/* $Id: PGMAll.cpp 37452 2011-06-14 18:13:48Z vboxsync $ */ /** @file * PGM - Page Manager and Monitor - All context code. */ /* * Copyright (C) 2006-2007 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "PGMInternal.h" #include #include "PGMInline.h" #include #include #include #include #include #include /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration. */ typedef struct PGMHVUSTATE { /** The VM handle. */ PVM pVM; /** The VMCPU handle. */ PVMCPU pVCpu; /** The todo flags. */ RTUINT fTodo; /** The CR4 register value. */ uint32_t cr4; } PGMHVUSTATE, *PPGMHVUSTATE; /******************************************************************************* * Internal Functions * *******************************************************************************/ DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD); DECLINLINE(int) pgmShwGetPaePoolPagePD(PVMCPU pVCpu, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde); #ifndef IN_RC static int pgmShwSyncLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, X86PGPAEUINT uGstPml4e, X86PGPAEUINT uGstPdpe, PX86PDPAE *ppPD); static int pgmShwGetEPTPDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD); #endif /* * Shadow - 32-bit mode */ #define PGM_SHW_TYPE PGM_TYPE_32BIT #define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name) #include "PGMAllShw.h" /* Guest - real mode */ #define PGM_GST_TYPE PGM_TYPE_REAL #define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS #define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS #include "PGMGstDefs.h" #include "PGMAllGst.h" #include "PGMAllBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef BTH_PGMPOOLKIND_ROOT #undef PGM_BTH_NAME #undef PGM_GST_TYPE #undef PGM_GST_NAME /* Guest - protected mode */ #define PGM_GST_TYPE PGM_TYPE_PROT #define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS #define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS #include "PGMGstDefs.h" #include "PGMAllGst.h" #include "PGMAllBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef BTH_PGMPOOLKIND_ROOT #undef PGM_BTH_NAME #undef PGM_GST_TYPE #undef PGM_GST_NAME /* Guest - 32-bit mode */ #define PGM_GST_TYPE PGM_TYPE_32BIT #define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT #define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB #define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD #include "PGMGstDefs.h" #include "PGMAllGst.h" #include "PGMAllBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_BIG #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef BTH_PGMPOOLKIND_ROOT #undef PGM_BTH_NAME #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_SHW_TYPE #undef PGM_SHW_NAME /* * Shadow - PAE mode */ #define PGM_SHW_TYPE PGM_TYPE_PAE #define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name) #include "PGMAllShw.h" /* Guest - real mode */ #define PGM_GST_TYPE PGM_TYPE_REAL #define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS #define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS #include "PGMGstDefs.h" #include "PGMAllBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef BTH_PGMPOOLKIND_ROOT #undef PGM_BTH_NAME #undef PGM_GST_TYPE #undef PGM_GST_NAME /* Guest - protected mode */ #define PGM_GST_TYPE PGM_TYPE_PROT #define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS #define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS #include "PGMGstDefs.h" #include "PGMAllBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef BTH_PGMPOOLKIND_ROOT #undef PGM_BTH_NAME #undef PGM_GST_TYPE #undef PGM_GST_NAME /* Guest - 32-bit mode */ #define PGM_GST_TYPE PGM_TYPE_32BIT #define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT #define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB #define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT #include "PGMGstDefs.h" #include "PGMAllBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_BIG #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef BTH_PGMPOOLKIND_ROOT #undef PGM_BTH_NAME #undef PGM_GST_TYPE #undef PGM_GST_NAME /* Guest - PAE mode */ #define PGM_GST_TYPE PGM_TYPE_PAE #define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT #define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB #define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT #include "PGMGstDefs.h" #include "PGMAllGst.h" #include "PGMAllBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_BIG #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef BTH_PGMPOOLKIND_ROOT #undef PGM_BTH_NAME #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_SHW_TYPE #undef PGM_SHW_NAME #ifndef IN_RC /* AMD64 implies VT-x/AMD-V */ /* * Shadow - AMD64 mode */ # define PGM_SHW_TYPE PGM_TYPE_AMD64 # define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name) # include "PGMAllShw.h" /* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */ # define PGM_GST_TYPE PGM_TYPE_PROT # define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name) # define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS # define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef BTH_PGMPOOLKIND_PT_FOR_PT # undef BTH_PGMPOOLKIND_ROOT # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME # ifdef VBOX_WITH_64_BITS_GUESTS /* Guest - AMD64 mode */ # define PGM_GST_TYPE PGM_TYPE_AMD64 # define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name) # define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT # define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB # define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4 # include "PGMGstDefs.h" # include "PGMAllGst.h" # include "PGMAllBth.h" # undef BTH_PGMPOOLKIND_PT_FOR_BIG # undef BTH_PGMPOOLKIND_PT_FOR_PT # undef BTH_PGMPOOLKIND_ROOT # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME # endif /* VBOX_WITH_64_BITS_GUESTS */ # undef PGM_SHW_TYPE # undef PGM_SHW_NAME /* * Shadow - Nested paging mode */ # define PGM_SHW_TYPE PGM_TYPE_NESTED # define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name) # include "PGMAllShw.h" /* Guest - real mode */ # define PGM_GST_TYPE PGM_TYPE_REAL # define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name) # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME /* Guest - protected mode */ # define PGM_GST_TYPE PGM_TYPE_PROT # define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name) # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME /* Guest - 32-bit mode */ # define PGM_GST_TYPE PGM_TYPE_32BIT # define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name) # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME /* Guest - PAE mode */ # define PGM_GST_TYPE PGM_TYPE_PAE # define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name) # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME # ifdef VBOX_WITH_64_BITS_GUESTS /* Guest - AMD64 mode */ # define PGM_GST_TYPE PGM_TYPE_AMD64 # define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name) # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME # endif /* VBOX_WITH_64_BITS_GUESTS */ # undef PGM_SHW_TYPE # undef PGM_SHW_NAME /* * Shadow - EPT */ # define PGM_SHW_TYPE PGM_TYPE_EPT # define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name) # include "PGMAllShw.h" /* Guest - real mode */ # define PGM_GST_TYPE PGM_TYPE_REAL # define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name) # define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef BTH_PGMPOOLKIND_PT_FOR_PT # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME /* Guest - protected mode */ # define PGM_GST_TYPE PGM_TYPE_PROT # define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name) # define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef BTH_PGMPOOLKIND_PT_FOR_PT # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME /* Guest - 32-bit mode */ # define PGM_GST_TYPE PGM_TYPE_32BIT # define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name) # define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef BTH_PGMPOOLKIND_PT_FOR_PT # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME /* Guest - PAE mode */ # define PGM_GST_TYPE PGM_TYPE_PAE # define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name) # define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef BTH_PGMPOOLKIND_PT_FOR_PT # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME # ifdef VBOX_WITH_64_BITS_GUESTS /* Guest - AMD64 mode */ # define PGM_GST_TYPE PGM_TYPE_AMD64 # define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name) # define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name) # define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS # include "PGMGstDefs.h" # include "PGMAllBth.h" # undef BTH_PGMPOOLKIND_PT_FOR_PT # undef PGM_BTH_NAME # undef PGM_GST_TYPE # undef PGM_GST_NAME # endif /* VBOX_WITH_64_BITS_GUESTS */ # undef PGM_SHW_TYPE # undef PGM_SHW_NAME #endif /* !IN_RC */ #ifndef IN_RING3 /** * #PF Handler. * * @returns VBox status code (appropriate for trap handling and GC return). * @param pVCpu VMCPU handle. * @param uErr The trap error code. * @param pRegFrame Trap register frame. * @param pvFault The fault address. */ VMMDECL(int) PGMTrap0eHandler(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault) { PVM pVM = pVCpu->CTX_SUFF(pVM); Log(("PGMTrap0eHandler: uErr=%RGx pvFault=%RGv eip=%04x:%RGv cr3=%RGp\n", uErr, pvFault, pRegFrame->cs, (RTGCPTR)pRegFrame->rip, (RTGCPHYS)CPUMGetGuestCR3(pVCpu))); STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0e, a); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } ); #ifdef VBOX_WITH_STATISTICS /* * Error code stats. */ if (uErr & X86_TRAP_PF_US) { if (!(uErr & X86_TRAP_PF_P)) { if (uErr & X86_TRAP_PF_RW) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eUSNotPresentWrite); else STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eUSNotPresentRead); } else if (uErr & X86_TRAP_PF_RW) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eUSWrite); else if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eUSReserved); else if (uErr & X86_TRAP_PF_ID) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eUSNXE); else STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eUSRead); } else { /* Supervisor */ if (!(uErr & X86_TRAP_PF_P)) { if (uErr & X86_TRAP_PF_RW) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eSVNotPresentWrite); else STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eSVNotPresentRead); } else if (uErr & X86_TRAP_PF_RW) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eSVWrite); else if (uErr & X86_TRAP_PF_ID) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eSNXE); else if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eSVReserved); } #endif /* VBOX_WITH_STATISTICS */ /* * Call the worker. */ bool fLockTaken = false; int rc = PGM_BTH_PFN(Trap0eHandler, pVCpu)(pVCpu, uErr, pRegFrame, pvFault, &fLockTaken); if (fLockTaken) { PGM_LOCK_ASSERT_OWNER(pVM); pgmUnlock(pVM); } LogFlow(("PGMTrap0eHandler: uErr=%RGx pvFault=%RGv rc=%Rrc\n", uErr, pvFault, rc)); /* * Return code tweaks. */ if (rc != VINF_SUCCESS) { if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE) rc = VINF_SUCCESS; # ifdef IN_RING0 /* Note: hack alert for difficult to reproduce problem. */ if ( rc == VERR_PAGE_NOT_PRESENT /* SMP only ; disassembly might fail. */ || rc == VERR_PAGE_TABLE_NOT_PRESENT /* seen with UNI & SMP */ || rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT /* seen with SMP */ || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT) /* precaution */ { Log(("WARNING: Unexpected VERR_PAGE_TABLE_NOT_PRESENT (%d) for page fault at %RGv error code %x (rip=%RGv)\n", rc, pvFault, uErr, pRegFrame->rip)); /* Some kind of inconsistency in the SMP case; it's safe to just execute the instruction again; not sure about single VCPU VMs though. */ rc = VINF_SUCCESS; } # endif } STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPF); }); STAM_STATS({ if (!pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)) pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Misc; }); STAM_PROFILE_STOP_EX(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0e, pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a); return rc; } #endif /* !IN_RING3 */ /** * Prefetch a page * * Typically used to sync commonly used pages before entering raw mode * after a CR3 reload. * * @returns VBox status code suitable for scheduling. * @retval VINF_SUCCESS on success. * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that. * @param pVCpu VMCPU handle. * @param GCPtrPage Page to invalidate. */ VMMDECL(int) PGMPrefetchPage(PVMCPU pVCpu, RTGCPTR GCPtrPage) { STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Prefetch), a); int rc = PGM_BTH_PFN(PrefetchPage, pVCpu)(pVCpu, GCPtrPage); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Prefetch), a); AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc)); return rc; } /** * Gets the mapping corresponding to the specified address (if any). * * @returns Pointer to the mapping. * @returns NULL if not * * @param pVM The virtual machine. * @param GCPtr The guest context pointer. */ PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr) { PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings); while (pMapping) { if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr) break; if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb) return pMapping; pMapping = pMapping->CTX_SUFF(pNext); } return NULL; } /** * Verifies a range of pages for read or write access * * Only checks the guest's page tables * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param Addr Guest virtual address to check * @param cbSize Access size * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*)) * @remarks Current not in use. */ VMMDECL(int) PGMIsValidAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess) { /* * Validate input. */ if (fAccess & ~(X86_PTE_US | X86_PTE_RW)) { AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess)); return VERR_INVALID_PARAMETER; } uint64_t fPage; int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPage, NULL); if (RT_FAILURE(rc)) { Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc)); return VINF_EM_RAW_GUEST_TRAP; } /* * Check if the access would cause a page fault * * Note that hypervisor page directories are not present in the guest's tables, so this check * is sufficient. */ bool fWrite = !!(fAccess & X86_PTE_RW); bool fUser = !!(fAccess & X86_PTE_US); if ( !(fPage & X86_PTE_P) || (fWrite && !(fPage & X86_PTE_RW)) || (fUser && !(fPage & X86_PTE_US)) ) { Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser)); return VINF_EM_RAW_GUEST_TRAP; } if ( RT_SUCCESS(rc) && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize)) return PGMIsValidAccess(pVCpu, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess); return rc; } /** * Verifies a range of pages for read or write access * * Supports handling of pages marked for dirty bit tracking and CSAM * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param Addr Guest virtual address to check * @param cbSize Access size * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*)) */ VMMDECL(int) PGMVerifyAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess) { PVM pVM = pVCpu->CTX_SUFF(pVM); AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess)); /* * Get going. */ uint64_t fPageGst; int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPageGst, NULL); if (RT_FAILURE(rc)) { Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc)); return VINF_EM_RAW_GUEST_TRAP; } /* * Check if the access would cause a page fault * * Note that hypervisor page directories are not present in the guest's tables, so this check * is sufficient. */ const bool fWrite = !!(fAccess & X86_PTE_RW); const bool fUser = !!(fAccess & X86_PTE_US); if ( !(fPageGst & X86_PTE_P) || (fWrite && !(fPageGst & X86_PTE_RW)) || (fUser && !(fPageGst & X86_PTE_US)) ) { Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser)); return VINF_EM_RAW_GUEST_TRAP; } if (!pVM->pgm.s.fNestedPaging) { /* * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning */ rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, NULL, NULL); if ( rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT) { /* * Page is not present in our page tables. * Try to sync it! */ Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US); uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US); rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVCpu)(pVCpu, Addr, fPageGst, uErr); if (rc != VINF_SUCCESS) return rc; } else AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc)); } #if 0 /* def VBOX_STRICT; triggers too often now */ /* * This check is a bit paranoid, but useful. */ /* Note! This will assert when writing to monitored pages (a bit annoying actually). */ uint64_t fPageShw; rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, &fPageShw, NULL); if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc)) || (fWrite && !(fPageShw & X86_PTE_RW)) || (fUser && !(fPageShw & X86_PTE_US)) ) { AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n", Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US))); return VINF_EM_RAW_GUEST_TRAP; } #endif if ( RT_SUCCESS(rc) && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1) || Addr + cbSize < Addr)) { /* Don't recursively call PGMVerifyAccess as we might run out of stack. */ for (;;) { Addr += PAGE_SIZE; if (cbSize > PAGE_SIZE) cbSize -= PAGE_SIZE; else cbSize = 1; rc = PGMVerifyAccess(pVCpu, Addr, 1, fAccess); if (rc != VINF_SUCCESS) break; if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1)) break; } } return rc; } /** * Emulation of the invlpg instruction (HC only actually). * * @returns Strict VBox status code, special care required. * @retval VINF_PGM_SYNC_CR3 - handled. * @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only). * @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled. * * @param pVCpu VMCPU handle. * @param GCPtrPage Page to invalidate. * * @remark ASSUMES the page table entry or page directory is valid. Fairly * safe, but there could be edge cases! * * @todo Flush page or page directory only if necessary! * @todo VBOXSTRICTRC */ VMMDECL(int) PGMInvalidatePage(PVMCPU pVCpu, RTGCPTR GCPtrPage) { PVM pVM = pVCpu->CTX_SUFF(pVM); int rc; Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage)); #ifndef IN_RING3 /* * Notify the recompiler so it can record this instruction. */ REMNotifyInvalidatePage(pVM, GCPtrPage); #endif /* !IN_RING3 */ #ifdef IN_RC /* * Check for conflicts and pending CR3 monitoring updates. */ if (pgmMapAreMappingsFloating(pVM)) { if ( pgmGetMapping(pVM, GCPtrPage) && PGMGstGetPage(pVCpu, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT) { LogFlow(("PGMGCInvalidatePage: Conflict!\n")); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRCInvlPgConflict); return VINF_PGM_SYNC_CR3; } if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3) { LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n")); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRCInvlPgSyncMonCR3); return VINF_EM_RAW_EMULATE_INSTR; } } #endif /* IN_RC */ /* * Call paging mode specific worker. */ STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage), a); pgmLock(pVM); rc = PGM_BTH_PFN(InvalidatePage, pVCpu)(pVCpu, GCPtrPage); pgmUnlock(pVM); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage), a); #ifdef IN_RING3 /* * Check if we have a pending update of the CR3 monitoring. */ if ( RT_SUCCESS(rc) && (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)) { pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3; Assert(!pVM->pgm.s.fMappingsFixed); Assert(!pVM->pgm.s.fMappingsDisabled); } /* * Inform CSAM about the flush * * Note: This is to check if monitored pages have been changed; when we implement * callbacks for virtual handlers, this is no longer required. */ CSAMR3FlushPage(pVM, GCPtrPage); #endif /* IN_RING3 */ /* Ignore all irrelevant error codes. */ if ( rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT) rc = VINF_SUCCESS; return rc; } /** * Executes an instruction using the interpreter. * * @returns VBox status code (appropriate for trap handling and GC return). * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pRegFrame Register frame. * @param pvFault Fault address. */ VMMDECL(VBOXSTRICTRC) PGMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault) { uint32_t cb; VBOXSTRICTRC rc = EMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault, &cb); if (rc == VERR_EM_INTERPRETER) rc = VINF_EM_RAW_EMULATE_INSTR; if (rc != VINF_SUCCESS) Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", VBOXSTRICTRC_VAL(rc), pvFault)); return rc; } /** * Gets effective page information (from the VMM page directory). * * @returns VBox status. * @param pVCpu VMCPU handle. * @param GCPtr Guest Context virtual address of the page. * @param pfFlags Where to store the flags. These are X86_PTE_*. * @param pHCPhys Where to store the HC physical address of the page. * This is page aligned. * @remark You should use PGMMapGetPage() for pages in a mapping. */ VMMDECL(int) PGMShwGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys) { pgmLock(pVCpu->CTX_SUFF(pVM)); int rc = PGM_SHW_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pHCPhys); pgmUnlock(pVCpu->CTX_SUFF(pVM)); return rc; } /** * Modify page flags for a range of pages in the shadow context. * * The existing flags are ANDed with the fMask and ORed with the fFlags. * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param GCPtr Virtual address of the first page in the range. * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course. * @param fMask The AND mask - page flags X86_PTE_*. * Be very CAREFUL when ~'ing constants which could be 32-bit! * @param fOpFlags A combination of the PGM_MK_PK_XXX flags. * @remark You must use PGMMapModifyPage() for pages in a mapping. */ DECLINLINE(int) pdmShwModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags) { AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags)); Assert(!(fOpFlags & ~(PGM_MK_PG_IS_MMIO2 | PGM_MK_PG_IS_WRITE_FAULT))); GCPtr &= PAGE_BASE_GC_MASK; /** @todo this ain't necessary, right... */ PVM pVM = pVCpu->CTX_SUFF(pVM); pgmLock(pVM); int rc = PGM_SHW_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, PAGE_SIZE, fFlags, fMask, fOpFlags); pgmUnlock(pVM); return rc; } /** * Changing the page flags for a single page in the shadow page tables so as to * make it read-only. * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param GCPtr Virtual address of the first page in the range. * @param fOpFlags A combination of the PGM_MK_PK_XXX flags. */ VMMDECL(int) PGMShwMakePageReadonly(PVMCPU pVCpu, RTGCPTR GCPtr, uint32_t fOpFlags) { return pdmShwModifyPage(pVCpu, GCPtr, 0, ~(uint64_t)X86_PTE_RW, fOpFlags); } /** * Changing the page flags for a single page in the shadow page tables so as to * make it writable. * * The call must know with 101% certainty that the guest page tables maps this * as writable too. This function will deal shared, zero and write monitored * pages. * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param GCPtr Virtual address of the first page in the range. * @param fMmio2 Set if it is an MMIO2 page. * @param fOpFlags A combination of the PGM_MK_PK_XXX flags. */ VMMDECL(int) PGMShwMakePageWritable(PVMCPU pVCpu, RTGCPTR GCPtr, uint32_t fOpFlags) { return pdmShwModifyPage(pVCpu, GCPtr, X86_PTE_RW, ~(uint64_t)0, fOpFlags); } /** * Changing the page flags for a single page in the shadow page tables so as to * make it not present. * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param GCPtr Virtual address of the first page in the range. * @param fOpFlags A combination of the PGM_MK_PG_XXX flags. */ VMMDECL(int) PGMShwMakePageNotPresent(PVMCPU pVCpu, RTGCPTR GCPtr, uint32_t fOpFlags) { return pdmShwModifyPage(pVCpu, GCPtr, 0, 0, fOpFlags); } /** * Gets the shadow page directory for the specified address, PAE. * * @returns Pointer to the shadow PD. * @param pVCpu The VMCPU handle. * @param GCPtr The address. * @param uGstPdpe Guest PDPT entry. Valid. * @param ppPD Receives address of page directory */ int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, X86PGPAEUINT uGstPdpe, PX86PDPAE *ppPD) { const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pVCpu); PX86PDPE pPdpe = &pPdpt->a[iPdPt]; PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPAGE pShwPage; int rc; PGM_LOCK_ASSERT_OWNER(pVM); /* Allocate page directory if not present. */ if ( !pPdpe->n.u1Present && !(pPdpe->u & X86_PDPE_PG_MASK)) { RTGCPTR64 GCPdPt; PGMPOOLKIND enmKind; if (pVM->pgm.s.fNestedPaging || !CPUMIsGuestPagingEnabled(pVCpu)) { /* AMD-V nested paging or real/protected mode without paging. */ GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT; enmKind = PGMPOOLKIND_PAE_PD_PHYS; } else { if (CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE) { if (!(uGstPdpe & X86_PDPE_P)) { /* PD not present; guest must reload CR3 to change it. * No need to monitor anything in this case. */ Assert(!HWACCMIsEnabled(pVM)); GCPdPt = uGstPdpe & X86_PDPE_PG_MASK; enmKind = PGMPOOLKIND_PAE_PD_PHYS; uGstPdpe |= X86_PDPE_P; } else { GCPdPt = uGstPdpe & X86_PDPE_PG_MASK; enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD; } } else { GCPdPt = CPUMGetGuestCR3(pVCpu); enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt); } } /* Create a reference back to the PDPT by using the index in its shadow page. */ rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage); AssertRCReturn(rc, rc); /* The PD was cached or created; hook it up now. */ pPdpe->u |= pShwPage->Core.Key | (uGstPdpe & (X86_PDPE_P | X86_PDPE_A)); # if defined(IN_RC) /* * In 32 bits PAE mode we *must* invalidate the TLB when changing a * PDPT entry; the CPU fetches them only during cr3 load, so any * non-present PDPT will continue to cause page faults. */ ASMReloadCR3(); # endif PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdpe); } else { pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK); AssertReturn(pShwPage, VERR_INTERNAL_ERROR); Assert((pPdpe->u & X86_PDPE_PG_MASK) == pShwPage->Core.Key); pgmPoolCacheUsed(pPool, pShwPage); } *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); return VINF_SUCCESS; } /** * Gets the pointer to the shadow page directory entry for an address, PAE. * * @returns Pointer to the PDE. * @param pVCpu The current CPU. * @param GCPtr The address. * @param ppShwPde Receives the address of the pgm pool page for the shadow page directory */ DECLINLINE(int) pgmShwGetPaePoolPagePD(PVMCPU pVCpu, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde) { const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pVCpu); PVM pVM = pVCpu->CTX_SUFF(pVM); PGM_LOCK_ASSERT_OWNER(pVM); AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */ if (!pPdpt->a[iPdPt].n.u1Present) { LogFlow(("pgmShwGetPaePoolPagePD: PD %d not present (%RX64)\n", iPdPt, pPdpt->a[iPdPt].u)); return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT; } AssertMsg(pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK, ("GCPtr=%RGv\n", GCPtr)); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pVM->pgm.s.CTX_SUFF(pPool), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK); AssertReturn(pShwPde, VERR_INTERNAL_ERROR); *ppShwPde = pShwPde; return VINF_SUCCESS; } #ifndef IN_RC /** * Syncs the SHADOW page directory pointer for the specified address. * * Allocates backing pages in case the PDPT or PML4 entry is missing. * * The caller is responsible for making sure the guest has a valid PD before * calling this function. * * @returns VBox status. * @param pVCpu VMCPU handle. * @param GCPtr The address. * @param uGstPml4e Guest PML4 entry (valid). * @param uGstPdpe Guest PDPT entry (valid). * @param ppPD Receives address of page directory */ static int pgmShwSyncLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, X86PGPAEUINT uGstPml4e, X86PGPAEUINT uGstPdpe, PX86PDPAE *ppPD) { PPGMCPU pPGM = &pVCpu->pgm.s; PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pVCpu, iPml4); bool fNestedPagingOrNoGstPaging = pVM->pgm.s.fNestedPaging || !CPUMIsGuestPagingEnabled(pVCpu); PPGMPOOLPAGE pShwPage; int rc; PGM_LOCK_ASSERT_OWNER(pVM); /* Allocate page directory pointer table if not present. */ if ( !pPml4e->n.u1Present && !(pPml4e->u & X86_PML4E_PG_MASK)) { RTGCPTR64 GCPml4; PGMPOOLKIND enmKind; Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); if (fNestedPagingOrNoGstPaging) { /* AMD-V nested paging or real/protected mode without paging */ GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT; enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS; } else { GCPml4 = uGstPml4e & X86_PML4E_PG_MASK; enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT; } /* Create a reference back to the PDPT by using the index in its shadow page. */ rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage); AssertRCReturn(rc, rc); } else { pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK); AssertReturn(pShwPage, VERR_INTERNAL_ERROR); pgmPoolCacheUsed(pPool, pShwPage); } /* The PDPT was cached or created; hook it up now. */ pPml4e->u |= pShwPage->Core.Key | (uGstPml4e & pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask); const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); PX86PDPE pPdpe = &pPdpt->a[iPdPt]; /* Allocate page directory if not present. */ if ( !pPdpe->n.u1Present && !(pPdpe->u & X86_PDPE_PG_MASK)) { RTGCPTR64 GCPdPt; PGMPOOLKIND enmKind; if (fNestedPagingOrNoGstPaging) { /* AMD-V nested paging or real/protected mode without paging */ GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT; enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS; } else { GCPdPt = uGstPdpe & X86_PDPE_PG_MASK; enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD; } /* Create a reference back to the PDPT by using the index in its shadow page. */ rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage); AssertRCReturn(rc, rc); } else { pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK); AssertReturn(pShwPage, VERR_INTERNAL_ERROR); pgmPoolCacheUsed(pPool, pShwPage); } /* The PD was cached or created; hook it up now. */ pPdpe->u |= pShwPage->Core.Key | (uGstPdpe & pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask); *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); return VINF_SUCCESS; } /** * Gets the SHADOW page directory pointer for the specified address (long mode). * * @returns VBox status. * @param pVCpu VMCPU handle. * @param GCPtr The address. * @param ppPdpt Receives address of pdpt * @param ppPD Receives address of page directory */ DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD) { PPGMCPU pPGM = &pVCpu->pgm.s; const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pVCpu, iPml4); PGM_LOCK_ASSERT_OWNER(PGMCPU2VM(pPGM)); AssertReturn(pPml4e, VERR_INTERNAL_ERROR); if (ppPml4e) *ppPml4e = (PX86PML4E)pPml4e; Log4(("pgmShwGetLongModePDPtr %RGv (%RHv) %RX64\n", GCPtr, pPml4e, pPml4e->u)); if (!pPml4e->n.u1Present) return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT; PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK); AssertReturn(pShwPage, VERR_INTERNAL_ERROR); const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); if (!pPdpt->a[iPdPt].n.u1Present) return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT; pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK); AssertReturn(pShwPage, VERR_INTERNAL_ERROR); *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); Log4(("pgmShwGetLongModePDPtr %RGv -> *ppPD=%p PDE=%p/%RX64\n", GCPtr, *ppPD, &(*ppPD)->a[(GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK], (*ppPD)->a[(GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK].u)); return VINF_SUCCESS; } /** * Syncs the SHADOW EPT page directory pointer for the specified address. Allocates * backing pages in case the PDPT or PML4 entry is missing. * * @returns VBox status. * @param pVCpu VMCPU handle. * @param GCPtr The address. * @param ppPdpt Receives address of pdpt * @param ppPD Receives address of page directory */ static int pgmShwGetEPTPDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD) { PVM pVM = pVCpu->CTX_SUFF(pVM); const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK; PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PEPTPML4 pPml4; PEPTPML4E pPml4e; PPGMPOOLPAGE pShwPage; int rc; Assert(pVM->pgm.s.fNestedPaging); PGM_LOCK_ASSERT_OWNER(pVM); pPml4 = (PEPTPML4)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); Assert(pPml4); /* Allocate page directory pointer table if not present. */ pPml4e = &pPml4->a[iPml4]; if ( !pPml4e->n.u1Present && !(pPml4e->u & EPT_PML4E_PG_MASK)) { Assert(!(pPml4e->u & EPT_PML4E_PG_MASK)); RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT; rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage); AssertRCReturn(rc, rc); } else { pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK); AssertReturn(pShwPage, VERR_INTERNAL_ERROR); pgmPoolCacheUsed(pPool, pShwPage); } /* The PDPT was cached or created; hook it up now and fill with the default value. */ pPml4e->u = pShwPage->Core.Key; pPml4e->n.u1Present = 1; pPml4e->n.u1Write = 1; pPml4e->n.u1Execute = 1; const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK; PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); PEPTPDPTE pPdpe = &pPdpt->a[iPdPt]; if (ppPdpt) *ppPdpt = pPdpt; /* Allocate page directory if not present. */ if ( !pPdpe->n.u1Present && !(pPdpe->u & EPT_PDPTE_PG_MASK)) { RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT; rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_EPT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage); AssertRCReturn(rc, rc); } else { pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK); AssertReturn(pShwPage, VERR_INTERNAL_ERROR); pgmPoolCacheUsed(pPool, pShwPage); } /* The PD was cached or created; hook it up now and fill with the default value. */ pPdpe->u = pShwPage->Core.Key; pPdpe->n.u1Present = 1; pPdpe->n.u1Write = 1; pPdpe->n.u1Execute = 1; *ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); return VINF_SUCCESS; } #endif /* IN_RC */ #ifdef IN_RING0 /** * Synchronizes a range of nested page table entries. * * The caller must own the PGM lock. * * @param pVCpu The current CPU. * @param GCPhys Where to start. * @param cPages How many pages which entries should be synced. * @param enmShwPagingMode The shadow paging mode (PGMMODE_EPT for VT-x, * host paging mode for AMD-V). */ int pgmShwSyncNestedPageLocked(PVMCPU pVCpu, RTGCPHYS GCPhysFault, uint32_t cPages, PGMMODE enmShwPagingMode) { PGM_LOCK_ASSERT_OWNER(pVCpu->CTX_SUFF(pVM)); int rc; switch (enmShwPagingMode) { case PGMMODE_32_BIT: { X86PDE PdeDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A }; rc = PGM_BTH_NAME_32BIT_PROT(SyncPage)(pVCpu, PdeDummy, GCPhysFault, cPages, ~0U /*uErr*/); break; } case PGMMODE_PAE: case PGMMODE_PAE_NX: { X86PDEPAE PdeDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A }; rc = PGM_BTH_NAME_PAE_PROT(SyncPage)(pVCpu, PdeDummy, GCPhysFault, cPages, ~0U /*uErr*/); break; } case PGMMODE_AMD64: case PGMMODE_AMD64_NX: { X86PDEPAE PdeDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A }; rc = PGM_BTH_NAME_AMD64_PROT(SyncPage)(pVCpu, PdeDummy, GCPhysFault, cPages, ~0U /*uErr*/); break; } case PGMMODE_EPT: { X86PDEPAE PdeDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A }; rc = PGM_BTH_NAME_EPT_PROT(SyncPage)(pVCpu, PdeDummy, GCPhysFault, cPages, ~0U /*uErr*/); break; } default: AssertMsgFailedReturn(("%d\n", enmShwPagingMode), VERR_INTERNAL_ERROR_5); } return rc; } #endif /* IN_RING0 */ /** * Gets effective Guest OS page information. * * When GCPtr is in a big page, the function will return as if it was a normal * 4KB page. If the need for distinguishing between big and normal page becomes * necessary at a later point, a PGMGstGetPage() will be created for that * purpose. * * @returns VBox status. * @param pVCpu The current CPU. * @param GCPtr Guest Context virtual address of the page. * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages. * @param pGCPhys Where to store the GC physical address of the page. * This is page aligned. The fact that the */ VMMDECL(int) PGMGstGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys) { VMCPU_ASSERT_EMT(pVCpu); return PGM_GST_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pGCPhys); } /** * Checks if the page is present. * * @returns true if the page is present. * @returns false if the page is not present. * @param pVCpu VMCPU handle. * @param GCPtr Address within the page. */ VMMDECL(bool) PGMGstIsPagePresent(PVMCPU pVCpu, RTGCPTR GCPtr) { VMCPU_ASSERT_EMT(pVCpu); int rc = PGMGstGetPage(pVCpu, GCPtr, NULL, NULL); return RT_SUCCESS(rc); } /** * Sets (replaces) the page flags for a range of pages in the guest's tables. * * @returns VBox status. * @param pVCpu VMCPU handle. * @param GCPtr The address of the first page. * @param cb The size of the range in bytes. * @param fFlags Page flags X86_PTE_*, excluding the page mask of course. */ VMMDECL(int) PGMGstSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags) { VMCPU_ASSERT_EMT(pVCpu); return PGMGstModifyPage(pVCpu, GCPtr, cb, fFlags, 0); } /** * Modify page flags for a range of pages in the guest's tables * * The existing flags are ANDed with the fMask and ORed with the fFlags. * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param GCPtr Virtual address of the first page in the range. * @param cb Size (in bytes) of the range to apply the modification to. * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course. * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course. * Be very CAREFUL when ~'ing constants which could be 32-bit! */ VMMDECL(int) PGMGstModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask) { STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,GstModifyPage), a); VMCPU_ASSERT_EMT(pVCpu); /* * Validate input. */ AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags)); Assert(cb); LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask)); /* * Adjust input. */ cb += GCPtr & PAGE_OFFSET_MASK; cb = RT_ALIGN_Z(cb, PAGE_SIZE); GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /* * Call worker. */ int rc = PGM_GST_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,GstModifyPage), a); return rc; } #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 /** * Performs the lazy mapping of the 32-bit guest PD. * * @returns VBox status code. * @param pVCpu The current CPU. * @param ppPd Where to return the pointer to the mapping. This is * always set. */ int pgmGstLazyMap32BitPD(PVMCPU pVCpu, PX86PD *ppPd) { PVM pVM = pVCpu->CTX_SUFF(pVM); pgmLock(pVM); Assert(!pVCpu->pgm.s.CTX_SUFF(pGst32BitPd)); RTGCPHYS GCPhysCR3 = pVCpu->pgm.s.GCPhysCR3 & X86_CR3_PAGE_MASK; PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhysCR3, &pPage); if (RT_SUCCESS(rc)) { RTHCPTR HCPtrGuestCR3; rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhysCR3, (void **)&HCPtrGuestCR3); if (RT_SUCCESS(rc)) { pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3; # endif *ppPd = (PX86PD)HCPtrGuestCR3; pgmUnlock(pVM); return VINF_SUCCESS; } AssertRC(rc); } pgmUnlock(pVM); *ppPd = NULL; return rc; } /** * Performs the lazy mapping of the PAE guest PDPT. * * @returns VBox status code. * @param pVCpu The current CPU. * @param ppPdpt Where to return the pointer to the mapping. This is * always set. */ int pgmGstLazyMapPaePDPT(PVMCPU pVCpu, PX86PDPT *ppPdpt) { Assert(!pVCpu->pgm.s.CTX_SUFF(pGstPaePdpt)); PVM pVM = pVCpu->CTX_SUFF(pVM); pgmLock(pVM); RTGCPHYS GCPhysCR3 = pVCpu->pgm.s.GCPhysCR3 & X86_CR3_PAE_PAGE_MASK; PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhysCR3, &pPage); if (RT_SUCCESS(rc)) { RTHCPTR HCPtrGuestCR3; rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhysCR3, (void **)&HCPtrGuestCR3); if (RT_SUCCESS(rc)) { pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3; # endif *ppPdpt = (PX86PDPT)HCPtrGuestCR3; pgmUnlock(pVM); return VINF_SUCCESS; } AssertRC(rc); } pgmUnlock(pVM); *ppPdpt = NULL; return rc; } /** * Performs the lazy mapping / updating of a PAE guest PD. * * @returns Pointer to the mapping. * @returns VBox status code. * @param pVCpu The current CPU. * @param iPdpt Which PD entry to map (0..3). * @param ppPd Where to return the pointer to the mapping. This is * always set. */ int pgmGstLazyMapPaePD(PVMCPU pVCpu, uint32_t iPdpt, PX86PDPAE *ppPd) { PVM pVM = pVCpu->CTX_SUFF(pVM); pgmLock(pVM); PX86PDPT pGuestPDPT = pVCpu->pgm.s.CTX_SUFF(pGstPaePdpt); Assert(pGuestPDPT); Assert(pGuestPDPT->a[iPdpt].n.u1Present); RTGCPHYS GCPhys = pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK; bool const fChanged = pVCpu->pgm.s.aGCPhysGstPaePDs[iPdpt] != GCPhys; PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); if (RT_SUCCESS(rc)) { RTRCPTR RCPtr = NIL_RTRCPTR; RTHCPTR HCPtr = NIL_RTHCPTR; #if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &HCPtr); AssertRC(rc); #endif if (RT_SUCCESS(rc) && fChanged) { RCPtr = (RTRCPTR)(RTRCUINTPTR)(pVM->pgm.s.GCPtrCR3Mapping + (1 + iPdpt) * PAGE_SIZE); rc = PGMMap(pVM, (RTRCUINTPTR)RCPtr, PGM_PAGE_GET_HCPHYS(pPage), PAGE_SIZE, 0); } if (RT_SUCCESS(rc)) { pVCpu->pgm.s.apGstPaePDsR3[iPdpt] = (R3PTRTYPE(PX86PDPAE))HCPtr; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.apGstPaePDsR0[iPdpt] = (R0PTRTYPE(PX86PDPAE))HCPtr; # endif if (fChanged) { pVCpu->pgm.s.aGCPhysGstPaePDs[iPdpt] = GCPhys; pVCpu->pgm.s.apGstPaePDsRC[iPdpt] = (RCPTRTYPE(PX86PDPAE))RCPtr; } *ppPd = pVCpu->pgm.s.CTX_SUFF(apGstPaePDs)[iPdpt]; pgmUnlock(pVM); return VINF_SUCCESS; } } /* Invalid page or some failure, invalidate the entry. */ pVCpu->pgm.s.aGCPhysGstPaePDs[iPdpt] = NIL_RTGCPHYS; pVCpu->pgm.s.apGstPaePDsR3[iPdpt] = 0; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.apGstPaePDsR0[iPdpt] = 0; # endif pVCpu->pgm.s.apGstPaePDsRC[iPdpt] = 0; pgmUnlock(pVM); return rc; } #endif /* !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */ #if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /** * Performs the lazy mapping of the 32-bit guest PD. * * @returns VBox status code. * @param pVCpu The current CPU. * @param ppPml4 Where to return the pointer to the mapping. This will * always be set. */ int pgmGstLazyMapPml4(PVMCPU pVCpu, PX86PML4 *ppPml4) { Assert(!pVCpu->pgm.s.CTX_SUFF(pGstAmd64Pml4)); PVM pVM = pVCpu->CTX_SUFF(pVM); pgmLock(pVM); RTGCPHYS GCPhysCR3 = pVCpu->pgm.s.GCPhysCR3 & X86_CR3_AMD64_PAGE_MASK; PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pVM, GCPhysCR3, &pPage); if (RT_SUCCESS(rc)) { RTHCPTR HCPtrGuestCR3; rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhysCR3, (void **)&HCPtrGuestCR3); if (RT_SUCCESS(rc)) { pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3; # endif *ppPml4 = (PX86PML4)HCPtrGuestCR3; pgmUnlock(pVM); return VINF_SUCCESS; } } pgmUnlock(pVM); *ppPml4 = NULL; return rc; } #endif /** * Gets the specified page directory pointer table entry. * * @returns PDP entry * @param pVCpu VMCPU handle. * @param iPdpt PDPT index */ VMMDECL(int) PGMGstQueryPaePDPtr(PVMCPU pVCpu, unsigned iPdpt, PX86PDPE pPdpe) { Assert(iPdpt <= 3); PX86PDPT pPdpt; int rc = pgmGstGetPaePDPTPtrEx(pVCpu, &pPdpt); if (RT_SUCCESS(rc)) *pPdpe = pPdpt->a[iPdpt & 3]; return rc; } /** * Gets the current CR3 register value for the shadow memory context. * @returns CR3 value. * @param pVCpu VMCPU handle. */ VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVMCPU pVCpu) { PPGMPOOLPAGE pPoolPage = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); AssertPtrReturn(pPoolPage, 0); return pPoolPage->Core.Key; } /** * Gets the current CR3 register value for the nested memory context. * @returns CR3 value. * @param pVCpu VMCPU handle. */ VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVMCPU pVCpu, PGMMODE enmShadowMode) { Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); return pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key; } /** * Gets the current CR3 register value for the HC intermediate memory context. * @returns CR3 value. * @param pVM The VM handle. */ VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM) { switch (pVM->pgm.s.enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: return pVM->pgm.s.HCPhysInterPD; case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_GLOBAL: case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL_NX: return pVM->pgm.s.HCPhysInterPaePDPT; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: return pVM->pgm.s.HCPhysInterPaePDPT; default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); return ~0; } } /** * Gets the current CR3 register value for the RC intermediate memory context. * @returns CR3 value. * @param pVM The VM handle. * @param pVCpu VMCPU handle. */ VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM, PVMCPU pVCpu) { switch (pVCpu->pgm.s.enmShadowMode) { case PGMMODE_32_BIT: return pVM->pgm.s.HCPhysInterPD; case PGMMODE_PAE: case PGMMODE_PAE_NX: return pVM->pgm.s.HCPhysInterPaePDPT; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: return pVM->pgm.s.HCPhysInterPaePML4; case PGMMODE_EPT: case PGMMODE_NESTED: return 0; /* not relevant */ default: AssertMsgFailed(("enmShadowMode=%d\n", pVCpu->pgm.s.enmShadowMode)); return ~0; } } /** * Gets the CR3 register value for the 32-Bit intermediate memory context. * @returns CR3 value. * @param pVM The VM handle. */ VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM) { return pVM->pgm.s.HCPhysInterPD; } /** * Gets the CR3 register value for the PAE intermediate memory context. * @returns CR3 value. * @param pVM The VM handle. */ VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM) { return pVM->pgm.s.HCPhysInterPaePDPT; } /** * Gets the CR3 register value for the AMD64 intermediate memory context. * @returns CR3 value. * @param pVM The VM handle. */ VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM) { return pVM->pgm.s.HCPhysInterPaePML4; } /** * Performs and schedules necessary updates following a CR3 load or reload. * * This will normally involve mapping the guest PD or nPDPT * * @returns VBox status code. * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can * safely be ignored and overridden since the FF will be set too then. * @param pVCpu VMCPU handle. * @param cr3 The new cr3. * @param fGlobal Indicates whether this is a global flush or not. */ VMMDECL(int) PGMFlushTLB(PVMCPU pVCpu, uint64_t cr3, bool fGlobal) { STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FlushTLB), a); PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT(pVCpu); /* * Always flag the necessary updates; necessary for hardware acceleration */ /** @todo optimize this, it shouldn't always be necessary. */ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL); if (fGlobal) VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVCpu->pgm.s.GCPhysCR3, fGlobal)); /* * Remap the CR3 content and adjust the monitoring if CR3 was actually changed. */ int rc = VINF_SUCCESS; RTGCPHYS GCPhysCR3; switch (pVCpu->pgm.s.enmGuestMode) { case PGMMODE_PAE: case PGMMODE_PAE_NX: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK); break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK); break; default: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK); break; } if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3) { RTGCPHYS GCPhysOldCR3 = pVCpu->pgm.s.GCPhysCR3; pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3; rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3); if (RT_LIKELY(rc == VINF_SUCCESS)) { if (pgmMapAreMappingsFloating(pVM)) pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3; } else { AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc)); Assert(VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_PGM_SYNC_CR3)); pVCpu->pgm.s.GCPhysCR3 = GCPhysOldCR3; pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3; if (pgmMapAreMappingsFloating(pVM)) pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3; } if (fGlobal) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FlushTLBNewCR3Global)); else STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FlushTLBNewCR3)); } else { # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); if (pPool->cDirtyPages) { pgmLock(pVM); pgmPoolResetDirtyPages(pVM); pgmUnlock(pVM); } # endif /* * Check if we have a pending update of the CR3 monitoring. */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3) { pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3; Assert(!pVM->pgm.s.fMappingsFixed); Assert(!pVM->pgm.s.fMappingsDisabled); } if (fGlobal) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FlushTLBSameCR3Global)); else STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FlushTLBSameCR3)); } STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FlushTLB), a); return rc; } /** * Performs and schedules necessary updates following a CR3 load or reload when * using nested or extended paging. * * This API is an alternative to PDMFlushTLB that avoids actually flushing the * TLB and triggering a SyncCR3. * * This will normally involve mapping the guest PD or nPDPT * * @returns VBox status code. * @retval VINF_SUCCESS. * @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring * requires a CR3 sync. This can safely be ignored and overridden since * the FF will be set too then.) * @param pVCpu VMCPU handle. * @param cr3 The new cr3. */ VMMDECL(int) PGMUpdateCR3(PVMCPU pVCpu, uint64_t cr3) { PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT(pVCpu); LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVCpu->pgm.s.GCPhysCR3)); /* We assume we're only called in nested paging mode. */ Assert(pVM->pgm.s.fNestedPaging || pVCpu->pgm.s.enmShadowMode == PGMMODE_EPT); Assert(pVM->pgm.s.fMappingsDisabled); Assert(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)); /* * Remap the CR3 content and adjust the monitoring if CR3 was actually changed. */ int rc = VINF_SUCCESS; RTGCPHYS GCPhysCR3; switch (pVCpu->pgm.s.enmGuestMode) { case PGMMODE_PAE: case PGMMODE_PAE_NX: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK); break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK); break; default: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK); break; } if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3) { pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3; rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3); AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */ /** @todo this isn't true for the mac, but we need hw to test/fix this. */ } return rc; } /** * Synchronize the paging structures. * * This function is called in response to the VM_FF_PGM_SYNC_CR3 and * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set * in several places, most importantly whenever the CR3 is loaded. * * @returns VBox status code. * @param pVCpu VMCPU handle. * @param cr0 Guest context CR0 register * @param cr3 Guest context CR3 register * @param cr4 Guest context CR4 register * @param fGlobal Including global page directories or not */ VMMDECL(int) PGMSyncCR3(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal) { PVM pVM = pVCpu->CTX_SUFF(pVM); int rc; VMCPU_ASSERT_EMT(pVCpu); /* * The pool may have pending stuff and even require a return to ring-3 to * clear the whole thing. */ rc = pgmPoolSyncCR3(pVCpu); if (rc != VINF_SUCCESS) return rc; /* * We might be called when we shouldn't. * * The mode switching will ensure that the PD is resynced * after every mode switch. So, if we find ourselves here * when in protected or real mode we can safely disable the * FF and return immediately. */ if (pVCpu->pgm.s.enmGuestMode <= PGMMODE_PROTECTED) { Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE)); Assert(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL); return VINF_SUCCESS; } /* If global pages are not supported, then all flushes are global. */ if (!(cr4 & X86_CR4_PGE)) fGlobal = true; LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))); /* * Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB). * This should be done before SyncCR3. */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3) { pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3; RTGCPHYS GCPhysCR3Old = pVCpu->pgm.s.GCPhysCR3; RTGCPHYS GCPhysCR3; switch (pVCpu->pgm.s.enmGuestMode) { case PGMMODE_PAE: case PGMMODE_PAE_NX: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK); break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK); break; default: GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK); break; } if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3) { pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3; rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3); } /* Make sure we check for pending pgm pool syncs as we clear VMCPU_FF_PGM_SYNC_CR3 later on! */ if ( rc == VINF_PGM_SYNC_CR3 || (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)) { Log(("PGMSyncCR3: pending pgm pool sync after MapCR3!\n")); #ifdef IN_RING3 rc = pgmPoolSyncCR3(pVCpu); #else if (rc == VINF_PGM_SYNC_CR3) pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3Old; return VINF_PGM_SYNC_CR3; #endif } AssertRCReturn(rc, rc); AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR); } /* * Let the 'Bth' function do the work and we'll just keep track of the flags. */ STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3), a); rc = PGM_BTH_PFN(SyncCR3, pVCpu)(pVCpu, cr0, cr3, cr4, fGlobal); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3), a); AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc)); if (rc == VINF_SUCCESS) { if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) { /* Go back to ring 3 if a pgm pool sync is again pending. */ return VINF_PGM_SYNC_CR3; } if (!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)) { Assert(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL); } /* * Check if we have a pending update of the CR3 monitoring. */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3) { pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3; Assert(!pVM->pgm.s.fMappingsFixed); Assert(!pVM->pgm.s.fMappingsDisabled); } } /* * Now flush the CR3 (guest context). */ if (rc == VINF_SUCCESS) PGM_INVL_VCPU_TLBS(pVCpu); return rc; } /** * Called whenever CR0 or CR4 in a way which may affect the paging mode. * * @returns VBox status code, with the following informational code for * VM scheduling. * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with. * @retval VINF_PGM_CHANGE_MODE if we're in RC or R0 and the mode changes. * (I.e. not in R3.) * @retval VINF_EM_SUSPEND or VINF_EM_OFF on a fatal runtime error. (R3 only) * * @param pVCpu VMCPU handle. * @param cr0 The new cr0. * @param cr4 The new cr4. * @param efer The new extended feature enable register. */ VMMDECL(int) PGMChangeMode(PVMCPU pVCpu, uint64_t cr0, uint64_t cr4, uint64_t efer) { PVM pVM = pVCpu->CTX_SUFF(pVM); PGMMODE enmGuestMode; VMCPU_ASSERT_EMT(pVCpu); /* * Calc the new guest mode. */ if (!(cr0 & X86_CR0_PE)) enmGuestMode = PGMMODE_REAL; else if (!(cr0 & X86_CR0_PG)) enmGuestMode = PGMMODE_PROTECTED; else if (!(cr4 & X86_CR4_PAE)) { bool const fPse = !!(cr4 & X86_CR4_PSE); if (pVCpu->pgm.s.fGst32BitPageSizeExtension != fPse) Log(("PGMChangeMode: CR4.PSE %d -> %d\n", pVCpu->pgm.s.fGst32BitPageSizeExtension, fPse)); pVCpu->pgm.s.fGst32BitPageSizeExtension = fPse; enmGuestMode = PGMMODE_32_BIT; } else if (!(efer & MSR_K6_EFER_LME)) { if (!(efer & MSR_K6_EFER_NXE)) enmGuestMode = PGMMODE_PAE; else enmGuestMode = PGMMODE_PAE_NX; } else { if (!(efer & MSR_K6_EFER_NXE)) enmGuestMode = PGMMODE_AMD64; else enmGuestMode = PGMMODE_AMD64_NX; } /* * Did it change? */ if (pVCpu->pgm.s.enmGuestMode == enmGuestMode) return VINF_SUCCESS; /* Flush the TLB */ PGM_INVL_VCPU_TLBS(pVCpu); #ifdef IN_RING3 return PGMR3ChangeMode(pVM, pVCpu, enmGuestMode); #else LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n")); return VINF_PGM_CHANGE_MODE; #endif } /** * Gets the current guest paging mode. * * If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode(). * * @returns The current paging mode. * @param pVCpu VMCPU handle. */ VMMDECL(PGMMODE) PGMGetGuestMode(PVMCPU pVCpu) { return pVCpu->pgm.s.enmGuestMode; } /** * Gets the current shadow paging mode. * * @returns The current paging mode. * @param pVCpu VMCPU handle. */ VMMDECL(PGMMODE) PGMGetShadowMode(PVMCPU pVCpu) { return pVCpu->pgm.s.enmShadowMode; } /** * Gets the current host paging mode. * * @returns The current paging mode. * @param pVM The VM handle. */ VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM) { switch (pVM->pgm.s.enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: return PGMMODE_32_BIT; case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_GLOBAL: return PGMMODE_PAE; case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL_NX: return PGMMODE_PAE_NX; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: return PGMMODE_AMD64; case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: return PGMMODE_AMD64_NX; default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break; } return PGMMODE_INVALID; } /** * Get mode name. * * @returns read-only name string. * @param enmMode The mode which name is desired. */ VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode) { switch (enmMode) { case PGMMODE_REAL: return "Real"; case PGMMODE_PROTECTED: return "Protected"; case PGMMODE_32_BIT: return "32-bit"; case PGMMODE_PAE: return "PAE"; case PGMMODE_PAE_NX: return "PAE+NX"; case PGMMODE_AMD64: return "AMD64"; case PGMMODE_AMD64_NX: return "AMD64+NX"; case PGMMODE_NESTED: return "Nested"; case PGMMODE_EPT: return "EPT"; default: return "unknown mode value"; } } /** * Notification from CPUM that the EFER.NXE bit has changed. * * @param pVCpu The virtual CPU for which EFER changed. * @param fNxe The new NXE state. */ VMM_INT_DECL(void) PGMNotifyNxeChanged(PVMCPU pVCpu, bool fNxe) { /** @todo VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); */ Log(("PGMNotifyNxeChanged: fNxe=%RTbool\n", fNxe)); pVCpu->pgm.s.fNoExecuteEnabled = fNxe; if (fNxe) { /*pVCpu->pgm.s.fGst32BitMbzBigPdeMask - N/A */ pVCpu->pgm.s.fGstPaeMbzPteMask &= ~X86_PTE_PAE_NX; pVCpu->pgm.s.fGstPaeMbzPdeMask &= ~X86_PDE_PAE_NX; pVCpu->pgm.s.fGstPaeMbzBigPdeMask &= ~X86_PDE2M_PAE_NX; /*pVCpu->pgm.s.fGstPaeMbzPdpeMask - N/A */ pVCpu->pgm.s.fGstAmd64MbzPteMask &= ~X86_PTE_PAE_NX; pVCpu->pgm.s.fGstAmd64MbzPdeMask &= ~X86_PDE_PAE_NX; pVCpu->pgm.s.fGstAmd64MbzBigPdeMask &= ~X86_PDE2M_PAE_NX; pVCpu->pgm.s.fGstAmd64MbzPdpeMask &= ~X86_PDPE_LM_NX; pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask &= ~X86_PDPE_LM_NX; pVCpu->pgm.s.fGstAmd64MbzPml4eMask &= ~X86_PML4E_NX; pVCpu->pgm.s.fGst64ShadowedPteMask |= X86_PTE_PAE_NX; pVCpu->pgm.s.fGst64ShadowedPdeMask |= X86_PDE_PAE_NX; pVCpu->pgm.s.fGst64ShadowedBigPdeMask |= X86_PDE2M_PAE_NX; pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask |= X86_PDE2M_PAE_NX; pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask |= X86_PDPE_LM_NX; pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask |= X86_PML4E_NX; } else { /*pVCpu->pgm.s.fGst32BitMbzBigPdeMask - N/A */ pVCpu->pgm.s.fGstPaeMbzPteMask |= X86_PTE_PAE_NX; pVCpu->pgm.s.fGstPaeMbzPdeMask |= X86_PDE_PAE_NX; pVCpu->pgm.s.fGstPaeMbzBigPdeMask |= X86_PDE2M_PAE_NX; /*pVCpu->pgm.s.fGstPaeMbzPdpeMask -N/A */ pVCpu->pgm.s.fGstAmd64MbzPteMask |= X86_PTE_PAE_NX; pVCpu->pgm.s.fGstAmd64MbzPdeMask |= X86_PDE_PAE_NX; pVCpu->pgm.s.fGstAmd64MbzBigPdeMask |= X86_PDE2M_PAE_NX; pVCpu->pgm.s.fGstAmd64MbzPdpeMask |= X86_PDPE_LM_NX; pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask |= X86_PDPE_LM_NX; pVCpu->pgm.s.fGstAmd64MbzPml4eMask |= X86_PML4E_NX; pVCpu->pgm.s.fGst64ShadowedPteMask &= ~X86_PTE_PAE_NX; pVCpu->pgm.s.fGst64ShadowedPdeMask &= ~X86_PDE_PAE_NX; pVCpu->pgm.s.fGst64ShadowedBigPdeMask &= ~X86_PDE2M_PAE_NX; pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask &= ~X86_PDE2M_PAE_NX; pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask &= ~X86_PDPE_LM_NX; pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask &= ~X86_PML4E_NX; } } /** * Check if any pgm pool pages are marked dirty (not monitored) * * @returns bool locked/not locked * @param pVM The VM to operate on. */ VMMDECL(bool) PGMHasDirtyPages(PVM pVM) { return pVM->pgm.s.CTX_SUFF(pPool)->cDirtyPages != 0; } /** * Check if this VCPU currently owns the PGM lock. * * @returns bool owner/not owner * @param pVM The VM to operate on. */ VMMDECL(bool) PGMIsLockOwner(PVM pVM) { return PDMCritSectIsOwner(&pVM->pgm.s.CritSect); } /** * Enable or disable large page usage * * @returns VBox status code. * @param pVM The VM to operate on. * @param fUseLargePages Use/not use large pages */ VMMDECL(int) PGMSetLargePageUsage(PVM pVM, bool fUseLargePages) { VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); pVM->fUseLargePages = fUseLargePages; return VINF_SUCCESS; } /** * Acquire the PGM lock. * * @returns VBox status code * @param pVM The VM to operate on. */ int pgmLock(PVM pVM) { int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY); #if defined(IN_RC) || defined(IN_RING0) if (rc == VERR_SEM_BUSY) rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_LOCK, 0); #endif AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); return rc; } /** * Release the PGM lock. * * @returns VBox status code * @param pVM The VM to operate on. */ void pgmUnlock(PVM pVM) { PDMCritSectLeave(&pVM->pgm.s.CritSect); } #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /** * Common worker for pgmRZDynMapGCPageOffInlined and pgmRZDynMapGCPageV2Inlined. * * @returns VBox status code. * @param pVM The VM handle. * @param pVCpu The current CPU. * @param GCPhys The guest physical address of the page to map. The * offset bits are not ignored. * @param ppv Where to return the address corresponding to @a GCPhys. */ int pgmRZDynMapGCPageCommon(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL) { pgmLock(pVM); /* * Convert it to a writable page and it on to the dynamic mapper. */ int rc; PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys); if (RT_LIKELY(pPage)) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (RT_SUCCESS(rc)) { void *pv; rc = pgmRZDynMapHCPageInlined(pVCpu, PGM_PAGE_GET_HCPHYS(pPage), &pv RTLOG_COMMA_SRC_POS_ARGS); if (RT_SUCCESS(rc)) *ppv = (void *)((uintptr_t)pv | ((uintptr_t)GCPhys & PAGE_OFFSET_MASK)); } else AssertRC(rc); } else { AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys)); rc = VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } pgmUnlock(pVM); return rc; } #endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */ #if !defined(IN_R0) || defined(LOG_ENABLED) /** Format handler for PGMPAGE. * @copydoc FNRTSTRFORMATTYPE */ static DECLCALLBACK(size_t) pgmFormatTypeHandlerPage(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { size_t cch; PCPGMPAGE pPage = (PCPGMPAGE)pvValue; if (VALID_PTR(pPage)) { char szTmp[64+80]; cch = 0; /* The single char state stuff. */ static const char s_achPageStates[4] = { 'Z', 'A', 'W', 'S' }; szTmp[cch++] = s_achPageStates[PGM_PAGE_GET_STATE_NA(pPage)]; #define IS_PART_INCLUDED(lvl) ( !(fFlags & RTSTR_F_PRECISION) || cchPrecision == (lvl) || cchPrecision >= (lvl)+10 ) if (IS_PART_INCLUDED(5)) { static const char s_achHandlerStates[4] = { '-', 't', 'w', 'a' }; szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)]; szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_VIRT_STATE(pPage)]; } /* The type. */ if (IS_PART_INCLUDED(4)) { szTmp[cch++] = ':'; static const char s_achPageTypes[8][4] = { "INV", "RAM", "MI2", "M2A", "SHA", "ROM", "MIO", "BAD" }; szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE_NA(pPage)][0]; szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE_NA(pPage)][1]; szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE_NA(pPage)][2]; } /* The numbers. */ if (IS_PART_INCLUDED(3)) { szTmp[cch++] = ':'; cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_HCPHYS_NA(pPage), 16, 12, 0, RTSTR_F_ZEROPAD | RTSTR_F_64BIT); } if (IS_PART_INCLUDED(2)) { szTmp[cch++] = ':'; cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_PAGEID(pPage), 16, 7, 0, RTSTR_F_ZEROPAD | RTSTR_F_32BIT); } if (IS_PART_INCLUDED(6)) { szTmp[cch++] = ':'; static const char s_achRefs[4] = { '-', 'U', '!', 'L' }; szTmp[cch++] = s_achRefs[PGM_PAGE_GET_TD_CREFS_NA(pPage)]; cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_TD_IDX_NA(pPage), 16, 4, 0, RTSTR_F_ZEROPAD | RTSTR_F_16BIT); } #undef IS_PART_INCLUDED cch = pfnOutput(pvArgOutput, szTmp, cch); } else cch = pfnOutput(pvArgOutput, "", sizeof("") - 1); return cch; } /** Format handler for PGMRAMRANGE. * @copydoc FNRTSTRFORMATTYPE */ static DECLCALLBACK(size_t) pgmFormatTypeHandlerRamRange(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { size_t cch; PGMRAMRANGE const *pRam = (PGMRAMRANGE const *)pvValue; if (VALID_PTR(pRam)) { char szTmp[80]; cch = RTStrPrintf(szTmp, sizeof(szTmp), "%RGp-%RGp", pRam->GCPhys, pRam->GCPhysLast); cch = pfnOutput(pvArgOutput, szTmp, cch); } else cch = pfnOutput(pvArgOutput, "", sizeof("") - 1); return cch; } /** Format type andlers to be registered/deregistered. */ static const struct { char szType[24]; PFNRTSTRFORMATTYPE pfnHandler; } g_aPgmFormatTypes[] = { { "pgmpage", pgmFormatTypeHandlerPage }, { "pgmramrange", pgmFormatTypeHandlerRamRange } }; #endif /* !IN_R0 || LOG_ENABLED */ /** * Registers the global string format types. * * This should be called at module load time or in some other manner that ensure * that it's called exactly one time. * * @returns IPRT status code on RTStrFormatTypeRegister failure. */ VMMDECL(int) PGMRegisterStringFormatTypes(void) { #if !defined(IN_R0) || defined(LOG_ENABLED) int rc = VINF_SUCCESS; unsigned i; for (i = 0; RT_SUCCESS(rc) && i < RT_ELEMENTS(g_aPgmFormatTypes); i++) { rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL); # ifdef IN_RING0 if (rc == VERR_ALREADY_EXISTS) { /* in case of cleanup failure in ring-0 */ RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType); rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL); } # endif } if (RT_FAILURE(rc)) while (i-- > 0) RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType); return rc; #else return VINF_SUCCESS; #endif } /** * Deregisters the global string format types. * * This should be called at module unload time or in some other manner that * ensure that it's called exactly one time. */ VMMDECL(void) PGMDeregisterStringFormatTypes(void) { #if !defined(IN_R0) || defined(LOG_ENABLED) for (unsigned i = 0; i < RT_ELEMENTS(g_aPgmFormatTypes); i++) RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType); #endif } #ifdef VBOX_STRICT /** * Asserts that there are no mapping conflicts. * * @returns Number of conflicts. * @param pVM The VM Handle. */ VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM) { unsigned cErrors = 0; /* Only applies to raw mode -> 1 VPCU */ Assert(pVM->cCpus == 1); PVMCPU pVCpu = &pVM->aCpus[0]; /* * Check for mapping conflicts. */ for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings); pMapping; pMapping = pMapping->CTX_SUFF(pNext)) { /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */ for (RTGCPTR GCPtr = pMapping->GCPtr; GCPtr <= pMapping->GCPtrLast; GCPtr += PAGE_SIZE) { int rc = PGMGstGetPage(pVCpu, (RTGCPTR)GCPtr, NULL, NULL); if (rc != VERR_PAGE_TABLE_NOT_PRESENT) { AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc))); cErrors++; break; } } } return cErrors; } /** * Asserts that everything related to the guest CR3 is correctly shadowed. * * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(), * and assert the correctness of the guest CR3 mapping before asserting that the * shadow page tables is in sync with the guest page tables. * * @returns Number of conflicts. * @param pVM The VM Handle. * @param pVCpu VMCPU handle. * @param cr3 The current guest CR3 register value. * @param cr4 The current guest CR4 register value. */ VMMDECL(unsigned) PGMAssertCR3(PVM pVM, PVMCPU pVCpu, uint64_t cr3, uint64_t cr4) { STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3), a); pgmLock(pVM); unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVCpu)(pVCpu, cr3, cr4, 0, ~(RTGCPTR)0); pgmUnlock(pVM); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3), a); return cErrors; } #endif /* VBOX_STRICT */