VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 13299

Last change on this file since 13299 was 13235, checked in by vboxsync, 16 years ago

PGM: Merged PGMGCInvalidatePage into PGMInvalidatePage nad fixed the callers of it to handle the return codes correctly. other cleanup.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 193.7 KB
Line 
1/* $Id: PGMAllBth.h 13235 2008-10-13 20:48:53Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42__END_DECLS
43
44
45/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
46#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
47# error "Invalid combination; PAE guest implies PAE shadow"
48#endif
49
50#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
51 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
52# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
53#endif
54
55#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
56 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
57# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
58#endif
59
60#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
61 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
62# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
63#endif
64
65#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
66# define PGM_WITHOUT_MAPPINGS
67#endif
68
69
70#ifndef IN_RING3
71/**
72 * #PF Handler for raw-mode guest execution.
73 *
74 * @returns VBox status code (appropriate for trap handling and GC return).
75 * @param pVM VM Handle.
76 * @param uErr The trap error code.
77 * @param pRegFrame Trap register frame.
78 * @param pvFault The fault address.
79 */
80PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
81{
82# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
83 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
84 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
85
86# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
87 /*
88 * Hide the instruction fetch trap indicator for now.
89 */
90 /** @todo NXE will change this and we must fix NXE in the switcher too! */
91 if (uErr & X86_TRAP_PF_ID)
92 {
93 uErr &= ~X86_TRAP_PF_ID;
94 TRPMSetErrorCode(pVM, uErr);
95 }
96# endif
97
98 /*
99 * Get PDs.
100 */
101 int rc;
102# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
103# if PGM_GST_TYPE == PGM_TYPE_32BIT
104 const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
105 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
106
107# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
108
109# if PGM_GST_TYPE == PGM_TYPE_PAE
110 unsigned iPDSrc;
111 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, (RTGCUINTPTR)pvFault, &iPDSrc);
112
113# elif PGM_GST_TYPE == PGM_TYPE_AMD64
114 unsigned iPDSrc;
115 PX86PML4E pPml4eSrc;
116 X86PDPE PdpeSrc;
117 PGSTPD pPDSrc;
118
119 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
120 Assert(pPml4eSrc);
121# endif
122 /* Quick check for a valid guest trap. */
123 if (!pPDSrc)
124 {
125# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
126 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%VGp\n", (int)(((RTGCUINTPTR)pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
127# else
128 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%VGp\n", iPDSrc, CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
129# endif
130 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
131 TRPMSetErrorCode(pVM, uErr);
132 return VINF_EM_RAW_GUEST_TRAP;
133 }
134# endif
135
136# else /* !PGM_WITH_PAGING */
137 PGSTPD pPDSrc = NULL;
138 const unsigned iPDSrc = 0;
139# endif /* !PGM_WITH_PAGING */
140
141
142# if PGM_SHW_TYPE == PGM_TYPE_32BIT
143 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
144 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
145
146# elif PGM_SHW_TYPE == PGM_TYPE_PAE
147 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
148 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries, so no need to and with SHW_PD_MASK to get iPDDst */
149
150# if PGM_GST_TYPE == PGM_TYPE_PAE
151 /* Did we mark the PDPT as not present in SyncCR3? */
152 unsigned iPdpte = ((RTGCUINTPTR)pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
153 if (!pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present)
154 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present = 1;
155
156# endif
157
158# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
159 const unsigned iPDDst = (((RTGCUINTPTR)pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
160 PX86PDPAE pPDDst;
161# if PGM_GST_TYPE == PGM_TYPE_PROT
162 /* AMD-V nested paging */
163 X86PML4E Pml4eSrc;
164 X86PDPE PdpeSrc;
165 PX86PML4E pPml4eSrc = &Pml4eSrc;
166
167 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
168 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
169 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
170# endif
171
172 rc = PGMShwSyncLongModePDPtr(pVM, (RTGCUINTPTR)pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
173 if (rc != VINF_SUCCESS)
174 {
175 AssertRC(rc);
176 return rc;
177 }
178 Assert(pPDDst);
179
180# elif PGM_SHW_TYPE == PGM_TYPE_EPT
181 const unsigned iPDDst = (((RTGCUINTPTR)pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
182 PEPTPD pPDDst;
183
184 rc = PGMShwGetEPTPDPtr(pVM, (RTGCUINTPTR)pvFault, NULL, &pPDDst);
185 if (rc != VINF_SUCCESS)
186 {
187 AssertRC(rc);
188 return rc;
189 }
190 Assert(pPDDst);
191# endif
192
193# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
194 /*
195 * If we successfully correct the write protection fault due to dirty bit
196 * tracking, or this page fault is a genuine one, then return immediately.
197 */
198 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
199 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
200 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
201 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
202 || rc == VINF_EM_RAW_GUEST_TRAP)
203 {
204 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
205 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
206 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
207 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
208 }
209
210 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0ePD[iPDSrc]);
211# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
212
213 /*
214 * A common case is the not-present error caused by lazy page table syncing.
215 *
216 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
217 * so we can safely assume that the shadow PT is present when calling SyncPage later.
218 *
219 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
220 * of mapping conflict and defer to SyncCR3 in R3.
221 * (Again, we do NOT support access handlers for non-present guest pages.)
222 *
223 */
224# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
225 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
226# else
227 GSTPDE PdeSrc;
228 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
229 PdeSrc.n.u1Present = 1;
230 PdeSrc.n.u1Write = 1;
231 PdeSrc.n.u1Accessed = 1;
232 PdeSrc.n.u1User = 1;
233# endif
234 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
235 && !pPDDst->a[iPDDst].n.u1Present
236 && PdeSrc.n.u1Present
237 )
238
239 {
240 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2SyncPT; });
241 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
242 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
243 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
244 if (VBOX_SUCCESS(rc))
245 {
246 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
247 return rc;
248 }
249 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
250 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
251 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
252 return VINF_PGM_SYNC_CR3;
253 }
254
255# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
256 /*
257 * Check if this address is within any of our mappings.
258 *
259 * This is *very* fast and it's gonna save us a bit of effort below and prevent
260 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
261 * (BTW, it's impossible to have physical access handlers in a mapping.)
262 */
263 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
264 {
265 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
266 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
267 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
268 {
269 if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
270 break;
271 if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
272 {
273 /*
274 * The first thing we check is if we've got an undetected conflict.
275 */
276 if (!pVM->pgm.s.fMappingsFixed)
277 {
278 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
279 while (iPT-- > 0)
280 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
281 {
282 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eConflicts);
283 Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
284 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
285 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
286 return VINF_PGM_SYNC_CR3;
287 }
288 }
289
290 /*
291 * Check if the fault address is in a virtual page access handler range.
292 */
293 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
294 if ( pCur
295 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key < pCur->cb
296 && uErr & X86_TRAP_PF_RW)
297 {
298# ifdef IN_GC
299 STAM_PROFILE_START(&pCur->Stat, h);
300 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key);
301 STAM_PROFILE_STOP(&pCur->Stat, h);
302# else
303 AssertFailed();
304 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
305# endif
306 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersMapping);
307 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
308 return rc;
309 }
310
311 /*
312 * Pretend we're not here and let the guest handle the trap.
313 */
314 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
315 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFMapping);
316 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
317 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
318 return VINF_EM_RAW_GUEST_TRAP;
319 }
320 }
321 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
322 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
323# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
324
325 /*
326 * Check if this fault address is flagged for special treatment,
327 * which means we'll have to figure out the physical address and
328 * check flags associated with it.
329 *
330 * ASSUME that we can limit any special access handling to pages
331 * in page tables which the guest believes to be present.
332 */
333 if (PdeSrc.n.u1Present)
334 {
335 RTGCPHYS GCPhys = NIL_RTGCPHYS;
336
337# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
338# if PGM_GST_TYPE == PGM_TYPE_AMD64
339 bool fBigPagesSupported = true;
340# else
341 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
342# endif
343 if ( PdeSrc.b.u1Size
344 && fBigPagesSupported)
345 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
346 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
347 else
348 {
349 PGSTPT pPTSrc;
350 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
351 if (VBOX_SUCCESS(rc))
352 {
353 unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
354 if (pPTSrc->a[iPTESrc].n.u1Present)
355 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
356 }
357 }
358# else
359 /* No paging so the fault address is the physical address */
360 GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
361# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
362
363 /*
364 * If we have a GC address we'll check if it has any flags set.
365 */
366 if (GCPhys != NIL_RTGCPHYS)
367 {
368 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
369
370 PPGMPAGE pPage;
371 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
372 if (VBOX_SUCCESS(rc))
373 {
374 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
375 {
376 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
377 {
378 /*
379 * Physical page access handler.
380 */
381 const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
382 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
383 if (pCur)
384 {
385# ifdef PGM_SYNC_N_PAGES
386 /*
387 * If the region is write protected and we got a page not present fault, then sync
388 * the pages. If the fault was caused by a read, then restart the instruction.
389 * In case of write access continue to the GC write handler.
390 *
391 * ASSUMES that there is only one handler per page or that they have similar write properties.
392 */
393 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
394 && !(uErr & X86_TRAP_PF_P))
395 {
396 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
397 if ( VBOX_FAILURE(rc)
398 || !(uErr & X86_TRAP_PF_RW)
399 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
400 {
401 AssertRC(rc);
402 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
403 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
404 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
405 return rc;
406 }
407 }
408# endif
409
410 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
411 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
412 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
413
414# if defined(IN_GC) || defined(IN_RING0)
415 if (pCur->CTX_SUFF(pfnHandler))
416 {
417 STAM_PROFILE_START(&pCur->Stat, h);
418 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pCur->CTX_SUFF(pvUser));
419 STAM_PROFILE_STOP(&pCur->Stat, h);
420 }
421 else
422# endif
423 rc = VINF_EM_RAW_EMULATE_INSTR;
424 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersPhysical);
425 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
426 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndPhys; });
427 return rc;
428 }
429 }
430# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
431 else
432 {
433# ifdef PGM_SYNC_N_PAGES
434 /*
435 * If the region is write protected and we got a page not present fault, then sync
436 * the pages. If the fault was caused by a read, then restart the instruction.
437 * In case of write access continue to the GC write handler.
438 */
439 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
440 && !(uErr & X86_TRAP_PF_P))
441 {
442 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
443 if ( VBOX_FAILURE(rc)
444 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
445 || !(uErr & X86_TRAP_PF_RW))
446 {
447 AssertRC(rc);
448 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
449 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
450 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
451 return rc;
452 }
453 }
454# endif
455 /*
456 * Ok, it's an virtual page access handler.
457 *
458 * Since it's faster to search by address, we'll do that first
459 * and then retry by GCPhys if that fails.
460 */
461 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
462 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
463 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
464 */
465 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
466 if (pCur)
467 {
468 AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key < pCur->cb)
469 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
470 || !(uErr & X86_TRAP_PF_P)
471 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
472 ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
473
474 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key < pCur->cb
475 && ( uErr & X86_TRAP_PF_RW
476 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
477 {
478# ifdef IN_GC
479 STAM_PROFILE_START(&pCur->Stat, h);
480 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key);
481 STAM_PROFILE_STOP(&pCur->Stat, h);
482# else
483 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
484# endif
485 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtual);
486 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
487 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
488 return rc;
489 }
490 /* Unhandled part of a monitored page */
491 }
492 else
493 {
494 /* Check by physical address. */
495 PPGMVIRTHANDLER pCur;
496 unsigned iPage;
497 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
498 &pCur, &iPage);
499 Assert(VBOX_SUCCESS(rc) || !pCur);
500 if ( pCur
501 && ( uErr & X86_TRAP_PF_RW
502 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
503 {
504 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
505# ifdef IN_GC
506 RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->Core.Key & PAGE_OFFSET_MASK);
507 Assert(off < pCur->cb);
508 STAM_PROFILE_START(&pCur->Stat, h);
509 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
510 STAM_PROFILE_STOP(&pCur->Stat, h);
511# else
512 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
513# endif
514 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
515 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
516 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
517 return rc;
518 }
519 }
520 }
521# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
522
523 /*
524 * There is a handled area of the page, but this fault doesn't belong to it.
525 * We must emulate the instruction.
526 *
527 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
528 * we first check if this was a page-not-present fault for a page with only
529 * write access handlers. Restart the instruction if it wasn't a write access.
530 */
531 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersUnhandled);
532
533 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
534 && !(uErr & X86_TRAP_PF_P))
535 {
536 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
537 if ( VBOX_FAILURE(rc)
538 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
539 || !(uErr & X86_TRAP_PF_RW))
540 {
541 AssertRC(rc);
542 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
543 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
544 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
545 return rc;
546 }
547 }
548
549 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
550 * It's writing to an unhandled part of the LDT page several million times.
551 */
552 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
553 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
554 rc, pPage->HCPhys,
555 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
556 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
557 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
558 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndUnhandled; });
559 return rc;
560 } /* if any kind of handler */
561
562# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
563 if (uErr & X86_TRAP_PF_P)
564 {
565 /*
566 * The page isn't marked, but it might still be monitored by a virtual page access handler.
567 * (ASSUMES no temporary disabling of virtual handlers.)
568 */
569 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
570 * we should correct both the shadow page table and physical memory flags, and not only check for
571 * accesses within the handler region but for access to pages with virtual handlers. */
572 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
573 if (pCur)
574 {
575 AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key < pCur->cb)
576 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
577 || !(uErr & X86_TRAP_PF_P)
578 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
579 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
580
581 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key < pCur->cb
582 && ( uErr & X86_TRAP_PF_RW
583 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
584 {
585# ifdef IN_GC
586 STAM_PROFILE_START(&pCur->Stat, h);
587 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->Core.Key);
588 STAM_PROFILE_STOP(&pCur->Stat, h);
589# else
590 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
591# endif
592 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
593 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
594 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
595 return rc;
596 }
597 }
598 }
599# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
600 }
601 else
602 {
603 /* When the guest accesses invalid physical memory (e.g. probing of RAM or accessing a remapped MMIO range), then we'll fall
604 * back to the recompiler to emulate the instruction.
605 */
606 LogFlow(("pgmPhysGetPageEx %VGp failed with %Vrc\n", GCPhys, rc));
607 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersInvalid);
608 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
609 return VINF_EM_RAW_EMULATE_INSTR;
610 }
611
612 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
613
614# ifdef PGM_OUT_OF_SYNC_IN_GC
615 /*
616 * We are here only if page is present in Guest page tables and trap is not handled
617 * by our handlers.
618 * Check it for page out-of-sync situation.
619 */
620 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
621
622 if (!(uErr & X86_TRAP_PF_P))
623 {
624 /*
625 * Page is not present in our page tables.
626 * Try to sync it!
627 * BTW, fPageShw is invalid in this branch!
628 */
629 if (uErr & X86_TRAP_PF_US)
630 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
631 else /* supervisor */
632 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
633
634# if defined(LOG_ENABLED) && !defined(IN_RING0)
635 RTGCPHYS GCPhys;
636 uint64_t fPageGst;
637 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
638 Log(("Page out of sync: %VGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
639 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
640# endif /* LOG_ENABLED */
641
642# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
643 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
644 {
645 uint64_t fPageGst;
646 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
647 if ( VBOX_SUCCESS(rc)
648 && !(fPageGst & X86_PTE_US))
649 {
650 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
651 if ( pvFault == (RTGCPTR)pRegFrame->eip
652 || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
653# ifdef CSAM_DETECT_NEW_CODE_PAGES
654 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
655 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
656# endif /* CSAM_DETECT_NEW_CODE_PAGES */
657 )
658 {
659 LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
660 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
661 if (rc != VINF_SUCCESS)
662 {
663 /*
664 * CSAM needs to perform a job in ring 3.
665 *
666 * Sync the page before going to the host context; otherwise we'll end up in a loop if
667 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
668 */
669 LogFlow(("CSAM ring 3 job\n"));
670 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
671 AssertRC(rc2);
672
673 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
674 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2CSAM; });
675 return rc;
676 }
677 }
678# ifdef CSAM_DETECT_NEW_CODE_PAGES
679 else if ( uErr == X86_TRAP_PF_RW
680 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
681 && pRegFrame->ecx < 0x10000)
682 {
683 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
684 * to detect loading of new code pages.
685 */
686
687 /*
688 * Decode the instruction.
689 */
690 RTGCPTR PC;
691 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
692 if (rc == VINF_SUCCESS)
693 {
694 DISCPUSTATE Cpu;
695 uint32_t cbOp;
696 rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
697
698 /* For now we'll restrict this to rep movsw/d instructions */
699 if ( rc == VINF_SUCCESS
700 && Cpu.pCurInstr->opcode == OP_MOVSWD
701 && (Cpu.prefix & PREFIX_REP))
702 {
703 CSAMMarkPossibleCodePage(pVM, pvFault);
704 }
705 }
706 }
707# endif /* CSAM_DETECT_NEW_CODE_PAGES */
708
709 /*
710 * Mark this page as safe.
711 */
712 /** @todo not correct for pages that contain both code and data!! */
713 Log2(("CSAMMarkPage %VGv; scanned=%d\n", pvFault, true));
714 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
715 }
716 }
717# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
718 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
719 if (VBOX_SUCCESS(rc))
720 {
721 /* The page was successfully synced, return to the guest. */
722 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
723 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSync; });
724 return VINF_SUCCESS;
725 }
726 }
727 else
728 {
729 /*
730 * A side effect of not flushing global PDEs are out of sync pages due
731 * to physical monitored regions, that are no longer valid.
732 * Assume for now it only applies to the read/write flag
733 */
734 if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
735 {
736 if (uErr & X86_TRAP_PF_US)
737 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
738 else /* supervisor */
739 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
740
741
742 /*
743 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
744 */
745 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
746 if (VBOX_SUCCESS(rc))
747 {
748 /*
749 * Page was successfully synced, return to guest.
750 */
751# ifdef VBOX_STRICT
752 RTGCPHYS GCPhys;
753 uint64_t fPageGst;
754 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
755 Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
756 LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
757
758 uint64_t fPageShw;
759 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
760 AssertMsg(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Vrc fPageShw=%VX64\n", rc, fPageShw));
761# endif /* VBOX_STRICT */
762 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
763 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
764 return VINF_SUCCESS;
765 }
766
767 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
768 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
769 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG)
770 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
771 {
772 uint64_t fPageGst;
773 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
774 if ( VBOX_SUCCESS(rc)
775 && !(fPageGst & X86_PTE_RW))
776 {
777 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
778 if (VBOX_SUCCESS(rc))
779 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulInRZ);
780 else
781 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulToR3);
782 return rc;
783 }
784 AssertMsgFailed(("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
785 }
786 }
787
788# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
789# ifdef VBOX_STRICT
790 /*
791 * Check for VMM page flags vs. Guest page flags consistency.
792 * Currently only for debug purposes.
793 */
794 if (VBOX_SUCCESS(rc))
795 {
796 /* Get guest page flags. */
797 uint64_t fPageGst;
798 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
799 if (VBOX_SUCCESS(rc))
800 {
801 uint64_t fPageShw;
802 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
803
804 /*
805 * Compare page flags.
806 * Note: we have AVL, A, D bits desynched.
807 */
808 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
809 ("Page flags mismatch! pvFault=%VGv GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
810 }
811 else
812 AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
813 }
814 else
815 AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
816# endif /* VBOX_STRICT */
817# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
818 }
819 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
820# endif /* PGM_OUT_OF_SYNC_IN_GC */
821 }
822 else
823 {
824 /*
825 * Page not present in Guest OS or invalid page table address.
826 * This is potential virtual page access handler food.
827 *
828 * For the present we'll say that our access handlers don't
829 * work for this case - we've already discarded the page table
830 * not present case which is identical to this.
831 *
832 * When we perchance find we need this, we will probably have AVL
833 * trees (offset based) to operate on and we can measure their speed
834 * agains mapping a page table and probably rearrange this handling
835 * a bit. (Like, searching virtual ranges before checking the
836 * physical address.)
837 */
838 }
839 }
840
841
842# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
843 /*
844 * Conclusion, this is a guest trap.
845 */
846 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
847 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFUnh);
848 return VINF_EM_RAW_GUEST_TRAP;
849# else
850 /* present, but not a monitored page; perhaps the guest is probing physical memory */
851 return VINF_EM_RAW_EMULATE_INSTR;
852# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
853
854
855# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
856
857 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
858 return VERR_INTERNAL_ERROR;
859# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
860}
861#endif /* !IN_RING3 */
862
863
864/**
865 * Emulation of the invlpg instruction.
866 *
867 *
868 * @returns VBox status code.
869 *
870 * @param pVM VM handle.
871 * @param GCPtrPage Page to invalidate.
872 *
873 * @remark ASSUMES that the guest is updating before invalidating. This order
874 * isn't required by the CPU, so this is speculative and could cause
875 * trouble.
876 *
877 * @todo Flush page or page directory only if necessary!
878 * @todo Add a #define for simply invalidating the page.
879 */
880PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
881{
882#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
883 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
884 && PGM_SHW_TYPE != PGM_TYPE_EPT
885 int rc;
886
887 LogFlow(("InvalidatePage %VGv\n", GCPtrPage));
888 /*
889 * Get the shadow PD entry and skip out if this PD isn't present.
890 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
891 */
892# if PGM_SHW_TYPE == PGM_TYPE_32BIT
893 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
894 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
895# elif PGM_SHW_TYPE == PGM_TYPE_PAE
896 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
897 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT); NOREF(iPdpte);
898 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
899 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT); NOREF(pPdptDst);
900
901 /* If the shadow PDPE isn't present, then skip the invalidate. */
902 if (!pPdptDst->a[iPdpte].n.u1Present)
903 {
904 Assert(!(pPdptDst->a[iPdpte].u & PGM_PLXFLAGS_MAPPING));
905 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
906 return VINF_SUCCESS;
907 }
908
909# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
910 /* PML4 */
911 AssertReturn(pVM->pgm.s.pHCPaePML4, VERR_INTERNAL_ERROR);
912
913 const unsigned iPml4e = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
914 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
915 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
916 PX86PDPAE pPDDst;
917 PX86PDPT pPdptDst;
918 PX86PML4E pPml4eDst = &pVM->pgm.s.pHCPaePML4->a[iPml4e];
919 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
920 if (rc != VINF_SUCCESS)
921 {
922 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
923 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
924 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
925 PGM_INVL_GUEST_TLBS();
926 return VINF_SUCCESS;
927 }
928 Assert(pPDDst);
929
930 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
931 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpte];
932
933 if (!pPdpeDst->n.u1Present)
934 {
935 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
936 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
937 PGM_INVL_GUEST_TLBS();
938 return VINF_SUCCESS;
939 }
940
941# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
942
943 const SHWPDE PdeDst = *pPdeDst;
944 if (!PdeDst.n.u1Present)
945 {
946 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
947 return VINF_SUCCESS;
948 }
949
950 /*
951 * Get the guest PD entry and calc big page.
952 */
953# if PGM_GST_TYPE == PGM_TYPE_32BIT
954 PX86PD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
955 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
956 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
957# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
958 unsigned iPDSrc;
959# if PGM_GST_TYPE == PGM_TYPE_PAE
960 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
961 X86PDPE PdpeSrc = CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte];
962# else /* AMD64 */
963 PX86PML4E pPml4eSrc;
964 X86PDPE PdpeSrc;
965 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
966# endif
967 GSTPDE PdeSrc;
968
969 if (pPDSrc)
970 PdeSrc = pPDSrc->a[iPDSrc];
971 else
972 PdeSrc.u = 0;
973# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
974
975# if PGM_GST_TYPE == PGM_TYPE_AMD64
976 const bool fIsBigPage = PdeSrc.b.u1Size;
977# else
978 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
979# endif
980
981# ifdef IN_RING3
982 /*
983 * If a CR3 Sync is pending we may ignore the invalidate page operation
984 * depending on the kind of sync and if it's a global page or not.
985 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
986 */
987# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
988 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
989 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
990 && fIsBigPage
991 && PdeSrc.b.u1Global
992 )
993 )
994# else
995 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
996# endif
997 {
998 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
999 return VINF_SUCCESS;
1000 }
1001# endif /* IN_RING3 */
1002
1003# if PGM_GST_TYPE == PGM_TYPE_AMD64
1004 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1005
1006 /* Fetch the pgm pool shadow descriptor. */
1007 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPageByHCPhys(pVM, pPml4eDst->u & X86_PML4E_PG_MASK);
1008 Assert(pShwPdpt);
1009
1010 /* Fetch the pgm pool shadow descriptor. */
1011 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & SHW_PDPE_PG_MASK);
1012 Assert(pShwPde);
1013
1014 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
1015 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
1016
1017 if ( !pPml4eSrc->n.u1Present
1018 || pShwPdpt->GCPhys != GCPhysPdpt)
1019 {
1020 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %VGv GCPhys=%VGp vs %VGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1021 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1022 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
1023 pPml4eDst->u = 0;
1024 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1025 PGM_INVL_GUEST_TLBS();
1026 return VINF_SUCCESS;
1027 }
1028 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
1029 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1030 {
1031 /*
1032 * Mark not present so we can resync the PML4E when it's used.
1033 */
1034 LogFlow(("InvalidatePage: Out-of-sync PML4E at %VGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1035 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1036 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
1037 pPml4eDst->u = 0;
1038 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1039 PGM_INVL_GUEST_TLBS();
1040 }
1041 else if (!pPml4eSrc->n.u1Accessed)
1042 {
1043 /*
1044 * Mark not present so we can set the accessed bit.
1045 */
1046 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %VGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1047 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1048 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
1049 pPml4eDst->u = 0;
1050 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1051 PGM_INVL_GUEST_TLBS();
1052 }
1053
1054 /* Check if the PDPT entry has changed. */
1055 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1056 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1057 if ( !PdpeSrc.n.u1Present
1058 || pShwPde->GCPhys != GCPhysPd)
1059 {
1060 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %VGv GCPhys=%VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1061 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1062 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1063 pPdpeDst->u = 0;
1064 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1065 PGM_INVL_GUEST_TLBS();
1066 return VINF_SUCCESS;
1067 }
1068 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1069 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1070 {
1071 /*
1072 * Mark not present so we can resync the PDPTE when it's used.
1073 */
1074 LogFlow(("InvalidatePage: Out-of-sync PDPE at %VGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1075 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1076 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1077 pPdpeDst->u = 0;
1078 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1079 PGM_INVL_GUEST_TLBS();
1080 }
1081 else if (!PdpeSrc.lm.u1Accessed)
1082 {
1083 /*
1084 * Mark not present so we can set the accessed bit.
1085 */
1086 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %VGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1087 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1088 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1089 pPdpeDst->u = 0;
1090 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1091 PGM_INVL_GUEST_TLBS();
1092 }
1093# endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1094
1095# if PGM_GST_TYPE == PGM_TYPE_PAE
1096 /* Note: This shouldn't actually be necessary as we monitor the PDPT page for changes. */
1097 if (!pPDSrc)
1098 {
1099 /* Guest PDPE not present */
1100 PX86PDPAE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* root of the 2048 PDE array */
1101 PX86PDEPAE pPDEDst = &pPDPAE->a[iPdpte * X86_PG_PAE_ENTRIES];
1102 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1103
1104 Assert(!(CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte].n.u1Present));
1105 LogFlow(("InvalidatePage: guest PDPE %d not present; clear shw pdpe\n", iPdpte));
1106 /* for each page directory entry */
1107 for (unsigned iPD = 0; iPD < X86_PG_PAE_ENTRIES; iPD++)
1108 {
1109 if ( pPDEDst[iPD].n.u1Present
1110 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
1111 {
1112 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst[iPD].u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdpte * X86_PG_PAE_ENTRIES + iPD);
1113 pPDEDst[iPD].u = 0;
1114 }
1115 }
1116 if (!(pPdptDst->a[iPdpte].u & PGM_PLXFLAGS_MAPPING))
1117 pPdptDst->a[iPdpte].n.u1Present = 0;
1118 PGM_INVL_GUEST_TLBS();
1119 }
1120 AssertMsg(pVM->pgm.s.fMappingsFixed || (PdpeSrc.u & X86_PDPE_PG_MASK) == pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpte], ("%VGp vs %VGp (mon)\n", (PdpeSrc.u & X86_PDPE_PG_MASK), pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpte]));
1121# endif
1122
1123
1124 /*
1125 * Deal with the Guest PDE.
1126 */
1127 rc = VINF_SUCCESS;
1128 if (PdeSrc.n.u1Present)
1129 {
1130 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1131 {
1132 /*
1133 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1134 */
1135 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1136 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1137 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1138 }
1139 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1140 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1141 {
1142 /*
1143 * Mark not present so we can resync the PDE when it's used.
1144 */
1145 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1146 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1147# if PGM_GST_TYPE == PGM_TYPE_AMD64
1148 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1149# else
1150 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1151# endif
1152 pPdeDst->u = 0;
1153 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1154 PGM_INVL_GUEST_TLBS();
1155 }
1156 else if (!PdeSrc.n.u1Accessed)
1157 {
1158 /*
1159 * Mark not present so we can set the accessed bit.
1160 */
1161 LogFlow(("InvalidatePage: Out-of-sync (A) at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1162 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1163# if PGM_GST_TYPE == PGM_TYPE_AMD64
1164 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1165# else
1166 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1167# endif
1168 pPdeDst->u = 0;
1169 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1170 PGM_INVL_GUEST_TLBS();
1171 }
1172 else if (!fIsBigPage)
1173 {
1174 /*
1175 * 4KB - page.
1176 */
1177 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1178 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1179# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1180 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1181 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1182# endif
1183 if (pShwPage->GCPhys == GCPhys)
1184 {
1185# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1186 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1187 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1188 if (pPT->a[iPTEDst].n.u1Present)
1189 {
1190# ifdef PGMPOOL_WITH_USER_TRACKING
1191 /* This is very unlikely with caching/monitoring enabled. */
1192 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1193# endif
1194 pPT->a[iPTEDst].u = 0;
1195 }
1196# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1197 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1198 if (VBOX_SUCCESS(rc))
1199 rc = VINF_SUCCESS;
1200# endif
1201 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1202 PGM_INVL_PG(GCPtrPage);
1203 }
1204 else
1205 {
1206 /*
1207 * The page table address changed.
1208 */
1209 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
1210 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1211# if PGM_GST_TYPE == PGM_TYPE_AMD64
1212 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1213# else
1214 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1215# endif
1216 pPdeDst->u = 0;
1217 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1218 PGM_INVL_GUEST_TLBS();
1219 }
1220 }
1221 else
1222 {
1223 /*
1224 * 2/4MB - page.
1225 */
1226 /* Before freeing the page, check if anything really changed. */
1227 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1228 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1229# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1230 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1231 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1232# endif
1233 if ( pShwPage->GCPhys == GCPhys
1234 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1235 {
1236 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1237 /** @todo PAT */
1238 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1239 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1240 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1241 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1242 {
1243 LogFlow(("Skipping flush for big page containing %VGv (PD=%X .u=%VX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1244 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1245 return VINF_SUCCESS;
1246 }
1247 }
1248
1249 /*
1250 * Ok, the page table is present and it's been changed in the guest.
1251 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1252 * We could do this for some flushes in GC too, but we need an algorithm for
1253 * deciding which 4MB pages containing code likely to be executed very soon.
1254 */
1255 LogFlow(("InvalidatePage: Out-of-sync PD at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1256 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1257# if PGM_GST_TYPE == PGM_TYPE_AMD64
1258 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1259# else
1260 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1261# endif
1262 pPdeDst->u = 0;
1263 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1264 PGM_INVL_BIG_PG(GCPtrPage);
1265 }
1266 }
1267 else
1268 {
1269 /*
1270 * Page directory is not present, mark shadow PDE not present.
1271 */
1272 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1273 {
1274# if PGM_GST_TYPE == PGM_TYPE_AMD64
1275 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1276# else
1277 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1278# endif
1279 pPdeDst->u = 0;
1280 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1281 PGM_INVL_PG(GCPtrPage);
1282 }
1283 else
1284 {
1285 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1286 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1287 }
1288 }
1289
1290 return rc;
1291
1292#else /* guest real and protected mode */
1293 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1294 return VINF_SUCCESS;
1295#endif
1296}
1297
1298
1299#ifdef PGMPOOL_WITH_USER_TRACKING
1300/**
1301 * Update the tracking of shadowed pages.
1302 *
1303 * @param pVM The VM handle.
1304 * @param pShwPage The shadow page.
1305 * @param HCPhys The physical page we is being dereferenced.
1306 */
1307DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1308{
1309# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1310 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1311 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1312
1313 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1314 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1315 * 2. write protect all shadowed pages. I.e. implement caching.
1316 */
1317 /*
1318 * Find the guest address.
1319 */
1320 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1321 pRam;
1322 pRam = pRam->CTX_SUFF(pNext))
1323 {
1324 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1325 while (iPage-- > 0)
1326 {
1327 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1328 {
1329 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1330 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1331 pShwPage->cPresent--;
1332 pPool->cPresent--;
1333 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1334 return;
1335 }
1336 }
1337 }
1338
1339 for (;;)
1340 AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
1341# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1342 pShwPage->cPresent--;
1343 pVM->pgm.s.CTX_SUFF(pPool)->cPresent--;
1344# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1345}
1346
1347
1348/**
1349 * Update the tracking of shadowed pages.
1350 *
1351 * @param pVM The VM handle.
1352 * @param pShwPage The shadow page.
1353 * @param u16 The top 16-bit of the pPage->HCPhys.
1354 * @param pPage Pointer to the guest page. this will be modified.
1355 * @param iPTDst The index into the shadow table.
1356 */
1357DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1358{
1359# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1360 /*
1361 * We're making certain assumptions about the placement of cRef and idx.
1362 */
1363 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1364 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1365
1366 /*
1367 * Just deal with the simple first time here.
1368 */
1369 if (!u16)
1370 {
1371 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1372 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1373 }
1374 else
1375 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1376
1377 /* write back, trying to be clever... */
1378 Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%VHp->%VHp iPTDst=%#x\n",
1379 u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1380 *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
1381# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1382
1383 /* update statistics. */
1384 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1385 pShwPage->cPresent++;
1386 if (pShwPage->iFirstPresent > iPTDst)
1387 pShwPage->iFirstPresent = iPTDst;
1388}
1389#endif /* PGMPOOL_WITH_USER_TRACKING */
1390
1391
1392/**
1393 * Creates a 4K shadow page for a guest page.
1394 *
1395 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1396 * physical address. The PdeSrc argument only the flags are used. No page structured
1397 * will be mapped in this function.
1398 *
1399 * @param pVM VM handle.
1400 * @param pPteDst Destination page table entry.
1401 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1402 * Can safely assume that only the flags are being used.
1403 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1404 * @param pShwPage Pointer to the shadow page.
1405 * @param iPTDst The index into the shadow table.
1406 *
1407 * @remark Not used for 2/4MB pages!
1408 */
1409DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1410{
1411 if (PteSrc.n.u1Present)
1412 {
1413 /*
1414 * Find the ram range.
1415 */
1416 PPGMPAGE pPage;
1417 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1418 if (VBOX_SUCCESS(rc))
1419 {
1420 /** @todo investiage PWT, PCD and PAT. */
1421 /*
1422 * Make page table entry.
1423 */
1424 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1425 SHWPTE PteDst;
1426 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1427 {
1428 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1429 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1430 {
1431#if PGM_SHW_TYPE == PGM_TYPE_EPT
1432 PteDst.u = (HCPhys & EPT_PTE_PG_MASK);
1433 PteDst.n.u1Present = 1;
1434 PteDst.n.u1Execute = 1;
1435 PteDst.n.u1IgnorePAT = 1;
1436 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1437 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1438#else
1439 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1440 | (HCPhys & X86_PTE_PAE_PG_MASK);
1441#endif
1442 }
1443 else
1444 {
1445 LogFlow(("SyncPageWorker: monitored page (%VGp) -> mark not present\n", HCPhys));
1446 PteDst.u = 0;
1447 }
1448 /** @todo count these two kinds. */
1449 }
1450 else
1451 {
1452#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1453 /*
1454 * If the page or page directory entry is not marked accessed,
1455 * we mark the page not present.
1456 */
1457 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1458 {
1459 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1460 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1461 PteDst.u = 0;
1462 }
1463 else
1464 /*
1465 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1466 * when the page is modified.
1467 */
1468 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1469 {
1470 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1471 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1472 | (HCPhys & X86_PTE_PAE_PG_MASK)
1473 | PGM_PTFLAGS_TRACK_DIRTY;
1474 }
1475 else
1476#endif
1477 {
1478 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1479#if PGM_SHW_TYPE == PGM_TYPE_EPT
1480 PteDst.u = (HCPhys & EPT_PTE_PG_MASK);
1481 PteDst.n.u1Present = 1;
1482 PteDst.n.u1Write = 1;
1483 PteDst.n.u1Execute = 1;
1484 PteDst.n.u1IgnorePAT = 1;
1485 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1486 /* PteDst.n.u1Size = 0 */
1487#else
1488 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1489 | (HCPhys & X86_PTE_PAE_PG_MASK);
1490#endif
1491 }
1492 }
1493
1494#ifdef PGMPOOL_WITH_USER_TRACKING
1495 /*
1496 * Keep user track up to date.
1497 */
1498 if (PteDst.n.u1Present)
1499 {
1500 if (!pPteDst->n.u1Present)
1501 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1502 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1503 {
1504 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1505 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1506 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1507 }
1508 }
1509 else if (pPteDst->n.u1Present)
1510 {
1511 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1512 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1513 }
1514#endif /* PGMPOOL_WITH_USER_TRACKING */
1515
1516 /*
1517 * Update statistics and commit the entry.
1518 */
1519 if (!PteSrc.n.u1Global)
1520 pShwPage->fSeenNonGlobal = true;
1521 *pPteDst = PteDst;
1522 }
1523 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1524 /** @todo count these. */
1525 }
1526 else
1527 {
1528 /*
1529 * Page not-present.
1530 */
1531 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1532#ifdef PGMPOOL_WITH_USER_TRACKING
1533 /* Keep user track up to date. */
1534 if (pPteDst->n.u1Present)
1535 {
1536 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1537 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1538 }
1539#endif /* PGMPOOL_WITH_USER_TRACKING */
1540 pPteDst->u = 0;
1541 /** @todo count these. */
1542 }
1543}
1544
1545
1546/**
1547 * Syncs a guest OS page.
1548 *
1549 * There are no conflicts at this point, neither is there any need for
1550 * page table allocations.
1551 *
1552 * @returns VBox status code.
1553 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1554 * @param pVM VM handle.
1555 * @param PdeSrc Page directory entry of the guest.
1556 * @param GCPtrPage Guest context page address.
1557 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1558 * @param uErr Fault error (X86_TRAP_PF_*).
1559 */
1560PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
1561{
1562 LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
1563
1564#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1565 || PGM_GST_TYPE == PGM_TYPE_PAE \
1566 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1567 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1568 && PGM_SHW_TYPE != PGM_TYPE_EPT
1569
1570# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1571 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1572# endif
1573
1574 /*
1575 * Assert preconditions.
1576 */
1577 Assert(PdeSrc.n.u1Present);
1578 Assert(cPages);
1579 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1580
1581 /*
1582 * Get the shadow PDE, find the shadow page table in the pool.
1583 */
1584# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1585 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1586 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1587# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1588 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1589 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT); NOREF(iPdpte); /* no mask; flat index into the 2048 entry array. */
1590 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT); NOREF(pPdptDst);
1591 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1592# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1593 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1594 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1595 PX86PDPAE pPDDst;
1596 X86PDEPAE PdeDst;
1597 PX86PDPT pPdptDst;
1598
1599 int rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
1600 AssertRCSuccessReturn(rc, rc);
1601 Assert(pPDDst && pPdptDst);
1602 PdeDst = pPDDst->a[iPDDst];
1603# endif
1604 Assert(PdeDst.n.u1Present);
1605 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1606
1607# if PGM_GST_TYPE == PGM_TYPE_AMD64
1608 /* Fetch the pgm pool shadow descriptor. */
1609 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
1610 Assert(pShwPde);
1611# endif
1612
1613 /*
1614 * Check that the page is present and that the shadow PDE isn't out of sync.
1615 */
1616# if PGM_GST_TYPE == PGM_TYPE_AMD64
1617 const bool fBigPage = PdeSrc.b.u1Size;
1618# else
1619 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1620# endif
1621 RTGCPHYS GCPhys;
1622 if (!fBigPage)
1623 {
1624 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1625# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1626 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1627 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1628# endif
1629 }
1630 else
1631 {
1632 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1633# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1634 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1635 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1636# endif
1637 }
1638 if ( pShwPage->GCPhys == GCPhys
1639 && PdeSrc.n.u1Present
1640 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1641 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1642# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1643 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1644# endif
1645 )
1646 {
1647 /*
1648 * Check that the PDE is marked accessed already.
1649 * Since we set the accessed bit *before* getting here on a #PF, this
1650 * check is only meant for dealing with non-#PF'ing paths.
1651 */
1652 if (PdeSrc.n.u1Accessed)
1653 {
1654 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1655 if (!fBigPage)
1656 {
1657 /*
1658 * 4KB Page - Map the guest page table.
1659 */
1660 PGSTPT pPTSrc;
1661 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1662 if (VBOX_SUCCESS(rc))
1663 {
1664# ifdef PGM_SYNC_N_PAGES
1665 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1666 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1667 {
1668 /*
1669 * This code path is currently only taken when the caller is PGMTrap0eHandler
1670 * for non-present pages!
1671 *
1672 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1673 * deal with locality.
1674 */
1675 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1676# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1677 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1678 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1679# else
1680 const unsigned offPTSrc = 0;
1681# endif
1682 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1683 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1684 iPTDst = 0;
1685 else
1686 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1687 for (; iPTDst < iPTDstEnd; iPTDst++)
1688 {
1689 if (!pPTDst->a[iPTDst].n.u1Present)
1690 {
1691 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1692 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1693 NOREF(GCPtrCurPage);
1694#ifndef IN_RING0
1695 /*
1696 * Assuming kernel code will be marked as supervisor - and not as user level
1697 * and executed using a conforming code selector - And marked as readonly.
1698 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1699 */
1700 PPGMPAGE pPage;
1701 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1702 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1703 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1704 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1705 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1706 )
1707#endif /* else: CSAM not active */
1708 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1709 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1710 GCPtrCurPage, PteSrc.n.u1Present,
1711 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1712 PteSrc.n.u1User & PdeSrc.n.u1User,
1713 (uint64_t)PteSrc.u,
1714 (uint64_t)pPTDst->a[iPTDst].u,
1715 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1716 }
1717 }
1718 }
1719 else
1720# endif /* PGM_SYNC_N_PAGES */
1721 {
1722 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1723 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1724 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1725 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1726 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1727 GCPtrPage, PteSrc.n.u1Present,
1728 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1729 PteSrc.n.u1User & PdeSrc.n.u1User,
1730 (uint64_t)PteSrc.u,
1731 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1732 }
1733 }
1734 else /* MMIO or invalid page: emulated in #PF handler. */
1735 {
1736 LogFlow(("PGM_GCPHYS_2_PTR %VGp failed with %Vrc\n", GCPhys, rc));
1737 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1738 }
1739 }
1740 else
1741 {
1742 /*
1743 * 4/2MB page - lazy syncing shadow 4K pages.
1744 * (There are many causes of getting here, it's no longer only CSAM.)
1745 */
1746 /* Calculate the GC physical address of this 4KB shadow page. */
1747 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | ((RTGCUINTPTR)GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1748 /* Find ram range. */
1749 PPGMPAGE pPage;
1750 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1751 if (VBOX_SUCCESS(rc))
1752 {
1753 /*
1754 * Make shadow PTE entry.
1755 */
1756 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1757 SHWPTE PteDst;
1758 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1759 | (HCPhys & X86_PTE_PAE_PG_MASK);
1760 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1761 {
1762 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1763 PteDst.n.u1Write = 0;
1764 else
1765 PteDst.u = 0;
1766 }
1767 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1768# ifdef PGMPOOL_WITH_USER_TRACKING
1769 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1770 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1771# endif
1772 pPTDst->a[iPTDst] = PteDst;
1773
1774
1775 /*
1776 * If the page is not flagged as dirty and is writable, then make it read-only
1777 * at PD level, so we can set the dirty bit when the page is modified.
1778 *
1779 * ASSUMES that page access handlers are implemented on page table entry level.
1780 * Thus we will first catch the dirty access and set PDE.D and restart. If
1781 * there is an access handler, we'll trap again and let it work on the problem.
1782 */
1783 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1784 * As for invlpg, it simply frees the whole shadow PT.
1785 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1786 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1787 {
1788 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1789 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1790 PdeDst.n.u1Write = 0;
1791 }
1792 else
1793 {
1794 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1795 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1796 }
1797# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1798 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1799# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1800 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
1801# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1802 pPDDst->a[iPDDst] = PdeDst;
1803# endif
1804 Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
1805 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1806 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1807 }
1808 else
1809 LogFlow(("PGM_GCPHYS_2_PTR %VGp (big) failed with %Vrc\n", GCPhys, rc));
1810 }
1811 return VINF_SUCCESS;
1812 }
1813 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1814 }
1815 else
1816 {
1817 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1818 Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1819 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1820 }
1821
1822 /*
1823 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1824 * Yea, I'm lazy.
1825 */
1826 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1827# if PGM_GST_TYPE == PGM_TYPE_AMD64
1828 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1829# else
1830 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPDDst);
1831# endif
1832
1833# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1834 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1835# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1836 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
1837# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1838 pPDDst->a[iPDDst].u = 0;
1839# endif
1840 PGM_INVL_GUEST_TLBS();
1841 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1842
1843#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1844 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1845 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
1846
1847# ifdef PGM_SYNC_N_PAGES
1848 /*
1849 * Get the shadow PDE, find the shadow page table in the pool.
1850 */
1851# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1852 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1853 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1854# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1855 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
1856 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1857# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1858 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1859 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpte);
1860 PX86PDPAE pPDDst;
1861 X86PDEPAE PdeDst;
1862 PX86PDPT pPdptDst;
1863
1864 int rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
1865 AssertRCSuccessReturn(rc, rc);
1866 Assert(pPDDst && pPdptDst);
1867 PdeDst = pPDDst->a[iPDDst];
1868# elif PGM_SHW_TYPE == PGM_TYPE_EPT
1869 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1870 PEPTPD pPDDst;
1871 EPTPDE PdeDst;
1872
1873 int rc = PGMShwGetEPTPDPtr(pVM, GCPtrPage, NULL, &pPDDst);
1874 if (rc != VINF_SUCCESS)
1875 {
1876 AssertRC(rc);
1877 return rc;
1878 }
1879 Assert(pPDDst);
1880 PdeDst = pPDDst->a[iPDDst];
1881# endif
1882 Assert(PdeDst.n.u1Present);
1883 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1884 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1885
1886 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1887 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1888 {
1889 /*
1890 * This code path is currently only taken when the caller is PGMTrap0eHandler
1891 * for non-present pages!
1892 *
1893 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1894 * deal with locality.
1895 */
1896 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1897 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1898 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1899 iPTDst = 0;
1900 else
1901 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1902 for (; iPTDst < iPTDstEnd; iPTDst++)
1903 {
1904 if (!pPTDst->a[iPTDst].n.u1Present)
1905 {
1906 GSTPTE PteSrc;
1907
1908 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1909
1910 /* Fake the page table entry */
1911 PteSrc.u = GCPtrCurPage;
1912 PteSrc.n.u1Present = 1;
1913 PteSrc.n.u1Dirty = 1;
1914 PteSrc.n.u1Accessed = 1;
1915 PteSrc.n.u1Write = 1;
1916 PteSrc.n.u1User = 1;
1917
1918 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1919
1920 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1921 GCPtrCurPage, PteSrc.n.u1Present,
1922 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1923 PteSrc.n.u1User & PdeSrc.n.u1User,
1924 (uint64_t)PteSrc.u,
1925 (uint64_t)pPTDst->a[iPTDst].u,
1926 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1927 }
1928 else
1929 Log4(("%VGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
1930 }
1931 }
1932 else
1933# endif /* PGM_SYNC_N_PAGES */
1934 {
1935 GSTPTE PteSrc;
1936 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1937 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1938
1939 /* Fake the page table entry */
1940 PteSrc.u = GCPtrCurPage;
1941 PteSrc.n.u1Present = 1;
1942 PteSrc.n.u1Dirty = 1;
1943 PteSrc.n.u1Accessed = 1;
1944 PteSrc.n.u1Write = 1;
1945 PteSrc.n.u1User = 1;
1946 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1947
1948 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
1949 GCPtrPage, PteSrc.n.u1Present,
1950 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1951 PteSrc.n.u1User & PdeSrc.n.u1User,
1952 (uint64_t)PteSrc.u,
1953 (uint64_t)pPTDst->a[iPTDst].u,
1954 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1955 }
1956 return VINF_SUCCESS;
1957
1958#else
1959 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1960 return VERR_INTERNAL_ERROR;
1961#endif
1962}
1963
1964
1965#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1966/**
1967 * Investigate page fault and handle write protection page faults caused by
1968 * dirty bit tracking.
1969 *
1970 * @returns VBox status code.
1971 * @param pVM VM handle.
1972 * @param uErr Page fault error code.
1973 * @param pPdeDst Shadow page directory entry.
1974 * @param pPdeSrc Guest page directory entry.
1975 * @param GCPtrPage Guest context page address.
1976 */
1977PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
1978{
1979 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
1980 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
1981 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
1982# if PGM_GST_TYPE == PGM_TYPE_AMD64
1983 bool fBigPagesSupported = true;
1984# else
1985 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1986# endif
1987# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1988 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1989# endif
1990 unsigned uPageFaultLevel;
1991 int rc;
1992
1993 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
1994 LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
1995
1996# if PGM_GST_TYPE == PGM_TYPE_PAE \
1997 || PGM_GST_TYPE == PGM_TYPE_AMD64
1998
1999# if PGM_GST_TYPE == PGM_TYPE_AMD64
2000 PX86PML4E pPml4eSrc;
2001 PX86PDPE pPdpeSrc;
2002
2003 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
2004 Assert(pPml4eSrc);
2005
2006 /*
2007 * Real page fault? (PML4E level)
2008 */
2009 if ( (uErr & X86_TRAP_PF_RSVD)
2010 || !pPml4eSrc->n.u1Present
2011 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
2012 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2013 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2014 )
2015 {
2016 uPageFaultLevel = 0;
2017 goto l_UpperLevelPageFault;
2018 }
2019 Assert(pPdpeSrc);
2020
2021# else /* PAE */
2022 PX86PDPE pPdpeSrc = &pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtrPage >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
2023# endif
2024
2025 /*
2026 * Real page fault? (PDPE level)
2027 */
2028 if ( (uErr & X86_TRAP_PF_RSVD)
2029 || !pPdpeSrc->n.u1Present
2030# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2031 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
2032 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
2033 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2034# endif
2035 )
2036 {
2037 uPageFaultLevel = 1;
2038 goto l_UpperLevelPageFault;
2039 }
2040# endif
2041
2042 /*
2043 * Real page fault? (PDE level)
2044 */
2045 if ( (uErr & X86_TRAP_PF_RSVD)
2046 || !pPdeSrc->n.u1Present
2047# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2048 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
2049# endif
2050 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2051 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2052 {
2053 uPageFaultLevel = 2;
2054 goto l_UpperLevelPageFault;
2055 }
2056
2057 /*
2058 * First check the easy case where the page directory has been marked read-only to track
2059 * the dirty bit of an emulated BIG page
2060 */
2061 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2062 {
2063 /* Mark guest page directory as accessed */
2064# if PGM_GST_TYPE == PGM_TYPE_AMD64
2065 pPml4eSrc->n.u1Accessed = 1;
2066 pPdpeSrc->lm.u1Accessed = 1;
2067# endif
2068 pPdeSrc->b.u1Accessed = 1;
2069
2070 /*
2071 * Only write protection page faults are relevant here.
2072 */
2073 if (fWriteFault)
2074 {
2075 /* Mark guest page directory as dirty (BIG page only). */
2076 pPdeSrc->b.u1Dirty = 1;
2077
2078 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2079 {
2080 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2081
2082 Assert(pPdeSrc->b.u1Write);
2083
2084 pPdeDst->n.u1Write = 1;
2085 pPdeDst->n.u1Accessed = 1;
2086 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2087 PGM_INVL_BIG_PG(GCPtrPage);
2088 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2089 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2090 }
2091 }
2092 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2093 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2094 }
2095 /* else: 4KB page table */
2096
2097 /*
2098 * Map the guest page table.
2099 */
2100 PGSTPT pPTSrc;
2101 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2102 if (VBOX_SUCCESS(rc))
2103 {
2104 /*
2105 * Real page fault?
2106 */
2107 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2108 const GSTPTE PteSrc = *pPteSrc;
2109 if ( !PteSrc.n.u1Present
2110# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2111 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2112# endif
2113 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2114 || (fUserLevelFault && !PteSrc.n.u1User)
2115 )
2116 {
2117 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2118 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2119 LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2120
2121 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2122 * See the 2nd case above as well.
2123 */
2124 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2125 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2126
2127 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2128 return VINF_EM_RAW_GUEST_TRAP;
2129 }
2130 LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2131
2132 /*
2133 * Set the accessed bits in the page directory and the page table.
2134 */
2135# if PGM_GST_TYPE == PGM_TYPE_AMD64
2136 pPml4eSrc->n.u1Accessed = 1;
2137 pPdpeSrc->lm.u1Accessed = 1;
2138# endif
2139 pPdeSrc->n.u1Accessed = 1;
2140 pPteSrc->n.u1Accessed = 1;
2141
2142 /*
2143 * Only write protection page faults are relevant here.
2144 */
2145 if (fWriteFault)
2146 {
2147 /* Write access, so mark guest entry as dirty. */
2148# ifdef VBOX_WITH_STATISTICS
2149 if (!pPteSrc->n.u1Dirty)
2150 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2151 else
2152 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2153# endif
2154
2155 pPteSrc->n.u1Dirty = 1;
2156
2157 if (pPdeDst->n.u1Present)
2158 {
2159#ifndef IN_RING0
2160 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2161 * Our individual shadow handlers will provide more information and force a fatal exit.
2162 */
2163 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2164 {
2165 LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
2166 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2167 return VINF_SUCCESS;
2168 }
2169#endif
2170 /*
2171 * Map shadow page table.
2172 */
2173 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2174 if (pShwPage)
2175 {
2176 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2177 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2178 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2179 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2180 {
2181 LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
2182# ifdef VBOX_STRICT
2183 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2184 if (pPage)
2185 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2186 ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2187# endif
2188 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2189
2190 Assert(pPteSrc->n.u1Write);
2191
2192 pPteDst->n.u1Write = 1;
2193 pPteDst->n.u1Dirty = 1;
2194 pPteDst->n.u1Accessed = 1;
2195 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2196 PGM_INVL_PG(GCPtrPage);
2197
2198 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2199 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2200 }
2201 }
2202 else
2203 AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2204 }
2205 }
2206/** @todo Optimize accessed bit emulation? */
2207# ifdef VBOX_STRICT
2208 /*
2209 * Sanity check.
2210 */
2211 else if ( !pPteSrc->n.u1Dirty
2212 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2213 && pPdeDst->n.u1Present)
2214 {
2215 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2216 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2217 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2218 if ( pPteDst->n.u1Present
2219 && pPteDst->n.u1Write)
2220 LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2221 }
2222# endif /* VBOX_STRICT */
2223 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2224 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2225 }
2226 AssertRC(rc);
2227 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2228 return rc;
2229
2230
2231l_UpperLevelPageFault:
2232 /*
2233 * Pagefault detected while checking the PML4E, PDPE or PDE.
2234 * Single exit handler to get rid of duplicate code paths.
2235 */
2236 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2237 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2238 Log(("CheckPageFault: real page fault at %VGv (%d)\n", GCPtrPage, uPageFaultLevel));
2239
2240 if (
2241# if PGM_GST_TYPE == PGM_TYPE_AMD64
2242 pPml4eSrc->n.u1Present &&
2243# endif
2244# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2245 pPdpeSrc->n.u1Present &&
2246# endif
2247 pPdeSrc->n.u1Present)
2248 {
2249 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2250 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2251 {
2252 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2253 }
2254 else
2255 {
2256 /*
2257 * Map the guest page table.
2258 */
2259 PGSTPT pPTSrc;
2260 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2261 if (VBOX_SUCCESS(rc))
2262 {
2263 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2264 const GSTPTE PteSrc = *pPteSrc;
2265 if (pPteSrc->n.u1Present)
2266 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2267 }
2268 AssertRC(rc);
2269 }
2270 }
2271 return VINF_EM_RAW_GUEST_TRAP;
2272}
2273#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2274
2275
2276/**
2277 * Sync a shadow page table.
2278 *
2279 * The shadow page table is not present. This includes the case where
2280 * there is a conflict with a mapping.
2281 *
2282 * @returns VBox status code.
2283 * @param pVM VM handle.
2284 * @param iPD Page directory index.
2285 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2286 * Assume this is a temporary mapping.
2287 * @param GCPtrPage GC Pointer of the page that caused the fault
2288 */
2289PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage)
2290{
2291 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2292 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPtPD[iPDSrc]);
2293 LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
2294
2295#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2296 || PGM_GST_TYPE == PGM_TYPE_PAE \
2297 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2298 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2299 && PGM_SHW_TYPE != PGM_TYPE_EPT
2300
2301 int rc = VINF_SUCCESS;
2302
2303 /*
2304 * Validate input a little bit.
2305 */
2306 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%VGv\n", iPDSrc, GCPtrPage));
2307# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2308 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2309 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2310# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2311 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
2312 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT); NOREF(iPdpte);
2313 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT); NOREF(pPdptDst);
2314 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2315# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2316 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2317 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2318 PX86PDPAE pPDDst;
2319 PX86PDPT pPdptDst;
2320 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2321 AssertRCSuccessReturn(rc, rc);
2322 Assert(pPDDst);
2323# endif
2324
2325 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2326 SHWPDE PdeDst = *pPdeDst;
2327
2328# if PGM_GST_TYPE == PGM_TYPE_AMD64
2329 /* Fetch the pgm pool shadow descriptor. */
2330 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
2331 Assert(pShwPde);
2332# endif
2333
2334# ifndef PGM_WITHOUT_MAPPINGS
2335 /*
2336 * Check for conflicts.
2337 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2338 * HC: Simply resolve the conflict.
2339 */
2340 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2341 {
2342 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2343# ifndef IN_RING3
2344 Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
2345 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2346 return VERR_ADDRESS_CONFLICT;
2347# else
2348 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2349 Assert(pMapping);
2350# if PGM_GST_TYPE == PGM_TYPE_32BIT
2351 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2352# elif PGM_GST_TYPE == PGM_TYPE_PAE
2353 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2354# else
2355 AssertFailed(); /* can't happen for amd64 */
2356# endif
2357 if (VBOX_FAILURE(rc))
2358 {
2359 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2360 return rc;
2361 }
2362 PdeDst = *pPdeDst;
2363# endif
2364 }
2365# else /* PGM_WITHOUT_MAPPINGS */
2366 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2367# endif /* PGM_WITHOUT_MAPPINGS */
2368 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2369
2370 /*
2371 * Sync page directory entry.
2372 */
2373 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2374 if (PdeSrc.n.u1Present)
2375 {
2376 /*
2377 * Allocate & map the page table.
2378 */
2379 PSHWPT pPTDst;
2380# if PGM_GST_TYPE == PGM_TYPE_AMD64
2381 const bool fPageTable = !PdeSrc.b.u1Size;
2382# else
2383 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2384# endif
2385 PPGMPOOLPAGE pShwPage;
2386 RTGCPHYS GCPhys;
2387 if (fPageTable)
2388 {
2389 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2390# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2391 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2392 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2393# endif
2394# if PGM_GST_TYPE == PGM_TYPE_AMD64
2395 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2396# else
2397 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2398# endif
2399 }
2400 else
2401 {
2402 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2403# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2404 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2405 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2406# endif
2407# if PGM_GST_TYPE == PGM_TYPE_AMD64
2408 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, pShwPde->idx, iPDDst, &pShwPage);
2409# else
2410 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2411# endif
2412 }
2413 if (rc == VINF_SUCCESS)
2414 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2415 else if (rc == VINF_PGM_CACHED_PAGE)
2416 {
2417 /*
2418 * The PT was cached, just hook it up.
2419 */
2420 if (fPageTable)
2421 PdeDst.u = pShwPage->Core.Key
2422 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2423 else
2424 {
2425 PdeDst.u = pShwPage->Core.Key
2426 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2427 /* (see explanation and assumptions further down.) */
2428 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2429 {
2430 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2431 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2432 PdeDst.b.u1Write = 0;
2433 }
2434 }
2435 *pPdeDst = PdeDst;
2436 return VINF_SUCCESS;
2437 }
2438 else if (rc == VERR_PGM_POOL_FLUSHED)
2439 {
2440 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2441 return VINF_PGM_SYNC_CR3;
2442 }
2443 else
2444 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2445 PdeDst.u &= X86_PDE_AVL_MASK;
2446 PdeDst.u |= pShwPage->Core.Key;
2447
2448 /*
2449 * Page directory has been accessed (this is a fault situation, remember).
2450 */
2451 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2452 if (fPageTable)
2453 {
2454 /*
2455 * Page table - 4KB.
2456 *
2457 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2458 */
2459 Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2460 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2461 PGSTPT pPTSrc;
2462 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2463 if (VBOX_SUCCESS(rc))
2464 {
2465 /*
2466 * Start by syncing the page directory entry so CSAM's TLB trick works.
2467 */
2468 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2469 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2470 *pPdeDst = PdeDst;
2471
2472 /*
2473 * Directory/page user or supervisor privilege: (same goes for read/write)
2474 *
2475 * Directory Page Combined
2476 * U/S U/S U/S
2477 * 0 0 0
2478 * 0 1 0
2479 * 1 0 0
2480 * 1 1 1
2481 *
2482 * Simple AND operation. Table listed for completeness.
2483 *
2484 */
2485 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2486# ifdef PGM_SYNC_N_PAGES
2487 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2488 unsigned iPTDst = iPTBase;
2489 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2490 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2491 iPTDst = 0;
2492 else
2493 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2494# else /* !PGM_SYNC_N_PAGES */
2495 unsigned iPTDst = 0;
2496 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2497# endif /* !PGM_SYNC_N_PAGES */
2498# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2499 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2500 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2501# else
2502 const unsigned offPTSrc = 0;
2503# endif
2504 for (; iPTDst < iPTDstEnd; iPTDst++)
2505 {
2506 const unsigned iPTSrc = iPTDst + offPTSrc;
2507 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2508
2509 if (PteSrc.n.u1Present) /* we've already cleared it above */
2510 {
2511# ifndef IN_RING0
2512 /*
2513 * Assuming kernel code will be marked as supervisor - and not as user level
2514 * and executed using a conforming code selector - And marked as readonly.
2515 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2516 */
2517 PPGMPAGE pPage;
2518 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2519 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2520 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2521 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2522 )
2523# endif
2524 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2525 Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
2526 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2527 PteSrc.n.u1Present,
2528 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2529 PteSrc.n.u1User & PdeSrc.n.u1User,
2530 (uint64_t)PteSrc.u,
2531 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2532 (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
2533 }
2534 } /* for PTEs */
2535 }
2536 }
2537 else
2538 {
2539 /*
2540 * Big page - 2/4MB.
2541 *
2542 * We'll walk the ram range list in parallel and optimize lookups.
2543 * We will only sync on shadow page table at a time.
2544 */
2545 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2546
2547 /**
2548 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2549 */
2550
2551 /*
2552 * Start by syncing the page directory entry.
2553 */
2554 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2555 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2556
2557 /*
2558 * If the page is not flagged as dirty and is writable, then make it read-only
2559 * at PD level, so we can set the dirty bit when the page is modified.
2560 *
2561 * ASSUMES that page access handlers are implemented on page table entry level.
2562 * Thus we will first catch the dirty access and set PDE.D and restart. If
2563 * there is an access handler, we'll trap again and let it work on the problem.
2564 */
2565 /** @todo move the above stuff to a section in the PGM documentation. */
2566 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2567 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2568 {
2569 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2570 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2571 PdeDst.b.u1Write = 0;
2572 }
2573 *pPdeDst = PdeDst;
2574
2575 /*
2576 * Fill the shadow page table.
2577 */
2578 /* Get address and flags from the source PDE. */
2579 SHWPTE PteDstBase;
2580 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2581
2582 /* Loop thru the entries in the shadow PT. */
2583 const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2584 Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
2585 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2586 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2587 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2588 unsigned iPTDst = 0;
2589 while (iPTDst < RT_ELEMENTS(pPTDst->a))
2590 {
2591 /* Advance ram range list. */
2592 while (pRam && GCPhys > pRam->GCPhysLast)
2593 pRam = pRam->CTX_SUFF(pNext);
2594 if (pRam && GCPhys >= pRam->GCPhys)
2595 {
2596 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2597 do
2598 {
2599 /* Make shadow PTE. */
2600 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2601 SHWPTE PteDst;
2602
2603 /* Make sure the RAM has already been allocated. */
2604 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2605 {
2606 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2607 {
2608# ifdef IN_RING3
2609 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2610# else
2611 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2612# endif
2613 if (rc != VINF_SUCCESS)
2614 return rc;
2615 }
2616 }
2617
2618 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2619 {
2620 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2621 {
2622 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2623 PteDst.n.u1Write = 0;
2624 }
2625 else
2626 PteDst.u = 0;
2627 }
2628# ifndef IN_RING0
2629 /*
2630 * Assuming kernel code will be marked as supervisor and not as user level and executed
2631 * using a conforming code selector. Don't check for readonly, as that implies the whole
2632 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2633 */
2634 else if ( !PdeSrc.n.u1User
2635 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2636 PteDst.u = 0;
2637# endif
2638 else
2639 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2640# ifdef PGMPOOL_WITH_USER_TRACKING
2641 if (PteDst.n.u1Present)
2642 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2643# endif
2644 /* commit it */
2645 pPTDst->a[iPTDst] = PteDst;
2646 Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2647 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2648 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2649
2650 /* advance */
2651 GCPhys += PAGE_SIZE;
2652 iHCPage++;
2653 iPTDst++;
2654 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2655 && GCPhys <= pRam->GCPhysLast);
2656 }
2657 else if (pRam)
2658 {
2659 Log(("Invalid pages at %VGp\n", GCPhys));
2660 do
2661 {
2662 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2663 GCPhys += PAGE_SIZE;
2664 iPTDst++;
2665 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2666 && GCPhys < pRam->GCPhys);
2667 }
2668 else
2669 {
2670 Log(("Invalid pages at %VGp (2)\n", GCPhys));
2671 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2672 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2673 }
2674 } /* while more PTEs */
2675 } /* 4KB / 4MB */
2676 }
2677 else
2678 AssertRelease(!PdeDst.n.u1Present);
2679
2680 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2681 if (VBOX_FAILURE(rc))
2682 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2683 return rc;
2684
2685#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2686 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2687 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2688
2689 int rc = VINF_SUCCESS;
2690
2691 /*
2692 * Validate input a little bit.
2693 */
2694# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2695 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2696 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2697# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2698 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
2699 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2700# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2701 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2702 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2703 PX86PDPAE pPDDst;
2704 PX86PDPT pPdptDst;
2705 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2706 AssertRCSuccessReturn(rc, rc);
2707 Assert(pPDDst);
2708
2709 /* Fetch the pgm pool shadow descriptor. */
2710 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
2711 Assert(pShwPde);
2712# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2713 const unsigned iPdpte = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2714 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2715 PEPTPD pPDDst;
2716 PEPTPDPT pPdptDst;
2717
2718 rc = PGMShwGetEPTPDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2719 if (rc != VINF_SUCCESS)
2720 {
2721 AssertRC(rc);
2722 return rc;
2723 }
2724 Assert(pPDDst);
2725
2726 /* Fetch the pgm pool shadow descriptor. */
2727 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & EPT_PDPTE_PG_MASK);
2728 Assert(pShwPde);
2729# endif
2730 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2731 SHWPDE PdeDst = *pPdeDst;
2732
2733 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2734 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2735
2736 GSTPDE PdeSrc;
2737 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2738 PdeSrc.n.u1Present = 1;
2739 PdeSrc.n.u1Write = 1;
2740 PdeSrc.n.u1Accessed = 1;
2741 PdeSrc.n.u1User = 1;
2742
2743 /*
2744 * Allocate & map the page table.
2745 */
2746 PSHWPT pPTDst;
2747 PPGMPOOLPAGE pShwPage;
2748 RTGCPHYS GCPhys;
2749
2750 /* Virtual address = physical address */
2751 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
2752# if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_EPT
2753 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2754# else
2755 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2756# endif
2757
2758 if ( rc == VINF_SUCCESS
2759 || rc == VINF_PGM_CACHED_PAGE)
2760 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2761 else
2762 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2763
2764 PdeDst.u &= X86_PDE_AVL_MASK;
2765 PdeDst.u |= pShwPage->Core.Key;
2766 PdeDst.n.u1Present = 1;
2767 PdeDst.n.u1Write = 1;
2768# if PGM_SHW_TYPE == PGM_TYPE_EPT
2769 PdeDst.n.u1Execute = 1;
2770# else
2771 PdeDst.n.u1User = 1;
2772 PdeDst.n.u1Accessed = 1;
2773# endif
2774 *pPdeDst = PdeDst;
2775
2776 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2777 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2778 return rc;
2779
2780#else
2781 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2782 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2783 return VERR_INTERNAL_ERROR;
2784#endif
2785}
2786
2787
2788
2789/**
2790 * Prefetch a page/set of pages.
2791 *
2792 * Typically used to sync commonly used pages before entering raw mode
2793 * after a CR3 reload.
2794 *
2795 * @returns VBox status code.
2796 * @param pVM VM handle.
2797 * @param GCPtrPage Page to invalidate.
2798 */
2799PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
2800{
2801#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2802 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
2803 /*
2804 * Check that all Guest levels thru the PDE are present, getting the
2805 * PD and PDE in the processes.
2806 */
2807 int rc = VINF_SUCCESS;
2808# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2809# if PGM_GST_TYPE == PGM_TYPE_32BIT
2810 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2811 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2812# elif PGM_GST_TYPE == PGM_TYPE_PAE
2813 unsigned iPDSrc;
2814 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2815 if (!pPDSrc)
2816 return VINF_SUCCESS; /* not present */
2817# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2818 unsigned iPDSrc;
2819 PX86PML4E pPml4eSrc;
2820 X86PDPE PdpeSrc;
2821 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2822 if (!pPDSrc)
2823 return VINF_SUCCESS; /* not present */
2824# endif
2825 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2826# else
2827 PGSTPD pPDSrc = NULL;
2828 const unsigned iPDSrc = 0;
2829 GSTPDE PdeSrc;
2830
2831 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2832 PdeSrc.n.u1Present = 1;
2833 PdeSrc.n.u1Write = 1;
2834 PdeSrc.n.u1Accessed = 1;
2835 PdeSrc.n.u1User = 1;
2836# endif
2837
2838 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2839 {
2840# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2841 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2842# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2843 const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2844# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2845 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2846 PX86PDPAE pPDDst;
2847 X86PDEPAE PdeDst;
2848
2849# if PGM_GST_TYPE == PGM_TYPE_PROT
2850 /* AMD-V nested paging */
2851 X86PML4E Pml4eSrc;
2852 X86PDPE PdpeSrc;
2853 PX86PML4E pPml4eSrc = &Pml4eSrc;
2854
2855 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2856 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2857 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2858# endif
2859
2860 int rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2861 if (rc != VINF_SUCCESS)
2862 {
2863 AssertRC(rc);
2864 return rc;
2865 }
2866 Assert(pPDDst);
2867 PdeDst = pPDDst->a[iPDDst];
2868# endif
2869 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2870 {
2871 if (!PdeDst.n.u1Present)
2872 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2873 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2874 else
2875 {
2876 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2877 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2878 * makes no sense to prefetch more than one page.
2879 */
2880 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2881 if (VBOX_SUCCESS(rc))
2882 rc = VINF_SUCCESS;
2883 }
2884 }
2885 }
2886 return rc;
2887
2888#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
2889 return VINF_SUCCESS; /* ignore */
2890#endif
2891}
2892
2893
2894
2895
2896/**
2897 * Syncs a page during a PGMVerifyAccess() call.
2898 *
2899 * @returns VBox status code (informational included).
2900 * @param GCPtrPage The address of the page to sync.
2901 * @param fPage The effective guest page flags.
2902 * @param uErr The trap error code.
2903 */
2904PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
2905{
2906 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2907
2908 Assert(!HWACCMIsNestedPagingActive(pVM));
2909#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
2910 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
2911
2912# ifndef IN_RING0
2913 if (!(fPage & X86_PTE_US))
2914 {
2915 /*
2916 * Mark this page as safe.
2917 */
2918 /** @todo not correct for pages that contain both code and data!! */
2919 Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
2920 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
2921 }
2922# endif
2923
2924 /*
2925 * Get guest PD and index.
2926 */
2927# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2928# if PGM_GST_TYPE == PGM_TYPE_32BIT
2929 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2930 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2931# elif PGM_GST_TYPE == PGM_TYPE_PAE
2932 unsigned iPDSrc;
2933 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2934
2935 if (pPDSrc)
2936 {
2937 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2938 return VINF_EM_RAW_GUEST_TRAP;
2939 }
2940# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2941 unsigned iPDSrc;
2942 PX86PML4E pPml4eSrc;
2943 X86PDPE PdpeSrc;
2944 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2945 if (!pPDSrc)
2946 {
2947 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2948 return VINF_EM_RAW_GUEST_TRAP;
2949 }
2950# endif
2951# else
2952 PGSTPD pPDSrc = NULL;
2953 const unsigned iPDSrc = 0;
2954# endif
2955 int rc = VINF_SUCCESS;
2956
2957 /*
2958 * First check if the shadow pd is present.
2959 */
2960# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2961 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2962# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2963 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2964# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2965 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2966 PX86PDPAE pPDDst;
2967 PX86PDEPAE pPdeDst;
2968
2969# if PGM_GST_TYPE == PGM_TYPE_PROT
2970 /* AMD-V nested paging */
2971 X86PML4E Pml4eSrc;
2972 X86PDPE PdpeSrc;
2973 PX86PML4E pPml4eSrc = &Pml4eSrc;
2974
2975 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2976 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2977 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2978# endif
2979
2980 rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2981 if (rc != VINF_SUCCESS)
2982 {
2983 AssertRC(rc);
2984 return rc;
2985 }
2986 Assert(pPDDst);
2987 pPdeDst = &pPDDst->a[iPDDst];
2988# endif
2989 if (!pPdeDst->n.u1Present)
2990 {
2991 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2992 AssertRC(rc);
2993 if (rc != VINF_SUCCESS)
2994 return rc;
2995 }
2996
2997# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2998 /* Check for dirty bit fault */
2999 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3000 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3001 Log(("PGMVerifyAccess: success (dirty)\n"));
3002 else
3003 {
3004 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3005#else
3006 {
3007 GSTPDE PdeSrc;
3008 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3009 PdeSrc.n.u1Present = 1;
3010 PdeSrc.n.u1Write = 1;
3011 PdeSrc.n.u1Accessed = 1;
3012 PdeSrc.n.u1User = 1;
3013
3014#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3015 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3016 if (uErr & X86_TRAP_PF_US)
3017 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3018 else /* supervisor */
3019 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3020
3021 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3022 if (VBOX_SUCCESS(rc))
3023 {
3024 /* Page was successfully synced */
3025 Log2(("PGMVerifyAccess: success (sync)\n"));
3026 rc = VINF_SUCCESS;
3027 }
3028 else
3029 {
3030 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
3031 return VINF_EM_RAW_GUEST_TRAP;
3032 }
3033 }
3034 return rc;
3035
3036#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3037
3038 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3039 return VERR_INTERNAL_ERROR;
3040#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3041}
3042
3043
3044#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3045# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
3046/**
3047 * Figures out which kind of shadow page this guest PDE warrants.
3048 *
3049 * @returns Shadow page kind.
3050 * @param pPdeSrc The guest PDE in question.
3051 * @param cr4 The current guest cr4 value.
3052 */
3053DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
3054{
3055# if PMG_GST_TYPE == PGM_TYPE_AMD64
3056 if (!pPdeSrc->n.u1Size)
3057# else
3058 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
3059# endif
3060 return BTH_PGMPOOLKIND_PT_FOR_PT;
3061 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
3062 //{
3063 // case 0:
3064 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
3065 // case X86_PDE4M_RW:
3066 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
3067 // case X86_PDE4M_US:
3068 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
3069 // case X86_PDE4M_RW | X86_PDE4M_US:
3070 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
3071# if 0
3072 // case X86_PDE4M_PAE_NX:
3073 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
3074 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
3075 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
3076 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
3077 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
3078 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
3079 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
3080# endif
3081 return BTH_PGMPOOLKIND_PT_FOR_BIG;
3082 //}
3083}
3084# endif
3085#endif
3086
3087#undef MY_STAM_COUNTER_INC
3088#define MY_STAM_COUNTER_INC(a) do { } while (0)
3089
3090
3091/**
3092 * Syncs the paging hierarchy starting at CR3.
3093 *
3094 * @returns VBox status code, no specials.
3095 * @param pVM The virtual machine.
3096 * @param cr0 Guest context CR0 register
3097 * @param cr3 Guest context CR3 register
3098 * @param cr4 Guest context CR4 register
3099 * @param fGlobal Including global page directories or not
3100 */
3101PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3102{
3103 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
3104 fGlobal = true; /* Change this CR3 reload to be a global one. */
3105
3106#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3107 /*
3108 * Update page access handlers.
3109 * The virtual are always flushed, while the physical are only on demand.
3110 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3111 * have to look into that later because it will have a bad influence on the performance.
3112 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3113 * bird: Yes, but that won't work for aliases.
3114 */
3115 /** @todo this MUST go away. See #1557. */
3116 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3117 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3118 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3119#endif
3120
3121#ifdef PGMPOOL_WITH_MONITORING
3122 int rc = pgmPoolSyncCR3(pVM);
3123 if (rc != VINF_SUCCESS)
3124 return rc;
3125#endif
3126
3127#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3128 /** @todo check if this is really necessary */
3129 HWACCMFlushTLB(pVM);
3130 return VINF_SUCCESS;
3131
3132#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3133 /* No need to check all paging levels; we zero out the shadow parts when the guest modifies its tables. */
3134 return VINF_SUCCESS;
3135#else
3136
3137 Assert(fGlobal || (cr4 & X86_CR4_PGE));
3138 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Global) : &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3NotGlobal));
3139
3140# if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3141# if PGM_GST_TYPE == PGM_TYPE_AMD64
3142 bool fBigPagesSupported = true;
3143# else
3144 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3145# endif
3146
3147 /*
3148 * Get page directory addresses.
3149 */
3150# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3151 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
3152# else /* PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64*/
3153# if PGM_GST_TYPE == PGM_TYPE_32BIT
3154 PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
3155# endif
3156# endif
3157
3158# if PGM_GST_TYPE == PGM_TYPE_32BIT
3159 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
3160 Assert(pPDSrc);
3161# ifndef IN_GC
3162 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3163# endif
3164# endif
3165
3166 /*
3167 * Iterate the page directory.
3168 */
3169 PPGMMAPPING pMapping;
3170 unsigned iPdNoMapping;
3171 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
3172 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3173
3174 /* Only check mappings if they are supposed to be put into the shadow page table. */
3175 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
3176 {
3177 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3178 iPdNoMapping = (pMapping) ? (pMapping->GCPtr >> GST_PD_SHIFT) : ~0U;
3179 }
3180 else
3181 {
3182 pMapping = 0;
3183 iPdNoMapping = ~0U;
3184 }
3185# if PGM_GST_TYPE == PGM_TYPE_AMD64
3186 for (uint64_t iPml4e = 0; iPml4e < X86_PG_PAE_ENTRIES; iPml4e++)
3187 {
3188 PPGMPOOLPAGE pShwPdpt = NULL;
3189 PX86PML4E pPml4eSrc, pPml4eDst;
3190 RTGCPHYS GCPhysPdptSrc;
3191
3192 pPml4eSrc = &pVM->pgm.s.CTXSUFF(pGstPaePML4)->a[iPml4e];
3193 pPml4eDst = &pVM->pgm.s.CTXMID(p,PaePML4)->a[iPml4e];
3194
3195 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3196 if (!pPml4eDst->n.u1Present)
3197 continue;
3198 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3199
3200 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3201
3202 /* Anything significant changed? */
3203 if ( pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present
3204 || GCPhysPdptSrc != pShwPdpt->GCPhys)
3205 {
3206 /* Free it. */
3207 LogFlow(("SyncCR3: Out-of-sync PML4E (GCPhys) GCPtr=%VGv %VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
3208 (uint64_t)iPml4e << X86_PML4_SHIFT, pShwPdpt->GCPhys, GCPhysPdptSrc, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
3209 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
3210 pPml4eDst->u = 0;
3211 continue;
3212 }
3213 /* Force an attribute sync. */
3214 pPml4eDst->n.u1User = pPml4eSrc->n.u1User;
3215 pPml4eDst->n.u1Write = pPml4eSrc->n.u1Write;
3216 pPml4eDst->n.u1NoExecute = pPml4eSrc->n.u1NoExecute;
3217
3218# else
3219 {
3220# endif
3221# if PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3222 for (uint64_t iPdpte = 0; iPdpte < GST_PDPE_ENTRIES; iPdpte++)
3223 {
3224 unsigned iPDSrc;
3225# if PGM_GST_TYPE == PGM_TYPE_PAE
3226 PX86PDPAE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
3227 PX86PDEPAE pPDEDst = &pPDPAE->a[iPdpte * X86_PG_PAE_ENTRIES];
3228 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPdpte << X86_PDPT_SHIFT, &iPDSrc);
3229 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT); NOREF(pPdptDst);
3230 X86PDPE PdpeSrc = CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte];
3231
3232 if (pPDSrc == NULL)
3233 {
3234 /* PDPE not present */
3235 if (pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present)
3236 {
3237 LogFlow(("SyncCR3: guest PDPE %d not present; clear shw pdpe\n", iPdpte));
3238 /* for each page directory entry */
3239 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3240 {
3241 if ( pPDEDst[iPD].n.u1Present
3242 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
3243 {
3244 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst[iPD].u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdpte * X86_PG_PAE_ENTRIES + iPD);
3245 pPDEDst[iPD].u = 0;
3246 }
3247 }
3248 }
3249 if (!(pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].u & PGM_PLXFLAGS_MAPPING))
3250 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present = 0;
3251 continue;
3252 }
3253# else /* PGM_GST_TYPE != PGM_TYPE_PAE */
3254 PPGMPOOLPAGE pShwPde = NULL;
3255 RTGCPHYS GCPhysPdeSrc;
3256 PX86PDPE pPdpeDst;
3257 PX86PML4E pPml4eSrc;
3258 X86PDPE PdpeSrc;
3259 PX86PDPT pPdptDst;
3260 PX86PDPAE pPDDst;
3261 PX86PDEPAE pPDEDst;
3262 RTGCUINTPTR GCPtr = (iPml4e << X86_PML4_SHIFT) || (iPdpte << X86_PDPT_SHIFT);
3263 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3264
3265 int rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
3266 if (rc != VINF_SUCCESS)
3267 {
3268 if (rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT)
3269 break; /* next PML4E */
3270
3271 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3272 continue; /* next PDPTE */
3273 }
3274 Assert(pPDDst);
3275 pPDEDst = &pPDDst->a[0];
3276 Assert(iPDSrc == 0);
3277
3278 pPdpeDst = &pPdptDst->a[iPdpte];
3279
3280 /* Fetch the pgm pool shadow descriptor if the shadow pdpte is present. */
3281 if (!pPdpeDst->n.u1Present)
3282 continue; /* next PDPTE */
3283
3284 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3285 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3286
3287 /* Anything significant changed? */
3288 if ( PdpeSrc.n.u1Present != pPdpeDst->n.u1Present
3289 || GCPhysPdeSrc != pShwPde->GCPhys)
3290 {
3291 /* Free it. */
3292 LogFlow(("SyncCR3: Out-of-sync PDPE (GCPhys) GCPtr=%VGv %VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
3293 ((uint64_t)iPml4e << X86_PML4_SHIFT) + ((uint64_t)iPdpte << X86_PDPT_SHIFT), pShwPde->GCPhys, GCPhysPdeSrc, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
3294
3295 /* Mark it as not present if there's no hypervisor mapping present. (bit flipped at the top of Trap0eHandler) */
3296 Assert(!(pPdpeDst->u & PGM_PLXFLAGS_MAPPING));
3297 pgmPoolFreeByPage(pPool, pShwPde, pShwPde->idx, iPdpte);
3298 pPdpeDst->u = 0;
3299 continue; /* next guest PDPTE */
3300 }
3301 /* Force an attribute sync. */
3302 pPdpeDst->lm.u1User = PdpeSrc.lm.u1User;
3303 pPdpeDst->lm.u1Write = PdpeSrc.lm.u1Write;
3304 pPdpeDst->lm.u1NoExecute = PdpeSrc.lm.u1NoExecute;
3305# endif /* PGM_GST_TYPE != PGM_TYPE_PAE */
3306
3307# else /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3308 {
3309# endif /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3310 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3311 {
3312# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3313 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
3314# elif PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3315 AssertMsg(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst, ("%p vs %p\n", &pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512], pPDEDst));
3316# endif
3317 GSTPDE PdeSrc = pPDSrc->a[iPD];
3318 if ( PdeSrc.n.u1Present
3319 && (PdeSrc.n.u1User || fRawR0Enabled))
3320 {
3321# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3322 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3323 && !defined(PGM_WITHOUT_MAPPINGS)
3324
3325 /*
3326 * Check for conflicts with GC mappings.
3327 */
3328# if PGM_GST_TYPE == PGM_TYPE_PAE
3329 if (iPD + iPdpte * X86_PG_PAE_ENTRIES == iPdNoMapping)
3330# else
3331 if (iPD == iPdNoMapping)
3332# endif
3333 {
3334 if (pVM->pgm.s.fMappingsFixed)
3335 {
3336 /* It's fixed, just skip the mapping. */
3337 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3338 iPD += cPTs - 1;
3339 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3340 pMapping = pMapping->CTX_SUFF(pNext);
3341 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3342 continue;
3343 }
3344# ifdef IN_RING3
3345# if PGM_GST_TYPE == PGM_TYPE_32BIT
3346 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3347# elif PGM_GST_TYPE == PGM_TYPE_PAE
3348 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpte << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3349# endif
3350 if (VBOX_FAILURE(rc))
3351 return rc;
3352
3353 /*
3354 * Update iPdNoMapping and pMapping.
3355 */
3356 pMapping = pVM->pgm.s.pMappingsR3;
3357 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3358 pMapping = pMapping->pNextR3;
3359 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3360# else
3361 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3362 return VINF_PGM_SYNC_CR3;
3363# endif
3364 }
3365# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3366 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3367# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3368
3369 /*
3370 * Sync page directory entry.
3371 *
3372 * The current approach is to allocated the page table but to set
3373 * the entry to not-present and postpone the page table synching till
3374 * it's actually used.
3375 */
3376# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3377 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3378# elif PGM_GST_TYPE == PGM_TYPE_PAE
3379 const unsigned iPdShw = iPD + iPdpte * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3380# else
3381 const unsigned iPdShw = iPD; NOREF(iPdShw);
3382# endif
3383 {
3384 SHWPDE PdeDst = *pPDEDst;
3385 if (PdeDst.n.u1Present)
3386 {
3387 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
3388 RTGCPHYS GCPhys;
3389 if ( !PdeSrc.b.u1Size
3390 || !fBigPagesSupported)
3391 {
3392 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
3393# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3394 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3395 GCPhys |= i * (PAGE_SIZE / 2);
3396# endif
3397 }
3398 else
3399 {
3400 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3401# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3402 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3403 GCPhys |= i * X86_PAGE_2M_SIZE;
3404# endif
3405 }
3406
3407 if ( pShwPage->GCPhys == GCPhys
3408 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
3409 && ( pShwPage->fCached
3410 || ( !fGlobal
3411 && ( false
3412# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
3413 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3414# if PGM_GST_TYPE == PGM_TYPE_AMD64
3415 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3416# else
3417 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
3418# endif
3419 || ( !pShwPage->fSeenNonGlobal
3420 && (cr4 & X86_CR4_PGE))
3421# endif
3422 )
3423 )
3424 )
3425 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
3426 || ( fBigPagesSupported
3427 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
3428 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
3429 )
3430 )
3431 {
3432# ifdef VBOX_WITH_STATISTICS
3433 if ( !fGlobal
3434 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3435# if PGM_GST_TYPE == PGM_TYPE_AMD64
3436 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3437# else
3438 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
3439# endif
3440 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPD));
3441 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
3442 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPT));
3443 else
3444 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstCacheHit));
3445# endif /* VBOX_WITH_STATISTICS */
3446 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
3447 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
3448 //# ifdef PGMPOOL_WITH_CACHE
3449 // pgmPoolCacheUsed(pPool, pShwPage);
3450 //# endif
3451 }
3452 else
3453 {
3454# if PGM_GST_TYPE == PGM_TYPE_AMD64
3455 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPdShw);
3456# else
3457 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
3458# endif
3459 pPDEDst->u = 0;
3460 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreed));
3461 }
3462 }
3463 else
3464 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstNotPresent));
3465 pPDEDst++;
3466 }
3467 }
3468# if PGM_GST_TYPE == PGM_TYPE_PAE
3469 else if (iPD + iPdpte * X86_PG_PAE_ENTRIES != iPdNoMapping)
3470# else
3471 else if (iPD != iPdNoMapping)
3472# endif
3473 {
3474 /*
3475 * Check if there is any page directory to mark not present here.
3476 */
3477# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3478 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3479# elif PGM_GST_TYPE == PGM_TYPE_PAE
3480 const unsigned iPdShw = iPD + iPdpte * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3481# else
3482 const unsigned iPdShw = iPD; NOREF(iPdShw);
3483# endif
3484 {
3485 if (pPDEDst->n.u1Present)
3486 {
3487# if PGM_GST_TYPE == PGM_TYPE_AMD64
3488 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), pShwPde->idx, iPdShw);
3489# else
3490 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
3491# endif
3492 pPDEDst->u = 0;
3493 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreedSrcNP));
3494 }
3495 pPDEDst++;
3496 }
3497 }
3498 else
3499 {
3500# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3501 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3502 && !defined(PGM_WITHOUT_MAPPINGS)
3503
3504 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3505
3506 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3507 if (pVM->pgm.s.fMappingsFixed)
3508 {
3509 /* It's fixed, just skip the mapping. */
3510 pMapping = pMapping->CTX_SUFF(pNext);
3511 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3512 }
3513 else
3514 {
3515 /*
3516 * Check for conflicts for subsequent pagetables
3517 * and advance to the next mapping.
3518 */
3519 iPdNoMapping = ~0U;
3520 unsigned iPT = cPTs;
3521 while (iPT-- > 1)
3522 {
3523 if ( pPDSrc->a[iPD + iPT].n.u1Present
3524 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
3525 {
3526# ifdef IN_RING3
3527# if PGM_GST_TYPE == PGM_TYPE_32BIT
3528 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3529# elif PGM_GST_TYPE == PGM_TYPE_PAE
3530 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpte << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3531# endif
3532 if (VBOX_FAILURE(rc))
3533 return rc;
3534
3535 /*
3536 * Update iPdNoMapping and pMapping.
3537 */
3538 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3539 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3540 pMapping = pMapping->CTX_SUFF(pNext);
3541 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3542 break;
3543# else
3544 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3545 return VINF_PGM_SYNC_CR3;
3546# endif
3547 }
3548 }
3549 if (iPdNoMapping == ~0U && pMapping)
3550 {
3551 pMapping = pMapping->CTX_SUFF(pNext);
3552 if (pMapping)
3553 iPdNoMapping = pMapping->GCPtr >> GST_PD_SHIFT;
3554 }
3555 }
3556
3557 /* advance. */
3558 iPD += cPTs - 1;
3559 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3560# if PGM_GST_TYPE != PGM_SHW_TYPE
3561 AssertCompile(PGM_GST_TYPE == PGM_TYPE_32BIT && PGM_SHW_TYPE == PGM_TYPE_PAE);
3562# endif
3563# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3564 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3565# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3566 }
3567
3568 } /* for iPD */
3569 } /* for each PDPTE (PAE) */
3570 } /* for each page map level 4 entry (amd64) */
3571 return VINF_SUCCESS;
3572
3573# else /* guest real and protected mode */
3574 return VINF_SUCCESS;
3575# endif
3576#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
3577}
3578
3579
3580
3581
3582#ifdef VBOX_STRICT
3583#ifdef IN_GC
3584# undef AssertMsgFailed
3585# define AssertMsgFailed Log
3586#endif
3587#ifdef IN_RING3
3588# include <VBox/dbgf.h>
3589
3590/**
3591 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3592 *
3593 * @returns VBox status code (VINF_SUCCESS).
3594 * @param pVM The VM handle.
3595 * @param cr3 The root of the hierarchy.
3596 * @param crr The cr4, only PAE and PSE is currently used.
3597 * @param fLongMode Set if long mode, false if not long mode.
3598 * @param cMaxDepth Number of levels to dump.
3599 * @param pHlp Pointer to the output functions.
3600 */
3601__BEGIN_DECLS
3602VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3603__END_DECLS
3604
3605#endif
3606
3607/**
3608 * Checks that the shadow page table is in sync with the guest one.
3609 *
3610 * @returns The number of errors.
3611 * @param pVM The virtual machine.
3612 * @param cr3 Guest context CR3 register
3613 * @param cr4 Guest context CR4 register
3614 * @param GCPtr Where to start. Defaults to 0.
3615 * @param cb How much to check. Defaults to everything.
3616 */
3617PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
3618{
3619#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3620 return 0;
3621#else
3622 unsigned cErrors = 0;
3623
3624#if PGM_GST_TYPE == PGM_TYPE_PAE
3625 /** @todo currently broken; crashes below somewhere */
3626 AssertFailed();
3627#endif
3628
3629#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3630 || PGM_GST_TYPE == PGM_TYPE_PAE \
3631 || PGM_GST_TYPE == PGM_TYPE_AMD64
3632
3633# if PGM_GST_TYPE == PGM_TYPE_AMD64
3634 bool fBigPagesSupported = true;
3635# else
3636 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3637# endif
3638 PPGM pPGM = &pVM->pgm.s;
3639 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3640 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3641# ifndef IN_RING0
3642 RTHCPHYS HCPhys; /* general usage. */
3643# endif
3644 int rc;
3645
3646 /*
3647 * Check that the Guest CR3 and all its mappings are correct.
3648 */
3649 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3650 ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3651 false);
3652# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3653# if PGM_GST_TYPE == PGM_TYPE_32BIT
3654 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGuestPDGC, NULL, &HCPhysShw);
3655# else
3656 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePDPTGC, NULL, &HCPhysShw);
3657# endif
3658 AssertRCReturn(rc, 1);
3659 HCPhys = NIL_RTHCPHYS;
3660 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3661 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
3662# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3663 RTGCPHYS GCPhys;
3664 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
3665 AssertRCReturn(rc, 1);
3666 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
3667# endif
3668#endif /* !IN_RING0 */
3669
3670 /*
3671 * Get and check the Shadow CR3.
3672 */
3673# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3674 unsigned cPDEs = X86_PG_ENTRIES;
3675 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3676# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3677# if PGM_GST_TYPE == PGM_TYPE_32BIT
3678 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3679# else
3680 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3681# endif
3682 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3683# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3684 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3685 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3686# endif
3687 if (cb != ~(RTGCUINTPTR)0)
3688 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3689
3690/** @todo call the other two PGMAssert*() functions. */
3691
3692# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3693 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3694# endif
3695
3696# if PGM_GST_TYPE == PGM_TYPE_AMD64
3697 unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3698
3699 for (; iPml4e < X86_PG_PAE_ENTRIES; iPml4e++)
3700 {
3701 PPGMPOOLPAGE pShwPdpt = NULL;
3702 PX86PML4E pPml4eSrc;
3703 PX86PML4E pPml4eDst;
3704 RTGCPHYS GCPhysPdptSrc;
3705
3706 pPml4eSrc = &pVM->pgm.s.CTXSUFF(pGstPaePML4)->a[iPml4e];
3707 pPml4eDst = &pVM->pgm.s.CTXMID(p,PaePML4)->a[iPml4e];
3708
3709 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3710 if (!pPml4eDst->n.u1Present)
3711 {
3712 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3713 continue;
3714 }
3715
3716# if PGM_GST_TYPE == PGM_TYPE_PAE
3717 /* not correct to call pgmPoolGetPage */
3718 AssertFailed();
3719# endif
3720 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3721 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3722
3723 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3724 {
3725 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3726 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3727 cErrors++;
3728 continue;
3729 }
3730
3731 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3732 {
3733 AssertMsgFailed(("Physical address doesn't match! iPml4e %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4e, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3734 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3735 cErrors++;
3736 continue;
3737 }
3738
3739 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3740 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3741 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3742 {
3743 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3744 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3745 cErrors++;
3746 continue;
3747 }
3748# else
3749 {
3750# endif
3751
3752# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3753 /*
3754 * Check the PDPTEs too.
3755 */
3756 unsigned iPdpte = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3757
3758 for (;iPdpte <= SHW_PDPT_MASK; iPdpte++)
3759 {
3760 unsigned iPDSrc;
3761 PPGMPOOLPAGE pShwPde = NULL;
3762 PX86PDPE pPdpeDst;
3763 RTGCPHYS GCPhysPdeSrc;
3764# if PGM_GST_TYPE == PGM_TYPE_PAE
3765 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
3766 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtr, &iPDSrc);
3767 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
3768 X86PDPE PdpeSrc = CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte];
3769# else
3770 PX86PML4E pPml4eSrc;
3771 X86PDPE PdpeSrc;
3772 PX86PDPT pPdptDst;
3773 PX86PDPAE pPDDst;
3774 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3775
3776 rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
3777 if (rc != VINF_SUCCESS)
3778 {
3779 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3780 GCPtr += 512 * _2M;
3781 continue; /* next PDPTE */
3782 }
3783 Assert(pPDDst);
3784# endif
3785 Assert(iPDSrc == 0);
3786
3787 pPdpeDst = &pPdptDst->a[iPdpte];
3788
3789 if (!pPdpeDst->n.u1Present)
3790 {
3791 GCPtr += 512 * _2M;
3792 continue; /* next PDPTE */
3793 }
3794
3795 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3796 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3797
3798 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3799 {
3800 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3801 GCPtr += 512 * _2M;
3802 cErrors++;
3803 continue;
3804 }
3805
3806 if (GCPhysPdeSrc != pShwPde->GCPhys)
3807 {
3808# if PGM_GST_TYPE == PGM_TYPE_AMD64
3809 AssertMsgFailed(("Physical address doesn't match! iPml4e %d iPdpte %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4e, iPdpte, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3810# else
3811 AssertMsgFailed(("Physical address doesn't match! iPdpte %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpte, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3812# endif
3813 GCPtr += 512 * _2M;
3814 cErrors++;
3815 continue;
3816 }
3817
3818# if PGM_GST_TYPE == PGM_TYPE_AMD64
3819 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3820 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3821 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3822 {
3823 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3824 GCPtr += 512 * _2M;
3825 cErrors++;
3826 continue;
3827 }
3828# endif
3829
3830# else
3831 {
3832# endif
3833# if PGM_GST_TYPE == PGM_TYPE_32BIT
3834 const GSTPD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
3835# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3836 PCX86PD pPDDst = pPGM->CTXMID(p,32BitPD);
3837# else
3838 PCX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries, so no need to and with SHW_PD_MASK to get iPDDst */
3839# endif
3840# endif
3841 /*
3842 * Iterate the shadow page directory.
3843 */
3844 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3845 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3846
3847 for (;
3848 iPDDst < cPDEs;
3849 iPDDst++, GCPtr += cIncrement)
3850 {
3851 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3852 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3853 {
3854 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3855 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3856 {
3857 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3858 cErrors++;
3859 continue;
3860 }
3861 }
3862 else if ( (PdeDst.u & X86_PDE_P)
3863 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3864 )
3865 {
3866 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3867 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3868 if (!pPoolPage)
3869 {
3870 AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
3871 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3872 cErrors++;
3873 continue;
3874 }
3875 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3876
3877 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3878 {
3879 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
3880 GCPtr, (uint64_t)PdeDst.u));
3881 cErrors++;
3882 }
3883
3884 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3885 {
3886 AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
3887 GCPtr, (uint64_t)PdeDst.u));
3888 cErrors++;
3889 }
3890
3891 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3892 if (!PdeSrc.n.u1Present)
3893 {
3894 AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3895 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3896 cErrors++;
3897 continue;
3898 }
3899
3900 if ( !PdeSrc.b.u1Size
3901 || !fBigPagesSupported)
3902 {
3903 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3904# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3905 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3906# endif
3907 }
3908 else
3909 {
3910# if PGM_GST_TYPE == PGM_TYPE_32BIT
3911 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3912 {
3913 AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3914 GCPtr, (uint64_t)PdeSrc.u));
3915 cErrors++;
3916 continue;
3917 }
3918# endif
3919 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3920# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3921 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3922# endif
3923 }
3924
3925 if ( pPoolPage->enmKind
3926 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3927 {
3928 AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
3929 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3930 cErrors++;
3931 }
3932
3933 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3934 if (!pPhysPage)
3935 {
3936 AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3937 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3938 cErrors++;
3939 continue;
3940 }
3941
3942 if (GCPhysGst != pPoolPage->GCPhys)
3943 {
3944 AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
3945 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3946 cErrors++;
3947 continue;
3948 }
3949
3950 if ( !PdeSrc.b.u1Size
3951 || !fBigPagesSupported)
3952 {
3953 /*
3954 * Page Table.
3955 */
3956 const GSTPT *pPTSrc;
3957 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3958 if (VBOX_FAILURE(rc))
3959 {
3960 AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3961 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3962 cErrors++;
3963 continue;
3964 }
3965 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3966 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3967 {
3968 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3969 // (This problem will go away when/if we shadow multiple CR3s.)
3970 AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3971 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3972 cErrors++;
3973 continue;
3974 }
3975 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3976 {
3977 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
3978 GCPtr, (uint64_t)PdeDst.u));
3979 cErrors++;
3980 continue;
3981 }
3982
3983 /* iterate the page table. */
3984# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3985 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3986 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3987# else
3988 const unsigned offPTSrc = 0;
3989# endif
3990 for (unsigned iPT = 0, off = 0;
3991 iPT < RT_ELEMENTS(pPTDst->a);
3992 iPT++, off += PAGE_SIZE)
3993 {
3994 const SHWPTE PteDst = pPTDst->a[iPT];
3995
3996 /* skip not-present entries. */
3997 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3998 continue;
3999 Assert(PteDst.n.u1Present);
4000
4001 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4002 if (!PteSrc.n.u1Present)
4003 {
4004# ifdef IN_RING3
4005 PGMAssertHandlerAndFlagsInSync(pVM);
4006 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
4007# endif
4008 AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
4009 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4010 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
4011 cErrors++;
4012 continue;
4013 }
4014
4015 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4016# if 1 /** @todo sync accessed bit properly... */
4017 fIgnoreFlags |= X86_PTE_A;
4018# endif
4019
4020 /* match the physical addresses */
4021 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
4022 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
4023
4024# ifdef IN_RING3
4025 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4026 if (VBOX_FAILURE(rc))
4027 {
4028 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4029 {
4030 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4031 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4032 cErrors++;
4033 continue;
4034 }
4035 }
4036 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4037 {
4038 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
4039 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4040 cErrors++;
4041 continue;
4042 }
4043# endif
4044
4045 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4046 if (!pPhysPage)
4047 {
4048# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4049 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4050 {
4051 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4052 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4053 cErrors++;
4054 continue;
4055 }
4056# endif
4057 if (PteDst.n.u1Write)
4058 {
4059 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
4060 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4061 cErrors++;
4062 }
4063 fIgnoreFlags |= X86_PTE_RW;
4064 }
4065 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
4066 {
4067 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
4068 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4069 cErrors++;
4070 continue;
4071 }
4072
4073 /* flags */
4074 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4075 {
4076 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4077 {
4078 if (PteDst.n.u1Write)
4079 {
4080 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
4081 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4082 cErrors++;
4083 continue;
4084 }
4085 fIgnoreFlags |= X86_PTE_RW;
4086 }
4087 else
4088 {
4089 if (PteDst.n.u1Present)
4090 {
4091 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
4092 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4093 cErrors++;
4094 continue;
4095 }
4096 fIgnoreFlags |= X86_PTE_P;
4097 }
4098 }
4099 else
4100 {
4101 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4102 {
4103 if (PteDst.n.u1Write)
4104 {
4105 AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4106 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4107 cErrors++;
4108 continue;
4109 }
4110 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4111 {
4112 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4113 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4114 cErrors++;
4115 continue;
4116 }
4117 if (PteDst.n.u1Dirty)
4118 {
4119 AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4120 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4121 cErrors++;
4122 }
4123# if 0 /** @todo sync access bit properly... */
4124 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4125 {
4126 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4127 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4128 cErrors++;
4129 }
4130 fIgnoreFlags |= X86_PTE_RW;
4131# else
4132 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4133# endif
4134 }
4135 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4136 {
4137 /* access bit emulation (not implemented). */
4138 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4139 {
4140 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4141 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4142 cErrors++;
4143 continue;
4144 }
4145 if (!PteDst.n.u1Accessed)
4146 {
4147 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4148 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4149 cErrors++;
4150 }
4151 fIgnoreFlags |= X86_PTE_P;
4152 }
4153# ifdef DEBUG_sandervl
4154 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4155# endif
4156 }
4157
4158 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4159 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4160 )
4161 {
4162 AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4163 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4164 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4165 cErrors++;
4166 continue;
4167 }
4168 } /* foreach PTE */
4169 }
4170 else
4171 {
4172 /*
4173 * Big Page.
4174 */
4175 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4176 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4177 {
4178 if (PdeDst.n.u1Write)
4179 {
4180 AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4181 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4182 cErrors++;
4183 continue;
4184 }
4185 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4186 {
4187 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4188 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4189 cErrors++;
4190 continue;
4191 }
4192# if 0 /** @todo sync access bit properly... */
4193 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4194 {
4195 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4196 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4197 cErrors++;
4198 }
4199 fIgnoreFlags |= X86_PTE_RW;
4200# else
4201 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4202# endif
4203 }
4204 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4205 {
4206 /* access bit emulation (not implemented). */
4207 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4208 {
4209 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4210 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4211 cErrors++;
4212 continue;
4213 }
4214 if (!PdeDst.n.u1Accessed)
4215 {
4216 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4217 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4218 cErrors++;
4219 }
4220 fIgnoreFlags |= X86_PTE_P;
4221 }
4222
4223 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4224 {
4225 AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4226 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4227 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4228 cErrors++;
4229 }
4230
4231 /* iterate the page table. */
4232 for (unsigned iPT = 0, off = 0;
4233 iPT < RT_ELEMENTS(pPTDst->a);
4234 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4235 {
4236 const SHWPTE PteDst = pPTDst->a[iPT];
4237
4238 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4239 {
4240 AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4241 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4242 cErrors++;
4243 }
4244
4245 /* skip not-present entries. */
4246 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4247 continue;
4248
4249 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4250
4251 /* match the physical addresses */
4252 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4253
4254# ifdef IN_RING3
4255 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4256 if (VBOX_FAILURE(rc))
4257 {
4258 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4259 {
4260 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4261 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4262 cErrors++;
4263 }
4264 }
4265 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4266 {
4267 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4268 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4269 cErrors++;
4270 continue;
4271 }
4272# endif
4273 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4274 if (!pPhysPage)
4275 {
4276# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4277 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4278 {
4279 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4280 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4281 cErrors++;
4282 continue;
4283 }
4284# endif
4285 if (PteDst.n.u1Write)
4286 {
4287 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4288 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4289 cErrors++;
4290 }
4291 fIgnoreFlags |= X86_PTE_RW;
4292 }
4293 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
4294 {
4295 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4296 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4297 cErrors++;
4298 continue;
4299 }
4300
4301 /* flags */
4302 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4303 {
4304 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4305 {
4306 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4307 {
4308 if (PteDst.n.u1Write)
4309 {
4310 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
4311 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4312 cErrors++;
4313 continue;
4314 }
4315 fIgnoreFlags |= X86_PTE_RW;
4316 }
4317 }
4318 else
4319 {
4320 if (PteDst.n.u1Present)
4321 {
4322 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
4323 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4324 cErrors++;
4325 continue;
4326 }
4327 fIgnoreFlags |= X86_PTE_P;
4328 }
4329 }
4330
4331 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4332 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4333 )
4334 {
4335 AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4336 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4337 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4338 cErrors++;
4339 continue;
4340 }
4341 } /* for each PTE */
4342 }
4343 }
4344 /* not present */
4345
4346 } /* for each PDE */
4347
4348 } /* for each PDPTE */
4349
4350 } /* for each PML4E */
4351
4352# ifdef DEBUG
4353 if (cErrors)
4354 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4355# endif
4356
4357#endif
4358 return cErrors;
4359
4360#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4361}
4362#endif /* VBOX_STRICT */
4363
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette