VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h@ 82255

Last change on this file since 82255 was 80346, checked in by vboxsync, 5 years ago

VMM,PciRaw: Eliminate duplicate PGVM/PVMCC and PGVMCPU/PVMCPUCC parameters in ring-0 code. butref:9217

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 227.2 KB
Line 
1/* $Id: NEMAllNativeTemplate-win.cpp.h 80346 2019-08-19 19:36:29Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, Windows code template ring-0/3.
4 */
5
6/*
7 * Copyright (C) 2018-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Defined Constants And Macros *
21*********************************************************************************************************************************/
22/** Copy back a segment from hyper-V. */
23#define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \
24 do { \
25 (a_Dst).u64Base = (a_Src).Base; \
26 (a_Dst).u32Limit = (a_Src).Limit; \
27 (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \
28 (a_Dst).Attr.u = (a_Src).Attributes; \
29 (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \
30 } while (0)
31
32/** @def NEMWIN_ASSERT_MSG_REG_VAL
33 * Asserts the correctness of a register value in a message/context.
34 */
35#if 0
36# define NEMWIN_NEED_GET_REGISTER
37# if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
38# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, a_Expr, a_Msg) \
39 do { \
40 HV_REGISTER_VALUE TmpVal; \
41 nemHCWinGetRegister(a_pVCpu, a_enmReg, &TmpVal); \
42 AssertMsg(a_Expr, a_Msg); \
43 } while (0)
44# else
45# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, a_Expr, a_Msg) \
46 do { \
47 WHV_REGISTER_VALUE TmpVal; \
48 nemR3WinGetRegister(a_pVCpu, a_enmReg, &TmpVal); \
49 AssertMsg(a_Expr, a_Msg); \
50 } while (0)
51# endif
52#else
53# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, a_Expr, a_Msg) do { } while (0)
54#endif
55
56/** @def NEMWIN_ASSERT_MSG_REG_VAL
57 * Asserts the correctness of a 64-bit register value in a message/context.
58 */
59#define NEMWIN_ASSERT_MSG_REG_VAL64(a_pVCpu, a_enmReg, a_u64Val) \
60 NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, (a_u64Val) == TmpVal.Reg64, \
61 (#a_u64Val "=%#RX64, expected %#RX64\n", (a_u64Val), TmpVal.Reg64))
62/** @def NEMWIN_ASSERT_MSG_REG_VAL
63 * Asserts the correctness of a segment register value in a message/context.
64 */
65#define NEMWIN_ASSERT_MSG_REG_SEG(a_pVCpu, a_enmReg, a_SReg) \
66 NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, \
67 (a_SReg).Base == TmpVal.Segment.Base \
68 && (a_SReg).Limit == TmpVal.Segment.Limit \
69 && (a_SReg).Selector == TmpVal.Segment.Selector \
70 && (a_SReg).Attributes == TmpVal.Segment.Attributes, \
71 ( #a_SReg "=%#RX16 {%#RX64 LB %#RX32,%#RX16} expected %#RX16 {%#RX64 LB %#RX32,%#RX16}\n", \
72 (a_SReg).Selector, (a_SReg).Base, (a_SReg).Limit, (a_SReg).Attributes, \
73 TmpVal.Segment.Selector, TmpVal.Segment.Base, TmpVal.Segment.Limit, TmpVal.Segment.Attributes))
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/** NEM_WIN_PAGE_STATE_XXX names. */
80NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
81
82/** HV_INTERCEPT_ACCESS_TYPE names. */
83static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" };
84
85
86/*********************************************************************************************************************************
87* Internal Functions *
88*********************************************************************************************************************************/
89NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
90 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
91
92
93
94#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
95
96/**
97 * Wrapper around VMMR0_DO_NEM_MAP_PAGES for a single page.
98 *
99 * @returns VBox status code.
100 * @param pVM The cross context VM structure.
101 * @param pVCpu The cross context virtual CPU structure of the caller.
102 * @param GCPhysSrc The source page. Does not need to be page aligned.
103 * @param GCPhysDst The destination page. Same as @a GCPhysSrc except for
104 * when A20 is disabled.
105 * @param fFlags HV_MAP_GPA_XXX.
106 */
107DECLINLINE(int) nemHCWinHypercallMapPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fFlags)
108{
109#ifdef IN_RING0
110 /** @todo optimize further, caller generally has the physical address. */
111 return nemR0WinMapPages(pVM, pVCpu,
112 GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
113 GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
114 1, fFlags);
115#else
116 pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc = GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
117 pVCpu->nem.s.Hypercall.MapPages.GCPhysDst = GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
118 pVCpu->nem.s.Hypercall.MapPages.cPages = 1;
119 pVCpu->nem.s.Hypercall.MapPages.fFlags = fFlags;
120 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_MAP_PAGES, 0, NULL);
121#endif
122}
123
124
125/**
126 * Wrapper around VMMR0_DO_NEM_UNMAP_PAGES for a single page.
127 *
128 * @returns VBox status code.
129 * @param pVM The cross context VM structure.
130 * @param pVCpu The cross context virtual CPU structure of the caller.
131 * @param GCPhys The page to unmap. Does not need to be page aligned.
132 */
133DECLINLINE(int) nemHCWinHypercallUnmapPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys)
134{
135# ifdef IN_RING0
136 return nemR0WinUnmapPages(pVM, pVCpu, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, 1);
137# else
138 pVCpu->nem.s.Hypercall.UnmapPages.GCPhys = GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
139 pVCpu->nem.s.Hypercall.UnmapPages.cPages = 1;
140 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_UNMAP_PAGES, 0, NULL);
141# endif
142}
143
144#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
145#ifndef IN_RING0
146
147NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVMCC pVM, PVMCPUCC pVCpu)
148{
149# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
150# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
151 if (pVM->nem.s.fUseRing0Runloop)
152# endif
153 {
154 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPORT_STATE, 0, NULL);
155 AssertLogRelRCReturn(rc, rc);
156 return rc;
157 }
158# endif
159# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
160
161 /*
162 * The following is very similar to what nemR0WinExportState() does.
163 */
164 WHV_REGISTER_NAME aenmNames[128];
165 WHV_REGISTER_VALUE aValues[128];
166
167 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
168 if ( !fWhat
169 && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows)
170 return VINF_SUCCESS;
171 uintptr_t iReg = 0;
172
173# define ADD_REG64(a_enmName, a_uValue) do { \
174 aenmNames[iReg] = (a_enmName); \
175 aValues[iReg].Reg128.High64 = 0; \
176 aValues[iReg].Reg64 = (a_uValue); \
177 iReg++; \
178 } while (0)
179# define ADD_REG128(a_enmName, a_uValueLo, a_uValueHi) do { \
180 aenmNames[iReg] = (a_enmName); \
181 aValues[iReg].Reg128.Low64 = (a_uValueLo); \
182 aValues[iReg].Reg128.High64 = (a_uValueHi); \
183 iReg++; \
184 } while (0)
185
186 /* GPRs */
187 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
188 {
189 if (fWhat & CPUMCTX_EXTRN_RAX)
190 ADD_REG64(WHvX64RegisterRax, pVCpu->cpum.GstCtx.rax);
191 if (fWhat & CPUMCTX_EXTRN_RCX)
192 ADD_REG64(WHvX64RegisterRcx, pVCpu->cpum.GstCtx.rcx);
193 if (fWhat & CPUMCTX_EXTRN_RDX)
194 ADD_REG64(WHvX64RegisterRdx, pVCpu->cpum.GstCtx.rdx);
195 if (fWhat & CPUMCTX_EXTRN_RBX)
196 ADD_REG64(WHvX64RegisterRbx, pVCpu->cpum.GstCtx.rbx);
197 if (fWhat & CPUMCTX_EXTRN_RSP)
198 ADD_REG64(WHvX64RegisterRsp, pVCpu->cpum.GstCtx.rsp);
199 if (fWhat & CPUMCTX_EXTRN_RBP)
200 ADD_REG64(WHvX64RegisterRbp, pVCpu->cpum.GstCtx.rbp);
201 if (fWhat & CPUMCTX_EXTRN_RSI)
202 ADD_REG64(WHvX64RegisterRsi, pVCpu->cpum.GstCtx.rsi);
203 if (fWhat & CPUMCTX_EXTRN_RDI)
204 ADD_REG64(WHvX64RegisterRdi, pVCpu->cpum.GstCtx.rdi);
205 if (fWhat & CPUMCTX_EXTRN_R8_R15)
206 {
207 ADD_REG64(WHvX64RegisterR8, pVCpu->cpum.GstCtx.r8);
208 ADD_REG64(WHvX64RegisterR9, pVCpu->cpum.GstCtx.r9);
209 ADD_REG64(WHvX64RegisterR10, pVCpu->cpum.GstCtx.r10);
210 ADD_REG64(WHvX64RegisterR11, pVCpu->cpum.GstCtx.r11);
211 ADD_REG64(WHvX64RegisterR12, pVCpu->cpum.GstCtx.r12);
212 ADD_REG64(WHvX64RegisterR13, pVCpu->cpum.GstCtx.r13);
213 ADD_REG64(WHvX64RegisterR14, pVCpu->cpum.GstCtx.r14);
214 ADD_REG64(WHvX64RegisterR15, pVCpu->cpum.GstCtx.r15);
215 }
216 }
217
218 /* RIP & Flags */
219 if (fWhat & CPUMCTX_EXTRN_RIP)
220 ADD_REG64(WHvX64RegisterRip, pVCpu->cpum.GstCtx.rip);
221 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
222 ADD_REG64(WHvX64RegisterRflags, pVCpu->cpum.GstCtx.rflags.u);
223
224 /* Segments */
225# define ADD_SEG(a_enmName, a_SReg) \
226 do { \
227 aenmNames[iReg] = a_enmName; \
228 aValues[iReg].Segment.Base = (a_SReg).u64Base; \
229 aValues[iReg].Segment.Limit = (a_SReg).u32Limit; \
230 aValues[iReg].Segment.Selector = (a_SReg).Sel; \
231 aValues[iReg].Segment.Attributes = (a_SReg).Attr.u; \
232 iReg++; \
233 } while (0)
234 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
235 {
236 if (fWhat & CPUMCTX_EXTRN_ES)
237 ADD_SEG(WHvX64RegisterEs, pVCpu->cpum.GstCtx.es);
238 if (fWhat & CPUMCTX_EXTRN_CS)
239 ADD_SEG(WHvX64RegisterCs, pVCpu->cpum.GstCtx.cs);
240 if (fWhat & CPUMCTX_EXTRN_SS)
241 ADD_SEG(WHvX64RegisterSs, pVCpu->cpum.GstCtx.ss);
242 if (fWhat & CPUMCTX_EXTRN_DS)
243 ADD_SEG(WHvX64RegisterDs, pVCpu->cpum.GstCtx.ds);
244 if (fWhat & CPUMCTX_EXTRN_FS)
245 ADD_SEG(WHvX64RegisterFs, pVCpu->cpum.GstCtx.fs);
246 if (fWhat & CPUMCTX_EXTRN_GS)
247 ADD_SEG(WHvX64RegisterGs, pVCpu->cpum.GstCtx.gs);
248 }
249
250 /* Descriptor tables & task segment. */
251 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
252 {
253 if (fWhat & CPUMCTX_EXTRN_LDTR)
254 ADD_SEG(WHvX64RegisterLdtr, pVCpu->cpum.GstCtx.ldtr);
255 if (fWhat & CPUMCTX_EXTRN_TR)
256 ADD_SEG(WHvX64RegisterTr, pVCpu->cpum.GstCtx.tr);
257 if (fWhat & CPUMCTX_EXTRN_IDTR)
258 {
259 aenmNames[iReg] = WHvX64RegisterIdtr;
260 aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
261 aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.idtr.pIdt;
262 iReg++;
263 }
264 if (fWhat & CPUMCTX_EXTRN_GDTR)
265 {
266 aenmNames[iReg] = WHvX64RegisterGdtr;
267 aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
268 aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
269 iReg++;
270 }
271 }
272
273 /* Control registers. */
274 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
275 {
276 if (fWhat & CPUMCTX_EXTRN_CR0)
277 ADD_REG64(WHvX64RegisterCr0, pVCpu->cpum.GstCtx.cr0);
278 if (fWhat & CPUMCTX_EXTRN_CR2)
279 ADD_REG64(WHvX64RegisterCr2, pVCpu->cpum.GstCtx.cr2);
280 if (fWhat & CPUMCTX_EXTRN_CR3)
281 ADD_REG64(WHvX64RegisterCr3, pVCpu->cpum.GstCtx.cr3);
282 if (fWhat & CPUMCTX_EXTRN_CR4)
283 ADD_REG64(WHvX64RegisterCr4, pVCpu->cpum.GstCtx.cr4);
284 }
285 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
286 ADD_REG64(WHvX64RegisterCr8, CPUMGetGuestCR8(pVCpu));
287
288 /* Debug registers. */
289/** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
290 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
291 {
292 ADD_REG64(WHvX64RegisterDr0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
293 ADD_REG64(WHvX64RegisterDr1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
294 ADD_REG64(WHvX64RegisterDr2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
295 ADD_REG64(WHvX64RegisterDr3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
296 }
297 if (fWhat & CPUMCTX_EXTRN_DR6)
298 ADD_REG64(WHvX64RegisterDr6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
299 if (fWhat & CPUMCTX_EXTRN_DR7)
300 ADD_REG64(WHvX64RegisterDr7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
301
302 /* Floating point state. */
303 if (fWhat & CPUMCTX_EXTRN_X87)
304 {
305 ADD_REG128(WHvX64RegisterFpMmx0, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1]);
306 ADD_REG128(WHvX64RegisterFpMmx1, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1]);
307 ADD_REG128(WHvX64RegisterFpMmx2, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1]);
308 ADD_REG128(WHvX64RegisterFpMmx3, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1]);
309 ADD_REG128(WHvX64RegisterFpMmx4, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1]);
310 ADD_REG128(WHvX64RegisterFpMmx5, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1]);
311 ADD_REG128(WHvX64RegisterFpMmx6, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1]);
312 ADD_REG128(WHvX64RegisterFpMmx7, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1]);
313
314 aenmNames[iReg] = WHvX64RegisterFpControlStatus;
315 aValues[iReg].FpControlStatus.FpControl = pVCpu->cpum.GstCtx.pXStateR3->x87.FCW;
316 aValues[iReg].FpControlStatus.FpStatus = pVCpu->cpum.GstCtx.pXStateR3->x87.FSW;
317 aValues[iReg].FpControlStatus.FpTag = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW;
318 aValues[iReg].FpControlStatus.Reserved = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW >> 8;
319 aValues[iReg].FpControlStatus.LastFpOp = pVCpu->cpum.GstCtx.pXStateR3->x87.FOP;
320 aValues[iReg].FpControlStatus.LastFpRip = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP)
321 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.CS << 32)
322 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 << 48);
323 iReg++;
324
325 aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
326 aValues[iReg].XmmControlStatus.LastFpRdp = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP)
327 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.DS << 32)
328 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 << 48);
329 aValues[iReg].XmmControlStatus.XmmStatusControl = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR;
330 aValues[iReg].XmmControlStatus.XmmStatusControlMask = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
331 iReg++;
332 }
333
334 /* Vector state. */
335 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
336 {
337 ADD_REG128(WHvX64RegisterXmm0, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi);
338 ADD_REG128(WHvX64RegisterXmm1, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi);
339 ADD_REG128(WHvX64RegisterXmm2, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi);
340 ADD_REG128(WHvX64RegisterXmm3, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi);
341 ADD_REG128(WHvX64RegisterXmm4, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi);
342 ADD_REG128(WHvX64RegisterXmm5, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi);
343 ADD_REG128(WHvX64RegisterXmm6, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi);
344 ADD_REG128(WHvX64RegisterXmm7, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi);
345 ADD_REG128(WHvX64RegisterXmm8, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi);
346 ADD_REG128(WHvX64RegisterXmm9, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi);
347 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi);
348 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi);
349 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi);
350 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi);
351 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi);
352 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi);
353 }
354
355 /* MSRs */
356 // WHvX64RegisterTsc - don't touch
357 if (fWhat & CPUMCTX_EXTRN_EFER)
358 ADD_REG64(WHvX64RegisterEfer, pVCpu->cpum.GstCtx.msrEFER);
359 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
360 ADD_REG64(WHvX64RegisterKernelGsBase, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
361 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
362 {
363 ADD_REG64(WHvX64RegisterSysenterCs, pVCpu->cpum.GstCtx.SysEnter.cs);
364 ADD_REG64(WHvX64RegisterSysenterEip, pVCpu->cpum.GstCtx.SysEnter.eip);
365 ADD_REG64(WHvX64RegisterSysenterEsp, pVCpu->cpum.GstCtx.SysEnter.esp);
366 }
367 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
368 {
369 ADD_REG64(WHvX64RegisterStar, pVCpu->cpum.GstCtx.msrSTAR);
370 ADD_REG64(WHvX64RegisterLstar, pVCpu->cpum.GstCtx.msrLSTAR);
371 ADD_REG64(WHvX64RegisterCstar, pVCpu->cpum.GstCtx.msrCSTAR);
372 ADD_REG64(WHvX64RegisterSfmask, pVCpu->cpum.GstCtx.msrSFMASK);
373 }
374 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
375 {
376 ADD_REG64(WHvX64RegisterApicBase, APICGetBaseMsrNoCheck(pVCpu));
377 ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
378#if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
379 ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
380#endif
381 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
382 ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
383 ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
384 ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
385 ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
386 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
387 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
388 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
389 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
390 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
391 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
392 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
393 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
394 ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
395#if 0 /** @todo these registers aren't available? Might explain something.. .*/
396 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM);
397 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
398 {
399 ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
400 ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
401 }
402#endif
403 }
404
405 /* event injection (clear it). */
406 if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)
407 ADD_REG64(WHvRegisterPendingInterruption, 0);
408
409 /* Interruptibility state. This can get a little complicated since we get
410 half of the state via HV_X64_VP_EXECUTION_STATE. */
411 if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
412 == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) )
413 {
414 ADD_REG64(WHvRegisterInterruptState, 0);
415 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
416 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
417 aValues[iReg - 1].InterruptState.InterruptShadow = 1;
418 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
419 aValues[iReg - 1].InterruptState.NmiMasked = 1;
420 }
421 else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)
422 {
423 if ( pVCpu->nem.s.fLastInterruptShadow
424 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
425 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip))
426 {
427 ADD_REG64(WHvRegisterInterruptState, 0);
428 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
429 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
430 aValues[iReg - 1].InterruptState.InterruptShadow = 1;
431 /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */
432 //if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
433 // aValues[iReg - 1].InterruptState.NmiMasked = 1;
434 }
435 }
436 else
437 Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI));
438
439 /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */
440 uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows;
441 if ( fDesiredIntWin
442 || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin)
443 {
444 pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows;
445 ADD_REG64(WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin);
446 Assert(aValues[iReg - 1].DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI));
447 Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR));
448 Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT);
449 }
450
451 /// @todo WHvRegisterPendingEvent
452
453 /*
454 * Set the registers.
455 */
456 Assert(iReg < RT_ELEMENTS(aValues));
457 Assert(iReg < RT_ELEMENTS(aenmNames));
458# ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
459 Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
460 pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
461# endif
462 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
463 if (SUCCEEDED(hrc))
464 {
465 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM;
466 return VINF_SUCCESS;
467 }
468 AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
469 pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
470 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
471 return VERR_INTERNAL_ERROR;
472
473# undef ADD_REG64
474# undef ADD_REG128
475# undef ADD_SEG
476
477# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
478}
479
480
481NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
482{
483# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
484# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
485 if (pVM->nem.s.fUseRing0Runloop)
486# endif
487 {
488 /* See NEMR0ImportState */
489 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_IMPORT_STATE, fWhat, NULL);
490 if (RT_SUCCESS(rc))
491 return rc;
492 if (rc == VERR_NEM_FLUSH_TLB)
493 return PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /*fGlobal*/);
494 AssertLogRelRCReturn(rc, rc);
495 return rc;
496 }
497# endif
498# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
499 WHV_REGISTER_NAME aenmNames[128];
500
501 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
502 uintptr_t iReg = 0;
503
504 /* GPRs */
505 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
506 {
507 if (fWhat & CPUMCTX_EXTRN_RAX)
508 aenmNames[iReg++] = WHvX64RegisterRax;
509 if (fWhat & CPUMCTX_EXTRN_RCX)
510 aenmNames[iReg++] = WHvX64RegisterRcx;
511 if (fWhat & CPUMCTX_EXTRN_RDX)
512 aenmNames[iReg++] = WHvX64RegisterRdx;
513 if (fWhat & CPUMCTX_EXTRN_RBX)
514 aenmNames[iReg++] = WHvX64RegisterRbx;
515 if (fWhat & CPUMCTX_EXTRN_RSP)
516 aenmNames[iReg++] = WHvX64RegisterRsp;
517 if (fWhat & CPUMCTX_EXTRN_RBP)
518 aenmNames[iReg++] = WHvX64RegisterRbp;
519 if (fWhat & CPUMCTX_EXTRN_RSI)
520 aenmNames[iReg++] = WHvX64RegisterRsi;
521 if (fWhat & CPUMCTX_EXTRN_RDI)
522 aenmNames[iReg++] = WHvX64RegisterRdi;
523 if (fWhat & CPUMCTX_EXTRN_R8_R15)
524 {
525 aenmNames[iReg++] = WHvX64RegisterR8;
526 aenmNames[iReg++] = WHvX64RegisterR9;
527 aenmNames[iReg++] = WHvX64RegisterR10;
528 aenmNames[iReg++] = WHvX64RegisterR11;
529 aenmNames[iReg++] = WHvX64RegisterR12;
530 aenmNames[iReg++] = WHvX64RegisterR13;
531 aenmNames[iReg++] = WHvX64RegisterR14;
532 aenmNames[iReg++] = WHvX64RegisterR15;
533 }
534 }
535
536 /* RIP & Flags */
537 if (fWhat & CPUMCTX_EXTRN_RIP)
538 aenmNames[iReg++] = WHvX64RegisterRip;
539 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
540 aenmNames[iReg++] = WHvX64RegisterRflags;
541
542 /* Segments */
543 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
544 {
545 if (fWhat & CPUMCTX_EXTRN_ES)
546 aenmNames[iReg++] = WHvX64RegisterEs;
547 if (fWhat & CPUMCTX_EXTRN_CS)
548 aenmNames[iReg++] = WHvX64RegisterCs;
549 if (fWhat & CPUMCTX_EXTRN_SS)
550 aenmNames[iReg++] = WHvX64RegisterSs;
551 if (fWhat & CPUMCTX_EXTRN_DS)
552 aenmNames[iReg++] = WHvX64RegisterDs;
553 if (fWhat & CPUMCTX_EXTRN_FS)
554 aenmNames[iReg++] = WHvX64RegisterFs;
555 if (fWhat & CPUMCTX_EXTRN_GS)
556 aenmNames[iReg++] = WHvX64RegisterGs;
557 }
558
559 /* Descriptor tables. */
560 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
561 {
562 if (fWhat & CPUMCTX_EXTRN_LDTR)
563 aenmNames[iReg++] = WHvX64RegisterLdtr;
564 if (fWhat & CPUMCTX_EXTRN_TR)
565 aenmNames[iReg++] = WHvX64RegisterTr;
566 if (fWhat & CPUMCTX_EXTRN_IDTR)
567 aenmNames[iReg++] = WHvX64RegisterIdtr;
568 if (fWhat & CPUMCTX_EXTRN_GDTR)
569 aenmNames[iReg++] = WHvX64RegisterGdtr;
570 }
571
572 /* Control registers. */
573 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
574 {
575 if (fWhat & CPUMCTX_EXTRN_CR0)
576 aenmNames[iReg++] = WHvX64RegisterCr0;
577 if (fWhat & CPUMCTX_EXTRN_CR2)
578 aenmNames[iReg++] = WHvX64RegisterCr2;
579 if (fWhat & CPUMCTX_EXTRN_CR3)
580 aenmNames[iReg++] = WHvX64RegisterCr3;
581 if (fWhat & CPUMCTX_EXTRN_CR4)
582 aenmNames[iReg++] = WHvX64RegisterCr4;
583 }
584 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
585 aenmNames[iReg++] = WHvX64RegisterCr8;
586
587 /* Debug registers. */
588 if (fWhat & CPUMCTX_EXTRN_DR7)
589 aenmNames[iReg++] = WHvX64RegisterDr7;
590 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
591 {
592 if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_DR7))
593 {
594 fWhat |= CPUMCTX_EXTRN_DR7;
595 aenmNames[iReg++] = WHvX64RegisterDr7;
596 }
597 aenmNames[iReg++] = WHvX64RegisterDr0;
598 aenmNames[iReg++] = WHvX64RegisterDr1;
599 aenmNames[iReg++] = WHvX64RegisterDr2;
600 aenmNames[iReg++] = WHvX64RegisterDr3;
601 }
602 if (fWhat & CPUMCTX_EXTRN_DR6)
603 aenmNames[iReg++] = WHvX64RegisterDr6;
604
605 /* Floating point state. */
606 if (fWhat & CPUMCTX_EXTRN_X87)
607 {
608 aenmNames[iReg++] = WHvX64RegisterFpMmx0;
609 aenmNames[iReg++] = WHvX64RegisterFpMmx1;
610 aenmNames[iReg++] = WHvX64RegisterFpMmx2;
611 aenmNames[iReg++] = WHvX64RegisterFpMmx3;
612 aenmNames[iReg++] = WHvX64RegisterFpMmx4;
613 aenmNames[iReg++] = WHvX64RegisterFpMmx5;
614 aenmNames[iReg++] = WHvX64RegisterFpMmx6;
615 aenmNames[iReg++] = WHvX64RegisterFpMmx7;
616 aenmNames[iReg++] = WHvX64RegisterFpControlStatus;
617 }
618 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
619 aenmNames[iReg++] = WHvX64RegisterXmmControlStatus;
620
621 /* Vector state. */
622 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
623 {
624 aenmNames[iReg++] = WHvX64RegisterXmm0;
625 aenmNames[iReg++] = WHvX64RegisterXmm1;
626 aenmNames[iReg++] = WHvX64RegisterXmm2;
627 aenmNames[iReg++] = WHvX64RegisterXmm3;
628 aenmNames[iReg++] = WHvX64RegisterXmm4;
629 aenmNames[iReg++] = WHvX64RegisterXmm5;
630 aenmNames[iReg++] = WHvX64RegisterXmm6;
631 aenmNames[iReg++] = WHvX64RegisterXmm7;
632 aenmNames[iReg++] = WHvX64RegisterXmm8;
633 aenmNames[iReg++] = WHvX64RegisterXmm9;
634 aenmNames[iReg++] = WHvX64RegisterXmm10;
635 aenmNames[iReg++] = WHvX64RegisterXmm11;
636 aenmNames[iReg++] = WHvX64RegisterXmm12;
637 aenmNames[iReg++] = WHvX64RegisterXmm13;
638 aenmNames[iReg++] = WHvX64RegisterXmm14;
639 aenmNames[iReg++] = WHvX64RegisterXmm15;
640 }
641
642 /* MSRs */
643 // WHvX64RegisterTsc - don't touch
644 if (fWhat & CPUMCTX_EXTRN_EFER)
645 aenmNames[iReg++] = WHvX64RegisterEfer;
646 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
647 aenmNames[iReg++] = WHvX64RegisterKernelGsBase;
648 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
649 {
650 aenmNames[iReg++] = WHvX64RegisterSysenterCs;
651 aenmNames[iReg++] = WHvX64RegisterSysenterEip;
652 aenmNames[iReg++] = WHvX64RegisterSysenterEsp;
653 }
654 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
655 {
656 aenmNames[iReg++] = WHvX64RegisterStar;
657 aenmNames[iReg++] = WHvX64RegisterLstar;
658 aenmNames[iReg++] = WHvX64RegisterCstar;
659 aenmNames[iReg++] = WHvX64RegisterSfmask;
660 }
661
662//#ifdef LOG_ENABLED
663// const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM);
664//#endif
665 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
666 {
667 aenmNames[iReg++] = WHvX64RegisterApicBase; /// @todo APIC BASE
668 aenmNames[iReg++] = WHvX64RegisterPat;
669#if 0 /*def LOG_ENABLED*/ /** @todo Check if WHvX64RegisterMsrMtrrCap works... */
670 aenmNames[iReg++] = WHvX64RegisterMsrMtrrCap;
671#endif
672 aenmNames[iReg++] = WHvX64RegisterMsrMtrrDefType;
673 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix64k00000;
674 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16k80000;
675 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16kA0000;
676 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC0000;
677 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC8000;
678 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD0000;
679 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD8000;
680 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE0000;
681 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE8000;
682 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF0000;
683 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF8000;
684 aenmNames[iReg++] = WHvX64RegisterTscAux;
685 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
686//#ifdef LOG_ENABLED
687// if (enmCpuVendor != CPUMCPUVENDOR_AMD)
688// aenmNames[iReg++] = HvX64RegisterIa32FeatureControl;
689//#endif
690 }
691
692 /* Interruptibility. */
693 if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
694 {
695 aenmNames[iReg++] = WHvRegisterInterruptState;
696 aenmNames[iReg++] = WHvX64RegisterRip;
697 }
698
699 /* event injection */
700 aenmNames[iReg++] = WHvRegisterPendingInterruption;
701 aenmNames[iReg++] = WHvRegisterPendingEvent0; /** @todo renamed to WHvRegisterPendingEvent */
702
703 size_t const cRegs = iReg;
704 Assert(cRegs < RT_ELEMENTS(aenmNames));
705
706 /*
707 * Get the registers.
708 */
709 WHV_REGISTER_VALUE aValues[128];
710 RT_ZERO(aValues);
711 Assert(RT_ELEMENTS(aValues) >= cRegs);
712 Assert(RT_ELEMENTS(aenmNames) >= cRegs);
713# ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
714 Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
715 pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
716# endif
717 HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues);
718 AssertLogRelMsgReturn(SUCCEEDED(hrc),
719 ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
720 pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
721 , VERR_NEM_GET_REGISTERS_FAILED);
722
723 iReg = 0;
724# define GET_REG64(a_DstVar, a_enmName) do { \
725 Assert(aenmNames[iReg] == (a_enmName)); \
726 (a_DstVar) = aValues[iReg].Reg64; \
727 iReg++; \
728 } while (0)
729# define GET_REG64_LOG7(a_DstVar, a_enmName, a_szLogName) do { \
730 Assert(aenmNames[iReg] == (a_enmName)); \
731 if ((a_DstVar) != aValues[iReg].Reg64) \
732 Log7(("NEM/%u: " a_szLogName " changed %RX64 -> %RX64\n", pVCpu->idCpu, (a_DstVar), aValues[iReg].Reg64)); \
733 (a_DstVar) = aValues[iReg].Reg64; \
734 iReg++; \
735 } while (0)
736# define GET_REG128(a_DstVarLo, a_DstVarHi, a_enmName) do { \
737 Assert(aenmNames[iReg] == a_enmName); \
738 (a_DstVarLo) = aValues[iReg].Reg128.Low64; \
739 (a_DstVarHi) = aValues[iReg].Reg128.High64; \
740 iReg++; \
741 } while (0)
742# define GET_SEG(a_SReg, a_enmName) do { \
743 Assert(aenmNames[iReg] == (a_enmName)); \
744 NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[iReg].Segment); \
745 iReg++; \
746 } while (0)
747
748 /* GPRs */
749 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
750 {
751 if (fWhat & CPUMCTX_EXTRN_RAX)
752 GET_REG64(pVCpu->cpum.GstCtx.rax, WHvX64RegisterRax);
753 if (fWhat & CPUMCTX_EXTRN_RCX)
754 GET_REG64(pVCpu->cpum.GstCtx.rcx, WHvX64RegisterRcx);
755 if (fWhat & CPUMCTX_EXTRN_RDX)
756 GET_REG64(pVCpu->cpum.GstCtx.rdx, WHvX64RegisterRdx);
757 if (fWhat & CPUMCTX_EXTRN_RBX)
758 GET_REG64(pVCpu->cpum.GstCtx.rbx, WHvX64RegisterRbx);
759 if (fWhat & CPUMCTX_EXTRN_RSP)
760 GET_REG64(pVCpu->cpum.GstCtx.rsp, WHvX64RegisterRsp);
761 if (fWhat & CPUMCTX_EXTRN_RBP)
762 GET_REG64(pVCpu->cpum.GstCtx.rbp, WHvX64RegisterRbp);
763 if (fWhat & CPUMCTX_EXTRN_RSI)
764 GET_REG64(pVCpu->cpum.GstCtx.rsi, WHvX64RegisterRsi);
765 if (fWhat & CPUMCTX_EXTRN_RDI)
766 GET_REG64(pVCpu->cpum.GstCtx.rdi, WHvX64RegisterRdi);
767 if (fWhat & CPUMCTX_EXTRN_R8_R15)
768 {
769 GET_REG64(pVCpu->cpum.GstCtx.r8, WHvX64RegisterR8);
770 GET_REG64(pVCpu->cpum.GstCtx.r9, WHvX64RegisterR9);
771 GET_REG64(pVCpu->cpum.GstCtx.r10, WHvX64RegisterR10);
772 GET_REG64(pVCpu->cpum.GstCtx.r11, WHvX64RegisterR11);
773 GET_REG64(pVCpu->cpum.GstCtx.r12, WHvX64RegisterR12);
774 GET_REG64(pVCpu->cpum.GstCtx.r13, WHvX64RegisterR13);
775 GET_REG64(pVCpu->cpum.GstCtx.r14, WHvX64RegisterR14);
776 GET_REG64(pVCpu->cpum.GstCtx.r15, WHvX64RegisterR15);
777 }
778 }
779
780 /* RIP & Flags */
781 if (fWhat & CPUMCTX_EXTRN_RIP)
782 GET_REG64(pVCpu->cpum.GstCtx.rip, WHvX64RegisterRip);
783 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
784 GET_REG64(pVCpu->cpum.GstCtx.rflags.u, WHvX64RegisterRflags);
785
786 /* Segments */
787 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
788 {
789 if (fWhat & CPUMCTX_EXTRN_ES)
790 GET_SEG(pVCpu->cpum.GstCtx.es, WHvX64RegisterEs);
791 if (fWhat & CPUMCTX_EXTRN_CS)
792 GET_SEG(pVCpu->cpum.GstCtx.cs, WHvX64RegisterCs);
793 if (fWhat & CPUMCTX_EXTRN_SS)
794 GET_SEG(pVCpu->cpum.GstCtx.ss, WHvX64RegisterSs);
795 if (fWhat & CPUMCTX_EXTRN_DS)
796 GET_SEG(pVCpu->cpum.GstCtx.ds, WHvX64RegisterDs);
797 if (fWhat & CPUMCTX_EXTRN_FS)
798 GET_SEG(pVCpu->cpum.GstCtx.fs, WHvX64RegisterFs);
799 if (fWhat & CPUMCTX_EXTRN_GS)
800 GET_SEG(pVCpu->cpum.GstCtx.gs, WHvX64RegisterGs);
801 }
802
803 /* Descriptor tables and the task segment. */
804 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
805 {
806 if (fWhat & CPUMCTX_EXTRN_LDTR)
807 GET_SEG(pVCpu->cpum.GstCtx.ldtr, WHvX64RegisterLdtr);
808
809 if (fWhat & CPUMCTX_EXTRN_TR)
810 {
811 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
812 avoid to trigger sanity assertions around the code, always fix this. */
813 GET_SEG(pVCpu->cpum.GstCtx.tr, WHvX64RegisterTr);
814 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
815 {
816 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
817 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
818 break;
819 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
820 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
821 break;
822 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
823 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
824 break;
825 }
826 }
827 if (fWhat & CPUMCTX_EXTRN_IDTR)
828 {
829 Assert(aenmNames[iReg] == WHvX64RegisterIdtr);
830 pVCpu->cpum.GstCtx.idtr.cbIdt = aValues[iReg].Table.Limit;
831 pVCpu->cpum.GstCtx.idtr.pIdt = aValues[iReg].Table.Base;
832 iReg++;
833 }
834 if (fWhat & CPUMCTX_EXTRN_GDTR)
835 {
836 Assert(aenmNames[iReg] == WHvX64RegisterGdtr);
837 pVCpu->cpum.GstCtx.gdtr.cbGdt = aValues[iReg].Table.Limit;
838 pVCpu->cpum.GstCtx.gdtr.pGdt = aValues[iReg].Table.Base;
839 iReg++;
840 }
841 }
842
843 /* Control registers. */
844 bool fMaybeChangedMode = false;
845 bool fUpdateCr3 = false;
846 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
847 {
848 if (fWhat & CPUMCTX_EXTRN_CR0)
849 {
850 Assert(aenmNames[iReg] == WHvX64RegisterCr0);
851 if (pVCpu->cpum.GstCtx.cr0 != aValues[iReg].Reg64)
852 {
853 CPUMSetGuestCR0(pVCpu, aValues[iReg].Reg64);
854 fMaybeChangedMode = true;
855 }
856 iReg++;
857 }
858 if (fWhat & CPUMCTX_EXTRN_CR2)
859 GET_REG64(pVCpu->cpum.GstCtx.cr2, WHvX64RegisterCr2);
860 if (fWhat & CPUMCTX_EXTRN_CR3)
861 {
862 if (pVCpu->cpum.GstCtx.cr3 != aValues[iReg].Reg64)
863 {
864 CPUMSetGuestCR3(pVCpu, aValues[iReg].Reg64);
865 fUpdateCr3 = true;
866 }
867 iReg++;
868 }
869 if (fWhat & CPUMCTX_EXTRN_CR4)
870 {
871 if (pVCpu->cpum.GstCtx.cr4 != aValues[iReg].Reg64)
872 {
873 CPUMSetGuestCR4(pVCpu, aValues[iReg].Reg64);
874 fMaybeChangedMode = true;
875 }
876 iReg++;
877 }
878 }
879 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
880 {
881 Assert(aenmNames[iReg] == WHvX64RegisterCr8);
882 APICSetTpr(pVCpu, (uint8_t)aValues[iReg].Reg64 << 4);
883 iReg++;
884 }
885
886 /* Debug registers. */
887 if (fWhat & CPUMCTX_EXTRN_DR7)
888 {
889 Assert(aenmNames[iReg] == WHvX64RegisterDr7);
890 if (pVCpu->cpum.GstCtx.dr[7] != aValues[iReg].Reg64)
891 CPUMSetGuestDR7(pVCpu, aValues[iReg].Reg64);
892 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
893 iReg++;
894 }
895 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
896 {
897 Assert(aenmNames[iReg] == WHvX64RegisterDr0);
898 Assert(aenmNames[iReg+3] == WHvX64RegisterDr3);
899 if (pVCpu->cpum.GstCtx.dr[0] != aValues[iReg].Reg64)
900 CPUMSetGuestDR0(pVCpu, aValues[iReg].Reg64);
901 iReg++;
902 if (pVCpu->cpum.GstCtx.dr[1] != aValues[iReg].Reg64)
903 CPUMSetGuestDR1(pVCpu, aValues[iReg].Reg64);
904 iReg++;
905 if (pVCpu->cpum.GstCtx.dr[2] != aValues[iReg].Reg64)
906 CPUMSetGuestDR2(pVCpu, aValues[iReg].Reg64);
907 iReg++;
908 if (pVCpu->cpum.GstCtx.dr[3] != aValues[iReg].Reg64)
909 CPUMSetGuestDR3(pVCpu, aValues[iReg].Reg64);
910 iReg++;
911 }
912 if (fWhat & CPUMCTX_EXTRN_DR6)
913 {
914 Assert(aenmNames[iReg] == WHvX64RegisterDr6);
915 if (pVCpu->cpum.GstCtx.dr[6] != aValues[iReg].Reg64)
916 CPUMSetGuestDR6(pVCpu, aValues[iReg].Reg64);
917 iReg++;
918 }
919
920 /* Floating point state. */
921 if (fWhat & CPUMCTX_EXTRN_X87)
922 {
923 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1], WHvX64RegisterFpMmx0);
924 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1], WHvX64RegisterFpMmx1);
925 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1], WHvX64RegisterFpMmx2);
926 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1], WHvX64RegisterFpMmx3);
927 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1], WHvX64RegisterFpMmx4);
928 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1], WHvX64RegisterFpMmx5);
929 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1], WHvX64RegisterFpMmx6);
930 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1], WHvX64RegisterFpMmx7);
931
932 Assert(aenmNames[iReg] == WHvX64RegisterFpControlStatus);
933 pVCpu->cpum.GstCtx.pXStateR3->x87.FCW = aValues[iReg].FpControlStatus.FpControl;
934 pVCpu->cpum.GstCtx.pXStateR3->x87.FSW = aValues[iReg].FpControlStatus.FpStatus;
935 pVCpu->cpum.GstCtx.pXStateR3->x87.FTW = aValues[iReg].FpControlStatus.FpTag
936 /*| (aValues[iReg].FpControlStatus.Reserved << 8)*/;
937 pVCpu->cpum.GstCtx.pXStateR3->x87.FOP = aValues[iReg].FpControlStatus.LastFpOp;
938 pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP = (uint32_t)aValues[iReg].FpControlStatus.LastFpRip;
939 pVCpu->cpum.GstCtx.pXStateR3->x87.CS = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 32);
940 pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 48);
941 iReg++;
942 }
943
944 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
945 {
946 Assert(aenmNames[iReg] == WHvX64RegisterXmmControlStatus);
947 if (fWhat & CPUMCTX_EXTRN_X87)
948 {
949 pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP = (uint32_t)aValues[iReg].XmmControlStatus.LastFpRdp;
950 pVCpu->cpum.GstCtx.pXStateR3->x87.DS = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 32);
951 pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 48);
952 }
953 pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR = aValues[iReg].XmmControlStatus.XmmStatusControl;
954 pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK = aValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
955 iReg++;
956 }
957
958 /* Vector state. */
959 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
960 {
961 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi, WHvX64RegisterXmm0);
962 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi, WHvX64RegisterXmm1);
963 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi, WHvX64RegisterXmm2);
964 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi, WHvX64RegisterXmm3);
965 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi, WHvX64RegisterXmm4);
966 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi, WHvX64RegisterXmm5);
967 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi, WHvX64RegisterXmm6);
968 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi, WHvX64RegisterXmm7);
969 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi, WHvX64RegisterXmm8);
970 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi, WHvX64RegisterXmm9);
971 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi, WHvX64RegisterXmm10);
972 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi, WHvX64RegisterXmm11);
973 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi, WHvX64RegisterXmm12);
974 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi, WHvX64RegisterXmm13);
975 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi, WHvX64RegisterXmm14);
976 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi, WHvX64RegisterXmm15);
977 }
978
979 /* MSRs */
980 // WHvX64RegisterTsc - don't touch
981 if (fWhat & CPUMCTX_EXTRN_EFER)
982 {
983 Assert(aenmNames[iReg] == WHvX64RegisterEfer);
984 if (aValues[iReg].Reg64 != pVCpu->cpum.GstCtx.msrEFER)
985 {
986 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, aValues[iReg].Reg64));
987 if ((aValues[iReg].Reg64 ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
988 PGMNotifyNxeChanged(pVCpu, RT_BOOL(aValues[iReg].Reg64 & MSR_K6_EFER_NXE));
989 pVCpu->cpum.GstCtx.msrEFER = aValues[iReg].Reg64;
990 fMaybeChangedMode = true;
991 }
992 iReg++;
993 }
994 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
995 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrKERNELGSBASE, WHvX64RegisterKernelGsBase, "MSR KERNEL_GS_BASE");
996 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
997 {
998 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.cs, WHvX64RegisterSysenterCs, "MSR SYSENTER.CS");
999 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.eip, WHvX64RegisterSysenterEip, "MSR SYSENTER.EIP");
1000 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.esp, WHvX64RegisterSysenterEsp, "MSR SYSENTER.ESP");
1001 }
1002 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1003 {
1004 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSTAR, WHvX64RegisterStar, "MSR STAR");
1005 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrLSTAR, WHvX64RegisterLstar, "MSR LSTAR");
1006 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrCSTAR, WHvX64RegisterCstar, "MSR CSTAR");
1007 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSFMASK, WHvX64RegisterSfmask, "MSR SFMASK");
1008 }
1009 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1010 {
1011 Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
1012 const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
1013 if (aValues[iReg].Reg64 != uOldBase)
1014 {
1015 Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
1016 pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
1017 int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
1018 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
1019 }
1020 iReg++;
1021
1022 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
1023#if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
1024 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
1025#endif
1026 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1027 GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
1028 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
1029 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
1030 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
1031 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
1032 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
1033 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
1034 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
1035 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
1036 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
1037 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
1038 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
1039 GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
1040 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
1041 }
1042
1043 /* Interruptibility. */
1044 if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
1045 {
1046 Assert(aenmNames[iReg] == WHvRegisterInterruptState);
1047 Assert(aenmNames[iReg + 1] == WHvX64RegisterRip);
1048
1049 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
1050 {
1051 pVCpu->nem.s.fLastInterruptShadow = aValues[iReg].InterruptState.InterruptShadow;
1052 if (aValues[iReg].InterruptState.InterruptShadow)
1053 EMSetInhibitInterruptsPC(pVCpu, aValues[iReg + 1].Reg64);
1054 else
1055 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1056 }
1057
1058 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
1059 {
1060 if (aValues[iReg].InterruptState.NmiMasked)
1061 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
1062 else
1063 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
1064 }
1065
1066 fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
1067 iReg += 2;
1068 }
1069
1070 /* Event injection. */
1071 /// @todo WHvRegisterPendingInterruption
1072 Assert(aenmNames[iReg] == WHvRegisterPendingInterruption);
1073 if (aValues[iReg].PendingInterruption.InterruptionPending)
1074 {
1075 Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
1076 aValues[iReg].PendingInterruption.InterruptionType, aValues[iReg].PendingInterruption.InterruptionVector,
1077 aValues[iReg].PendingInterruption.DeliverErrorCode, aValues[iReg].PendingInterruption.ErrorCode,
1078 aValues[iReg].PendingInterruption.InstructionLength, aValues[iReg].PendingInterruption.NestedEvent));
1079 AssertMsg((aValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0,
1080 ("%#RX64\n", aValues[iReg].PendingInterruption.AsUINT64));
1081 }
1082
1083 /// @todo WHvRegisterPendingEvent0 (renamed to WHvRegisterPendingEvent).
1084
1085 /* Almost done, just update extrn flags and maybe change PGM mode. */
1086 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1087 if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
1088 pVCpu->cpum.GstCtx.fExtrn = 0;
1089
1090 /* Typical. */
1091 if (!fMaybeChangedMode && !fUpdateCr3)
1092 return VINF_SUCCESS;
1093
1094 /*
1095 * Slow.
1096 */
1097 if (fMaybeChangedMode)
1098 {
1099 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
1100 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1101 }
1102
1103 if (fUpdateCr3)
1104 {
1105 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1106 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1107 }
1108
1109 return VINF_SUCCESS;
1110# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
1111}
1112
1113#endif /* !IN_RING0 */
1114
1115
1116/**
1117 * Interface for importing state on demand (used by IEM).
1118 *
1119 * @returns VBox status code.
1120 * @param pVCpu The cross context CPU structure.
1121 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1122 */
1123VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
1124{
1125 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
1126
1127#ifdef IN_RING0
1128# ifdef NEM_WIN_WITH_RING0_RUNLOOP
1129 return nemR0WinImportState(pVCpu->pGVM, pVCpu, &pVCpu->cpum.GstCtx, fWhat, true /*fCanUpdateCr3*/);
1130# else
1131 RT_NOREF(pVCpu, fWhat);
1132 return VERR_NOT_IMPLEMENTED;
1133# endif
1134#else
1135 return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
1136#endif
1137}
1138
1139
1140/**
1141 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
1142 *
1143 * @returns VBox status code.
1144 * @param pVCpu The cross context CPU structure.
1145 * @param pcTicks Where to return the CPU tick count.
1146 * @param puAux Where to return the TSC_AUX register value.
1147 */
1148VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
1149{
1150 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
1151
1152#ifdef IN_RING3
1153 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1154 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
1155 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
1156
1157# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
1158# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
1159 if (pVM->nem.s.fUseRing0Runloop)
1160# endif
1161 {
1162 /* Call ring-0 and get the values. */
1163 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_QUERY_CPU_TICK, 0, NULL);
1164 AssertLogRelRCReturn(rc, rc);
1165 *pcTicks = pVCpu->nem.s.Hypercall.QueryCpuTick.cTicks;
1166 if (puAux)
1167 *puAux = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX
1168 ? pVCpu->nem.s.Hypercall.QueryCpuTick.uAux : CPUMGetGuestTscAux(pVCpu);
1169 return VINF_SUCCESS;
1170 }
1171# endif
1172# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
1173 /* Call the offical API. */
1174 WHV_REGISTER_NAME aenmNames[2] = { WHvX64RegisterTsc, WHvX64RegisterTscAux };
1175 WHV_REGISTER_VALUE aValues[2] = { {0, 0}, {0, 0} };
1176 Assert(RT_ELEMENTS(aenmNames) == RT_ELEMENTS(aValues));
1177 HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, 2, aValues);
1178 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1179 ("WHvGetVirtualProcessorRegisters(%p, %u,{tsc,tsc_aux},2,) -> %Rhrc (Last=%#x/%u)\n",
1180 pVM->nem.s.hPartition, pVCpu->idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1181 , VERR_NEM_GET_REGISTERS_FAILED);
1182 *pcTicks = aValues[0].Reg64;
1183 if (puAux)
1184 *pcTicks = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX ? aValues[0].Reg64 : CPUMGetGuestTscAux(pVCpu);
1185 return VINF_SUCCESS;
1186# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
1187#else /* IN_RING0 */
1188# ifdef NEM_WIN_WITH_RING0_RUNLOOP
1189 int rc = nemR0WinQueryCpuTick(pVCpu->pGVM, pVCpu, pcTicks, puAux);
1190 if (RT_SUCCESS(rc) && puAux && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX))
1191 *puAux = CPUMGetGuestTscAux(pVCpu);
1192 return rc;
1193# else
1194 RT_NOREF(pVCpu, pcTicks, puAux);
1195 return VERR_NOT_IMPLEMENTED;
1196# endif
1197#endif /* IN_RING0 */
1198}
1199
1200
1201/**
1202 * Resumes CPU clock (TSC) on all virtual CPUs.
1203 *
1204 * This is called by TM when the VM is started, restored, resumed or similar.
1205 *
1206 * @returns VBox status code.
1207 * @param pVM The cross context VM structure.
1208 * @param pVCpu The cross context CPU structure of the calling EMT.
1209 * @param uPausedTscValue The TSC value at the time of pausing.
1210 */
1211VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
1212{
1213#ifdef IN_RING0
1214# ifdef NEM_WIN_WITH_RING0_RUNLOOP
1215 return nemR0WinResumeCpuTickOnAll(pVM, pVCpu, uPausedTscValue);
1216# else
1217 RT_NOREF(pVM, pVCpu, uPausedTscValue);
1218 return VERR_NOT_IMPLEMENTED;
1219# endif
1220#else /* IN_RING3 */
1221 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
1222 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
1223
1224# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
1225# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
1226 if (pVM->nem.s.fUseRing0Runloop)
1227# endif
1228 {
1229 /* Call ring-0 and do it all there. */
1230 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_RESUME_CPU_TICK_ON_ALL, uPausedTscValue, NULL);
1231 }
1232# endif
1233# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
1234 /*
1235 * Call the offical API to do the job.
1236 */
1237 if (pVM->cCpus > 1)
1238 RTThreadYield(); /* Try decrease the chance that we get rescheduled in the middle. */
1239
1240 /* Start with the first CPU. */
1241 WHV_REGISTER_NAME enmName = WHvX64RegisterTsc;
1242 WHV_REGISTER_VALUE Value = {0, 0};
1243 Value.Reg64 = uPausedTscValue;
1244 uint64_t const uFirstTsc = ASMReadTSC();
1245 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, 0 /*iCpu*/, &enmName, 1, &Value);
1246 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1247 ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64) -> %Rhrc (Last=%#x/%u)\n",
1248 pVM->nem.s.hPartition, uPausedTscValue, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1249 , VERR_NEM_SET_TSC);
1250
1251 /* Do the other CPUs, adjusting for elapsed TSC and keeping finger crossed
1252 that we don't introduce too much drift here. */
1253 for (VMCPUID iCpu = 1; iCpu < pVM->cCpus; iCpu++)
1254 {
1255 Assert(enmName == WHvX64RegisterTsc);
1256 const uint64_t offDelta = (ASMReadTSC() - uFirstTsc);
1257 Value.Reg64 = uPausedTscValue + offDelta;
1258 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, iCpu, &enmName, 1, &Value);
1259 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1260 ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64 + %#RX64) -> %Rhrc (Last=%#x/%u)\n",
1261 pVM->nem.s.hPartition, iCpu, uPausedTscValue, offDelta, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1262 , VERR_NEM_SET_TSC);
1263 }
1264
1265 return VINF_SUCCESS;
1266# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
1267#endif /* IN_RING3 */
1268}
1269
1270#ifdef NEMWIN_NEED_GET_REGISTER
1271# if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
1272/** Worker for assertion macro. */
1273NEM_TMPL_STATIC int nemHCWinGetRegister(PVMCPUCC pVCpu, PGVMCPU pGVCpu, uint32_t enmReg, HV_REGISTER_VALUE *pRetValue)
1274{
1275 RT_ZERO(*pRetValue);
1276# ifdef IN_RING3
1277 RT_NOREF(pVCpu, pGVCpu, enmReg);
1278 return VERR_NOT_IMPLEMENTED;
1279# else
1280 NOREF(pVCpu);
1281
1282 /*
1283 * Hypercall parameters.
1284 */
1285 HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage;
1286 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
1287 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API);
1288
1289 pInput->PartitionId = pVCpu->pGVM->nemr0.s.idHvPartition;
1290 pInput->VpIndex = pVCpu->idCpu;
1291 pInput->fFlags = 0;
1292 pInput->Names[0] = (HV_REGISTER_NAME)enmReg;
1293
1294 size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[1]), 32);
1295 HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput);
1296 RT_BZERO(paValues, sizeof(paValues[0]) * 1);
1297
1298 /*
1299 * Make the hypercall and copy out the value.
1300 */
1301 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 1),
1302 pGVCpu->nem.s.HypercallData.HCPhysPage,
1303 pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput);
1304 AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 cRegs=%#x\n", uResult, 1),
1305 VERR_NEM_GET_REGISTERS_FAILED);
1306
1307 *pRetValue = paValues[0];
1308 return VINF_SUCCESS;
1309# endif
1310}
1311# else
1312/** Worker for assertion macro. */
1313NEM_TMPL_STATIC int nemR3WinGetRegister(PVMCPUCC a_pVCpu, uint32_t a_enmReg, WHV_REGISTER_VALUE pValue)
1314{
1315 RT_ZERO(*pRetValue);
1316 RT_NOREF(pVCpu, pGVCpu, enmReg);
1317 return VERR_NOT_IMPLEMENTED;
1318}
1319# endif
1320#endif
1321
1322
1323#ifdef LOG_ENABLED
1324/**
1325 * Get the virtual processor running status.
1326 */
1327DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPUCC pVCpu)
1328{
1329# ifdef IN_RING0
1330 NOREF(pVCpu);
1331 return VidProcessorStatusUndefined;
1332# else
1333 RTERRVARS Saved;
1334 RTErrVarsSave(&Saved);
1335
1336 /*
1337 * This API is disabled in release builds, it seems. On build 17101 it requires
1338 * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
1339 */
1340 VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
1341 NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
1342 AssertRC(rcNt);
1343
1344 RTErrVarsRestore(&Saved);
1345 return enmCpuStatus;
1346# endif
1347}
1348#endif /* LOG_ENABLED */
1349
1350
1351#if defined(NEM_WIN_USE_OUR_OWN_RUN_API) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
1352# ifdef IN_RING3 /* hopefully not needed in ring-0, as we'd need KTHREADs and KeAlertThread. */
1353/**
1354 * Our own WHvCancelRunVirtualProcessor that can later be moved to ring-0.
1355 *
1356 * This is an experiment only.
1357 *
1358 * @returns VBox status code.
1359 * @param pVM The cross context VM structure.
1360 * @param pVCpu The cross context virtual CPU structure of the
1361 * calling EMT.
1362 */
1363NEM_TMPL_STATIC int nemHCWinCancelRunVirtualProcessor(PVMCC pVM, PVMCPUCC pVCpu)
1364{
1365 /*
1366 * Work the state.
1367 *
1368 * From the looks of things, we should let the EMT call VidStopVirtualProcessor.
1369 * So, we just need to modify the state and kick the EMT if it's waiting on
1370 * messages. For the latter we use QueueUserAPC / KeAlterThread.
1371 */
1372 for (;;)
1373 {
1374 VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu);
1375 switch (enmState)
1376 {
1377 case VMCPUSTATE_STARTED_EXEC_NEM:
1378 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM))
1379 {
1380 DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM -> CANCELED");
1381 Log8(("nemHCWinCancelRunVirtualProcessor: Switched %u to canceled state\n", pVCpu->idCpu));
1382 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelChangedState);
1383 return VINF_SUCCESS;
1384 }
1385 break;
1386
1387 case VMCPUSTATE_STARTED_EXEC_NEM_WAIT:
1388 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
1389 {
1390 DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM_WAIT -> CANCELED");
1391# ifdef IN_RING0
1392 NTSTATUS rcNt = KeAlertThread(??);
1393 DBGFTRACE_CUSTOM(pVM, "KeAlertThread -> %#x", rcNt);
1394# else
1395 NTSTATUS rcNt = NtAlertThread(pVCpu->nem.s.hNativeThreadHandle);
1396 DBGFTRACE_CUSTOM(pVM, "NtAlertThread -> %#x", rcNt);
1397# endif
1398 Log8(("nemHCWinCancelRunVirtualProcessor: Alerted %u: %#x\n", pVCpu->idCpu, rcNt));
1399 Assert(rcNt == STATUS_SUCCESS);
1400 if (NT_SUCCESS(rcNt))
1401 {
1402 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelAlertedThread);
1403 return VINF_SUCCESS;
1404 }
1405 AssertLogRelMsgFailedReturn(("NtAlertThread failed: %#x\n", rcNt), RTErrConvertFromNtStatus(rcNt));
1406 }
1407 break;
1408
1409 default:
1410 return VINF_SUCCESS;
1411 }
1412
1413 ASMNopPause();
1414 RT_NOREF(pVM);
1415 }
1416}
1417# endif /* IN_RING3 */
1418#endif /* NEM_WIN_USE_OUR_OWN_RUN_API || NEM_WIN_WITH_RING0_RUNLOOP */
1419
1420
1421#ifdef LOG_ENABLED
1422/**
1423 * Logs the current CPU state.
1424 */
1425NEM_TMPL_STATIC void nemHCWinLogState(PVMCC pVM, PVMCPUCC pVCpu)
1426{
1427 if (LogIs3Enabled())
1428 {
1429# if 0 // def IN_RING3 - causes lazy state import assertions all over CPUM.
1430 char szRegs[4096];
1431 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
1432 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
1433 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
1434 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
1435 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
1436 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
1437 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
1438 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
1439 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
1440 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
1441 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
1442 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
1443 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
1444 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
1445 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
1446 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
1447 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
1448 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
1449 " efer=%016VR{efer}\n"
1450 " pat=%016VR{pat}\n"
1451 " sf_mask=%016VR{sf_mask}\n"
1452 "krnl_gs_base=%016VR{krnl_gs_base}\n"
1453 " lstar=%016VR{lstar}\n"
1454 " star=%016VR{star} cstar=%016VR{cstar}\n"
1455 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
1456 );
1457
1458 char szInstr[256];
1459 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
1460 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
1461 szInstr, sizeof(szInstr), NULL);
1462 Log3(("%s%s\n", szRegs, szInstr));
1463# else
1464 /** @todo stat logging in ring-0 */
1465 RT_NOREF(pVM, pVCpu);
1466# endif
1467 }
1468}
1469#endif /* LOG_ENABLED */
1470
1471
1472/** Macro used by nemHCWinExecStateToLogStr and nemR3WinExecStateToLogStr. */
1473#define SWITCH_IT(a_szPrefix) \
1474 do \
1475 switch (u)\
1476 { \
1477 case 0x00: return a_szPrefix ""; \
1478 case 0x01: return a_szPrefix ",Pnd"; \
1479 case 0x02: return a_szPrefix ",Dbg"; \
1480 case 0x03: return a_szPrefix ",Pnd,Dbg"; \
1481 case 0x04: return a_szPrefix ",Shw"; \
1482 case 0x05: return a_szPrefix ",Pnd,Shw"; \
1483 case 0x06: return a_szPrefix ",Shw,Dbg"; \
1484 case 0x07: return a_szPrefix ",Pnd,Shw,Dbg"; \
1485 default: AssertFailedReturn("WTF?"); \
1486 } \
1487 while (0)
1488
1489#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1490/**
1491 * Translates the execution stat bitfield into a short log string, VID version.
1492 *
1493 * @returns Read-only log string.
1494 * @param pMsgHdr The header which state to summarize.
1495 */
1496static const char *nemHCWinExecStateToLogStr(HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
1497{
1498 unsigned u = (unsigned)pMsgHdr->ExecutionState.InterruptionPending
1499 | ((unsigned)pMsgHdr->ExecutionState.DebugActive << 1)
1500 | ((unsigned)pMsgHdr->ExecutionState.InterruptShadow << 2);
1501 if (pMsgHdr->ExecutionState.EferLma)
1502 SWITCH_IT("LM");
1503 else if (pMsgHdr->ExecutionState.Cr0Pe)
1504 SWITCH_IT("PM");
1505 else
1506 SWITCH_IT("RM");
1507}
1508#elif defined(IN_RING3)
1509/**
1510 * Translates the execution stat bitfield into a short log string, WinHv version.
1511 *
1512 * @returns Read-only log string.
1513 * @param pExitCtx The exit context which state to summarize.
1514 */
1515static const char *nemR3WinExecStateToLogStr(WHV_VP_EXIT_CONTEXT const *pExitCtx)
1516{
1517 unsigned u = (unsigned)pExitCtx->ExecutionState.InterruptionPending
1518 | ((unsigned)pExitCtx->ExecutionState.DebugActive << 1)
1519 | ((unsigned)pExitCtx->ExecutionState.InterruptShadow << 2);
1520 if (pExitCtx->ExecutionState.EferLma)
1521 SWITCH_IT("LM");
1522 else if (pExitCtx->ExecutionState.Cr0Pe)
1523 SWITCH_IT("PM");
1524 else
1525 SWITCH_IT("RM");
1526}
1527#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
1528#undef SWITCH_IT
1529
1530
1531#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1532/**
1533 * Advances the guest RIP and clear EFLAGS.RF, VID version.
1534 *
1535 * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
1536 *
1537 * @param pVCpu The cross context virtual CPU structure.
1538 * @param pExitCtx The exit context.
1539 * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
1540 */
1541DECLINLINE(void)
1542nemHCWinAdvanceGuestRipAndClearRF(PVMCPUCC pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr, uint8_t cbMinInstr)
1543{
1544 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
1545
1546 /* Advance the RIP. */
1547 Assert(pMsgHdr->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
1548 pVCpu->cpum.GstCtx.rip += pMsgHdr->InstructionLength;
1549 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
1550
1551 /* Update interrupt inhibition. */
1552 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1553 { /* likely */ }
1554 else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
1555 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1556}
1557#elif defined(IN_RING3)
1558/**
1559 * Advances the guest RIP and clear EFLAGS.RF, WinHv version.
1560 *
1561 * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
1562 *
1563 * @param pVCpu The cross context virtual CPU structure.
1564 * @param pExitCtx The exit context.
1565 * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
1566 */
1567DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPUCC pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx, uint8_t cbMinInstr)
1568{
1569 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
1570
1571 /* Advance the RIP. */
1572 Assert(pExitCtx->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
1573 pVCpu->cpum.GstCtx.rip += pExitCtx->InstructionLength;
1574 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
1575
1576 /* Update interrupt inhibition. */
1577 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1578 { /* likely */ }
1579 else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
1580 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1581}
1582#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
1583
1584
1585
1586NEM_TMPL_STATIC DECLCALLBACK(int)
1587nemHCWinUnmapOnePageCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
1588{
1589 RT_NOREF_PV(pvUser);
1590#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1591 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
1592 AssertRC(rc);
1593 if (RT_SUCCESS(rc))
1594#else
1595 RT_NOREF_PV(pVCpu);
1596 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1597 if (SUCCEEDED(hrc))
1598#endif
1599 {
1600 Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
1601 *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1602 }
1603 else
1604 {
1605#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1606 LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
1607#else
1608 LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
1609 GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
1610 RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
1611#endif
1612 *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
1613 }
1614 if (pVM->nem.s.cMappedPages > 0)
1615 ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
1616 return VINF_SUCCESS;
1617}
1618
1619
1620/**
1621 * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
1622 * and nemHCWinHandleMemoryAccessPageCheckerCallback.
1623 */
1624typedef struct NEMHCWINHMACPCCSTATE
1625{
1626 /** Input: Write access. */
1627 bool fWriteAccess;
1628 /** Output: Set if we did something. */
1629 bool fDidSomething;
1630 /** Output: Set it we should resume. */
1631 bool fCanResume;
1632} NEMHCWINHMACPCCSTATE;
1633
1634/**
1635 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1636 * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
1637 * NEMHCWINHMACPCCSTATE structure. }
1638 */
1639NEM_TMPL_STATIC DECLCALLBACK(int)
1640nemHCWinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1641{
1642 NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
1643 pState->fDidSomething = false;
1644 pState->fCanResume = false;
1645
1646 /* If A20 is disabled, we may need to make another query on the masked
1647 page to get the correct protection information. */
1648 uint8_t u2State = pInfo->u2NemState;
1649 RTGCPHYS GCPhysSrc;
1650 if ( pVM->nem.s.fA20Enabled
1651 || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
1652 GCPhysSrc = GCPhys;
1653 else
1654 {
1655 GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
1656 PGMPHYSNEMPAGEINFO Info2;
1657 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
1658 AssertRCReturn(rc, rc);
1659
1660 *pInfo = Info2;
1661 pInfo->u2NemState = u2State;
1662 }
1663
1664 /*
1665 * Consolidate current page state with actual page protection and access type.
1666 * We don't really consider downgrades here, as they shouldn't happen.
1667 */
1668#ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1669 /** @todo Someone at microsoft please explain:
1670 * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
1671 * readonly page as writable (unmap, then map again). Specifically, this was an
1672 * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
1673 * a hope to work around that we no longer pre-map anything, just unmap stuff
1674 * and do it lazily here. And here we will first unmap, restart, and then remap
1675 * with new protection or backing.
1676 */
1677#endif
1678 int rc;
1679 switch (u2State)
1680 {
1681 case NEM_WIN_PAGE_STATE_UNMAPPED:
1682 case NEM_WIN_PAGE_STATE_NOT_SET:
1683 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1684 {
1685 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1686 return VINF_SUCCESS;
1687 }
1688
1689 /* Don't bother remapping it if it's a write request to a non-writable page. */
1690 if ( pState->fWriteAccess
1691 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1692 {
1693 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1694 return VINF_SUCCESS;
1695 }
1696
1697 /* Map the page. */
1698 rc = nemHCNativeSetPhysPage(pVM,
1699 pVCpu,
1700 GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1701 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1702 pInfo->fNemProt,
1703 &u2State,
1704 true /*fBackingState*/);
1705 pInfo->u2NemState = u2State;
1706 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1707 GCPhys, g_apszPageStates[u2State], rc));
1708 pState->fDidSomething = true;
1709 pState->fCanResume = true;
1710 return rc;
1711
1712 case NEM_WIN_PAGE_STATE_READABLE:
1713 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1714 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1715 {
1716 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1717 return VINF_SUCCESS;
1718 }
1719
1720#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1721 /* Upgrade page to writable. */
1722/** @todo test this*/
1723 if ( (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1724 && pState->fWriteAccess)
1725 {
1726 rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhys,
1727 HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
1728 | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
1729 AssertRC(rc);
1730 if (RT_SUCCESS(rc))
1731 {
1732 pInfo->u2NemState = NEM_WIN_PAGE_STATE_WRITABLE;
1733 pState->fDidSomething = true;
1734 pState->fCanResume = true;
1735 Log5(("NEM GPA write-upgrade/exit: %RGp (was %s, cMappedPages=%u)\n",
1736 GCPhys, g_apszPageStates[u2State], pVM->nem.s.cMappedPages));
1737 }
1738 }
1739 else
1740 {
1741 /* Need to emulate the acces. */
1742 AssertBreak(pInfo->fNemProt != NEM_PAGE_PROT_NONE); /* There should be no downgrades. */
1743 rc = VINF_SUCCESS;
1744 }
1745 return rc;
1746#else
1747 break;
1748#endif
1749
1750 case NEM_WIN_PAGE_STATE_WRITABLE:
1751 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1752 {
1753 if (pInfo->u2OldNemState == NEM_WIN_PAGE_STATE_WRITABLE)
1754 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
1755 else
1756 {
1757 pState->fCanResume = true;
1758 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
1759 GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
1760 }
1761 return VINF_SUCCESS;
1762 }
1763#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1764 AssertFailed(); /* There should be no downgrades. */
1765#endif
1766 break;
1767
1768 default:
1769 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1770 }
1771
1772 /*
1773 * Unmap and restart the instruction.
1774 * If this fails, which it does every so often, just unmap everything for now.
1775 */
1776#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1777 rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
1778 AssertRC(rc);
1779 if (RT_SUCCESS(rc))
1780#else
1781 /** @todo figure out whether we mess up the state or if it's WHv. */
1782 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1783 if (SUCCEEDED(hrc))
1784#endif
1785 {
1786 pState->fDidSomething = true;
1787 pState->fCanResume = true;
1788 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1789 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
1790 Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
1791 return VINF_SUCCESS;
1792 }
1793#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1794 LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhys, rc));
1795 return rc;
1796#else
1797 LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
1798 GCPhys, g_apszPageStates[u2State], hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue(),
1799 pVM->nem.s.cMappedPages));
1800
1801 PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
1802 Log(("nemHCWinHandleMemoryAccessPageCheckerCallback: Unmapped all (cMappedPages=%u)\n", pVM->nem.s.cMappedPages));
1803
1804 pState->fDidSomething = true;
1805 pState->fCanResume = true;
1806 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1807 return VINF_SUCCESS;
1808#endif
1809}
1810
1811
1812
1813#if defined(IN_RING0) && defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API)
1814/**
1815 * Wrapper around nemR0WinImportState that converts VERR_NEM_FLUSH_TLB
1816 * into informational status codes and logs+asserts statuses.
1817 *
1818 * @returns VBox strict status code.
1819 * @param pGVM The global (ring-0) VM structure.
1820 * @param pGVCpu The global (ring-0) per CPU structure.
1821 * @param fWhat What to import.
1822 * @param pszCaller Who is doing the importing.
1823 */
1824DECLINLINE(VBOXSTRICTRC) nemR0WinImportStateStrict(PGVM pGVM, PGVMCPU pGVCpu, uint64_t fWhat, const char *pszCaller)
1825{
1826 int rc = nemR0WinImportState(pGVM, pGVCpu, &pGVCpu->cpum.GstCtx, fWhat, true /*fCanUpdateCr3*/);
1827 if (RT_SUCCESS(rc))
1828 {
1829 Assert(rc == VINF_SUCCESS);
1830 return VINF_SUCCESS;
1831 }
1832
1833 if (rc == VERR_NEM_FLUSH_TLB)
1834 {
1835 Log4(("%s/%u: nemR0WinImportState -> %Rrc\n", pszCaller, pGVCpu->idCpu, -rc));
1836 return -rc;
1837 }
1838 RT_NOREF(pszCaller);
1839 AssertMsgFailedReturn(("%s/%u: nemR0WinImportState failed: %Rrc\n", pszCaller, pGVCpu->idCpu, rc), rc);
1840}
1841#endif /* IN_RING0 && NEM_WIN_TEMPLATE_MODE_OWN_RUN_API*/
1842
1843#if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
1844/**
1845 * Wrapper around nemR0WinImportStateStrict and nemHCWinCopyStateFromHyperV.
1846 *
1847 * Unlike the wrapped APIs, this checks whether it's necessary.
1848 *
1849 * @returns VBox strict status code.
1850 * @param pVCpu The cross context per CPU structure.
1851 * @param fWhat What to import.
1852 * @param pszCaller Who is doing the importing.
1853 */
1854DECLINLINE(VBOXSTRICTRC) nemHCWinImportStateIfNeededStrict(PVMCPUCC pVCpu, uint64_t fWhat, const char *pszCaller)
1855{
1856 if (pVCpu->cpum.GstCtx.fExtrn & fWhat)
1857 {
1858# ifdef IN_RING0
1859 return nemR0WinImportStateStrict(pVCpu->pGVM, pVCpu, fWhat, pszCaller);
1860# else
1861 RT_NOREF(pszCaller);
1862 int rc = nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
1863 AssertRCReturn(rc, rc);
1864# endif
1865 }
1866 return VINF_SUCCESS;
1867}
1868#endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API || IN_RING3 */
1869
1870#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1871/**
1872 * Copies register state from the X64 intercept message header.
1873 *
1874 * ASSUMES no state copied yet.
1875 *
1876 * @param pVCpu The cross context per CPU structure.
1877 * @param pHdr The X64 intercept message header.
1878 * @sa nemR3WinCopyStateFromX64Header
1879 */
1880DECLINLINE(void) nemHCWinCopyStateFromX64Header(PVMCPUCC pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pHdr)
1881{
1882 Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
1883 == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
1884 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pHdr->CsSegment);
1885 pVCpu->cpum.GstCtx.rip = pHdr->Rip;
1886 pVCpu->cpum.GstCtx.rflags.u = pHdr->Rflags;
1887
1888 pVCpu->nem.s.fLastInterruptShadow = pHdr->ExecutionState.InterruptShadow;
1889 if (!pHdr->ExecutionState.InterruptShadow)
1890 {
1891 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1892 { /* likely */ }
1893 else
1894 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1895 }
1896 else
1897 EMSetInhibitInterruptsPC(pVCpu, pHdr->Rip);
1898
1899 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
1900}
1901#elif defined(IN_RING3)
1902/**
1903 * Copies register state from the (common) exit context.
1904 *
1905 * ASSUMES no state copied yet.
1906 *
1907 * @param pVCpu The cross context per CPU structure.
1908 * @param pExitCtx The common exit context.
1909 * @sa nemHCWinCopyStateFromX64Header
1910 */
1911DECLINLINE(void) nemR3WinCopyStateFromX64Header(PVMCPUCC pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx)
1912{
1913 Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
1914 == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
1915 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pExitCtx->Cs);
1916 pVCpu->cpum.GstCtx.rip = pExitCtx->Rip;
1917 pVCpu->cpum.GstCtx.rflags.u = pExitCtx->Rflags;
1918
1919 pVCpu->nem.s.fLastInterruptShadow = pExitCtx->ExecutionState.InterruptShadow;
1920 if (!pExitCtx->ExecutionState.InterruptShadow)
1921 {
1922 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1923 { /* likely */ }
1924 else
1925 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1926 }
1927 else
1928 EMSetInhibitInterruptsPC(pVCpu, pExitCtx->Rip);
1929
1930 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
1931}
1932#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
1933
1934
1935#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1936/**
1937 * Deals with memory intercept message.
1938 *
1939 * @returns Strict VBox status code.
1940 * @param pVM The cross context VM structure.
1941 * @param pVCpu The cross context per CPU structure.
1942 * @param pMsg The message.
1943 * @sa nemR3WinHandleExitMemory
1944 */
1945NEM_TMPL_STATIC VBOXSTRICTRC
1946nemHCWinHandleMessageMemory(PVMCC pVM, PVMCPUCC pVCpu, HV_X64_MEMORY_INTERCEPT_MESSAGE const *pMsg)
1947{
1948 uint64_t const uHostTsc = ASMReadTSC();
1949 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
1950 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
1951 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
1952
1953 /*
1954 * Whatever we do, we must clear pending event injection upon resume.
1955 */
1956 if (pMsg->Header.ExecutionState.InterruptionPending)
1957 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
1958
1959# if 0 /* Experiment: 20K -> 34K exit/s. */
1960 if ( pMsg->Header.ExecutionState.EferLma
1961 && pMsg->Header.CsSegment.Long
1962 && pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
1963 {
1964 if ( pMsg->Header.Rip - (uint64_t)0xf65a < (uint64_t)(0xf662 - 0xf65a)
1965 && pMsg->InstructionBytes[0] == 0x89
1966 && pMsg->InstructionBytes[1] == 0x03)
1967 {
1968 pVCpu->cpum.GstCtx.rip = pMsg->Header.Rip + 2;
1969 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP;
1970 AssertMsg(pMsg->Header.InstructionLength == 2, ("%#x\n", pMsg->Header.InstructionLength));
1971 //Log(("%RX64 msg:\n%.80Rhxd\n", pVCpu->cpum.GstCtx.rip, pMsg));
1972 return VINF_SUCCESS;
1973 }
1974 }
1975# endif
1976
1977 /*
1978 * Ask PGM for information about the given GCPhys. We need to check if we're
1979 * out of sync first.
1980 */
1981 NEMHCWINHMACPCCSTATE State = { pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE, false, false };
1982 PGMPHYSNEMPAGEINFO Info;
1983 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMsg->GuestPhysicalAddress, State.fWriteAccess, &Info,
1984 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
1985 if (RT_SUCCESS(rc))
1986 {
1987 if (Info.fNemProt & ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
1988 ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
1989 {
1990 if (State.fCanResume)
1991 {
1992 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
1993 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
1994 pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1995 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1996 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
1997 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
1998 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
1999 return VINF_SUCCESS;
2000 }
2001 }
2002 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
2003 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2004 pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
2005 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
2006 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
2007 }
2008 else
2009 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
2010 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2011 pMsg->GuestPhysicalAddress, rc, State.fDidSomething ? " modified-backing" : "",
2012 g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
2013
2014 /*
2015 * Emulate the memory access, either access handler or special memory.
2016 */
2017 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2018 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2019 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
2020 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
2021 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
2022 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2023 VBOXSTRICTRC rcStrict;
2024# ifdef IN_RING0
2025 rcStrict = nemR0WinImportStateStrict(pVM, pVCpu,
2026 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES, "MemExit");
2027 if (rcStrict != VINF_SUCCESS)
2028 return rcStrict;
2029# else
2030 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2031 AssertRCReturn(rc, rc);
2032# endif
2033
2034 if (pMsg->Reserved1)
2035 Log(("MemExit/Reserved1=%#x\n", pMsg->Reserved1));
2036 if (pMsg->Header.ExecutionState.Reserved0 || pMsg->Header.ExecutionState.Reserved1)
2037 Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pMsg->Header.ExecutionState.Reserved0, pMsg->Header.ExecutionState.Reserved1));
2038
2039 if (!pExitRec)
2040 {
2041 //if (pMsg->InstructionByteCount > 0)
2042 // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
2043 if (pMsg->InstructionByteCount > 0)
2044 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
2045 pMsg->InstructionBytes, pMsg->InstructionByteCount);
2046 else
2047 rcStrict = IEMExecOne(pVCpu);
2048 /** @todo do we need to do anything wrt debugging here? */
2049 }
2050 else
2051 {
2052 /* Frequent access or probing. */
2053 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2054 Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2055 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2056 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2057 }
2058 return rcStrict;
2059}
2060#elif defined(IN_RING3)
2061/**
2062 * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess).
2063 *
2064 * @returns Strict VBox status code.
2065 * @param pVM The cross context VM structure.
2066 * @param pVCpu The cross context per CPU structure.
2067 * @param pExit The VM exit information to handle.
2068 * @sa nemHCWinHandleMessageMemory
2069 */
2070NEM_TMPL_STATIC VBOXSTRICTRC
2071nemR3WinHandleExitMemory(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2072{
2073 uint64_t const uHostTsc = ASMReadTSC();
2074 Assert(pExit->MemoryAccess.AccessInfo.AccessType != 3);
2075
2076 /*
2077 * Whatever we do, we must clear pending event injection upon resume.
2078 */
2079 if (pExit->VpContext.ExecutionState.InterruptionPending)
2080 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2081
2082 /*
2083 * Ask PGM for information about the given GCPhys. We need to check if we're
2084 * out of sync first.
2085 */
2086 NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
2087 PGMPHYSNEMPAGEINFO Info;
2088 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info,
2089 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
2090 if (RT_SUCCESS(rc))
2091 {
2092 if (Info.fNemProt & ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2093 ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
2094 {
2095 if (State.fCanResume)
2096 {
2097 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
2098 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2099 pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
2100 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
2101 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
2102 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
2103 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
2104 return VINF_SUCCESS;
2105 }
2106 }
2107 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
2108 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2109 pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
2110 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
2111 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
2112 }
2113 else
2114 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
2115 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2116 pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "",
2117 g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
2118
2119 /*
2120 * Emulate the memory access, either access handler or special memory.
2121 */
2122 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2123 pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2124 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
2125 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
2126 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
2127 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2128 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2129 AssertRCReturn(rc, rc);
2130 if (pExit->VpContext.ExecutionState.Reserved0 || pExit->VpContext.ExecutionState.Reserved1)
2131 Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pExit->VpContext.ExecutionState.Reserved0, pExit->VpContext.ExecutionState.Reserved1));
2132
2133 VBOXSTRICTRC rcStrict;
2134 if (!pExitRec)
2135 {
2136 //if (pMsg->InstructionByteCount > 0)
2137 // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
2138 if (pExit->MemoryAccess.InstructionByteCount > 0)
2139 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
2140 pExit->MemoryAccess.InstructionBytes, pExit->MemoryAccess.InstructionByteCount);
2141 else
2142 rcStrict = IEMExecOne(pVCpu);
2143 /** @todo do we need to do anything wrt debugging here? */
2144 }
2145 else
2146 {
2147 /* Frequent access or probing. */
2148 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2149 Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2150 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2151 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2152 }
2153 return rcStrict;
2154}
2155#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2156
2157
2158#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2159/**
2160 * Deals with I/O port intercept message.
2161 *
2162 * @returns Strict VBox status code.
2163 * @param pVM The cross context VM structure.
2164 * @param pVCpu The cross context per CPU structure.
2165 * @param pMsg The message.
2166 */
2167NEM_TMPL_STATIC VBOXSTRICTRC
2168nemHCWinHandleMessageIoPort(PVMCC pVM, PVMCPUCC pVCpu, HV_X64_IO_PORT_INTERCEPT_MESSAGE const *pMsg)
2169{
2170 /*
2171 * Assert message sanity.
2172 */
2173 Assert( pMsg->AccessInfo.AccessSize == 1
2174 || pMsg->AccessInfo.AccessSize == 2
2175 || pMsg->AccessInfo.AccessSize == 4);
2176 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
2177 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
2178 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
2179 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRip, pMsg->Header.Rip);
2180 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
2181 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
2182 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRax, pMsg->Rax);
2183 if (pMsg->AccessInfo.StringOp)
2184 {
2185 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterDs, pMsg->DsSegment);
2186 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterEs, pMsg->EsSegment);
2187 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRcx, pMsg->Rcx);
2188 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRsi, pMsg->Rsi);
2189 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRdi, pMsg->Rdi);
2190 }
2191
2192 /*
2193 * Whatever we do, we must clear pending event injection upon resume.
2194 */
2195 if (pMsg->Header.ExecutionState.InterruptionPending)
2196 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2197
2198 /*
2199 * Add history first to avoid two paths doing EMHistoryExec calls.
2200 */
2201 VBOXSTRICTRC rcStrict;
2202 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2203 !pMsg->AccessInfo.StringOp
2204 ? ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2205 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
2206 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
2207 : ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2208 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
2209 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
2210 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2211 if (!pExitRec)
2212 {
2213 if (!pMsg->AccessInfo.StringOp)
2214 {
2215 /*
2216 * Simple port I/O.
2217 */
2218 static uint32_t const s_fAndMask[8] =
2219 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
2220 uint32_t const fAndMask = s_fAndMask[pMsg->AccessInfo.AccessSize];
2221
2222 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2223 if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
2224 {
2225 rcStrict = IOMIOPortWrite(pVM, pVCpu, pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize);
2226 Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
2227 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2228 pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
2229 if (IOM_SUCCESS(rcStrict))
2230 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
2231# ifdef IN_RING0
2232 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
2233 && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
2234 /** @todo check for debug breakpoints */ )
2235 return EMRZSetPendingIoPortWrite(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
2236 pMsg->AccessInfo.AccessSize, (uint32_t)pMsg->Rax & fAndMask);
2237# endif
2238 else
2239 {
2240 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2241 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2242 }
2243 }
2244 else
2245 {
2246 uint32_t uValue = 0;
2247 rcStrict = IOMIOPortRead(pVM, pVCpu, pMsg->PortNumber, &uValue, pMsg->AccessInfo.AccessSize);
2248 Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
2249 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2250 pMsg->PortNumber, pMsg->AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2251 if (IOM_SUCCESS(rcStrict))
2252 {
2253 if (pMsg->AccessInfo.AccessSize != 4)
2254 pVCpu->cpum.GstCtx.rax = (pMsg->Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
2255 else
2256 pVCpu->cpum.GstCtx.rax = uValue;
2257 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2258 Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pMsg->Rax, pVCpu->cpum.GstCtx.rax));
2259 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
2260 }
2261 else
2262 {
2263 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2264 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2265# ifdef IN_RING0
2266 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
2267 && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
2268 /** @todo check for debug breakpoints */ )
2269 return EMRZSetPendingIoPortRead(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
2270 pMsg->AccessInfo.AccessSize);
2271# endif
2272 }
2273 }
2274 }
2275 else
2276 {
2277 /*
2278 * String port I/O.
2279 */
2280 /** @todo Someone at Microsoft please explain how we can get the address mode
2281 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
2282 * getting the default mode, it can always be overridden by a prefix. This
2283 * forces us to interpret the instruction from opcodes, which is suboptimal.
2284 * Both AMD-V and VT-x includes the address size in the exit info, at least on
2285 * CPUs that are reasonably new.
2286 *
2287 * Of course, it's possible this is an undocumented and we just need to do some
2288 * experiments to figure out how it's communicated. Alternatively, we can scan
2289 * the opcode bytes for possible evil prefixes.
2290 */
2291 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2292 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2293 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2294 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
2295 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
2296 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2297 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
2298 pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
2299 pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
2300# ifdef IN_RING0
2301 rcStrict = nemR0WinImportStateStrict(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
2302 if (rcStrict != VINF_SUCCESS)
2303 return rcStrict;
2304# else
2305 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2306 AssertRCReturn(rc, rc);
2307# endif
2308
2309 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
2310 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2311 pMsg->AccessInfo.RepPrefix ? "REP " : "",
2312 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUTS" : "INS",
2313 pMsg->PortNumber, pMsg->AccessInfo.AccessSize ));
2314 rcStrict = IEMExecOne(pVCpu);
2315 }
2316 if (IOM_SUCCESS(rcStrict))
2317 {
2318 /*
2319 * Do debug checks.
2320 */
2321 if ( pMsg->Header.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
2322 || (pMsg->Header.Rflags & X86_EFL_TF)
2323 || DBGFBpIsHwIoArmed(pVM) )
2324 {
2325 /** @todo Debugging. */
2326 }
2327 }
2328 return rcStrict;
2329 }
2330
2331 /*
2332 * Frequent exit or something needing probing.
2333 * Get state and call EMHistoryExec.
2334 */
2335 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2336 if (!pMsg->AccessInfo.StringOp)
2337 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2338 else
2339 {
2340 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2341 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2342 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
2343 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
2344 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
2345 pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
2346 pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
2347 }
2348 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2349
2350# ifdef IN_RING0
2351 rcStrict = nemR0WinImportStateStrict(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
2352 if (rcStrict != VINF_SUCCESS)
2353 return rcStrict;
2354# else
2355 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2356 AssertRCReturn(rc, rc);
2357# endif
2358
2359 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
2360 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2361 pMsg->AccessInfo.RepPrefix ? "REP " : "",
2362 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUT" : "IN",
2363 pMsg->AccessInfo.StringOp ? "S" : "",
2364 pMsg->PortNumber, pMsg->AccessInfo.AccessSize));
2365 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2366 Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2367 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2368 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2369 return rcStrict;
2370}
2371#elif defined(IN_RING3)
2372/**
2373 * Deals with I/O port access exits (WHvRunVpExitReasonX64IoPortAccess).
2374 *
2375 * @returns Strict VBox status code.
2376 * @param pVM The cross context VM structure.
2377 * @param pVCpu The cross context per CPU structure.
2378 * @param pExit The VM exit information to handle.
2379 * @sa nemHCWinHandleMessageIoPort
2380 */
2381NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitIoPort(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2382{
2383 Assert( pExit->IoPortAccess.AccessInfo.AccessSize == 1
2384 || pExit->IoPortAccess.AccessInfo.AccessSize == 2
2385 || pExit->IoPortAccess.AccessInfo.AccessSize == 4);
2386
2387 /*
2388 * Whatever we do, we must clear pending event injection upon resume.
2389 */
2390 if (pExit->VpContext.ExecutionState.InterruptionPending)
2391 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2392
2393 /*
2394 * Add history first to avoid two paths doing EMHistoryExec calls.
2395 */
2396 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2397 !pExit->IoPortAccess.AccessInfo.StringOp
2398 ? ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2399 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
2400 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
2401 : ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2402 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
2403 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
2404 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2405 if (!pExitRec)
2406 {
2407 VBOXSTRICTRC rcStrict;
2408 if (!pExit->IoPortAccess.AccessInfo.StringOp)
2409 {
2410 /*
2411 * Simple port I/O.
2412 */
2413 static uint32_t const s_fAndMask[8] =
2414 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
2415 uint32_t const fAndMask = s_fAndMask[pExit->IoPortAccess.AccessInfo.AccessSize];
2416 if (pExit->IoPortAccess.AccessInfo.IsWrite)
2417 {
2418 rcStrict = IOMIOPortWrite(pVM, pVCpu, pExit->IoPortAccess.PortNumber,
2419 (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
2420 pExit->IoPortAccess.AccessInfo.AccessSize);
2421 Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
2422 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2423 pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
2424 pExit->IoPortAccess.AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
2425 if (IOM_SUCCESS(rcStrict))
2426 {
2427 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2428 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
2429 }
2430 }
2431 else
2432 {
2433 uint32_t uValue = 0;
2434 rcStrict = IOMIOPortRead(pVM, pVCpu, pExit->IoPortAccess.PortNumber, &uValue,
2435 pExit->IoPortAccess.AccessInfo.AccessSize);
2436 Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
2437 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2438 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2439 if (IOM_SUCCESS(rcStrict))
2440 {
2441 if (pExit->IoPortAccess.AccessInfo.AccessSize != 4)
2442 pVCpu->cpum.GstCtx.rax = (pExit->IoPortAccess.Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
2443 else
2444 pVCpu->cpum.GstCtx.rax = uValue;
2445 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2446 Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pExit->IoPortAccess.Rax, pVCpu->cpum.GstCtx.rax));
2447 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2448 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
2449 }
2450 }
2451 }
2452 else
2453 {
2454 /*
2455 * String port I/O.
2456 */
2457 /** @todo Someone at Microsoft please explain how we can get the address mode
2458 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
2459 * getting the default mode, it can always be overridden by a prefix. This
2460 * forces us to interpret the instruction from opcodes, which is suboptimal.
2461 * Both AMD-V and VT-x includes the address size in the exit info, at least on
2462 * CPUs that are reasonably new.
2463 *
2464 * Of course, it's possible this is an undocumented and we just need to do some
2465 * experiments to figure out how it's communicated. Alternatively, we can scan
2466 * the opcode bytes for possible evil prefixes.
2467 */
2468 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2469 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2470 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2471 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
2472 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
2473 pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
2474 pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
2475 pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
2476 pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
2477 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2478 AssertRCReturn(rc, rc);
2479
2480 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
2481 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2482 pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
2483 pExit->IoPortAccess.AccessInfo.IsWrite ? "OUTS" : "INS",
2484 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize ));
2485 rcStrict = IEMExecOne(pVCpu);
2486 }
2487 if (IOM_SUCCESS(rcStrict))
2488 {
2489 /*
2490 * Do debug checks.
2491 */
2492 if ( pExit->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
2493 || (pExit->VpContext.Rflags & X86_EFL_TF)
2494 || DBGFBpIsHwIoArmed(pVM) )
2495 {
2496 /** @todo Debugging. */
2497 }
2498 }
2499 return rcStrict;
2500 }
2501
2502 /*
2503 * Frequent exit or something needing probing.
2504 * Get state and call EMHistoryExec.
2505 */
2506 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2507 if (!pExit->IoPortAccess.AccessInfo.StringOp)
2508 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2509 else
2510 {
2511 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2512 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2513 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
2514 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
2515 pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
2516 pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
2517 pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
2518 }
2519 pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
2520 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2521 AssertRCReturn(rc, rc);
2522 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
2523 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2524 pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
2525 pExit->IoPortAccess.AccessInfo.IsWrite ? "OUT" : "IN",
2526 pExit->IoPortAccess.AccessInfo.StringOp ? "S" : "",
2527 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize));
2528 VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2529 Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2530 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2531 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2532 return rcStrict;
2533}
2534#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2535
2536
2537#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2538/**
2539 * Deals with interrupt window message.
2540 *
2541 * @returns Strict VBox status code.
2542 * @param pVM The cross context VM structure.
2543 * @param pVCpu The cross context per CPU structure.
2544 * @param pMsg The message.
2545 * @sa nemR3WinHandleExitInterruptWindow
2546 */
2547NEM_TMPL_STATIC VBOXSTRICTRC
2548nemHCWinHandleMessageInterruptWindow(PVMCC pVM, PVMCPUCC pVCpu, HV_X64_INTERRUPT_WINDOW_MESSAGE const *pMsg)
2549{
2550 /*
2551 * Assert message sanity.
2552 */
2553 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE
2554 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ // READ & WRITE are probably not used here
2555 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
2556 AssertMsg(pMsg->Type == HvX64PendingInterrupt || pMsg->Type == HvX64PendingNmi, ("%#x\n", pMsg->Type));
2557
2558 /*
2559 * Just copy the state we've got and handle it in the loop for now.
2560 */
2561 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
2562 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2563
2564 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2565 Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
2566 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2567 pMsg->Type, RT_BOOL(pMsg->Header.Rflags & X86_EFL_IF), pMsg->Header.ExecutionState.InterruptShadow));
2568
2569 /** @todo call nemHCWinHandleInterruptFF */
2570 RT_NOREF(pVM);
2571 return VINF_SUCCESS;
2572}
2573#elif defined(IN_RING3)
2574/**
2575 * Deals with interrupt window exits (WHvRunVpExitReasonX64InterruptWindow).
2576 *
2577 * @returns Strict VBox status code.
2578 * @param pVM The cross context VM structure.
2579 * @param pVCpu The cross context per CPU structure.
2580 * @param pExit The VM exit information to handle.
2581 * @sa nemHCWinHandleMessageInterruptWindow
2582 */
2583NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitInterruptWindow(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2584{
2585 /*
2586 * Assert message sanity.
2587 */
2588 AssertMsg( pExit->InterruptWindow.DeliverableType == WHvX64PendingInterrupt
2589 || pExit->InterruptWindow.DeliverableType == WHvX64PendingNmi,
2590 ("%#x\n", pExit->InterruptWindow.DeliverableType));
2591
2592 /*
2593 * Just copy the state we've got and handle it in the loop for now.
2594 */
2595 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
2596 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2597
2598 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2599 Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
2600 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2601 pExit->InterruptWindow.DeliverableType, RT_BOOL(pExit->VpContext.Rflags & X86_EFL_IF),
2602 pExit->VpContext.ExecutionState.InterruptShadow));
2603
2604 /** @todo call nemHCWinHandleInterruptFF */
2605 RT_NOREF(pVM);
2606 return VINF_SUCCESS;
2607}
2608#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2609
2610
2611#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2612/**
2613 * Deals with CPUID intercept message.
2614 *
2615 * @returns Strict VBox status code.
2616 * @param pVM The cross context VM structure.
2617 * @param pVCpu The cross context per CPU structure.
2618 * @param pMsg The message.
2619 * @sa nemR3WinHandleExitCpuId
2620 */
2621NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageCpuId(PVMCC pVM, PVMCPUCC pVCpu, HV_X64_CPUID_INTERCEPT_MESSAGE const *pMsg)
2622{
2623 /* Check message register value sanity. */
2624 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
2625 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRip, pMsg->Header.Rip);
2626 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
2627 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
2628 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRax, pMsg->Rax);
2629 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRcx, pMsg->Rcx);
2630 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRdx, pMsg->Rdx);
2631 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRbx, pMsg->Rbx);
2632
2633 /* Do exit history. */
2634 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
2635 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2636 if (!pExitRec)
2637 {
2638 /*
2639 * Soak up state and execute the instruction.
2640 *
2641 * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
2642 * function and make everyone use it.
2643 */
2644 /** @todo Combine implementations into IEMExecDecodedCpuId as this will
2645 * only get weirder with nested VT-x and AMD-V support. */
2646 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2647
2648 /* Copy in the low register values (top is always cleared). */
2649 pVCpu->cpum.GstCtx.rax = (uint32_t)pMsg->Rax;
2650 pVCpu->cpum.GstCtx.rcx = (uint32_t)pMsg->Rcx;
2651 pVCpu->cpum.GstCtx.rdx = (uint32_t)pMsg->Rdx;
2652 pVCpu->cpum.GstCtx.rbx = (uint32_t)pMsg->Rbx;
2653 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2654
2655 /* Get the correct values. */
2656 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
2657 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
2658
2659 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
2660 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2661 pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
2662 pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
2663 pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
2664
2665 /* Move RIP and we're done. */
2666 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
2667
2668 return VINF_SUCCESS;
2669 }
2670
2671 /*
2672 * Frequent exit or something needing probing.
2673 * Get state and call EMHistoryExec.
2674 */
2675 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2676 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2677 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
2678 pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
2679 pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
2680 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2681 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
2682 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2683 pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
2684 pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
2685# ifdef IN_RING0
2686 VBOXSTRICTRC rcStrict = nemR0WinImportStateStrict(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "CpuIdExit");
2687 if (rcStrict != VINF_SUCCESS)
2688 return rcStrict;
2689 RT_NOREF(pVM);
2690# else
2691 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2692 AssertRCReturn(rc, rc);
2693# endif
2694 VBOXSTRICTRC rcStrictExec = EMHistoryExec(pVCpu, pExitRec, 0);
2695 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2696 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2697 VBOXSTRICTRC_VAL(rcStrictExec), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2698 return rcStrictExec;
2699}
2700#elif defined(IN_RING3)
2701/**
2702 * Deals with CPUID exits (WHvRunVpExitReasonX64Cpuid).
2703 *
2704 * @returns Strict VBox status code.
2705 * @param pVM The cross context VM structure.
2706 * @param pVCpu The cross context per CPU structure.
2707 * @param pExit The VM exit information to handle.
2708 * @sa nemHCWinHandleMessageCpuId
2709 */
2710NEM_TMPL_STATIC VBOXSTRICTRC
2711nemR3WinHandleExitCpuId(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2712{
2713 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
2714 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2715 if (!pExitRec)
2716 {
2717 /*
2718 * Soak up state and execute the instruction.
2719 *
2720 * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
2721 * function and make everyone use it.
2722 */
2723 /** @todo Combine implementations into IEMExecDecodedCpuId as this will
2724 * only get weirder with nested VT-x and AMD-V support. */
2725 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2726
2727 /* Copy in the low register values (top is always cleared). */
2728 pVCpu->cpum.GstCtx.rax = (uint32_t)pExit->CpuidAccess.Rax;
2729 pVCpu->cpum.GstCtx.rcx = (uint32_t)pExit->CpuidAccess.Rcx;
2730 pVCpu->cpum.GstCtx.rdx = (uint32_t)pExit->CpuidAccess.Rdx;
2731 pVCpu->cpum.GstCtx.rbx = (uint32_t)pExit->CpuidAccess.Rbx;
2732 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2733
2734 /* Get the correct values. */
2735 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
2736 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
2737
2738 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
2739 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2740 pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
2741 pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
2742 pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
2743
2744 /* Move RIP and we're done. */
2745 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
2746
2747 RT_NOREF_PV(pVM);
2748 return VINF_SUCCESS;
2749 }
2750
2751 /*
2752 * Frequent exit or something needing probing.
2753 * Get state and call EMHistoryExec.
2754 */
2755 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2756 pVCpu->cpum.GstCtx.rax = pExit->CpuidAccess.Rax;
2757 pVCpu->cpum.GstCtx.rcx = pExit->CpuidAccess.Rcx;
2758 pVCpu->cpum.GstCtx.rdx = pExit->CpuidAccess.Rdx;
2759 pVCpu->cpum.GstCtx.rbx = pExit->CpuidAccess.Rbx;
2760 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2761 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
2762 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2763 pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
2764 pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
2765 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2766 AssertRCReturn(rc, rc);
2767 VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2768 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2769 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2770 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2771 return rcStrict;
2772}
2773#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2774
2775
2776#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2777/**
2778 * Deals with MSR intercept message.
2779 *
2780 * @returns Strict VBox status code.
2781 * @param pVCpu The cross context per CPU structure.
2782 * @param pMsg The message.
2783 * @sa nemR3WinHandleExitMsr
2784 */
2785NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageMsr(PVMCPUCC pVCpu, HV_X64_MSR_INTERCEPT_MESSAGE const *pMsg)
2786{
2787 /*
2788 * A wee bit of sanity first.
2789 */
2790 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
2791 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
2792 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
2793 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRip, pMsg->Header.Rip);
2794 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
2795 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
2796 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRax, pMsg->Rax);
2797 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRdx, pMsg->Rdx);
2798
2799 /*
2800 * Check CPL as that's common to both RDMSR and WRMSR.
2801 */
2802 VBOXSTRICTRC rcStrict;
2803 if (pMsg->Header.ExecutionState.Cpl == 0)
2804 {
2805 /*
2806 * Get all the MSR state. Since we're getting EFER, we also need to
2807 * get CR0, CR4 and CR3.
2808 */
2809 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2810 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2811 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
2812 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
2813 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2814
2815 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2816 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu,
2817 (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
2818 | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
2819 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
2820 "MSRs");
2821 if (rcStrict == VINF_SUCCESS)
2822 {
2823 if (!pExitRec)
2824 {
2825 /*
2826 * Handle writes.
2827 */
2828 if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
2829 {
2830 rcStrict = CPUMSetGuestMsr(pVCpu, pMsg->MsrNumber, RT_MAKE_U64((uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx));
2831 Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n",
2832 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2833 pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
2834 if (rcStrict == VINF_SUCCESS)
2835 {
2836 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
2837 return VINF_SUCCESS;
2838 }
2839# ifndef IN_RING3
2840 /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
2841 if (rcStrict == VERR_CPUM_RAISE_GP_0)
2842 rcStrict = VINF_CPUM_R3_MSR_WRITE;
2843 return rcStrict;
2844# else
2845 LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n",
2846 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2847 pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
2848# endif
2849 }
2850 /*
2851 * Handle reads.
2852 */
2853 else
2854 {
2855 uint64_t uValue = 0;
2856 rcStrict = CPUMQueryGuestMsr(pVCpu, pMsg->MsrNumber, &uValue);
2857 Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
2858 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2859 pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2860 if (rcStrict == VINF_SUCCESS)
2861 {
2862 pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
2863 pVCpu->cpum.GstCtx.rdx = uValue >> 32;
2864 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
2865 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
2866 return VINF_SUCCESS;
2867 }
2868# ifndef IN_RING3
2869 /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
2870 if (rcStrict == VERR_CPUM_RAISE_GP_0)
2871 rcStrict = VINF_CPUM_R3_MSR_READ;
2872 return rcStrict;
2873# else
2874 LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
2875 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2876 pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2877# endif
2878 }
2879 }
2880 else
2881 {
2882 /*
2883 * Handle frequent exit or something needing probing.
2884 */
2885 Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
2886 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2887 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD", pMsg->MsrNumber));
2888 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2889 Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2890 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2891 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2892 return rcStrict;
2893 }
2894 }
2895 else
2896 {
2897 LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
2898 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2899 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD",
2900 pMsg->MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
2901 return rcStrict;
2902 }
2903 }
2904 else if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
2905 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n",
2906 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2907 pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx ));
2908 else
2909 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n",
2910 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2911 pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber));
2912
2913 /*
2914 * If we get down here, we're supposed to #GP(0).
2915 */
2916 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
2917 if (rcStrict == VINF_SUCCESS)
2918 {
2919 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
2920 if (rcStrict == VINF_IEM_RAISED_XCPT)
2921 rcStrict = VINF_SUCCESS;
2922 else if (rcStrict != VINF_SUCCESS)
2923 Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
2924 }
2925 return rcStrict;
2926}
2927#elif defined(IN_RING3)
2928/**
2929 * Deals with MSR access exits (WHvRunVpExitReasonX64MsrAccess).
2930 *
2931 * @returns Strict VBox status code.
2932 * @param pVM The cross context VM structure.
2933 * @param pVCpu The cross context per CPU structure.
2934 * @param pExit The VM exit information to handle.
2935 * @sa nemHCWinHandleMessageMsr
2936 */
2937NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMsr(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2938{
2939 /*
2940 * Check CPL as that's common to both RDMSR and WRMSR.
2941 */
2942 VBOXSTRICTRC rcStrict;
2943 if (pExit->VpContext.ExecutionState.Cpl == 0)
2944 {
2945 /*
2946 * Get all the MSR state. Since we're getting EFER, we also need to
2947 * get CR0, CR4 and CR3.
2948 */
2949 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2950 pExit->MsrAccess.AccessInfo.IsWrite
2951 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
2952 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
2953 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2954 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2955 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu,
2956 (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
2957 | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
2958 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
2959 "MSRs");
2960 if (rcStrict == VINF_SUCCESS)
2961 {
2962 if (!pExitRec)
2963 {
2964 /*
2965 * Handle writes.
2966 */
2967 if (pExit->MsrAccess.AccessInfo.IsWrite)
2968 {
2969 rcStrict = CPUMSetGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber,
2970 RT_MAKE_U64((uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx));
2971 Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2972 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
2973 (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
2974 if (rcStrict == VINF_SUCCESS)
2975 {
2976 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
2977 return VINF_SUCCESS;
2978 }
2979 LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n", pVCpu->idCpu,
2980 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2981 pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx,
2982 VBOXSTRICTRC_VAL(rcStrict) ));
2983 }
2984 /*
2985 * Handle reads.
2986 */
2987 else
2988 {
2989 uint64_t uValue = 0;
2990 rcStrict = CPUMQueryGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, &uValue);
2991 Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu,
2992 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2993 pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2994 if (rcStrict == VINF_SUCCESS)
2995 {
2996 pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
2997 pVCpu->cpum.GstCtx.rdx = uValue >> 32;
2998 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
2999 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
3000 return VINF_SUCCESS;
3001 }
3002 LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3003 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
3004 uValue, VBOXSTRICTRC_VAL(rcStrict) ));
3005 }
3006 }
3007 else
3008 {
3009 /*
3010 * Handle frequent exit or something needing probing.
3011 */
3012 Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
3013 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3014 pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber));
3015 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
3016 Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
3017 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3018 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
3019 return rcStrict;
3020 }
3021 }
3022 else
3023 {
3024 LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
3025 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3026 pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
3027 return rcStrict;
3028 }
3029 }
3030 else if (pExit->MsrAccess.AccessInfo.IsWrite)
3031 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3032 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
3033 pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx ));
3034 else
3035 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3036 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
3037 pExit->MsrAccess.MsrNumber));
3038
3039 /*
3040 * If we get down here, we're supposed to #GP(0).
3041 */
3042 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
3043 if (rcStrict == VINF_SUCCESS)
3044 {
3045 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
3046 if (rcStrict == VINF_IEM_RAISED_XCPT)
3047 rcStrict = VINF_SUCCESS;
3048 else if (rcStrict != VINF_SUCCESS)
3049 Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
3050 }
3051
3052 RT_NOREF_PV(pVM);
3053 return rcStrict;
3054}
3055#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3056
3057
3058/**
3059 * Worker for nemHCWinHandleMessageException & nemR3WinHandleExitException that
3060 * checks if the given opcodes are of interest at all.
3061 *
3062 * @returns true if interesting, false if not.
3063 * @param cbOpcodes Number of opcode bytes available.
3064 * @param pbOpcodes The opcode bytes.
3065 * @param f64BitMode Whether we're in 64-bit mode.
3066 */
3067DECLINLINE(bool) nemHcWinIsInterestingUndefinedOpcode(uint8_t cbOpcodes, uint8_t const *pbOpcodes, bool f64BitMode)
3068{
3069 /*
3070 * Currently only interested in VMCALL and VMMCALL.
3071 */
3072 while (cbOpcodes >= 3)
3073 {
3074 switch (pbOpcodes[0])
3075 {
3076 case 0x0f:
3077 switch (pbOpcodes[1])
3078 {
3079 case 0x01:
3080 switch (pbOpcodes[2])
3081 {
3082 case 0xc1: /* 0f 01 c1 VMCALL */
3083 return true;
3084 case 0xd9: /* 0f 01 d9 VMMCALL */
3085 return true;
3086 default:
3087 break;
3088 }
3089 break;
3090 }
3091 break;
3092
3093 default:
3094 return false;
3095
3096 /* prefixes */
3097 case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
3098 case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
3099 if (!f64BitMode)
3100 return false;
3101 RT_FALL_THRU();
3102 case X86_OP_PRF_CS:
3103 case X86_OP_PRF_SS:
3104 case X86_OP_PRF_DS:
3105 case X86_OP_PRF_ES:
3106 case X86_OP_PRF_FS:
3107 case X86_OP_PRF_GS:
3108 case X86_OP_PRF_SIZE_OP:
3109 case X86_OP_PRF_SIZE_ADDR:
3110 case X86_OP_PRF_LOCK:
3111 case X86_OP_PRF_REPZ:
3112 case X86_OP_PRF_REPNZ:
3113 cbOpcodes--;
3114 pbOpcodes++;
3115 continue;
3116 }
3117 break;
3118 }
3119 return false;
3120}
3121
3122
3123#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3124/**
3125 * Copies state included in a exception intercept message.
3126 *
3127 * @param pVCpu The cross context per CPU structure.
3128 * @param pMsg The message.
3129 * @param fClearXcpt Clear pending exception.
3130 */
3131DECLINLINE(void)
3132nemHCWinCopyStateFromExceptionMessage(PVMCPUCC pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, bool fClearXcpt)
3133{
3134 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
3135 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_DS
3136 | (fClearXcpt ? CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT : 0) );
3137 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
3138 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
3139 pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
3140 pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
3141 pVCpu->cpum.GstCtx.rsp = pMsg->Rsp;
3142 pVCpu->cpum.GstCtx.rbp = pMsg->Rbp;
3143 pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
3144 pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
3145 pVCpu->cpum.GstCtx.r8 = pMsg->R8;
3146 pVCpu->cpum.GstCtx.r9 = pMsg->R9;
3147 pVCpu->cpum.GstCtx.r10 = pMsg->R10;
3148 pVCpu->cpum.GstCtx.r11 = pMsg->R11;
3149 pVCpu->cpum.GstCtx.r12 = pMsg->R12;
3150 pVCpu->cpum.GstCtx.r13 = pMsg->R13;
3151 pVCpu->cpum.GstCtx.r14 = pMsg->R14;
3152 pVCpu->cpum.GstCtx.r15 = pMsg->R15;
3153 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
3154 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ss, pMsg->SsSegment);
3155}
3156#elif defined(IN_RING3)
3157/**
3158 * Copies state included in a exception intercept exit.
3159 *
3160 * @param pVCpu The cross context per CPU structure.
3161 * @param pExit The VM exit information.
3162 * @param fClearXcpt Clear pending exception.
3163 */
3164DECLINLINE(void) nemR3WinCopyStateFromExceptionMessage(PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, bool fClearXcpt)
3165{
3166 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
3167 if (fClearXcpt)
3168 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
3169}
3170#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3171
3172
3173#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3174/**
3175 * Deals with exception intercept message (HvMessageTypeX64ExceptionIntercept).
3176 *
3177 * @returns Strict VBox status code.
3178 * @param pVCpu The cross context per CPU structure.
3179 * @param pMsg The message.
3180 * @sa nemR3WinHandleExitMsr
3181 */
3182NEM_TMPL_STATIC VBOXSTRICTRC
3183nemHCWinHandleMessageException(PVMCPUCC pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg)
3184{
3185 /*
3186 * Assert sanity.
3187 */
3188 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
3189 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
3190 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
3191 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
3192 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRip, pMsg->Header.Rip);
3193 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
3194 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
3195 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterDs, pMsg->DsSegment);
3196 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterSs, pMsg->SsSegment);
3197 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRax, pMsg->Rax);
3198 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRcx, pMsg->Rcx);
3199 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRdx, pMsg->Rdx);
3200 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRbx, pMsg->Rbx);
3201 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRsp, pMsg->Rsp);
3202 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRbp, pMsg->Rbp);
3203 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRsi, pMsg->Rsi);
3204 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRdi, pMsg->Rdi);
3205 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR8, pMsg->R8);
3206 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR9, pMsg->R9);
3207 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR10, pMsg->R10);
3208 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR11, pMsg->R11);
3209 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR12, pMsg->R12);
3210 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR13, pMsg->R13);
3211 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR14, pMsg->R14);
3212 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterR15, pMsg->R15);
3213
3214 /*
3215 * Get most of the register state since we'll end up making IEM inject the
3216 * event. The exception isn't normally flaged as a pending event, so duh.
3217 *
3218 * Note! We can optimize this later with event injection.
3219 */
3220 Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n",
3221 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
3222 pMsg->ExceptionVector, pMsg->ErrorCode, pMsg->ExceptionParameter));
3223 nemHCWinCopyStateFromExceptionMessage(pVCpu, pMsg, true /*fClearXcpt*/);
3224 uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
3225 if (pMsg->ExceptionVector == X86_XCPT_DB)
3226 fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
3227 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, fWhat, "Xcpt");
3228 if (rcStrict != VINF_SUCCESS)
3229 return rcStrict;
3230
3231 /*
3232 * Handle the intercept.
3233 */
3234 TRPMEVENT enmEvtType = TRPM_TRAP;
3235 switch (pMsg->ExceptionVector)
3236 {
3237 /*
3238 * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
3239 * and need to turn them over to GIM.
3240 *
3241 * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
3242 * #UD for handling non-native hypercall instructions. (IEM will
3243 * decode both and let the GIM provider decide whether to accept it.)
3244 */
3245 case X86_XCPT_UD:
3246 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
3247 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
3248 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
3249
3250 if (nemHcWinIsInterestingUndefinedOpcode(pMsg->InstructionByteCount, pMsg->InstructionBytes,
3251 pMsg->Header.ExecutionState.EferLma && pMsg->Header.CsSegment.Long ))
3252 {
3253 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
3254 pMsg->InstructionBytes, pMsg->InstructionByteCount);
3255 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
3256 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
3257 nemHCWinExecStateToLogStr(&pMsg->Header), VBOXSTRICTRC_VAL(rcStrict) ));
3258 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
3259 return rcStrict;
3260 }
3261 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
3262 pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->InstructionByteCount, pMsg->InstructionBytes ));
3263 break;
3264
3265 /*
3266 * Filter debug exceptions.
3267 */
3268 case X86_XCPT_DB:
3269 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
3270 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
3271 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
3272 Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
3273 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header) ));
3274 break;
3275
3276 case X86_XCPT_BP:
3277 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
3278 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
3279 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
3280 Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
3281 pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->Header.InstructionLength));
3282 enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
3283 break;
3284
3285 /* This shouldn't happen. */
3286 default:
3287 AssertLogRelMsgFailedReturn(("ExceptionVector=%#x\n", pMsg->ExceptionVector), VERR_IEM_IPE_6);
3288 }
3289
3290 /*
3291 * Inject it.
3292 */
3293 rcStrict = IEMInjectTrap(pVCpu, pMsg->ExceptionVector, enmEvtType, pMsg->ErrorCode,
3294 pMsg->ExceptionParameter /*??*/, pMsg->Header.InstructionLength);
3295 Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
3296 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
3297 nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->ExceptionVector, VBOXSTRICTRC_VAL(rcStrict) ));
3298 return rcStrict;
3299}
3300#elif defined(IN_RING3)
3301/**
3302 * Deals with MSR access exits (WHvRunVpExitReasonException).
3303 *
3304 * @returns Strict VBox status code.
3305 * @param pVM The cross context VM structure.
3306 * @param pVCpu The cross context per CPU structure.
3307 * @param pExit The VM exit information to handle.
3308 * @sa nemR3WinHandleExitException
3309 */
3310NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitException(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
3311{
3312 /*
3313 * Get most of the register state since we'll end up making IEM inject the
3314 * event. The exception isn't normally flaged as a pending event, so duh.
3315 *
3316 * Note! We can optimize this later with event injection.
3317 */
3318 Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3319 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType,
3320 pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter ));
3321 nemR3WinCopyStateFromExceptionMessage(pVCpu, pExit, true /*fClearXcpt*/);
3322 uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
3323 if (pExit->VpException.ExceptionType == X86_XCPT_DB)
3324 fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
3325 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, fWhat, "Xcpt");
3326 if (rcStrict != VINF_SUCCESS)
3327 return rcStrict;
3328
3329 /*
3330 * Handle the intercept.
3331 */
3332 TRPMEVENT enmEvtType = TRPM_TRAP;
3333 switch (pExit->VpException.ExceptionType)
3334 {
3335 /*
3336 * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
3337 * and need to turn them over to GIM.
3338 *
3339 * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
3340 * #UD for handling non-native hypercall instructions. (IEM will
3341 * decode both and let the GIM provider decide whether to accept it.)
3342 */
3343 case X86_XCPT_UD:
3344 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
3345 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
3346 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3347 if (nemHcWinIsInterestingUndefinedOpcode(pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes,
3348 pExit->VpContext.ExecutionState.EferLma && pExit->VpContext.Cs.Long ))
3349 {
3350 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
3351 pExit->VpException.InstructionBytes,
3352 pExit->VpException.InstructionByteCount);
3353 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
3354 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
3355 nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) ));
3356 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
3357 return rcStrict;
3358 }
3359
3360 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu,
3361 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3362 pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes ));
3363 break;
3364
3365 /*
3366 * Filter debug exceptions.
3367 */
3368 case X86_XCPT_DB:
3369 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
3370 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
3371 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3372 Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
3373 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext) ));
3374 break;
3375
3376 case X86_XCPT_BP:
3377 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
3378 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
3379 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3380 Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3381 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.InstructionLength));
3382 enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
3383 break;
3384
3385 /* This shouldn't happen. */
3386 default:
3387 AssertLogRelMsgFailedReturn(("ExceptionType=%#x\n", pExit->VpException.ExceptionType), VERR_IEM_IPE_6);
3388 }
3389
3390 /*
3391 * Inject it.
3392 */
3393 rcStrict = IEMInjectTrap(pVCpu, pExit->VpException.ExceptionType, enmEvtType, pExit->VpException.ErrorCode,
3394 pExit->VpException.ExceptionParameter /*??*/, pExit->VpContext.InstructionLength);
3395 Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
3396 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
3397 nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, VBOXSTRICTRC_VAL(rcStrict) ));
3398
3399 RT_NOREF_PV(pVM);
3400 return rcStrict;
3401}
3402#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3403
3404
3405#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3406/**
3407 * Deals with unrecoverable exception (triple fault).
3408 *
3409 * Seen WRMSR 0x201 (IA32_MTRR_PHYSMASK0) writes from grub / debian9 ending up
3410 * here too. So we'll leave it to IEM to decide.
3411 *
3412 * @returns Strict VBox status code.
3413 * @param pVCpu The cross context per CPU structure.
3414 * @param pMsgHdr The message header.
3415 * @sa nemR3WinHandleExitUnrecoverableException
3416 */
3417NEM_TMPL_STATIC VBOXSTRICTRC
3418nemHCWinHandleMessageUnrecoverableException(PVMCPUCC pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
3419{
3420 /* Check message register value sanity. */
3421 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, HvX64RegisterCs, pMsgHdr->CsSegment);
3422 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRip, pMsgHdr->Rip);
3423 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterRflags, pMsgHdr->Rflags);
3424 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, HvX64RegisterCr8, (uint64_t)pMsgHdr->Cr8);
3425
3426# if 0
3427 /*
3428 * Just copy the state we've got and handle it in the loop for now.
3429 */
3430 nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
3431 Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n",
3432 pVCpu->idCpu, pMsgHdr->CsSegment.Selector, pMsgHdr->Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsgHdr->Rflags));
3433 return VINF_EM_TRIPLE_FAULT;
3434# else
3435 /*
3436 * Let IEM decide whether this is really it.
3437 */
3438 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
3439 pMsgHdr->Rip + pMsgHdr->CsSegment.Base, ASMReadTSC());
3440 nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
3441 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
3442 if (rcStrict == VINF_SUCCESS)
3443 {
3444 rcStrict = IEMExecOne(pVCpu);
3445 if (rcStrict == VINF_SUCCESS)
3446 {
3447 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3448 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags ));
3449 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
3450 return VINF_SUCCESS;
3451 }
3452 if (rcStrict == VINF_EM_TRIPLE_FAULT)
3453 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3454 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3455 else
3456 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3457 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3458 }
3459 else
3460 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3461 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3462 return rcStrict;
3463# endif
3464}
3465#elif defined(IN_RING3)
3466/**
3467 * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException).
3468 *
3469 * @returns Strict VBox status code.
3470 * @param pVM The cross context VM structure.
3471 * @param pVCpu The cross context per CPU structure.
3472 * @param pExit The VM exit information to handle.
3473 * @sa nemHCWinHandleMessageUnrecoverableException
3474 */
3475NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitUnrecoverableException(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
3476{
3477# if 0
3478 /*
3479 * Just copy the state we've got and handle it in the loop for now.
3480 */
3481 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
3482 Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3483 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
3484 RT_NOREF_PV(pVM);
3485 return VINF_EM_TRIPLE_FAULT;
3486# else
3487 /*
3488 * Let IEM decide whether this is really it.
3489 */
3490 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
3491 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3492 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
3493 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
3494 if (rcStrict == VINF_SUCCESS)
3495 {
3496 rcStrict = IEMExecOne(pVCpu);
3497 if (rcStrict == VINF_SUCCESS)
3498 {
3499 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3500 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
3501 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
3502 return VINF_SUCCESS;
3503 }
3504 if (rcStrict == VINF_EM_TRIPLE_FAULT)
3505 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3506 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3507 else
3508 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3509 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3510 }
3511 else
3512 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3513 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3514 RT_NOREF_PV(pVM);
3515 return rcStrict;
3516# endif
3517
3518}
3519#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3520
3521
3522#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3523/**
3524 * Handles messages (VM exits).
3525 *
3526 * @returns Strict VBox status code.
3527 * @param pVM The cross context VM structure.
3528 * @param pVCpu The cross context per CPU structure.
3529 * @param pMappingHeader The message slot mapping.
3530 * @sa nemR3WinHandleExit
3531 */
3532NEM_TMPL_STATIC VBOXSTRICTRC
3533nemHCWinHandleMessage(PVMCC pVM, PVMCPUCC pVCpu, VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader)
3534{
3535 if (pMappingHeader->enmVidMsgType == VidMessageHypervisorMessage)
3536 {
3537 AssertMsg(pMappingHeader->cbMessage == HV_MESSAGE_SIZE, ("%#x\n", pMappingHeader->cbMessage));
3538 HV_MESSAGE const *pMsg = (HV_MESSAGE const *)(pMappingHeader + 1);
3539 switch (pMsg->Header.MessageType)
3540 {
3541 case HvMessageTypeUnmappedGpa:
3542 Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
3543 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
3544 return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept);
3545
3546 case HvMessageTypeGpaIntercept:
3547 Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
3548 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemIntercept);
3549 return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept);
3550
3551 case HvMessageTypeX64IoPortIntercept:
3552 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64IoPortIntercept));
3553 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
3554 return nemHCWinHandleMessageIoPort(pVM, pVCpu, &pMsg->X64IoPortIntercept);
3555
3556 case HvMessageTypeX64Halt:
3557 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
3558 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
3559 pMsg->X64InterceptHeader.Rip + pMsg->X64InterceptHeader.CsSegment.Base, ASMReadTSC());
3560 Log4(("HaltExit\n"));
3561 return VINF_EM_HALT;
3562
3563 case HvMessageTypeX64InterruptWindow:
3564 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterruptWindow));
3565 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
3566 return nemHCWinHandleMessageInterruptWindow(pVM, pVCpu, &pMsg->X64InterruptWindow);
3567
3568 case HvMessageTypeX64CpuidIntercept:
3569 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64CpuIdIntercept));
3570 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
3571 return nemHCWinHandleMessageCpuId(pVM, pVCpu, &pMsg->X64CpuIdIntercept);
3572
3573 case HvMessageTypeX64MsrIntercept:
3574 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64MsrIntercept));
3575 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
3576 return nemHCWinHandleMessageMsr(pVCpu, &pMsg->X64MsrIntercept);
3577
3578 case HvMessageTypeX64ExceptionIntercept:
3579 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64ExceptionIntercept));
3580 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
3581 return nemHCWinHandleMessageException(pVCpu, &pMsg->X64ExceptionIntercept);
3582
3583 case HvMessageTypeUnrecoverableException:
3584 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterceptHeader));
3585 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
3586 return nemHCWinHandleMessageUnrecoverableException(pVCpu, &pMsg->X64InterceptHeader);
3587
3588 case HvMessageTypeInvalidVpRegisterValue:
3589 case HvMessageTypeUnsupportedFeature:
3590 case HvMessageTypeTlbPageSizeMismatch:
3591 LogRel(("Unimplemented msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
3592 AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n%.32Rhxd\n", pMsg->Header.MessageType, pMsg),
3593 VERR_NEM_IPE_3);
3594
3595 case HvMessageTypeX64ApicEoi:
3596 case HvMessageTypeX64LegacyFpError:
3597 case HvMessageTypeX64RegisterIntercept:
3598 case HvMessageTypeApicEoi:
3599 case HvMessageTypeFerrAsserted:
3600 case HvMessageTypeEventLogBufferComplete:
3601 case HvMessageTimerExpired:
3602 LogRel(("Unexpected msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
3603 AssertLogRelMsgFailedReturn(("Unexpected message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
3604 VERR_NEM_IPE_3);
3605
3606 default:
3607 LogRel(("Unknown msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
3608 AssertLogRelMsgFailedReturn(("Unknown message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
3609 VERR_NEM_IPE_3);
3610 }
3611 }
3612 else
3613 AssertLogRelMsgFailedReturn(("Unexpected VID message type on CPU #%u: %#x LB %u\n",
3614 pVCpu->idCpu, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage),
3615 VERR_NEM_IPE_4);
3616}
3617#elif defined(IN_RING3)
3618/**
3619 * Handles VM exits.
3620 *
3621 * @returns Strict VBox status code.
3622 * @param pVM The cross context VM structure.
3623 * @param pVCpu The cross context per CPU structure.
3624 * @param pExit The VM exit information to handle.
3625 * @sa nemHCWinHandleMessage
3626 */
3627NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
3628{
3629 switch (pExit->ExitReason)
3630 {
3631 case WHvRunVpExitReasonMemoryAccess:
3632 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
3633 return nemR3WinHandleExitMemory(pVM, pVCpu, pExit);
3634
3635 case WHvRunVpExitReasonX64IoPortAccess:
3636 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
3637 return nemR3WinHandleExitIoPort(pVM, pVCpu, pExit);
3638
3639 case WHvRunVpExitReasonX64Halt:
3640 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
3641 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
3642 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3643 Log4(("HaltExit\n"));
3644 return VINF_EM_HALT;
3645
3646 case WHvRunVpExitReasonCanceled:
3647 return VINF_SUCCESS;
3648
3649 case WHvRunVpExitReasonX64InterruptWindow:
3650 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
3651 return nemR3WinHandleExitInterruptWindow(pVM, pVCpu, pExit);
3652
3653 case WHvRunVpExitReasonX64Cpuid:
3654 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
3655 return nemR3WinHandleExitCpuId(pVM, pVCpu, pExit);
3656
3657 case WHvRunVpExitReasonX64MsrAccess:
3658 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
3659 return nemR3WinHandleExitMsr(pVM, pVCpu, pExit);
3660
3661 case WHvRunVpExitReasonException:
3662 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
3663 return nemR3WinHandleExitException(pVM, pVCpu, pExit);
3664
3665 case WHvRunVpExitReasonUnrecoverableException:
3666 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
3667 return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit);
3668
3669 case WHvRunVpExitReasonUnsupportedFeature:
3670 case WHvRunVpExitReasonInvalidVpRegisterValue:
3671 LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
3672 AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n",
3673 pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3);
3674
3675 /* Undesired exits: */
3676 case WHvRunVpExitReasonNone:
3677 default:
3678 LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
3679 AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3);
3680 }
3681}
3682#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3683
3684
3685#ifdef IN_RING0
3686/**
3687 * Perform an I/O control operation on the partition handle (VID.SYS),
3688 * restarting on alert-like behaviour.
3689 *
3690 * @returns NT status code.
3691 * @param pGVM The ring-0 VM structure.
3692 * @param pGVCpu The global (ring-0) per CPU structure.
3693 * @param fFlags The wait flags.
3694 * @param cMillies The timeout in milliseconds
3695 */
3696static NTSTATUS nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(PGVM pGVM, PGVMCPU pGVCpu, uint32_t fFlags, uint32_t cMillies)
3697{
3698 pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
3699 pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags;
3700 pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
3701 NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVCpu, pGVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
3702 &pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
3703 pGVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
3704 NULL, 0);
3705 if (rcNt == STATUS_SUCCESS)
3706 { /* likely */ }
3707 /*
3708 * Generally, if we get down here, we have been interrupted between ACK'ing
3709 * a message and waiting for the next due to a NtAlertThread call. So, we
3710 * should stop ACK'ing the previous message and get on waiting on the next.
3711 * See similar stuff in nemHCWinRunGC().
3712 */
3713 else if ( rcNt == STATUS_TIMEOUT
3714 || rcNt == STATUS_ALERTED /* just in case */
3715 || rcNt == STATUS_KERNEL_APC /* just in case */
3716 || rcNt == STATUS_USER_APC /* just in case */)
3717 {
3718 DBGFTRACE_CUSTOM(pGVCpu->CTX_SUFF(pVM), "IoCtlMessageSlotHandleAndGetNextRestart/1 %#x (f=%#x)", rcNt, fFlags);
3719 STAM_REL_COUNTER_INC(&pGVCpu->nem.s.StatStopCpuPendingAlerts);
3720 Assert(fFlags & VID_MSHAGN_F_GET_NEXT_MESSAGE);
3721
3722 pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
3723 pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags & ~VID_MSHAGN_F_HANDLE_MESSAGE;
3724 pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
3725 rcNt = nemR0NtPerformIoControl(pGVM, pGVCpu, pGVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
3726 &pGVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
3727 pGVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
3728 NULL, 0);
3729 DBGFTRACE_CUSTOM(pGVM, "IoCtlMessageSlotHandleAndGetNextRestart/2 %#x", rcNt);
3730 }
3731 return rcNt;
3732}
3733#endif /* IN_RING0 */
3734
3735
3736#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3737/**
3738 * Worker for nemHCWinRunGC that stops the execution on the way out.
3739 *
3740 * The CPU was running the last time we checked, no there are no messages that
3741 * needs being marked handled/whatever. Caller checks this.
3742 *
3743 * @returns rcStrict on success, error status on failure.
3744 * @param pVM The cross context VM structure.
3745 * @param pVCpu The cross context per CPU structure.
3746 * @param rcStrict The nemHCWinRunGC return status. This is a little
3747 * bit unnecessary, except in internal error cases,
3748 * since we won't need to stop the CPU if we took an
3749 * exit.
3750 * @param pMappingHeader The message slot mapping.
3751 */
3752NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinStopCpu(PVMCC pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict,
3753 VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader)
3754{
3755# ifdef DBGFTRACE_ENABLED
3756 HV_MESSAGE const volatile *pMsgForTrace = (HV_MESSAGE const volatile *)(pMappingHeader + 1);
3757# endif
3758
3759 /*
3760 * Try stopping the processor. If we're lucky we manage to do this before it
3761 * does another VM exit.
3762 */
3763 DBGFTRACE_CUSTOM(pVM, "nemStop#0");
3764# ifdef IN_RING0
3765 pVCpu->nem.s.uIoCtlBuf.idCpu = pVCpu->idCpu;
3766 NTSTATUS rcNt = nemR0NtPerformIoControl(pVM, pVCpu, pVM->nemr0.s.IoCtlStopVirtualProcessor.uFunction,
3767 &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
3768 NULL, 0);
3769 if (NT_SUCCESS(rcNt))
3770 {
3771 DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay (%#x)", rcNt);
3772 Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
3773 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
3774 return rcStrict;
3775 }
3776# else
3777 BOOL fRet = VidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu);
3778 if (fRet)
3779 {
3780 DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay");
3781 Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
3782 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
3783 return rcStrict;
3784 }
3785# endif
3786
3787 /*
3788 * Dang. The CPU stopped by itself and we got a couple of message to deal with.
3789 */
3790# ifdef IN_RING0
3791 DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", rcNt);
3792 AssertLogRelMsgReturn(rcNt == ERROR_VID_STOP_PENDING, ("rcNt=%#x\n", rcNt),
3793 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3794# else
3795 DWORD dwErr = RTNtLastErrorValue();
3796 DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", dwErr);
3797 AssertLogRelMsgReturn(dwErr == ERROR_VID_STOP_PENDING, ("dwErr=%#u (%#x)\n", dwErr, dwErr),
3798 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3799# endif
3800 Log8(("nemHCWinStopCpu: Stopping CPU #%u pending...\n", pVCpu->idCpu));
3801 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPending);
3802
3803 /*
3804 * First message: Exit or similar, sometimes VidMessageStopRequestComplete.
3805 * Note! We can safely ASSUME that rcStrict isn't an important information one.
3806 */
3807# ifdef IN_RING0
3808 rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pVM, pVCpu, VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
3809 DBGFTRACE_CUSTOM(pVM, "nemStop#1: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
3810 pMsgForTrace->Header.MessageType);
3811 AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
3812 ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
3813 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3814# else
3815 BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
3816 VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
3817 DBGFTRACE_CUSTOM(pVM, "nemStop#1: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
3818 pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3819 AssertLogRelMsgReturn(fWait, ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
3820 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3821# endif
3822
3823 VID_MESSAGE_TYPE enmVidMsgType = pMappingHeader->enmVidMsgType;
3824 if (enmVidMsgType != VidMessageStopRequestComplete)
3825 {
3826 VBOXSTRICTRC rcStrict2 = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader);
3827 if (rcStrict2 != VINF_SUCCESS && RT_SUCCESS(rcStrict))
3828 rcStrict = rcStrict2;
3829 DBGFTRACE_CUSTOM(pVM, "nemStop#1: handled %#x -> %d", pMsgForTrace->Header.MessageType, VBOXSTRICTRC_VAL(rcStrict));
3830
3831 /*
3832 * Mark it as handled and get the stop request completed message, then mark
3833 * that as handled too. CPU is back into fully stopped stated then.
3834 */
3835# ifdef IN_RING0
3836 rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pVM, pVCpu,
3837 VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE,
3838 30000 /*ms*/);
3839 DBGFTRACE_CUSTOM(pVM, "nemStop#2: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
3840 pMsgForTrace->Header.MessageType);
3841 AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
3842 ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
3843 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3844# else
3845 fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
3846 VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
3847 DBGFTRACE_CUSTOM(pVM, "nemStop#2: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
3848 pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3849 AssertLogRelMsgReturn(fWait, ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
3850 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3851# endif
3852
3853 /* It should be a stop request completed message. */
3854 enmVidMsgType = pMappingHeader->enmVidMsgType;
3855 AssertLogRelMsgReturn(enmVidMsgType == VidMessageStopRequestComplete,
3856 ("Unexpected 2nd message following ERROR_VID_STOP_PENDING: %#x LB %#x\n",
3857 enmVidMsgType, pMappingHeader->cbMessage),
3858 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3859
3860 /*
3861 * Mark the VidMessageStopRequestComplete message as handled.
3862 */
3863# ifdef IN_RING0
3864 rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pVM, pVCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
3865 DBGFTRACE_CUSTOM(pVM, "nemStop#3: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType,
3866 pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3867 AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
3868 ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
3869 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3870# else
3871 fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
3872 DBGFTRACE_CUSTOM(pVM, "nemStop#3: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
3873 pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3874 AssertLogRelMsgReturn(fWait, ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
3875 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3876# endif
3877 Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict) ));
3878 }
3879 else
3880 {
3881 /** @todo I'm not so sure about this now... */
3882 DBGFTRACE_CUSTOM(pVM, "nemStop#9: %#x %#x %#x", pMappingHeader->enmVidMsgType,
3883 pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3884 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingOdd);
3885 Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc) - 1st VidMessageSlotHandleAndGetNext got VidMessageStopRequestComplete.\n",
3886 VBOXSTRICTRC_VAL(rcStrict) ));
3887 }
3888 return rcStrict;
3889}
3890#endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3891
3892#if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
3893
3894/**
3895 * Deals with pending interrupt related force flags, may inject interrupt.
3896 *
3897 * @returns VBox strict status code.
3898 * @param pVM The cross context VM structure.
3899 * @param pVCpu The cross context per CPU structure.
3900 * @param pfInterruptWindows Where to return interrupt window flags.
3901 */
3902NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleInterruptFF(PVMCC pVM, PVMCPUCC pVCpu, uint8_t *pfInterruptWindows)
3903{
3904 Assert(!TRPMHasTrap(pVCpu));
3905 RT_NOREF_PV(pVM);
3906
3907 /*
3908 * First update APIC. We ASSUME this won't need TPR/CR8.
3909 */
3910 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3911 {
3912 APICUpdatePendingInterrupts(pVCpu);
3913 if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
3914 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
3915 return VINF_SUCCESS;
3916 }
3917
3918 /*
3919 * We don't currently implement SMIs.
3920 */
3921 AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
3922
3923 /*
3924 * Check if we've got the minimum of state required for deciding whether we
3925 * can inject interrupts and NMIs. If we don't have it, get all we might require
3926 * for injection via IEM.
3927 */
3928 bool const fPendingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3929 uint64_t fNeedExtrn = CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
3930 | (fPendingNmi ? CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI : 0);
3931 if (pVCpu->cpum.GstCtx.fExtrn & fNeedExtrn)
3932 {
3933 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "IntFF");
3934 if (rcStrict != VINF_SUCCESS)
3935 return rcStrict;
3936 }
3937 bool const fInhibitInterrupts = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
3938 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip;
3939
3940 /*
3941 * NMI? Try deliver it first.
3942 */
3943 if (fPendingNmi)
3944 {
3945 if ( !fInhibitInterrupts
3946 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3947 {
3948 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
3949 if (rcStrict == VINF_SUCCESS)
3950 {
3951 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3952 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_NMI, TRPM_HARDWARE_INT, 0, 0, 0);
3953 Log8(("Injected NMI on %u (%d)\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
3954 }
3955 return rcStrict;
3956 }
3957 *pfInterruptWindows |= NEM_WIN_INTW_F_NMI;
3958 Log8(("NMI window pending on %u\n", pVCpu->idCpu));
3959 }
3960
3961 /*
3962 * APIC or PIC interrupt?
3963 */
3964 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
3965 {
3966 if ( !fInhibitInterrupts
3967 && pVCpu->cpum.GstCtx.rflags.Bits.u1IF)
3968 {
3969 AssertCompile(NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT & CPUMCTX_EXTRN_APIC_TPR);
3970 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
3971 if (rcStrict == VINF_SUCCESS)
3972 {
3973 uint8_t bInterrupt;
3974 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
3975 if (RT_SUCCESS(rc))
3976 {
3977 rcStrict = IEMInjectTrap(pVCpu, bInterrupt, TRPM_HARDWARE_INT, 0, 0, 0);
3978 Log8(("Injected interrupt %#x on %u (%d)\n", bInterrupt, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
3979 }
3980 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3981 {
3982 *pfInterruptWindows |= (bInterrupt >> 4 /*??*/) << NEM_WIN_INTW_F_PRIO_SHIFT;
3983 Log8(("VERR_APIC_INTR_MASKED_BY_TPR: *pfInterruptWindows=%#x\n", *pfInterruptWindows));
3984 }
3985 else
3986 Log8(("PDMGetInterrupt failed -> %d\n", rc));
3987 }
3988 return rcStrict;
3989 }
3990 *pfInterruptWindows |= NEM_WIN_INTW_F_REGULAR;
3991 Log8(("Interrupt window pending on %u\n", pVCpu->idCpu));
3992 }
3993
3994 return VINF_SUCCESS;
3995}
3996
3997
3998/**
3999 * Inner NEM runloop for windows.
4000 *
4001 * @returns Strict VBox status code.
4002 * @param pVM The cross context VM structure.
4003 * @param pVCpu The cross context per CPU structure.
4004 */
4005NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVMCC pVM, PVMCPUCC pVCpu)
4006{
4007 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
4008# ifdef LOG_ENABLED
4009 if (LogIs3Enabled())
4010 nemHCWinLogState(pVM, pVCpu);
4011# endif
4012
4013 /*
4014 * Try switch to NEM runloop state.
4015 */
4016 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
4017 { /* likely */ }
4018 else
4019 {
4020 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4021 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
4022 return VINF_SUCCESS;
4023 }
4024
4025 /*
4026 * The run loop.
4027 *
4028 * Current approach to state updating to use the sledgehammer and sync
4029 * everything every time. This will be optimized later.
4030 */
4031# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4032 VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader = (VID_MESSAGE_MAPPING_HEADER volatile *)pVCpu->nem.s.pvMsgSlotMapping;
4033# endif
4034 const bool fSingleStepping = DBGFIsStepping(pVCpu);
4035// const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK
4036// : VM_FF_HP_R0_PRE_HM_STEP_MASK;
4037// const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK;
4038 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
4039 for (unsigned iLoop = 0;; iLoop++)
4040 {
4041# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4042 /*
4043 * Hack alert!
4044 */
4045 uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
4046 if (cMappedPages >= 4000)
4047 {
4048 PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
4049 Log(("nemHCWinRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
4050 }
4051# endif
4052
4053 /*
4054 * Pending interrupts or such? Need to check and deal with this prior
4055 * to the state syncing.
4056 */
4057 pVCpu->nem.s.fDesiredInterruptWindows = 0;
4058 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
4059 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
4060 {
4061# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4062 /* Make sure the CPU isn't executing. */
4063 if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
4064 {
4065 pVCpu->nem.s.fHandleAndGetFlags = 0;
4066 rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader);
4067 if (rcStrict == VINF_SUCCESS)
4068 { /* likely */ }
4069 else
4070 {
4071 LogFlow(("NEM/%u: breaking: nemHCWinStopCpu -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4072 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4073 break;
4074 }
4075 }
4076# endif
4077
4078 /* Try inject interrupt. */
4079 rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, &pVCpu->nem.s.fDesiredInterruptWindows);
4080 if (rcStrict == VINF_SUCCESS)
4081 { /* likely */ }
4082 else
4083 {
4084 LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4085 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4086 break;
4087 }
4088 }
4089
4090 /*
4091 * Ensure that hyper-V has the whole state.
4092 * (We always update the interrupt windows settings when active as hyper-V seems
4093 * to forget about it after an exit.)
4094 */
4095 if ( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK))
4096 != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)
4097 || ( ( pVCpu->nem.s.fDesiredInterruptWindows
4098 || pVCpu->nem.s.fCurrentInterruptWindows != pVCpu->nem.s.fDesiredInterruptWindows)
4099# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4100 && pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */
4101# endif
4102 )
4103 )
4104 {
4105# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4106 AssertMsg(pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */,
4107 ("%#x fExtrn=%#RX64 (%#RX64) fDesiredInterruptWindows=%d fCurrentInterruptWindows=%#x vs %#x\n",
4108 pVCpu->nem.s.fHandleAndGetFlags, pVCpu->cpum.GstCtx.fExtrn, ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK),
4109 pVCpu->nem.s.fDesiredInterruptWindows, pVCpu->nem.s.fCurrentInterruptWindows, pVCpu->nem.s.fDesiredInterruptWindows));
4110# endif
4111# ifdef IN_RING0
4112 int rc2 = nemR0WinExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx);
4113# else
4114 int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu);
4115# endif
4116 AssertRCReturn(rc2, rc2);
4117 }
4118
4119 /*
4120 * Poll timers and run for a bit.
4121 *
4122 * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
4123 * so we take the time of the next timer event and uses that as a deadline.
4124 * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
4125 */
4126 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
4127 * the whole polling job when timers have changed... */
4128 uint64_t offDeltaIgnored;
4129 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
4130 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4131 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4132 {
4133# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4134 if (pVCpu->nem.s.fHandleAndGetFlags)
4135 { /* Very likely that the CPU does NOT need starting (pending msg, running). */ }
4136 else
4137 {
4138# ifdef IN_RING0
4139 pVCpu->nem.s.uIoCtlBuf.idCpu = pVCpu->idCpu;
4140 NTSTATUS rcNt = nemR0NtPerformIoControl(pVM, pVCpu, pVM->nemr0.s.IoCtlStartVirtualProcessor.uFunction,
4141 &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
4142 NULL, 0);
4143 LogFlow(("NEM/%u: IoCtlStartVirtualProcessor -> %#x\n", pVCpu->idCpu, rcNt));
4144 AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("VidStartVirtualProcessor failed for CPU #%u: %#x\n", pVCpu->idCpu, rcNt),
4145 VERR_NEM_IPE_5);
4146# else
4147 AssertLogRelMsgReturn(g_pfnVidStartVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
4148 ("VidStartVirtualProcessor failed for CPU #%u: %u (%#x, rcNt=%#x)\n",
4149 pVCpu->idCpu, RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()),
4150 VERR_NEM_IPE_5);
4151# endif
4152 pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
4153 }
4154# endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
4155
4156 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
4157 {
4158# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4159 uint64_t const nsNow = RTTimeNanoTS();
4160 int64_t const cNsNextTimerEvt = nsNow - nsNextTimerEvt;
4161 uint32_t cMsWait;
4162 if (cNsNextTimerEvt < 100000 /* ns */)
4163 cMsWait = 0;
4164 else if ((uint64_t)cNsNextTimerEvt < RT_NS_1SEC)
4165 {
4166 if ((uint32_t)cNsNextTimerEvt < 2*RT_NS_1MS)
4167 cMsWait = 1;
4168 else
4169 cMsWait = ((uint32_t)cNsNextTimerEvt - 100000 /*ns*/) / RT_NS_1MS;
4170 }
4171 else
4172 cMsWait = RT_MS_1SEC;
4173# ifdef IN_RING0
4174 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pVCpu->idCpu;
4175 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = pVCpu->nem.s.fHandleAndGetFlags;
4176 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMsWait;
4177 NTSTATUS rcNt = nemR0NtPerformIoControl(pVM, pVCpu, pVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
4178 &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
4179 pVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
4180 NULL, 0);
4181 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
4182 if (rcNt == STATUS_SUCCESS)
4183# else
4184 BOOL fRet = VidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
4185 pVCpu->nem.s.fHandleAndGetFlags, cMsWait);
4186 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
4187 if (fRet)
4188# endif
4189# else
4190 WHV_RUN_VP_EXIT_CONTEXT ExitReason;
4191 RT_ZERO(ExitReason);
4192 HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
4193 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
4194 if (SUCCEEDED(hrc))
4195# endif
4196 {
4197 /*
4198 * Deal with the message.
4199 */
4200# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4201 rcStrict = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader);
4202 pVCpu->nem.s.fHandleAndGetFlags |= VID_MSHAGN_F_HANDLE_MESSAGE;
4203# else
4204 rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason);
4205# endif
4206 if (rcStrict == VINF_SUCCESS)
4207 { /* hopefully likely */ }
4208 else
4209 {
4210 LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4211 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4212 break;
4213 }
4214 }
4215 else
4216 {
4217# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4218
4219 /* VID.SYS merges STATUS_ALERTED and STATUS_USER_APC into STATUS_TIMEOUT,
4220 so after NtAlertThread we end up here with a STATUS_TIMEOUT. And yeah,
4221 the error code conversion is into WAIT_XXX, i.e. NT status codes. */
4222# ifndef IN_RING0
4223 DWORD rcNt = GetLastError();
4224# endif
4225 LogFlow(("NEM/%u: VidMessageSlotHandleAndGetNext -> %#x\n", pVCpu->idCpu, rcNt));
4226 AssertLogRelMsgReturn( rcNt == STATUS_TIMEOUT
4227 || rcNt == STATUS_ALERTED /* just in case */
4228 || rcNt == STATUS_USER_APC /* ditto */
4229 || rcNt == STATUS_KERNEL_APC /* ditto */
4230 , ("VidMessageSlotHandleAndGetNext failed for CPU #%u: %#x (%u)\n",
4231 pVCpu->idCpu, rcNt, rcNt),
4232 VERR_NEM_IPE_0);
4233 pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
4234 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatGetMsgTimeout);
4235# else
4236 AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n",
4237 pVCpu->idCpu, hrc, GetLastError()),
4238 VERR_NEM_IPE_0);
4239# endif
4240 }
4241
4242 /*
4243 * If no relevant FFs are pending, loop.
4244 */
4245 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4246 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4247 continue;
4248
4249 /** @todo Try handle pending flags, not just return to EM loops. Take care
4250 * not to set important RCs here unless we've handled a message. */
4251 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
4252 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
4253 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
4254 }
4255 else
4256 {
4257 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
4258 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
4259 }
4260 }
4261 else
4262 {
4263 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
4264 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
4265 }
4266 break;
4267 } /* the run loop */
4268
4269
4270 /*
4271 * If the CPU is running, make sure to stop it before we try sync back the
4272 * state and return to EM. We don't sync back the whole state if we can help it.
4273 */
4274# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4275 if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
4276 {
4277 pVCpu->nem.s.fHandleAndGetFlags = 0;
4278 rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader);
4279 }
4280# endif
4281
4282 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
4283 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4284
4285 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
4286 {
4287 /* Try anticipate what we might need. */
4288 uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
4289 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
4290 || RT_FAILURE(rcStrict))
4291 fImport = CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
4292# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
4293 else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
4294 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
4295 fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
4296 else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
4297 fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
4298# endif
4299 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
4300 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
4301 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
4302
4303 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
4304 {
4305# ifdef IN_RING0
4306 int rc2 = nemR0WinImportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT,
4307 true /*fCanUpdateCr3*/);
4308 if (RT_SUCCESS(rc2))
4309 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4310 else if (rc2 == VERR_NEM_FLUSH_TLB)
4311 {
4312 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4313 if (rcStrict == VINF_SUCCESS || rcStrict == -rc2)
4314 rcStrict = -rc2;
4315 else
4316 {
4317 pVCpu->nem.s.rcPending = -rc2;
4318 LogFlow(("NEM/%u: rcPending=%Rrc (rcStrict=%Rrc)\n", pVCpu->idCpu, rc2, VBOXSTRICTRC_VAL(rcStrict) ));
4319 }
4320 }
4321# else
4322 int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
4323 if (RT_SUCCESS(rc2))
4324 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4325# endif
4326 else if (RT_SUCCESS(rcStrict))
4327 rcStrict = rc2;
4328 if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
4329 pVCpu->cpum.GstCtx.fExtrn = 0;
4330 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
4331 }
4332 else
4333 {
4334 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4335 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
4336 }
4337 }
4338 else
4339 {
4340 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4341 pVCpu->cpum.GstCtx.fExtrn = 0;
4342 }
4343
4344 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
4345 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
4346 return rcStrict;
4347}
4348
4349#endif /* defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3) */
4350
4351/**
4352 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
4353 */
4354NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys,
4355 PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
4356{
4357 /* We'll just unmap the memory. */
4358 if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
4359 {
4360#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4361 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
4362 AssertRC(rc);
4363 if (RT_SUCCESS(rc))
4364#else
4365 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
4366 if (SUCCEEDED(hrc))
4367#endif
4368 {
4369 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4370 Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
4371 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
4372 }
4373 else
4374 {
4375#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4376 LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
4377 return rc;
4378#else
4379 LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4380 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4381 return VERR_NEM_IPE_2;
4382#endif
4383 }
4384 }
4385 RT_NOREF(pVCpu, pvUser);
4386 return VINF_SUCCESS;
4387}
4388
4389
4390/**
4391 * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
4392 *
4393 * @returns The PGMPhysNemQueryPageInfo result.
4394 * @param pVM The cross context VM structure.
4395 * @param pVCpu The cross context virtual CPU structure.
4396 * @param GCPhys The page to unmap.
4397 */
4398NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys)
4399{
4400 PGMPHYSNEMPAGEINFO Info;
4401 return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
4402 nemHCWinUnsetForA20CheckerCallback, NULL);
4403}
4404
4405
4406void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
4407{
4408 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
4409 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
4410}
4411
4412
4413void nemHCNativeNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
4414 int fRestoreAsRAM, bool fRestoreAsRAM2)
4415{
4416 Log5(("nemHCNativeNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d fRestoreAsRAM=%d fRestoreAsRAM2=%d\n",
4417 GCPhys, cb, enmKind, fRestoreAsRAM, fRestoreAsRAM2));
4418 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); NOREF(fRestoreAsRAM); NOREF(fRestoreAsRAM2);
4419}
4420
4421
4422void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
4423 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
4424{
4425 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
4426 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
4427 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
4428}
4429
4430
4431/**
4432 * Worker that maps pages into Hyper-V.
4433 *
4434 * This is used by the PGM physical page notifications as well as the memory
4435 * access VMEXIT handlers.
4436 *
4437 * @returns VBox status code.
4438 * @param pVM The cross context VM structure.
4439 * @param pVCpu The cross context virtual CPU structure of the
4440 * calling EMT.
4441 * @param GCPhysSrc The source page address.
4442 * @param GCPhysDst The hyper-V destination page. This may differ from
4443 * GCPhysSrc when A20 is disabled.
4444 * @param fPageProt NEM_PAGE_PROT_XXX.
4445 * @param pu2State Our page state (input/output).
4446 * @param fBackingChanged Set if the page backing is being changed.
4447 * @thread EMT(pVCpu)
4448 */
4449NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
4450 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
4451{
4452#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4453 /*
4454 * When using the hypercalls instead of the ring-3 APIs, we don't need to
4455 * unmap memory before modifying it. We still want to track the state though,
4456 * since unmap will fail when called an unmapped page and we don't want to redo
4457 * upgrades/downgrades.
4458 */
4459 uint8_t const u2OldState = *pu2State;
4460 int rc;
4461 if (fPageProt == NEM_PAGE_PROT_NONE)
4462 {
4463 if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
4464 {
4465 rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
4466 if (RT_SUCCESS(rc))
4467 {
4468 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4469 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4470 Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4471 }
4472 else
4473 AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4474 }
4475 else
4476 rc = VINF_SUCCESS;
4477 }
4478 else if (fPageProt & NEM_PAGE_PROT_WRITE)
4479 {
4480 if (u2OldState != NEM_WIN_PAGE_STATE_WRITABLE || fBackingChanged)
4481 {
4482 rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4483 HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
4484 | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4485 if (RT_SUCCESS(rc))
4486 {
4487 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
4488 uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
4489 ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
4490 Log5(("NEM GPA writable/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4491 NOREF(cMappedPages);
4492 }
4493 else
4494 AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4495 }
4496 else
4497 rc = VINF_SUCCESS;
4498 }
4499 else
4500 {
4501 if (u2OldState != NEM_WIN_PAGE_STATE_READABLE || fBackingChanged)
4502 {
4503 rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4504 HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4505 if (RT_SUCCESS(rc))
4506 {
4507 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
4508 uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
4509 ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
4510 Log5(("NEM GPA read+exec/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4511 NOREF(cMappedPages);
4512 }
4513 else
4514 AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4515 }
4516 else
4517 rc = VINF_SUCCESS;
4518 }
4519
4520 return VINF_SUCCESS;
4521
4522#else
4523 /*
4524 * Looks like we need to unmap a page before we can change the backing
4525 * or even modify the protection. This is going to be *REALLY* efficient.
4526 * PGM lends us two bits to keep track of the state here.
4527 */
4528 uint8_t const u2OldState = *pu2State;
4529 uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
4530 : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
4531 if ( fBackingChanged
4532 || u2NewState != u2OldState)
4533 {
4534 if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
4535 {
4536# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4537 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
4538 AssertRC(rc);
4539 if (RT_SUCCESS(rc))
4540 {
4541 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4542 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4543 if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
4544 {
4545 Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
4546 GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4547 return VINF_SUCCESS;
4548 }
4549 }
4550 else
4551 {
4552 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4553 return rc;
4554 }
4555# else
4556 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
4557 if (SUCCEEDED(hrc))
4558 {
4559 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4560 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4561 if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
4562 {
4563 Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
4564 GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4565 return VINF_SUCCESS;
4566 }
4567 }
4568 else
4569 {
4570 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4571 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4572 return VERR_NEM_INIT_FAILED;
4573 }
4574# endif
4575 }
4576 }
4577
4578 /*
4579 * Writeable mapping?
4580 */
4581 if (fPageProt & NEM_PAGE_PROT_WRITE)
4582 {
4583# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4584 int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4585 HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
4586 | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4587 AssertRC(rc);
4588 if (RT_SUCCESS(rc))
4589 {
4590 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
4591 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4592 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4593 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4594 return VINF_SUCCESS;
4595 }
4596 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4597 return rc;
4598# else
4599 void *pvPage;
4600 int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
4601 if (RT_SUCCESS(rc))
4602 {
4603 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
4604 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
4605 if (SUCCEEDED(hrc))
4606 {
4607 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
4608 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4609 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4610 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4611 return VINF_SUCCESS;
4612 }
4613 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4614 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4615 return VERR_NEM_INIT_FAILED;
4616 }
4617 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
4618 return rc;
4619# endif
4620 }
4621
4622 if (fPageProt & NEM_PAGE_PROT_READ)
4623 {
4624# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4625 int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4626 HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4627 AssertRC(rc);
4628 if (RT_SUCCESS(rc))
4629 {
4630 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
4631 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4632 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4633 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4634 return VINF_SUCCESS;
4635 }
4636 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4637 return rc;
4638# else
4639 const void *pvPage;
4640 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
4641 if (RT_SUCCESS(rc))
4642 {
4643 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
4644 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
4645 if (SUCCEEDED(hrc))
4646 {
4647 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
4648 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4649 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4650 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4651 return VINF_SUCCESS;
4652 }
4653 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4654 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4655 return VERR_NEM_INIT_FAILED;
4656 }
4657 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
4658 return rc;
4659# endif
4660 }
4661
4662 /* We already unmapped it above. */
4663 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4664 return VINF_SUCCESS;
4665#endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
4666}
4667
4668
4669NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
4670{
4671 if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
4672 {
4673 Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
4674 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4675 return VINF_SUCCESS;
4676 }
4677
4678#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4679 PVMCPUCC pVCpu = VMMGetCpu(pVM);
4680 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
4681 AssertRC(rc);
4682 if (RT_SUCCESS(rc))
4683 {
4684 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4685 Log5(("NEM GPA unmapped/just: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[*pu2State], cMappedPages));
4686 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4687 return VINF_SUCCESS;
4688 }
4689 LogRel(("nemHCJustUnmapPageFromHyperV/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4690 return rc;
4691#else
4692 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
4693 if (SUCCEEDED(hrc))
4694 {
4695 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4696 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4697 Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
4698 return VINF_SUCCESS;
4699 }
4700 LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
4701 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4702 return VERR_NEM_IPE_6;
4703#endif
4704}
4705
4706
4707int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4708 PGMPAGETYPE enmType, uint8_t *pu2State)
4709{
4710 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4711 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4712 RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
4713
4714 int rc;
4715#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4716 PVMCPUCC pVCpu = VMMGetCpu(pVM);
4717 if ( pVM->nem.s.fA20Enabled
4718 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4719 rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4720 else
4721 {
4722 /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
4723 rc = nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
4724 if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys) && RT_SUCCESS(rc))
4725 rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4726
4727 }
4728#else
4729 RT_NOREF_PV(fPageProt);
4730 if ( pVM->nem.s.fA20Enabled
4731 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4732 rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4733 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4734 rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4735 else
4736 rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
4737#endif
4738 return rc;
4739}
4740
4741
4742void nemHCNativeNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4743 PGMPAGETYPE enmType, uint8_t *pu2State)
4744{
4745 Log5(("nemHCNativeNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4746 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4747 RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
4748
4749#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4750 PVMCPUCC pVCpu = VMMGetCpu(pVM);
4751 if ( pVM->nem.s.fA20Enabled
4752 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4753 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
4754 else
4755 {
4756 /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
4757 nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
4758 if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4759 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
4760 }
4761#else
4762 RT_NOREF_PV(fPageProt);
4763 if ( pVM->nem.s.fA20Enabled
4764 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4765 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4766 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4767 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4768 /* else: ignore since we've got the alias page at this address. */
4769#endif
4770}
4771
4772
4773void nemHCNativeNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
4774 uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
4775{
4776 Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4777 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
4778 RT_NOREF_PV(HCPhysPrev); RT_NOREF_PV(HCPhysNew); RT_NOREF_PV(enmType);
4779
4780#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4781 PVMCPUCC pVCpu = VMMGetCpu(pVM);
4782 if ( pVM->nem.s.fA20Enabled
4783 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4784 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4785 else
4786 {
4787 /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
4788 nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
4789 if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4790 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4791 }
4792#else
4793 RT_NOREF_PV(fPageProt);
4794 if ( pVM->nem.s.fA20Enabled
4795 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4796 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4797 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4798 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4799 /* else: ignore since we've got the alias page at this address. */
4800#endif
4801}
4802
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette