VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 106061

Last change on this file since 106061 was 106061, checked in by vboxsync, 2 months ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 236.3 KB
Line 
1/* $Id: PGMAllBth.h 106061 2024-09-16 14:03:52Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
6 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
7 * bird: WTF does this mean these days? Looking at PGMAll.cpp it's
8 *
9 * @remarks This file is one big \#ifdef-orgy!
10 *
11 */
12
13/*
14 * Copyright (C) 2006-2024 Oracle and/or its affiliates.
15 *
16 * This file is part of VirtualBox base platform packages, as
17 * available from https://www.virtualbox.org.
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation, in version 3 of the
22 * License.
23 *
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, see <https://www.gnu.org/licenses>.
31 *
32 * SPDX-License-Identifier: GPL-3.0-only
33 */
34
35#ifdef _MSC_VER
36/** @todo we're generating unnecessary code in nested/ept shadow mode and for
37 * real/prot-guest+RC mode. */
38# pragma warning(disable: 4505)
39#endif
40
41
42/*********************************************************************************************************************************
43* Internal Functions *
44*********************************************************************************************************************************/
45RT_C_DECLS_BEGIN
46PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
47#ifndef IN_RING3
48PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPTR pvFault, bool *pfLockTaken);
49PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault,
50 bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken);
51# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT
52static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage,
53 unsigned iPte, SLATPTE GstSlatPte);
54static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages,
55 uint32_t uErr, PPGMPTWALKGST pGstWalkAll);
56static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll);
57# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
58#endif
59PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
60static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
61static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
62static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
63#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
64static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
65#else
66static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
67#endif
68PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
69PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage);
70PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
71#ifdef VBOX_STRICT
72PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
73#endif
74PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3);
75PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu);
76
77#ifdef IN_RING3
78PGM_BTH_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
79#endif
80RT_C_DECLS_END
81
82
83
84
85/*
86 * Filter out some illegal combinations of guest and shadow paging, so we can
87 * remove redundant checks inside functions.
88 */
89#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \
90 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
91# error "Invalid combination; PAE guest implies PAE shadow"
92#endif
93
94#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
95 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \
96 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
97# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
98#endif
99
100#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
101 && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \
102 || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE)
103# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
104#endif
105
106#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \
107 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
108# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
109#endif
110
111
112/**
113 * Enters the shadow+guest mode.
114 *
115 * @returns VBox status code.
116 * @param pVCpu The cross context virtual CPU structure.
117 * @param GCPhysCR3 The physical address from the CR3 register.
118 */
119PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
120{
121 /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches;
122 * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables.
123 */
124#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
125 || PGM_SHW_TYPE == PGM_TYPE_PAE \
126 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
127 && ( PGM_GST_TYPE == PGM_TYPE_REAL \
128 || PGM_GST_TYPE == PGM_TYPE_PROT))
129
130 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
131
132 Assert(!pVM->pgm.s.fNestedPaging);
133
134 PGM_LOCK_VOID(pVM);
135 /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes),
136 * but any calls to GC need a proper shadow page setup as well.
137 */
138 /* Free the previous root mapping if still active. */
139 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
140 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
141 if (pOldShwPageCR3)
142 {
143 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
144
145 /* Mark the page as unlocked; allow flushing again. */
146 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
147
148 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
149 pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR;
150 pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR;
151 }
152
153 /* construct a fake address. */
154 GCPhysCR3 = RT_BIT_64(63);
155 PPGMPOOLPAGE pNewShwPageCR3;
156 int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
157 NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/,
158 &pNewShwPageCR3);
159 AssertRCReturn(rc, rc);
160
161 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
162 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
163
164 /* Mark the page as locked; disallow flushing. */
165 pgmPoolLockPage(pPool, pNewShwPageCR3);
166
167 /* Set the current hypervisor CR3. */
168 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
169
170 PGM_UNLOCK(pVM);
171 return rc;
172#else
173 NOREF(pVCpu); NOREF(GCPhysCR3);
174 return VINF_SUCCESS;
175#endif
176}
177
178
179#ifndef IN_RING3
180
181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
182/**
183 * Deal with a guest page fault.
184 *
185 * @returns Strict VBox status code.
186 * @retval VINF_EM_RAW_GUEST_TRAP
187 * @retval VINF_EM_RAW_EMULATE_INSTR
188 *
189 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
190 * @param pWalk The guest page table walk result.
191 * @param uErr The error code.
192 */
193PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, RTGCUINT uErr)
194{
195 /*
196 * Calc the error code for the guest trap.
197 */
198 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
199 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
200 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
201 if ( pWalk->fRsvdError
202 || pWalk->fBadPhysAddr)
203 {
204 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
205 Assert(!pWalk->fNotPresent);
206 }
207 else if (!pWalk->fNotPresent)
208 uNewErr |= X86_TRAP_PF_P;
209 TRPMSetErrorCode(pVCpu, uNewErr);
210
211 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pWalk->GCPtr, uErr, pWalk->uLevel));
212 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
213 return VINF_EM_RAW_GUEST_TRAP;
214}
215# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
216
217
218#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
219/**
220 * Deal with a guest page fault.
221 *
222 * The caller has taken the PGM lock.
223 *
224 * @returns Strict VBox status code.
225 *
226 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
227 * @param uErr The error code.
228 * @param pCtx Pointer to the register context for the CPU.
229 * @param pvFault The fault address.
230 * @param pPage The guest page at @a pvFault.
231 * @param pWalk The guest page table walk result.
232 * @param pGstWalk The guest paging-mode specific walk information.
233 * @param pfLockTaken PGM lock taken here or not (out). This is true
234 * when we're called.
235 */
236static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx,
237 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
238# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
239 , PPGMPTWALK pWalk
240 , PGSTPTWALK pGstWalk
241# endif
242 )
243{
244# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
245 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
246# endif
247 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
248 VBOXSTRICTRC rcStrict;
249
250 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
251 {
252 /*
253 * Physical page access handler.
254 */
255# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
256 const RTGCPHYS GCPhysFault = pWalk->GCPhys;
257# else
258 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
259# endif
260 PPGMPHYSHANDLER pCur;
261 rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysFault, &pCur);
262 if (RT_SUCCESS(rcStrict))
263 {
264 PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
265
266# ifdef PGM_SYNC_N_PAGES
267 /*
268 * If the region is write protected and we got a page not present fault, then sync
269 * the pages. If the fault was caused by a read, then restart the instruction.
270 * In case of write access continue to the GC write handler.
271 *
272 * ASSUMES that there is only one handler per page or that they have similar write properties.
273 */
274 if ( !(uErr & X86_TRAP_PF_P)
275 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
276 {
277# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
278 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
279# else
280 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
281# endif
282 if ( RT_FAILURE(rcStrict)
283 || !(uErr & X86_TRAP_PF_RW)
284 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
285 {
286 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
287 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
288 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
289 return rcStrict;
290 }
291 }
292# endif
293# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
294 /*
295 * If the access was not thru a #PF(RSVD|...) resync the page.
296 */
297 if ( !(uErr & X86_TRAP_PF_RSVD)
298 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
299# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
300 && (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK))
301 == PGM_PTATTRS_W_MASK /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
302# endif
303 )
304 {
305# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
306 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
307# else
308 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
309# endif
310 if ( RT_FAILURE(rcStrict)
311 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
312 {
313 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
314 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
315 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
316 return rcStrict;
317 }
318 }
319# endif
320
321 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
322 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
323 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
324 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
325 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
326 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite);
327 else
328 {
329 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll);
330 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt);
331 }
332
333 if (pCurType->pfnPfHandler)
334 {
335 STAM_PROFILE_START(&pCur->Stat, h);
336
337 if (pCurType->fKeepPgmLock)
338 {
339 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, pvFault, GCPhysFault,
340 !pCurType->fRing0DevInsIdx ? pCur->uUser
341 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser));
342
343 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
344 }
345 else
346 {
347 uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser
348 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser);
349 PGM_UNLOCK(pVM);
350 *pfLockTaken = false;
351
352 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, pvFault, GCPhysFault, uUser);
353
354 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
355 }
356 }
357 else
358 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
359
360 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; });
361 return rcStrict;
362 }
363 AssertMsgReturn(rcStrict == VERR_NOT_FOUND, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
364 }
365
366 /*
367 * There is a handled area of the page, but this fault doesn't belong to it.
368 * We must emulate the instruction.
369 *
370 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
371 * we first check if this was a page-not-present fault for a page with only
372 * write access handlers. Restart the instruction if it wasn't a write access.
373 */
374 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersUnhandled);
375
376 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
377 && !(uErr & X86_TRAP_PF_P))
378 {
379# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
380 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
381# else
382 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
383# endif
384 if ( RT_FAILURE(rcStrict)
385 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
386 || !(uErr & X86_TRAP_PF_RW))
387 {
388 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
389 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
390 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
391 return rcStrict;
392 }
393 }
394
395 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
396 * It's writing to an unhandled part of the LDT page several million times.
397 */
398 rcStrict = PGMInterpretInstruction(pVCpu, pvFault);
399 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
400 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndUnhandled; });
401 return rcStrict;
402} /* if any kind of handler */
403# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/
404
405
406/**
407 * \#PF Handler for raw-mode guest execution.
408 *
409 * @returns VBox status code (appropriate for trap handling and GC return).
410 *
411 * @param pVCpu The cross context virtual CPU structure.
412 * @param uErr The trap error code.
413 * @param pCtx Pointer to the register context for the CPU.
414 * @param pvFault The fault address.
415 * @param pfLockTaken PGM lock taken here or not (out)
416 */
417PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPTR pvFault, bool *pfLockTaken)
418{
419 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
420
421 *pfLockTaken = false;
422
423# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
424 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
425 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
426 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
427 && PGM_SHW_TYPE != PGM_TYPE_NONE
428 int rc;
429
430# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
431 /*
432 * Walk the guest page translation tables and check if it's a guest fault.
433 */
434 PGMPTWALK Walk;
435 GSTPTWALK GstWalk;
436 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &Walk, &GstWalk);
437 if (RT_FAILURE_NP(rc))
438 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
439
440 /* assert some GstWalk sanity. */
441# if PGM_GST_TYPE == PGM_TYPE_AMD64
442 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
443# endif
444# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
445 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
446# endif
447 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
448 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
449 Assert(Walk.fSucceeded);
450 Assert(Walk.fEffective & PGM_PTATTRS_R_MASK);
451
452 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
453 {
454 if ( ( (uErr & X86_TRAP_PF_RW)
455 && !(Walk.fEffective & PGM_PTATTRS_W_MASK)
456 && ( (uErr & X86_TRAP_PF_US)
457 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
458 || ((uErr & X86_TRAP_PF_US) && !(Walk.fEffective & PGM_PTATTRS_US_MASK))
459 || ((uErr & X86_TRAP_PF_ID) && (Walk.fEffective & PGM_PTATTRS_NX_MASK))
460 )
461 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr));
462 }
463
464 /* Take the big lock now before we update flags. */
465 *pfLockTaken = true;
466 PGM_LOCK_VOID(pVM);
467
468 /*
469 * Set the accessed and dirty flags.
470 */
471 /** @todo Should probably use cmpxchg logic here as we're potentially racing
472 * other CPUs in SMP configs. (the lock isn't enough, since we take it
473 * after walking and the page tables could be stale already) */
474# if PGM_GST_TYPE == PGM_TYPE_AMD64
475 if (!(GstWalk.Pml4e.u & X86_PML4E_A))
476 {
477 GstWalk.Pml4e.u |= X86_PML4E_A;
478 GST_ATOMIC_OR(&GstWalk.pPml4e->u, X86_PML4E_A);
479 }
480 if (!(GstWalk.Pdpe.u & X86_PDPE_A))
481 {
482 GstWalk.Pdpe.u |= X86_PDPE_A;
483 GST_ATOMIC_OR(&GstWalk.pPdpe->u, X86_PDPE_A);
484 }
485# endif
486 if (Walk.fBigPage)
487 {
488 Assert(GstWalk.Pde.u & X86_PDE_PS);
489 if (uErr & X86_TRAP_PF_RW)
490 {
491 if ((GstWalk.Pde.u & (X86_PDE4M_A | X86_PDE4M_D)) != (X86_PDE4M_A | X86_PDE4M_D))
492 {
493 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
494 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A | X86_PDE4M_D);
495 }
496 }
497 else
498 {
499 if (!(GstWalk.Pde.u & X86_PDE4M_A))
500 {
501 GstWalk.Pde.u |= X86_PDE4M_A;
502 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A);
503 }
504 }
505 }
506 else
507 {
508 Assert(!(GstWalk.Pde.u & X86_PDE_PS));
509 if (!(GstWalk.Pde.u & X86_PDE_A))
510 {
511 GstWalk.Pde.u |= X86_PDE_A;
512 GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE_A);
513 }
514
515 if (uErr & X86_TRAP_PF_RW)
516 {
517# ifdef VBOX_WITH_STATISTICS
518 if (GstWalk.Pte.u & X86_PTE_D)
519 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageAlreadyDirty));
520 else
521 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtiedPage));
522# endif
523 if ((GstWalk.Pte.u & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D))
524 {
525 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
526 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A | X86_PTE_D);
527 }
528 }
529 else
530 {
531 if (!(GstWalk.Pte.u & X86_PTE_A))
532 {
533 GstWalk.Pte.u |= X86_PTE_A;
534 GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A);
535 }
536 }
537 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
538 }
539#if 0
540 /* Disabling this since it's not reliable for SMP, see @bugref{10092#c22}. */
541 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
542 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
543#endif
544
545# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
546 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
547
548 /* Take the big lock now. */
549 *pfLockTaken = true;
550 PGM_LOCK_VOID(pVM);
551# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
552
553# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
554 /*
555 * If it is a reserved bit fault we know that it is an MMIO (access
556 * handler) related fault and can skip some 200 lines of code.
557 */
558 if (uErr & X86_TRAP_PF_RSVD)
559 {
560 Assert(uErr & X86_TRAP_PF_P);
561 PPGMPAGE pPage;
562# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
563 rc = pgmPhysGetPageEx(pVM, Walk.GCPhys, &pPage);
564 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
565 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage,
566 pfLockTaken, &Walk, &GstWalk));
567 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
568# else
569 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
570 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
571 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken));
572 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
573# endif
574 AssertRC(rc);
575 PGM_INVL_PG(pVCpu, pvFault);
576 return rc; /* Restart with the corrected entry. */
577 }
578# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
579
580 /*
581 * Fetch the guest PDE, PDPE and PML4E.
582 */
583# if PGM_SHW_TYPE == PGM_TYPE_32BIT
584 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
585 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
586
587# elif PGM_SHW_TYPE == PGM_TYPE_PAE
588 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
589 PX86PDPAE pPDDst;
590# if PGM_GST_TYPE == PGM_TYPE_PAE
591 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
592# else
593 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
594# endif
595 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
596
597# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
598 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
599 PX86PDPAE pPDDst;
600# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
601 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
602 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
603# else
604 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
605# endif
606 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
607
608# elif PGM_SHW_TYPE == PGM_TYPE_EPT
609 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
610 PEPTPD pPDDst;
611 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
612 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
613# endif
614 Assert(pPDDst);
615
616# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
617 /*
618 * Dirty page handling.
619 *
620 * If we successfully correct the write protection fault due to dirty bit
621 * tracking, then return immediately.
622 */
623 if (uErr & X86_TRAP_PF_RW) /* write fault? */
624 {
625 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
626 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
627 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a);
628 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
629 {
630 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0
631 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
632 ? &pVCpu->pgm.s.Stats.StatRZTrap0eTime2DirtyAndAccessed
633 : &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; });
634 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
635 return VINF_SUCCESS;
636 }
637#ifdef DEBUG_bird
638 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests.
639 AssertMsg(Walk.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto.
640#endif
641 }
642
643# if 0 /* rarely useful; leave for debugging. */
644 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
645# endif
646# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
647
648 /*
649 * A common case is the not-present error caused by lazy page table syncing.
650 *
651 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
652 * here so we can safely assume that the shadow PT is present when calling
653 * SyncPage later.
654 *
655 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
656 * of mapping conflict and defer to SyncCR3 in R3.
657 * (Again, we do NOT support access handlers for non-present guest pages.)
658 *
659 */
660# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
661 Assert(GstWalk.Pde.u & X86_PDE_P);
662# endif
663 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
664 && !SHW_PDE_IS_P(pPDDst->a[iPDDst]))
665 {
666 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; });
667# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
668 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
669 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
670# else
671 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
672 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
673# endif
674 if (RT_SUCCESS(rc))
675 return rc;
676 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
677 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
678 return VINF_PGM_SYNC_CR3;
679 }
680
681 /*
682 * Check if this fault address is flagged for special treatment,
683 * which means we'll have to figure out the physical address and
684 * check flags associated with it.
685 *
686 * ASSUME that we can limit any special access handling to pages
687 * in page tables which the guest believes to be present.
688 */
689# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
690 RTGCPHYS GCPhys = Walk.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
691# else
692 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
693# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
694 PPGMPAGE pPage;
695 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
696 if (RT_FAILURE(rc))
697 {
698 /*
699 * When the guest accesses invalid physical memory (e.g. probing
700 * of RAM or accessing a remapped MMIO range), then we'll fall
701 * back to the recompiler to emulate the instruction.
702 */
703 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
704 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid);
705 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; });
706 return VINF_EM_RAW_EMULATE_INSTR;
707 }
708
709 /*
710 * Any handlers for this page?
711 */
712 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
713# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
714 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken,
715 &Walk, &GstWalk));
716# else
717 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken));
718# endif
719
720 /*
721 * We are here only if page is present in Guest page tables and
722 * trap is not handled by our handlers.
723 *
724 * Check it for page out-of-sync situation.
725 */
726 if (!(uErr & X86_TRAP_PF_P))
727 {
728 /*
729 * Page is not present in our page tables. Try to sync it!
730 */
731 if (uErr & X86_TRAP_PF_US)
732 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
733 else /* supervisor */
734 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
735
736 if (PGM_PAGE_IS_BALLOONED(pPage))
737 {
738 /* Emulate reads from ballooned pages as they are not present in
739 our shadow page tables. (Required for e.g. Solaris guests; soft
740 ecc, random nr generator.) */
741 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVCpu, pvFault));
742 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
743 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncBallloon));
744 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Ballooned; });
745 return rc;
746 }
747
748# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
749 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
750# else
751 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
752# endif
753 if (RT_SUCCESS(rc))
754 {
755 /* The page was successfully synced, return to the guest. */
756 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; });
757 return VINF_SUCCESS;
758 }
759 }
760 else /* uErr & X86_TRAP_PF_P: */
761 {
762 /*
763 * Write protected pages are made writable when the guest makes the
764 * first write to it. This happens for pages that are shared, write
765 * monitored or not yet allocated.
766 *
767 * We may also end up here when CR0.WP=0 in the guest.
768 *
769 * Also, a side effect of not flushing global PDEs are out of sync
770 * pages due to physical monitored regions, that are no longer valid.
771 * Assume for now it only applies to the read/write flag.
772 */
773 if (uErr & X86_TRAP_PF_RW)
774 {
775 /*
776 * Check if it is a read-only page.
777 */
778 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
779 {
780 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
781# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
782 Assert(!PGM_PAGE_IS_ZERO(pPage));
783# endif
784 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
785# ifdef PGM_WITH_PAGE_ZEROING_DETECTION
786 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO
787 && (pvFault & X86_PAGE_OFFSET_MASK) == 0
788 && pgmHandlePageZeroingCode(pVCpu, pCtx))
789 {
790 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2PageZeroing; });
791 return VINF_SUCCESS;
792 }
793# endif
794 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; });
795
796 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
797 if (rc != VINF_SUCCESS)
798 {
799 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
800 return rc;
801 }
802 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
803 return VINF_EM_NO_MEMORY;
804 }
805
806# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
807 /*
808 * Check to see if we need to emulate the instruction if CR0.WP=0.
809 */
810 if ( !(Walk.fEffective & PGM_PTATTRS_W_MASK)
811 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
812 && CPUMGetGuestCPL(pVCpu) < 3)
813 {
814 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
815
816 /*
817 * The Netware WP0+RO+US hack.
818 *
819 * Netware sometimes(/always?) runs with WP0. It has been observed doing
820 * excessive write accesses to pages which are mapped with US=1 and RW=0
821 * while WP=0. This causes a lot of exits and extremely slow execution.
822 * To avoid trapping and emulating every write here, we change the shadow
823 * page table entry to map it as US=0 and RW=1 until user mode tries to
824 * access it again (see further below). We count these shadow page table
825 * changes so we can avoid having to clear the page pool every time the WP
826 * bit changes to 1 (see PGMCr0WpEnabled()).
827 */
828# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
829 if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
830 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
831 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
832 {
833 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, Walk.fBigPage));
834 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, Walk.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
835 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
836 {
837 PGM_INVL_PG(pVCpu, pvFault);
838 pVCpu->pgm.s.cNetwareWp0Hacks++;
839 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsHack; });
840 return rc;
841 }
842 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
843 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
844 }
845# endif
846
847 /* Interpret the access. */
848 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVCpu, pvFault));
849 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), Walk.fBigPage, !!(Walk.fEffective & PGM_PTATTRS_US_MASK)));
850 if (RT_SUCCESS(rc))
851 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulInRZ);
852 else
853 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulToR3);
854 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2WPEmulation; });
855 return rc;
856 }
857# endif
858 /// @todo count the above case; else
859 if (uErr & X86_TRAP_PF_US)
860 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
861 else /* supervisor */
862 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
863
864 /*
865 * Sync the page.
866 *
867 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
868 * page is not present, which is not true in this case.
869 */
870# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
871 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
872# else
873 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
874# endif
875 if (RT_SUCCESS(rc))
876 {
877 /*
878 * Page was successfully synced, return to guest but invalidate
879 * the TLB first as the page is very likely to be in it.
880 */
881# if PGM_SHW_TYPE == PGM_TYPE_EPT
882 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
883# else
884 PGM_INVL_PG(pVCpu, pvFault);
885# endif
886# ifdef VBOX_STRICT
887 PGMPTWALK GstPageWalk;
888 GstPageWalk.GCPhys = RTGCPHYS_MAX;
889 if (!pVM->pgm.s.fNestedPaging)
890 {
891 rc = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
892 AssertMsg(RT_SUCCESS(rc) && ((GstPageWalk.fEffective & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, GstPageWalk.fEffective));
893 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GstPageWalk.GCPhys, GstPageWalk.fEffective));
894 }
895# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
896 uint64_t fPageShw = 0;
897 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
898 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
899 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GstPageWalk.GCPhys, fPageGst, pvFault));
900# endif
901# endif /* VBOX_STRICT */
902 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; });
903 return VINF_SUCCESS;
904 }
905 }
906# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
907 /*
908 * Check for Netware WP0+RO+US hack from above and undo it when user
909 * mode accesses the page again.
910 */
911 else if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK
912 && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW))
913 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
914 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
915 && CPUMGetGuestCPL(pVCpu) == 3
916 && pVM->cCpus == 1
917 )
918 {
919 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
920 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
921 if (RT_SUCCESS(rc))
922 {
923 PGM_INVL_PG(pVCpu, pvFault);
924 pVCpu->pgm.s.cNetwareWp0Hacks--;
925 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsUnhack; });
926 return VINF_SUCCESS;
927 }
928 }
929# endif /* PGM_WITH_PAGING */
930
931 /** @todo else: why are we here? */
932
933# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
934 /*
935 * Check for VMM page flags vs. Guest page flags consistency.
936 * Currently only for debug purposes.
937 */
938 if (RT_SUCCESS(rc))
939 {
940 /* Get guest page flags. */
941 PGMPTWALK GstPageWalk;
942 int rc2 = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk);
943 if (RT_SUCCESS(rc2))
944 {
945 uint64_t fPageShw = 0;
946 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
947
948#if 0
949 /*
950 * Compare page flags.
951 * Note: we have AVL, A, D bits desynced.
952 */
953 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
954 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
955 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
956 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
957 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
958 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
959 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
960 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
961 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
96201:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
96301:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0
964
96501:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US)
96601:01:15.625516 00:08:43.268051 Location :
967e:\vbox\svn\trunk\srcPage flags mismatch!
968pvFault=fffff801b0d7b000
969 uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P
970GCPhys=0000000019b52000
971fPageShw=0
972fPageGst=77b0000000000121
973rc=0
974#endif
975
976 }
977 else
978 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
979 }
980 else
981 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
982# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
983 }
984
985
986 /*
987 * If we get here it is because something failed above, i.e. most like guru
988 * meditiation time.
989 */
990 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
991 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pCtx->cs.Sel, pCtx->rip));
992 return rc;
993
994# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */
995 NOREF(uErr); NOREF(pCtx); NOREF(pvFault);
996 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
997 return VERR_PGM_NOT_USED_IN_MODE;
998# endif
999}
1000
1001
1002# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT)
1003/**
1004 * Deals with a nested-guest \#PF fault for a guest-physical page with a handler.
1005 *
1006 * @returns Strict VBox status code.
1007 * @param pVCpu The cross context virtual CPU structure.
1008 * @param uErr The error code.
1009 * @param pCtx Pointer to the register context for the CPU.
1010 * @param GCPhysNestedFault The nested-guest physical address of the fault.
1011 * @param pPage The guest page at @a GCPhysNestedFault.
1012 * @param GCPhysFault The guest-physical address of the fault.
1013 * @param pGstWalkAll The guest page walk result.
1014 * @param pfLockTaken Where to store whether the PGM is still held when
1015 * this function completes.
1016 *
1017 * @note The caller has taken the PGM lock.
1018 */
1019static VBOXSTRICTRC PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx,
1020 RTGCPHYS GCPhysNestedFault, PPGMPAGE pPage,
1021 RTGCPHYS GCPhysFault, PPGMPTWALKGST pGstWalkAll,
1022 bool *pfLockTaken)
1023{
1024# if PGM_GST_TYPE == PGM_TYPE_PROT \
1025 && PGM_SHW_TYPE == PGM_TYPE_EPT
1026
1027 /** @todo Assert uErr isn't X86_TRAP_PF_RSVD and remove release checks. */
1028 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysFault);
1029 AssertMsgReturn(PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage), ("%RGp %RGp uErr=%u\n", GCPhysNestedFault, GCPhysFault, uErr),
1030 VERR_PGM_HANDLER_IPE_1);
1031
1032 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1033 RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1034 RTGCPHYS const GCPhysPage = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1035
1036 /*
1037 * Physical page access handler.
1038 */
1039 PPGMPHYSHANDLER pCur;
1040 VBOXSTRICTRC rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysPage, &pCur);
1041 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
1042
1043 PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
1044 Assert(pCurType);
1045
1046 /*
1047 * If the region is write protected and we got a page not present fault, then sync
1048 * the pages. If the fault was caused by a read, then restart the instruction.
1049 * In case of write access continue to the GC write handler.
1050 */
1051 if ( !(uErr & X86_TRAP_PF_P)
1052 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
1053 {
1054 Log7Func(("Syncing Monitored: GCPhysNestedPage=%RGp GCPhysPage=%RGp uErr=%#x\n", GCPhysNestedPage, GCPhysPage, uErr));
1055 rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll);
1056 Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE);
1057 if ( RT_FAILURE(rcStrict)
1058 || !(uErr & X86_TRAP_PF_RW))
1059 {
1060 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1061 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
1062 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
1063 return rcStrict;
1064 }
1065 }
1066 else if ( !(uErr & X86_TRAP_PF_RSVD)
1067 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE)
1068 {
1069 /*
1070 * If the access was NOT through an EPT misconfig (i.e. RSVD), sync the page.
1071 * This can happen for the VMX APIC-access page.
1072 */
1073 Log7Func(("Syncing MMIO: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage));
1074 rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll);
1075 Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE);
1076 if (RT_FAILURE(rcStrict))
1077 {
1078 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1079 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync);
1080 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; });
1081 return rcStrict;
1082 }
1083 }
1084
1085 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
1086 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
1087 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
1088 GCPhysNestedFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
1089 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
1090 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite);
1091 else
1092 {
1093 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll);
1094 if (uErr & X86_TRAP_PF_RSVD)
1095 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt);
1096 }
1097
1098 if (pCurType->pfnPfHandler)
1099 {
1100 STAM_PROFILE_START(&pCur->Stat, h);
1101 uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser
1102 : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser);
1103
1104 if (pCurType->fKeepPgmLock)
1105 {
1106 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, GCPhysNestedFault, GCPhysFault, uUser);
1107 STAM_PROFILE_STOP(&pCur->Stat, h);
1108 }
1109 else
1110 {
1111 PGM_UNLOCK(pVM);
1112 *pfLockTaken = false;
1113 rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, GCPhysNestedFault, GCPhysFault, uUser);
1114 STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */
1115 }
1116 }
1117 else
1118 {
1119 AssertMsgFailed(("What's going on here!? Fault falls outside handler range!?\n"));
1120 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
1121 }
1122
1123 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; });
1124 return rcStrict;
1125
1126# else
1127 RT_NOREF8(pVCpu, uErr, pCtx, GCPhysNestedFault, pPage, GCPhysFault, pGstWalkAll, pfLockTaken);
1128 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
1129 return VERR_PGM_NOT_USED_IN_MODE;
1130# endif
1131}
1132# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
1133
1134
1135/**
1136 * Nested \#PF handler for nested-guest hardware-assisted execution using nested
1137 * paging.
1138 *
1139 * @returns VBox status code (appropriate for trap handling and GC return).
1140 * @param pVCpu The cross context virtual CPU structure.
1141 * @param uErr The fault error (X86_TRAP_PF_*).
1142 * @param pCtx Pointer to the register context for the CPU.
1143 * @param GCPhysNestedFault The nested-guest physical address of the fault.
1144 * @param fIsLinearAddrValid Whether translation of a nested-guest linear address
1145 * caused this fault. If @c false, GCPtrNestedFault
1146 * must be 0.
1147 * @param GCPtrNestedFault The nested-guest linear address of this fault.
1148 * @param pWalk The guest page table walk result.
1149 * @param pfLockTaken Where to store whether the PGM lock is still held
1150 * when this function completes.
1151 */
1152PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault,
1153 bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken)
1154{
1155 *pfLockTaken = false;
1156# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) \
1157 && PGM_GST_TYPE == PGM_TYPE_PROT \
1158 && PGM_SHW_TYPE == PGM_TYPE_EPT
1159
1160 Assert(CPUMIsGuestVmxEptPagingEnabled(pVCpu));
1161 Assert(PGM_A20_IS_ENABLED(pVCpu));
1162
1163 /* We don't support mode-based execute control for EPT yet. */
1164 Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
1165 Assert(!(uErr & X86_TRAP_PF_US));
1166
1167 /* Take the big lock now. */
1168 *pfLockTaken = true;
1169 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1170 PGM_LOCK_VOID(pVM);
1171
1172 /*
1173 * Walk the guest EPT tables and check if it's an EPT violation or misconfiguration.
1174 */
1175 if (fIsLinearAddrValid)
1176 Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x GCPtrNestedFault=%RGv\n",
1177 pCtx->cs.Sel, pCtx->rip, GCPhysNestedFault, uErr, GCPtrNestedFault));
1178 else
1179 Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x\n",
1180 pCtx->cs.Sel, pCtx->rip, GCPhysNestedFault, uErr));
1181 PGMPTWALKGST GstWalkAll;
1182 int rc = pgmGstSlatWalk(pVCpu, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk, &GstWalkAll);
1183 if (RT_FAILURE(rc))
1184 return rc;
1185
1186 Assert(GstWalkAll.enmType == PGMPTWALKGSTTYPE_EPT);
1187 Assert(pWalk->fSucceeded);
1188 Assert(pWalk->fEffective & (PGM_PTATTRS_EPT_R_MASK | PGM_PTATTRS_EPT_W_MASK | PGM_PTATTRS_EPT_X_SUPER_MASK));
1189 Assert(pWalk->fIsSlat);
1190
1191# ifdef DEBUG_ramshankar
1192 /* Paranoia. */
1193 Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_R_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_R_MASK));
1194 Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_W_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_W_MASK));
1195 Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_NX_MASK) == !RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_X_SUPER_MASK));
1196# endif
1197
1198 Log7Func(("SLAT: GCPhysNestedFault=%RGp -> GCPhys=%#RGp\n", GCPhysNestedFault, pWalk->GCPhys));
1199
1200 /*
1201 * Check page-access permissions.
1202 */
1203 if ( ((uErr & X86_TRAP_PF_RW) && !(pWalk->fEffective & PGM_PTATTRS_W_MASK))
1204 || ((uErr & X86_TRAP_PF_ID) && (pWalk->fEffective & PGM_PTATTRS_NX_MASK)))
1205 {
1206 Log7Func(("Permission failed! GCPtrNested=%RGv GCPhysNested=%RGp uErr=%#x fEffective=%#RX64\n", GCPtrNestedFault,
1207 GCPhysNestedFault, uErr, pWalk->fEffective));
1208 pWalk->fFailed = PGM_WALKFAIL_EPT_VIOLATION;
1209 return VERR_ACCESS_DENIED;
1210 }
1211
1212 PGM_A20_ASSERT_MASKED(pVCpu, pWalk->GCPhys);
1213 RTGCPHYS const GCPhysPage = pWalk->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1214 RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1215
1216 /*
1217 * If we were called via an EPT misconfig, it should've already resulted in a nested-guest VM-exit.
1218 */
1219 AssertMsgReturn(!(uErr & X86_TRAP_PF_RSVD),
1220 ("Unexpected EPT misconfig VM-exit. GCPhysPage=%RGp GCPhysNestedPage=%RGp\n", GCPhysPage, GCPhysNestedPage),
1221 VERR_PGM_MAPPING_IPE);
1222
1223 /*
1224 * Fetch and sync the nested-guest EPT page directory pointer.
1225 */
1226 PEPTPD pEptPd;
1227 rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL /*ppPdpt*/, &pEptPd, &GstWalkAll);
1228 AssertRCReturn(rc, rc);
1229 Assert(pEptPd);
1230
1231 /*
1232 * A common case is the not-present error caused by lazy page table syncing.
1233 *
1234 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
1235 * here so we can safely assume that the shadow PT is present when calling
1236 * NestedSyncPage later.
1237 *
1238 * NOTE: It's possible we will be syncing the VMX APIC-access page here.
1239 * In that case, we would sync the page but will NOT go ahead with emulating
1240 * the APIC-access VM-exit through IEM. However, once the page is mapped in
1241 * the shadow tables, subsequent APIC-access VM-exits for the nested-guest
1242 * will be triggered by hardware. Maybe calling the IEM #PF handler can be
1243 * considered as an optimization later.
1244 */
1245 unsigned const iPde = (GCPhysNestedPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1246 if ( !(uErr & X86_TRAP_PF_P)
1247 && !(pEptPd->a[iPde].u & EPT_PRESENT_MASK))
1248 {
1249 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; });
1250 Log7Func(("NestedSyncPT: Lazy. GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage));
1251 rc = PGM_BTH_NAME(NestedSyncPT)(pVCpu, GCPhysNestedPage, GCPhysPage, &GstWalkAll);
1252 if (RT_SUCCESS(rc))
1253 return rc;
1254 AssertMsgFailedReturn(("NestedSyncPT: %RGv failed! rc=%Rrc\n", GCPhysNestedPage, rc), VERR_PGM_MAPPING_IPE);
1255 }
1256
1257 /*
1258 * Check if this fault address is flagged for special treatment.
1259 * This handles faults on an MMIO or write-monitored page.
1260 *
1261 * If this happens to be the VMX APIC-access page, we don't treat is as MMIO
1262 * but rather sync it further below (as a regular guest page) which lets
1263 * hardware-assisted execution trigger the APIC-access VM-exits of the
1264 * nested-guest directly.
1265 */
1266 PPGMPAGE pPage;
1267 rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1268 if (RT_FAILURE(rc))
1269 {
1270 /*
1271 * We failed to get the physical page which means it's a reserved/invalid
1272 * page address (not MMIO even). This can typically be observed with
1273 * Microsoft Hyper-V enabled Windows guests. We must fall back to emulating
1274 * the instruction, see @bugref{10318#c7}.
1275 */
1276 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid);
1277 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; });
1278 return VINF_EM_RAW_EMULATE_INSTR;
1279 }
1280 /* Check if this is an MMIO page and NOT the VMX APIC-access page. */
1281 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
1282 {
1283 Log7Func(("MMIO: Calling NestedTrap0eHandlerDoAccessHandlers for GCPhys %RGp\n", GCPhysPage));
1284 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, GCPhysNestedFault,
1285 pPage, pWalk->GCPhys, &GstWalkAll,
1286 pfLockTaken));
1287 }
1288
1289 /*
1290 * We are here only if page is present in nested-guest page tables but the
1291 * trap is not handled by our handlers. Check for page out-of-sync situation.
1292 */
1293 if (!(uErr & X86_TRAP_PF_P))
1294 {
1295 Assert(!PGM_PAGE_IS_BALLOONED(pPage));
1296 Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */
1297 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
1298
1299 Log7Func(("SyncPage: Not-Present: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedFault, GCPhysPage));
1300 rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, PGM_SYNC_NR_PAGES, uErr, &GstWalkAll);
1301 if (RT_SUCCESS(rc))
1302 {
1303 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; });
1304 return VINF_SUCCESS;
1305 }
1306 }
1307 else if (uErr & X86_TRAP_PF_RW)
1308 {
1309 /*
1310 * Write protected pages are made writable when the guest makes the
1311 * first write to it. This happens for pages that are shared, write
1312 * monitored or not yet allocated.
1313 *
1314 * We may also end up here when CR0.WP=0 in the guest.
1315 *
1316 * Also, a side effect of not flushing global PDEs are out of sync
1317 * pages due to physical monitored regions, that are no longer valid.
1318 * Assume for now it only applies to the read/write flag.
1319 */
1320 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1321 {
1322 /* This is a read-only page. */
1323 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhysPage));
1324#ifdef PGM_WITH_PAGE_ZEROING_DETECTION
1325 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO
1326 && (GCPhysNestedFault & X86_PAGE_OFFSET_MASK) == 0
1327 && pgmHandlePageZeroingCode(pVCpu, pCtx))
1328 {
1329 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2PageZeroing; });
1330 return VINF_SUCCESS;
1331 }
1332#endif
1333 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; });
1334
1335 Log7Func(("Calling pgmPhysPageMakeWritable for GCPhysPage=%RGp\n", GCPhysPage));
1336 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1337 if (rc != VINF_SUCCESS)
1338 {
1339 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
1340 return rc;
1341 }
1342 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
1343 return VINF_EM_NO_MEMORY;
1344 }
1345
1346 Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */
1347 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1348
1349 /*
1350 * Sync the write-protected page.
1351 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1352 * page is not present, which is not true in this case.
1353 */
1354 Log7Func(("SyncPage: RW: cs:rip=%04x:%#RX64 GCPhysNestedPage=%RGp uErr=%#RX32 GCPhysPage=%RGp WalkGCPhys=%RGp\n",
1355 pCtx->cs.Sel, pCtx->rip, GCPhysNestedPage, (uint32_t)uErr, GCPhysPage, pWalk->GCPhys));
1356 rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /* cPages */, uErr, &GstWalkAll);
1357 if (RT_SUCCESS(rc))
1358 {
1359 HMInvalidatePhysPage(pVM, GCPhysPage);
1360 STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; });
1361 return VINF_SUCCESS;
1362 }
1363 }
1364
1365 /*
1366 * If we get here it is because something failed above => guru meditation time?
1367 */
1368 LogRelMaxFunc(32, ("rc=%Rrc GCPhysNestedFault=%#RGp (%#RGp) uErr=%#RX32 cs:rip=%04x:%08RX64\n",
1369 rc, GCPhysNestedFault, GCPhysPage, (uint32_t)uErr, pCtx->cs.Sel, pCtx->rip));
1370 return VERR_PGM_MAPPING_IPE;
1371
1372# else /* !VBOX_WITH_NESTED_HWVIRT_VMX_EPT || PGM_GST_TYPE != PGM_TYPE_PROT || PGM_SHW_TYPE != PGM_TYPE_EPT */
1373 RT_NOREF7(pVCpu, uErr, pCtx, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk);
1374 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
1375 return VERR_PGM_NOT_USED_IN_MODE;
1376# endif
1377}
1378
1379#endif /* !IN_RING3 */
1380
1381
1382/**
1383 * Emulation of the invlpg instruction.
1384 *
1385 *
1386 * @returns VBox status code.
1387 *
1388 * @param pVCpu The cross context virtual CPU structure.
1389 * @param GCPtrPage Page to invalidate.
1390 *
1391 * @remark ASSUMES that the guest is updating before invalidating. This order
1392 * isn't required by the CPU, so this is speculative and could cause
1393 * trouble.
1394 * @remark No TLB shootdown is done on any other VCPU as we assume that
1395 * invlpg emulation is the *only* reason for calling this function.
1396 * (The guest has to shoot down TLB entries on other CPUs itself)
1397 * Currently true, but keep in mind!
1398 *
1399 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1400 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1401 */
1402PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
1403{
1404#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1405 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
1406 && PGM_SHW_TYPE != PGM_TYPE_NONE
1407 int rc;
1408 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1409 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1410
1411 PGM_LOCK_ASSERT_OWNER(pVM);
1412
1413 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1414
1415 /*
1416 * Get the shadow PD entry and skip out if this PD isn't present.
1417 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1418 */
1419# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1420 const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT;
1421 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1422 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3);
1423
1424 /* Fetch the pgm pool shadow descriptor. */
1425 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1426# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1427 if (!pShwPde)
1428 {
1429 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1430 return VINF_SUCCESS;
1431 }
1432# else
1433 Assert(pShwPde);
1434# endif
1435
1436# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1437 const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT;
1438 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1439
1440 /* If the shadow PDPE isn't present, then skip the invalidate. */
1441# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1442 if (!pPdptDst || !(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1443# else
1444 if (!(pPdptDst->a[iPdpt].u & X86_PDPE_P))
1445# endif
1446 {
1447 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1448 PGM_INVL_PG(pVCpu, GCPtrPage);
1449 return VINF_SUCCESS;
1450 }
1451
1452 /* Fetch the pgm pool shadow descriptor. */
1453 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1454 AssertReturn(pShwPde, VERR_PGM_POOL_GET_PAGE_FAILED);
1455
1456 PX86PDPAE pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1457 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1458 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1459
1460# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1461 /* PML4 */
1462 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1463 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1464 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1465 PX86PDPAE pPDDst;
1466 PX86PDPT pPdptDst;
1467 PX86PML4E pPml4eDst;
1468 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1469 if (rc != VINF_SUCCESS)
1470 {
1471 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1472 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1473 PGM_INVL_PG(pVCpu, GCPtrPage);
1474 return VINF_SUCCESS;
1475 }
1476 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1477 Assert(pPDDst);
1478 Assert(pPdptDst->a[iPdpt].u & X86_PDPE_P);
1479
1480 /* Fetch the pgm pool shadow descriptor. */
1481 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1482 Assert(pShwPde);
1483
1484# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1485
1486 const SHWPDE PdeDst = *pPdeDst;
1487 if (!(PdeDst.u & X86_PDE_P))
1488 {
1489 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1490 PGM_INVL_PG(pVCpu, GCPtrPage);
1491 return VINF_SUCCESS;
1492 }
1493
1494 /*
1495 * Get the guest PD entry and calc big page.
1496 */
1497# if PGM_GST_TYPE == PGM_TYPE_32BIT
1498 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1499 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
1500 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1501# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1502 unsigned iPDSrc = 0;
1503# if PGM_GST_TYPE == PGM_TYPE_PAE
1504 X86PDPE PdpeSrcIgn;
1505 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1506# else /* AMD64 */
1507 PX86PML4E pPml4eSrcIgn;
1508 X86PDPE PdpeSrcIgn;
1509 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1510# endif
1511 GSTPDE PdeSrc;
1512
1513 if (pPDSrc)
1514 PdeSrc = pPDSrc->a[iPDSrc];
1515 else
1516 PdeSrc.u = 0;
1517# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1518 const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE);
1519 const bool fIsBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
1520 if (fWasBigPage != fIsBigPage)
1521 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1522
1523# ifdef IN_RING3
1524 /*
1525 * If a CR3 Sync is pending we may ignore the invalidate page operation
1526 * depending on the kind of sync and if it's a global page or not.
1527 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1528 */
1529# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1530 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1531 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1532 && fIsBigPage
1533 && (PdeSrc.u & X86_PDE4M_G)
1534 )
1535 )
1536# else
1537 if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1538# endif
1539 {
1540 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped));
1541 return VINF_SUCCESS;
1542 }
1543# endif /* IN_RING3 */
1544
1545 /*
1546 * Deal with the Guest PDE.
1547 */
1548 rc = VINF_SUCCESS;
1549 if (PdeSrc.u & X86_PDE_P)
1550 {
1551 Assert( (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
1552 && ((PdeSrc.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW) || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1553 if (!fIsBigPage)
1554 {
1555 /*
1556 * 4KB - page.
1557 */
1558 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1559 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1560
1561# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1562 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1563 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
1564# endif
1565 if (pShwPage->GCPhys == GCPhys)
1566 {
1567 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1568 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1569
1570 PGSTPT pPTSrc;
1571 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1572 if (RT_SUCCESS(rc))
1573 {
1574 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1575 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1576 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1577 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1578 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1579 GCPtrPage, PteSrc.u & X86_PTE_P,
1580 (PteSrc.u & PdeSrc.u & X86_PTE_RW),
1581 (PteSrc.u & PdeSrc.u & X86_PTE_US),
1582 (uint64_t)PteSrc.u,
1583 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1584 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1585 }
1586 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1587 PGM_INVL_PG(pVCpu, GCPtrPage);
1588 }
1589 else
1590 {
1591 /*
1592 * The page table address changed.
1593 */
1594 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1595 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1596 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1597 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1598 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1599 PGM_INVL_VCPU_TLBS(pVCpu);
1600 }
1601 }
1602 else
1603 {
1604 /*
1605 * 2/4MB - page.
1606 */
1607 /* Before freeing the page, check if anything really changed. */
1608 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1609 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1610# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1611 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1612 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1613# endif
1614 if ( pShwPage->GCPhys == GCPhys
1615 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1616 {
1617 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1618 /** @todo This test is wrong as it cannot check the G bit!
1619 * FIXME */
1620 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1621 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1622 && ( (PdeSrc.u & X86_PDE4M_D) /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1623 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1624 {
1625 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1626 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1627 return VINF_SUCCESS;
1628 }
1629 }
1630
1631 /*
1632 * Ok, the page table is present and it's been changed in the guest.
1633 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1634 * We could do this for some flushes in GC too, but we need an algorithm for
1635 * deciding which 4MB pages containing code likely to be executed very soon.
1636 */
1637 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1638 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1639 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1640 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1641 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1642 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1643 }
1644 }
1645 else
1646 {
1647 /*
1648 * Page directory is not present, mark shadow PDE not present.
1649 */
1650 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1651 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
1652 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1653 PGM_INVL_PG(pVCpu, GCPtrPage);
1654 }
1655 return rc;
1656
1657#else /* guest real and protected mode, nested + ept, none. */
1658 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1659 NOREF(pVCpu); NOREF(GCPtrPage);
1660 return VINF_SUCCESS;
1661#endif
1662}
1663
1664#if PGM_SHW_TYPE != PGM_TYPE_NONE
1665
1666/**
1667 * Update the tracking of shadowed pages.
1668 *
1669 * @param pVCpu The cross context virtual CPU structure.
1670 * @param pShwPage The shadow page.
1671 * @param HCPhys The physical page we is being dereferenced.
1672 * @param iPte Shadow PTE index
1673 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1674 */
1675DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1676 RTGCPHYS GCPhysPage)
1677{
1678 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1679
1680# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1681 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1682 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1683
1684 /* Use the hint we retrieved from the cached guest PT. */
1685 if (pShwPage->fDirty)
1686 {
1687 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1688
1689 Assert(pShwPage->cPresent);
1690 Assert(pPool->cPresent);
1691 pShwPage->cPresent--;
1692 pPool->cPresent--;
1693
1694 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1695 AssertRelease(pPhysPage);
1696 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1697 return;
1698 }
1699# else
1700 NOREF(GCPhysPage);
1701# endif
1702
1703 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1704 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1705 * 2. write protect all shadowed pages. I.e. implement caching.
1706 *
1707 * 2023-08-24 bird: If we allow the ZeroPg to enter the shadow page tables,
1708 * this becomes a common occurence and we screw up. A better to the above would
1709 * be to have a parallel table that records the guest physical addresses of the
1710 * pages mapped by the shadow page table... For nested page tables,
1711 * we can easily correleate a table entry to a page entry, so it won't be
1712 * needed for those.
1713 */
1714# if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1715 /*
1716 * For non-paged guest tables, EPT and nested tables we can figure out the
1717 * physical page corresponding to the entry and dereference it.
1718 * (This ASSUMES that shadow PTs won't be used ever be used out of place.)
1719 */
1720 if ( pShwPage->enmKind == PGMPOOLKIND_EPT_PT_FOR_PHYS
1721 || pShwPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PHYS
1722 || pShwPage->enmKind == PGMPOOLKIND_32BIT_PT_FOR_PHYS)
1723 {
1724 RTGCPHYS GCPhysNestedEntry = pShwPage->GCPhys + ((uint32_t)iPte << X86_PAGE_SHIFT);
1725 if (!pShwPage->fA20Enabled)
1726 GCPhysNestedEntry &= ~(uint64_t)RT_BIT_64(20);
1727 PPGMPAGE const pPhysPage = pgmPhysGetPage(pVM, GCPhysNestedEntry);
1728 AssertRelease(pPhysPage);
1729 pgmTrackDerefGCPhys(pVM->pgm.s.CTX_SUFF(pPool), pShwPage, pPhysPage, iPte);
1730 }
1731 else
1732 AssertMsgFailed(("enmKind=%d GCPhys=%RGp\n", pShwPage->enmKind, pShwPage->GCPhys));
1733# endif
1734
1735 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1736
1737 /*
1738 * Find the guest address.
1739 */
1740 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatTrackDeref, a);
1741 LogFlow(("SyncPageWorkerTrackDeref(%d,%d): Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n",
1742 PGM_SHW_TYPE, PGM_GST_TYPE, HCPhys, pShwPage->idx));
1743 uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U);
1744 Assert(pVM->pgm.s.apRamRanges[0] == NULL);
1745 for (uint32_t idx = 1; idx <= idRamRangeMax; idx++)
1746 {
1747 PPGMRAMRANGE const pRam = pVM->CTX_EXPR(pgm, pgmr0, pgm).s.apRamRanges[idx];
1748 AssertContinue(pRam);
1749 unsigned iPage = pRam->cb >> GUEST_PAGE_SHIFT;
1750 while (iPage-- > 0)
1751 {
1752 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1753 {
1754 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1755
1756 Assert(pShwPage->cPresent);
1757 Assert(pPool->cPresent);
1758 pShwPage->cPresent--;
1759 pPool->cPresent--;
1760
1761 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1762 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatTrackDeref, a);
1763 return;
1764 }
1765 }
1766 }
1767
1768 for (;;)
1769 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1770}
1771
1772
1773/**
1774 * Update the tracking of shadowed pages.
1775 *
1776 * @param pVCpu The cross context virtual CPU structure.
1777 * @param pShwPage The shadow page.
1778 * @param u16 The top 16-bit of the pPage->HCPhys.
1779 * @param pPage Pointer to the guest page. this will be modified.
1780 * @param iPTDst The index into the shadow table.
1781 */
1782DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16,
1783 PPGMPAGE pPage, const unsigned iPTDst)
1784{
1785 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1786
1787 /*
1788 * Just deal with the simple first time here.
1789 */
1790 if (!u16)
1791 {
1792 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackVirgin);
1793 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1794 /* Save the page table index. */
1795 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1796 }
1797 else
1798 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1799
1800 /* write back */
1801 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x pPage=%p\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst, pPage));
1802 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1803
1804 /* update statistics. */
1805 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1806 pShwPage->cPresent++;
1807 if (pShwPage->iFirstPresent > iPTDst)
1808 pShwPage->iFirstPresent = iPTDst;
1809}
1810
1811
1812/**
1813 * Modifies a shadow PTE to account for access handlers.
1814 *
1815 * @param pVM The cross context VM structure.
1816 * @param pVCpu The cross context virtual CPU structure.
1817 * @param pPage The page in question.
1818 * @param GCPhysPage The guest-physical address of the page.
1819 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1820 * A (accessed) bit so it can be emulated correctly.
1821 * @param pPteDst The shadow PTE (output). This is temporary storage and
1822 * does not need to be set atomically.
1823 */
1824DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVMCC pVM, PVMCPUCC pVCpu, PCPGMPAGE pPage, RTGCPHYS GCPhysPage, uint64_t fPteSrc,
1825 PSHWPTE pPteDst)
1826{
1827 RT_NOREF_PV(pVM); RT_NOREF_PV(fPteSrc); RT_NOREF_PV(pVCpu); RT_NOREF_PV(GCPhysPage);
1828
1829 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1830 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1831 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1832 {
1833 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1834# if PGM_SHW_TYPE == PGM_TYPE_EPT
1835 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage) | EPT_E_READ | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
1836# else
1837 if (fPteSrc & X86_PTE_A)
1838 {
1839 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1840 SHW_PTE_SET_RO(*pPteDst);
1841 }
1842 else
1843 SHW_PTE_SET(*pPteDst, 0);
1844# endif
1845 }
1846# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1847# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1848 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1849 && ( BTH_IS_NP_ACTIVE(pVM)
1850 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1851# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1852 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1853# endif
1854 )
1855 {
1856 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1857# if PGM_SHW_TYPE == PGM_TYPE_EPT
1858 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1859 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg
1860 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1861 | EPT_E_WRITE
1862 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1863 | EPT_E_MEMTYPE_INVALID_3;
1864# else
1865 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1866 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1867# endif
1868 }
1869# endif
1870# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1871 else
1872 {
1873 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1874 SHW_PTE_SET(*pPteDst, 0);
1875 }
1876 /** @todo count these kinds of entries. */
1877}
1878
1879
1880/**
1881 * Creates a 4K shadow page for a guest page.
1882 *
1883 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1884 * physical address. The PdeSrc argument only the flags are used. No page
1885 * structured will be mapped in this function.
1886 *
1887 * @param pVCpu The cross context virtual CPU structure.
1888 * @param pPteDst Destination page table entry.
1889 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1890 * Can safely assume that only the flags are being used.
1891 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1892 * @param pShwPage Pointer to the shadow page.
1893 * @param iPTDst The index into the shadow table.
1894 *
1895 * @remark Not used for 2/4MB pages!
1896 */
1897# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1898static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1899 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1900# else
1901static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1902 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1903# endif
1904{
1905 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1906 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1907
1908# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1909 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1910 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1911
1912 if (pShwPage->fDirty)
1913 {
1914 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1915 PGSTPT pGstPT;
1916
1917 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1918 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1919 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1920 pGstPT->a[iPTDst].u = PteSrc.u;
1921 }
1922# else
1923 Assert(!pShwPage->fDirty);
1924# endif
1925
1926# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1927 if ( (PteSrc.u & X86_PTE_P)
1928 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1929# endif
1930 {
1931# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1932 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1933# endif
1934 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1935
1936 /*
1937 * Find the ram range.
1938 */
1939 PPGMPAGE pPage;
1940 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1941 if (RT_SUCCESS(rc))
1942 {
1943 /* Ignore ballooned pages.
1944 Don't return errors or use a fatal assert here as part of a
1945 shadow sync range might included ballooned pages. */
1946 if (PGM_PAGE_IS_BALLOONED(pPage))
1947 {
1948 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1949 return;
1950 }
1951
1952# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1953 /* Make the page writable if necessary. */
1954 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1955 && ( PGM_PAGE_IS_ZERO(pPage)
1956# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1957 || ( (PteSrc.u & X86_PTE_RW)
1958# else
1959 || ( 1
1960# endif
1961 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1962# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1963 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1964# endif
1965# ifdef VBOX_WITH_PAGE_SHARING
1966 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1967# endif
1968 )
1969 )
1970 )
1971 {
1972 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1973 AssertRC(rc);
1974 }
1975# endif
1976
1977 /*
1978 * Make page table entry.
1979 */
1980 SHWPTE PteDst;
1981# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1982 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1983# else
1984 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1985# endif
1986 if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
1987 {
1988# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1989 /*
1990 * If the page or page directory entry is not marked accessed,
1991 * we mark the page not present.
1992 */
1993 if (!(PteSrc.u & X86_PTE_A) || !(PdeSrc.u & X86_PDE_A))
1994 {
1995 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1996 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,AccessedPage));
1997 SHW_PTE_SET(PteDst, 0);
1998 }
1999 /*
2000 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
2001 * when the page is modified.
2002 */
2003 else if (!(PteSrc.u & X86_PTE_D) && (PdeSrc.u & PteSrc.u & X86_PTE_RW))
2004 {
2005 AssertCompile(X86_PTE_RW == X86_PDE_RW);
2006 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPage));
2007 SHW_PTE_SET(PteDst,
2008 fGstShwPteFlags
2009 | PGM_PAGE_GET_HCPHYS(pPage)
2010 | PGM_PTFLAGS_TRACK_DIRTY);
2011 SHW_PTE_SET_RO(PteDst);
2012 }
2013 else
2014# endif
2015 {
2016 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageSkipped));
2017# if PGM_SHW_TYPE == PGM_TYPE_EPT
2018 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage)
2019 | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
2020# else
2021 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
2022# endif
2023 }
2024
2025 /*
2026 * Make sure only allocated pages are mapped writable.
2027 */
2028 if ( SHW_PTE_IS_P_RW(PteDst)
2029 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2030 {
2031# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2032 /* Still applies to shared pages. */
2033 Assert(!PGM_PAGE_IS_ZERO(pPage));
2034# endif
2035 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
2036 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
2037 }
2038 }
2039 else
2040 PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhysPage, fGstShwPteFlags, &PteDst);
2041
2042 /*
2043 * Keep user track up to date.
2044 */
2045 if (SHW_PTE_IS_P(PteDst))
2046 {
2047 if (!SHW_PTE_IS_P(*pPteDst))
2048 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2049 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
2050 {
2051 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
2052 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
2053 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2054 }
2055 }
2056 else if (SHW_PTE_IS_P(*pPteDst))
2057 {
2058 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
2059 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
2060 }
2061
2062 /*
2063 * Update statistics and commit the entry.
2064 */
2065# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2066 if (!(PteSrc.u & X86_PTE_G))
2067 pShwPage->fSeenNonGlobal = true;
2068# endif
2069 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2070 return;
2071 }
2072
2073/** @todo count these three different kinds. */
2074 Log2(("SyncPageWorker: invalid address in Pte\n"));
2075 }
2076# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2077 else if (!(PteSrc.u & X86_PTE_P))
2078 Log2(("SyncPageWorker: page not present in Pte\n"));
2079 else
2080 Log2(("SyncPageWorker: invalid Pte\n"));
2081# endif
2082
2083 /*
2084 * The page is not present or the PTE is bad. Replace the shadow PTE by
2085 * an empty entry, making sure to keep the user tracking up to date.
2086 */
2087 if (SHW_PTE_IS_P(*pPteDst))
2088 {
2089 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
2090 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
2091 }
2092 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
2093}
2094
2095
2096/**
2097 * Syncs a guest OS page.
2098 *
2099 * There are no conflicts at this point, neither is there any need for
2100 * page table allocations.
2101 *
2102 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
2103 * When called in AMD64 guest mode, the guest PML4E shall be valid.
2104 *
2105 * @returns VBox status code.
2106 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
2107 * @param pVCpu The cross context virtual CPU structure.
2108 * @param PdeSrc Page directory entry of the guest.
2109 * @param GCPtrPage Guest context page address.
2110 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
2111 * @param uErr Fault error (X86_TRAP_PF_*).
2112 */
2113static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
2114{
2115 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2116 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2117 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
2118 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage);
2119
2120 PGM_LOCK_ASSERT_OWNER(pVM);
2121
2122# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2123 || PGM_GST_TYPE == PGM_TYPE_PAE \
2124 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2125 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
2126
2127 /*
2128 * Assert preconditions.
2129 */
2130 Assert(PdeSrc.u & X86_PDE_P);
2131 Assert(cPages);
2132# if 0 /* rarely useful; leave for debugging. */
2133 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
2134# endif
2135
2136 /*
2137 * Get the shadow PDE, find the shadow page table in the pool.
2138 */
2139# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2140 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2141 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2142 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3);
2143
2144 /* Fetch the pgm pool shadow descriptor. */
2145 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2146 Assert(pShwPde);
2147
2148# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2149 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2150 PPGMPOOLPAGE pShwPde = NULL;
2151 PX86PDPAE pPDDst;
2152
2153 /* Fetch the pgm pool shadow descriptor. */
2154 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2155 AssertRCSuccessReturn(rc2, rc2);
2156 Assert(pShwPde);
2157
2158 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2159 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
2160
2161# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2162 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2163 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2164 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2165 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2166
2167 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2168 AssertRCSuccessReturn(rc2, rc2);
2169 Assert(pPDDst && pPdptDst);
2170 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
2171# endif
2172 SHWPDE PdeDst = *pPdeDst;
2173
2174 /*
2175 * - In the guest SMP case we could have blocked while another VCPU reused
2176 * this page table.
2177 * - With W7-64 we may also take this path when the A bit is cleared on
2178 * higher level tables (PDPE/PML4E). The guest does not invalidate the
2179 * relevant TLB entries. If we're write monitoring any page mapped by
2180 * the modified entry, we may end up here with a "stale" TLB entry.
2181 */
2182 if (!(PdeDst.u & X86_PDE_P))
2183 {
2184 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
2185 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
2186 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
2187 if (uErr & X86_TRAP_PF_P)
2188 PGM_INVL_PG(pVCpu, GCPtrPage);
2189 return VINF_SUCCESS; /* force the instruction to be executed again. */
2190 }
2191
2192 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2193 Assert(pShwPage);
2194
2195# if PGM_GST_TYPE == PGM_TYPE_AMD64
2196 /* Fetch the pgm pool shadow descriptor. */
2197 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2198 Assert(pShwPde);
2199# endif
2200
2201 /*
2202 * Check that the page is present and that the shadow PDE isn't out of sync.
2203 */
2204 const bool fBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu);
2205 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
2206 RTGCPHYS GCPhys;
2207 if (!fBigPage)
2208 {
2209 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2210# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2211 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2212 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
2213# endif
2214 }
2215 else
2216 {
2217 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2218# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2219 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2220 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2221# endif
2222 }
2223 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
2224 if ( fPdeValid
2225 && pShwPage->GCPhys == GCPhys
2226 && (PdeSrc.u & X86_PDE_P)
2227 && (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US)
2228 && ((PdeSrc.u & X86_PDE_RW) == (PdeDst.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW))
2229# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2230 && ((PdeSrc.u & X86_PDE_PAE_NX) == (PdeDst.u & X86_PDE_PAE_NX) || !GST_IS_NX_ACTIVE(pVCpu))
2231# endif
2232 )
2233 {
2234 /*
2235 * Check that the PDE is marked accessed already.
2236 * Since we set the accessed bit *before* getting here on a #PF, this
2237 * check is only meant for dealing with non-#PF'ing paths.
2238 */
2239 if (PdeSrc.u & X86_PDE_A)
2240 {
2241 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2242 if (!fBigPage)
2243 {
2244 /*
2245 * 4KB Page - Map the guest page table.
2246 */
2247 PGSTPT pPTSrc;
2248 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2249 if (RT_SUCCESS(rc))
2250 {
2251# ifdef PGM_SYNC_N_PAGES
2252 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2253 if ( cPages > 1
2254 && !(uErr & X86_TRAP_PF_P)
2255 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2256 {
2257 /*
2258 * This code path is currently only taken when the caller is PGMTrap0eHandler
2259 * for non-present pages!
2260 *
2261 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2262 * deal with locality.
2263 */
2264 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2265# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2266 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2267 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2268# else
2269 const unsigned offPTSrc = 0;
2270# endif
2271 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2272 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2273 iPTDst = 0;
2274 else
2275 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2276
2277 for (; iPTDst < iPTDstEnd; iPTDst++)
2278 {
2279 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2280
2281 if ( (pPteSrc->u & X86_PTE_P)
2282 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2283 {
2284 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT))
2285 | ((offPTSrc + iPTDst) << GUEST_PAGE_SHIFT);
2286 NOREF(GCPtrCurPage);
2287 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2288 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2289 GCPtrCurPage, pPteSrc->u & X86_PTE_P,
2290 !!(pPteSrc->u & PdeSrc.u & X86_PTE_RW),
2291 !!(pPteSrc->u & PdeSrc.u & X86_PTE_US),
2292 (uint64_t)pPteSrc->u,
2293 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2294 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2295 }
2296 }
2297 }
2298 else
2299# endif /* PGM_SYNC_N_PAGES */
2300 {
2301 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2302 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2303 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2304 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2305 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2306 GCPtrPage, PteSrc.u & X86_PTE_P,
2307 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
2308 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
2309 (uint64_t)PteSrc.u,
2310 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2311 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2312 }
2313 }
2314 else /* MMIO or invalid page: emulated in #PF handler. */
2315 {
2316 LogFlow(("PGM_GCPHYS_2_PTR_V2 %RGp failed with %Rrc\n", GCPhys, rc));
2317 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2318 }
2319 }
2320 else
2321 {
2322 /*
2323 * 4/2MB page - lazy syncing shadow 4K pages.
2324 * (There are many causes of getting here, it's no longer only CSAM.)
2325 */
2326 /* Calculate the GC physical address of this 4KB shadow page. */
2327 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2328 /* Find ram range. */
2329 PPGMPAGE pPage;
2330 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2331 if (RT_SUCCESS(rc))
2332 {
2333 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2334
2335# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2336 /* Try to make the page writable if necessary. */
2337 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2338 && ( PGM_PAGE_IS_ZERO(pPage)
2339 || ( (PdeSrc.u & X86_PDE_RW)
2340 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2341# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2342 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2343# endif
2344# ifdef VBOX_WITH_PAGE_SHARING
2345 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2346# endif
2347 )
2348 )
2349 )
2350 {
2351 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2352 AssertRC(rc);
2353 }
2354# endif
2355
2356 /*
2357 * Make shadow PTE entry.
2358 */
2359 SHWPTE PteDst;
2360 if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
2361 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2362 else
2363 PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2364
2365 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2366 if ( SHW_PTE_IS_P(PteDst)
2367 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2368 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2369
2370 /* Make sure only allocated pages are mapped writable. */
2371 if ( SHW_PTE_IS_P_RW(PteDst)
2372 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2373 {
2374# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2375 /* Still applies to shared pages. */
2376 Assert(!PGM_PAGE_IS_ZERO(pPage));
2377# endif
2378 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2379 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2380 }
2381
2382 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2383
2384 /*
2385 * If the page is not flagged as dirty and is writable, then make it read-only
2386 * at PD level, so we can set the dirty bit when the page is modified.
2387 *
2388 * ASSUMES that page access handlers are implemented on page table entry level.
2389 * Thus we will first catch the dirty access and set PDE.D and restart. If
2390 * there is an access handler, we'll trap again and let it work on the problem.
2391 */
2392 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2393 * As for invlpg, it simply frees the whole shadow PT.
2394 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2395 if ((PdeSrc.u & (X86_PDE4M_D | X86_PDE_RW)) == X86_PDE_RW)
2396 {
2397 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
2398 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2399 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
2400 }
2401 else
2402 {
2403 PdeDst.u &= ~(SHWUINT)(PGM_PDFLAGS_TRACK_DIRTY | X86_PDE_RW);
2404 PdeDst.u |= PdeSrc.u & X86_PDE_RW;
2405 }
2406 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
2407 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2408 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US),
2409 (uint64_t)PdeSrc.u, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2410 }
2411 else
2412 {
2413 LogFlow(("pgmPhysGetPageEx %RGp (big) failed with %Rrc\n", GCPhys, rc));
2414 /** @todo must wipe the shadow page table entry in this
2415 * case. */
2416 }
2417 }
2418 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2419 return VINF_SUCCESS;
2420 }
2421
2422 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDNAs));
2423 }
2424 else if (fPdeValid)
2425 {
2426 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2427 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2428 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2429 }
2430 else
2431 {
2432/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2433 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2434 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2435 }
2436
2437 /*
2438 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2439 * Yea, I'm lazy.
2440 */
2441 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2442 SHW_PDE_ATOMIC_SET(*pPdeDst, 0);
2443
2444 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2445 PGM_INVL_VCPU_TLBS(pVCpu);
2446 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2447
2448
2449# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2450 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
2451 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2452 NOREF(PdeSrc);
2453
2454# ifdef PGM_SYNC_N_PAGES
2455 /*
2456 * Get the shadow PDE, find the shadow page table in the pool.
2457 */
2458# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2459 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2460
2461# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2462 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2463
2464# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2465 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2466 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2467 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2468 X86PDEPAE PdeDst;
2469 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2470
2471 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2472 AssertRCSuccessReturn(rc, rc);
2473 Assert(pPDDst && pPdptDst);
2474 PdeDst = pPDDst->a[iPDDst];
2475
2476# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2477 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2478 PEPTPD pPDDst;
2479 EPTPDE PdeDst;
2480
2481 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2482 if (rc != VINF_SUCCESS)
2483 {
2484 AssertRC(rc);
2485 return rc;
2486 }
2487 Assert(pPDDst);
2488 PdeDst = pPDDst->a[iPDDst];
2489# endif
2490 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2491 if (!SHW_PDE_IS_P(PdeDst))
2492 {
2493 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2494 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2495 return VINF_SUCCESS; /* force the instruction to be executed again. */
2496 }
2497
2498 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2499 if (SHW_PDE_IS_BIG(PdeDst))
2500 {
2501 Assert(pVM->pgm.s.fNestedPaging);
2502 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2503 return VINF_SUCCESS;
2504 }
2505
2506 /* Mask away the page offset. */
2507 GCPtrPage &= ~((RTGCPTR)0xfff);
2508
2509 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2510 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2511
2512 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2513 if ( cPages > 1
2514 && !(uErr & X86_TRAP_PF_P)
2515 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2516 {
2517 /*
2518 * This code path is currently only taken when the caller is PGMTrap0eHandler
2519 * for non-present pages!
2520 *
2521 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2522 * deal with locality.
2523 */
2524 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2525 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2526 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2527 iPTDst = 0;
2528 else
2529 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2530 for (; iPTDst < iPTDstEnd; iPTDst++)
2531 {
2532 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2533 {
2534 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2535 | (iPTDst << GUEST_PAGE_SHIFT));
2536
2537 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2538 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2539 GCPtrCurPage,
2540 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2541 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2542
2543 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2544 break;
2545 }
2546 else
2547 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n",
2548 (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2549 }
2550 }
2551 else
2552# endif /* PGM_SYNC_N_PAGES */
2553 {
2554 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2555 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2556 | (iPTDst << GUEST_PAGE_SHIFT));
2557
2558 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2559
2560 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2561 GCPtrPage,
2562 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2563 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2564 }
2565 return VINF_SUCCESS;
2566
2567# else
2568 NOREF(PdeSrc);
2569 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2570 return VERR_PGM_NOT_USED_IN_MODE;
2571# endif
2572}
2573
2574#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
2575
2576#if !defined(IN_RING3) && defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT
2577
2578/**
2579 * Sync a shadow page for a nested-guest page.
2580 *
2581 * @param pVCpu The cross context virtual CPU structure.
2582 * @param pPte The shadow page table entry.
2583 * @param GCPhysPage The guest-physical address of the page.
2584 * @param pShwPage The shadow page of the page table.
2585 * @param iPte The index of the page table entry.
2586 * @param pGstSlatPte The guest SLAT page table entry.
2587 *
2588 * @note Not to be used for 2/4MB pages!
2589 */
2590static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage,
2591 unsigned iPte, SLATPTE GstSlatPte)
2592{
2593 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
2594 Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage));
2595 Assert(!pShwPage->fDirty);
2596 Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT);
2597 AssertMsg(!(GstSlatPte.u & EPT_E_LEAF), ("Large page unexpected: %RX64\n", GstSlatPte.u));
2598 AssertMsg((GstSlatPte.u & EPT_PTE_PG_MASK) == GCPhysPage,
2599 ("PTE address mismatch. GCPhysPage=%RGp Pte=%RX64\n", GCPhysPage, GstSlatPte.u & EPT_PTE_PG_MASK));
2600
2601 /*
2602 * Find the ram range.
2603 */
2604 PPGMPAGE pPage;
2605 int rc = pgmPhysGetPageEx(pVCpu->CTX_SUFF(pVM), GCPhysPage, &pPage);
2606 if (RT_SUCCESS(rc))
2607 { /* likely */ }
2608 else
2609 {
2610 /*
2611 * This is a RAM hole/invalid/reserved address (not MMIO).
2612 * Nested Microsoft Hyper-V maps addresses like 0xf0220000 as RW WB memory.
2613 * Shadow a not-present page similar to MMIO, see @bugref{10318#c7}.
2614 */
2615 Assert(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
2616 if (SHW_PTE_IS_P(*pPte))
2617 {
2618 Log2(("NestedSyncPageWorker: deref! *pPte=%RX64\n", SHW_PTE_LOG64(*pPte)));
2619 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS);
2620 }
2621 Log7Func(("RAM hole/reserved %RGp -> ShwPte=0\n", GCPhysPage));
2622 SHW_PTE_ATOMIC_SET(*pPte, 0);
2623 return;
2624 }
2625
2626 Assert(!PGM_PAGE_IS_BALLOONED(pPage));
2627
2628 /*
2629 * Make page table entry.
2630 */
2631 SHWPTE Pte;
2632 uint64_t const fGstShwPteFlags = (GstSlatPte.u & pVCpu->pgm.s.fGstEptShadowedPteMask)
2633 | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
2634 if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
2635 {
2636# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2637 /* If it's the zero page or write to an unallocated page, allocate it to make it writable. */
2638 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2639 && ( PGM_PAGE_IS_ZERO(pPage)
2640 || ( (GstSlatPte.u & EPT_E_WRITE)
2641 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2642# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2643 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2644# endif
2645# ifdef VBOX_WITH_PAGE_SHARING
2646 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2647# endif
2648 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_BALLOONED
2649 )
2650 )
2651 )
2652 {
2653 rc = pgmPhysPageMakeWritable(pVCpu->CTX_SUFF(pVM), pPage, GCPhysPage);
2654 AssertRC(rc);
2655 Log7Func(("made writable (%R[pgmpage]) at %RGp\n", pPage, GCPhysPage));
2656 }
2657# endif
2658 /** @todo access bit. */
2659 Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | fGstShwPteFlags;
2660 Log7Func(("regular page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u));
2661
2662 /* Make sure only allocated pages are mapped writable. */
2663 if ( (fGstShwPteFlags & EPT_E_WRITE)
2664 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2665 {
2666 Pte.u &= ~EPT_E_WRITE;
2667 Log7Func(("write-protecting page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u));
2668 }
2669 }
2670 else if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2671 {
2672 /** @todo access bit. */
2673 Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | (fGstShwPteFlags & ~EPT_E_WRITE);
2674 Log7Func(("monitored page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u));
2675 }
2676 else
2677 {
2678 /** @todo Do MMIO optimizations here too? */
2679 Log7Func(("mmio/all page (%R[pgmpage]) at %RGp -> 0\n", pPage, GCPhysPage));
2680 Pte.u = 0;
2681 }
2682
2683 /* Make sure only allocated pages are mapped writable. */
2684 Assert(!SHW_PTE_IS_P_RW(Pte) || PGM_PAGE_IS_ALLOCATED(pPage));
2685
2686 /*
2687 * Keep user track up to date.
2688 */
2689 if (SHW_PTE_IS_P(Pte))
2690 {
2691 if (!SHW_PTE_IS_P(*pPte))
2692 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte);
2693 else if (SHW_PTE_GET_HCPHYS(*pPte) != SHW_PTE_GET_HCPHYS(Pte))
2694 {
2695 Log2(("NestedSyncPageWorker: deref! *pPte=%RX64 Pte=%RX64\n", SHW_PTE_LOG64(*pPte), SHW_PTE_LOG64(Pte)));
2696 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS);
2697 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte);
2698 }
2699 }
2700 else if (SHW_PTE_IS_P(*pPte))
2701 {
2702 Log2(("NestedSyncPageWorker: deref! *pPte=%RX64\n", SHW_PTE_LOG64(*pPte)));
2703 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS);
2704 }
2705
2706 /*
2707 * Commit the entry.
2708 */
2709 SHW_PTE_ATOMIC_SET2(*pPte, Pte);
2710 return;
2711}
2712
2713
2714/**
2715 * Syncs a nested-guest page.
2716 *
2717 * There are no conflicts at this point, neither is there any need for
2718 * page table allocations.
2719 *
2720 * @returns VBox status code.
2721 * @param pVCpu The cross context virtual CPU structure.
2722 * @param GCPhysNestedPage The nested-guest physical address of the page being
2723 * synced.
2724 * @param GCPhysPage The guest-physical address of the page being synced.
2725 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
2726 * @param uErr The page fault error (X86_TRAP_PF_XXX).
2727 * @param pGstWalkAll The guest page table walk result.
2728 */
2729static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages,
2730 uint32_t uErr, PPGMPTWALKGST pGstWalkAll)
2731{
2732 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
2733 Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK));
2734 Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK));
2735
2736 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2737 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2738 Log7Func(("GCPhysNestedPage=%RGv GCPhysPage=%RGp cPages=%u uErr=%#x\n", GCPhysNestedPage, GCPhysPage, cPages, uErr));
2739 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages);
2740
2741 PGM_LOCK_ASSERT_OWNER(pVM);
2742
2743 /*
2744 * Get the shadow PDE, find the shadow page table in the pool.
2745 */
2746 unsigned const iPde = ((GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK);
2747 PEPTPD pPd;
2748 int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL, &pPd, pGstWalkAll);
2749 if (RT_SUCCESS(rc))
2750 { /* likely */ }
2751 else
2752 {
2753 Log(("Failed to fetch EPT PD for %RGp (%RGp) rc=%Rrc\n", GCPhysNestedPage, GCPhysPage, rc));
2754 return rc;
2755 }
2756 Assert(pPd);
2757 EPTPDE Pde = pPd->a[iPde];
2758
2759 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2760 if (!SHW_PDE_IS_P(Pde))
2761 {
2762 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)Pde.u));
2763 Log7Func(("CPU%d: SyncPage: Pde at %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage));
2764 return VINF_SUCCESS; /* force the instruction to be executed again. */
2765 }
2766
2767 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2768 if (SHW_PDE_IS_BIG(Pde))
2769 {
2770 Log7Func(("CPU%d: SyncPage: %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage));
2771 return VINF_SUCCESS;
2772 }
2773
2774 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, Pde.u & EPT_PDE_PG_MASK);
2775 PEPTPT pPt = (PEPTPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2776
2777 /*
2778 * If we've shadowed a guest EPT PDE that maps a 2M page using a 4K table,
2779 * then sync the 4K sub-page in the 2M range.
2780 */
2781 if (pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF)
2782 {
2783 Assert(!SHW_PDE_IS_BIG(Pde));
2784
2785 Assert(pGstWalkAll->u.Ept.Pte.u == 0);
2786 Assert((Pde.u & EPT_PRESENT_MASK) == (pGstWalkAll->u.Ept.Pde.u & EPT_PRESENT_MASK));
2787 Assert(pShwPage->GCPhys == (pGstWalkAll->u.Ept.Pde.u & EPT_PDE2M_PG_MASK));
2788
2789#if defined(VBOX_STRICT) && defined(DEBUG_ramshankar)
2790 PPGMPAGE pPage;
2791 rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); AssertRC(rc);
2792 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE);
2793 Assert(pShwPage->enmKind == PGMPOOLKIND_EPT_PT_FOR_EPT_2MB);
2794#endif
2795 uint64_t const fGstShwPteFlags = (pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedBigPdeMask & ~EPT_E_LEAF)
2796 | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
2797 SLATPTE GstSlatPte;
2798 GstSlatPte.u = GCPhysPage | fGstShwPteFlags;
2799
2800 unsigned const iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2801 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, GstSlatPte);
2802 Log7Func(("4K: GCPhysPage=%RGp iPte=%u ShwPte=%08llx\n", GCPhysPage, iPte, SHW_PTE_LOG64(pPt->a[iPte])));
2803 return VINF_SUCCESS;
2804 }
2805
2806 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2807# ifdef PGM_SYNC_N_PAGES
2808 if ( cPages > 1
2809 && !(uErr & X86_TRAP_PF_P)
2810 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
2811 {
2812 /*
2813 * This code path is currently only taken for non-present pages!
2814 *
2815 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2816 * deal with locality.
2817 */
2818 unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2819 unsigned const iPteEnd = RT_MIN(iPte + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPt->a));
2820 if (iPte < PGM_SYNC_NR_PAGES / 2)
2821 iPte = 0;
2822 else
2823 iPte -= PGM_SYNC_NR_PAGES / 2;
2824 for (; iPte < iPteEnd; iPte++)
2825 {
2826 if (!SHW_PTE_IS_P(pPt->a[iPte]))
2827 {
2828 PGMPTWALKGST GstWalkPt;
2829 PGMPTWALK WalkPt;
2830 GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT);
2831 GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT);
2832 rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt,
2833 &GstWalkPt);
2834 if (RT_SUCCESS(rc))
2835 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], WalkPt.GCPhys, pShwPage, iPte, GstWalkPt.u.Ept.Pte);
2836 else
2837 {
2838 /*
2839 * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages.
2840 * Ensure the shadow tables entry is not-present.
2841 */
2842 /** @todo Potential room for optimization (explained in NestedSyncPT). */
2843 AssertMsg(!pPt->a[iPte].u, ("%RX64\n", pPt->a[iPte].u));
2844 }
2845 Log7Func(("Many: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte])));
2846 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
2847 break;
2848 }
2849 else
2850 {
2851# ifdef VBOX_STRICT
2852 /* Paranoia - Verify address of the page is what it should be. */
2853 PGMPTWALKGST GstWalkPt;
2854 PGMPTWALK WalkPt;
2855 GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT);
2856 GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT);
2857 rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt, &GstWalkPt);
2858 AssertRC(rc);
2859 PPGMPAGE pPage;
2860 rc = pgmPhysGetPageEx(pVM, WalkPt.GCPhys, &pPage);
2861 AssertRC(rc);
2862 AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]),
2863 ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp HCPhys=%RHp Shw=%RHp\n",
2864 GCPhysNestedPage, WalkPt.GCPhys, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte])));
2865# endif
2866 Log7Func(("Many3: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte])));
2867 }
2868 }
2869 }
2870 else
2871# endif /* PGM_SYNC_N_PAGES */
2872 {
2873 unsigned const iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2874 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll->u.Ept.Pte);
2875 Log7Func(("4K: GCPhysPage=%RGp iPte=%u ShwPte=%08llx\n", GCPhysPage, iPte, SHW_PTE_LOG64(pPt->a[iPte])));
2876 }
2877
2878 return VINF_SUCCESS;
2879}
2880
2881
2882/**
2883 * Sync a shadow page table for a nested-guest page table.
2884 *
2885 * The shadow page table is not present in the shadow PDE.
2886 *
2887 * Handles mapping conflicts.
2888 *
2889 * A precondition for this method is that the shadow PDE is not present. The
2890 * caller must take the PGM lock before checking this and continue to hold it
2891 * when calling this method.
2892 *
2893 * @returns VBox status code.
2894 * @param pVCpu The cross context virtual CPU structure.
2895 * @param GCPhysNestedPage The nested-guest physical page address of the page
2896 * being synced.
2897 * @param GCPhysPage The guest-physical address of the page being synced.
2898 * @param pGstWalkAll The guest page table walk result.
2899 */
2900static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll)
2901{
2902 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
2903 Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK));
2904 Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK));
2905
2906 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2907 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2908
2909 Log7Func(("GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage));
2910
2911 PGM_LOCK_ASSERT_OWNER(pVM);
2912 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2913
2914 PEPTPD pPd;
2915 PEPTPDPT pPdpt;
2916 unsigned const iPde = (GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK;
2917 int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, &pPdpt, &pPd, pGstWalkAll);
2918 if (RT_SUCCESS(rc))
2919 { /* likely */ }
2920 else
2921 {
2922 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
2923 AssertRC(rc);
2924 return rc;
2925 }
2926 Assert(pPd);
2927 PSHWPDE pPde = &pPd->a[iPde];
2928
2929 unsigned const iPdpt = (GCPhysNestedPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2930 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdpt->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2931 Assert(pShwPde->enmKind == PGMPOOLKIND_EPT_PD_FOR_EPT_PD);
2932
2933 SHWPDE Pde = *pPde;
2934 Assert(!SHW_PDE_IS_P(Pde)); /* We're only supposed to call SyncPT on PDE!P and conflicts. */
2935
2936# ifdef PGM_WITH_LARGE_PAGES
2937 Assert(BTH_IS_NP_ACTIVE(pVM));
2938
2939 /*
2940 * Check if the guest is mapping a 2M page.
2941 */
2942 if (pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF)
2943 {
2944 PPGMPAGE pPage;
2945 rc = pgmPhysGetPageEx(pVM, GCPhysPage & X86_PDE2M_PAE_PG_MASK, &pPage);
2946 AssertRCReturn(rc, rc);
2947
2948 /* A20 is always enabled in VMX root and non-root operation. */
2949 Assert(PGM_A20_IS_ENABLED(pVCpu));
2950
2951 /*
2952 * Check if we have or can get a 2M backing page here.
2953 */
2954 RTHCPHYS HCPhys = NIL_RTHCPHYS;
2955 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
2956 {
2957 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
2958 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2959 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2960 }
2961 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2962 {
2963 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
2964 rc = pgmPhysRecheckLargePage(pVM, GCPhysPage, pPage);
2965 if (RT_SUCCESS(rc))
2966 {
2967 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2968 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
2969 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2970 }
2971 }
2972 else if (PGMIsUsingLargePages(pVM))
2973 {
2974 rc = pgmPhysAllocLargePage(pVM, GCPhysPage);
2975 if (RT_SUCCESS(rc))
2976 {
2977 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2978 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
2979 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2980 }
2981 }
2982
2983 /*
2984 * If we have a 2M backing page, we can map the guest's 2M page right away.
2985 */
2986 uint64_t const fGstShwBigPdeFlags = (pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedBigPdeMask)
2987 | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT;
2988 if (HCPhys != NIL_RTHCPHYS)
2989 {
2990 Pde.u = HCPhys | fGstShwBigPdeFlags;
2991 Assert(!(Pde.u & pVCpu->pgm.s.fGstEptMbzBigPdeMask));
2992 Assert(Pde.u & EPT_E_LEAF);
2993 SHW_PDE_ATOMIC_SET2(*pPde, Pde);
2994
2995 /* Add a reference to the first page only. */
2996 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPde);
2997
2998 Assert(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED);
2999
3000 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3001 Log7Func(("GstPde=%RGp ShwPde=%RX64 [2M]\n", pGstWalkAll->u.Ept.Pde.u, Pde.u));
3002 return VINF_SUCCESS;
3003 }
3004
3005 /*
3006 * We didn't get a perfect 2M fit. Split the 2M page into 4K pages.
3007 * The page ought not to be marked as a big (2M) page at this point.
3008 */
3009 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE);
3010
3011 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
3012 PGMPOOLACCESS enmAccess;
3013 {
3014 /*
3015 * Mode-based execute control for EPT not supported.
3016 *
3017 * However, Windows 10 with Hyper-V enabled sets the EPT_E_USER_EXECUTE bit but does
3018 * not enable "mode-based execute control for EPT" in the VT-x secondary VM-execution
3019 * controls. The CPU ignores this bit when the control isn't set. Hence, the assertion
3020 * below is commented out.
3021 */
3022 /* Assert(!(pGstWalkAll->u.Ept.Pde.u & EPT_E_USER_EXECUTE)); */
3023 Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt);
3024 bool const fNoExecute = !(pGstWalkAll->u.Ept.Pde.u & EPT_E_EXECUTE);
3025 if (pGstWalkAll->u.Ept.Pde.u & EPT_E_WRITE)
3026 enmAccess = fNoExecute ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
3027 else
3028 enmAccess = fNoExecute ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
3029 }
3030
3031 /*
3032 * Allocate & map a 4K shadow table to cover the 2M guest page.
3033 */
3034 PPGMPOOLPAGE pShwPage;
3035 RTGCPHYS const GCPhysPt = pGstWalkAll->u.Ept.Pde.u & EPT_PDE2M_PG_MASK;
3036 rc = pgmPoolAlloc(pVM, GCPhysPt, PGMPOOLKIND_EPT_PT_FOR_EPT_2MB, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
3037 pShwPde->idx, iPde, false /*fLockPage*/, &pShwPage);
3038 if ( rc == VINF_SUCCESS
3039 || rc == VINF_PGM_CACHED_PAGE)
3040 { /* likely */ }
3041 else
3042 {
3043 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3044 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3045 }
3046
3047 PSHWPT pPt = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3048 Assert(pPt);
3049 Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage));
3050 if (rc == VINF_SUCCESS)
3051 {
3052 /* The 4K PTEs shall inherit the flags of the 2M PDE page sans the leaf bit. */
3053 uint64_t const fGstShwPteFlags = fGstShwBigPdeFlags & ~EPT_E_LEAF;
3054
3055 /* Sync each 4K pages in the 2M range. */
3056 for (unsigned iPte = 0; iPte < RT_ELEMENTS(pPt->a); iPte++)
3057 {
3058 RTGCPHYS const GCPhysSubPage = GCPhysPt | (iPte << GUEST_PAGE_SHIFT);
3059 SLATPTE GstSlatPte;
3060 GstSlatPte.u = GCPhysSubPage | fGstShwPteFlags;
3061 Assert(!(GstSlatPte.u & pVCpu->pgm.s.fGstEptMbzPteMask));
3062 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysSubPage, pShwPage, iPte, GstSlatPte);
3063 Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u [2M->4K]\n", pGstWalkAll->u.Ept.Pte, pPt->a[iPte].u, iPte));
3064 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
3065 break;
3066 }
3067 }
3068 else
3069 {
3070 Assert(rc == VINF_PGM_CACHED_PAGE);
3071# if defined(VBOX_STRICT) && defined(DEBUG_ramshankar)
3072 /* Paranoia - Verify address of each of the subpages are what they should be. */
3073 RTGCPHYS GCPhysSubPage = GCPhysPt;
3074 for (unsigned iPte = 0; iPte < RT_ELEMENTS(pPt->a); iPte++, GCPhysSubPage += GUEST_PAGE_SIZE)
3075 {
3076 PPGMPAGE pSubPage;
3077 rc = pgmPhysGetPageEx(pVM, GCPhysSubPage, &pSubPage);
3078 AssertRC(rc);
3079 AssertMsg( PGM_PAGE_GET_HCPHYS(pSubPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte])
3080 || !SHW_PTE_IS_P(pPt->a[iPte]),
3081 ("PGM 2M page and shadow PTE conflict. GCPhysSubPage=%RGp Page=%RHp Shw=%RHp\n",
3082 GCPhysSubPage, PGM_PAGE_GET_HCPHYS(pSubPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte])));
3083 }
3084# endif
3085 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3086 }
3087
3088 /* Save the new PDE. */
3089 uint64_t const fShwPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedPdeMask;
3090 Pde.u = pShwPage->Core.Key | fShwPdeFlags;
3091 Assert(!(Pde.u & EPT_E_LEAF));
3092 Assert(!(Pde.u & pVCpu->pgm.s.fGstEptMbzPdeMask));
3093 SHW_PDE_ATOMIC_SET2(*pPde, Pde);
3094 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3095 Log7Func(("GstPde=%RGp ShwPde=%RX64 iPde=%u\n", pGstWalkAll->u.Ept.Pde.u, pPde->u, iPde));
3096 return rc;
3097 }
3098# endif /* PGM_WITH_LARGE_PAGES */
3099
3100 /*
3101 * Allocate & map the shadow page table.
3102 */
3103 PSHWPT pPt;
3104 PPGMPOOLPAGE pShwPage;
3105
3106 RTGCPHYS const GCPhysPt = pGstWalkAll->u.Ept.Pde.u & EPT_PDE_PG_MASK;
3107 rc = pgmPoolAlloc(pVM, GCPhysPt, PGMPOOLKIND_EPT_PT_FOR_EPT_PT, PGMPOOLACCESS_DONTCARE,
3108 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPde, false /*fLockPage*/, &pShwPage);
3109 if ( rc == VINF_SUCCESS
3110 || rc == VINF_PGM_CACHED_PAGE)
3111 { /* likely */ }
3112 else
3113 {
3114 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3115 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3116 }
3117
3118 pPt = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3119 Assert(pPt);
3120 Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage));
3121
3122 if (rc == VINF_SUCCESS)
3123 {
3124 /* Sync the page we've already translated through SLAT. */
3125 const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
3126 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll->u.Ept.Pte);
3127 Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte));
3128
3129 /* Sync the rest of page table (expensive but might be cheaper than nested-guest VM-exits in hardware). */
3130 for (unsigned iPteCur = 0; iPteCur < RT_ELEMENTS(pPt->a); iPteCur++)
3131 {
3132 if (iPteCur != iPte)
3133 {
3134 PGMPTWALKGST GstWalkPt;
3135 PGMPTWALK WalkPt;
3136 GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT);
3137 GCPhysNestedPage |= (iPteCur << GUEST_PAGE_SHIFT);
3138 int const rc2 = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/,
3139 &WalkPt, &GstWalkPt);
3140 if (RT_SUCCESS(rc2))
3141 {
3142 PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPteCur], WalkPt.GCPhys, pShwPage, iPteCur,
3143 GstWalkPt.u.Ept.Pte);
3144 Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", GstWalkPt.u.Ept.Pte.u, pPt->a[iPteCur].u, iPteCur));
3145 }
3146 else
3147 {
3148 /*
3149 * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages.
3150 * Ensure the shadow tables entry is not-present.
3151 */
3152 /** @todo We currently don't configure these to cause EPT misconfigs but rather trap
3153 * them using EPT violations and walk the guest EPT tables to determine
3154 * whether they are EPT misconfigs VM-exits for the nested-hypervisor. We
3155 * could optimize this by using a specific combination of reserved bits
3156 * which we could immediately identify as EPT misconfigs of the
3157 * nested-hypervisor without having to walk its EPT tables. However, tracking
3158 * non-present entries might be tricky...
3159 */
3160 AssertMsg(!pPt->a[iPteCur].u, ("%RX64\n", pPt->a[iPteCur].u));
3161 }
3162 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
3163 break;
3164 }
3165 }
3166 }
3167 else
3168 {
3169 Assert(rc == VINF_PGM_CACHED_PAGE);
3170# if defined(VBOX_STRICT) && defined(DEBUG_ramshankar)
3171 /* Paranoia - Verify address of the page is what it should be. */
3172 PPGMPAGE pPage;
3173 rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
3174 AssertRC(rc);
3175 const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
3176 AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]) || !SHW_PTE_IS_P(pPt->a[iPte]),
3177 ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp Page=%RHp Shw=%RHp\n",
3178 GCPhysNestedPage, GCPhysPage, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte])));
3179 Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u [cache]\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte));
3180# endif
3181 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3182 }
3183
3184 /* Save the new PDE. */
3185 uint64_t const fShwPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedPdeMask;
3186 Assert(!(pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF));
3187 Assert(!(pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptMbzPdeMask));
3188 Pde.u = pShwPage->Core.Key | fShwPdeFlags;
3189 SHW_PDE_ATOMIC_SET2(*pPde, Pde);
3190 Log7Func(("GstPde=%RGp ShwPde=%RX64 iPde=%u\n", pGstWalkAll->u.Ept.Pde.u, pPde->u, iPde));
3191
3192 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3193 return rc;
3194}
3195
3196#endif /* !IN_RING3 && VBOX_WITH_NESTED_HWVIRT_VMX_EPT && PGM_SHW_TYPE == PGM_TYPE_EPT*/
3197#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
3198
3199/**
3200 * Handle dirty bit tracking faults.
3201 *
3202 * @returns VBox status code.
3203 * @param pVCpu The cross context virtual CPU structure.
3204 * @param uErr Page fault error code.
3205 * @param pPdeSrc Guest page directory entry.
3206 * @param pPdeDst Shadow page directory entry.
3207 * @param GCPtrPage Guest context page address.
3208 */
3209static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
3210 RTGCPTR GCPtrPage)
3211{
3212 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3213 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3214 NOREF(uErr);
3215
3216 PGM_LOCK_ASSERT_OWNER(pVM);
3217
3218 /*
3219 * Handle big page.
3220 */
3221 if ((pPdeSrc->u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu))
3222 {
3223 if ((pPdeDst->u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3224 {
3225 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
3226 Assert(pPdeSrc->u & X86_PDE_RW);
3227
3228 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
3229 * fault again and take this path to only invalidate the entry (see below). */
3230 SHWPDE PdeDst = *pPdeDst;
3231 PdeDst.u &= ~(SHWUINT)PGM_PDFLAGS_TRACK_DIRTY;
3232 PdeDst.u |= X86_PDE_RW | X86_PDE_A;
3233 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3234 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
3235 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
3236 }
3237
3238# ifdef IN_RING0
3239 /* Check for stale TLB entry; only applies to the SMP guest case. */
3240 if ( pVM->cCpus > 1
3241 && (pPdeDst->u & (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) == (X86_PDE_P | X86_PDE_RW | X86_PDE_A))
3242 {
3243 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
3244 if (pShwPage)
3245 {
3246 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3247 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
3248 if (SHW_PTE_IS_P_RW(*pPteDst))
3249 {
3250 /* Stale TLB entry. */
3251 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
3252 PGM_INVL_PG(pVCpu, GCPtrPage);
3253 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
3254 }
3255 }
3256 }
3257# endif /* IN_RING0 */
3258 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
3259 }
3260
3261 /*
3262 * Map the guest page table.
3263 */
3264 PGSTPT pPTSrc;
3265 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
3266 AssertRCReturn(rc, rc);
3267
3268 if (SHW_PDE_IS_P(*pPdeDst))
3269 {
3270 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
3271 const GSTPTE PteSrc = *pPteSrc;
3272
3273 /*
3274 * Map shadow page table.
3275 */
3276 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
3277 if (pShwPage)
3278 {
3279 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3280 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
3281 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
3282 {
3283 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
3284 {
3285 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
3286 SHWPTE PteDst = *pPteDst;
3287
3288 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
3289 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap));
3290
3291 Assert(PteSrc.u & X86_PTE_RW);
3292
3293 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
3294 * entry will not harm; write access will simply fault again and
3295 * take this path to only invalidate the entry.
3296 */
3297 if (RT_LIKELY(pPage))
3298 {
3299 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
3300 {
3301 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
3302 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
3303 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
3304 SHW_PTE_SET_RO(PteDst);
3305 }
3306 else
3307 {
3308 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
3309 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
3310 {
3311 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
3312 AssertRC(rc);
3313 }
3314 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
3315 SHW_PTE_SET_RW(PteDst);
3316 else
3317 {
3318 /* Still applies to shared pages. */
3319 Assert(!PGM_PAGE_IS_ZERO(pPage));
3320 SHW_PTE_SET_RO(PteDst);
3321 }
3322 }
3323 }
3324 else
3325 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
3326
3327 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
3328 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
3329 PGM_INVL_PG(pVCpu, GCPtrPage);
3330 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
3331 }
3332
3333# ifdef IN_RING0
3334 /* Check for stale TLB entry; only applies to the SMP guest case. */
3335 if ( pVM->cCpus > 1
3336 && SHW_PTE_IS_RW(*pPteDst)
3337 && SHW_PTE_IS_A(*pPteDst))
3338 {
3339 /* Stale TLB entry. */
3340 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale));
3341 PGM_INVL_PG(pVCpu, GCPtrPage);
3342 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
3343 }
3344# endif
3345 }
3346 }
3347 else
3348 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
3349 }
3350
3351 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
3352}
3353
3354#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
3355
3356/**
3357 * Sync a shadow page table.
3358 *
3359 * The shadow page table is not present in the shadow PDE.
3360 *
3361 * Handles mapping conflicts.
3362 *
3363 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
3364 * conflict), and Trap0eHandler.
3365 *
3366 * A precondition for this method is that the shadow PDE is not present. The
3367 * caller must take the PGM lock before checking this and continue to hold it
3368 * when calling this method.
3369 *
3370 * @returns VBox status code.
3371 * @param pVCpu The cross context virtual CPU structure.
3372 * @param iPDSrc Page directory index.
3373 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
3374 * Assume this is a temporary mapping.
3375 * @param GCPtrPage GC Pointer of the page that caused the fault
3376 */
3377static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
3378{
3379 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3380 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3381
3382#if 0 /* rarely useful; leave for debugging. */
3383 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
3384#endif
3385 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
3386
3387 PGM_LOCK_ASSERT_OWNER(pVM);
3388
3389#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3390 || PGM_GST_TYPE == PGM_TYPE_PAE \
3391 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
3392 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
3393 && PGM_SHW_TYPE != PGM_TYPE_NONE
3394 int rc = VINF_SUCCESS;
3395
3396 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3397
3398 /*
3399 * Some input validation first.
3400 */
3401 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
3402
3403 /*
3404 * Get the relevant shadow PDE entry.
3405 */
3406# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3407 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
3408 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3409 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3);
3410
3411 /* Fetch the pgm pool shadow descriptor. */
3412 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3413 Assert(pShwPde);
3414
3415# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3416 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3417 PPGMPOOLPAGE pShwPde = NULL;
3418 PX86PDPAE pPDDst;
3419 PSHWPDE pPdeDst;
3420
3421 /* Fetch the pgm pool shadow descriptor. */
3422 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3423 AssertRCSuccessReturn(rc, rc);
3424 Assert(pShwPde);
3425
3426 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3427 pPdeDst = &pPDDst->a[iPDDst];
3428
3429# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3430 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3431 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3432 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3433 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
3434 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3435 AssertRCSuccessReturn(rc, rc);
3436 Assert(pPDDst);
3437 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3438
3439# endif
3440 SHWPDE PdeDst = *pPdeDst;
3441
3442# if PGM_GST_TYPE == PGM_TYPE_AMD64
3443 /* Fetch the pgm pool shadow descriptor. */
3444 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3445 Assert(pShwPde);
3446# endif
3447
3448 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P.*/
3449
3450 /*
3451 * Sync the page directory entry.
3452 */
3453 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3454 const bool fPageTable = !(PdeSrc.u & X86_PDE_PS) || !GST_IS_PSE_ACTIVE(pVCpu);
3455 if ( (PdeSrc.u & X86_PDE_P)
3456 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
3457 {
3458 /*
3459 * Allocate & map the page table.
3460 */
3461 PSHWPT pPTDst;
3462 PPGMPOOLPAGE pShwPage;
3463 RTGCPHYS GCPhys;
3464 if (fPageTable)
3465 {
3466 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
3467# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3468 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3469 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
3470# endif
3471 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
3472 pShwPde->idx, iPDDst, false /*fLockPage*/,
3473 &pShwPage);
3474 }
3475 else
3476 {
3477 PGMPOOLACCESS enmAccess;
3478# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
3479 const bool fNoExecute = (PdeSrc.u & X86_PDE_PAE_NX) && GST_IS_NX_ACTIVE(pVCpu);
3480# else
3481 const bool fNoExecute = false;
3482# endif
3483
3484 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3485# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3486 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3487 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
3488# endif
3489 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
3490 if (PdeSrc.u & X86_PDE_US)
3491 {
3492 if (PdeSrc.u & X86_PDE_RW)
3493 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
3494 else
3495 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
3496 }
3497 else
3498 {
3499 if (PdeSrc.u & X86_PDE_RW)
3500 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
3501 else
3502 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
3503 }
3504 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
3505 pShwPde->idx, iPDDst, false /*fLockPage*/,
3506 &pShwPage);
3507 }
3508 if (rc == VINF_SUCCESS)
3509 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3510 else if (rc == VINF_PGM_CACHED_PAGE)
3511 {
3512 /*
3513 * The PT was cached, just hook it up.
3514 */
3515 if (fPageTable)
3516 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3517 else
3518 {
3519 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3520 /* (see explanation and assumptions further down.) */
3521 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
3522 {
3523 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
3524 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
3525 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
3526 }
3527 }
3528 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3529 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3530 return VINF_SUCCESS;
3531 }
3532 else
3533 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3534 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
3535 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
3536 * irrelevant at this point. */
3537 PdeDst.u &= X86_PDE_AVL_MASK;
3538 PdeDst.u |= pShwPage->Core.Key;
3539
3540 /*
3541 * Page directory has been accessed (this is a fault situation, remember).
3542 */
3543 /** @todo
3544 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
3545 * fault situation. What's more, the Trap0eHandler has already set the
3546 * accessed bit. So, it's actually just VerifyAccessSyncPage which
3547 * might need setting the accessed flag.
3548 *
3549 * The best idea is to leave this change to the caller and add an
3550 * assertion that it's set already. */
3551 pPDSrc->a[iPDSrc].u |= X86_PDE_A;
3552 if (fPageTable)
3553 {
3554 /*
3555 * Page table - 4KB.
3556 *
3557 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
3558 */
3559 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
3560 GCPtrPage, PdeSrc.u & X86_PTE_P, !!(PdeSrc.u & X86_PTE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u));
3561 PGSTPT pPTSrc;
3562 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
3563 if (RT_SUCCESS(rc))
3564 {
3565 /*
3566 * Start by syncing the page directory entry so CSAM's TLB trick works.
3567 */
3568 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
3569 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3570 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3571 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3572
3573 /*
3574 * Directory/page user or supervisor privilege: (same goes for read/write)
3575 *
3576 * Directory Page Combined
3577 * U/S U/S U/S
3578 * 0 0 0
3579 * 0 1 0
3580 * 1 0 0
3581 * 1 1 1
3582 *
3583 * Simple AND operation. Table listed for completeness.
3584 *
3585 */
3586 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4K));
3587# ifdef PGM_SYNC_N_PAGES
3588 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
3589 unsigned iPTDst = iPTBase;
3590 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
3591 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
3592 iPTDst = 0;
3593 else
3594 iPTDst -= PGM_SYNC_NR_PAGES / 2;
3595# else /* !PGM_SYNC_N_PAGES */
3596 unsigned iPTDst = 0;
3597 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
3598# endif /* !PGM_SYNC_N_PAGES */
3599 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
3600 | ((RTGCPTR)iPTDst << GUEST_PAGE_SHIFT);
3601# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3602 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3603 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
3604# else
3605 const unsigned offPTSrc = 0;
3606# endif
3607 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += GUEST_PAGE_SIZE)
3608 {
3609 const unsigned iPTSrc = iPTDst + offPTSrc;
3610 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
3611 if (PteSrc.u & X86_PTE_P)
3612 {
3613 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
3614 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
3615 GCPtrCur,
3616 PteSrc.u & X86_PTE_P,
3617 !!(PteSrc.u & PdeSrc.u & X86_PTE_RW),
3618 !!(PteSrc.u & PdeSrc.u & X86_PTE_US),
3619 (uint64_t)PteSrc.u,
3620 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
3621 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
3622 }
3623 /* else: the page table was cleared by the pool */
3624 } /* for PTEs */
3625 }
3626 }
3627 else
3628 {
3629 /*
3630 * Big page - 2/4MB.
3631 *
3632 * We'll walk the ram range list in parallel and optimize lookups.
3633 * We will only sync one shadow page table at a time.
3634 */
3635 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4M));
3636
3637 /**
3638 * @todo It might be more efficient to sync only a part of the 4MB
3639 * page (similar to what we do for 4KB PDs).
3640 */
3641
3642 /*
3643 * Start by syncing the page directory entry.
3644 */
3645 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
3646 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
3647
3648 /*
3649 * If the page is not flagged as dirty and is writable, then make it read-only
3650 * at PD level, so we can set the dirty bit when the page is modified.
3651 *
3652 * ASSUMES that page access handlers are implemented on page table entry level.
3653 * Thus we will first catch the dirty access and set PDE.D and restart. If
3654 * there is an access handler, we'll trap again and let it work on the problem.
3655 */
3656 /** @todo move the above stuff to a section in the PGM documentation. */
3657 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
3658 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
3659 {
3660 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig));
3661 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
3662 PdeDst.u &= ~(SHWUINT)X86_PDE_RW;
3663 }
3664 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3665 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3666
3667 /*
3668 * Fill the shadow page table.
3669 */
3670 /* Get address and flags from the source PDE. */
3671 SHWPTE PteDstBase;
3672 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
3673
3674 /* Loop thru the entries in the shadow PT. */
3675 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
3676 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
3677 GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u, GCPtr,
3678 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
3679 unsigned iPTDst = 0;
3680 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3681 && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
3682 {
3683 PPGMRAMRANGE const pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
3684 if (pRam && GCPhys >= pRam->GCPhys)
3685 {
3686# ifndef PGM_WITH_A20
3687 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT;
3688# endif
3689 do
3690 {
3691 /* Make shadow PTE. */
3692# ifdef PGM_WITH_A20
3693 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
3694# else
3695 PPGMPAGE pPage = &pRam->aPages[iHCPage];
3696# endif
3697 SHWPTE PteDst;
3698
3699# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3700 /* Try to make the page writable if necessary. */
3701 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
3702 && ( PGM_PAGE_IS_ZERO(pPage)
3703 || ( SHW_PTE_IS_RW(PteDstBase)
3704 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3705# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3706 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3707# endif
3708# ifdef VBOX_WITH_PAGE_SHARING
3709 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3710# endif
3711 && !PGM_PAGE_IS_BALLOONED(pPage))
3712 )
3713 )
3714 {
3715 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3716 AssertRCReturn(rc, rc);
3717 if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))
3718 break;
3719 }
3720# endif
3721
3722 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage))
3723 PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, SHW_PTE_GET_U(PteDstBase), &PteDst);
3724 else if (PGM_PAGE_IS_BALLOONED(pPage))
3725 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3726 else
3727 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3728
3729 /* Only map writable pages writable. */
3730 if ( SHW_PTE_IS_P_RW(PteDst)
3731 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3732 {
3733# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3734 /* Still applies to shared pages. */
3735 Assert(!PGM_PAGE_IS_ZERO(pPage));
3736# endif
3737 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3738 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3739 }
3740
3741 if (SHW_PTE_IS_P(PteDst))
3742 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3743
3744 /* commit it (not atomic, new table) */
3745 pPTDst->a[iPTDst] = PteDst;
3746 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3747 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3748 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3749
3750 /* advance */
3751 GCPhys += GUEST_PAGE_SIZE;
3752 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3753# ifndef PGM_WITH_A20
3754 iHCPage++;
3755# endif
3756 iPTDst++;
3757 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3758 && GCPhys <= pRam->GCPhysLast);
3759 }
3760 else if (pRam)
3761 {
3762 Log(("Invalid pages at %RGp\n", GCPhys));
3763 do
3764 {
3765 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3766 GCPhys += GUEST_PAGE_SIZE;
3767 iPTDst++;
3768 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3769 && GCPhys < pRam->GCPhys);
3770 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3771 }
3772 else
3773 {
3774 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3775 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3776 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3777 }
3778 } /* while more PTEs */
3779 } /* 4KB / 4MB */
3780 }
3781 else
3782 AssertRelease(!SHW_PDE_IS_P(PdeDst));
3783
3784 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3785 if (RT_FAILURE(rc))
3786 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
3787 return rc;
3788
3789#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3790 && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \
3791 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3792 && PGM_SHW_TYPE != PGM_TYPE_NONE
3793 NOREF(iPDSrc); NOREF(pPDSrc);
3794
3795 STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3796
3797 /*
3798 * Validate input a little bit.
3799 */
3800 int rc = VINF_SUCCESS;
3801# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3802 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3803 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3804 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3);
3805
3806 /* Fetch the pgm pool shadow descriptor. */
3807 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3808 Assert(pShwPde);
3809
3810# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3811 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3812 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3813 PX86PDPAE pPDDst;
3814 PSHWPDE pPdeDst;
3815
3816 /* Fetch the pgm pool shadow descriptor. */
3817 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3818 AssertRCSuccessReturn(rc, rc);
3819 Assert(pShwPde);
3820
3821 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3822 pPdeDst = &pPDDst->a[iPDDst];
3823
3824# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3825 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3826 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3827 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3828 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3829 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3830 AssertRCSuccessReturn(rc, rc);
3831 Assert(pPDDst);
3832 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3833
3834 /* Fetch the pgm pool shadow descriptor. */
3835 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3836 Assert(pShwPde);
3837
3838# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3839 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3840 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3841 PEPTPD pPDDst;
3842 PEPTPDPT pPdptDst;
3843
3844 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3845 if (rc != VINF_SUCCESS)
3846 {
3847 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3848 AssertRC(rc);
3849 return rc;
3850 }
3851 Assert(pPDDst);
3852 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3853
3854 /* Fetch the pgm pool shadow descriptor. */
3855 /** @todo r=bird: didn't pgmShwGetEPTPDPtr just do this lookup already? */
3856 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3857 Assert(pShwPde);
3858# endif
3859 SHWPDE PdeDst = *pPdeDst;
3860
3861 Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3862
3863# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3864 if (BTH_IS_NP_ACTIVE(pVM))
3865 {
3866 Assert(!VM_IS_NEM_ENABLED(pVM));
3867
3868 /* Check if we allocated a big page before for this 2 MB range. */
3869 PPGMPAGE pPage;
3870 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3871 if (RT_SUCCESS(rc))
3872 {
3873 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3874 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3875 {
3876 if (PGM_A20_IS_ENABLED(pVCpu))
3877 {
3878 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3879 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3880 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3881 }
3882 else
3883 {
3884 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3885 pVM->pgm.s.cLargePagesDisabled++;
3886 }
3887 }
3888 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3889 && PGM_A20_IS_ENABLED(pVCpu))
3890 {
3891 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3892 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3893 if (RT_SUCCESS(rc))
3894 {
3895 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3896 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3897 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3898 }
3899 }
3900# if !defined(VBOX_WITH_NEW_LAZY_PAGE_ALLOC) && !defined(PGM_WITH_PAGE_ZEROING_DETECTION) /* This code is too aggresive! */
3901 else if ( PGMIsUsingLargePages(pVM)
3902 && PGM_A20_IS_ENABLED(pVCpu))
3903 {
3904 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3905 if (RT_SUCCESS(rc))
3906 {
3907 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3908 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3909 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3910 }
3911 else
3912 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3913 }
3914# endif
3915
3916 if (HCPhys != NIL_RTHCPHYS)
3917 {
3918# if PGM_SHW_TYPE == PGM_TYPE_EPT
3919 PdeDst.u = HCPhys | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_LEAF | EPT_E_IGNORE_PAT | EPT_E_MEMTYPE_WB
3920 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo do we need this? */;
3921# else
3922 PdeDst.u = HCPhys | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PS
3923 | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo PGM_PD_FLAGS? */;
3924# endif
3925 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3926
3927 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3928 /* Add a reference to the first page only. */
3929 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3930
3931 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3932 return VINF_SUCCESS;
3933 }
3934 }
3935 }
3936# endif /* defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE */
3937
3938 /*
3939 * Allocate & map the page table.
3940 */
3941 PSHWPT pPTDst;
3942 PPGMPOOLPAGE pShwPage;
3943 RTGCPHYS GCPhys;
3944
3945 /* Virtual address = physical address */
3946 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3947 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3948 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3949 &pShwPage);
3950 if ( rc == VINF_SUCCESS
3951 || rc == VINF_PGM_CACHED_PAGE)
3952 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3953 else
3954 {
3955 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3956 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3957 }
3958
3959 if (rc == VINF_SUCCESS)
3960 {
3961 /* New page table; fully set it up. */
3962 Assert(pPTDst);
3963
3964 /* Mask away the page offset. */
3965 GCPtrPage &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
3966
3967 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3968 {
3969 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3970 | (iPTDst << GUEST_PAGE_SHIFT));
3971
3972 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3973 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3974 GCPtrCurPage,
3975 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3976 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3977
3978 if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)))
3979 break;
3980 }
3981 }
3982 else
3983 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3984
3985 /* Save the new PDE. */
3986# if PGM_SHW_TYPE == PGM_TYPE_EPT
3987 PdeDst.u = pShwPage->Core.Key | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE
3988 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo do we really need this? */);
3989# else
3990 PdeDst.u = pShwPage->Core.Key | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A
3991 | (PdeDst.u & X86_PDE_AVL_MASK /** @todo use a PGM_PD_FLAGS define */);
3992# endif
3993 SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst);
3994
3995 STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a);
3996 if (RT_FAILURE(rc))
3997 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed));
3998 return rc;
3999
4000#else
4001 NOREF(iPDSrc); NOREF(pPDSrc);
4002 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
4003 return VERR_PGM_NOT_USED_IN_MODE;
4004#endif
4005}
4006
4007
4008
4009/**
4010 * Prefetch a page/set of pages.
4011 *
4012 * Typically used to sync commonly used pages before entering raw mode
4013 * after a CR3 reload.
4014 *
4015 * @returns VBox status code.
4016 * @param pVCpu The cross context virtual CPU structure.
4017 * @param GCPtrPage Page to invalidate.
4018 */
4019PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage)
4020{
4021#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
4022 || PGM_GST_TYPE == PGM_TYPE_REAL \
4023 || PGM_GST_TYPE == PGM_TYPE_PROT \
4024 || PGM_GST_TYPE == PGM_TYPE_PAE \
4025 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
4026 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
4027 && PGM_SHW_TYPE != PGM_TYPE_NONE
4028 /*
4029 * Check that all Guest levels thru the PDE are present, getting the
4030 * PD and PDE in the processes.
4031 */
4032 int rc = VINF_SUCCESS;
4033# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4034# if PGM_GST_TYPE == PGM_TYPE_32BIT
4035 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
4036 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
4037# elif PGM_GST_TYPE == PGM_TYPE_PAE
4038 unsigned iPDSrc;
4039 X86PDPE PdpeSrc;
4040 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
4041 if (!pPDSrc)
4042 return VINF_SUCCESS; /* not present */
4043# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4044 unsigned iPDSrc;
4045 PX86PML4E pPml4eSrc;
4046 X86PDPE PdpeSrc;
4047 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
4048 if (!pPDSrc)
4049 return VINF_SUCCESS; /* not present */
4050# endif
4051 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
4052# else
4053 PGSTPD pPDSrc = NULL;
4054 const unsigned iPDSrc = 0;
4055 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
4056# endif
4057
4058 if ((PdeSrc.u & (X86_PDE_P | X86_PDE_A)) == (X86_PDE_P | X86_PDE_A))
4059 {
4060 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4061 PGM_LOCK_VOID(pVM);
4062
4063# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4064 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
4065# elif PGM_SHW_TYPE == PGM_TYPE_PAE
4066 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
4067 PX86PDPAE pPDDst;
4068 X86PDEPAE PdeDst;
4069# if PGM_GST_TYPE != PGM_TYPE_PAE
4070 X86PDPE PdpeSrc;
4071
4072 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
4073 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
4074# endif
4075 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
4076 if (rc != VINF_SUCCESS)
4077 {
4078 PGM_UNLOCK(pVM);
4079 AssertRC(rc);
4080 return rc;
4081 }
4082 Assert(pPDDst);
4083 PdeDst = pPDDst->a[iPDDst];
4084
4085# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
4086 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
4087 PX86PDPAE pPDDst;
4088 X86PDEPAE PdeDst;
4089
4090# if PGM_GST_TYPE == PGM_TYPE_PROT
4091 /* AMD-V nested paging */
4092 X86PML4E Pml4eSrc;
4093 X86PDPE PdpeSrc;
4094 PX86PML4E pPml4eSrc = &Pml4eSrc;
4095
4096 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
4097 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
4098 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
4099# endif
4100
4101 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
4102 if (rc != VINF_SUCCESS)
4103 {
4104 PGM_UNLOCK(pVM);
4105 AssertRC(rc);
4106 return rc;
4107 }
4108 Assert(pPDDst);
4109 PdeDst = pPDDst->a[iPDDst];
4110# endif
4111 if (!(PdeDst.u & X86_PDE_P))
4112 {
4113 /** @todo r=bird: This guy will set the A bit on the PDE,
4114 * probably harmless. */
4115 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
4116 }
4117 else
4118 {
4119 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
4120 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
4121 * makes no sense to prefetch more than one page.
4122 */
4123 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
4124 if (RT_SUCCESS(rc))
4125 rc = VINF_SUCCESS;
4126 }
4127 PGM_UNLOCK(pVM);
4128 }
4129 return rc;
4130
4131#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
4132 NOREF(pVCpu); NOREF(GCPtrPage);
4133 return VINF_SUCCESS; /* ignore */
4134#else
4135 AssertCompile(0);
4136#endif
4137}
4138
4139
4140
4141
4142/**
4143 * Syncs a page during a PGMVerifyAccess() call.
4144 *
4145 * @returns VBox status code (informational included).
4146 * @param pVCpu The cross context virtual CPU structure.
4147 * @param GCPtrPage The address of the page to sync.
4148 * @param fPage The effective guest page flags.
4149 * @param uErr The trap error code.
4150 * @remarks This will normally never be called on invalid guest page
4151 * translation entries.
4152 */
4153PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
4154{
4155 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4156
4157 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
4158 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr);
4159
4160 Assert(!pVM->pgm.s.fNestedPaging);
4161#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
4162 || PGM_GST_TYPE == PGM_TYPE_REAL \
4163 || PGM_GST_TYPE == PGM_TYPE_PROT \
4164 || PGM_GST_TYPE == PGM_TYPE_PAE \
4165 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
4166 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \
4167 && PGM_SHW_TYPE != PGM_TYPE_NONE
4168
4169 /*
4170 * Get guest PD and index.
4171 */
4172 /** @todo Performance: We've done all this a jiffy ago in the
4173 * PGMGstGetPage call. */
4174# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4175# if PGM_GST_TYPE == PGM_TYPE_32BIT
4176 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
4177 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
4178
4179# elif PGM_GST_TYPE == PGM_TYPE_PAE
4180 unsigned iPDSrc = 0;
4181 X86PDPE PdpeSrc;
4182 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
4183 if (RT_UNLIKELY(!pPDSrc))
4184 {
4185 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
4186 return VINF_EM_RAW_GUEST_TRAP;
4187 }
4188
4189# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4190 unsigned iPDSrc = 0; /* shut up gcc */
4191 PX86PML4E pPml4eSrc = NULL; /* ditto */
4192 X86PDPE PdpeSrc;
4193 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
4194 if (RT_UNLIKELY(!pPDSrc))
4195 {
4196 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
4197 return VINF_EM_RAW_GUEST_TRAP;
4198 }
4199# endif
4200
4201# else /* !PGM_WITH_PAGING */
4202 PGSTPD pPDSrc = NULL;
4203 const unsigned iPDSrc = 0;
4204# endif /* !PGM_WITH_PAGING */
4205 int rc = VINF_SUCCESS;
4206
4207 PGM_LOCK_VOID(pVM);
4208
4209 /*
4210 * First check if the shadow pd is present.
4211 */
4212# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4213 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
4214 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3);
4215
4216# elif PGM_SHW_TYPE == PGM_TYPE_PAE
4217 PX86PDEPAE pPdeDst;
4218 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
4219 PX86PDPAE pPDDst;
4220# if PGM_GST_TYPE != PGM_TYPE_PAE
4221 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
4222 X86PDPE PdpeSrc;
4223 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
4224# endif
4225 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
4226 if (rc != VINF_SUCCESS)
4227 {
4228 PGM_UNLOCK(pVM);
4229 AssertRC(rc);
4230 return rc;
4231 }
4232 Assert(pPDDst);
4233 pPdeDst = &pPDDst->a[iPDDst];
4234
4235# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
4236 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
4237 PX86PDPAE pPDDst;
4238 PX86PDEPAE pPdeDst;
4239
4240# if PGM_GST_TYPE == PGM_TYPE_PROT
4241 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
4242 X86PML4E Pml4eSrc;
4243 X86PDPE PdpeSrc;
4244 PX86PML4E pPml4eSrc = &Pml4eSrc;
4245 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
4246 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
4247# endif
4248
4249 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
4250 if (rc != VINF_SUCCESS)
4251 {
4252 PGM_UNLOCK(pVM);
4253 AssertRC(rc);
4254 return rc;
4255 }
4256 Assert(pPDDst);
4257 pPdeDst = &pPDDst->a[iPDDst];
4258# endif
4259
4260 if (!(pPdeDst->u & X86_PDE_P))
4261 {
4262 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
4263 if (rc != VINF_SUCCESS)
4264 {
4265 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
4266 PGM_UNLOCK(pVM);
4267 AssertRC(rc);
4268 return rc;
4269 }
4270 }
4271
4272# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4273 /* Check for dirty bit fault */
4274 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
4275 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
4276 Log(("PGMVerifyAccess: success (dirty)\n"));
4277 else
4278# endif
4279 {
4280# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4281 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
4282# else
4283 GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */
4284# endif
4285
4286 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
4287 if (uErr & X86_TRAP_PF_US)
4288 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser));
4289 else /* supervisor */
4290 STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
4291
4292 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
4293 if (RT_SUCCESS(rc))
4294 {
4295 /* Page was successfully synced */
4296 Log2(("PGMVerifyAccess: success (sync)\n"));
4297 rc = VINF_SUCCESS;
4298 }
4299 else
4300 {
4301 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
4302 rc = VINF_EM_RAW_GUEST_TRAP;
4303 }
4304 }
4305 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
4306 PGM_UNLOCK(pVM);
4307 return rc;
4308
4309#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
4310
4311 AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
4312 return VERR_PGM_NOT_USED_IN_MODE;
4313#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */
4314}
4315
4316
4317/**
4318 * Syncs the paging hierarchy starting at CR3.
4319 *
4320 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
4321 * informational status codes.
4322 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
4323 * the VMM into guest context.
4324 * @param pVCpu The cross context virtual CPU structure.
4325 * @param cr0 Guest context CR0 register.
4326 * @param cr3 Guest context CR3 register. Not subjected to the A20
4327 * mask.
4328 * @param cr4 Guest context CR4 register.
4329 * @param fGlobal Including global page directories or not
4330 */
4331PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
4332{
4333 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4334 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
4335
4336 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
4337
4338#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE
4339# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4340 PGM_LOCK_VOID(pVM);
4341 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4342 if (pPool->cDirtyPages)
4343 pgmPoolResetDirtyPages(pVM);
4344 PGM_UNLOCK(pVM);
4345# endif
4346#endif /* !NESTED && !EPT */
4347
4348#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
4349 /*
4350 * Nested / EPT / None - No work.
4351 */
4352 return VINF_SUCCESS;
4353
4354#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
4355 /*
4356 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
4357 * out the shadow parts when the guest modifies its tables.
4358 */
4359 return VINF_SUCCESS;
4360
4361#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
4362
4363 return VINF_SUCCESS;
4364#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
4365}
4366
4367
4368
4369
4370#ifdef VBOX_STRICT
4371
4372/**
4373 * Checks that the shadow page table is in sync with the guest one.
4374 *
4375 * @returns The number of errors.
4376 * @param pVCpu The cross context virtual CPU structure.
4377 * @param cr3 Guest context CR3 register.
4378 * @param cr4 Guest context CR4 register.
4379 * @param GCPtr Where to start. Defaults to 0.
4380 * @param cb How much to check. Defaults to everything.
4381 */
4382PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
4383{
4384 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
4385#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE
4386 return 0;
4387#else
4388 unsigned cErrors = 0;
4389 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4390 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
4391
4392# if PGM_GST_TYPE == PGM_TYPE_PAE
4393 /** @todo currently broken; crashes below somewhere */
4394 AssertFailed();
4395# endif
4396
4397# if PGM_GST_TYPE == PGM_TYPE_32BIT \
4398 || PGM_GST_TYPE == PGM_TYPE_PAE \
4399 || PGM_GST_TYPE == PGM_TYPE_AMD64
4400
4401 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
4402 PPGMCPU pPGM = &pVCpu->pgm.s;
4403 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
4404 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
4405# ifndef IN_RING0
4406 RTHCPHYS HCPhys; /* general usage. */
4407# endif
4408 int rc;
4409
4410 /*
4411 * Check that the Guest CR3 and all its mappings are correct.
4412 */
4413 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
4414 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
4415 false);
4416# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
4417# if 0
4418# if PGM_GST_TYPE == PGM_TYPE_32BIT
4419 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
4420# else
4421 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
4422# endif
4423 AssertRCReturn(rc, 1);
4424 HCPhys = NIL_RTHCPHYS;
4425 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
4426 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
4427# endif
4428# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
4429 pgmGstGet32bitPDPtr(pVCpu);
4430 RTGCPHYS GCPhys;
4431 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
4432 AssertRCReturn(rc, 1);
4433 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
4434# endif
4435# endif /* !IN_RING0 */
4436
4437 /*
4438 * Get and check the Shadow CR3.
4439 */
4440# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4441 unsigned cPDEs = X86_PG_ENTRIES;
4442 unsigned cIncrement = X86_PG_ENTRIES * GUEST_PAGE_SIZE;
4443# elif PGM_SHW_TYPE == PGM_TYPE_PAE
4444# if PGM_GST_TYPE == PGM_TYPE_32BIT
4445 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
4446# else
4447 unsigned cPDEs = X86_PG_PAE_ENTRIES;
4448# endif
4449 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
4450# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
4451 unsigned cPDEs = X86_PG_PAE_ENTRIES;
4452 unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE;
4453# endif
4454 if (cb != ~(RTGCPTR)0)
4455 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
4456
4457/** @todo call the other two PGMAssert*() functions. */
4458
4459# if PGM_GST_TYPE == PGM_TYPE_AMD64
4460 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4461
4462 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
4463 {
4464 PX86PML4E const pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
4465 AssertContinueStmt(pPml4eSrc, cErrors++);
4466
4467 PX86PML4E const pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
4468 AssertContinueStmt(pPml4eDst, cErrors++);
4469
4470 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
4471 if (!(pPml4eDst->u & X86_PML4E_P))
4472 {
4473 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4474 continue;
4475 }
4476
4477 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
4478 RTGCPHYS GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
4479
4480 if ((pPml4eSrc->u & X86_PML4E_P) != (pPml4eDst->u & X86_PML4E_P))
4481 {
4482 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
4483 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4484 cErrors++;
4485 continue;
4486 }
4487
4488 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
4489 {
4490 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
4491 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4492 cErrors++;
4493 continue;
4494 }
4495
4496 if ( (pPml4eDst->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX))
4497 != (pPml4eSrc->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX)))
4498 {
4499 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
4500 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
4501 cErrors++;
4502 continue;
4503 }
4504# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
4505 {
4506# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
4507
4508# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
4509 /*
4510 * Check the PDPTEs too.
4511 */
4512 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
4513
4514 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
4515 {
4516 unsigned iPDSrc = 0; /* initialized to shut up gcc */
4517 PPGMPOOLPAGE pShwPde = NULL;
4518 PX86PDPE pPdpeDst;
4519 RTGCPHYS GCPhysPdeSrc;
4520 X86PDPE PdpeSrc;
4521 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
4522# if PGM_GST_TYPE == PGM_TYPE_PAE
4523 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
4524 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
4525# else
4526 PX86PML4E pPml4eSrcIgn;
4527 PX86PDPT pPdptDst;
4528 PX86PDPAE pPDDst;
4529 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
4530
4531 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
4532 if (rc != VINF_SUCCESS)
4533 {
4534 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
4535 GCPtr += 512 * _2M;
4536 continue; /* next PDPTE */
4537 }
4538 Assert(pPDDst);
4539# endif
4540 Assert(iPDSrc == 0);
4541
4542 pPdpeDst = &pPdptDst->a[iPdpt];
4543
4544 if (!(pPdpeDst->u & X86_PDPE_P))
4545 {
4546 GCPtr += 512 * _2M;
4547 continue; /* next PDPTE */
4548 }
4549
4550 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
4551 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
4552
4553 if ((pPdpeDst->u & X86_PDPE_P) != (PdpeSrc.u & X86_PDPE_P))
4554 {
4555 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4556 GCPtr += 512 * _2M;
4557 cErrors++;
4558 continue;
4559 }
4560
4561 if (GCPhysPdeSrc != pShwPde->GCPhys)
4562 {
4563# if PGM_GST_TYPE == PGM_TYPE_AMD64
4564 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4565# else
4566 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4567# endif
4568 GCPtr += 512 * _2M;
4569 cErrors++;
4570 continue;
4571 }
4572
4573# if PGM_GST_TYPE == PGM_TYPE_AMD64
4574 if ( (pPdpeDst->u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX))
4575 != (PdpeSrc.u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX)))
4576 {
4577 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4578 GCPtr += 512 * _2M;
4579 cErrors++;
4580 continue;
4581 }
4582# endif
4583
4584# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4585 {
4586# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4587# if PGM_GST_TYPE == PGM_TYPE_32BIT
4588 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
4589# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4590 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
4591# endif
4592# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
4593 /*
4594 * Iterate the shadow page directory.
4595 */
4596 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
4597 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
4598
4599 for (;
4600 iPDDst < cPDEs;
4601 iPDDst++, GCPtr += cIncrement)
4602 {
4603# if PGM_SHW_TYPE == PGM_TYPE_PAE
4604 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
4605# else
4606 const SHWPDE PdeDst = pPDDst->a[iPDDst];
4607# endif
4608 if ( (PdeDst.u & X86_PDE_P)
4609 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) )
4610 {
4611 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4612 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
4613 if (!pPoolPage)
4614 {
4615 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4616 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4617 cErrors++;
4618 continue;
4619 }
4620 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4621
4622 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4623 {
4624 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4625 GCPtr, (uint64_t)PdeDst.u));
4626 cErrors++;
4627 }
4628
4629 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4630 {
4631 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4632 GCPtr, (uint64_t)PdeDst.u));
4633 cErrors++;
4634 }
4635
4636 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4637 if (!(PdeSrc.u & X86_PDE_P))
4638 {
4639 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4640 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4641 cErrors++;
4642 continue;
4643 }
4644
4645 if ( !(PdeSrc.u & X86_PDE_PS)
4646 || !fBigPagesSupported)
4647 {
4648 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4649# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4650 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2)));
4651# endif
4652 }
4653 else
4654 {
4655# if PGM_GST_TYPE == PGM_TYPE_32BIT
4656 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4657 {
4658 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4659 GCPtr, (uint64_t)PdeSrc.u));
4660 cErrors++;
4661 continue;
4662 }
4663# endif
4664 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4665# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4666 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4667# endif
4668 }
4669
4670 if ( pPoolPage->enmKind
4671 != (!(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4672 {
4673 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4674 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4675 cErrors++;
4676 }
4677
4678 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4679 if (!pPhysPage)
4680 {
4681 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4682 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4683 cErrors++;
4684 continue;
4685 }
4686
4687 if (GCPhysGst != pPoolPage->GCPhys)
4688 {
4689 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4690 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4691 cErrors++;
4692 continue;
4693 }
4694
4695 if ( !(PdeSrc.u & X86_PDE_PS)
4696 || !fBigPagesSupported)
4697 {
4698 /*
4699 * Page Table.
4700 */
4701 const GSTPT *pPTSrc;
4702 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(GUEST_PAGE_SIZE - 1)),
4703 &pPTSrc);
4704 if (RT_FAILURE(rc))
4705 {
4706 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4707 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4708 cErrors++;
4709 continue;
4710 }
4711 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4712 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4713 {
4714 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4715 // (This problem will go away when/if we shadow multiple CR3s.)
4716 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4717 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4718 cErrors++;
4719 continue;
4720 }
4721 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4722 {
4723 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4724 GCPtr, (uint64_t)PdeDst.u));
4725 cErrors++;
4726 continue;
4727 }
4728
4729 /* iterate the page table. */
4730# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4731 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4732 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4733# else
4734 const unsigned offPTSrc = 0;
4735# endif
4736 for (unsigned iPT = 0, off = 0;
4737 iPT < RT_ELEMENTS(pPTDst->a);
4738 iPT++, off += GUEST_PAGE_SIZE)
4739 {
4740 const SHWPTE PteDst = pPTDst->a[iPT];
4741
4742 /* skip not-present and dirty tracked entries. */
4743 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4744 continue;
4745 Assert(SHW_PTE_IS_P(PteDst));
4746
4747 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4748 if (!(PteSrc.u & X86_PTE_P))
4749 {
4750# ifdef IN_RING3
4751 PGMAssertHandlerAndFlagsInSync(pVM);
4752 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4753 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4754 0, 0, UINT64_MAX, 99, NULL);
4755# endif
4756 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4757 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4758 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4759 cErrors++;
4760 continue;
4761 }
4762
4763 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4764# if 1 /** @todo sync accessed bit properly... */
4765 fIgnoreFlags |= X86_PTE_A;
4766# endif
4767
4768 /* match the physical addresses */
4769 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4770 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4771
4772# ifdef IN_RING3
4773 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4774 if (RT_FAILURE(rc))
4775 {
4776# if 0
4777 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4778 {
4779 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4780 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4781 cErrors++;
4782 continue;
4783 }
4784# endif
4785 }
4786 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4787 {
4788 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4789 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4790 cErrors++;
4791 continue;
4792 }
4793# endif
4794
4795 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4796 if (!pPhysPage)
4797 {
4798# if 0
4799 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4800 {
4801 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4802 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4803 cErrors++;
4804 continue;
4805 }
4806# endif
4807 if (SHW_PTE_IS_RW(PteDst))
4808 {
4809 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4810 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4811 cErrors++;
4812 }
4813 fIgnoreFlags |= X86_PTE_RW;
4814 }
4815 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4816 {
4817 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4818 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4819 cErrors++;
4820 continue;
4821 }
4822
4823 /* flags */
4824 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage))
4825 {
4826 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4827 {
4828 if (SHW_PTE_IS_RW(PteDst))
4829 {
4830 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4831 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4832 cErrors++;
4833 continue;
4834 }
4835 fIgnoreFlags |= X86_PTE_RW;
4836 }
4837 else
4838 {
4839 if ( SHW_PTE_IS_P(PteDst)
4840# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4841 && !PGM_PAGE_IS_MMIO(pPhysPage)
4842# endif
4843 )
4844 {
4845 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4846 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4847 cErrors++;
4848 continue;
4849 }
4850 fIgnoreFlags |= X86_PTE_P;
4851 }
4852 }
4853 else
4854 {
4855 if ((PteSrc.u & (X86_PTE_RW | X86_PTE_D)) == X86_PTE_RW)
4856 {
4857 if (SHW_PTE_IS_RW(PteDst))
4858 {
4859 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4860 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4861 cErrors++;
4862 continue;
4863 }
4864 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4865 {
4866 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4867 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4868 cErrors++;
4869 continue;
4870 }
4871 if (SHW_PTE_IS_D(PteDst))
4872 {
4873 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4874 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4875 cErrors++;
4876 }
4877# if 0 /** @todo sync access bit properly... */
4878 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4879 {
4880 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4881 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4882 cErrors++;
4883 }
4884 fIgnoreFlags |= X86_PTE_RW;
4885# else
4886 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4887# endif
4888 }
4889 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4890 {
4891 /* access bit emulation (not implemented). */
4892 if ((PteSrc.u & X86_PTE_A) || SHW_PTE_IS_P(PteDst))
4893 {
4894 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4895 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4896 cErrors++;
4897 continue;
4898 }
4899 if (!SHW_PTE_IS_A(PteDst))
4900 {
4901 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4902 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4903 cErrors++;
4904 }
4905 fIgnoreFlags |= X86_PTE_P;
4906 }
4907# ifdef DEBUG_sandervl
4908 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4909# endif
4910 }
4911
4912 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4913 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4914 )
4915 {
4916 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4917 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4918 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4919 cErrors++;
4920 continue;
4921 }
4922 } /* foreach PTE */
4923 }
4924 else
4925 {
4926 /*
4927 * Big Page.
4928 */
4929 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4930 if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW)
4931 {
4932 if (PdeDst.u & X86_PDE_RW)
4933 {
4934 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4935 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4936 cErrors++;
4937 continue;
4938 }
4939 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4940 {
4941 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4942 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4943 cErrors++;
4944 continue;
4945 }
4946# if 0 /** @todo sync access bit properly... */
4947 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4948 {
4949 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4950 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4951 cErrors++;
4952 }
4953 fIgnoreFlags |= X86_PTE_RW;
4954# else
4955 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4956# endif
4957 }
4958 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4959 {
4960 /* access bit emulation (not implemented). */
4961 if ((PdeSrc.u & X86_PDE_A) || SHW_PDE_IS_P(PdeDst))
4962 {
4963 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4964 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4965 cErrors++;
4966 continue;
4967 }
4968 if (!SHW_PDE_IS_A(PdeDst))
4969 {
4970 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4971 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4972 cErrors++;
4973 }
4974 fIgnoreFlags |= X86_PTE_P;
4975 }
4976
4977 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4978 {
4979 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4980 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4981 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4982 cErrors++;
4983 }
4984
4985 /* iterate the page table. */
4986 for (unsigned iPT = 0, off = 0;
4987 iPT < RT_ELEMENTS(pPTDst->a);
4988 iPT++, off += GUEST_PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + GUEST_PAGE_SIZE))
4989 {
4990 const SHWPTE PteDst = pPTDst->a[iPT];
4991
4992 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4993 {
4994 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4995 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4996 cErrors++;
4997 }
4998
4999 /* skip not-present entries. */
5000 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
5001 continue;
5002
5003 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
5004
5005 /* match the physical addresses */
5006 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
5007
5008# ifdef IN_RING3
5009 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
5010 if (RT_FAILURE(rc))
5011 {
5012# if 0
5013 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
5014 {
5015 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
5016 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5017 cErrors++;
5018 }
5019# endif
5020 }
5021 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
5022 {
5023 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
5024 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5025 cErrors++;
5026 continue;
5027 }
5028# endif
5029 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
5030 if (!pPhysPage)
5031 {
5032# if 0 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
5033 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
5034 {
5035 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
5036 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5037 cErrors++;
5038 continue;
5039 }
5040# endif
5041 if (SHW_PTE_IS_RW(PteDst))
5042 {
5043 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
5044 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5045 cErrors++;
5046 }
5047 fIgnoreFlags |= X86_PTE_RW;
5048 }
5049 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
5050 {
5051 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
5052 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5053 cErrors++;
5054 continue;
5055 }
5056
5057 /* flags */
5058 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
5059 {
5060 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
5061 {
5062 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
5063 {
5064 if ( SHW_PTE_IS_RW(PteDst)
5065 && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage))
5066 {
5067 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
5068 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5069 cErrors++;
5070 continue;
5071 }
5072 fIgnoreFlags |= X86_PTE_RW;
5073 }
5074 }
5075 else
5076 {
5077 if ( SHW_PTE_IS_P(PteDst)
5078 && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage)
5079# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
5080 && !PGM_PAGE_IS_MMIO(pPhysPage)
5081# endif
5082 )
5083 {
5084 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
5085 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5086 cErrors++;
5087 continue;
5088 }
5089 fIgnoreFlags |= X86_PTE_P;
5090 }
5091 }
5092
5093 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
5094 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
5095 )
5096 {
5097 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
5098 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
5099 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
5100 cErrors++;
5101 continue;
5102 }
5103 } /* for each PTE */
5104 }
5105 }
5106 /* not present */
5107
5108 } /* for each PDE */
5109
5110 } /* for each PDPTE */
5111
5112 } /* for each PML4E */
5113
5114# ifdef DEBUG
5115 if (cErrors)
5116 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
5117# endif
5118# endif /* GST is in {32BIT, PAE, AMD64} */
5119 return cErrors;
5120#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */
5121}
5122#endif /* VBOX_STRICT */
5123
5124
5125/**
5126 * Sets up the CR3 for shadow paging
5127 *
5128 * @returns Strict VBox status code.
5129 * @retval VINF_SUCCESS.
5130 *
5131 * @param pVCpu The cross context virtual CPU structure.
5132 * @param GCPhysCR3 The physical address in the CR3 register. (A20 mask
5133 * already applied.)
5134 */
5135PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3)
5136{
5137 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
5138 int rc = VINF_SUCCESS;
5139
5140 /* Update guest paging info. */
5141#if PGM_GST_TYPE == PGM_TYPE_32BIT \
5142 || PGM_GST_TYPE == PGM_TYPE_PAE \
5143 || PGM_GST_TYPE == PGM_TYPE_AMD64
5144
5145 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
5146 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
5147
5148# if PGM_GST_TYPE == PGM_TYPE_PAE
5149 if ( !pVCpu->pgm.s.CTX_SUFF(fPaePdpesAndCr3Mapped)
5150 || pVCpu->pgm.s.GCPhysPaeCR3 != GCPhysCR3)
5151# endif
5152 {
5153 /*
5154 * Map the page CR3 points at.
5155 */
5156 RTHCPTR HCPtrGuestCR3;
5157 rc = pgmGstMapCr3(pVCpu, GCPhysCR3, &HCPtrGuestCR3);
5158 if (RT_SUCCESS(rc))
5159 {
5160# if PGM_GST_TYPE == PGM_TYPE_32BIT
5161# ifdef IN_RING3
5162 pVCpu->pgm.s.pGst32BitPdR3 = (PX86PD)HCPtrGuestCR3;
5163 pVCpu->pgm.s.pGst32BitPdR0 = NIL_RTR0PTR;
5164# else
5165 pVCpu->pgm.s.pGst32BitPdR3 = NIL_RTR3PTR;
5166 pVCpu->pgm.s.pGst32BitPdR0 = (PX86PD)HCPtrGuestCR3;
5167# endif
5168
5169# elif PGM_GST_TYPE == PGM_TYPE_PAE
5170# ifdef IN_RING3
5171 pVCpu->pgm.s.pGstPaePdptR3 = (PX86PDPT)HCPtrGuestCR3;
5172 pVCpu->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
5173# else
5174 pVCpu->pgm.s.pGstPaePdptR3 = NIL_RTR3PTR;
5175 pVCpu->pgm.s.pGstPaePdptR0 = (PX86PDPT)HCPtrGuestCR3;
5176# endif
5177
5178 X86PDPE aGstPaePdpes[X86_PG_PAE_PDPE_ENTRIES];
5179#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5180 /*
5181 * When EPT is enabled by the nested-hypervisor and the nested-guest is in PAE mode,
5182 * the guest-CPU context would've already been updated with the 4 PAE PDPEs specified
5183 * in the virtual VMCS. The PDPEs can differ from those in guest memory referenced by
5184 * the translated nested-guest CR3. We -MUST- use the PDPEs provided in the virtual VMCS
5185 * rather than those in guest memory.
5186 *
5187 * See Intel spec. 26.3.2.4 "Loading Page-Directory-Pointer-Table Entries".
5188 */
5189 if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT)
5190 CPUMGetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]);
5191 else
5192#endif
5193 {
5194 /* Update CPUM with the PAE PDPEs referenced by CR3. */
5195 memcpy(&aGstPaePdpes, HCPtrGuestCR3, sizeof(aGstPaePdpes));
5196 CPUMSetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]);
5197 }
5198
5199 /*
5200 * Map the 4 PAE PDPEs.
5201 */
5202 rc = PGMGstMapPaePdpes(pVCpu, &aGstPaePdpes[0]);
5203 if (RT_SUCCESS(rc))
5204 {
5205# ifdef IN_RING3
5206 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = true;
5207 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
5208# else
5209 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
5210 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = true;
5211# endif
5212 pVCpu->pgm.s.GCPhysPaeCR3 = GCPhysCR3;
5213 }
5214
5215# elif PGM_GST_TYPE == PGM_TYPE_AMD64
5216# ifdef IN_RING3
5217 pVCpu->pgm.s.pGstAmd64Pml4R3 = (PX86PML4)HCPtrGuestCR3;
5218 pVCpu->pgm.s.pGstAmd64Pml4R0 = NIL_RTR0PTR;
5219# else
5220 pVCpu->pgm.s.pGstAmd64Pml4R3 = NIL_RTR3PTR;
5221 pVCpu->pgm.s.pGstAmd64Pml4R0 = (PX86PML4)HCPtrGuestCR3;
5222# endif
5223# endif
5224 }
5225 else
5226 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
5227 }
5228#endif
5229
5230 /*
5231 * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64).
5232 */
5233# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
5234 || PGM_SHW_TYPE == PGM_TYPE_PAE \
5235 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
5236 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
5237 && PGM_GST_TYPE != PGM_TYPE_PROT))
5238
5239 Assert(!pVM->pgm.s.fNestedPaging);
5240 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
5241
5242 /*
5243 * Update the shadow root page as well since that's not fixed.
5244 */
5245 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5246 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
5247 PPGMPOOLPAGE pNewShwPageCR3;
5248
5249 PGM_LOCK_VOID(pVM);
5250
5251# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5252 if (pPool->cDirtyPages)
5253 pgmPoolResetDirtyPages(pVM);
5254# endif
5255
5256 Assert(!(GCPhysCR3 >> (GUEST_PAGE_SHIFT + 32))); /** @todo what is this for? */
5257 int const rc2 = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE,
5258 PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3);
5259 AssertFatalRC(rc2);
5260
5261 pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3);
5262 pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3);
5263
5264 /* Set the current hypervisor CR3. */
5265 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
5266
5267 /* Clean up the old CR3 root. */
5268 if ( pOldShwPageCR3
5269 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
5270 {
5271 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
5272
5273 /* Mark the page as unlocked; allow flushing again. */
5274 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
5275
5276 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
5277 }
5278 PGM_UNLOCK(pVM);
5279# else
5280 NOREF(GCPhysCR3);
5281# endif
5282
5283 return rc;
5284}
5285
5286/**
5287 * Unmaps the shadow CR3.
5288 *
5289 * @returns VBox status, no specials.
5290 * @param pVCpu The cross context virtual CPU structure.
5291 */
5292PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu)
5293{
5294 LogFlow(("UnmapCR3\n"));
5295
5296 int rc = VINF_SUCCESS;
5297 PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
5298
5299 /*
5300 * Update guest paging info.
5301 */
5302#if PGM_GST_TYPE == PGM_TYPE_32BIT
5303 pVCpu->pgm.s.pGst32BitPdR3 = 0;
5304 pVCpu->pgm.s.pGst32BitPdR0 = 0;
5305
5306#elif PGM_GST_TYPE == PGM_TYPE_PAE
5307 pVCpu->pgm.s.pGstPaePdptR3 = 0;
5308 pVCpu->pgm.s.pGstPaePdptR0 = 0;
5309 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
5310 {
5311 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
5312 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
5313 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
5314 }
5315
5316#elif PGM_GST_TYPE == PGM_TYPE_AMD64
5317 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
5318 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
5319
5320#else /* prot/real mode stub */
5321 /* nothing to do */
5322#endif
5323
5324 /*
5325 * PAE PDPEs (and CR3) might have been mapped via PGMGstMapPaePdpesAtCr3()
5326 * prior to switching to PAE in pfnMapCr3(), so we need to clear them here.
5327 */
5328 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false;
5329 pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false;
5330 pVCpu->pgm.s.GCPhysPaeCR3 = NIL_RTGCPHYS;
5331
5332 /*
5333 * Update shadow paging info.
5334 */
5335#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
5336 || PGM_SHW_TYPE == PGM_TYPE_PAE \
5337 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
5338# if PGM_GST_TYPE != PGM_TYPE_REAL
5339 Assert(!pVM->pgm.s.fNestedPaging);
5340# endif
5341 PGM_LOCK_VOID(pVM);
5342
5343 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
5344 {
5345 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5346
5347# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5348 if (pPool->cDirtyPages)
5349 pgmPoolResetDirtyPages(pVM);
5350# endif
5351
5352 /* Mark the page as unlocked; allow flushing again. */
5353 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
5354
5355 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
5356 pVCpu->pgm.s.pShwPageCR3R3 = 0;
5357 pVCpu->pgm.s.pShwPageCR3R0 = 0;
5358 }
5359
5360 PGM_UNLOCK(pVM);
5361#endif
5362
5363 return rc;
5364}
5365
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette