VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 21056

Last change on this file since 21056 was 21056, checked in by vboxsync, 16 years ago

Workaround for difficult to reproduce problem (invalid VERR_PAGE_TABLE_NOT_PRESENT return code).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 82.1 KB
Line 
1/* $Id: PGMAll.cpp 21056 2009-06-30 09:20:48Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include <VBox/hwaccm.h>
39#include <VBox/hwacc_vmx.h>
40#include "PGMInternal.h"
41#include <VBox/vm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45#include <VBox/log.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49
50/*******************************************************************************
51* Structures and Typedefs *
52*******************************************************************************/
53/**
54 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
55 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
56 */
57typedef struct PGMHVUSTATE
58{
59 /** The VM handle. */
60 PVM pVM;
61 /** The VMCPU handle. */
62 PVMCPU pVCpu;
63 /** The todo flags. */
64 RTUINT fTodo;
65 /** The CR4 register value. */
66 uint32_t cr4;
67} PGMHVUSTATE, *PPGMHVUSTATE;
68
69
70/*******************************************************************************
71* Internal Functions *
72*******************************************************************************/
73DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
74DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde);
75
76/*
77 * Shadow - 32-bit mode
78 */
79#define PGM_SHW_TYPE PGM_TYPE_32BIT
80#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
81#include "PGMAllShw.h"
82
83/* Guest - real mode */
84#define PGM_GST_TYPE PGM_TYPE_REAL
85#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
86#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
87#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
88#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
89#include "PGMGstDefs.h"
90#include "PGMAllGst.h"
91#include "PGMAllBth.h"
92#undef BTH_PGMPOOLKIND_PT_FOR_PT
93#undef BTH_PGMPOOLKIND_ROOT
94#undef PGM_BTH_NAME
95#undef PGM_GST_TYPE
96#undef PGM_GST_NAME
97
98/* Guest - protected mode */
99#define PGM_GST_TYPE PGM_TYPE_PROT
100#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
101#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
102#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
103#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
104#include "PGMGstDefs.h"
105#include "PGMAllGst.h"
106#include "PGMAllBth.h"
107#undef BTH_PGMPOOLKIND_PT_FOR_PT
108#undef BTH_PGMPOOLKIND_ROOT
109#undef PGM_BTH_NAME
110#undef PGM_GST_TYPE
111#undef PGM_GST_NAME
112
113/* Guest - 32-bit mode */
114#define PGM_GST_TYPE PGM_TYPE_32BIT
115#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
116#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
117#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
118#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
119#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
120#include "PGMGstDefs.h"
121#include "PGMAllGst.h"
122#include "PGMAllBth.h"
123#undef BTH_PGMPOOLKIND_PT_FOR_BIG
124#undef BTH_PGMPOOLKIND_PT_FOR_PT
125#undef BTH_PGMPOOLKIND_ROOT
126#undef PGM_BTH_NAME
127#undef PGM_GST_TYPE
128#undef PGM_GST_NAME
129
130#undef PGM_SHW_TYPE
131#undef PGM_SHW_NAME
132
133
134/*
135 * Shadow - PAE mode
136 */
137#define PGM_SHW_TYPE PGM_TYPE_PAE
138#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
139#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
140#include "PGMAllShw.h"
141
142/* Guest - real mode */
143#define PGM_GST_TYPE PGM_TYPE_REAL
144#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
145#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
146#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
147#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
148#include "PGMGstDefs.h"
149#include "PGMAllBth.h"
150#undef BTH_PGMPOOLKIND_PT_FOR_PT
151#undef BTH_PGMPOOLKIND_ROOT
152#undef PGM_BTH_NAME
153#undef PGM_GST_TYPE
154#undef PGM_GST_NAME
155
156/* Guest - protected mode */
157#define PGM_GST_TYPE PGM_TYPE_PROT
158#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
159#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
160#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
161#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
162#include "PGMGstDefs.h"
163#include "PGMAllBth.h"
164#undef BTH_PGMPOOLKIND_PT_FOR_PT
165#undef BTH_PGMPOOLKIND_ROOT
166#undef PGM_BTH_NAME
167#undef PGM_GST_TYPE
168#undef PGM_GST_NAME
169
170/* Guest - 32-bit mode */
171#define PGM_GST_TYPE PGM_TYPE_32BIT
172#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
173#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
174#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
175#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
176#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
177#include "PGMGstDefs.h"
178#include "PGMAllBth.h"
179#undef BTH_PGMPOOLKIND_PT_FOR_BIG
180#undef BTH_PGMPOOLKIND_PT_FOR_PT
181#undef BTH_PGMPOOLKIND_ROOT
182#undef PGM_BTH_NAME
183#undef PGM_GST_TYPE
184#undef PGM_GST_NAME
185
186
187/* Guest - PAE mode */
188#define PGM_GST_TYPE PGM_TYPE_PAE
189#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
190#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
191#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
192#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
193#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
194#include "PGMGstDefs.h"
195#include "PGMAllGst.h"
196#include "PGMAllBth.h"
197#undef BTH_PGMPOOLKIND_PT_FOR_BIG
198#undef BTH_PGMPOOLKIND_PT_FOR_PT
199#undef BTH_PGMPOOLKIND_ROOT
200#undef PGM_BTH_NAME
201#undef PGM_GST_TYPE
202#undef PGM_GST_NAME
203
204#undef PGM_SHW_TYPE
205#undef PGM_SHW_NAME
206
207
208#ifndef IN_RC /* AMD64 implies VT-x/AMD-V */
209/*
210 * Shadow - AMD64 mode
211 */
212# define PGM_SHW_TYPE PGM_TYPE_AMD64
213# define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
214# include "PGMAllShw.h"
215
216/* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */
217# define PGM_GST_TYPE PGM_TYPE_PROT
218# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
219# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
220# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
221# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS
222# include "PGMGstDefs.h"
223# include "PGMAllBth.h"
224# undef BTH_PGMPOOLKIND_PT_FOR_PT
225# undef BTH_PGMPOOLKIND_ROOT
226# undef PGM_BTH_NAME
227# undef PGM_GST_TYPE
228# undef PGM_GST_NAME
229
230# ifdef VBOX_WITH_64_BITS_GUESTS
231/* Guest - AMD64 mode */
232# define PGM_GST_TYPE PGM_TYPE_AMD64
233# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
234# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
235# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
236# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
237# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
238# include "PGMGstDefs.h"
239# include "PGMAllGst.h"
240# include "PGMAllBth.h"
241# undef BTH_PGMPOOLKIND_PT_FOR_BIG
242# undef BTH_PGMPOOLKIND_PT_FOR_PT
243# undef BTH_PGMPOOLKIND_ROOT
244# undef PGM_BTH_NAME
245# undef PGM_GST_TYPE
246# undef PGM_GST_NAME
247# endif /* VBOX_WITH_64_BITS_GUESTS */
248
249# undef PGM_SHW_TYPE
250# undef PGM_SHW_NAME
251
252
253/*
254 * Shadow - Nested paging mode
255 */
256# define PGM_SHW_TYPE PGM_TYPE_NESTED
257# define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
258# include "PGMAllShw.h"
259
260/* Guest - real mode */
261# define PGM_GST_TYPE PGM_TYPE_REAL
262# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
263# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
264# include "PGMGstDefs.h"
265# include "PGMAllBth.h"
266# undef PGM_BTH_NAME
267# undef PGM_GST_TYPE
268# undef PGM_GST_NAME
269
270/* Guest - protected mode */
271# define PGM_GST_TYPE PGM_TYPE_PROT
272# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
273# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
274# include "PGMGstDefs.h"
275# include "PGMAllBth.h"
276# undef PGM_BTH_NAME
277# undef PGM_GST_TYPE
278# undef PGM_GST_NAME
279
280/* Guest - 32-bit mode */
281# define PGM_GST_TYPE PGM_TYPE_32BIT
282# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
283# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
284# include "PGMGstDefs.h"
285# include "PGMAllBth.h"
286# undef PGM_BTH_NAME
287# undef PGM_GST_TYPE
288# undef PGM_GST_NAME
289
290/* Guest - PAE mode */
291# define PGM_GST_TYPE PGM_TYPE_PAE
292# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
293# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
294# include "PGMGstDefs.h"
295# include "PGMAllBth.h"
296# undef PGM_BTH_NAME
297# undef PGM_GST_TYPE
298# undef PGM_GST_NAME
299
300# ifdef VBOX_WITH_64_BITS_GUESTS
301/* Guest - AMD64 mode */
302# define PGM_GST_TYPE PGM_TYPE_AMD64
303# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
304# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
305# include "PGMGstDefs.h"
306# include "PGMAllBth.h"
307# undef PGM_BTH_NAME
308# undef PGM_GST_TYPE
309# undef PGM_GST_NAME
310# endif /* VBOX_WITH_64_BITS_GUESTS */
311
312# undef PGM_SHW_TYPE
313# undef PGM_SHW_NAME
314
315
316/*
317 * Shadow - EPT
318 */
319# define PGM_SHW_TYPE PGM_TYPE_EPT
320# define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
321# include "PGMAllShw.h"
322
323/* Guest - real mode */
324# define PGM_GST_TYPE PGM_TYPE_REAL
325# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
326# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
327# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
328# include "PGMGstDefs.h"
329# include "PGMAllBth.h"
330# undef BTH_PGMPOOLKIND_PT_FOR_PT
331# undef PGM_BTH_NAME
332# undef PGM_GST_TYPE
333# undef PGM_GST_NAME
334
335/* Guest - protected mode */
336# define PGM_GST_TYPE PGM_TYPE_PROT
337# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
338# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
339# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
340# include "PGMGstDefs.h"
341# include "PGMAllBth.h"
342# undef BTH_PGMPOOLKIND_PT_FOR_PT
343# undef PGM_BTH_NAME
344# undef PGM_GST_TYPE
345# undef PGM_GST_NAME
346
347/* Guest - 32-bit mode */
348# define PGM_GST_TYPE PGM_TYPE_32BIT
349# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
350# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
351# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
352# include "PGMGstDefs.h"
353# include "PGMAllBth.h"
354# undef BTH_PGMPOOLKIND_PT_FOR_PT
355# undef PGM_BTH_NAME
356# undef PGM_GST_TYPE
357# undef PGM_GST_NAME
358
359/* Guest - PAE mode */
360# define PGM_GST_TYPE PGM_TYPE_PAE
361# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
362# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
363# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
364# include "PGMGstDefs.h"
365# include "PGMAllBth.h"
366# undef BTH_PGMPOOLKIND_PT_FOR_PT
367# undef PGM_BTH_NAME
368# undef PGM_GST_TYPE
369# undef PGM_GST_NAME
370
371# ifdef VBOX_WITH_64_BITS_GUESTS
372/* Guest - AMD64 mode */
373# define PGM_GST_TYPE PGM_TYPE_AMD64
374# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
375# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
376# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
377# include "PGMGstDefs.h"
378# include "PGMAllBth.h"
379# undef BTH_PGMPOOLKIND_PT_FOR_PT
380# undef PGM_BTH_NAME
381# undef PGM_GST_TYPE
382# undef PGM_GST_NAME
383# endif /* VBOX_WITH_64_BITS_GUESTS */
384
385# undef PGM_SHW_TYPE
386# undef PGM_SHW_NAME
387
388#endif /* !IN_RC */
389
390
391#ifndef IN_RING3
392/**
393 * #PF Handler.
394 *
395 * @returns VBox status code (appropriate for trap handling and GC return).
396 * @param pVCpu VMCPU handle.
397 * @param uErr The trap error code.
398 * @param pRegFrame Trap register frame.
399 * @param pvFault The fault address.
400 */
401VMMDECL(int) PGMTrap0eHandler(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
402{
403 PVM pVM = pVCpu->CTX_SUFF(pVM);
404
405 LogFlow(("PGMTrap0eHandler: uErr=%RGu pvFault=%RGv eip=%04x:%RGv\n", uErr, pvFault, pRegFrame->cs, (RTGCPTR)pRegFrame->rip));
406 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0e, a);
407 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } );
408
409
410#ifdef VBOX_WITH_STATISTICS
411 /*
412 * Error code stats.
413 */
414 if (uErr & X86_TRAP_PF_US)
415 {
416 if (!(uErr & X86_TRAP_PF_P))
417 {
418 if (uErr & X86_TRAP_PF_RW)
419 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentWrite);
420 else
421 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentRead);
422 }
423 else if (uErr & X86_TRAP_PF_RW)
424 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSWrite);
425 else if (uErr & X86_TRAP_PF_RSVD)
426 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSReserved);
427 else if (uErr & X86_TRAP_PF_ID)
428 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNXE);
429 else
430 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSRead);
431 }
432 else
433 { /* Supervisor */
434 if (!(uErr & X86_TRAP_PF_P))
435 {
436 if (uErr & X86_TRAP_PF_RW)
437 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentWrite);
438 else
439 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentRead);
440 }
441 else if (uErr & X86_TRAP_PF_RW)
442 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVWrite);
443 else if (uErr & X86_TRAP_PF_ID)
444 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSNXE);
445 else if (uErr & X86_TRAP_PF_RSVD)
446 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVReserved);
447 }
448#endif /* VBOX_WITH_STATISTICS */
449
450 /*
451 * Call the worker.
452 */
453 pgmLock(pVM);
454 int rc = PGM_BTH_PFN(Trap0eHandler, pVCpu)(pVCpu, uErr, pRegFrame, pvFault);
455 Assert(PGMIsLockOwner(pVM));
456 pgmUnlock(pVM);
457 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
458 rc = VINF_SUCCESS;
459
460# ifdef IN_RING0
461 /* Note: hack alert for difficult to reproduce problem. */
462 if ( pVM->cCPUs > 1
463 && rc == VERR_PAGE_TABLE_NOT_PRESENT)
464 {
465 LogRel(("WARNING: Unexpected VERR_PAGE_TABLE_NOT_PRESENT for page fault at %RGv error code %x (rip=%RGv)\n", pvFault, uErr, pRegFrame->rip));
466 rc == VINF_SUCCESS;
467 }
468# endif
469
470 STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPF); });
471 STAM_STATS({ if (!pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution))
472 pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2Misc; });
473 STAM_PROFILE_STOP_EX(&pVCpu->pgm.s.StatRZTrap0e, pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a);
474 return rc;
475}
476#endif /* !IN_RING3 */
477
478
479/**
480 * Prefetch a page
481 *
482 * Typically used to sync commonly used pages before entering raw mode
483 * after a CR3 reload.
484 *
485 * @returns VBox status code suitable for scheduling.
486 * @retval VINF_SUCCESS on success.
487 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
488 * @param pVCpu VMCPU handle.
489 * @param GCPtrPage Page to invalidate.
490 */
491VMMDECL(int) PGMPrefetchPage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
492{
493 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
494 int rc = PGM_BTH_PFN(PrefetchPage, pVCpu)(pVCpu, GCPtrPage);
495 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
496 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
497 return rc;
498}
499
500
501/**
502 * Gets the mapping corresponding to the specified address (if any).
503 *
504 * @returns Pointer to the mapping.
505 * @returns NULL if not
506 *
507 * @param pVM The virtual machine.
508 * @param GCPtr The guest context pointer.
509 */
510PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
511{
512 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
513 while (pMapping)
514 {
515 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
516 break;
517 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
518 return pMapping;
519 pMapping = pMapping->CTX_SUFF(pNext);
520 }
521 return NULL;
522}
523
524
525/**
526 * Verifies a range of pages for read or write access
527 *
528 * Only checks the guest's page tables
529 *
530 * @returns VBox status code.
531 * @param pVCpu VMCPU handle.
532 * @param Addr Guest virtual address to check
533 * @param cbSize Access size
534 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
535 * @remarks Current not in use.
536 */
537VMMDECL(int) PGMIsValidAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
538{
539 /*
540 * Validate input.
541 */
542 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
543 {
544 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
545 return VERR_INVALID_PARAMETER;
546 }
547
548 uint64_t fPage;
549 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPage, NULL);
550 if (RT_FAILURE(rc))
551 {
552 Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc));
553 return VINF_EM_RAW_GUEST_TRAP;
554 }
555
556 /*
557 * Check if the access would cause a page fault
558 *
559 * Note that hypervisor page directories are not present in the guest's tables, so this check
560 * is sufficient.
561 */
562 bool fWrite = !!(fAccess & X86_PTE_RW);
563 bool fUser = !!(fAccess & X86_PTE_US);
564 if ( !(fPage & X86_PTE_P)
565 || (fWrite && !(fPage & X86_PTE_RW))
566 || (fUser && !(fPage & X86_PTE_US)) )
567 {
568 Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
569 return VINF_EM_RAW_GUEST_TRAP;
570 }
571 if ( RT_SUCCESS(rc)
572 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
573 return PGMIsValidAccess(pVCpu, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
574 return rc;
575}
576
577
578/**
579 * Verifies a range of pages for read or write access
580 *
581 * Supports handling of pages marked for dirty bit tracking and CSAM
582 *
583 * @returns VBox status code.
584 * @param pVCpu VMCPU handle.
585 * @param Addr Guest virtual address to check
586 * @param cbSize Access size
587 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
588 */
589VMMDECL(int) PGMVerifyAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
590{
591 PVM pVM = pVCpu->CTX_SUFF(pVM);
592
593 AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess));
594
595 /*
596 * Get going.
597 */
598 uint64_t fPageGst;
599 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPageGst, NULL);
600 if (RT_FAILURE(rc))
601 {
602 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc));
603 return VINF_EM_RAW_GUEST_TRAP;
604 }
605
606 /*
607 * Check if the access would cause a page fault
608 *
609 * Note that hypervisor page directories are not present in the guest's tables, so this check
610 * is sufficient.
611 */
612 const bool fWrite = !!(fAccess & X86_PTE_RW);
613 const bool fUser = !!(fAccess & X86_PTE_US);
614 if ( !(fPageGst & X86_PTE_P)
615 || (fWrite && !(fPageGst & X86_PTE_RW))
616 || (fUser && !(fPageGst & X86_PTE_US)) )
617 {
618 Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
619 return VINF_EM_RAW_GUEST_TRAP;
620 }
621
622 if (!HWACCMIsNestedPagingActive(pVM))
623 {
624 /*
625 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
626 */
627 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, NULL, NULL);
628 if ( rc == VERR_PAGE_NOT_PRESENT
629 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
630 {
631 /*
632 * Page is not present in our page tables.
633 * Try to sync it!
634 */
635 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
636 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
637 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVCpu)(pVCpu, Addr, fPageGst, uErr);
638 if (rc != VINF_SUCCESS)
639 return rc;
640 }
641 else
642 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc));
643 }
644
645#if 0 /* def VBOX_STRICT; triggers too often now */
646 /*
647 * This check is a bit paranoid, but useful.
648 */
649 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
650 uint64_t fPageShw;
651 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, &fPageShw, NULL);
652 if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc))
653 || (fWrite && !(fPageShw & X86_PTE_RW))
654 || (fUser && !(fPageShw & X86_PTE_US)) )
655 {
656 AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n",
657 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
658 return VINF_EM_RAW_GUEST_TRAP;
659 }
660#endif
661
662 if ( RT_SUCCESS(rc)
663 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
664 || Addr + cbSize < Addr))
665 {
666 /* Don't recursively call PGMVerifyAccess as we might run out of stack. */
667 for (;;)
668 {
669 Addr += PAGE_SIZE;
670 if (cbSize > PAGE_SIZE)
671 cbSize -= PAGE_SIZE;
672 else
673 cbSize = 1;
674 rc = PGMVerifyAccess(pVCpu, Addr, 1, fAccess);
675 if (rc != VINF_SUCCESS)
676 break;
677 if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
678 break;
679 }
680 }
681 return rc;
682}
683
684
685/**
686 * Emulation of the invlpg instruction (HC only actually).
687 *
688 * @returns VBox status code, special care required.
689 * @retval VINF_PGM_SYNC_CR3 - handled.
690 * @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only).
691 * @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled.
692 *
693 * @param pVCpu VMCPU handle.
694 * @param GCPtrPage Page to invalidate.
695 *
696 * @remark ASSUMES the page table entry or page directory is valid. Fairly
697 * safe, but there could be edge cases!
698 *
699 * @todo Flush page or page directory only if necessary!
700 */
701VMMDECL(int) PGMInvalidatePage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
702{
703 PVM pVM = pVCpu->CTX_SUFF(pVM);
704 int rc;
705 Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage));
706
707#ifndef IN_RING3
708 /*
709 * Notify the recompiler so it can record this instruction.
710 * Failure happens when it's out of space. We'll return to HC in that case.
711 */
712 rc = REMNotifyInvalidatePage(pVM, GCPtrPage);
713 if (rc != VINF_SUCCESS)
714 return rc;
715#endif /* !IN_RING3 */
716
717
718#ifdef IN_RC
719 /*
720 * Check for conflicts and pending CR3 monitoring updates.
721 */
722 if (!pVM->pgm.s.fMappingsFixed)
723 {
724 if ( pgmGetMapping(pVM, GCPtrPage)
725 && PGMGstGetPage(pVCpu, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT)
726 {
727 LogFlow(("PGMGCInvalidatePage: Conflict!\n"));
728 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
729 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgConflict);
730 return VINF_PGM_SYNC_CR3;
731 }
732
733 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
734 {
735 LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n"));
736 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgSyncMonCR3);
737 return VINF_EM_RAW_EMULATE_INSTR;
738 }
739 }
740#endif /* IN_RC */
741
742 /*
743 * Call paging mode specific worker.
744 */
745 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
746 pgmLock(pVM);
747 rc = PGM_BTH_PFN(InvalidatePage, pVCpu)(pVCpu, GCPtrPage);
748 pgmUnlock(pVM);
749 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
750
751#ifdef IN_RING3
752 /*
753 * Check if we have a pending update of the CR3 monitoring.
754 */
755 if ( RT_SUCCESS(rc)
756 && (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
757 {
758 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
759 Assert(!pVM->pgm.s.fMappingsFixed);
760 }
761
762 /*
763 * Inform CSAM about the flush
764 *
765 * Note: This is to check if monitored pages have been changed; when we implement
766 * callbacks for virtual handlers, this is no longer required.
767 */
768 CSAMR3FlushPage(pVM, GCPtrPage);
769#endif /* IN_RING3 */
770 return rc;
771}
772
773
774/**
775 * Executes an instruction using the interpreter.
776 *
777 * @returns VBox status code (appropriate for trap handling and GC return).
778 * @param pVM VM handle.
779 * @param pVCpu VMCPU handle.
780 * @param pRegFrame Register frame.
781 * @param pvFault Fault address.
782 */
783VMMDECL(int) PGMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
784{
785 uint32_t cb;
786 int rc = EMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault, &cb);
787 if (rc == VERR_EM_INTERPRETER)
788 rc = VINF_EM_RAW_EMULATE_INSTR;
789 if (rc != VINF_SUCCESS)
790 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", rc, pvFault));
791 return rc;
792}
793
794
795/**
796 * Gets effective page information (from the VMM page directory).
797 *
798 * @returns VBox status.
799 * @param pVCpu VMCPU handle.
800 * @param GCPtr Guest Context virtual address of the page.
801 * @param pfFlags Where to store the flags. These are X86_PTE_*.
802 * @param pHCPhys Where to store the HC physical address of the page.
803 * This is page aligned.
804 * @remark You should use PGMMapGetPage() for pages in a mapping.
805 */
806VMMDECL(int) PGMShwGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
807{
808 pgmLock(pVCpu->CTX_SUFF(pVM));
809 int rc = PGM_SHW_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pHCPhys);
810 pgmUnlock(pVCpu->CTX_SUFF(pVM));
811 return rc;
812}
813
814
815/**
816 * Sets (replaces) the page flags for a range of pages in the shadow context.
817 *
818 * @returns VBox status.
819 * @param pVCpu VMCPU handle.
820 * @param GCPtr The address of the first page.
821 * @param cb The size of the range in bytes.
822 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
823 * @remark You must use PGMMapSetPage() for pages in a mapping.
824 */
825VMMDECL(int) PGMShwSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
826{
827 return PGMShwModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
828}
829
830
831/**
832 * Modify page flags for a range of pages in the shadow context.
833 *
834 * The existing flags are ANDed with the fMask and ORed with the fFlags.
835 *
836 * @returns VBox status code.
837 * @param pVCpu VMCPU handle.
838 * @param GCPtr Virtual address of the first page in the range.
839 * @param cb Size (in bytes) of the range to apply the modification to.
840 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
841 * @param fMask The AND mask - page flags X86_PTE_*.
842 * Be very CAREFUL when ~'ing constants which could be 32-bit!
843 * @remark You must use PGMMapModifyPage() for pages in a mapping.
844 */
845VMMDECL(int) PGMShwModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
846{
847 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
848 Assert(cb);
849
850 /*
851 * Align the input.
852 */
853 cb += GCPtr & PAGE_OFFSET_MASK;
854 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
855 GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
856
857 /*
858 * Call worker.
859 */
860 PVM pVM = pVCpu->CTX_SUFF(pVM);
861 pgmLock(pVM);
862 int rc = PGM_SHW_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
863 pgmUnlock(pVM);
864 return rc;
865}
866
867/**
868 * Gets the shadow page directory for the specified address, PAE.
869 *
870 * @returns Pointer to the shadow PD.
871 * @param pVCpu The VMCPU handle.
872 * @param GCPtr The address.
873 * @param pGstPdpe Guest PDPT entry
874 * @param ppPD Receives address of page directory
875 */
876int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
877{
878 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
879 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
880 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
881 PVM pVM = pVCpu->CTX_SUFF(pVM);
882 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
883 PPGMPOOLPAGE pShwPage;
884 int rc;
885
886 Assert(PGMIsLockOwner(pVM));
887
888 /* Allocate page directory if not present. */
889 if ( !pPdpe->n.u1Present
890 && !(pPdpe->u & X86_PDPE_PG_MASK))
891 {
892 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
893 bool fPaging = !!(CPUMGetGuestCR0(pVCpu) & X86_CR0_PG);
894 RTGCPTR64 GCPdPt;
895 PGMPOOLKIND enmKind;
896
897# if defined(IN_RC)
898 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
899 PGMDynLockHCPage(pVM, (uint8_t *)pPdpe);
900# endif
901
902 if (fNestedPaging || !fPaging)
903 {
904 /* AMD-V nested paging or real/protected mode without paging */
905 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
906 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
907 }
908 else
909 {
910 Assert(pGstPdpe);
911
912 if (CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE)
913 {
914 if (!pGstPdpe->n.u1Present)
915 {
916 /* PD not present; guest must reload CR3 to change it.
917 * No need to monitor anything in this case.
918 */
919 Assert(!HWACCMIsEnabled(pVM));
920
921 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
922 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
923 pGstPdpe->n.u1Present = 1;
924 }
925 else
926 {
927 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
928 enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD;
929 }
930 }
931 else
932 {
933 GCPdPt = CPUMGetGuestCR3(pVCpu);
934 enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt);
935 }
936 }
937
938 /* Create a reference back to the PDPT by using the index in its shadow page. */
939 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage);
940 AssertRCReturn(rc, rc);
941
942 /* The PD was cached or created; hook it up now. */
943 pPdpe->u |= pShwPage->Core.Key
944 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
945
946# if defined(IN_RC)
947 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
948 * non-present PDPT will continue to cause page faults.
949 */
950 ASMReloadCR3();
951 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdpe);
952# endif
953 }
954 else
955 {
956 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
957 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
958 Assert((pPdpe->u & X86_PDPE_PG_MASK) == pShwPage->Core.Key);
959
960 pgmPoolCacheUsed(pPool, pShwPage);
961 }
962 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
963 return VINF_SUCCESS;
964}
965
966
967/**
968 * Gets the pointer to the shadow page directory entry for an address, PAE.
969 *
970 * @returns Pointer to the PDE.
971 * @param pPGM Pointer to the PGMCPU instance data.
972 * @param GCPtr The address.
973 * @param ppShwPde Receives the address of the pgm pool page for the shadow page directory
974 */
975DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde)
976{
977 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
978 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
979
980 Assert(PGMIsLockOwner(PGMCPU2VM(pPGM)));
981
982 AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */
983 if (!pPdpt->a[iPdPt].n.u1Present)
984 {
985 LogFlow(("pgmShwGetPaePoolPagePD: PD %d not present (%RX64)\n", iPdPt, pPdpt->a[iPdPt].u));
986 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
987 }
988 AssertMsg(pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK, ("GCPtr=%RGv\n", GCPtr));
989
990 /* Fetch the pgm pool shadow descriptor. */
991 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(PGMCPU2PGM(pPGM)->CTX_SUFF(pPool), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
992 AssertReturn(pShwPde, VERR_INTERNAL_ERROR);
993
994 *ppShwPde = pShwPde;
995 return VINF_SUCCESS;
996}
997
998#ifndef IN_RC
999
1000/**
1001 * Syncs the SHADOW page directory pointer for the specified address.
1002 *
1003 * Allocates backing pages in case the PDPT or PML4 entry is missing.
1004 *
1005 * The caller is responsible for making sure the guest has a valid PD before
1006 * calling this function.
1007 *
1008 * @returns VBox status.
1009 * @param pVCpu VMCPU handle.
1010 * @param GCPtr The address.
1011 * @param pGstPml4e Guest PML4 entry
1012 * @param pGstPdpe Guest PDPT entry
1013 * @param ppPD Receives address of page directory
1014 */
1015int pgmShwSyncLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
1016{
1017 PPGMCPU pPGM = &pVCpu->pgm.s;
1018 PVM pVM = pVCpu->CTX_SUFF(pVM);
1019 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1020 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1021 PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1022 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
1023 bool fPaging = !!(CPUMGetGuestCR0(pVCpu) & X86_CR0_PG);
1024 PPGMPOOLPAGE pShwPage;
1025 int rc;
1026
1027 Assert(PGMIsLockOwner(pVM));
1028
1029 /* Allocate page directory pointer table if not present. */
1030 if ( !pPml4e->n.u1Present
1031 && !(pPml4e->u & X86_PML4E_PG_MASK))
1032 {
1033 RTGCPTR64 GCPml4;
1034 PGMPOOLKIND enmKind;
1035
1036 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1037
1038 if (fNestedPaging || !fPaging)
1039 {
1040 /* AMD-V nested paging or real/protected mode without paging */
1041 GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT;
1042 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS;
1043 }
1044 else
1045 {
1046 Assert(pGstPml4e && pGstPdpe);
1047
1048 GCPml4 = pGstPml4e->u & X86_PML4E_PG_MASK;
1049 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT;
1050 }
1051
1052 /* Create a reference back to the PDPT by using the index in its shadow page. */
1053 rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
1054 AssertRCReturn(rc, rc);
1055 }
1056 else
1057 {
1058 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1059 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1060
1061 pgmPoolCacheUsed(pPool, pShwPage);
1062 }
1063 /* The PDPT was cached or created; hook it up now. */
1064 pPml4e->u |= pShwPage->Core.Key
1065 | (pGstPml4e->u & ~(X86_PML4E_PG_MASK | X86_PML4E_AVL_MASK | X86_PML4E_PCD | X86_PML4E_PWT));
1066
1067 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1068 PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1069 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
1070
1071 /* Allocate page directory if not present. */
1072 if ( !pPdpe->n.u1Present
1073 && !(pPdpe->u & X86_PDPE_PG_MASK))
1074 {
1075 RTGCPTR64 GCPdPt;
1076 PGMPOOLKIND enmKind;
1077
1078 if (fNestedPaging || !fPaging)
1079 {
1080 /* AMD-V nested paging or real/protected mode without paging */
1081 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
1082 enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS;
1083 }
1084 else
1085 {
1086 Assert(pGstPdpe);
1087
1088 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
1089 enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD;
1090 }
1091
1092 /* Create a reference back to the PDPT by using the index in its shadow page. */
1093 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage);
1094 AssertRCReturn(rc, rc);
1095 }
1096 else
1097 {
1098 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
1099 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1100
1101 pgmPoolCacheUsed(pPool, pShwPage);
1102 }
1103 /* The PD was cached or created; hook it up now. */
1104 pPdpe->u |= pShwPage->Core.Key
1105 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
1106
1107 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1108 return VINF_SUCCESS;
1109}
1110
1111
1112/**
1113 * Gets the SHADOW page directory pointer for the specified address (long mode).
1114 *
1115 * @returns VBox status.
1116 * @param pVCpu VMCPU handle.
1117 * @param GCPtr The address.
1118 * @param ppPdpt Receives address of pdpt
1119 * @param ppPD Receives address of page directory
1120 */
1121DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
1122{
1123 PPGMCPU pPGM = &pVCpu->pgm.s;
1124 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1125 PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1126
1127 Assert(PGMIsLockOwner(PGMCPU2VM(pPGM)));
1128
1129 AssertReturn(pPml4e, VERR_INTERNAL_ERROR);
1130 if (ppPml4e)
1131 *ppPml4e = (PX86PML4E)pPml4e;
1132
1133 Log4(("pgmShwGetLongModePDPtr %VGv (%VHv) %RX64\n", GCPtr, pPml4e, pPml4e->u));
1134
1135 if (!pPml4e->n.u1Present)
1136 return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT;
1137
1138 PVM pVM = pVCpu->CTX_SUFF(pVM);
1139 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1140 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1141 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1142
1143 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1144 PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1145 if (!pPdpt->a[iPdPt].n.u1Present)
1146 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
1147
1148 pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
1149 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1150
1151 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1152 return VINF_SUCCESS;
1153}
1154
1155
1156/**
1157 * Syncs the SHADOW EPT page directory pointer for the specified address. Allocates
1158 * backing pages in case the PDPT or PML4 entry is missing.
1159 *
1160 * @returns VBox status.
1161 * @param pVCpu VMCPU handle.
1162 * @param GCPtr The address.
1163 * @param ppPdpt Receives address of pdpt
1164 * @param ppPD Receives address of page directory
1165 */
1166int pgmShwGetEPTPDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD)
1167{
1168 PPGMCPU pPGM = &pVCpu->pgm.s;
1169 PVM pVM = pVCpu->CTX_SUFF(pVM);
1170 const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK;
1171 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1172 PEPTPML4 pPml4;
1173 PEPTPML4E pPml4e;
1174 PPGMPOOLPAGE pShwPage;
1175 int rc;
1176
1177 Assert(HWACCMIsNestedPagingActive(pVM));
1178 Assert(PGMIsLockOwner(pVM));
1179
1180 pPml4 = (PEPTPML4)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
1181 Assert(pPml4);
1182
1183 /* Allocate page directory pointer table if not present. */
1184 pPml4e = &pPml4->a[iPml4];
1185 if ( !pPml4e->n.u1Present
1186 && !(pPml4e->u & EPT_PML4E_PG_MASK))
1187 {
1188 Assert(!(pPml4e->u & EPT_PML4E_PG_MASK));
1189 RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
1190
1191 rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
1192 AssertRCReturn(rc, rc);
1193 }
1194 else
1195 {
1196 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK);
1197 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1198
1199 pgmPoolCacheUsed(pPool, pShwPage);
1200 }
1201 /* The PDPT was cached or created; hook it up now and fill with the default value. */
1202 pPml4e->u = pShwPage->Core.Key;
1203 pPml4e->n.u1Present = 1;
1204 pPml4e->n.u1Write = 1;
1205 pPml4e->n.u1Execute = 1;
1206
1207 const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
1208 PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1209 PEPTPDPTE pPdpe = &pPdpt->a[iPdPt];
1210
1211 if (ppPdpt)
1212 *ppPdpt = pPdpt;
1213
1214 /* Allocate page directory if not present. */
1215 if ( !pPdpe->n.u1Present
1216 && !(pPdpe->u & EPT_PDPTE_PG_MASK))
1217 {
1218 RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
1219
1220 rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
1221 AssertRCReturn(rc, rc);
1222 }
1223 else
1224 {
1225 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK);
1226 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1227
1228 pgmPoolCacheUsed(pPool, pShwPage);
1229 }
1230 /* The PD was cached or created; hook it up now and fill with the default value. */
1231 pPdpe->u = pShwPage->Core.Key;
1232 pPdpe->n.u1Present = 1;
1233 pPdpe->n.u1Write = 1;
1234 pPdpe->n.u1Execute = 1;
1235
1236 *ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1237 return VINF_SUCCESS;
1238}
1239
1240#endif /* IN_RC */
1241
1242/**
1243 * Gets effective Guest OS page information.
1244 *
1245 * When GCPtr is in a big page, the function will return as if it was a normal
1246 * 4KB page. If the need for distinguishing between big and normal page becomes
1247 * necessary at a later point, a PGMGstGetPage() will be created for that
1248 * purpose.
1249 *
1250 * @returns VBox status.
1251 * @param pVCpu VMCPU handle.
1252 * @param GCPtr Guest Context virtual address of the page.
1253 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
1254 * @param pGCPhys Where to store the GC physical address of the page.
1255 * This is page aligned. The fact that the
1256 */
1257VMMDECL(int) PGMGstGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
1258{
1259 return PGM_GST_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pGCPhys);
1260}
1261
1262
1263/**
1264 * Checks if the page is present.
1265 *
1266 * @returns true if the page is present.
1267 * @returns false if the page is not present.
1268 * @param pVCpu VMCPU handle.
1269 * @param GCPtr Address within the page.
1270 */
1271VMMDECL(bool) PGMGstIsPagePresent(PVMCPU pVCpu, RTGCPTR GCPtr)
1272{
1273 int rc = PGMGstGetPage(pVCpu, GCPtr, NULL, NULL);
1274 return RT_SUCCESS(rc);
1275}
1276
1277
1278/**
1279 * Sets (replaces) the page flags for a range of pages in the guest's tables.
1280 *
1281 * @returns VBox status.
1282 * @param pVCpu VMCPU handle.
1283 * @param GCPtr The address of the first page.
1284 * @param cb The size of the range in bytes.
1285 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
1286 */
1287VMMDECL(int) PGMGstSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
1288{
1289 return PGMGstModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
1290}
1291
1292
1293/**
1294 * Modify page flags for a range of pages in the guest's tables
1295 *
1296 * The existing flags are ANDed with the fMask and ORed with the fFlags.
1297 *
1298 * @returns VBox status code.
1299 * @param pVCpu VMCPU handle.
1300 * @param GCPtr Virtual address of the first page in the range.
1301 * @param cb Size (in bytes) of the range to apply the modification to.
1302 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
1303 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
1304 * Be very CAREFUL when ~'ing constants which could be 32-bit!
1305 */
1306VMMDECL(int) PGMGstModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
1307{
1308 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1309
1310 /*
1311 * Validate input.
1312 */
1313 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
1314 Assert(cb);
1315
1316 LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
1317
1318 /*
1319 * Adjust input.
1320 */
1321 cb += GCPtr & PAGE_OFFSET_MASK;
1322 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
1323 GCPtr = (GCPtr & PAGE_BASE_GC_MASK);
1324
1325 /*
1326 * Call worker.
1327 */
1328 int rc = PGM_GST_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
1329
1330 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1331 return rc;
1332}
1333
1334#ifdef IN_RING3
1335
1336/**
1337 * Performs the lazy mapping of the 32-bit guest PD.
1338 *
1339 * @returns Pointer to the mapping.
1340 * @param pPGM The PGM instance data.
1341 */
1342PX86PD pgmGstLazyMap32BitPD(PPGMCPU pPGM)
1343{
1344 Assert(!pPGM->CTX_SUFF(pGst32BitPd));
1345 PVM pVM = PGMCPU2VM(pPGM);
1346 pgmLock(pVM);
1347
1348 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1349 AssertReturn(pPage, NULL);
1350
1351 RTHCPTR HCPtrGuestCR3;
1352 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3);
1353 AssertRCReturn(rc, NULL);
1354
1355 pPGM->pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
1356# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1357 pPGM->pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
1358# endif
1359
1360 pgmUnlock(pVM);
1361 return pPGM->CTX_SUFF(pGst32BitPd);
1362}
1363
1364
1365/**
1366 * Performs the lazy mapping of the PAE guest PDPT.
1367 *
1368 * @returns Pointer to the mapping.
1369 * @param pPGM The PGM instance data.
1370 */
1371PX86PDPT pgmGstLazyMapPaePDPT(PPGMCPU pPGM)
1372{
1373 Assert(!pPGM->CTX_SUFF(pGstPaePdpt));
1374 PVM pVM = PGMCPU2VM(pPGM);
1375 pgmLock(pVM);
1376
1377 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1378 AssertReturn(pPage, NULL);
1379
1380 RTHCPTR HCPtrGuestCR3;
1381 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAE_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysR3 masking isn't necessary. */
1382 AssertRCReturn(rc, NULL);
1383
1384 pPGM->pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1385# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1386 pPGM->pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1387# endif
1388
1389 pgmUnlock(pVM);
1390 return pPGM->CTX_SUFF(pGstPaePdpt);
1391}
1392
1393#endif /* IN_RING3 */
1394
1395#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1396/**
1397 * Performs the lazy mapping / updating of a PAE guest PD.
1398 *
1399 * @returns Pointer to the mapping.
1400 * @param pPGM The PGM instance data.
1401 * @param iPdpt Which PD entry to map (0..3).
1402 */
1403PX86PDPAE pgmGstLazyMapPaePD(PPGMCPU pPGM, uint32_t iPdpt)
1404{
1405 PVM pVM = PGMCPU2VM(pPGM);
1406 pgmLock(pVM);
1407
1408 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
1409 Assert(pGuestPDPT);
1410 Assert(pGuestPDPT->a[iPdpt].n.u1Present);
1411 RTGCPHYS GCPhys = pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK;
1412 bool const fChanged = pPGM->aGCPhysGstPaePDs[iPdpt] != GCPhys;
1413
1414 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
1415 if (RT_LIKELY(pPage))
1416 {
1417 int rc = VINF_SUCCESS;
1418 RTRCPTR RCPtr = NIL_RTRCPTR;
1419 RTHCPTR HCPtr = NIL_RTHCPTR;
1420#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1421 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &HCPtr);
1422 AssertRC(rc);
1423#endif
1424 if (RT_SUCCESS(rc) && fChanged)
1425 {
1426 RCPtr = (RTRCPTR)(RTRCUINTPTR)(pVM->pgm.s.GCPtrCR3Mapping + (1 + iPdpt) * PAGE_SIZE);
1427 rc = PGMMap(pVM, (RTRCUINTPTR)RCPtr, PGM_PAGE_GET_HCPHYS(pPage), PAGE_SIZE, 0);
1428 }
1429 if (RT_SUCCESS(rc))
1430 {
1431 pPGM->apGstPaePDsR3[iPdpt] = (R3PTRTYPE(PX86PDPAE))HCPtr;
1432# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1433 pPGM->apGstPaePDsR0[iPdpt] = (R0PTRTYPE(PX86PDPAE))HCPtr;
1434# endif
1435 if (fChanged)
1436 {
1437 pPGM->aGCPhysGstPaePDs[iPdpt] = GCPhys;
1438 pPGM->apGstPaePDsRC[iPdpt] = (RCPTRTYPE(PX86PDPAE))RCPtr;
1439 }
1440
1441 pgmUnlock(pVM);
1442 return pPGM->CTX_SUFF(apGstPaePDs)[iPdpt];
1443 }
1444 }
1445
1446 /* Invalid page or some failure, invalidate the entry. */
1447 pPGM->aGCPhysGstPaePDs[iPdpt] = NIL_RTGCPHYS;
1448 pPGM->apGstPaePDsR3[iPdpt] = 0;
1449# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1450 pPGM->apGstPaePDsR0[iPdpt] = 0;
1451# endif
1452 pPGM->apGstPaePDsRC[iPdpt] = 0;
1453
1454 pgmUnlock(pVM);
1455 return NULL;
1456}
1457#endif /* !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1458
1459
1460#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3
1461/**
1462 * Performs the lazy mapping of the 32-bit guest PD.
1463 *
1464 * @returns Pointer to the mapping.
1465 * @param pPGM The PGM instance data.
1466 */
1467PX86PML4 pgmGstLazyMapPml4(PPGMCPU pPGM)
1468{
1469 Assert(!pPGM->CTX_SUFF(pGstAmd64Pml4));
1470 PVM pVM = PGMCPU2VM(pPGM);
1471 pgmLock(pVM);
1472
1473 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1474 AssertReturn(pPage, NULL);
1475
1476 RTHCPTR HCPtrGuestCR3;
1477 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_AMD64_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
1478 AssertRCReturn(rc, NULL);
1479
1480 pPGM->pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
1481# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1482 pPGM->pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
1483# endif
1484
1485 pgmUnlock(pVM);
1486 return pPGM->CTX_SUFF(pGstAmd64Pml4);
1487}
1488#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 */
1489
1490
1491/**
1492 * Gets the specified page directory pointer table entry.
1493 *
1494 * @returns PDP entry
1495 * @param pVCpu VMCPU handle.
1496 * @param iPdpt PDPT index
1497 */
1498VMMDECL(X86PDPE) PGMGstGetPaePDPtr(PVMCPU pVCpu, unsigned iPdpt)
1499{
1500 Assert(iPdpt <= 3);
1501 return pgmGstGetPaePDPTPtr(&pVCpu->pgm.s)->a[iPdpt & 3];
1502}
1503
1504
1505/**
1506 * Gets the current CR3 register value for the shadow memory context.
1507 * @returns CR3 value.
1508 * @param pVCpu VMCPU handle.
1509 */
1510VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVMCPU pVCpu)
1511{
1512 PPGMPOOLPAGE pPoolPage = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1513 AssertPtrReturn(pPoolPage, 0);
1514 return pPoolPage->Core.Key;
1515}
1516
1517
1518/**
1519 * Gets the current CR3 register value for the nested memory context.
1520 * @returns CR3 value.
1521 * @param pVCpu VMCPU handle.
1522 */
1523VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVMCPU pVCpu, PGMMODE enmShadowMode)
1524{
1525 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1526 return pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1527}
1528
1529
1530/**
1531 * Gets the current CR3 register value for the HC intermediate memory context.
1532 * @returns CR3 value.
1533 * @param pVM The VM handle.
1534 */
1535VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM)
1536{
1537 switch (pVM->pgm.s.enmHostMode)
1538 {
1539 case SUPPAGINGMODE_32_BIT:
1540 case SUPPAGINGMODE_32_BIT_GLOBAL:
1541 return pVM->pgm.s.HCPhysInterPD;
1542
1543 case SUPPAGINGMODE_PAE:
1544 case SUPPAGINGMODE_PAE_GLOBAL:
1545 case SUPPAGINGMODE_PAE_NX:
1546 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1547 return pVM->pgm.s.HCPhysInterPaePDPT;
1548
1549 case SUPPAGINGMODE_AMD64:
1550 case SUPPAGINGMODE_AMD64_GLOBAL:
1551 case SUPPAGINGMODE_AMD64_NX:
1552 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1553 return pVM->pgm.s.HCPhysInterPaePDPT;
1554
1555 default:
1556 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1557 return ~0;
1558 }
1559}
1560
1561
1562/**
1563 * Gets the current CR3 register value for the RC intermediate memory context.
1564 * @returns CR3 value.
1565 * @param pVM The VM handle.
1566 * @param pVCpu VMCPU handle.
1567 */
1568VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM, PVMCPU pVCpu)
1569{
1570 switch (pVCpu->pgm.s.enmShadowMode)
1571 {
1572 case PGMMODE_32_BIT:
1573 return pVM->pgm.s.HCPhysInterPD;
1574
1575 case PGMMODE_PAE:
1576 case PGMMODE_PAE_NX:
1577 return pVM->pgm.s.HCPhysInterPaePDPT;
1578
1579 case PGMMODE_AMD64:
1580 case PGMMODE_AMD64_NX:
1581 return pVM->pgm.s.HCPhysInterPaePML4;
1582
1583 case PGMMODE_EPT:
1584 case PGMMODE_NESTED:
1585 return 0; /* not relevant */
1586
1587 default:
1588 AssertMsgFailed(("enmShadowMode=%d\n", pVCpu->pgm.s.enmShadowMode));
1589 return ~0;
1590 }
1591}
1592
1593
1594/**
1595 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1596 * @returns CR3 value.
1597 * @param pVM The VM handle.
1598 */
1599VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM)
1600{
1601 return pVM->pgm.s.HCPhysInterPD;
1602}
1603
1604
1605/**
1606 * Gets the CR3 register value for the PAE intermediate memory context.
1607 * @returns CR3 value.
1608 * @param pVM The VM handle.
1609 */
1610VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM)
1611{
1612 return pVM->pgm.s.HCPhysInterPaePDPT;
1613}
1614
1615
1616/**
1617 * Gets the CR3 register value for the AMD64 intermediate memory context.
1618 * @returns CR3 value.
1619 * @param pVM The VM handle.
1620 */
1621VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM)
1622{
1623 return pVM->pgm.s.HCPhysInterPaePML4;
1624}
1625
1626
1627/**
1628 * Performs and schedules necessary updates following a CR3 load or reload.
1629 *
1630 * This will normally involve mapping the guest PD or nPDPT
1631 *
1632 * @returns VBox status code.
1633 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1634 * safely be ignored and overridden since the FF will be set too then.
1635 * @param pVCpu VMCPU handle.
1636 * @param cr3 The new cr3.
1637 * @param fGlobal Indicates whether this is a global flush or not.
1638 */
1639VMMDECL(int) PGMFlushTLB(PVMCPU pVCpu, uint64_t cr3, bool fGlobal)
1640{
1641 PVM pVM = pVCpu->CTX_SUFF(pVM);
1642
1643 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1644
1645 /*
1646 * Always flag the necessary updates; necessary for hardware acceleration
1647 */
1648 /** @todo optimize this, it shouldn't always be necessary. */
1649 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1650 if (fGlobal)
1651 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1652 LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVCpu->pgm.s.GCPhysCR3, fGlobal));
1653
1654 /*
1655 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1656 */
1657 int rc = VINF_SUCCESS;
1658 RTGCPHYS GCPhysCR3;
1659 switch (pVCpu->pgm.s.enmGuestMode)
1660 {
1661 case PGMMODE_PAE:
1662 case PGMMODE_PAE_NX:
1663 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1664 break;
1665 case PGMMODE_AMD64:
1666 case PGMMODE_AMD64_NX:
1667 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1668 break;
1669 default:
1670 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1671 break;
1672 }
1673
1674 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1675 {
1676 RTGCPHYS GCPhysOldCR3 = pVCpu->pgm.s.GCPhysCR3;
1677 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1678 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1679 if (RT_LIKELY(rc == VINF_SUCCESS))
1680 {
1681 if (!pVM->pgm.s.fMappingsFixed)
1682 {
1683 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1684 }
1685 }
1686 else
1687 {
1688 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc));
1689 Assert(VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_PGM_SYNC_CR3));
1690 pVCpu->pgm.s.GCPhysCR3 = GCPhysOldCR3;
1691 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3;
1692 if (!pVM->pgm.s.fMappingsFixed)
1693 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3;
1694 }
1695
1696 if (fGlobal)
1697 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3Global));
1698 else
1699 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3));
1700 }
1701 else
1702 {
1703 /*
1704 * Check if we have a pending update of the CR3 monitoring.
1705 */
1706 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1707 {
1708 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1709 Assert(!pVM->pgm.s.fMappingsFixed);
1710 }
1711 if (fGlobal)
1712 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3Global));
1713 else
1714 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3));
1715 }
1716
1717 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1718 return rc;
1719}
1720
1721
1722/**
1723 * Performs and schedules necessary updates following a CR3 load or reload when
1724 * using nested or extended paging.
1725 *
1726 * This API is an alterantive to PDMFlushTLB that avoids actually flushing the
1727 * TLB and triggering a SyncCR3.
1728 *
1729 * This will normally involve mapping the guest PD or nPDPT
1730 *
1731 * @returns VBox status code.
1732 * @retval VINF_SUCCESS.
1733 * @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring
1734 * requires a CR3 sync. This can safely be ignored and overridden since
1735 * the FF will be set too then.)
1736 * @param pVCpu VMCPU handle.
1737 * @param cr3 The new cr3.
1738 */
1739VMMDECL(int) PGMUpdateCR3(PVMCPU pVCpu, uint64_t cr3)
1740{
1741 PVM pVM = pVCpu->CTX_SUFF(pVM);
1742
1743 LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVCpu->pgm.s.GCPhysCR3));
1744
1745 /* We assume we're only called in nested paging mode. */
1746 Assert(pVM->pgm.s.fMappingsFixed);
1747 Assert(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3));
1748 Assert(HWACCMIsNestedPagingActive(pVM) || pVCpu->pgm.s.enmShadowMode == PGMMODE_EPT);
1749
1750 /*
1751 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1752 */
1753 int rc = VINF_SUCCESS;
1754 RTGCPHYS GCPhysCR3;
1755 switch (pVCpu->pgm.s.enmGuestMode)
1756 {
1757 case PGMMODE_PAE:
1758 case PGMMODE_PAE_NX:
1759 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1760 break;
1761 case PGMMODE_AMD64:
1762 case PGMMODE_AMD64_NX:
1763 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1764 break;
1765 default:
1766 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1767 break;
1768 }
1769 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1770 {
1771 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1772 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1773 AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */ /** @todo this isn't true for the mac, but we need hw to test/fix this. */
1774 }
1775 return rc;
1776}
1777
1778
1779/**
1780 * Synchronize the paging structures.
1781 *
1782 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1783 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1784 * in several places, most importantly whenever the CR3 is loaded.
1785 *
1786 * @returns VBox status code.
1787 * @param pVCpu VMCPU handle.
1788 * @param cr0 Guest context CR0 register
1789 * @param cr3 Guest context CR3 register
1790 * @param cr4 Guest context CR4 register
1791 * @param fGlobal Including global page directories or not
1792 */
1793VMMDECL(int) PGMSyncCR3(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
1794{
1795 PVM pVM = pVCpu->CTX_SUFF(pVM);
1796 int rc;
1797
1798#ifdef PGMPOOL_WITH_MONITORING
1799 /*
1800 * The pool may have pending stuff and even require a return to ring-3 to
1801 * clear the whole thing.
1802 */
1803 rc = pgmPoolSyncCR3(pVCpu);
1804 if (rc != VINF_SUCCESS)
1805 return rc;
1806#endif
1807
1808 /*
1809 * We might be called when we shouldn't.
1810 *
1811 * The mode switching will ensure that the PD is resynced
1812 * after every mode switch. So, if we find ourselves here
1813 * when in protected or real mode we can safely disable the
1814 * FF and return immediately.
1815 */
1816 if (pVCpu->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1817 {
1818 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1819 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1820 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1821 return VINF_SUCCESS;
1822 }
1823
1824 /* If global pages are not supported, then all flushes are global. */
1825 if (!(cr4 & X86_CR4_PGE))
1826 fGlobal = true;
1827 LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1828 VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1829
1830 /*
1831 * Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB).
1832 * This should be done before SyncCR3.
1833 */
1834 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3)
1835 {
1836 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3;
1837
1838 RTGCPHYS GCPhysCR3Old = pVCpu->pgm.s.GCPhysCR3;
1839 RTGCPHYS GCPhysCR3;
1840 switch (pVCpu->pgm.s.enmGuestMode)
1841 {
1842 case PGMMODE_PAE:
1843 case PGMMODE_PAE_NX:
1844 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1845 break;
1846 case PGMMODE_AMD64:
1847 case PGMMODE_AMD64_NX:
1848 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1849 break;
1850 default:
1851 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1852 break;
1853 }
1854
1855 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1856 {
1857 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1858 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1859 }
1860#ifdef IN_RING3
1861 if (rc == VINF_PGM_SYNC_CR3)
1862 rc = pgmPoolSyncCR3(pVCpu);
1863#else
1864 if (rc == VINF_PGM_SYNC_CR3)
1865 {
1866 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3Old;
1867 return rc;
1868 }
1869#endif
1870 AssertRCReturn(rc, rc);
1871 AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR);
1872 }
1873
1874 /*
1875 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1876 */
1877 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1878 rc = PGM_BTH_PFN(SyncCR3, pVCpu)(pVCpu, cr0, cr3, cr4, fGlobal);
1879 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1880 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
1881 if (rc == VINF_SUCCESS)
1882 {
1883 if (!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1884 {
1885 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1886 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1887 }
1888
1889 /*
1890 * Check if we have a pending update of the CR3 monitoring.
1891 */
1892 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1893 {
1894 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1895 Assert(!pVM->pgm.s.fMappingsFixed);
1896 }
1897 }
1898
1899 /*
1900 * Now flush the CR3 (guest context).
1901 */
1902 if (rc == VINF_SUCCESS)
1903 PGM_INVL_VCPU_TLBS(pVCpu);
1904 return rc;
1905}
1906
1907
1908/**
1909 * Called whenever CR0 or CR4 in a way which may change
1910 * the paging mode.
1911 *
1912 * @returns VBox status code, with the following informational code for
1913 * VM scheduling.
1914 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1915 * @retval VINF_PGM_CHANGE_MODE if we're in RC or R0 and the mode changes.
1916 * (I.e. not in R3.)
1917 * @retval VINF_EM_SUSPEND or VINF_EM_OFF on a fatal runtime error. (R3 only)
1918 *
1919 * @param pVCpu VMCPU handle.
1920 * @param cr0 The new cr0.
1921 * @param cr4 The new cr4.
1922 * @param efer The new extended feature enable register.
1923 */
1924VMMDECL(int) PGMChangeMode(PVMCPU pVCpu, uint64_t cr0, uint64_t cr4, uint64_t efer)
1925{
1926 PVM pVM = pVCpu->CTX_SUFF(pVM);
1927 PGMMODE enmGuestMode;
1928
1929 /*
1930 * Calc the new guest mode.
1931 */
1932 if (!(cr0 & X86_CR0_PE))
1933 enmGuestMode = PGMMODE_REAL;
1934 else if (!(cr0 & X86_CR0_PG))
1935 enmGuestMode = PGMMODE_PROTECTED;
1936 else if (!(cr4 & X86_CR4_PAE))
1937 enmGuestMode = PGMMODE_32_BIT;
1938 else if (!(efer & MSR_K6_EFER_LME))
1939 {
1940 if (!(efer & MSR_K6_EFER_NXE))
1941 enmGuestMode = PGMMODE_PAE;
1942 else
1943 enmGuestMode = PGMMODE_PAE_NX;
1944 }
1945 else
1946 {
1947 if (!(efer & MSR_K6_EFER_NXE))
1948 enmGuestMode = PGMMODE_AMD64;
1949 else
1950 enmGuestMode = PGMMODE_AMD64_NX;
1951 }
1952
1953 /*
1954 * Did it change?
1955 */
1956 if (pVCpu->pgm.s.enmGuestMode == enmGuestMode)
1957 return VINF_SUCCESS;
1958
1959 /* Flush the TLB */
1960 PGM_INVL_VCPU_TLBS(pVCpu);
1961
1962#ifdef IN_RING3
1963 return PGMR3ChangeMode(pVM, pVCpu, enmGuestMode);
1964#else
1965 LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1966 return VINF_PGM_CHANGE_MODE;
1967#endif
1968}
1969
1970
1971/**
1972 * Gets the current guest paging mode.
1973 *
1974 * If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode().
1975 *
1976 * @returns The current paging mode.
1977 * @param pVCpu VMCPU handle.
1978 */
1979VMMDECL(PGMMODE) PGMGetGuestMode(PVMCPU pVCpu)
1980{
1981 return pVCpu->pgm.s.enmGuestMode;
1982}
1983
1984
1985/**
1986 * Gets the current shadow paging mode.
1987 *
1988 * @returns The current paging mode.
1989 * @param pVCpu VMCPU handle.
1990 */
1991VMMDECL(PGMMODE) PGMGetShadowMode(PVMCPU pVCpu)
1992{
1993 return pVCpu->pgm.s.enmShadowMode;
1994}
1995
1996/**
1997 * Gets the current host paging mode.
1998 *
1999 * @returns The current paging mode.
2000 * @param pVM The VM handle.
2001 */
2002VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM)
2003{
2004 switch (pVM->pgm.s.enmHostMode)
2005 {
2006 case SUPPAGINGMODE_32_BIT:
2007 case SUPPAGINGMODE_32_BIT_GLOBAL:
2008 return PGMMODE_32_BIT;
2009
2010 case SUPPAGINGMODE_PAE:
2011 case SUPPAGINGMODE_PAE_GLOBAL:
2012 return PGMMODE_PAE;
2013
2014 case SUPPAGINGMODE_PAE_NX:
2015 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2016 return PGMMODE_PAE_NX;
2017
2018 case SUPPAGINGMODE_AMD64:
2019 case SUPPAGINGMODE_AMD64_GLOBAL:
2020 return PGMMODE_AMD64;
2021
2022 case SUPPAGINGMODE_AMD64_NX:
2023 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2024 return PGMMODE_AMD64_NX;
2025
2026 default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break;
2027 }
2028
2029 return PGMMODE_INVALID;
2030}
2031
2032
2033/**
2034 * Get mode name.
2035 *
2036 * @returns read-only name string.
2037 * @param enmMode The mode which name is desired.
2038 */
2039VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
2040{
2041 switch (enmMode)
2042 {
2043 case PGMMODE_REAL: return "Real";
2044 case PGMMODE_PROTECTED: return "Protected";
2045 case PGMMODE_32_BIT: return "32-bit";
2046 case PGMMODE_PAE: return "PAE";
2047 case PGMMODE_PAE_NX: return "PAE+NX";
2048 case PGMMODE_AMD64: return "AMD64";
2049 case PGMMODE_AMD64_NX: return "AMD64+NX";
2050 case PGMMODE_NESTED: return "Nested";
2051 case PGMMODE_EPT: return "EPT";
2052 default: return "unknown mode value";
2053 }
2054}
2055
2056
2057/**
2058 * Check if the PGM lock is currently taken.
2059 *
2060 * @returns bool locked/not locked
2061 * @param pVM The VM to operate on.
2062 */
2063VMMDECL(bool) PGMIsLocked(PVM pVM)
2064{
2065 return PDMCritSectIsOwned(&pVM->pgm.s.CritSect);
2066}
2067
2068
2069/**
2070 * Check if this VCPU currently owns the PGM lock.
2071 *
2072 * @returns bool owner/not owner
2073 * @param pVM The VM to operate on.
2074 */
2075VMMDECL(bool) PGMIsLockOwner(PVM pVM)
2076{
2077 return PDMCritSectIsOwner(&pVM->pgm.s.CritSect);
2078}
2079
2080
2081/**
2082 * Acquire the PGM lock.
2083 *
2084 * @returns VBox status code
2085 * @param pVM The VM to operate on.
2086 */
2087int pgmLock(PVM pVM)
2088{
2089 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
2090#if defined(IN_RC) || defined(IN_RING0)
2091 if (rc == VERR_SEM_BUSY)
2092 rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_LOCK, 0);
2093#endif
2094 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
2095 return rc;
2096}
2097
2098
2099/**
2100 * Release the PGM lock.
2101 *
2102 * @returns VBox status code
2103 * @param pVM The VM to operate on.
2104 */
2105void pgmUnlock(PVM pVM)
2106{
2107 PDMCritSectLeave(&pVM->pgm.s.CritSect);
2108}
2109
2110#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2111
2112/**
2113 * Temporarily maps one guest page specified by GC physical address.
2114 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2115 *
2116 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2117 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2118 *
2119 * @returns VBox status.
2120 * @param pVM VM handle.
2121 * @param GCPhys GC Physical address of the page.
2122 * @param ppv Where to store the address of the mapping.
2123 */
2124VMMDECL(int) PGMDynMapGCPage(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2125{
2126 AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp\n", GCPhys));
2127
2128 /*
2129 * Get the ram range.
2130 */
2131 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2132 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2133 pRam = pRam->CTX_SUFF(pNext);
2134 if (!pRam)
2135 {
2136 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2137 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2138 }
2139
2140 /*
2141 * Pass it on to PGMDynMapHCPage.
2142 */
2143 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2144 //Log(("PGMDynMapGCPage: GCPhys=%RGp HCPhys=%RHp\n", GCPhys, HCPhys));
2145#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2146 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2147#else
2148 PGMDynMapHCPage(pVM, HCPhys, ppv);
2149#endif
2150 return VINF_SUCCESS;
2151}
2152
2153
2154/**
2155 * Temporarily maps one guest page specified by unaligned GC physical address.
2156 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2157 *
2158 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2159 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2160 *
2161 * The caller is aware that only the speicifed page is mapped and that really bad things
2162 * will happen if writing beyond the page!
2163 *
2164 * @returns VBox status.
2165 * @param pVM VM handle.
2166 * @param GCPhys GC Physical address within the page to be mapped.
2167 * @param ppv Where to store the address of the mapping address corresponding to GCPhys.
2168 */
2169VMMDECL(int) PGMDynMapGCPageOff(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2170{
2171 /*
2172 * Get the ram range.
2173 */
2174 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2175 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2176 pRam = pRam->CTX_SUFF(pNext);
2177 if (!pRam)
2178 {
2179 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2180 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2181 }
2182
2183 /*
2184 * Pass it on to PGMDynMapHCPage.
2185 */
2186 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2187#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2188 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2189#else
2190 PGMDynMapHCPage(pVM, HCPhys, ppv);
2191#endif
2192 *ppv = (void *)((uintptr_t)*ppv | (GCPhys & PAGE_OFFSET_MASK));
2193 return VINF_SUCCESS;
2194}
2195
2196# ifdef IN_RC
2197
2198/**
2199 * Temporarily maps one host page specified by HC physical address.
2200 *
2201 * Be WARNED that the dynamic page mapping area is small, 16 pages, thus the space is
2202 * reused after 16 mappings (or perhaps a few more if you score with the cache).
2203 *
2204 * @returns VINF_SUCCESS, will bail out to ring-3 on failure.
2205 * @param pVM VM handle.
2206 * @param HCPhys HC Physical address of the page.
2207 * @param ppv Where to store the address of the mapping. This is the
2208 * address of the PAGE not the exact address corresponding
2209 * to HCPhys. Use PGMDynMapHCPageOff if you care for the
2210 * page offset.
2211 */
2212VMMDECL(int) PGMDynMapHCPage(PVM pVM, RTHCPHYS HCPhys, void **ppv)
2213{
2214 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
2215
2216 /*
2217 * Check the cache.
2218 */
2219 register unsigned iCache;
2220 for (iCache = 0;iCache < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache);iCache++)
2221 {
2222 static const uint8_t au8Trans[MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT][RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache)] =
2223 {
2224 { 0, 9, 10, 11, 12, 13, 14, 15},
2225 { 0, 1, 10, 11, 12, 13, 14, 15},
2226 { 0, 1, 2, 11, 12, 13, 14, 15},
2227 { 0, 1, 2, 3, 12, 13, 14, 15},
2228 { 0, 1, 2, 3, 4, 13, 14, 15},
2229 { 0, 1, 2, 3, 4, 5, 14, 15},
2230 { 0, 1, 2, 3, 4, 5, 6, 15},
2231 { 0, 1, 2, 3, 4, 5, 6, 7},
2232 { 8, 1, 2, 3, 4, 5, 6, 7},
2233 { 8, 9, 2, 3, 4, 5, 6, 7},
2234 { 8, 9, 10, 3, 4, 5, 6, 7},
2235 { 8, 9, 10, 11, 4, 5, 6, 7},
2236 { 8, 9, 10, 11, 12, 5, 6, 7},
2237 { 8, 9, 10, 11, 12, 13, 6, 7},
2238 { 8, 9, 10, 11, 12, 13, 14, 7},
2239 { 8, 9, 10, 11, 12, 13, 14, 15},
2240 };
2241 AssertCompile(RT_ELEMENTS(au8Trans) == 16);
2242 AssertCompile(RT_ELEMENTS(au8Trans[0]) == 8);
2243
2244 if (pVM->pgm.s.aHCPhysDynPageMapCache[iCache] == HCPhys)
2245 {
2246 int iPage = au8Trans[pVM->pgm.s.iDynPageMapLast][iCache];
2247
2248 /* The cache can get out of sync with locked entries. (10 locked, 2 overwrites its cache position, last = 11, lookup 2 -> page 10 instead of 2) */
2249 if ((pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u & X86_PTE_PG_MASK) == HCPhys)
2250 {
2251 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2252 *ppv = pv;
2253 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheHits);
2254 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d iCache=%d\n", HCPhys, pv, iPage, iCache));
2255 return VINF_SUCCESS;
2256 }
2257 LogFlow(("Out of sync entry %d\n", iPage));
2258 }
2259 }
2260 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == 8);
2261 AssertCompile((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) == 16);
2262 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheMisses);
2263
2264 /*
2265 * Update the page tables.
2266 */
2267 unsigned iPage = pVM->pgm.s.iDynPageMapLast;
2268 unsigned i;
2269 for (i = 0; i < (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT); i++)
2270 {
2271 pVM->pgm.s.iDynPageMapLast = iPage = (iPage + 1) & ((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) - 1);
2272 if (!pVM->pgm.s.aLockedDynPageMapCache[iPage])
2273 break;
2274 iPage++;
2275 }
2276 AssertRelease(i != (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT));
2277
2278 pVM->pgm.s.aHCPhysDynPageMapCache[iPage & (RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) - 1)] = HCPhys;
2279 pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u = (uint32_t)HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2280 pVM->pgm.s.paDynPageMapPaePTEsGC[iPage].u = HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2281 pVM->pgm.s.aLockedDynPageMapCache[iPage] = 0;
2282
2283 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2284 *ppv = pv;
2285 ASMInvalidatePage(pv);
2286 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d\n", HCPhys, pv, iPage));
2287 return VINF_SUCCESS;
2288}
2289
2290
2291/**
2292 * Temporarily lock a dynamic page to prevent it from being reused.
2293 *
2294 * @param pVM VM handle.
2295 * @param GCPage GC address of page
2296 */
2297VMMDECL(void) PGMDynLockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2298{
2299 unsigned iPage;
2300
2301 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2302 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2303 ASMAtomicIncU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2304 Log4(("PGMDynLockHCPage %RRv iPage=%d\n", GCPage, iPage));
2305}
2306
2307
2308/**
2309 * Unlock a dynamic page
2310 *
2311 * @param pVM VM handle.
2312 * @param GCPage GC address of page
2313 */
2314VMMDECL(void) PGMDynUnlockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2315{
2316 unsigned iPage;
2317
2318 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache) == 2* RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache));
2319 AssertCompileMemberSize(VM, pgm.s.aLockedDynPageMapCache, sizeof(uint32_t) * (MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT)));
2320
2321 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2322 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2323 Assert(pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2324 ASMAtomicDecU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2325 Log4(("PGMDynUnlockHCPage %RRv iPage=%d\n", GCPage, iPage));
2326}
2327
2328
2329# ifdef VBOX_STRICT
2330/**
2331 * Check for lock leaks.
2332 *
2333 * @param pVM VM handle.
2334 */
2335VMMDECL(void) PGMDynCheckLocks(PVM pVM)
2336{
2337 for (unsigned i=0;i<RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache);i++)
2338 Assert(!pVM->pgm.s.aLockedDynPageMapCache[i]);
2339}
2340# endif /* VBOX_STRICT */
2341
2342# endif /* IN_RC */
2343#endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
2344
2345#if !defined(IN_R0) || defined(LOG_ENABLED)
2346
2347/** Format handler for PGMPAGE.
2348 * @copydoc FNRTSTRFORMATTYPE */
2349static DECLCALLBACK(size_t) pgmFormatTypeHandlerPage(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2350 const char *pszType, void const *pvValue,
2351 int cchWidth, int cchPrecision, unsigned fFlags,
2352 void *pvUser)
2353{
2354 size_t cch;
2355 PCPGMPAGE pPage = (PCPGMPAGE)pvValue;
2356 if (VALID_PTR(pPage))
2357 {
2358 char szTmp[64+80];
2359
2360 cch = 0;
2361
2362 /* The single char state stuff. */
2363 static const char s_achPageStates[4] = { 'Z', 'A', 'W', 'S' };
2364 szTmp[cch++] = s_achPageStates[PGM_PAGE_GET_STATE(pPage)];
2365
2366#define IS_PART_INCLUDED(lvl) ( !(fFlags & RTSTR_F_PRECISION) || cchPrecision == (lvl) || cchPrecision >= (lvl)+10 )
2367 if (IS_PART_INCLUDED(5))
2368 {
2369 static const char s_achHandlerStates[4] = { '-', 't', 'w', 'a' };
2370 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)];
2371 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_VIRT_STATE(pPage)];
2372 }
2373
2374 /* The type. */
2375 if (IS_PART_INCLUDED(4))
2376 {
2377 szTmp[cch++] = ':';
2378 static const char s_achPageTypes[8][4] = { "INV", "RAM", "MI2", "M2A", "SHA", "ROM", "MIO", "BAD" };
2379 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][0];
2380 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][1];
2381 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][2];
2382 }
2383
2384 /* The numbers. */
2385 if (IS_PART_INCLUDED(3))
2386 {
2387 szTmp[cch++] = ':';
2388 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_HCPHYS(pPage), 16, 12, 0, RTSTR_F_ZEROPAD | RTSTR_F_64BIT);
2389 }
2390
2391 if (IS_PART_INCLUDED(2))
2392 {
2393 szTmp[cch++] = ':';
2394 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_PAGEID(pPage), 16, 7, 0, RTSTR_F_ZEROPAD | RTSTR_F_32BIT);
2395 }
2396
2397 if (IS_PART_INCLUDED(6))
2398 {
2399 szTmp[cch++] = ':';
2400 static const char s_achRefs[4] = { '-', 'U', '!', 'L' };
2401 szTmp[cch++] = s_achRefs[PGM_PAGE_GET_TD_CREFS(pPage)];
2402 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_TD_IDX(pPage), 16, 4, 0, RTSTR_F_ZEROPAD | RTSTR_F_16BIT);
2403 }
2404#undef IS_PART_INCLUDED
2405
2406 cch = pfnOutput(pvArgOutput, szTmp, cch);
2407 }
2408 else
2409 cch = pfnOutput(pvArgOutput, "<bad-pgmpage-ptr>", sizeof("<bad-pgmpage-ptr>") - 1);
2410 return cch;
2411}
2412
2413
2414/** Format handler for PGMRAMRANGE.
2415 * @copydoc FNRTSTRFORMATTYPE */
2416static DECLCALLBACK(size_t) pgmFormatTypeHandlerRamRange(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2417 const char *pszType, void const *pvValue,
2418 int cchWidth, int cchPrecision, unsigned fFlags,
2419 void *pvUser)
2420{
2421 size_t cch;
2422 PGMRAMRANGE const *pRam = (PGMRAMRANGE const *)pvValue;
2423 if (VALID_PTR(pRam))
2424 {
2425 char szTmp[80];
2426 cch = RTStrPrintf(szTmp, sizeof(szTmp), "%RGp-%RGp", pRam->GCPhys, pRam->GCPhysLast);
2427 cch = pfnOutput(pvArgOutput, szTmp, cch);
2428 }
2429 else
2430 cch = pfnOutput(pvArgOutput, "<bad-pgmramrange-ptr>", sizeof("<bad-pgmramrange-ptr>") - 1);
2431 return cch;
2432}
2433
2434/** Format type andlers to be registered/deregistered. */
2435static const struct
2436{
2437 char szType[24];
2438 PFNRTSTRFORMATTYPE pfnHandler;
2439} g_aPgmFormatTypes[] =
2440{
2441 { "pgmpage", pgmFormatTypeHandlerPage },
2442 { "pgmramrange", pgmFormatTypeHandlerRamRange }
2443};
2444
2445#endif /* !IN_R0 || LOG_ENABLED */
2446
2447
2448/**
2449 * Registers the global string format types.
2450 *
2451 * This should be called at module load time or in some other manner that ensure
2452 * that it's called exactly one time.
2453 *
2454 * @returns IPRT status code on RTStrFormatTypeRegister failure.
2455 */
2456VMMDECL(int) PGMRegisterStringFormatTypes(void)
2457{
2458#if !defined(IN_R0) || defined(LOG_ENABLED)
2459 int rc = VINF_SUCCESS;
2460 unsigned i;
2461 for (i = 0; RT_SUCCESS(rc) && i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2462 {
2463 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2464# ifdef IN_RING0
2465 if (rc == VERR_ALREADY_EXISTS)
2466 {
2467 /* in case of cleanup failure in ring-0 */
2468 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2469 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2470 }
2471# endif
2472 }
2473 if (RT_FAILURE(rc))
2474 while (i-- > 0)
2475 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2476
2477 return rc;
2478#else
2479 return VINF_SUCCESS;
2480#endif
2481}
2482
2483
2484/**
2485 * Deregisters the global string format types.
2486 *
2487 * This should be called at module unload time or in some other manner that
2488 * ensure that it's called exactly one time.
2489 */
2490VMMDECL(void) PGMDeregisterStringFormatTypes(void)
2491{
2492#if !defined(IN_R0) || defined(LOG_ENABLED)
2493 for (unsigned i = 0; i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2494 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2495#endif
2496}
2497
2498#ifdef VBOX_STRICT
2499
2500/**
2501 * Asserts that there are no mapping conflicts.
2502 *
2503 * @returns Number of conflicts.
2504 * @param pVM The VM Handle.
2505 */
2506VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
2507{
2508 unsigned cErrors = 0;
2509
2510 /* Only applies to raw mode -> 1 VPCU */
2511 Assert(pVM->cCPUs == 1);
2512 PVMCPU pVCpu = &pVM->aCpus[0];
2513
2514 /*
2515 * Check for mapping conflicts.
2516 */
2517 for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
2518 pMapping;
2519 pMapping = pMapping->CTX_SUFF(pNext))
2520 {
2521 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
2522 for (RTGCPTR GCPtr = pMapping->GCPtr;
2523 GCPtr <= pMapping->GCPtrLast;
2524 GCPtr += PAGE_SIZE)
2525 {
2526 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)GCPtr, NULL, NULL);
2527 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
2528 {
2529 AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc)));
2530 cErrors++;
2531 break;
2532 }
2533 }
2534 }
2535
2536 return cErrors;
2537}
2538
2539
2540/**
2541 * Asserts that everything related to the guest CR3 is correctly shadowed.
2542 *
2543 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
2544 * and assert the correctness of the guest CR3 mapping before asserting that the
2545 * shadow page tables is in sync with the guest page tables.
2546 *
2547 * @returns Number of conflicts.
2548 * @param pVM The VM Handle.
2549 * @param pVCpu VMCPU handle.
2550 * @param cr3 The current guest CR3 register value.
2551 * @param cr4 The current guest CR4 register value.
2552 */
2553VMMDECL(unsigned) PGMAssertCR3(PVM pVM, PVMCPU pVCpu, uint64_t cr3, uint64_t cr4)
2554{
2555 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2556 pgmLock(pVM);
2557 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVCpu)(pVCpu, cr3, cr4, 0, ~(RTGCPTR)0);
2558 pgmUnlock(pVM);
2559 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2560 return cErrors;
2561}
2562
2563#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette