/* $Id: PGMAllBth.h 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * VBox - Page Manager, Shadow+Guest Paging Template - All context code. * * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT). * bird: WTF does this mean these days? Looking at PGMAll.cpp it's * * @remarks This file is one big \#ifdef-orgy! * */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ #ifdef _MSC_VER /** @todo we're generating unnecessary code in nested/ept shadow mode and for * real/prot-guest+RC mode. */ # pragma warning(disable: 4505) #endif /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ RT_C_DECLS_BEGIN PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3); #ifndef IN_RING3 PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPTR pvFault, bool *pfLockTaken); PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault, bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken); # if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPte, SLATPTE GstSlatPte); static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages, uint32_t uErr, PPGMPTWALKGST pGstWalkAll); static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll); # endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ #endif PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage); static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr); static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage); static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage); #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst); #else static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst); #endif PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr); PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage); PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal); #ifdef VBOX_STRICT PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0); #endif PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3); PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu); #ifdef IN_RING3 PGM_BTH_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta); #endif RT_C_DECLS_END /* * Filter out some illegal combinations of guest and shadow paging, so we can * remove redundant checks inside functions. */ #if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \ && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE # error "Invalid combination; PAE guest implies PAE shadow" #endif #if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \ || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE) # error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging." #endif #if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \ && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \ || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE) # error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging." #endif #if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \ || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT) # error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa" #endif /** * Enters the shadow+guest mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPhysCR3 The physical address from the CR3 register. */ PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3) { /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches; * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables. */ #if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ || PGM_SHW_TYPE == PGM_TYPE_PAE \ || PGM_SHW_TYPE == PGM_TYPE_AMD64) \ && ( PGM_GST_TYPE == PGM_TYPE_REAL \ || PGM_GST_TYPE == PGM_TYPE_PROT)) PVMCC pVM = pVCpu->CTX_SUFF(pVM); Assert(!pVM->pgm.s.fNestedPaging); PGM_LOCK_VOID(pVM); /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes), * but any calls to GC need a proper shadow page setup as well. */ /* Free the previous root mapping if still active. */ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); if (pOldShwPageCR3) { Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE); /* Mark the page as unlocked; allow flushing again. */ pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX); pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR; pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR; } /* construct a fake address. */ GCPhysCR3 = RT_BIT_64(63); PPGMPOOLPAGE pNewShwPageCR3; int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/, &pNewShwPageCR3); AssertRCReturn(rc, rc); pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3); pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3); /* Mark the page as locked; disallow flushing. */ pgmPoolLockPage(pPool, pNewShwPageCR3); /* Set the current hypervisor CR3. */ CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu)); PGM_UNLOCK(pVM); return rc; #else NOREF(pVCpu); NOREF(GCPhysCR3); return VINF_SUCCESS; #endif } #ifndef IN_RING3 # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /** * Deal with a guest page fault. * * @returns Strict VBox status code. * @retval VINF_EM_RAW_GUEST_TRAP * @retval VINF_EM_RAW_EMULATE_INSTR * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pWalk The guest page table walk result. * @param uErr The error code. */ PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, RTGCUINT uErr) { /* * Calc the error code for the guest trap. */ uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu) ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID) : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US); if ( pWalk->fRsvdError || pWalk->fBadPhysAddr) { uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P; Assert(!pWalk->fNotPresent); } else if (!pWalk->fNotPresent) uNewErr |= X86_TRAP_PF_P; TRPMSetErrorCode(pVCpu, uNewErr); LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pWalk->GCPtr, uErr, pWalk->uLevel)); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; }); return VINF_EM_RAW_GUEST_TRAP; } # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ #if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE /** * Deal with a guest page fault. * * The caller has taken the PGM lock. * * @returns Strict VBox status code. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uErr The error code. * @param pCtx Pointer to the register context for the CPU. * @param pvFault The fault address. * @param pPage The guest page at @a pvFault. * @param pWalk The guest page table walk result. * @param pGstWalk The guest paging-mode specific walk information. * @param pfLockTaken PGM lock taken here or not (out). This is true * when we're called. */ static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING) , PPGMPTWALK pWalk , PGSTPTWALK pGstWalk # endif ) { # if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A }; # endif PVMCC pVM = pVCpu->CTX_SUFF(pVM); VBOXSTRICTRC rcStrict; if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage)) { /* * Physical page access handler. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) const RTGCPHYS GCPhysFault = pWalk->GCPhys; # else const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault); # endif PPGMPHYSHANDLER pCur; rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysFault, &pCur); if (RT_SUCCESS(rcStrict)) { PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur); # ifdef PGM_SYNC_N_PAGES /* * If the region is write protected and we got a page not present fault, then sync * the pages. If the fault was caused by a read, then restart the instruction. * In case of write access continue to the GC write handler. * * ASSUMES that there is only one handler per page or that they have similar write properties. */ if ( !(uErr & X86_TRAP_PF_P) && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) { # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); # else rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); # endif if ( RT_FAILURE(rcStrict) || !(uErr & X86_TRAP_PF_RW) || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE) { AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); return rcStrict; } } # endif # ifdef PGM_WITH_MMIO_OPTIMIZATIONS /* * If the access was not thru a #PF(RSVD|...) resync the page. */ if ( !(uErr & X86_TRAP_PF_RSVD) && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_W_MASK /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */ # endif ) { # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); # else rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); # endif if ( RT_FAILURE(rcStrict) || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE) { AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); return rcStrict; } } # endif AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)), ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n", pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind)); if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite); else { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll); if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt); } if (pCurType->pfnPfHandler) { STAM_PROFILE_START(&pCur->Stat, h); if (pCurType->fKeepPgmLock) { rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, pvFault, GCPhysFault, !pCurType->fRing0DevInsIdx ? pCur->uUser : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser)); STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */ } else { uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser); PGM_UNLOCK(pVM); *pfLockTaken = false; rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, pvFault, GCPhysFault, uUser); STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */ } } else rcStrict = VINF_EM_RAW_EMULATE_INSTR; STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; }); return rcStrict; } AssertMsgReturn(rcStrict == VERR_NOT_FOUND, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict); } /* * There is a handled area of the page, but this fault doesn't belong to it. * We must emulate the instruction. * * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler * we first check if this was a page-not-present fault for a page with only * write access handlers. Restart the instruction if it wasn't a write access. */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersUnhandled); if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) && !(uErr & X86_TRAP_PF_P)) { # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); # else rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); # endif if ( RT_FAILURE(rcStrict) || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE || !(uErr & X86_TRAP_PF_RW)) { AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); return rcStrict; } } /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06 * It's writing to an unhandled part of the LDT page several million times. */ rcStrict = PGMInterpretInstruction(pVCpu, pvFault); LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage)); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndUnhandled; }); return rcStrict; } /* if any kind of handler */ # endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/ /** * \#PF Handler for raw-mode guest execution. * * @returns VBox status code (appropriate for trap handling and GC return). * * @param pVCpu The cross context virtual CPU structure. * @param uErr The trap error code. * @param pCtx Pointer to the register context for the CPU. * @param pvFault The fault address. * @param pfLockTaken PGM lock taken here or not (out) */ PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPTR pvFault, bool *pfLockTaken) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); *pfLockTaken = false; # if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \ || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \ && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ && PGM_SHW_TYPE != PGM_TYPE_NONE int rc; # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * Walk the guest page translation tables and check if it's a guest fault. */ PGMPTWALK Walk; GSTPTWALK GstWalk; rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &Walk, &GstWalk); if (RT_FAILURE_NP(rc)) return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr)); /* assert some GstWalk sanity. */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */ # endif # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */ # endif /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */ /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */ Assert(Walk.fSucceeded); Assert(Walk.fEffective & PGM_PTATTRS_R_MASK); if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)) { if ( ( (uErr & X86_TRAP_PF_RW) && !(Walk.fEffective & PGM_PTATTRS_W_MASK) && ( (uErr & X86_TRAP_PF_US) || CPUMIsGuestR0WriteProtEnabled(pVCpu)) ) || ((uErr & X86_TRAP_PF_US) && !(Walk.fEffective & PGM_PTATTRS_US_MASK)) || ((uErr & X86_TRAP_PF_ID) && (Walk.fEffective & PGM_PTATTRS_NX_MASK)) ) return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr)); } /* Take the big lock now before we update flags. */ *pfLockTaken = true; PGM_LOCK_VOID(pVM); /* * Set the accessed and dirty flags. */ /** @todo Should probably use cmpxchg logic here as we're potentially racing * other CPUs in SMP configs. (the lock isn't enough, since we take it * after walking and the page tables could be stale already) */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 if (!(GstWalk.Pml4e.u & X86_PML4E_A)) { GstWalk.Pml4e.u |= X86_PML4E_A; GST_ATOMIC_OR(&GstWalk.pPml4e->u, X86_PML4E_A); } if (!(GstWalk.Pdpe.u & X86_PDPE_A)) { GstWalk.Pdpe.u |= X86_PDPE_A; GST_ATOMIC_OR(&GstWalk.pPdpe->u, X86_PDPE_A); } # endif if (Walk.fBigPage) { Assert(GstWalk.Pde.u & X86_PDE_PS); if (uErr & X86_TRAP_PF_RW) { if ((GstWalk.Pde.u & (X86_PDE4M_A | X86_PDE4M_D)) != (X86_PDE4M_A | X86_PDE4M_D)) { GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D; GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A | X86_PDE4M_D); } } else { if (!(GstWalk.Pde.u & X86_PDE4M_A)) { GstWalk.Pde.u |= X86_PDE4M_A; GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A); } } } else { Assert(!(GstWalk.Pde.u & X86_PDE_PS)); if (!(GstWalk.Pde.u & X86_PDE_A)) { GstWalk.Pde.u |= X86_PDE_A; GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE_A); } if (uErr & X86_TRAP_PF_RW) { # ifdef VBOX_WITH_STATISTICS if (GstWalk.Pte.u & X86_PTE_D) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageAlreadyDirty)); else STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtiedPage)); # endif if ((GstWalk.Pte.u & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D)) { GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D; GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A | X86_PTE_D); } } else { if (!(GstWalk.Pte.u & X86_PTE_A)) { GstWalk.Pte.u |= X86_PTE_A; GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A); } } Assert(GstWalk.Pte.u == GstWalk.pPte->u); } #if 0 /* Disabling this since it's not reliable for SMP, see @bugref{10092#c22}. */ AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u)); #endif # else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */ /* Take the big lock now. */ *pfLockTaken = true; PGM_LOCK_VOID(pVM); # endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ # ifdef PGM_WITH_MMIO_OPTIMIZATIONS /* * If it is a reserved bit fault we know that it is an MMIO (access * handler) related fault and can skip some 200 lines of code. */ if (uErr & X86_TRAP_PF_RSVD) { Assert(uErr & X86_TRAP_PF_P); PPGMPAGE pPage; # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) rc = pgmPhysGetPageEx(pVM, Walk.GCPhys, &pPage); if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken, &Walk, &GstWalk)); rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); # else rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage); if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken)); rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr); # endif AssertRC(rc); PGM_INVL_PG(pVCpu, pvFault); return rc; /* Restart with the corrected entry. */ } # endif /* PGM_WITH_MMIO_OPTIMIZATIONS */ /* * Fetch the guest PDE, PDPE and PML4E. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = pvFault >> SHW_PD_SHIFT; PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */ PX86PDPAE pPDDst; # if PGM_GST_TYPE == PGM_TYPE_PAE rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst); # else rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */ # endif AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; # if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */ rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A, X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst); # else rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst); # endif AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); # elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst); AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); # endif Assert(pPDDst); # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * Dirty page handling. * * If we successfully correct the write protection fault due to dirty bit * tracking, then return immediately. */ if (uErr & X86_TRAP_PF_RW) /* write fault? */ { STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a); rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault); STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a); if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) { STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVCpu->pgm.s.Stats.StatRZTrap0eTime2DirtyAndAccessed : &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; }); Log8(("Trap0eHandler: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } #ifdef DEBUG_bird AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests. AssertMsg(Walk.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto. #endif } # if 0 /* rarely useful; leave for debugging. */ STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]); # endif # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ /* * A common case is the not-present error caused by lazy page table syncing. * * It is IMPORTANT that we weed out any access to non-present shadow PDEs * here so we can safely assume that the shadow PT is present when calling * SyncPage later. * * On failure, we ASSUME that SyncPT is out of memory or detected some kind * of mapping conflict and defer to SyncCR3 in R3. * (Again, we do NOT support access handlers for non-present guest pages.) * */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) Assert(GstWalk.Pde.u & X86_PDE_P); # endif if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */ && !SHW_PDE_IS_P(pPDDst->a[iPDDst])) { STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; }); # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u)); rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault); # else LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault)); rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault); # endif if (RT_SUCCESS(rc)) return rc; Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */ return VINF_PGM_SYNC_CR3; } /* * Check if this fault address is flagged for special treatment, * which means we'll have to figure out the physical address and * check flags associated with it. * * ASSUME that we can limit any special access handling to pages * in page tables which the guest believes to be present. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) RTGCPHYS GCPhys = Walk.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; # else RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK); # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); if (RT_FAILURE(rc)) { /* * When the guest accesses invalid physical memory (e.g. probing * of RAM or accessing a remapped MMIO range), then we'll fall * back to the recompiler to emulate the instruction. */ LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc)); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; }); return VINF_EM_RAW_EMULATE_INSTR; } /* * Any handlers for this page? */ if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken, &Walk, &GstWalk)); # else return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken)); # endif /* * We are here only if page is present in Guest page tables and * trap is not handled by our handlers. * * Check it for page out-of-sync situation. */ if (!(uErr & X86_TRAP_PF_P)) { /* * Page is not present in our page tables. Try to sync it! */ if (uErr & X86_TRAP_PF_US) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser)); else /* supervisor */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); if (PGM_PAGE_IS_BALLOONED(pPage)) { /* Emulate reads from ballooned pages as they are not present in our shadow page tables. (Required for e.g. Solaris guests; soft ecc, random nr generator.) */ rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVCpu, pvFault)); LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage)); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncBallloon)); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Ballooned; }); return rc; } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); # else rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); # endif if (RT_SUCCESS(rc)) { /* The page was successfully synced, return to the guest. */ STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; }); return VINF_SUCCESS; } } else /* uErr & X86_TRAP_PF_P: */ { /* * Write protected pages are made writable when the guest makes the * first write to it. This happens for pages that are shared, write * monitored or not yet allocated. * * We may also end up here when CR0.WP=0 in the guest. * * Also, a side effect of not flushing global PDEs are out of sync * pages due to physical monitored regions, that are no longer valid. * Assume for now it only applies to the read/write flag. */ if (uErr & X86_TRAP_PF_RW) { /* * Check if it is a read-only page. */ if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr)); # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC Assert(!PGM_PAGE_IS_ZERO(pPage)); # endif AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); # ifdef PGM_WITH_PAGE_ZEROING_DETECTION if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO && (pvFault & X86_PAGE_OFFSET_MASK) == 0 && pgmHandlePageZeroingCode(pVCpu, pCtx)) { STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2PageZeroing; }); return VINF_SUCCESS; } # endif STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; }); rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (rc != VINF_SUCCESS) { AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc)); return rc; } if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) return VINF_EM_NO_MEMORY; } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * Check to see if we need to emulate the instruction if CR0.WP=0. */ if ( !(Walk.fEffective & PGM_PTATTRS_W_MASK) && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3) { Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P)); /* * The Netware WP0+RO+US hack. * * Netware sometimes(/always?) runs with WP0. It has been observed doing * excessive write accesses to pages which are mapped with US=1 and RW=0 * while WP=0. This causes a lot of exits and extremely slow execution. * To avoid trapping and emulating every write here, we change the shadow * page table entry to map it as US=0 and RW=1 until user mode tries to * access it again (see further below). We count these shadow page table * changes so we can avoid having to clear the page pool every time the WP * bit changes to 1 (see PGMCr0WpEnabled()). */ # if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1 if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW)) && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */) { Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, Walk.fBigPage)); rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, Walk.fBigPage, PGM_MK_PG_IS_WRITE_FAULT); if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3) { PGM_INVL_PG(pVCpu, pvFault); pVCpu->pgm.s.cNetwareWp0Hacks++; STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsHack; }); return rc; } AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc)); Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc)); } # endif /* Interpret the access. */ rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVCpu, pvFault)); Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), Walk.fBigPage, !!(Walk.fEffective & PGM_PTATTRS_US_MASK))); if (RT_SUCCESS(rc)) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulInRZ); else STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulToR3); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2WPEmulation; }); return rc; } # endif /// @todo count the above case; else if (uErr & X86_TRAP_PF_US) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUserWrite)); else /* supervisor */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite)); /* * Sync the page. * * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the * page is not present, which is not true in this case. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); # else rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr); # endif if (RT_SUCCESS(rc)) { /* * Page was successfully synced, return to guest but invalidate * the TLB first as the page is very likely to be in it. */ # if PGM_SHW_TYPE == PGM_TYPE_EPT HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault); # else PGM_INVL_PG(pVCpu, pvFault); # endif # ifdef VBOX_STRICT PGMPTWALK GstPageWalk; GstPageWalk.GCPhys = RTGCPHYS_MAX; if (!pVM->pgm.s.fNestedPaging) { rc = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk); AssertMsg(RT_SUCCESS(rc) && ((GstPageWalk.fEffective & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, GstPageWalk.fEffective)); LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GstPageWalk.GCPhys, GstPageWalk.fEffective)); } # if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */ uint64_t fPageShw = 0; rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GstPageWalk.GCPhys, fPageGst, pvFault)); # endif # endif /* VBOX_STRICT */ STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; }); return VINF_SUCCESS; } } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * Check for Netware WP0+RO+US hack from above and undo it when user * mode accesses the page again. */ else if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW)) && pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) == 3 && pVM->cCpus == 1 ) { Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr)); rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); if (RT_SUCCESS(rc)) { PGM_INVL_PG(pVCpu, pvFault); pVCpu->pgm.s.cNetwareWp0Hacks--; STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsUnhack; }); return VINF_SUCCESS; } } # endif /* PGM_WITH_PAGING */ /** @todo else: why are we here? */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT) /* * Check for VMM page flags vs. Guest page flags consistency. * Currently only for debug purposes. */ if (RT_SUCCESS(rc)) { /* Get guest page flags. */ PGMPTWALK GstPageWalk; int rc2 = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk); if (RT_SUCCESS(rc2)) { uint64_t fPageShw = 0; rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); #if 0 /* * Compare page flags. * Note: we have AVL, A, D bits desynced. */ AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US), ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc)); 01:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US) 01:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0 01:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US) 01:01:15.625516 00:08:43.268051 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0 #endif } else AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc)); } else AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc)); # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */ } /* * If we get here it is because something failed above, i.e. most like guru * meditiation time. */ LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n", __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pCtx->cs.Sel, pCtx->rip)); return rc; # else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */ NOREF(uErr); NOREF(pCtx); NOREF(pvFault); AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); return VERR_PGM_NOT_USED_IN_MODE; # endif } # if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) /** * Deals with a nested-guest \#PF fault for a guest-physical page with a handler. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uErr The error code. * @param pCtx Pointer to the register context for the CPU. * @param GCPhysNestedFault The nested-guest physical address of the fault. * @param pPage The guest page at @a GCPhysNestedFault. * @param GCPhysFault The guest-physical address of the fault. * @param pGstWalkAll The guest page walk result. * @param pfLockTaken Where to store whether the PGM is still held when * this function completes. * * @note The caller has taken the PGM lock. */ static VBOXSTRICTRC PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault, PPGMPAGE pPage, RTGCPHYS GCPhysFault, PPGMPTWALKGST pGstWalkAll, bool *pfLockTaken) { # if PGM_GST_TYPE == PGM_TYPE_PROT \ && PGM_SHW_TYPE == PGM_TYPE_EPT /** @todo Assert uErr isn't X86_TRAP_PF_RSVD and remove release checks. */ PGM_A20_ASSERT_MASKED(pVCpu, GCPhysFault); AssertMsgReturn(PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage), ("%RGp %RGp uErr=%u\n", GCPhysNestedFault, GCPhysFault, uErr), VERR_PGM_HANDLER_IPE_1); PVMCC pVM = pVCpu->CTX_SUFF(pVM); RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; RTGCPHYS const GCPhysPage = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; /* * Physical page access handler. */ PPGMPHYSHANDLER pCur; VBOXSTRICTRC rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysPage, &pCur); AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict); PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur); Assert(pCurType); /* * If the region is write protected and we got a page not present fault, then sync * the pages. If the fault was caused by a read, then restart the instruction. * In case of write access continue to the GC write handler. */ if ( !(uErr & X86_TRAP_PF_P) && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) { Log7Func(("Syncing Monitored: GCPhysNestedPage=%RGp GCPhysPage=%RGp uErr=%#x\n", GCPhysNestedPage, GCPhysPage, uErr)); rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll); Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE); if ( RT_FAILURE(rcStrict) || !(uErr & X86_TRAP_PF_RW)) { AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); return rcStrict; } } else if ( !(uErr & X86_TRAP_PF_RSVD) && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE) { /* * If the access was NOT through an EPT misconfig (i.e. RSVD), sync the page. * This can happen for the VMX APIC-access page. */ Log7Func(("Syncing MMIO: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage)); rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll); Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE); if (RT_FAILURE(rcStrict)) { AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); return rcStrict; } } AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)), ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n", GCPhysNestedFault, GCPhysFault, pPage, uErr, pCurType->enmKind)); if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite); else { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll); if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt); } if (pCurType->pfnPfHandler) { STAM_PROFILE_START(&pCur->Stat, h); uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser); if (pCurType->fKeepPgmLock) { rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, GCPhysNestedFault, GCPhysFault, uUser); STAM_PROFILE_STOP(&pCur->Stat, h); } else { PGM_UNLOCK(pVM); *pfLockTaken = false; rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, GCPhysNestedFault, GCPhysFault, uUser); STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */ } } else { AssertMsgFailed(("What's going on here!? Fault falls outside handler range!?\n")); rcStrict = VINF_EM_RAW_EMULATE_INSTR; } STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; }); return rcStrict; # else RT_NOREF8(pVCpu, uErr, pCtx, GCPhysNestedFault, pPage, GCPhysFault, pGstWalkAll, pfLockTaken); AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); return VERR_PGM_NOT_USED_IN_MODE; # endif } # endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ /** * Nested \#PF handler for nested-guest hardware-assisted execution using nested * paging. * * @returns VBox status code (appropriate for trap handling and GC return). * @param pVCpu The cross context virtual CPU structure. * @param uErr The fault error (X86_TRAP_PF_*). * @param pCtx Pointer to the register context for the CPU. * @param GCPhysNestedFault The nested-guest physical address of the fault. * @param fIsLinearAddrValid Whether translation of a nested-guest linear address * caused this fault. If @c false, GCPtrNestedFault * must be 0. * @param GCPtrNestedFault The nested-guest linear address of this fault. * @param pWalk The guest page table walk result. * @param pfLockTaken Where to store whether the PGM lock is still held * when this function completes. */ PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault, bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken) { *pfLockTaken = false; # if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) \ && PGM_GST_TYPE == PGM_TYPE_PROT \ && PGM_SHW_TYPE == PGM_TYPE_EPT Assert(CPUMIsGuestVmxEptPagingEnabled(pVCpu)); Assert(PGM_A20_IS_ENABLED(pVCpu)); /* We don't support mode-based execute control for EPT yet. */ Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt); Assert(!(uErr & X86_TRAP_PF_US)); /* Take the big lock now. */ *pfLockTaken = true; PVMCC pVM = pVCpu->CTX_SUFF(pVM); PGM_LOCK_VOID(pVM); /* * Walk the guest EPT tables and check if it's an EPT violation or misconfiguration. */ if (fIsLinearAddrValid) Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x GCPtrNestedFault=%RGv\n", pCtx->cs.Sel, pCtx->rip, GCPhysNestedFault, uErr, GCPtrNestedFault)); else Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x\n", pCtx->cs.Sel, pCtx->rip, GCPhysNestedFault, uErr)); PGMPTWALKGST GstWalkAll; int rc = pgmGstSlatWalk(pVCpu, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk, &GstWalkAll); if (RT_FAILURE(rc)) return rc; Assert(GstWalkAll.enmType == PGMPTWALKGSTTYPE_EPT); Assert(pWalk->fSucceeded); Assert(pWalk->fEffective & (PGM_PTATTRS_EPT_R_MASK | PGM_PTATTRS_EPT_W_MASK | PGM_PTATTRS_EPT_X_SUPER_MASK)); Assert(pWalk->fIsSlat); # ifdef DEBUG_ramshankar /* Paranoia. */ Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_R_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_R_MASK)); Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_W_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_W_MASK)); Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_NX_MASK) == !RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_X_SUPER_MASK)); # endif Log7Func(("SLAT: GCPhysNestedFault=%RGp -> GCPhys=%#RGp\n", GCPhysNestedFault, pWalk->GCPhys)); /* * Check page-access permissions. */ if ( ((uErr & X86_TRAP_PF_RW) && !(pWalk->fEffective & PGM_PTATTRS_W_MASK)) || ((uErr & X86_TRAP_PF_ID) && (pWalk->fEffective & PGM_PTATTRS_NX_MASK))) { Log7Func(("Permission failed! GCPtrNested=%RGv GCPhysNested=%RGp uErr=%#x fEffective=%#RX64\n", GCPtrNestedFault, GCPhysNestedFault, uErr, pWalk->fEffective)); pWalk->fFailed = PGM_WALKFAIL_EPT_VIOLATION; return VERR_ACCESS_DENIED; } PGM_A20_ASSERT_MASKED(pVCpu, pWalk->GCPhys); RTGCPHYS const GCPhysPage = pWalk->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; /* * If we were called via an EPT misconfig, it should've already resulted in a nested-guest VM-exit. */ AssertMsgReturn(!(uErr & X86_TRAP_PF_RSVD), ("Unexpected EPT misconfig VM-exit. GCPhysPage=%RGp GCPhysNestedPage=%RGp\n", GCPhysPage, GCPhysNestedPage), VERR_PGM_MAPPING_IPE); /* * Fetch and sync the nested-guest EPT page directory pointer. */ PEPTPD pEptPd; rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL /*ppPdpt*/, &pEptPd, &GstWalkAll); AssertRCReturn(rc, rc); Assert(pEptPd); /* * A common case is the not-present error caused by lazy page table syncing. * * It is IMPORTANT that we weed out any access to non-present shadow PDEs * here so we can safely assume that the shadow PT is present when calling * NestedSyncPage later. * * NOTE: It's possible we will be syncing the VMX APIC-access page here. * In that case, we would sync the page but will NOT go ahead with emulating * the APIC-access VM-exit through IEM. However, once the page is mapped in * the shadow tables, subsequent APIC-access VM-exits for the nested-guest * will be triggered by hardware. Maybe calling the IEM #PF handler can be * considered as an optimization later. */ unsigned const iPde = (GCPhysNestedPage >> SHW_PD_SHIFT) & SHW_PD_MASK; if ( !(uErr & X86_TRAP_PF_P) && !(pEptPd->a[iPde].u & EPT_PRESENT_MASK)) { STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; }); Log7Func(("NestedSyncPT: Lazy. GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage)); rc = PGM_BTH_NAME(NestedSyncPT)(pVCpu, GCPhysNestedPage, GCPhysPage, &GstWalkAll); if (RT_SUCCESS(rc)) return rc; AssertMsgFailedReturn(("NestedSyncPT: %RGv failed! rc=%Rrc\n", GCPhysNestedPage, rc), VERR_PGM_MAPPING_IPE); } /* * Check if this fault address is flagged for special treatment. * This handles faults on an MMIO or write-monitored page. * * If this happens to be the VMX APIC-access page, we don't treat is as MMIO * but rather sync it further below (as a regular guest page) which lets * hardware-assisted execution trigger the APIC-access VM-exits of the * nested-guest directly. */ PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); if (RT_FAILURE(rc)) { /* * We failed to get the physical page which means it's a reserved/invalid * page address (not MMIO even). This can typically be observed with * Microsoft Hyper-V enabled Windows guests. We must fall back to emulating * the instruction, see @bugref{10318#c7}. */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; }); return VINF_EM_RAW_EMULATE_INSTR; } /* Check if this is an MMIO page and NOT the VMX APIC-access page. */ if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) { Log7Func(("MMIO: Calling NestedTrap0eHandlerDoAccessHandlers for GCPhys %RGp\n", GCPhysPage)); return VBOXSTRICTRC_TODO(PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, GCPhysNestedFault, pPage, pWalk->GCPhys, &GstWalkAll, pfLockTaken)); } /* * We are here only if page is present in nested-guest page tables but the * trap is not handled by our handlers. Check for page out-of-sync situation. */ if (!(uErr & X86_TRAP_PF_P)) { Assert(!PGM_PAGE_IS_BALLOONED(pPage)); Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); Log7Func(("SyncPage: Not-Present: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedFault, GCPhysPage)); rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, PGM_SYNC_NR_PAGES, uErr, &GstWalkAll); if (RT_SUCCESS(rc)) { STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; }); return VINF_SUCCESS; } } else if (uErr & X86_TRAP_PF_RW) { /* * Write protected pages are made writable when the guest makes the * first write to it. This happens for pages that are shared, write * monitored or not yet allocated. * * We may also end up here when CR0.WP=0 in the guest. * * Also, a side effect of not flushing global PDEs are out of sync * pages due to physical monitored regions, that are no longer valid. * Assume for now it only applies to the read/write flag. */ if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { /* This is a read-only page. */ AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhysPage)); #ifdef PGM_WITH_PAGE_ZEROING_DETECTION if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO && (GCPhysNestedFault & X86_PAGE_OFFSET_MASK) == 0 && pgmHandlePageZeroingCode(pVCpu, pCtx)) { STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2PageZeroing; }); return VINF_SUCCESS; } #endif STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; }); Log7Func(("Calling pgmPhysPageMakeWritable for GCPhysPage=%RGp\n", GCPhysPage)); rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage); if (rc != VINF_SUCCESS) { AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc)); return rc; } if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) return VINF_EM_NO_MEMORY; } Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite)); /* * Sync the write-protected page. * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the * page is not present, which is not true in this case. */ Log7Func(("SyncPage: RW: cs:rip=%04x:%#RX64 GCPhysNestedPage=%RGp uErr=%#RX32 GCPhysPage=%RGp WalkGCPhys=%RGp\n", pCtx->cs.Sel, pCtx->rip, GCPhysNestedPage, (uint32_t)uErr, GCPhysPage, pWalk->GCPhys)); rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /* cPages */, uErr, &GstWalkAll); if (RT_SUCCESS(rc)) { HMInvalidatePhysPage(pVM, GCPhysPage); STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; }); return VINF_SUCCESS; } } /* * If we get here it is because something failed above => guru meditation time? */ LogRelMaxFunc(32, ("rc=%Rrc GCPhysNestedFault=%#RGp (%#RGp) uErr=%#RX32 cs:rip=%04x:%08RX64\n", rc, GCPhysNestedFault, GCPhysPage, (uint32_t)uErr, pCtx->cs.Sel, pCtx->rip)); return VERR_PGM_MAPPING_IPE; # else /* !VBOX_WITH_NESTED_HWVIRT_VMX_EPT || PGM_GST_TYPE != PGM_TYPE_PROT || PGM_SHW_TYPE != PGM_TYPE_EPT */ RT_NOREF7(pVCpu, uErr, pCtx, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk); AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); return VERR_PGM_NOT_USED_IN_MODE; # endif } #endif /* !IN_RING3 */ /** * Emulation of the invlpg instruction. * * * @returns VBox status code. * * @param pVCpu The cross context virtual CPU structure. * @param GCPtrPage Page to invalidate. * * @remark ASSUMES that the guest is updating before invalidating. This order * isn't required by the CPU, so this is speculative and could cause * trouble. * @remark No TLB shootdown is done on any other VCPU as we assume that * invlpg emulation is the *only* reason for calling this function. * (The guest has to shoot down TLB entries on other CPUs itself) * Currently true, but keep in mind! * * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses. * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now)) */ PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage) { #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ && PGM_SHW_TYPE != PGM_TYPE_NONE int rc; PVMCC pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGM_LOCK_ASSERT_OWNER(pVM); LogFlow(("InvalidatePage %RGv\n", GCPtrPage)); /* * Get the shadow PD entry and skip out if this PD isn't present. * (Guessing that it is frequent for a shadow PDE to not be present, do this first.) */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT; PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); # ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */ if (!pShwPde) { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); return VINF_SUCCESS; } # else Assert(pShwPde); # endif # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT; PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu); /* If the shadow PDPE isn't present, then skip the invalidate. */ # ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */ if (!pPdptDst || !(pPdptDst->a[iPdpt].u & X86_PDPE_P)) # else if (!(pPdptDst->a[iPdpt].u & X86_PDPE_P)) # endif { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_SUCCESS; } /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); AssertReturn(pShwPde, VERR_PGM_POOL_GET_PAGE_FAILED); PX86PDPAE pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; # else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ /* PML4 */ /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/ const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDPAE pPDDst; PX86PDPT pPdptDst; PX86PML4E pPml4eDst; rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst); if (rc != VINF_SUCCESS) { AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_SUCCESS; } PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; Assert(pPDDst); Assert(pPdptDst->a[iPdpt].u & X86_PDPE_P); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK); Assert(pShwPde); # endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ const SHWPDE PdeDst = *pPdeDst; if (!(PdeDst.u & X86_PDE_P)) { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_SUCCESS; } /* * Get the guest PD entry and calc big page. */ # if PGM_GST_TYPE == PGM_TYPE_32BIT PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; # else /* PGM_GST_TYPE != PGM_TYPE_32BIT */ unsigned iPDSrc = 0; # if PGM_GST_TYPE == PGM_TYPE_PAE X86PDPE PdpeSrcIgn; PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn); # else /* AMD64 */ PX86PML4E pPml4eSrcIgn; X86PDPE PdpeSrcIgn; PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc); # endif GSTPDE PdeSrc; if (pPDSrc) PdeSrc = pPDSrc->a[iPDSrc]; else PdeSrc.u = 0; # endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */ const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE); const bool fIsBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu); if (fWasBigPage != fIsBigPage) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); # ifdef IN_RING3 /* * If a CR3 Sync is pending we may ignore the invalidate page operation * depending on the kind of sync and if it's a global page or not. * This doesn't make sense in GC/R0 so we'll skip it entirely there. */ # ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3) || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) && fIsBigPage && (PdeSrc.u & X86_PDE4M_G) ) ) # else if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) ) # endif { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); return VINF_SUCCESS; } # endif /* IN_RING3 */ /* * Deal with the Guest PDE. */ rc = VINF_SUCCESS; if (PdeSrc.u & X86_PDE_P) { Assert( (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US) && ((PdeSrc.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW) || pVCpu->pgm.s.cNetwareWp0Hacks > 0)); if (!fIsBigPage) { /* * 4KB - page. */ PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); # endif if (pShwPage->GCPhys == GCPhys) { /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */ PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); PGSTPT pPTSrc; rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); if (RT_SUCCESS(rc)) { const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK; GSTPTE PteSrc = pPTSrc->a[iPTSrc]; const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n", GCPtrPage, PteSrc.u & X86_PTE_P, (PteSrc.u & PdeSrc.u & X86_PTE_RW), (PteSrc.u & PdeSrc.u & X86_PTE_US), (uint64_t)PteSrc.u, SHW_PTE_LOG64(pPTDst->a[iPTDst]), SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); } STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4KBPages)); PGM_INVL_PG(pVCpu, GCPtrPage); } else { /* * The page table address changed. */ LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst)); pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); SHW_PDE_ATOMIC_SET(*pPdeDst, 0); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync)); PGM_INVL_VCPU_TLBS(pVCpu); } } else { /* * 2/4MB - page. */ /* Before freeing the page, check if anything really changed. */ PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); # endif if ( pShwPage->GCPhys == GCPhys && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG) { /* ASSUMES a the given bits are identical for 4M and normal PDEs */ /** @todo This test is wrong as it cannot check the G bit! * FIXME */ if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US)) == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US)) && ( (PdeSrc.u & X86_PDE4M_D) /** @todo rainy day: What about read-only 4M pages? not very common, but still... */ || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))) { LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u)); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip)); return VINF_SUCCESS; } } /* * Ok, the page table is present and it's been changed in the guest. * If we're in host context, we'll just mark it as not present taking the lazy approach. * We could do this for some flushes in GC too, but we need an algorithm for * deciding which 4MB pages containing code likely to be executed very soon. */ LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); SHW_PDE_ATOMIC_SET(*pPdeDst, 0); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPages)); PGM_INVL_BIG_PG(pVCpu, GCPtrPage); } } else { /* * Page directory is not present, mark shadow PDE not present. */ pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); SHW_PDE_ATOMIC_SET(*pPdeDst, 0); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDNPs)); PGM_INVL_PG(pVCpu, GCPtrPage); } return rc; #else /* guest real and protected mode, nested + ept, none. */ /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */ NOREF(pVCpu); NOREF(GCPtrPage); return VINF_SUCCESS; #endif } #if PGM_SHW_TYPE != PGM_TYPE_NONE /** * Update the tracking of shadowed pages. * * @param pVCpu The cross context virtual CPU structure. * @param pShwPage The shadow page. * @param HCPhys The physical page we is being dereferenced. * @param iPte Shadow PTE index * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set) */ DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte, RTGCPHYS GCPhysPage) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); # if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \ && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */) /* Use the hint we retrieved from the cached guest PT. */ if (pShwPage->fDirty) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(pShwPage->cPresent); Assert(pPool->cPresent); pShwPage->cPresent--; pPool->cPresent--; PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage); AssertRelease(pPhysPage); pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte); return; } # else NOREF(GCPhysPage); # endif /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done: * 1. have a medium sized HCPhys -> GCPhys TLB (hash?) * 2. write protect all shadowed pages. I.e. implement caching. * * 2023-08-24 bird: If we allow the ZeroPg to enter the shadow page tables, * this becomes a common occurence and we screw up. A better to the above would * be to have a parallel table that records the guest physical addresses of the * pages mapped by the shadow page table... For nested page tables, * we can easily correleate a table entry to a page entry, so it won't be * needed for those. */ # if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * For non-paged guest tables, EPT and nested tables we can figure out the * physical page corresponding to the entry and dereference it. * (This ASSUMES that shadow PTs won't be used ever be used out of place.) */ if ( pShwPage->enmKind == PGMPOOLKIND_EPT_PT_FOR_PHYS || pShwPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PHYS || pShwPage->enmKind == PGMPOOLKIND_32BIT_PT_FOR_PHYS) { RTGCPHYS GCPhysNestedEntry = pShwPage->GCPhys + ((uint32_t)iPte << X86_PAGE_SHIFT); if (!pShwPage->fA20Enabled) GCPhysNestedEntry &= ~(uint64_t)RT_BIT_64(20); PPGMPAGE const pPhysPage = pgmPhysGetPage(pVM, GCPhysNestedEntry); AssertRelease(pPhysPage); pgmTrackDerefGCPhys(pVM->pgm.s.CTX_SUFF(pPool), pShwPage, pPhysPage, iPte); } else AssertMsgFailed(("enmKind=%d GCPhys=%RGp\n", pShwPage->enmKind, pShwPage->GCPhys)); # endif /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */ /* * Find the guest address. */ STAM_PROFILE_START(&pVM->pgm.s.Stats.StatTrackDeref, a); LogFlow(("SyncPageWorkerTrackDeref(%d,%d): Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", PGM_SHW_TYPE, PGM_GST_TYPE, HCPhys, pShwPage->idx)); uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U); Assert(pVM->pgm.s.apRamRanges[0] == NULL); for (uint32_t idx = 1; idx <= idRamRangeMax; idx++) { PPGMRAMRANGE const pRam = pVM->CTX_EXPR(pgm, pgmr0, pgm).s.apRamRanges[idx]; AssertContinue(pRam); unsigned iPage = pRam->cb >> GUEST_PAGE_SHIFT; while (iPage-- > 0) { if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(pShwPage->cPresent); Assert(pPool->cPresent); pShwPage->cPresent--; pPool->cPresent--; pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte); STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatTrackDeref, a); return; } } } for (;;) AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys)); } /** * Update the tracking of shadowed pages. * * @param pVCpu The cross context virtual CPU structure. * @param pShwPage The shadow page. * @param u16 The top 16-bit of the pPage->HCPhys. * @param pPage Pointer to the guest page. this will be modified. * @param iPTDst The index into the shadow table. */ DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); /* * Just deal with the simple first time here. */ if (!u16) { STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackVirgin); u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx); /* Save the page table index. */ PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst); } else u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst); /* write back */ Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x pPage=%p\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst, pPage)); PGM_PAGE_SET_TRACKING(pVM, pPage, u16); /* update statistics. */ pVM->pgm.s.CTX_SUFF(pPool)->cPresent++; pShwPage->cPresent++; if (pShwPage->iFirstPresent > iPTDst) pShwPage->iFirstPresent = iPTDst; } /** * Modifies a shadow PTE to account for access handlers. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param pPage The page in question. * @param GCPhysPage The guest-physical address of the page. * @param fPteSrc The shadowed flags of the source PTE. Must include the * A (accessed) bit so it can be emulated correctly. * @param pPteDst The shadow PTE (output). This is temporary storage and * does not need to be set atomically. */ DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVMCC pVM, PVMCPUCC pVCpu, PCPGMPAGE pPage, RTGCPHYS GCPhysPage, uint64_t fPteSrc, PSHWPTE pPteDst) { RT_NOREF_PV(pVM); RT_NOREF_PV(fPteSrc); RT_NOREF_PV(pVCpu); RT_NOREF_PV(GCPhysPage); /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */ if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) { LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage)); # if PGM_SHW_TYPE == PGM_TYPE_EPT pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage) | EPT_E_READ | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT; # else if (fPteSrc & X86_PTE_A) { SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage)); SHW_PTE_SET_RO(*pPteDst); } else SHW_PTE_SET(*pPteDst, 0); # endif } # ifdef PGM_WITH_MMIO_OPTIMIZATIONS # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) && ( BTH_IS_NP_ACTIVE(pVM) || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */ # if PGM_SHW_TYPE == PGM_TYPE_AMD64 && pVM->pgm.s.fLessThan52PhysicalAddressBits # endif ) { LogFlow(("SyncHandlerPte: MMIO page -> invalid \n")); # if PGM_SHW_TYPE == PGM_TYPE_EPT /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */ pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */ | EPT_E_WRITE /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */ | EPT_E_MEMTYPE_INVALID_3; # else /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */ SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P); # endif } # endif # endif /* PGM_WITH_MMIO_OPTIMIZATIONS */ else { LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage)); SHW_PTE_SET(*pPteDst, 0); } /** @todo count these kinds of entries. */ } /** * Creates a 4K shadow page for a guest page. * * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the * physical address. The PdeSrc argument only the flags are used. No page * structured will be mapped in this function. * * @param pVCpu The cross context virtual CPU structure. * @param pPteDst Destination page table entry. * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry). * Can safely assume that only the flags are being used. * @param PteSrc Source page table entry (i.e. Guest OS page table entry). * @param pShwPage Pointer to the shadow page. * @param iPTDst The index into the shadow table. * * @remark Not used for 2/4MB pages! */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING) static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst) # else static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst) # endif { PVMCC pVM = pVCpu->CTX_SUFF(pVM); RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS; # if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \ && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */) if (pShwPage->fDirty) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGSTPT pGstPT; /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */ pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0]; GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]); pGstPT->a[iPTDst].u = PteSrc.u; } # else Assert(!pShwPage->fDirty); # endif # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) if ( (PteSrc.u & X86_PTE_P) && GST_IS_PTE_VALID(pVCpu, PteSrc)) # endif { # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc); # endif PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); /* * Find the ram range. */ PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); if (RT_SUCCESS(rc)) { /* Ignore ballooned pages. Don't return errors or use a fatal assert here as part of a shadow sync range might included ballooned pages. */ if (PGM_PAGE_IS_BALLOONED(pPage)) { Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */ return; } # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Make the page writable if necessary. */ if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && ( PGM_PAGE_IS_ZERO(pPage) # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || ( (PteSrc.u & X86_PTE_RW) # else || ( 1 # endif && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED # endif # ifdef VBOX_WITH_PAGE_SHARING && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED # endif ) ) ) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage); AssertRC(rc); } # endif /* * Make page table entry. */ SHWPTE PteDst; # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc); # else uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D; # endif if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) { # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * If the page or page directory entry is not marked accessed, * we mark the page not present. */ if (!(PteSrc.u & X86_PTE_A) || !(PdeSrc.u & X86_PDE_A)) { LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n")); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,AccessedPage)); SHW_PTE_SET(PteDst, 0); } /* * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit * when the page is modified. */ else if (!(PteSrc.u & X86_PTE_D) && (PdeSrc.u & PteSrc.u & X86_PTE_RW)) { AssertCompile(X86_PTE_RW == X86_PDE_RW); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPage)); SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage) | PGM_PTFLAGS_TRACK_DIRTY); SHW_PTE_SET_RO(PteDst); } else # endif { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageSkipped)); # if PGM_SHW_TYPE == PGM_TYPE_EPT PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT; # else SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage)); # endif } /* * Make sure only allocated pages are mapped writable. */ if ( SHW_PTE_IS_P_RW(PteDst) && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); # endif SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */ Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst)); } } else PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhysPage, fGstShwPteFlags, &PteDst); /* * Keep user track up to date. */ if (SHW_PTE_IS_P(PteDst)) { if (!SHW_PTE_IS_P(*pPteDst)) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst)) { Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst))); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); } } else if (SHW_PTE_IS_P(*pPteDst)) { Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst))); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); } /* * Update statistics and commit the entry. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) if (!(PteSrc.u & X86_PTE_G)) pShwPage->fSeenNonGlobal = true; # endif SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst); return; } /** @todo count these three different kinds. */ Log2(("SyncPageWorker: invalid address in Pte\n")); } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) else if (!(PteSrc.u & X86_PTE_P)) Log2(("SyncPageWorker: page not present in Pte\n")); else Log2(("SyncPageWorker: invalid Pte\n")); # endif /* * The page is not present or the PTE is bad. Replace the shadow PTE by * an empty entry, making sure to keep the user tracking up to date. */ if (SHW_PTE_IS_P(*pPteDst)) { Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst))); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); } SHW_PTE_ATOMIC_SET(*pPteDst, 0); } /** * Syncs a guest OS page. * * There are no conflicts at this point, neither is there any need for * page table allocations. * * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid. * When called in AMD64 guest mode, the guest PML4E shall be valid. * * @returns VBox status code. * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way. * @param pVCpu The cross context virtual CPU structure. * @param PdeSrc Page directory entry of the guest. * @param GCPtrPage Guest context page address. * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1). * @param uErr Fault error (X86_TRAP_PF_*). */ static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr)); RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage); PGM_LOCK_ASSERT_OWNER(pVM); # if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64) \ && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) /* * Assert preconditions. */ Assert(PdeSrc.u & X86_PDE_P); Assert(cPages); # if 0 /* rarely useful; leave for debugging. */ STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]); # endif /* * Get the shadow PDE, find the shadow page table in the pool. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PPGMPOOLPAGE pShwPde = NULL; PX86PDPAE pPDDst; /* Fetch the pgm pool shadow descriptor. */ int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); AssertRCSuccessReturn(rc2, rc2); Assert(pShwPde); pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc2, rc2); Assert(pPDDst && pPdptDst); PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; # endif SHWPDE PdeDst = *pPdeDst; /* * - In the guest SMP case we could have blocked while another VCPU reused * this page table. * - With W7-64 we may also take this path when the A bit is cleared on * higher level tables (PDPE/PML4E). The guest does not invalidate the * relevant TLB entries. If we're write monitoring any page mapped by * the modified entry, we may end up here with a "stale" TLB entry. */ if (!(PdeDst.u & X86_PDE_P)) { Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr)); AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW), ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr)); if (uErr & X86_TRAP_PF_P) PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_SUCCESS; /* force the instruction to be executed again. */ } PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); Assert(pShwPage); # if PGM_GST_TYPE == PGM_TYPE_AMD64 /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); Assert(pShwPde); # endif /* * Check that the page is present and that the shadow PDE isn't out of sync. */ const bool fBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu); const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc); RTGCPHYS GCPhys; if (!fBigPage) { GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); # endif } else { GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); # endif } /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */ if ( fPdeValid && pShwPage->GCPhys == GCPhys && (PdeSrc.u & X86_PDE_P) && (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US) && ((PdeSrc.u & X86_PDE_RW) == (PdeDst.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW)) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) && ((PdeSrc.u & X86_PDE_PAE_NX) == (PdeDst.u & X86_PDE_PAE_NX) || !GST_IS_NX_ACTIVE(pVCpu)) # endif ) { /* * Check that the PDE is marked accessed already. * Since we set the accessed bit *before* getting here on a #PF, this * check is only meant for dealing with non-#PF'ing paths. */ if (PdeSrc.u & X86_PDE_A) { PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); if (!fBigPage) { /* * 4KB Page - Map the guest page table. */ PGSTPT pPTSrc; int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); if (RT_SUCCESS(rc)) { # ifdef PGM_SYNC_N_PAGES Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); if ( cPages > 1 && !(uErr & X86_TRAP_PF_P) && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) { /* * This code path is currently only taken when the caller is PGMTrap0eHandler * for non-present pages! * * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and * deal with locality. */ unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; # else const unsigned offPTSrc = 0; # endif const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); if (iPTDst < PGM_SYNC_NR_PAGES / 2) iPTDst = 0; else iPTDst -= PGM_SYNC_NR_PAGES / 2; for (; iPTDst < iPTDstEnd; iPTDst++) { const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst]; if ( (pPteSrc->u & X86_PTE_P) && !SHW_PTE_IS_P(pPTDst->a[iPTDst])) { RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << GUEST_PAGE_SHIFT); NOREF(GCPtrCurPage); PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst); Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n", GCPtrCurPage, pPteSrc->u & X86_PTE_P, !!(pPteSrc->u & PdeSrc.u & X86_PTE_RW), !!(pPteSrc->u & PdeSrc.u & X86_PTE_US), (uint64_t)pPteSrc->u, SHW_PTE_LOG64(pPTDst->a[iPTDst]), SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); } } } else # endif /* PGM_SYNC_N_PAGES */ { const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK; GSTPTE PteSrc = pPTSrc->a[iPTSrc]; const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n", GCPtrPage, PteSrc.u & X86_PTE_P, !!(PteSrc.u & PdeSrc.u & X86_PTE_RW), !!(PteSrc.u & PdeSrc.u & X86_PTE_US), (uint64_t)PteSrc.u, SHW_PTE_LOG64(pPTDst->a[iPTDst]), SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); } } else /* MMIO or invalid page: emulated in #PF handler. */ { LogFlow(("PGM_GCPHYS_2_PTR_V2 %RGp failed with %Rrc\n", GCPhys, rc)); Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK])); } } else { /* * 4/2MB page - lazy syncing shadow 4K pages. * (There are many causes of getting here, it's no longer only CSAM.) */ /* Calculate the GC physical address of this 4KB shadow page. */ GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK)); /* Find ram range. */ PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); if (RT_SUCCESS(rc)) { AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Try to make the page writable if necessary. */ if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && ( PGM_PAGE_IS_ZERO(pPage) || ( (PdeSrc.u & X86_PDE_RW) && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED # endif # ifdef VBOX_WITH_PAGE_SHARING && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED # endif ) ) ) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); AssertRC(rc); } # endif /* * Make shadow PTE entry. */ SHWPTE PteDst; if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage)); else PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst); const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; if ( SHW_PTE_IS_P(PteDst) && !SHW_PTE_IS_P(pPTDst->a[iPTDst])) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); /* Make sure only allocated pages are mapped writable. */ if ( SHW_PTE_IS_P_RW(PteDst) && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); # endif SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */ Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage)); } SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst); /* * If the page is not flagged as dirty and is writable, then make it read-only * at PD level, so we can set the dirty bit when the page is modified. * * ASSUMES that page access handlers are implemented on page table entry level. * Thus we will first catch the dirty access and set PDE.D and restart. If * there is an access handler, we'll trap again and let it work on the problem. */ /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already. * As for invlpg, it simply frees the whole shadow PT. * ...It's possibly because the guest clears it and the guest doesn't really tell us... */ if ((PdeSrc.u & (X86_PDE4M_D | X86_PDE_RW)) == X86_PDE_RW) { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig)); PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; PdeDst.u &= ~(SHWUINT)X86_PDE_RW; } else { PdeDst.u &= ~(SHWUINT)(PGM_PDFLAGS_TRACK_DIRTY | X86_PDE_RW); PdeDst.u |= PdeSrc.u & X86_PDE_RW; } SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n", GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); } else { LogFlow(("pgmPhysGetPageEx %RGp (big) failed with %Rrc\n", GCPhys, rc)); /** @todo must wipe the shadow page table entry in this * case. */ } } PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); return VINF_SUCCESS; } STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDNAs)); } else if (fPdeValid) { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDOutOfSync)); Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); } else { /// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid)); Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); } /* * Mark the PDE not present. Restart the instruction and let #PF call SyncPT. * Yea, I'm lazy. */ pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst); SHW_PDE_ATOMIC_SET(*pPdeDst, 0); PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); PGM_INVL_VCPU_TLBS(pVCpu); return VINF_PGM_SYNCPAGE_MODIFIED_PDE; # elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) NOREF(PdeSrc); # ifdef PGM_SYNC_N_PAGES /* * Get the shadow PDE, find the shadow page table in the pool. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage); # elif PGM_SHW_TYPE == PGM_TYPE_PAE X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage); # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt); PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ X86PDEPAE PdeDst; PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc, rc); Assert(pPDDst && pPdptDst); PdeDst = pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; EPTPDE PdeDst; int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst); if (rc != VINF_SUCCESS) { AssertRC(rc); return rc; } Assert(pPDDst); PdeDst = pPDDst->a[iPDDst]; # endif /* In the guest SMP case we could have blocked while another VCPU reused this page table. */ if (!SHW_PDE_IS_P(PdeDst)) { AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u)); Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage)); return VINF_SUCCESS; /* force the instruction to be executed again. */ } /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */ if (SHW_PDE_IS_BIG(PdeDst)) { Assert(pVM->pgm.s.fNestedPaging); Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage)); return VINF_SUCCESS; } /* Mask away the page offset. */ GCPtrPage &= ~((RTGCPTR)0xfff); PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); if ( cPages > 1 && !(uErr & X86_TRAP_PF_P) && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) { /* * This code path is currently only taken when the caller is PGMTrap0eHandler * for non-present pages! * * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and * deal with locality. */ unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); if (iPTDst < PGM_SYNC_NR_PAGES / 2) iPTDst = 0; else iPTDst -= PGM_SYNC_NR_PAGES / 2; for (; iPTDst < iPTDstEnd; iPTDst++) { if (!SHW_PTE_IS_P(pPTDst->a[iPTDst])) { RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT)); PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n", GCPtrCurPage, SHW_PTE_LOG64(pPTDst->a[iPTDst]), SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) break; } else Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) )); } } else # endif /* PGM_SYNC_N_PAGES */ { const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT)); PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n", GCPtrPage, SHW_PTE_LOG64(pPTDst->a[iPTDst]), SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); } return VINF_SUCCESS; # else NOREF(PdeSrc); AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); return VERR_PGM_NOT_USED_IN_MODE; # endif } #endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */ #if !defined(IN_RING3) && defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT /** * Sync a shadow page for a nested-guest page. * * @param pVCpu The cross context virtual CPU structure. * @param pPte The shadow page table entry. * @param GCPhysPage The guest-physical address of the page. * @param pShwPage The shadow page of the page table. * @param iPte The index of the page table entry. * @param pGstSlatPte The guest SLAT page table entry. * * @note Not to be used for 2/4MB pages! */ static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPte, SLATPTE GstSlatPte) { PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage)); Assert(!pShwPage->fDirty); Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT); AssertMsg(!(GstSlatPte.u & EPT_E_LEAF), ("Large page unexpected: %RX64\n", GstSlatPte.u)); AssertMsg((GstSlatPte.u & EPT_PTE_PG_MASK) == GCPhysPage, ("PTE address mismatch. GCPhysPage=%RGp Pte=%RX64\n", GCPhysPage, GstSlatPte.u & EPT_PTE_PG_MASK)); /* * Find the ram range. */ PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVCpu->CTX_SUFF(pVM), GCPhysPage, &pPage); if (RT_SUCCESS(rc)) { /* likely */ } else { /* * This is a RAM hole/invalid/reserved address (not MMIO). * Nested Microsoft Hyper-V maps addresses like 0xf0220000 as RW WB memory. * Shadow a not-present page similar to MMIO, see @bugref{10318#c7}. */ Assert(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS); if (SHW_PTE_IS_P(*pPte)) { Log2(("NestedSyncPageWorker: deref! *pPte=%RX64\n", SHW_PTE_LOG64(*pPte))); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS); } Log7Func(("RAM hole/reserved %RGp -> ShwPte=0\n", GCPhysPage)); SHW_PTE_ATOMIC_SET(*pPte, 0); return; } Assert(!PGM_PAGE_IS_BALLOONED(pPage)); /* * Make page table entry. */ SHWPTE Pte; uint64_t const fGstShwPteFlags = (GstSlatPte.u & pVCpu->pgm.s.fGstEptShadowedPteMask) | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT; if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) { # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* If it's the zero page or write to an unallocated page, allocate it to make it writable. */ if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && ( PGM_PAGE_IS_ZERO(pPage) || ( (GstSlatPte.u & EPT_E_WRITE) && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED # endif # ifdef VBOX_WITH_PAGE_SHARING && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED # endif && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_BALLOONED ) ) ) { rc = pgmPhysPageMakeWritable(pVCpu->CTX_SUFF(pVM), pPage, GCPhysPage); AssertRC(rc); Log7Func(("made writable (%R[pgmpage]) at %RGp\n", pPage, GCPhysPage)); } # endif /** @todo access bit. */ Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | fGstShwPteFlags; Log7Func(("regular page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u)); /* Make sure only allocated pages are mapped writable. */ if ( (fGstShwPteFlags & EPT_E_WRITE) && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { Pte.u &= ~EPT_E_WRITE; Log7Func(("write-protecting page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u)); } } else if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) { /** @todo access bit. */ Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | (fGstShwPteFlags & ~EPT_E_WRITE); Log7Func(("monitored page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u)); } else { /** @todo Do MMIO optimizations here too? */ Log7Func(("mmio/all page (%R[pgmpage]) at %RGp -> 0\n", pPage, GCPhysPage)); Pte.u = 0; } /* Make sure only allocated pages are mapped writable. */ Assert(!SHW_PTE_IS_P_RW(Pte) || PGM_PAGE_IS_ALLOCATED(pPage)); /* * Keep user track up to date. */ if (SHW_PTE_IS_P(Pte)) { if (!SHW_PTE_IS_P(*pPte)) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte); else if (SHW_PTE_GET_HCPHYS(*pPte) != SHW_PTE_GET_HCPHYS(Pte)) { Log2(("NestedSyncPageWorker: deref! *pPte=%RX64 Pte=%RX64\n", SHW_PTE_LOG64(*pPte), SHW_PTE_LOG64(Pte))); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS); PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte); } } else if (SHW_PTE_IS_P(*pPte)) { Log2(("NestedSyncPageWorker: deref! *pPte=%RX64\n", SHW_PTE_LOG64(*pPte))); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS); } /* * Commit the entry. */ SHW_PTE_ATOMIC_SET2(*pPte, Pte); return; } /** * Syncs a nested-guest page. * * There are no conflicts at this point, neither is there any need for * page table allocations. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPhysNestedPage The nested-guest physical address of the page being * synced. * @param GCPhysPage The guest-physical address of the page being synced. * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1). * @param uErr The page fault error (X86_TRAP_PF_XXX). * @param pGstWalkAll The guest page table walk result. */ static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages, uint32_t uErr, PPGMPTWALKGST pGstWalkAll) { PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK)); Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK)); PVMCC pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); Log7Func(("GCPhysNestedPage=%RGv GCPhysPage=%RGp cPages=%u uErr=%#x\n", GCPhysNestedPage, GCPhysPage, cPages, uErr)); RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); PGM_LOCK_ASSERT_OWNER(pVM); /* * Get the shadow PDE, find the shadow page table in the pool. */ unsigned const iPde = ((GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK); PEPTPD pPd; int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL, &pPd, pGstWalkAll); if (RT_SUCCESS(rc)) { /* likely */ } else { Log(("Failed to fetch EPT PD for %RGp (%RGp) rc=%Rrc\n", GCPhysNestedPage, GCPhysPage, rc)); return rc; } Assert(pPd); EPTPDE Pde = pPd->a[iPde]; /* In the guest SMP case we could have blocked while another VCPU reused this page table. */ if (!SHW_PDE_IS_P(Pde)) { AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)Pde.u)); Log7Func(("CPU%d: SyncPage: Pde at %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage)); return VINF_SUCCESS; /* force the instruction to be executed again. */ } /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */ if (SHW_PDE_IS_BIG(Pde)) { Log7Func(("CPU%d: SyncPage: %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage)); return VINF_SUCCESS; } PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, Pde.u & EPT_PDE_PG_MASK); PEPTPT pPt = (PEPTPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); /* * If we've shadowed a guest EPT PDE that maps a 2M page using a 4K table, * then sync the 4K sub-page in the 2M range. */ if (pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF) { Assert(!SHW_PDE_IS_BIG(Pde)); Assert(pGstWalkAll->u.Ept.Pte.u == 0); Assert((Pde.u & EPT_PRESENT_MASK) == (pGstWalkAll->u.Ept.Pde.u & EPT_PRESENT_MASK)); Assert(pShwPage->GCPhys == (pGstWalkAll->u.Ept.Pde.u & EPT_PDE2M_PG_MASK)); #if defined(VBOX_STRICT) && defined(DEBUG_ramshankar) PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); AssertRC(rc); Assert(PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE); Assert(pShwPage->enmKind == PGMPOOLKIND_EPT_PT_FOR_EPT_2MB); #endif uint64_t const fGstShwPteFlags = (pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedBigPdeMask & ~EPT_E_LEAF) | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT; SLATPTE GstSlatPte; GstSlatPte.u = GCPhysPage | fGstShwPteFlags; unsigned const iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, GstSlatPte); Log7Func(("4K: GCPhysPage=%RGp iPte=%u ShwPte=%08llx\n", GCPhysPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); return VINF_SUCCESS; } Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); # ifdef PGM_SYNC_N_PAGES if ( cPages > 1 && !(uErr & X86_TRAP_PF_P) && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) { /* * This code path is currently only taken for non-present pages! * * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and * deal with locality. */ unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; unsigned const iPteEnd = RT_MIN(iPte + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPt->a)); if (iPte < PGM_SYNC_NR_PAGES / 2) iPte = 0; else iPte -= PGM_SYNC_NR_PAGES / 2; for (; iPte < iPteEnd; iPte++) { if (!SHW_PTE_IS_P(pPt->a[iPte])) { PGMPTWALKGST GstWalkPt; PGMPTWALK WalkPt; GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT); GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT); rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt, &GstWalkPt); if (RT_SUCCESS(rc)) PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], WalkPt.GCPhys, pShwPage, iPte, GstWalkPt.u.Ept.Pte); else { /* * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages. * Ensure the shadow tables entry is not-present. */ /** @todo Potential room for optimization (explained in NestedSyncPT). */ AssertMsg(!pPt->a[iPte].u, ("%RX64\n", pPt->a[iPte].u)); } Log7Func(("Many: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) break; } else { # ifdef VBOX_STRICT /* Paranoia - Verify address of the page is what it should be. */ PGMPTWALKGST GstWalkPt; PGMPTWALK WalkPt; GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT); GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT); rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt, &GstWalkPt); AssertRC(rc); PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, WalkPt.GCPhys, &pPage); AssertRC(rc); AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]), ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp HCPhys=%RHp Shw=%RHp\n", GCPhysNestedPage, WalkPt.GCPhys, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte]))); # endif Log7Func(("Many3: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); } } } else # endif /* PGM_SYNC_N_PAGES */ { unsigned const iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll->u.Ept.Pte); Log7Func(("4K: GCPhysPage=%RGp iPte=%u ShwPte=%08llx\n", GCPhysPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); } return VINF_SUCCESS; } /** * Sync a shadow page table for a nested-guest page table. * * The shadow page table is not present in the shadow PDE. * * Handles mapping conflicts. * * A precondition for this method is that the shadow PDE is not present. The * caller must take the PGM lock before checking this and continue to hold it * when calling this method. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPhysNestedPage The nested-guest physical page address of the page * being synced. * @param GCPhysPage The guest-physical address of the page being synced. * @param pGstWalkAll The guest page table walk result. */ static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll) { PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK)); Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK)); PVMCC pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Log7Func(("GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage)); PGM_LOCK_ASSERT_OWNER(pVM); STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); PEPTPD pPd; PEPTPDPT pPdpt; unsigned const iPde = (GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK; int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, &pPdpt, &pPd, pGstWalkAll); if (RT_SUCCESS(rc)) { /* likely */ } else { STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); AssertRC(rc); return rc; } Assert(pPd); PSHWPDE pPde = &pPd->a[iPde]; unsigned const iPdpt = (GCPhysNestedPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK; PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdpt->a[iPdpt].u & EPT_PDPTE_PG_MASK); Assert(pShwPde->enmKind == PGMPOOLKIND_EPT_PD_FOR_EPT_PD); SHWPDE Pde = *pPde; Assert(!SHW_PDE_IS_P(Pde)); /* We're only supposed to call SyncPT on PDE!P and conflicts. */ # ifdef PGM_WITH_LARGE_PAGES Assert(BTH_IS_NP_ACTIVE(pVM)); /* * Check if the guest is mapping a 2M page. */ if (pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF) { PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhysPage & X86_PDE2M_PAE_PG_MASK, &pPage); AssertRCReturn(rc, rc); /* A20 is always enabled in VMX root and non-root operation. */ Assert(PGM_A20_IS_ENABLED(pVCpu)); /* * Check if we have or can get a 2M backing page here. */ RTHCPHYS HCPhys = NIL_RTHCPHYS; if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE) { STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused); AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED) { /* Recheck the entire 2 MB range to see if we can use it again as a large page. */ rc = pgmPhysRecheckLargePage(pVM, GCPhysPage, pPage); if (RT_SUCCESS(rc)) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } } else if (PGMIsUsingLargePages(pVM)) { rc = pgmPhysAllocLargePage(pVM, GCPhysPage); if (RT_SUCCESS(rc)) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } } /* * If we have a 2M backing page, we can map the guest's 2M page right away. */ uint64_t const fGstShwBigPdeFlags = (pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedBigPdeMask) | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT; if (HCPhys != NIL_RTHCPHYS) { Pde.u = HCPhys | fGstShwBigPdeFlags; Assert(!(Pde.u & pVCpu->pgm.s.fGstEptMbzBigPdeMask)); Assert(Pde.u & EPT_E_LEAF); SHW_PDE_ATOMIC_SET2(*pPde, Pde); /* Add a reference to the first page only. */ PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPde); Assert(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED); STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); Log7Func(("GstPde=%RGp ShwPde=%RX64 [2M]\n", pGstWalkAll->u.Ept.Pde.u, Pde.u)); return VINF_SUCCESS; } /* * We didn't get a perfect 2M fit. Split the 2M page into 4K pages. * The page ought not to be marked as a big (2M) page at this point. */ Assert(PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE); /* Determine the right kind of large page to avoid incorrect cached entry reuse. */ PGMPOOLACCESS enmAccess; { /* * Mode-based execute control for EPT not supported. * * However, Windows 10 with Hyper-V enabled sets the EPT_E_USER_EXECUTE bit but does * not enable "mode-based execute control for EPT" in the VT-x secondary VM-execution * controls. The CPU ignores this bit when the control isn't set. Hence, the assertion * below is commented out. */ /* Assert(!(pGstWalkAll->u.Ept.Pde.u & EPT_E_USER_EXECUTE)); */ Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt); bool const fNoExecute = !(pGstWalkAll->u.Ept.Pde.u & EPT_E_EXECUTE); if (pGstWalkAll->u.Ept.Pde.u & EPT_E_WRITE) enmAccess = fNoExecute ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW; else enmAccess = fNoExecute ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R; } /* * Allocate & map a 4K shadow table to cover the 2M guest page. */ PPGMPOOLPAGE pShwPage; RTGCPHYS const GCPhysPt = pGstWalkAll->u.Ept.Pde.u & EPT_PDE2M_PG_MASK; rc = pgmPoolAlloc(pVM, GCPhysPt, PGMPOOLKIND_EPT_PT_FOR_EPT_2MB, enmAccess, PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPde, false /*fLockPage*/, &pShwPage); if ( rc == VINF_SUCCESS || rc == VINF_PGM_CACHED_PAGE) { /* likely */ } else { STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); } PSHWPT pPt = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); Assert(pPt); Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage)); if (rc == VINF_SUCCESS) { /* The 4K PTEs shall inherit the flags of the 2M PDE page sans the leaf bit. */ uint64_t const fGstShwPteFlags = fGstShwBigPdeFlags & ~EPT_E_LEAF; /* Sync each 4K pages in the 2M range. */ for (unsigned iPte = 0; iPte < RT_ELEMENTS(pPt->a); iPte++) { RTGCPHYS const GCPhysSubPage = GCPhysPt | (iPte << GUEST_PAGE_SHIFT); SLATPTE GstSlatPte; GstSlatPte.u = GCPhysSubPage | fGstShwPteFlags; Assert(!(GstSlatPte.u & pVCpu->pgm.s.fGstEptMbzPteMask)); PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysSubPage, pShwPage, iPte, GstSlatPte); Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u [2M->4K]\n", pGstWalkAll->u.Ept.Pte, pPt->a[iPte].u, iPte)); if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) break; } } else { Assert(rc == VINF_PGM_CACHED_PAGE); # if defined(VBOX_STRICT) && defined(DEBUG_ramshankar) /* Paranoia - Verify address of each of the subpages are what they should be. */ RTGCPHYS GCPhysSubPage = GCPhysPt; for (unsigned iPte = 0; iPte < RT_ELEMENTS(pPt->a); iPte++, GCPhysSubPage += GUEST_PAGE_SIZE) { PPGMPAGE pSubPage; rc = pgmPhysGetPageEx(pVM, GCPhysSubPage, &pSubPage); AssertRC(rc); AssertMsg( PGM_PAGE_GET_HCPHYS(pSubPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]) || !SHW_PTE_IS_P(pPt->a[iPte]), ("PGM 2M page and shadow PTE conflict. GCPhysSubPage=%RGp Page=%RHp Shw=%RHp\n", GCPhysSubPage, PGM_PAGE_GET_HCPHYS(pSubPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte]))); } # endif rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */ } /* Save the new PDE. */ uint64_t const fShwPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedPdeMask; Pde.u = pShwPage->Core.Key | fShwPdeFlags; Assert(!(Pde.u & EPT_E_LEAF)); Assert(!(Pde.u & pVCpu->pgm.s.fGstEptMbzPdeMask)); SHW_PDE_ATOMIC_SET2(*pPde, Pde); STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); Log7Func(("GstPde=%RGp ShwPde=%RX64 iPde=%u\n", pGstWalkAll->u.Ept.Pde.u, pPde->u, iPde)); return rc; } # endif /* PGM_WITH_LARGE_PAGES */ /* * Allocate & map the shadow page table. */ PSHWPT pPt; PPGMPOOLPAGE pShwPage; RTGCPHYS const GCPhysPt = pGstWalkAll->u.Ept.Pde.u & EPT_PDE_PG_MASK; rc = pgmPoolAlloc(pVM, GCPhysPt, PGMPOOLKIND_EPT_PT_FOR_EPT_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPde, false /*fLockPage*/, &pShwPage); if ( rc == VINF_SUCCESS || rc == VINF_PGM_CACHED_PAGE) { /* likely */ } else { STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); } pPt = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); Assert(pPt); Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage)); if (rc == VINF_SUCCESS) { /* Sync the page we've already translated through SLAT. */ const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll->u.Ept.Pte); Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte)); /* Sync the rest of page table (expensive but might be cheaper than nested-guest VM-exits in hardware). */ for (unsigned iPteCur = 0; iPteCur < RT_ELEMENTS(pPt->a); iPteCur++) { if (iPteCur != iPte) { PGMPTWALKGST GstWalkPt; PGMPTWALK WalkPt; GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT); GCPhysNestedPage |= (iPteCur << GUEST_PAGE_SHIFT); int const rc2 = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt, &GstWalkPt); if (RT_SUCCESS(rc2)) { PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPteCur], WalkPt.GCPhys, pShwPage, iPteCur, GstWalkPt.u.Ept.Pte); Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", GstWalkPt.u.Ept.Pte.u, pPt->a[iPteCur].u, iPteCur)); } else { /* * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages. * Ensure the shadow tables entry is not-present. */ /** @todo We currently don't configure these to cause EPT misconfigs but rather trap * them using EPT violations and walk the guest EPT tables to determine * whether they are EPT misconfigs VM-exits for the nested-hypervisor. We * could optimize this by using a specific combination of reserved bits * which we could immediately identify as EPT misconfigs of the * nested-hypervisor without having to walk its EPT tables. However, tracking * non-present entries might be tricky... */ AssertMsg(!pPt->a[iPteCur].u, ("%RX64\n", pPt->a[iPteCur].u)); } if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) break; } } } else { Assert(rc == VINF_PGM_CACHED_PAGE); # if defined(VBOX_STRICT) && defined(DEBUG_ramshankar) /* Paranoia - Verify address of the page is what it should be. */ PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); AssertRC(rc); const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]) || !SHW_PTE_IS_P(pPt->a[iPte]), ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp Page=%RHp Shw=%RHp\n", GCPhysNestedPage, GCPhysPage, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte]))); Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u [cache]\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte)); # endif rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */ } /* Save the new PDE. */ uint64_t const fShwPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedPdeMask; Assert(!(pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF)); Assert(!(pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptMbzPdeMask)); Pde.u = pShwPage->Core.Key | fShwPdeFlags; SHW_PDE_ATOMIC_SET2(*pPde, Pde); Log7Func(("GstPde=%RGp ShwPde=%RX64 iPde=%u\n", pGstWalkAll->u.Ept.Pde.u, pPde->u, iPde)); STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); return rc; } #endif /* !IN_RING3 && VBOX_WITH_NESTED_HWVIRT_VMX_EPT && PGM_SHW_TYPE == PGM_TYPE_EPT*/ #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE /** * Handle dirty bit tracking faults. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uErr Page fault error code. * @param pPdeSrc Guest page directory entry. * @param pPdeDst Shadow page directory entry. * @param GCPtrPage Guest context page address. */ static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(uErr); PGM_LOCK_ASSERT_OWNER(pVM); /* * Handle big page. */ if ((pPdeSrc->u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu)) { if ((pPdeDst->u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap)); Assert(pPdeSrc->u & X86_PDE_RW); /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply * fault again and take this path to only invalidate the entry (see below). */ SHWPDE PdeDst = *pPdeDst; PdeDst.u &= ~(SHWUINT)PGM_PDFLAGS_TRACK_DIRTY; PdeDst.u |= X86_PDE_RW | X86_PDE_A; SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); PGM_INVL_BIG_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } # ifdef IN_RING0 /* Check for stale TLB entry; only applies to the SMP guest case. */ if ( pVM->cCpus > 1 && (pPdeDst->u & (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) == (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) { PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); if (pShwPage) { PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; if (SHW_PTE_IS_P_RW(*pPteDst)) { /* Stale TLB entry. */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale)); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } } } # endif /* IN_RING0 */ return VINF_PGM_NO_DIRTY_BIT_TRACKING; } /* * Map the guest page table. */ PGSTPT pPTSrc; int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc); AssertRCReturn(rc, rc); if (SHW_PDE_IS_P(*pPdeDst)) { GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK]; const GSTPTE PteSrc = *pPteSrc; /* * Map shadow page table. */ PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); if (pShwPage) { PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */ { if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst)) { PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)); SHWPTE PteDst = *pPteDst; LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage)); STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap)); Assert(PteSrc.u & X86_PTE_RW); /* Note: No need to invalidate this entry on other VCPUs as a stale TLB * entry will not harm; write access will simply fault again and * take this path to only invalidate the entry. */ if (RT_LIKELY(pPage)) { if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) { //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage)); Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)); /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */ SHW_PTE_SET_RO(PteDst); } else { if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) { rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc)); AssertRC(rc); } if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED) SHW_PTE_SET_RW(PteDst); else { /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); SHW_PTE_SET_RO(PteDst); } } } else SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */ SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY); SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } # ifdef IN_RING0 /* Check for stale TLB entry; only applies to the SMP guest case. */ if ( pVM->cCpus > 1 && SHW_PTE_IS_RW(*pPteDst) && SHW_PTE_IS_A(*pPteDst)) { /* Stale TLB entry. */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale)); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } # endif } } else AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK)); } return VINF_PGM_NO_DIRTY_BIT_TRACKING; } #endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */ /** * Sync a shadow page table. * * The shadow page table is not present in the shadow PDE. * * Handles mapping conflicts. * * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on * conflict), and Trap0eHandler. * * A precondition for this method is that the shadow PDE is not present. The * caller must take the PGM lock before checking this and continue to hold it * when calling this method. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param iPDSrc Page directory index. * @param pPDSrc Source page directory (i.e. Guest OS page directory). * Assume this is a temporary mapping. * @param GCPtrPage GC Pointer of the page that caused the fault */ static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); #if 0 /* rarely useful; leave for debugging. */ STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]); #endif LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage); PGM_LOCK_ASSERT_OWNER(pVM); #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64) \ && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ && PGM_SHW_TYPE != PGM_TYPE_NONE int rc = VINF_SUCCESS; STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); /* * Some input validation first. */ AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage)); /* * Get the relevant shadow PDE entry. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PPGMPOOLPAGE pShwPde = NULL; PX86PDPAE pPDDst; PSHWPDE pPdeDst; /* Fetch the pgm pool shadow descriptor. */ rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); AssertRCSuccessReturn(rc, rc); Assert(pShwPde); pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc, rc); Assert(pPDDst); PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; # endif SHWPDE PdeDst = *pPdeDst; # if PGM_GST_TYPE == PGM_TYPE_AMD64 /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); Assert(pShwPde); # endif Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P.*/ /* * Sync the page directory entry. */ GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; const bool fPageTable = !(PdeSrc.u & X86_PDE_PS) || !GST_IS_PSE_ACTIVE(pVCpu); if ( (PdeSrc.u & X86_PDE_P) && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) ) { /* * Allocate & map the page table. */ PSHWPT pPTDst; PPGMPOOLPAGE pShwPage; RTGCPHYS GCPhys; if (fPageTable) { GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); # endif rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/, &pShwPage); } else { PGMPOOLACCESS enmAccess; # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) const bool fNoExecute = (PdeSrc.u & X86_PDE_PAE_NX) && GST_IS_NX_ACTIVE(pVCpu); # else const bool fNoExecute = false; # endif GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); # endif /* Determine the right kind of large page to avoid incorrect cached entry reuse. */ if (PdeSrc.u & X86_PDE_US) { if (PdeSrc.u & X86_PDE_RW) enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW; else enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R; } else { if (PdeSrc.u & X86_PDE_RW) enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW; else enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R; } rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/, &pShwPage); } if (rc == VINF_SUCCESS) pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); else if (rc == VINF_PGM_CACHED_PAGE) { /* * The PT was cached, just hook it up. */ if (fPageTable) PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc); else { PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc); /* (see explanation and assumptions further down.) */ if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW) { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig)); PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; PdeDst.u &= ~(SHWUINT)X86_PDE_RW; } } SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); return VINF_SUCCESS; } else AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); /** @todo Why do we bother preserving X86_PDE_AVL_MASK here? * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be * irrelevant at this point. */ PdeDst.u &= X86_PDE_AVL_MASK; PdeDst.u |= pShwPage->Core.Key; /* * Page directory has been accessed (this is a fault situation, remember). */ /** @todo * Well, when the caller is PrefetchPage or InvalidatePage is isn't a * fault situation. What's more, the Trap0eHandler has already set the * accessed bit. So, it's actually just VerifyAccessSyncPage which * might need setting the accessed flag. * * The best idea is to leave this change to the caller and add an * assertion that it's set already. */ pPDSrc->a[iPDSrc].u |= X86_PDE_A; if (fPageTable) { /* * Page table - 4KB. * * Sync all or just a few entries depending on PGM_SYNC_N_PAGES. */ Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n", GCPtrPage, PdeSrc.u & X86_PTE_P, !!(PdeSrc.u & X86_PTE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u)); PGSTPT pPTSrc; rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); if (RT_SUCCESS(rc)) { /* * Start by syncing the page directory entry so CSAM's TLB trick works. */ PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK)) | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc); SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); /* * Directory/page user or supervisor privilege: (same goes for read/write) * * Directory Page Combined * U/S U/S U/S * 0 0 0 * 0 1 0 * 1 0 0 * 1 1 1 * * Simple AND operation. Table listed for completeness. * */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4K)); # ifdef PGM_SYNC_N_PAGES unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; unsigned iPTDst = iPTBase; const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); if (iPTDst <= PGM_SYNC_NR_PAGES / 2) iPTDst = 0; else iPTDst -= PGM_SYNC_NR_PAGES / 2; # else /* !PGM_SYNC_N_PAGES */ unsigned iPTDst = 0; const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a); # endif /* !PGM_SYNC_N_PAGES */ RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1)) | ((RTGCPTR)iPTDst << GUEST_PAGE_SHIFT); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; # else const unsigned offPTSrc = 0; # endif for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += GUEST_PAGE_SIZE) { const unsigned iPTSrc = iPTDst + offPTSrc; const GSTPTE PteSrc = pPTSrc->a[iPTSrc]; if (PteSrc.u & X86_PTE_P) { PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n", GCPtrCur, PteSrc.u & X86_PTE_P, !!(PteSrc.u & PdeSrc.u & X86_PTE_RW), !!(PteSrc.u & PdeSrc.u & X86_PTE_US), (uint64_t)PteSrc.u, SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0], (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) )); } /* else: the page table was cleared by the pool */ } /* for PTEs */ } } else { /* * Big page - 2/4MB. * * We'll walk the ram range list in parallel and optimize lookups. * We will only sync one shadow page table at a time. */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4M)); /** * @todo It might be more efficient to sync only a part of the 4MB * page (similar to what we do for 4KB PDs). */ /* * Start by syncing the page directory entry. */ PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY))) | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc); /* * If the page is not flagged as dirty and is writable, then make it read-only * at PD level, so we can set the dirty bit when the page is modified. * * ASSUMES that page access handlers are implemented on page table entry level. * Thus we will first catch the dirty access and set PDE.D and restart. If * there is an access handler, we'll trap again and let it work on the problem. */ /** @todo move the above stuff to a section in the PGM documentation. */ Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)); if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW) { STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig)); PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; PdeDst.u &= ~(SHWUINT)X86_PDE_RW; } SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); /* * Fill the shadow page table. */ /* Get address and flags from the source PDE. */ SHWPTE PteDstBase; SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc)); /* Loop thru the entries in the shadow PT. */ const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr); Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n", GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u, GCPtr, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); unsigned iPTDst = 0; while ( iPTDst < RT_ELEMENTS(pPTDst->a) && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) { PPGMRAMRANGE const pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); if (pRam && GCPhys >= pRam->GCPhys) { # ifndef PGM_WITH_A20 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT; # endif do { /* Make shadow PTE. */ # ifdef PGM_WITH_A20 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; # else PPGMPAGE pPage = &pRam->aPages[iHCPage]; # endif SHWPTE PteDst; # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Try to make the page writable if necessary. */ if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && ( PGM_PAGE_IS_ZERO(pPage) || ( SHW_PTE_IS_RW(PteDstBase) && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED # endif # ifdef VBOX_WITH_PAGE_SHARING && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED # endif && !PGM_PAGE_IS_BALLOONED(pPage)) ) ) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); AssertRCReturn(rc, rc); if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) break; } # endif if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, SHW_PTE_GET_U(PteDstBase), &PteDst); else if (PGM_PAGE_IS_BALLOONED(pPage)) SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */ else SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase)); /* Only map writable pages writable. */ if ( SHW_PTE_IS_P_RW(PteDst) && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); # endif SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */ Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)))); } if (SHW_PTE_IS_P(PteDst)) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); /* commit it (not atomic, new table) */ pPTDst->a[iPTDst] = PteDst; Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n", (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst), SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : "")); /* advance */ GCPhys += GUEST_PAGE_SIZE; PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys); # ifndef PGM_WITH_A20 iHCPage++; # endif iPTDst++; } while ( iPTDst < RT_ELEMENTS(pPTDst->a) && GCPhys <= pRam->GCPhysLast); } else if (pRam) { Log(("Invalid pages at %RGp\n", GCPhys)); do { SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */ GCPhys += GUEST_PAGE_SIZE; iPTDst++; } while ( iPTDst < RT_ELEMENTS(pPTDst->a) && GCPhys < pRam->GCPhys); PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys); } else { Log(("Invalid pages at %RGp (2)\n", GCPhys)); for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++) SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */ } } /* while more PTEs */ } /* 4KB / 4MB */ } else AssertRelease(!SHW_PDE_IS_P(PdeDst)); STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); if (RT_FAILURE(rc)) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed)); return rc; #elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ && PGM_SHW_TYPE != PGM_TYPE_NONE NOREF(iPDSrc); NOREF(pPDSrc); STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); /* * Validate input a little bit. */ int rc = VINF_SUCCESS; # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */ PX86PDPAE pPDDst; PSHWPDE pPdeDst; /* Fetch the pgm pool shadow descriptor. */ rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); AssertRCSuccessReturn(rc, rc); Assert(pShwPde); pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */ rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc, rc); Assert(pPDDst); PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK; const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; PEPTPDPT pPdptDst; rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst); if (rc != VINF_SUCCESS) { STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); AssertRC(rc); return rc; } Assert(pPDDst); PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; /* Fetch the pgm pool shadow descriptor. */ /** @todo r=bird: didn't pgmShwGetEPTPDPtr just do this lookup already? */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK); Assert(pShwPde); # endif SHWPDE PdeDst = *pPdeDst; Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/ # if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE if (BTH_IS_NP_ACTIVE(pVM)) { Assert(!VM_IS_NEM_ENABLED(pVM)); /* Check if we allocated a big page before for this 2 MB range. */ PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage); if (RT_SUCCESS(rc)) { RTHCPHYS HCPhys = NIL_RTHCPHYS; if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE) { if (PGM_A20_IS_ENABLED(pVCpu)) { STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused); AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } else { PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED); pVM->pgm.s.cLargePagesDisabled++; } } else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED && PGM_A20_IS_ENABLED(pVCpu)) { /* Recheck the entire 2 MB range to see if we can use it again as a large page. */ rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage); if (RT_SUCCESS(rc)) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } } # if !defined(VBOX_WITH_NEW_LAZY_PAGE_ALLOC) && !defined(PGM_WITH_PAGE_ZEROING_DETECTION) /* This code is too aggresive! */ else if ( PGMIsUsingLargePages(pVM) && PGM_A20_IS_ENABLED(pVCpu)) { rc = pgmPhysAllocLargePage(pVM, GCPtrPage); if (RT_SUCCESS(rc)) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } else LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc)); } # endif if (HCPhys != NIL_RTHCPHYS) { # if PGM_SHW_TYPE == PGM_TYPE_EPT PdeDst.u = HCPhys | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_LEAF | EPT_E_IGNORE_PAT | EPT_E_MEMTYPE_WB | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo do we need this? */; # else PdeDst.u = HCPhys | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PS | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo PGM_PD_FLAGS? */; # endif SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u)); /* Add a reference to the first page only. */ PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst); STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); return VINF_SUCCESS; } } } # endif /* defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE */ /* * Allocate & map the page table. */ PSHWPT pPTDst; PPGMPOOLPAGE pShwPage; RTGCPHYS GCPhys; /* Virtual address = physical address */ GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK); rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/, &pShwPage); if ( rc == VINF_SUCCESS || rc == VINF_PGM_CACHED_PAGE) pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); else { STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); } if (rc == VINF_SUCCESS) { /* New page table; fully set it up. */ Assert(pPTDst); /* Mask away the page offset. */ GCPtrPage &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK; for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++) { RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT)); PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n", GCPtrCurPage, SHW_PTE_LOG64(pPTDst->a[iPTDst]), SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) break; } } else rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */ /* Save the new PDE. */ # if PGM_SHW_TYPE == PGM_TYPE_EPT PdeDst.u = pShwPage->Core.Key | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | (PdeDst.u & X86_PDE_AVL_MASK /** @todo do we really need this? */); # else PdeDst.u = pShwPage->Core.Key | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A | (PdeDst.u & X86_PDE_AVL_MASK /** @todo use a PGM_PD_FLAGS define */); # endif SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); if (RT_FAILURE(rc)) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed)); return rc; #else NOREF(iPDSrc); NOREF(pPDSrc); AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); return VERR_PGM_NOT_USED_IN_MODE; #endif } /** * Prefetch a page/set of pages. * * Typically used to sync commonly used pages before entering raw mode * after a CR3 reload. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtrPage Page to invalidate. */ PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage) { #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_REAL \ || PGM_GST_TYPE == PGM_TYPE_PROT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ && PGM_SHW_TYPE != PGM_TYPE_NONE /* * Check that all Guest levels thru the PDE are present, getting the * PD and PDE in the processes. */ int rc = VINF_SUCCESS; # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) # if PGM_GST_TYPE == PGM_TYPE_32BIT const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # elif PGM_GST_TYPE == PGM_TYPE_PAE unsigned iPDSrc; X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); if (!pPDSrc) return VINF_SUCCESS; /* not present */ # elif PGM_GST_TYPE == PGM_TYPE_AMD64 unsigned iPDSrc; PX86PML4E pPml4eSrc; X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); if (!pPDSrc) return VINF_SUCCESS; /* not present */ # endif const GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; # else PGSTPD pPDSrc = NULL; const unsigned iPDSrc = 0; GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */ # endif if ((PdeSrc.u & (X86_PDE_P | X86_PDE_A)) == (X86_PDE_P | X86_PDE_A)) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); PGM_LOCK_VOID(pVM); # if PGM_SHW_TYPE == PGM_TYPE_32BIT const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; X86PDEPAE PdeDst; # if PGM_GST_TYPE != PGM_TYPE_PAE X86PDPE PdpeSrc; /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ # endif rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst); if (rc != VINF_SUCCESS) { PGM_UNLOCK(pVM); AssertRC(rc); return rc; } Assert(pPDDst); PdeDst = pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; X86PDEPAE PdeDst; # if PGM_GST_TYPE == PGM_TYPE_PROT /* AMD-V nested paging */ X86PML4E Pml4eSrc; X86PDPE PdpeSrc; PX86PML4E pPml4eSrc = &Pml4eSrc; /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; # endif rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst); if (rc != VINF_SUCCESS) { PGM_UNLOCK(pVM); AssertRC(rc); return rc; } Assert(pPDDst); PdeDst = pPDDst->a[iPDDst]; # endif if (!(PdeDst.u & X86_PDE_P)) { /** @todo r=bird: This guy will set the A bit on the PDE, * probably harmless. */ rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); } else { /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it * makes no sense to prefetch more than one page. */ rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); if (RT_SUCCESS(rc)) rc = VINF_SUCCESS; } PGM_UNLOCK(pVM); } return rc; #elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE NOREF(pVCpu); NOREF(GCPtrPage); return VINF_SUCCESS; /* ignore */ #else AssertCompile(0); #endif } /** * Syncs a page during a PGMVerifyAccess() call. * * @returns VBox status code (informational included). * @param pVCpu The cross context virtual CPU structure. * @param GCPtrPage The address of the page to sync. * @param fPage The effective guest page flags. * @param uErr The trap error code. * @remarks This will normally never be called on invalid guest page * translation entries. */ PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr)); RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr); Assert(!pVM->pgm.s.fNestedPaging); #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_REAL \ || PGM_GST_TYPE == PGM_TYPE_PROT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ && PGM_SHW_TYPE != PGM_TYPE_NONE /* * Get guest PD and index. */ /** @todo Performance: We've done all this a jiffy ago in the * PGMGstGetPage call. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) # if PGM_GST_TYPE == PGM_TYPE_32BIT const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # elif PGM_GST_TYPE == PGM_TYPE_PAE unsigned iPDSrc = 0; X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); if (RT_UNLIKELY(!pPDSrc)) { Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); return VINF_EM_RAW_GUEST_TRAP; } # elif PGM_GST_TYPE == PGM_TYPE_AMD64 unsigned iPDSrc = 0; /* shut up gcc */ PX86PML4E pPml4eSrc = NULL; /* ditto */ X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); if (RT_UNLIKELY(!pPDSrc)) { Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); return VINF_EM_RAW_GUEST_TRAP; } # endif # else /* !PGM_WITH_PAGING */ PGSTPD pPDSrc = NULL; const unsigned iPDSrc = 0; # endif /* !PGM_WITH_PAGING */ int rc = VINF_SUCCESS; PGM_LOCK_VOID(pVM); /* * First check if the shadow pd is present. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); AssertReturn(pPdeDst, VERR_INTERNAL_ERROR_3); # elif PGM_SHW_TYPE == PGM_TYPE_PAE PX86PDEPAE pPdeDst; const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; # if PGM_GST_TYPE != PGM_TYPE_PAE /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ X86PDPE PdpeSrc; PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ # endif rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst); if (rc != VINF_SUCCESS) { PGM_UNLOCK(pVM); AssertRC(rc); return rc; } Assert(pPDDst); pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; PX86PDEPAE pPdeDst; # if PGM_GST_TYPE == PGM_TYPE_PROT /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ X86PML4E Pml4eSrc; X86PDPE PdpeSrc; PX86PML4E pPml4eSrc = &Pml4eSrc; Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; # endif rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst); if (rc != VINF_SUCCESS) { PGM_UNLOCK(pVM); AssertRC(rc); return rc; } Assert(pPDDst); pPdeDst = &pPDDst->a[iPDDst]; # endif if (!(pPdeDst->u & X86_PDE_P)) { rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); if (rc != VINF_SUCCESS) { PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); PGM_UNLOCK(pVM); AssertRC(rc); return rc; } } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* Check for dirty bit fault */ rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage); if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) Log(("PGMVerifyAccess: success (dirty)\n")); else # endif { # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; # else GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */ # endif Assert(rc != VINF_EM_RAW_GUEST_TRAP); if (uErr & X86_TRAP_PF_US) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser)); else /* supervisor */ STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); if (RT_SUCCESS(rc)) { /* Page was successfully synced */ Log2(("PGMVerifyAccess: success (sync)\n")); rc = VINF_SUCCESS; } else { Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc)); rc = VINF_EM_RAW_GUEST_TRAP; } } PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); PGM_UNLOCK(pVM); return rc; #else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */ AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); return VERR_PGM_NOT_USED_IN_MODE; #endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */ } /** * Syncs the paging hierarchy starting at CR3. * * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other * informational status codes. * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map * the VMM into guest context. * @param pVCpu The cross context virtual CPU structure. * @param cr0 Guest context CR0 register. * @param cr3 Guest context CR3 register. Not subjected to the A20 * mask. * @param cr4 Guest context CR4 register. * @param fGlobal Including global page directories or not */ PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal); LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal)); #if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT PGM_LOCK_VOID(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); if (pPool->cDirtyPages) pgmPoolResetDirtyPages(pVM); PGM_UNLOCK(pVM); # endif #endif /* !NESTED && !EPT */ #if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE /* * Nested / EPT / None - No work. */ return VINF_SUCCESS; #elif PGM_SHW_TYPE == PGM_TYPE_AMD64 /* * AMD64 (Shw & Gst) - No need to check all paging levels; we zero * out the shadow parts when the guest modifies its tables. */ return VINF_SUCCESS; #else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ return VINF_SUCCESS; #endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ } #ifdef VBOX_STRICT /** * Checks that the shadow page table is in sync with the guest one. * * @returns The number of errors. * @param pVCpu The cross context virtual CPU structure. * @param cr3 Guest context CR3 register. * @param cr4 Guest context CR4 register. * @param GCPtr Where to start. Defaults to 0. * @param cb How much to check. Defaults to everything. */ PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb) { NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb); #if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE return 0; #else unsigned cErrors = 0; PVMCC pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); # if PGM_GST_TYPE == PGM_TYPE_PAE /** @todo currently broken; crashes below somewhere */ AssertFailed(); # endif # if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu); PPGMCPU pPGM = &pVCpu->pgm.s; RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */ RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */ # ifndef IN_RING0 RTHCPHYS HCPhys; /* general usage. */ # endif int rc; /* * Check that the Guest CR3 and all its mappings are correct. */ AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3), false); # if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64 # if 0 # if PGM_GST_TYPE == PGM_TYPE_32BIT rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw); # else rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw); # endif AssertRCReturn(rc, 1); HCPhys = NIL_RTHCPHYS; rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys); AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false); # endif # if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3) pgmGstGet32bitPDPtr(pVCpu); RTGCPHYS GCPhys; rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys); AssertRCReturn(rc, 1); AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false); # endif # endif /* !IN_RING0 */ /* * Get and check the Shadow CR3. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT unsigned cPDEs = X86_PG_ENTRIES; unsigned cIncrement = X86_PG_ENTRIES * GUEST_PAGE_SIZE; # elif PGM_SHW_TYPE == PGM_TYPE_PAE # if PGM_GST_TYPE == PGM_TYPE_32BIT unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */ # else unsigned cPDEs = X86_PG_PAE_ENTRIES; # endif unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 unsigned cPDEs = X86_PG_PAE_ENTRIES; unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE; # endif if (cb != ~(RTGCPTR)0) cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1); /** @todo call the other two PGMAssert*() functions. */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++) { PX86PML4E const pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4); AssertContinueStmt(pPml4eSrc, cErrors++); PX86PML4E const pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4); AssertContinueStmt(pPml4eDst, cErrors++); /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */ if (!(pPml4eDst->u & X86_PML4E_P)) { GCPtr += _2M * UINT64_C(512) * UINT64_C(512); continue; } PPGMPOOLPAGE pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK); RTGCPHYS GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK); if ((pPml4eSrc->u & X86_PML4E_P) != (pPml4eDst->u & X86_PML4E_P)) { AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); GCPtr += _2M * UINT64_C(512) * UINT64_C(512); cErrors++; continue; } if (GCPhysPdptSrc != pShwPdpt->GCPhys) { AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc)); GCPtr += _2M * UINT64_C(512) * UINT64_C(512); cErrors++; continue; } if ( (pPml4eDst->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX)) != (pPml4eSrc->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX))) { AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); GCPtr += _2M * UINT64_C(512) * UINT64_C(512); cErrors++; continue; } # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ { # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE /* * Check the PDPTEs too. */ unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; for (;iPdpt <= SHW_PDPT_MASK; iPdpt++) { unsigned iPDSrc = 0; /* initialized to shut up gcc */ PPGMPOOLPAGE pShwPde = NULL; PX86PDPE pPdpeDst; RTGCPHYS GCPhysPdeSrc; X86PDPE PdpeSrc; PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */ # if PGM_GST_TYPE == PGM_TYPE_PAE PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc); PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu); # else PX86PML4E pPml4eSrcIgn; PX86PDPT pPdptDst; PX86PDPAE pPDDst; PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc); rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst); if (rc != VINF_SUCCESS) { AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); GCPtr += 512 * _2M; continue; /* next PDPTE */ } Assert(pPDDst); # endif Assert(iPDSrc == 0); pPdpeDst = &pPdptDst->a[iPdpt]; if (!(pPdpeDst->u & X86_PDPE_P)) { GCPtr += 512 * _2M; continue; /* next PDPTE */ } pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK); GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK); if ((pPdpeDst->u & X86_PDPE_P) != (PdpeSrc.u & X86_PDPE_P)) { AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); GCPtr += 512 * _2M; cErrors++; continue; } if (GCPhysPdeSrc != pShwPde->GCPhys) { # if PGM_GST_TYPE == PGM_TYPE_AMD64 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); # else AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); # endif GCPtr += 512 * _2M; cErrors++; continue; } # if PGM_GST_TYPE == PGM_TYPE_AMD64 if ( (pPdpeDst->u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX)) != (PdpeSrc.u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX))) { AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); GCPtr += 512 * _2M; cErrors++; continue; } # endif # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ { # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ # if PGM_GST_TYPE == PGM_TYPE_32BIT GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # if PGM_SHW_TYPE == PGM_TYPE_32BIT PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu); # endif # endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */ /* * Iterate the shadow page directory. */ GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT; unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; for (; iPDDst < cPDEs; iPDDst++, GCPtr += cIncrement) { # if PGM_SHW_TYPE == PGM_TYPE_PAE const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr); # else const SHWPDE PdeDst = pPDDst->a[iPDDst]; # endif if ( (PdeDst.u & X86_PDE_P) || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) ) { HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK; PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw); if (!pPoolPage) { AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n", HCPhysShw, GCPtr, (uint64_t)PdeDst.u)); cErrors++; continue; } const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage); if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD)) { AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeDst.u)); cErrors++; } if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D)) { AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeDst.u)); cErrors++; } const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK]; if (!(PdeSrc.u & X86_PDE_P)) { AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n", GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u)); cErrors++; continue; } if ( !(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported) { GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); # endif } else { # if PGM_GST_TYPE == PGM_TYPE_32BIT if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK) { AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u)); cErrors++; continue; } # endif GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT))); # endif } if ( pPoolPage->enmKind != (!(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG)) { AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n", pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u)); cErrors++; } PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); if (!pPhysPage) { AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); cErrors++; continue; } if (GCPhysGst != pPoolPage->GCPhys) { AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n", GCPhysGst, pPoolPage->GCPhys, GCPtr)); cErrors++; continue; } if ( !(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported) { /* * Page Table. */ const GSTPT *pPTSrc; rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(GUEST_PAGE_SIZE - 1)), &pPTSrc); if (RT_FAILURE(rc)) { AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); cErrors++; continue; } if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)) != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))) { /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here! // (This problem will go away when/if we shadow multiple CR3s.) AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) { AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeDst.u)); cErrors++; continue; } /* iterate the page table. */ # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512; # else const unsigned offPTSrc = 0; # endif for (unsigned iPT = 0, off = 0; iPT < RT_ELEMENTS(pPTDst->a); iPT++, off += GUEST_PAGE_SIZE) { const SHWPTE PteDst = pPTDst->a[iPT]; /* skip not-present and dirty tracked entries. */ if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */ continue; Assert(SHW_PTE_IS_P(PteDst)); const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc]; if (!(PteSrc.u & X86_PTE_P)) { # ifdef IN_RING3 PGMAssertHandlerAndFlagsInSync(pVM); DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3, 0, 0, UINT64_MAX, 99, NULL); # endif AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n", GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0], (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc))); cErrors++; continue; } uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT; # if 1 /** @todo sync accessed bit properly... */ fIgnoreFlags |= X86_PTE_A; # endif /* match the physical addresses */ HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst); GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc); # ifdef IN_RING3 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); if (RT_FAILURE(rc)) { # if 0 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } # endif } else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } # endif pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); if (!pPhysPage) { # if 0 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } # endif if (SHW_PTE_IS_RW(PteDst)) { AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; } fIgnoreFlags |= X86_PTE_RW; } else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } /* flags */ if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage)) { if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) { if (SHW_PTE_IS_RW(PteDst)) { AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } fIgnoreFlags |= X86_PTE_RW; } else { if ( SHW_PTE_IS_P(PteDst) # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 && !PGM_PAGE_IS_MMIO(pPhysPage) # endif ) { AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } fIgnoreFlags |= X86_PTE_P; } } else { if ((PteSrc.u & (X86_PTE_RW | X86_PTE_D)) == X86_PTE_RW) { if (SHW_PTE_IS_RW(PteDst)) { AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } if (!SHW_PTE_IS_TRACK_DIRTY(PteDst)) { AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } if (SHW_PTE_IS_D(PteDst)) { AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; } # if 0 /** @todo sync access bit properly... */ if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed) { AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; } fIgnoreFlags |= X86_PTE_RW; # else fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; # endif } else if (SHW_PTE_IS_TRACK_DIRTY(PteDst)) { /* access bit emulation (not implemented). */ if ((PteSrc.u & X86_PTE_A) || SHW_PTE_IS_P(PteDst)) { AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } if (!SHW_PTE_IS_A(PteDst)) { AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; } fIgnoreFlags |= X86_PTE_P; } # ifdef DEBUG_sandervl fIgnoreFlags |= X86_PTE_D | X86_PTE_A; # endif } if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) ) { AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags, fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } } /* foreach PTE */ } else { /* * Big Page. */ uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD; if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW) { if (PdeDst.u & X86_PDE_RW) { AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)) { AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } # if 0 /** @todo sync access bit properly... */ if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed) { AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_RW; # else fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; # endif } else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) { /* access bit emulation (not implemented). */ if ((PdeSrc.u & X86_PDE_A) || SHW_PDE_IS_P(PdeDst)) { AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } if (!SHW_PDE_IS_A(PdeDst)) { AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_P; } if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags)) { AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags, fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; } /* iterate the page table. */ for (unsigned iPT = 0, off = 0; iPT < RT_ELEMENTS(pPTDst->a); iPT++, off += GUEST_PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + GUEST_PAGE_SIZE)) { const SHWPTE PteDst = pPTDst->a[iPT]; if (SHW_PTE_IS_TRACK_DIRTY(PteDst)) { AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; } /* skip not-present entries. */ if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */ continue; fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX; /* match the physical addresses */ HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst); # ifdef IN_RING3 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); if (RT_FAILURE(rc)) { # if 0 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; } # endif } else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } # endif pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); if (!pPhysPage) { # if 0 /** @todo make MMR3PageDummyHCPhys an 'All' function! */ if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } # endif if (SHW_PTE_IS_RW(PteDst)) { AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; } fIgnoreFlags |= X86_PTE_RW; } else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } /* flags */ if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage)) { if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) { if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED) { if ( SHW_PTE_IS_RW(PteDst) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage)) { AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } fIgnoreFlags |= X86_PTE_RW; } } else { if ( SHW_PTE_IS_P(PteDst) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage) # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 && !PGM_PAGE_IS_MMIO(pPhysPage) # endif ) { AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } fIgnoreFlags |= X86_PTE_P; } } if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */ ) { AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags, fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); cErrors++; continue; } } /* for each PTE */ } } /* not present */ } /* for each PDE */ } /* for each PDPTE */ } /* for each PML4E */ # ifdef DEBUG if (cErrors) LogFlow(("AssertCR3: cErrors=%d\n", cErrors)); # endif # endif /* GST is in {32BIT, PAE, AMD64} */ return cErrors; #endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */ } #endif /* VBOX_STRICT */ /** * Sets up the CR3 for shadow paging * * @returns Strict VBox status code. * @retval VINF_SUCCESS. * * @param pVCpu The cross context virtual CPU structure. * @param GCPhysCR3 The physical address in the CR3 register. (A20 mask * already applied.) */ PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); int rc = VINF_SUCCESS; /* Update guest paging info. */ #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 LogFlow(("MapCR3: %RGp\n", GCPhysCR3)); PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3); # if PGM_GST_TYPE == PGM_TYPE_PAE if ( !pVCpu->pgm.s.CTX_SUFF(fPaePdpesAndCr3Mapped) || pVCpu->pgm.s.GCPhysPaeCR3 != GCPhysCR3) # endif { /* * Map the page CR3 points at. */ RTHCPTR HCPtrGuestCR3; rc = pgmGstMapCr3(pVCpu, GCPhysCR3, &HCPtrGuestCR3); if (RT_SUCCESS(rc)) { # if PGM_GST_TYPE == PGM_TYPE_32BIT # ifdef IN_RING3 pVCpu->pgm.s.pGst32BitPdR3 = (PX86PD)HCPtrGuestCR3; pVCpu->pgm.s.pGst32BitPdR0 = NIL_RTR0PTR; # else pVCpu->pgm.s.pGst32BitPdR3 = NIL_RTR3PTR; pVCpu->pgm.s.pGst32BitPdR0 = (PX86PD)HCPtrGuestCR3; # endif # elif PGM_GST_TYPE == PGM_TYPE_PAE # ifdef IN_RING3 pVCpu->pgm.s.pGstPaePdptR3 = (PX86PDPT)HCPtrGuestCR3; pVCpu->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR; # else pVCpu->pgm.s.pGstPaePdptR3 = NIL_RTR3PTR; pVCpu->pgm.s.pGstPaePdptR0 = (PX86PDPT)HCPtrGuestCR3; # endif X86PDPE aGstPaePdpes[X86_PG_PAE_PDPE_ENTRIES]; #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT /* * When EPT is enabled by the nested-hypervisor and the nested-guest is in PAE mode, * the guest-CPU context would've already been updated with the 4 PAE PDPEs specified * in the virtual VMCS. The PDPEs can differ from those in guest memory referenced by * the translated nested-guest CR3. We -MUST- use the PDPEs provided in the virtual VMCS * rather than those in guest memory. * * See Intel spec. 26.3.2.4 "Loading Page-Directory-Pointer-Table Entries". */ if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT) CPUMGetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]); else #endif { /* Update CPUM with the PAE PDPEs referenced by CR3. */ memcpy(&aGstPaePdpes, HCPtrGuestCR3, sizeof(aGstPaePdpes)); CPUMSetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]); } /* * Map the 4 PAE PDPEs. */ rc = PGMGstMapPaePdpes(pVCpu, &aGstPaePdpes[0]); if (RT_SUCCESS(rc)) { # ifdef IN_RING3 pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = true; pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false; # else pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false; pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = true; # endif pVCpu->pgm.s.GCPhysPaeCR3 = GCPhysCR3; } # elif PGM_GST_TYPE == PGM_TYPE_AMD64 # ifdef IN_RING3 pVCpu->pgm.s.pGstAmd64Pml4R3 = (PX86PML4)HCPtrGuestCR3; pVCpu->pgm.s.pGstAmd64Pml4R0 = NIL_RTR0PTR; # else pVCpu->pgm.s.pGstAmd64Pml4R3 = NIL_RTR3PTR; pVCpu->pgm.s.pGstAmd64Pml4R0 = (PX86PML4)HCPtrGuestCR3; # endif # endif } else AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3)); } #endif /* * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64). */ # if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ || PGM_SHW_TYPE == PGM_TYPE_PAE \ || PGM_SHW_TYPE == PGM_TYPE_AMD64) \ && ( PGM_GST_TYPE != PGM_TYPE_REAL \ && PGM_GST_TYPE != PGM_TYPE_PROT)) Assert(!pVM->pgm.s.fNestedPaging); PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3); /* * Update the shadow root page as well since that's not fixed. */ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); PPGMPOOLPAGE pNewShwPageCR3; PGM_LOCK_VOID(pVM); # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPool->cDirtyPages) pgmPoolResetDirtyPages(pVM); # endif Assert(!(GCPhysCR3 >> (GUEST_PAGE_SHIFT + 32))); /** @todo what is this for? */ int const rc2 = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3); AssertFatalRC(rc2); pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3); pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3); /* Set the current hypervisor CR3. */ CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu)); /* Clean up the old CR3 root. */ if ( pOldShwPageCR3 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */) { Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE); /* Mark the page as unlocked; allow flushing again. */ pgmPoolUnlockPage(pPool, pOldShwPageCR3); pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX); } PGM_UNLOCK(pVM); # else NOREF(GCPhysCR3); # endif return rc; } /** * Unmaps the shadow CR3. * * @returns VBox status, no specials. * @param pVCpu The cross context virtual CPU structure. */ PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu) { LogFlow(("UnmapCR3\n")); int rc = VINF_SUCCESS; PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); /* * Update guest paging info. */ #if PGM_GST_TYPE == PGM_TYPE_32BIT pVCpu->pgm.s.pGst32BitPdR3 = 0; pVCpu->pgm.s.pGst32BitPdR0 = 0; #elif PGM_GST_TYPE == PGM_TYPE_PAE pVCpu->pgm.s.pGstPaePdptR3 = 0; pVCpu->pgm.s.pGstPaePdptR0 = 0; for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++) { pVCpu->pgm.s.apGstPaePDsR3[i] = 0; pVCpu->pgm.s.apGstPaePDsR0[i] = 0; pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; } #elif PGM_GST_TYPE == PGM_TYPE_AMD64 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0; pVCpu->pgm.s.pGstAmd64Pml4R0 = 0; #else /* prot/real mode stub */ /* nothing to do */ #endif /* * PAE PDPEs (and CR3) might have been mapped via PGMGstMapPaePdpesAtCr3() * prior to switching to PAE in pfnMapCr3(), so we need to clear them here. */ pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false; pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false; pVCpu->pgm.s.GCPhysPaeCR3 = NIL_RTGCPHYS; /* * Update shadow paging info. */ #if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ || PGM_SHW_TYPE == PGM_TYPE_PAE \ || PGM_SHW_TYPE == PGM_TYPE_AMD64)) # if PGM_GST_TYPE != PGM_TYPE_REAL Assert(!pVM->pgm.s.fNestedPaging); # endif PGM_LOCK_VOID(pVM); if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPool->cDirtyPages) pgmPoolResetDirtyPages(pVM); # endif /* Mark the page as unlocked; allow flushing again. */ pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX); pVCpu->pgm.s.pShwPageCR3R3 = 0; pVCpu->pgm.s.pShwPageCR3R0 = 0; } PGM_UNLOCK(pVM); #endif return rc; }