM_WITH_A20
2817 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2818# else
2819 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2820# endif
2821 SHWPTE PteDst;
2822
2823# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2824 /* Try to make the page writable if necessary. */
2825 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2826 && ( PGM_PAGE_IS_ZERO(pPage)
2827 || ( SHW_PTE_IS_RW(PteDstBase)
2828 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2829# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2830 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2831# endif
2832# ifdef VBOX_WITH_PAGE_SHARING
2833 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2834# endif
2835 && !PGM_PAGE_IS_BALLOONED(pPage))
2836 )
2837 )
2838 {
2839 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2840 AssertRCReturn(rc, rc);
2841 if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2842 break;
2843 }
2844# endif
2845
2846 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2847 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2848 else if (PGM_PAGE_IS_BALLOONED(pPage))
2849 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2850 else
2851 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2852
2853 /* Only map writable pages writable. */
2854 if ( SHW_PTE_IS_P_RW(PteDst)
2855 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2856 {
2857 /* Still applies to shared pages. */
2858 Assert(!PGM_PAGE_IS_ZERO(pPage));
2859 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2860 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2861 }
2862
2863 if (SHW_PTE_IS_P(PteDst))
2864 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2865
2866 /* commit it (not atomic, new table) */
2867 pPTDst->a[iPTDst] = PteDst;
2868 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2869 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2870 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2871
2872 /* advance */
2873 GCPhys += PAGE_SIZE;
2874 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
2875# ifndef PGM_WITH_A20
2876 iHCPage++;
2877# endif
2878 iPTDst++;
2879 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2880 && GCPhys <= pRam->GCPhysLast);
2881
2882 /* Advance ram range list. */
2883 while (pRam && GCPhys > pRam->GCPhysLast)
2884 pRam = pRam->CTX_SUFF(pNext);
2885 }
2886 else if (pRam)
2887 {
2888 Log(("Invalid pages at %RGp\n", GCPhys));
2889 do
2890 {
2891 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2892 GCPhys += PAGE_SIZE;
2893 iPTDst++;
2894 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2895 && GCPhys < pRam->GCPhys);
2896 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
2897 }
2898 else
2899 {
2900 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2901 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2902 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2903 }
2904 } /* while more PTEs */
2905 } /* 4KB / 4MB */
2906 }
2907 else
2908 AssertRelease(!PdeDst.n.u1Present);
2909
2910 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2911 if (RT_FAILURE(rc))
2912 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2913 return rc;
2914
2915#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2916 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2917 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2918 && PGM_SHW_TYPE != PGM_TYPE_NONE
2919 NOREF(iPDSrc); NOREF(pPDSrc);
2920
2921 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2922
2923 /*
2924 * Validate input a little bit.
2925 */
2926 int rc = VINF_SUCCESS;
2927# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2928 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2929 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2930
2931 /* Fetch the pgm pool shadow descriptor. */
2932 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2933 Assert(pShwPde);
2934
2935# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2936 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2937 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2938 PX86PDPAE pPDDst;
2939 PSHWPDE pPdeDst;
2940
2941 /* Fetch the pgm pool shadow descriptor. */
2942 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2943 AssertRCSuccessReturn(rc, rc);
2944 Assert(pShwPde);
2945
2946 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2947 pPdeDst = &pPDDst->a[iPDDst];
2948
2949# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2950 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2951 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2952 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2953 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2954 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2955 AssertRCSuccessReturn(rc, rc);
2956 Assert(pPDDst);
2957 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2958
2959 /* Fetch the pgm pool shadow descriptor. */
2960 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2961 Assert(pShwPde);
2962
2963# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2964 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2965 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2966 PEPTPD pPDDst;
2967 PEPTPDPT pPdptDst;
2968
2969 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
2970 if (rc != VINF_SUCCESS)
2971 {
2972 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2973 AssertRC(rc);
2974 return rc;
2975 }
2976 Assert(pPDDst);
2977 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2978
2979 /* Fetch the pgm pool shadow descriptor. */
2980 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2981 Assert(pShwPde);
2982# endif
2983 SHWPDE PdeDst = *pPdeDst;
2984
2985 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2986 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2987
2988# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
2989 if ( BTH_IS_NP_ACTIVE(pVM)
2990 && !VM_IS_NEM_ENABLED(pVM)) /** @todo NEM: Large page support. */
2991 {
2992 /* Check if we allocated a big page before for this 2 MB range. */
2993 PPGMPAGE pPage;
2994 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
2995 if (RT_SUCCESS(rc))
2996 {
2997 RTHCPHYS HCPhys = NIL_RTHCPHYS;
2998 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
2999 {
3000 if (PGM_A20_IS_ENABLED(pVCpu))
3001 {
3002 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3003 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3004 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3005 }
3006 else
3007 {
3008 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3009 pVM->pgm.s.cLargePagesDisabled++;
3010 }
3011 }
3012 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3013 && PGM_A20_IS_ENABLED(pVCpu))
3014 {
3015 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3016 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3017 if (RT_SUCCESS(rc))
3018 {
3019 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3020 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3021 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3022 }
3023 }
3024 else if ( PGMIsUsingLargePages(pVM)
3025 && PGM_A20_IS_ENABLED(pVCpu))
3026 {
3027 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3028 if (RT_SUCCESS(rc))
3029 {
3030 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3031 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3032 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3033 }
3034 else
3035 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3036 }
3037
3038 if (HCPhys != NIL_RTHCPHYS)
3039 {
3040 PdeDst.u &= X86_PDE_AVL_MASK;
3041 PdeDst.u |= HCPhys;
3042 PdeDst.n.u1Present = 1;
3043 PdeDst.n.u1Write = 1;
3044 PdeDst.b.u1Size = 1;
3045# if PGM_SHW_TYPE == PGM_TYPE_EPT
3046 PdeDst.n.u1Execute = 1;
3047 PdeDst.b.u1IgnorePAT = 1;
3048 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3049# else
3050 PdeDst.n.u1User = 1;
3051# endif
3052 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3053
3054 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3055 /* Add a reference to the first page only. */
3056 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3057
3058 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3059 return VINF_SUCCESS;
3060 }
3061 }
3062 }
3063# endif /* defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE */
3064
3065 /*
3066 * Allocate & map the page table.
3067 */
3068 PSHWPT pPTDst;
3069 PPGMPOOLPAGE pShwPage;
3070 RTGCPHYS GCPhys;
3071
3072 /* Virtual address = physical address */
3073 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3074 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3075 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3076 &pShwPage);
3077 if ( rc == VINF_SUCCESS
3078 || rc == VINF_PGM_CACHED_PAGE)
3079 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3080 else
3081 {
3082 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3083 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3084 }
3085
3086 if (rc == VINF_SUCCESS)
3087 {
3088 /* New page table; fully set it up. */
3089 Assert(pPTDst);
3090
3091 /* Mask away the page offset. */
3092 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3093
3094 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3095 {
3096 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3097 | (iPTDst << PAGE_SHIFT));
3098
3099 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3100 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3101 GCPtrCurPage,
3102 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3103 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3104
3105 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
3106 break;
3107 }
3108 }
3109 else
3110 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3111
3112 /* Save the new PDE. */
3113 PdeDst.u &= X86_PDE_AVL_MASK;
3114 PdeDst.u |= pShwPage->Core.Key;
3115 PdeDst.n.u1Present = 1;
3116 PdeDst.n.u1Write = 1;
3117# if PGM_SHW_TYPE == PGM_TYPE_EPT
3118 PdeDst.n.u1Execute = 1;
3119# else
3120 PdeDst.n.u1User = 1;
3121 PdeDst.n.u1Accessed = 1;
3122# endif
3123 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3124
3125 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3126 if (RT_FAILURE(rc))
3127 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3128 return rc;
3129
3130#else
3131 NOREF(iPDSrc); NOREF(pPDSrc);
3132 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3133 return VERR_PGM_NOT_USED_IN_MODE;
3134#endif
3135}
3136
3137
3138
3139/**
3140 * Prefetch a page/set of pages.
3141 *
3142 * Typically used to sync commonly used pages before entering raw mode
3143 * after a CR3 reload.
3144 *
3145 * @returns VBox status code.
3146 * @param pVCpu The cross context virtual CPU structure.
3147 * @param GCPtrPage Page to invalidate.
3148 */
3149PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
3150{
3151#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3152 || PGM_GST_TYPE == PGM_TYPE_REAL \
3153 || PGM_GST_TYPE == PGM_TYPE_PROT \
3154 || PGM_GST_TYPE == PGM_TYPE_PAE \
3155 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3156 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3157 && PGM_SHW_TYPE != PGM_TYPE_NONE
3158 /*
3159 * Check that all Guest levels thru the PDE are present, getting the
3160 * PD and PDE in the processes.
3161 */
3162 int rc = VINF_SUCCESS;
3163# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3164# if PGM_GST_TYPE == PGM_TYPE_32BIT
3165 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3166 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3167# elif PGM_GST_TYPE == PGM_TYPE_PAE
3168 unsigned iPDSrc;
3169 X86PDPE PdpeSrc;
3170 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3171 if (!pPDSrc)
3172 return VINF_SUCCESS; /* not present */
3173# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3174 unsigned iPDSrc;
3175 PX86PML4E pPml4eSrc;
3176 X86PDPE PdpeSrc;
3177 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3178 if (!pPDSrc)
3179 return VINF_SUCCESS; /* not present */
3180# endif
3181 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3182# else
3183 PGSTPD pPDSrc = NULL;
3184 const unsigned iPDSrc = 0;
3185 GSTPDE PdeSrc;
3186
3187 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3188 PdeSrc.n.u1Present = 1;
3189 PdeSrc.n.u1Write = 1;
3190 PdeSrc.n.u1Accessed = 1;
3191 PdeSrc.n.u1User = 1;
3192# endif
3193
3194 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3195 {
3196 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3197 pgmLock(pVM);
3198
3199# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3200 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3201# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3202 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3203 PX86PDPAE pPDDst;
3204 X86PDEPAE PdeDst;
3205# if PGM_GST_TYPE != PGM_TYPE_PAE
3206 X86PDPE PdpeSrc;
3207
3208 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3209 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3210# endif
3211 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3212 if (rc != VINF_SUCCESS)
3213 {
3214 pgmUnlock(pVM);
3215 AssertRC(rc);
3216 return rc;
3217 }
3218 Assert(pPDDst);
3219 PdeDst = pPDDst->a[iPDDst];
3220
3221# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3222 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3223 PX86PDPAE pPDDst;
3224 X86PDEPAE PdeDst;
3225
3226# if PGM_GST_TYPE == PGM_TYPE_PROT
3227 /* AMD-V nested paging */
3228 X86PML4E Pml4eSrc;
3229 X86PDPE PdpeSrc;
3230 PX86PML4E pPml4eSrc = &Pml4eSrc;
3231
3232 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3233 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3234 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3235# endif
3236
3237 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3238 if (rc != VINF_SUCCESS)
3239 {
3240 pgmUnlock(pVM);
3241 AssertRC(rc);
3242 return rc;
3243 }
3244 Assert(pPDDst);
3245 PdeDst = pPDDst->a[iPDDst];
3246# endif
3247 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3248 {
3249 if (!PdeDst.n.u1Present)
3250 {
3251 /** @todo r=bird: This guy will set the A bit on the PDE,
3252 * probably harmless. */
3253 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3254 }
3255 else
3256 {
3257 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3258 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3259 * makes no sense to prefetch more than one page.
3260 */
3261 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3262 if (RT_SUCCESS(rc))
3263 rc = VINF_SUCCESS;
3264 }
3265 }
3266 pgmUnlock(pVM);
3267 }
3268 return rc;
3269
3270#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3271 NOREF(pVCpu); NOREF(GCPtrPage);
3272 return VINF_SUCCESS; /* ignore */
3273#else
3274 AssertCompile(0);
3275#endif
3276}
3277
3278
3279
3280
3281/**
3282 * Syncs a page during a PGMVerifyAccess() call.
3283 *
3284 * @returns VBox status code (informational included).
3285 * @param pVCpu The cross context virtual CPU structure.
3286 * @param GCPtrPage The address of the page to sync.
3287 * @param fPage The effective guest page flags.
3288 * @param uErr The trap error code.
3289 * @remarks This will normally never be called on invalid guest page
3290 * translation entries.
3291 */
3292PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3293{
3294 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3295
3296 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3297 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr);
3298
3299 Assert(!pVM->pgm.s.fNestedPaging);
3300#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3301 || PGM_GST_TYPE == PGM_TYPE_REAL \
3302 || PGM_GST_TYPE == PGM_TYPE_PROT \
3303 || PGM_GST_TYPE == PGM_TYPE_PAE \
3304 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3305 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3306 && PGM_SHW_TYPE != PGM_TYPE_NONE
3307
3308 /*
3309 * Get guest PD and index.
3310 */
3311 /** @todo Performance: We've done all this a jiffy ago in the
3312 * PGMGstGetPage call. */
3313# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3314# if PGM_GST_TYPE == PGM_TYPE_32BIT
3315 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3316 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3317
3318# elif PGM_GST_TYPE == PGM_TYPE_PAE
3319 unsigned iPDSrc = 0;
3320 X86PDPE PdpeSrc;
3321 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3322 if (RT_UNLIKELY(!pPDSrc))
3323 {
3324 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3325 return VINF_EM_RAW_GUEST_TRAP;
3326 }
3327
3328# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3329 unsigned iPDSrc = 0; /* shut up gcc */
3330 PX86PML4E pPml4eSrc = NULL; /* ditto */
3331 X86PDPE PdpeSrc;
3332 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3333 if (RT_UNLIKELY(!pPDSrc))
3334 {
3335 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3336 return VINF_EM_RAW_GUEST_TRAP;
3337 }
3338# endif
3339
3340# else /* !PGM_WITH_PAGING */
3341 PGSTPD pPDSrc = NULL;
3342 const unsigned iPDSrc = 0;
3343# endif /* !PGM_WITH_PAGING */
3344 int rc = VINF_SUCCESS;
3345
3346 pgmLock(pVM);
3347
3348 /*
3349 * First check if the shadow pd is present.
3350 */
3351# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3352 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3353
3354# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3355 PX86PDEPAE pPdeDst;
3356 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3357 PX86PDPAE pPDDst;
3358# if PGM_GST_TYPE != PGM_TYPE_PAE
3359 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3360 X86PDPE PdpeSrc;
3361 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3362# endif
3363 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3364 if (rc != VINF_SUCCESS)
3365 {
3366 pgmUnlock(pVM);
3367 AssertRC(rc);
3368 return rc;
3369 }
3370 Assert(pPDDst);
3371 pPdeDst = &pPDDst->a[iPDDst];
3372
3373# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3374 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3375 PX86PDPAE pPDDst;
3376 PX86PDEPAE pPdeDst;
3377
3378# if PGM_GST_TYPE == PGM_TYPE_PROT
3379 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3380 X86PML4E Pml4eSrc;
3381 X86PDPE PdpeSrc;
3382 PX86PML4E pPml4eSrc = &Pml4eSrc;
3383 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3384 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3385# endif
3386
3387 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3388 if (rc != VINF_SUCCESS)
3389 {
3390 pgmUnlock(pVM);
3391 AssertRC(rc);
3392 return rc;
3393 }
3394 Assert(pPDDst);
3395 pPdeDst = &pPDDst->a[iPDDst];
3396# endif
3397
3398 if (!pPdeDst->n.u1Present)
3399 {
3400 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3401 if (rc != VINF_SUCCESS)
3402 {
3403 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3404 pgmUnlock(pVM);
3405 AssertRC(rc);
3406 return rc;
3407 }
3408 }
3409
3410# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3411 /* Check for dirty bit fault */
3412 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3413 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3414 Log(("PGMVerifyAccess: success (dirty)\n"));
3415 else
3416# endif
3417 {
3418# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3419 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3420# else
3421 GSTPDE PdeSrc;
3422 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3423 PdeSrc.n.u1Present = 1;
3424 PdeSrc.n.u1Write = 1;
3425 PdeSrc.n.u1Accessed = 1;
3426 PdeSrc.n.u1User = 1;
3427# endif
3428
3429 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3430 if (uErr & X86_TRAP_PF_US)
3431 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3432 else /* supervisor */
3433 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3434
3435 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3436 if (RT_SUCCESS(rc))
3437 {
3438 /* Page was successfully synced */
3439 Log2(("PGMVerifyAccess: success (sync)\n"));
3440 rc = VINF_SUCCESS;
3441 }
3442 else
3443 {
3444 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3445 rc = VINF_EM_RAW_GUEST_TRAP;
3446 }
3447 }
3448 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3449 pgmUnlock(pVM);
3450 return rc;
3451
3452#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3453
3454 AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3455 return VERR_PGM_NOT_USED_IN_MODE;
3456#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
3457}
3458
3459
3460/**
3461 * Syncs the paging hierarchy starting at CR3.
3462 *
3463 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
3464 * informational status codes.
3465 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
3466 * the VMM into guest context.
3467 * @param pVCpu The cross context virtual CPU structure.
3468 * @param cr0 Guest context CR0 register.
3469 * @param cr3 Guest context CR3 register. Not subjected to the A20
3470 * mask.
3471 * @param cr4 Guest context CR4 register.
3472 * @param fGlobal Including global page directories or not
3473 */
3474PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3475{
3476 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3477 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3478
3479 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3480
3481#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
3482# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3483 pgmLock(pVM);
3484 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3485 if (pPool->cDirtyPages)
3486 pgmPoolResetDirtyPages(pVM);
3487 pgmUnlock(pVM);
3488# endif
3489#endif /* !NESTED && !EPT */
3490
3491#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3492 /*
3493 * Nested / EPT / None - No work.
3494 */
3495 Assert(!pgmMapAreMappingsEnabled(pVM));
3496 return VINF_SUCCESS;
3497
3498#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3499 /*
3500 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3501 * out the shadow parts when the guest modifies its tables.
3502 */
3503 Assert(!pgmMapAreMappingsEnabled(pVM));
3504 return VINF_SUCCESS;
3505
3506#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3507
3508# ifndef PGM_WITHOUT_MAPPINGS
3509 /*
3510 * Check for and resolve conflicts with our guest mappings if they
3511 * are enabled and not fixed.
3512 */
3513 if (pgmMapAreMappingsFloating(pVM))
3514 {
3515 int rc = pgmMapResolveConflicts(pVM);
3516 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3517 if (rc == VINF_SUCCESS)
3518 { /* likely */ }
3519 else if (rc == VINF_PGM_SYNC_CR3)
3520 {
3521 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3522 return VINF_PGM_SYNC_CR3;
3523 }
3524 else if (RT_FAILURE(rc))
3525 return rc;
3526 else
3527 AssertMsgFailed(("%Rrc\n", rc));
3528 }
3529# else
3530 Assert(!pgmMapAreMappingsEnabled(pVM));
3531# endif
3532 return VINF_SUCCESS;
3533#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3534}
3535
3536
3537
3538
3539#ifdef VBOX_STRICT
3540
3541/**
3542 * Checks that the shadow page table is in sync with the guest one.
3543 *
3544 * @returns The number of errors.
3545 * @param pVCpu The cross context virtual CPU structure.
3546 * @param cr3 Guest context CR3 register.
3547 * @param cr4 Guest context CR4 register.
3548 * @param GCPtr Where to start. Defaults to 0.
3549 * @param cb How much to check. Defaults to everything.
3550 */
3551PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3552{
3553 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3554#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
3555 return 0;
3556#else
3557 unsigned cErrors = 0;
3558 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3559 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3560
3561# if PGM_GST_TYPE == PGM_TYPE_PAE
3562 /** @todo currently broken; crashes below somewhere */
3563 AssertFailed();
3564# endif
3565
3566# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3567 || PGM_GST_TYPE == PGM_TYPE_PAE \
3568 || PGM_GST_TYPE == PGM_TYPE_AMD64
3569
3570 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3571 PPGMCPU pPGM = &pVCpu->pgm.s;
3572 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3573 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3574# ifndef IN_RING0
3575 RTHCPHYS HCPhys; /* general usage. */
3576# endif
3577 int rc;
3578
3579 /*
3580 * Check that the Guest CR3 and all its mappings are correct.
3581 */
3582 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3583 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3584 false);
3585# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3586# if 0
3587# if PGM_GST_TYPE == PGM_TYPE_32BIT
3588 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3589# else
3590 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3591# endif
3592 AssertRCReturn(rc, 1);
3593 HCPhys = NIL_RTHCPHYS;
3594 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3595 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3596# endif
3597# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3598 pgmGstGet32bitPDPtr(pVCpu);
3599 RTGCPHYS GCPhys;
3600 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3601 AssertRCReturn(rc, 1);
3602 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3603# endif
3604# endif /* !IN_RING0 */
3605
3606 /*
3607 * Get and check the Shadow CR3.
3608 */
3609# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3610 unsigned cPDEs = X86_PG_ENTRIES;
3611 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3612# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3613# if PGM_GST_TYPE == PGM_TYPE_32BIT
3614 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3615# else
3616 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3617# endif
3618 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3619# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3620 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3621 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3622# endif
3623 if (cb != ~(RTGCPTR)0)
3624 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3625
3626/** @todo call the other two PGMAssert*() functions. */
3627
3628# if PGM_GST_TYPE == PGM_TYPE_AMD64
3629 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3630
3631 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3632 {
3633 PPGMPOOLPAGE pShwPdpt = NULL;
3634 PX86PML4E pPml4eSrc;
3635 PX86PML4E pPml4eDst;
3636 RTGCPHYS GCPhysPdptSrc;
3637
3638 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3639 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3640
3641 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3642 if (!pPml4eDst->n.u1Present)
3643 {
3644 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3645 continue;
3646 }
3647
3648 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3649 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3650
3651 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3652 {
3653 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3654 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3655 cErrors++;
3656 continue;
3657 }
3658
3659 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3660 {
3661 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3662 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3663 cErrors++;
3664 continue;
3665 }
3666
3667 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3668 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3669 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3670 {
3671 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3672 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3673 cErrors++;
3674 continue;
3675 }
3676# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3677 {
3678# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3679
3680# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3681 /*
3682 * Check the PDPTEs too.
3683 */
3684 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3685
3686 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3687 {
3688 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3689 PPGMPOOLPAGE pShwPde = NULL;
3690 PX86PDPE pPdpeDst;
3691 RTGCPHYS GCPhysPdeSrc;
3692 X86PDPE PdpeSrc;
3693 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3694# if PGM_GST_TYPE == PGM_TYPE_PAE
3695 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3696 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3697# else
3698 PX86PML4E pPml4eSrcIgn;
3699 PX86PDPT pPdptDst;
3700 PX86PDPAE pPDDst;
3701 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3702
3703 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3704 if (rc != VINF_SUCCESS)
3705 {
3706 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3707 GCPtr += 512 * _2M;
3708 continue; /* next PDPTE */
3709 }
3710 Assert(pPDDst);
3711# endif
3712 Assert(iPDSrc == 0);
3713
3714 pPdpeDst = &pPdptDst->a[iPdpt];
3715
3716 if (!pPdpeDst->n.u1Present)
3717 {
3718 GCPtr += 512 * _2M;
3719 continue; /* next PDPTE */
3720 }
3721
3722 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3723 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3724
3725 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3726 {
3727 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3728 GCPtr += 512 * _2M;
3729 cErrors++;
3730 continue;
3731 }
3732
3733 if (GCPhysPdeSrc != pShwPde->GCPhys)
3734 {
3735# if PGM_GST_TYPE == PGM_TYPE_AMD64
3736 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3737# else
3738 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3739# endif
3740 GCPtr += 512 * _2M;
3741 cErrors++;
3742 continue;
3743 }
3744
3745# if PGM_GST_TYPE == PGM_TYPE_AMD64
3746 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3747 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3748 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3749 {
3750 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3751 GCPtr += 512 * _2M;
3752 cErrors++;
3753 continue;
3754 }
3755# endif
3756
3757# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3758 {
3759# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3760# if PGM_GST_TYPE == PGM_TYPE_32BIT
3761 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3762# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3763 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3764# endif
3765# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3766 /*
3767 * Iterate the shadow page directory.
3768 */
3769 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3770 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3771
3772 for (;
3773 iPDDst < cPDEs;
3774 iPDDst++, GCPtr += cIncrement)
3775 {
3776# if PGM_SHW_TYPE == PGM_TYPE_PAE
3777 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3778# else
3779 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3780# endif
3781 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3782 {
3783 Assert(pgmMapAreMappingsEnabled(pVM));
3784 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3785 {
3786 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3787 cErrors++;
3788 continue;
3789 }
3790 }
3791 else if ( (PdeDst.u & X86_PDE_P)
3792 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3793 )
3794 {
3795 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3796 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3797 if (!pPoolPage)
3798 {
3799 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3800 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3801 cErrors++;
3802 continue;
3803 }
3804 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3805
3806 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3807 {
3808 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3809 GCPtr, (uint64_t)PdeDst.u));
3810 cErrors++;
3811 }
3812
3813 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3814 {
3815 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3816 GCPtr, (uint64_t)PdeDst.u));
3817 cErrors++;
3818 }
3819
3820 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3821 if (!PdeSrc.n.u1Present)
3822 {
3823 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3824 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3825 cErrors++;
3826 continue;
3827 }
3828
3829 if ( !PdeSrc.b.u1Size
3830 || !fBigPagesSupported)
3831 {
3832 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3833# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3834 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
3835# endif
3836 }
3837 else
3838 {
3839# if PGM_GST_TYPE == PGM_TYPE_32BIT
3840 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3841 {
3842 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3843 GCPtr, (uint64_t)PdeSrc.u));
3844 cErrors++;
3845 continue;
3846 }
3847# endif
3848 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3849# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3850 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
3851# endif
3852 }
3853
3854 if ( pPoolPage->enmKind
3855 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3856 {
3857 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3858 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3859 cErrors++;
3860 }
3861
3862 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
3863 if (!pPhysPage)
3864 {
3865 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3866 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3867 cErrors++;
3868 continue;
3869 }
3870
3871 if (GCPhysGst != pPoolPage->GCPhys)
3872 {
3873 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3874 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3875 cErrors++;
3876 continue;
3877 }
3878
3879 if ( !PdeSrc.b.u1Size
3880 || !fBigPagesSupported)
3881 {
3882 /*
3883 * Page Table.
3884 */
3885 const GSTPT *pPTSrc;
3886 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
3887 &pPTSrc);
3888 if (RT_FAILURE(rc))
3889 {
3890 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3891 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3892 cErrors++;
3893 continue;
3894 }
3895 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3896 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3897 {
3898 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3899 // (This problem will go away when/if we shadow multiple CR3s.)
3900 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3901 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3902 cErrors++;
3903 continue;
3904 }
3905 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3906 {
3907 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3908 GCPtr, (uint64_t)PdeDst.u));
3909 cErrors++;
3910 continue;
3911 }
3912
3913 /* iterate the page table. */
3914# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3915 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3916 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3917# else
3918 const unsigned offPTSrc = 0;
3919# endif
3920 for (unsigned iPT = 0, off = 0;
3921 iPT < RT_ELEMENTS(pPTDst->a);
3922 iPT++, off += PAGE_SIZE)
3923 {
3924 const SHWPTE PteDst = pPTDst->a[iPT];
3925
3926 /* skip not-present and dirty tracked entries. */
3927 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3928 continue;
3929 Assert(SHW_PTE_IS_P(PteDst));
3930
3931 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3932 if (!PteSrc.n.u1Present)
3933 {
3934# ifdef IN_RING3
3935 PGMAssertHandlerAndFlagsInSync(pVM);
3936 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
3937 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
3938 0, 0, UINT64_MAX, 99, NULL);
3939# endif
3940 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3941 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3942 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
3943 cErrors++;
3944 continue;
3945 }
3946
3947 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3948# if 1 /** @todo sync accessed bit properly... */
3949 fIgnoreFlags |= X86_PTE_A;
3950# endif
3951
3952 /* match the physical addresses */
3953 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
3954 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
3955
3956# ifdef IN_RING3
3957 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3958 if (RT_FAILURE(rc))
3959 {
3960 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3961 {
3962 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3963 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3964 cErrors++;
3965 continue;
3966 }
3967 }
3968 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3969 {
3970 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3971 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3972 cErrors++;
3973 continue;
3974 }
3975# endif
3976
3977 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
3978 if (!pPhysPage)
3979 {
3980# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3981 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3982 {
3983 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3984 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3985 cErrors++;
3986 continue;
3987 }
3988# endif
3989 if (SHW_PTE_IS_RW(PteDst))
3990 {
3991 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3992 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3993 cErrors++;
3994 }
3995 fIgnoreFlags |= X86_PTE_RW;
3996 }
3997 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
3998 {
3999 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4000 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4001 cErrors++;
4002 continue;
4003 }
4004
4005 /* flags */
4006 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4007 {
4008 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4009 {
4010 if (SHW_PTE_IS_RW(PteDst))
4011 {
4012 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4013 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4014 cErrors++;
4015 continue;
4016 }
4017 fIgnoreFlags |= X86_PTE_RW;
4018 }
4019 else
4020 {
4021 if ( SHW_PTE_IS_P(PteDst)
4022# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4023 && !PGM_PAGE_IS_MMIO(pPhysPage)
4024# endif
4025 )
4026 {
4027 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4028 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4029 cErrors++;
4030 continue;
4031 }
4032 fIgnoreFlags |= X86_PTE_P;
4033 }
4034 }
4035 else
4036 {
4037 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4038 {
4039 if (SHW_PTE_IS_RW(PteDst))
4040 {
4041 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4042 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4043 cErrors++;
4044 continue;
4045 }
4046 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4047 {
4048 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4049 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4050 cErrors++;
4051 continue;
4052 }
4053 if (SHW_PTE_IS_D(PteDst))
4054 {
4055 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4056 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4057 cErrors++;
4058 }
4059# if 0 /** @todo sync access bit properly... */
4060 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4061 {
4062 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4063 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4064 cErrors++;
4065 }
4066 fIgnoreFlags |= X86_PTE_RW;
4067# else
4068 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4069# endif
4070 }
4071 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4072 {
4073 /* access bit emulation (not implemented). */
4074 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4075 {
4076 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4077 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4078 cErrors++;
4079 continue;
4080 }
4081 if (!SHW_PTE_IS_A(PteDst))
4082 {
4083 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4084 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4085 cErrors++;
4086 }
4087 fIgnoreFlags |= X86_PTE_P;
4088 }
4089# ifdef DEBUG_sandervl
4090 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4091# endif
4092 }
4093
4094 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4095 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4096 )
4097 {
4098 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4099 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4100 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4101 cErrors++;
4102 continue;
4103 }
4104 } /* foreach PTE */
4105 }
4106 else
4107 {
4108 /*
4109 * Big Page.
4110 */
4111 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4112 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4113 {
4114 if (PdeDst.n.u1Write)
4115 {
4116 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4117 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4118 cErrors++;
4119 continue;
4120 }
4121 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4122 {
4123 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4124 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4125 cErrors++;
4126 continue;
4127 }
4128# if 0 /** @todo sync access bit properly... */
4129 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4130 {
4131 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4132 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4133 cErrors++;
4134 }
4135 fIgnoreFlags |= X86_PTE_RW;
4136# else
4137 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4138# endif
4139 }
4140 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4141 {
4142 /* access bit emulation (not implemented). */
4143 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4144 {
4145 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4146 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4147 cErrors++;
4148 continue;
4149 }
4150 if (!PdeDst.n.u1Accessed)
4151 {
4152 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4153 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4154 cErrors++;
4155 }
4156 fIgnoreFlags |= X86_PTE_P;
4157 }
4158
4159 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4160 {
4161 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4162 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4163 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4164 cErrors++;
4165 }
4166
4167 /* iterate the page table. */
4168 for (unsigned iPT = 0, off = 0;
4169 iPT < RT_ELEMENTS(pPTDst->a);
4170 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4171 {
4172 const SHWPTE PteDst = pPTDst->a[iPT];
4173
4174 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4175 {
4176 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4177 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4178 cErrors++;
4179 }
4180
4181 /* skip not-present entries. */
4182 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4183 continue;
4184
4185 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4186
4187 /* match the physical addresses */
4188 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4189
4190# ifdef IN_RING3
4191 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4192 if (RT_FAILURE(rc))
4193 {
4194 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4195 {
4196 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4197 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4198 cErrors++;
4199 }
4200 }
4201 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4202 {
4203 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4204 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4205 cErrors++;
4206 continue;
4207 }
4208# endif
4209 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4210 if (!pPhysPage)
4211 {
4212# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4213 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4214 {
4215 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4216 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4217 cErrors++;
4218 continue;
4219 }
4220# endif
4221 if (SHW_PTE_IS_RW(PteDst))
4222 {
4223 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4224 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4225 cErrors++;
4226 }
4227 fIgnoreFlags |= X86_PTE_RW;
4228 }
4229 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4230 {
4231 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4232 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4233 cErrors++;
4234 continue;
4235 }
4236
4237 /* flags */
4238 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4239 {
4240 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4241 {
4242 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4243 {
4244 if (SHW_PTE_IS_RW(PteDst))
4245 {
4246 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4247 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4248 cErrors++;
4249 continue;
4250 }
4251 fIgnoreFlags |= X86_PTE_RW;
4252 }
4253 }
4254 else
4255 {
4256 if ( SHW_PTE_IS_P(PteDst)
4257# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4258 && !PGM_PAGE_IS_MMIO(pPhysPage)
4259# endif
4260 )
4261 {
4262 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4263 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4264 cErrors++;
4265 continue;
4266 }
4267 fIgnoreFlags |= X86_PTE_P;
4268 }
4269 }
4270
4271 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4272 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4273 )
4274 {
4275 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4276 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4277 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4278 cErrors++;
4279 continue;
4280 }
4281 } /* for each PTE */
4282 }
4283 }
4284 /* not present */
4285
4286 } /* for each PDE */
4287
4288 } /* for each PDPTE */
4289
4290 } /* for each PML4E */
4291
4292# ifdef DEBUG
4293 if (cErrors)
4294 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4295# endif
4296# endif /* GST is in {32BIT, PAE, AMD64} */
4297 return cErrors;
4298#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
4299}
4300#endif /* VBOX_STRICT */
4301
4302
4303/**
4304 * Sets up the CR3 for shadow paging
4305 *
4306 * @returns Strict VBox status code.
4307 * @retval VINF_SUCCESS.
4308 *
4309 * @param pVCpu The cross context virtual CPU structure.
4310 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4311 * mask already applied.)
4312 */
4313PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
4314{
4315 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4316
4317 /* Update guest paging info. */
4318#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4319 || PGM_GST_TYPE == PGM_TYPE_PAE \
4320 || PGM_GST_TYPE == PGM_TYPE_AMD64
4321
4322 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4323 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4324
4325 /*
4326 * Map the page CR3 points at.
4327 */
4328 RTHCPTR HCPtrGuestCR3;
4329 pgmLock(pVM);
4330 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4331 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4332 /** @todo this needs some reworking wrt. locking? */
4333# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4334 HCPtrGuestCR3 = NIL_RTHCPTR;
4335 int rc = VINF_SUCCESS;
4336# else
4337 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4338# endif
4339 pgmUnlock(pVM);
4340 if (RT_SUCCESS(rc))
4341 {
4342# if PGM_GST_TYPE == PGM_TYPE_32BIT
4343# ifdef VBOX_WITH_RAM_IN_KERNEL
4344# ifdef IN_RING3
4345 pVCpu->pgm.s.pGst32BitPdR3 = (PX86PD)HCPtrGuestCR3;
4346 pVCpu->pgm.s.pGst32BitPdR0 = NIL_RTR0PTR;
4347# else
4348 pVCpu->pgm.s.pGst32BitPdR3 = NIL_RTR3PTR;
4349 pVCpu->pgm.s.pGst32BitPdR0 = (PX86PD)HCPtrGuestCR3;
4350# endif
4351# else
4352 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4353# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4354 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4355# endif
4356# endif
4357
4358# elif PGM_GST_TYPE == PGM_TYPE_PAE
4359# ifdef VBOX_WITH_RAM_IN_KERNEL
4360# ifdef IN_RING3
4361 pVCpu->pgm.s.pGstPaePdptR3 = (PX86PDPT)HCPtrGuestCR3;
4362 pVCpu->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
4363# else
4364 pVCpu->pgm.s.pGstPaePdptR3 = NIL_RTR3PTR;
4365 pVCpu->pgm.s.pGstPaePdptR0 = (PX86PDPT)HCPtrGuestCR3;
4366# endif
4367# else
4368 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4369# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4370 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4371# endif
4372# endif
4373
4374 /*
4375 * Map the 4 PDs too.
4376 */
4377 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4378 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4379 {
4380 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4381 if (pGuestPDPT->a[i].n.u1Present)
4382 {
4383 RTHCPTR HCPtr;
4384 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4385 pgmLock(pVM);
4386 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4387 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4388# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4389 HCPtr = NIL_RTHCPTR;
4390 int rc2 = VINF_SUCCESS;
4391# else
4392 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4393# endif
4394 pgmUnlock(pVM);
4395 if (RT_SUCCESS(rc2))
4396 {
4397# ifdef VBOX_WITH_RAM_IN_KERNEL
4398# ifdef IN_RING3
4399 pVCpu->pgm.s.apGstPaePDsR3[i] = (PX86PDPAE)HCPtr;
4400 pVCpu->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
4401# else
4402 pVCpu->pgm.s.apGstPaePDsR3[i] = NIL_RTR3PTR;
4403 pVCpu->pgm.s.apGstPaePDsR0[i] = (PX86PDPAE)HCPtr;
4404# endif
4405# else
4406 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4407# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4408 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4409# endif
4410# endif
4411 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4412 continue;
4413 }
4414 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4415 }
4416
4417 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4418# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4419 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4420# endif
4421 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4422 }
4423
4424# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4425# ifdef VBOX_WITH_RAM_IN_KERNEL
4426# ifdef IN_RING3
4427 pVCpu->pgm.s.pGstAmd64Pml4R3 = (PX86PML4)HCPtrGuestCR3;
4428 pVCpu->pgm.s.pGstAmd64Pml4R0 = NIL_RTR0PTR;
4429# else
4430 pVCpu->pgm.s.pGstAmd64Pml4R3 = NIL_RTR3PTR;
4431 pVCpu->pgm.s.pGstAmd64Pml4R0 = (PX86PML4)HCPtrGuestCR3;
4432# endif
4433# else
4434 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4435# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4436 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4437# endif
4438# endif
4439# endif
4440 }
4441 else
4442 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4443
4444#else /* prot/real stub */
4445 int rc = VINF_SUCCESS;
4446#endif
4447
4448 /*
4449 * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64).
4450 */
4451# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4452 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4453 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4454 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4455 && PGM_GST_TYPE != PGM_TYPE_PROT))
4456
4457 Assert(!pVM->pgm.s.fNestedPaging);
4458 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4459
4460 /*
4461 * Update the shadow root page as well since that's not fixed.
4462 */
4463 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4464 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4465 PPGMPOOLPAGE pNewShwPageCR3;
4466
4467 pgmLock(pVM);
4468
4469# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4470 if (pPool->cDirtyPages)
4471 pgmPoolResetDirtyPages(pVM);
4472# endif
4473
4474 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4475 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4476 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4477 &pNewShwPageCR3);
4478 AssertFatalRC(rc);
4479 rc = VINF_SUCCESS;
4480
4481 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4482# ifdef IN_RING0
4483 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4484# else
4485 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4486# endif
4487
4488# ifndef PGM_WITHOUT_MAPPINGS
4489 /*
4490 * Apply all hypervisor mappings to the new CR3.
4491 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4492 * make sure we check for conflicts in the new CR3 root.
4493 */
4494# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4495 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4496# endif
4497 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4498 AssertRCReturn(rc, rc);
4499# endif
4500
4501 /* Set the current hypervisor CR3. */
4502 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4503
4504 /* Clean up the old CR3 root. */
4505 if ( pOldShwPageCR3
4506 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4507 {
4508 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4509# ifndef PGM_WITHOUT_MAPPINGS
4510 /* Remove the hypervisor mappings from the shadow page table. */
4511 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4512# endif
4513 /* Mark the page as unlocked; allow flushing again. */
4514 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4515
4516 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4517 }
4518 pgmUnlock(pVM);
4519# else
4520 NOREF(GCPhysCR3);
4521# endif
4522
4523 return rc;
4524}
4525
4526/**
4527 * Unmaps the shadow CR3.
4528 *
4529 * @returns VBox status, no specials.
4530 * @param pVCpu The cross context virtual CPU structure.
4531 */
4532PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu)
4533{
4534 LogFlow(("UnmapCR3\n"));
4535
4536 int rc = VINF_SUCCESS;
4537 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4538
4539 /*
4540 * Update guest paging info.
4541 */
4542#if PGM_GST_TYPE == PGM_TYPE_32BIT
4543 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4544# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4545 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4546# endif
4547
4548#elif PGM_GST_TYPE == PGM_TYPE_PAE
4549 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4550# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4551 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4552# endif
4553 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4554 {
4555 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4556# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4557 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4558# endif
4559 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4560 }
4561
4562#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4563 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4564# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4565 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4566# endif
4567
4568#else /* prot/real mode stub */
4569 /* nothing to do */
4570#endif
4571
4572 /*
4573 * Update shadow paging info.
4574 */
4575#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4576 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4577 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4578# if PGM_GST_TYPE != PGM_TYPE_REAL
4579 Assert(!pVM->pgm.s.fNestedPaging);
4580# endif
4581 pgmLock(pVM);
4582
4583# ifndef PGM_WITHOUT_MAPPINGS
4584 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4585 /* Remove the hypervisor mappings from the shadow page table. */
4586 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4587# endif
4588
4589 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4590 {
4591 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4592
4593# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4594 if (pPool->cDirtyPages)
4595 pgmPoolResetDirtyPages(pVM);
4596# endif
4597
4598 /* Mark the page as unlocked; allow flushing again. */
4599 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4600
4601 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4602 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4603 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4604 }
4605
4606 pgmUnlock(pVM);
4607#endif
4608
4609 return rc;
4610}
4611
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette