VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h

Last change on this file was 108545, checked in by vboxsync, 3 weeks ago

VMM/NEM/win: Workaround for SMP TSC drift introduced in NEMHCResumeCpuTickOnAll on startup and resume (unpause). bugref:10876 ticketref:22334

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 144.6 KB
Line 
1/* $Id: NEMAllNativeTemplate-win.cpp.h 108545 2025-03-13 08:43:30Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, Windows code template ring-0/3.
4 */
5
6/*
7 * Copyright (C) 2018-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef IN_RING3
29# error "This is ring-3 only now"
30#endif
31
32
33/*********************************************************************************************************************************
34* Defined Constants And Macros *
35*********************************************************************************************************************************/
36/** Copy back a segment from hyper-V. */
37#define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \
38 do { \
39 (a_Dst).u64Base = (a_Src).Base; \
40 (a_Dst).u32Limit = (a_Src).Limit; \
41 (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \
42 (a_Dst).Attr.u = (a_Src).Attributes; \
43 (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \
44 } while (0)
45
46/** @def NEMWIN_ASSERT_MSG_REG_VAL
47 * Asserts the correctness of a register value in a message/context.
48 */
49#if 0
50# define NEMWIN_NEED_GET_REGISTER
51# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, a_Expr, a_Msg) \
52 do { \
53 WHV_REGISTER_VALUE TmpVal; \
54 nemR3WinGetRegister(a_pVCpu, a_enmReg, &TmpVal); \
55 AssertMsg(a_Expr, a_Msg); \
56 } while (0)
57#else
58# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, a_Expr, a_Msg) do { } while (0)
59#endif
60
61/** @def NEMWIN_ASSERT_MSG_REG_VAL
62 * Asserts the correctness of a 64-bit register value in a message/context.
63 */
64#define NEMWIN_ASSERT_MSG_REG_VAL64(a_pVCpu, a_enmReg, a_u64Val) \
65 NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, (a_u64Val) == TmpVal.Reg64, \
66 (#a_u64Val "=%#RX64, expected %#RX64\n", (a_u64Val), TmpVal.Reg64))
67/** @def NEMWIN_ASSERT_MSG_REG_VAL
68 * Asserts the correctness of a segment register value in a message/context.
69 */
70#define NEMWIN_ASSERT_MSG_REG_SEG(a_pVCpu, a_enmReg, a_SReg) \
71 NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, \
72 (a_SReg).Base == TmpVal.Segment.Base \
73 && (a_SReg).Limit == TmpVal.Segment.Limit \
74 && (a_SReg).Selector == TmpVal.Segment.Selector \
75 && (a_SReg).Attributes == TmpVal.Segment.Attributes, \
76 ( #a_SReg "=%#RX16 {%#RX64 LB %#RX32,%#RX16} expected %#RX16 {%#RX64 LB %#RX32,%#RX16}\n", \
77 (a_SReg).Selector, (a_SReg).Base, (a_SReg).Limit, (a_SReg).Attributes, \
78 TmpVal.Segment.Selector, TmpVal.Segment.Base, TmpVal.Segment.Limit, TmpVal.Segment.Attributes))
79
80
81#ifndef NTDDI_WIN10_19H1
82# define NTDDI_WIN10_19H1 0x0a000007
83#endif
84
85/** WHvRegisterPendingEvent0 was renamed to WHvRegisterPendingEvent between
86 * SDK 17134 and 18362. */
87#if WDK_NTDDI_VERSION < NTDDI_WIN10_19H1
88# define WHvRegisterPendingEvent WHvRegisterPendingEvent0
89#endif
90
91
92/*********************************************************************************************************************************
93* Global Variables *
94*********************************************************************************************************************************/
95/** NEM_WIN_PAGE_STATE_XXX names. */
96NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
97
98/** HV_INTERCEPT_ACCESS_TYPE names. */
99static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" };
100
101
102/*********************************************************************************************************************************
103* Internal Functions *
104*********************************************************************************************************************************/
105NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
106 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
107
108
109
110NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVMCC pVM, PVMCPUCC pVCpu)
111{
112 /*
113 * The following is very similar to what nemR0WinExportState() does.
114 */
115 WHV_REGISTER_NAME aenmNames[128];
116 WHV_REGISTER_VALUE aValues[128];
117
118 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
119 if ( !fWhat
120 && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows)
121 return VINF_SUCCESS;
122 uintptr_t iReg = 0;
123
124#define ADD_REG64(a_enmName, a_uValue) do { \
125 aenmNames[iReg] = (a_enmName); \
126 aValues[iReg].Reg128.High64 = 0; \
127 aValues[iReg].Reg64 = (a_uValue); \
128 iReg++; \
129 } while (0)
130#define ADD_REG128(a_enmName, a_uValueLo, a_uValueHi) do { \
131 aenmNames[iReg] = (a_enmName); \
132 aValues[iReg].Reg128.Low64 = (a_uValueLo); \
133 aValues[iReg].Reg128.High64 = (a_uValueHi); \
134 iReg++; \
135 } while (0)
136
137 /* GPRs */
138 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
139 {
140 if (fWhat & CPUMCTX_EXTRN_RAX)
141 ADD_REG64(WHvX64RegisterRax, pVCpu->cpum.GstCtx.rax);
142 if (fWhat & CPUMCTX_EXTRN_RCX)
143 ADD_REG64(WHvX64RegisterRcx, pVCpu->cpum.GstCtx.rcx);
144 if (fWhat & CPUMCTX_EXTRN_RDX)
145 ADD_REG64(WHvX64RegisterRdx, pVCpu->cpum.GstCtx.rdx);
146 if (fWhat & CPUMCTX_EXTRN_RBX)
147 ADD_REG64(WHvX64RegisterRbx, pVCpu->cpum.GstCtx.rbx);
148 if (fWhat & CPUMCTX_EXTRN_RSP)
149 ADD_REG64(WHvX64RegisterRsp, pVCpu->cpum.GstCtx.rsp);
150 if (fWhat & CPUMCTX_EXTRN_RBP)
151 ADD_REG64(WHvX64RegisterRbp, pVCpu->cpum.GstCtx.rbp);
152 if (fWhat & CPUMCTX_EXTRN_RSI)
153 ADD_REG64(WHvX64RegisterRsi, pVCpu->cpum.GstCtx.rsi);
154 if (fWhat & CPUMCTX_EXTRN_RDI)
155 ADD_REG64(WHvX64RegisterRdi, pVCpu->cpum.GstCtx.rdi);
156 if (fWhat & CPUMCTX_EXTRN_R8_R15)
157 {
158 ADD_REG64(WHvX64RegisterR8, pVCpu->cpum.GstCtx.r8);
159 ADD_REG64(WHvX64RegisterR9, pVCpu->cpum.GstCtx.r9);
160 ADD_REG64(WHvX64RegisterR10, pVCpu->cpum.GstCtx.r10);
161 ADD_REG64(WHvX64RegisterR11, pVCpu->cpum.GstCtx.r11);
162 ADD_REG64(WHvX64RegisterR12, pVCpu->cpum.GstCtx.r12);
163 ADD_REG64(WHvX64RegisterR13, pVCpu->cpum.GstCtx.r13);
164 ADD_REG64(WHvX64RegisterR14, pVCpu->cpum.GstCtx.r14);
165 ADD_REG64(WHvX64RegisterR15, pVCpu->cpum.GstCtx.r15);
166 }
167 }
168
169 /* RIP & Flags */
170 if (fWhat & CPUMCTX_EXTRN_RIP)
171 ADD_REG64(WHvX64RegisterRip, pVCpu->cpum.GstCtx.rip);
172 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
173 ADD_REG64(WHvX64RegisterRflags, pVCpu->cpum.GstCtx.rflags.u);
174
175 /* Segments */
176#define ADD_SEG(a_enmName, a_SReg) \
177 do { \
178 aenmNames[iReg] = a_enmName; \
179 aValues[iReg].Segment.Base = (a_SReg).u64Base; \
180 aValues[iReg].Segment.Limit = (a_SReg).u32Limit; \
181 aValues[iReg].Segment.Selector = (a_SReg).Sel; \
182 aValues[iReg].Segment.Attributes = (a_SReg).Attr.u; \
183 iReg++; \
184 } while (0)
185 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
186 {
187 if (fWhat & CPUMCTX_EXTRN_ES)
188 ADD_SEG(WHvX64RegisterEs, pVCpu->cpum.GstCtx.es);
189 if (fWhat & CPUMCTX_EXTRN_CS)
190 ADD_SEG(WHvX64RegisterCs, pVCpu->cpum.GstCtx.cs);
191 if (fWhat & CPUMCTX_EXTRN_SS)
192 ADD_SEG(WHvX64RegisterSs, pVCpu->cpum.GstCtx.ss);
193 if (fWhat & CPUMCTX_EXTRN_DS)
194 ADD_SEG(WHvX64RegisterDs, pVCpu->cpum.GstCtx.ds);
195 if (fWhat & CPUMCTX_EXTRN_FS)
196 ADD_SEG(WHvX64RegisterFs, pVCpu->cpum.GstCtx.fs);
197 if (fWhat & CPUMCTX_EXTRN_GS)
198 ADD_SEG(WHvX64RegisterGs, pVCpu->cpum.GstCtx.gs);
199 }
200
201 /* Descriptor tables & task segment. */
202 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
203 {
204 if (fWhat & CPUMCTX_EXTRN_LDTR)
205 ADD_SEG(WHvX64RegisterLdtr, pVCpu->cpum.GstCtx.ldtr);
206 if (fWhat & CPUMCTX_EXTRN_TR)
207 ADD_SEG(WHvX64RegisterTr, pVCpu->cpum.GstCtx.tr);
208 if (fWhat & CPUMCTX_EXTRN_IDTR)
209 {
210 aenmNames[iReg] = WHvX64RegisterIdtr;
211 aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
212 aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.idtr.pIdt;
213 iReg++;
214 }
215 if (fWhat & CPUMCTX_EXTRN_GDTR)
216 {
217 aenmNames[iReg] = WHvX64RegisterGdtr;
218 aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
219 aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
220 iReg++;
221 }
222 }
223
224 /* Control registers. */
225 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
226 {
227 if (fWhat & CPUMCTX_EXTRN_CR0)
228 ADD_REG64(WHvX64RegisterCr0, pVCpu->cpum.GstCtx.cr0);
229 if (fWhat & CPUMCTX_EXTRN_CR2)
230 ADD_REG64(WHvX64RegisterCr2, pVCpu->cpum.GstCtx.cr2);
231 if (fWhat & CPUMCTX_EXTRN_CR3)
232 ADD_REG64(WHvX64RegisterCr3, pVCpu->cpum.GstCtx.cr3);
233 if (fWhat & CPUMCTX_EXTRN_CR4)
234 ADD_REG64(WHvX64RegisterCr4, pVCpu->cpum.GstCtx.cr4);
235 }
236 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
237 ADD_REG64(WHvX64RegisterCr8, CPUMGetGuestCR8(pVCpu));
238
239 /* Debug registers. */
240/** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
241 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
242 {
243 ADD_REG64(WHvX64RegisterDr0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
244 ADD_REG64(WHvX64RegisterDr1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
245 ADD_REG64(WHvX64RegisterDr2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
246 ADD_REG64(WHvX64RegisterDr3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
247 }
248 if (fWhat & CPUMCTX_EXTRN_DR6)
249 ADD_REG64(WHvX64RegisterDr6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
250 if (fWhat & CPUMCTX_EXTRN_DR7)
251 ADD_REG64(WHvX64RegisterDr7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
252
253 /* Floating point state. */
254 if (fWhat & CPUMCTX_EXTRN_X87)
255 {
256 ADD_REG128(WHvX64RegisterFpMmx0, pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[1]);
257 ADD_REG128(WHvX64RegisterFpMmx1, pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[1]);
258 ADD_REG128(WHvX64RegisterFpMmx2, pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[1]);
259 ADD_REG128(WHvX64RegisterFpMmx3, pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[1]);
260 ADD_REG128(WHvX64RegisterFpMmx4, pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[1]);
261 ADD_REG128(WHvX64RegisterFpMmx5, pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[1]);
262 ADD_REG128(WHvX64RegisterFpMmx6, pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[1]);
263 ADD_REG128(WHvX64RegisterFpMmx7, pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[1]);
264
265 aenmNames[iReg] = WHvX64RegisterFpControlStatus;
266 aValues[iReg].FpControlStatus.FpControl = pVCpu->cpum.GstCtx.XState.x87.FCW;
267 aValues[iReg].FpControlStatus.FpStatus = pVCpu->cpum.GstCtx.XState.x87.FSW;
268 aValues[iReg].FpControlStatus.FpTag = pVCpu->cpum.GstCtx.XState.x87.FTW;
269 aValues[iReg].FpControlStatus.Reserved = pVCpu->cpum.GstCtx.XState.x87.FTW >> 8;
270 aValues[iReg].FpControlStatus.LastFpOp = pVCpu->cpum.GstCtx.XState.x87.FOP;
271 aValues[iReg].FpControlStatus.LastFpRip = (pVCpu->cpum.GstCtx.XState.x87.FPUIP)
272 | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.CS << 32)
273 | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.Rsrvd1 << 48);
274 iReg++;
275
276 aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
277 aValues[iReg].XmmControlStatus.LastFpRdp = (pVCpu->cpum.GstCtx.XState.x87.FPUDP)
278 | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.DS << 32)
279 | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.Rsrvd2 << 48);
280 aValues[iReg].XmmControlStatus.XmmStatusControl = pVCpu->cpum.GstCtx.XState.x87.MXCSR;
281 aValues[iReg].XmmControlStatus.XmmStatusControlMask = pVCpu->cpum.GstCtx.XState.x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
282 iReg++;
283 }
284
285 /* Vector state. */
286 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
287 {
288 ADD_REG128(WHvX64RegisterXmm0, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Hi);
289 ADD_REG128(WHvX64RegisterXmm1, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Hi);
290 ADD_REG128(WHvX64RegisterXmm2, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Hi);
291 ADD_REG128(WHvX64RegisterXmm3, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Hi);
292 ADD_REG128(WHvX64RegisterXmm4, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Hi);
293 ADD_REG128(WHvX64RegisterXmm5, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Hi);
294 ADD_REG128(WHvX64RegisterXmm6, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Hi);
295 ADD_REG128(WHvX64RegisterXmm7, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Hi);
296 ADD_REG128(WHvX64RegisterXmm8, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Hi);
297 ADD_REG128(WHvX64RegisterXmm9, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Hi);
298 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Hi);
299 ADD_REG128(WHvX64RegisterXmm11, pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Hi);
300 ADD_REG128(WHvX64RegisterXmm12, pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Hi);
301 ADD_REG128(WHvX64RegisterXmm13, pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Hi);
302 ADD_REG128(WHvX64RegisterXmm14, pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Hi);
303 ADD_REG128(WHvX64RegisterXmm15, pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Hi);
304 }
305
306 /* MSRs */
307 // WHvX64RegisterTsc - don't touch
308 if (fWhat & CPUMCTX_EXTRN_EFER)
309 ADD_REG64(WHvX64RegisterEfer, pVCpu->cpum.GstCtx.msrEFER);
310 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
311 ADD_REG64(WHvX64RegisterKernelGsBase, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
312 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
313 {
314 ADD_REG64(WHvX64RegisterSysenterCs, pVCpu->cpum.GstCtx.SysEnter.cs);
315 ADD_REG64(WHvX64RegisterSysenterEip, pVCpu->cpum.GstCtx.SysEnter.eip);
316 ADD_REG64(WHvX64RegisterSysenterEsp, pVCpu->cpum.GstCtx.SysEnter.esp);
317 }
318 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
319 {
320 ADD_REG64(WHvX64RegisterStar, pVCpu->cpum.GstCtx.msrSTAR);
321 ADD_REG64(WHvX64RegisterLstar, pVCpu->cpum.GstCtx.msrLSTAR);
322 ADD_REG64(WHvX64RegisterCstar, pVCpu->cpum.GstCtx.msrCSTAR);
323 ADD_REG64(WHvX64RegisterSfmask, pVCpu->cpum.GstCtx.msrSFMASK);
324 }
325 if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
326 {
327 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
328 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
329 ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
330 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
331 {
332 ADD_REG64(WHvX64RegisterApicBase, PDMApicGetBaseMsrNoCheck(pVCpu));
333 ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
334#if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
335 ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
336#endif
337 ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
338 ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
339 ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
340 ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
341 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
342 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
343 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
344 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
345 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
346 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
347 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
348 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
349 if (pVM->nem.s.fDoIa32SpecCtrl)
350 ADD_REG64(WHvX64RegisterSpecCtrl, pCtxMsrs->msr.SpecCtrl);
351
352#if 0 /** @todo these registers aren't available? Might explain something.. .*/
353 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM);
354 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
355 {
356 ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
357 ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
358 }
359#endif
360 }
361 }
362
363 /* event injection (clear it). */
364 if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)
365 ADD_REG64(WHvRegisterPendingInterruption, 0);
366
367 if (!pVM->nem.s.fLocalApicEmulation)
368 {
369 /* Interruptibility state. This can get a little complicated since we get
370 half of the state via HV_X64_VP_EXECUTION_STATE. */
371 if ( (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
372 == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI) )
373 {
374 ADD_REG64(WHvRegisterInterruptState, 0);
375 if (CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
376 aValues[iReg - 1].InterruptState.InterruptShadow = 1;
377 aValues[iReg - 1].InterruptState.NmiMasked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
378 }
379 else if (fWhat & CPUMCTX_EXTRN_INHIBIT_INT)
380 {
381 if ( pVCpu->nem.s.fLastInterruptShadow
382 || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
383 {
384 ADD_REG64(WHvRegisterInterruptState, 0);
385 if (CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
386 aValues[iReg - 1].InterruptState.InterruptShadow = 1;
387 /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */
388 //if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
389 // aValues[iReg - 1].InterruptState.NmiMasked = 1;
390 }
391 }
392 else
393 Assert(!(fWhat & CPUMCTX_EXTRN_INHIBIT_NMI));
394
395 /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */
396 uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows;
397 if ( fDesiredIntWin
398 || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin)
399 {
400 pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows;
401 Log8(("Setting WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin=%X\n", fDesiredIntWin));
402 ADD_REG64(WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin);
403 Assert(aValues[iReg - 1].DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI));
404 Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR));
405 Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptPriority == (unsigned)((fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT));
406 }
407 }
408 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC))
409 {
410 Log8(("Setting WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin=%X fPicReadyForInterrupt=%RTbool\n",
411 pVCpu->nem.s.fDesiredInterruptWindows, pVCpu->nem.s.fPicReadyForInterrupt));
412
413 if ( pVCpu->nem.s.fDesiredInterruptWindows
414 && pVCpu->nem.s.fPicReadyForInterrupt)
415 {
416 ADD_REG64(WHvRegisterPendingEvent, 0);
417
418 uint8_t bInterrupt;
419 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
420 AssertRC(rc);
421
422 aValues[iReg - 1].Reg64 = 0;
423 aValues[iReg - 1].ExtIntEvent.EventPending = 1;
424 aValues[iReg - 1].ExtIntEvent.EventType = WHvX64PendingEventExtInt;
425 aValues[iReg - 1].ExtIntEvent.Vector = bInterrupt;
426 }
427
428 if (!pVCpu->nem.s.fIrqWindowRegistered)
429 {
430 ADD_REG64(WHvX64RegisterDeliverabilityNotifications, 0);
431 aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification = 1;
432 pVCpu->nem.s.fIrqWindowRegistered = true;
433 }
434 }
435
436#undef ADD_REG64
437#undef ADD_REG128
438#undef ADD_SEG
439
440 /*
441 * Set the registers.
442 */
443 Assert(iReg < RT_ELEMENTS(aValues));
444 Assert(iReg < RT_ELEMENTS(aenmNames));
445#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
446 Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
447 pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
448#endif
449
450 pVCpu->nem.s.fPicReadyForInterrupt = false;
451
452 if (!iReg)
453 return VINF_SUCCESS;
454
455 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
456 if (SUCCEEDED(hrc))
457 {
458 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM;
459 return VINF_SUCCESS;
460 }
461 AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
462 pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
463 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
464 return VERR_INTERNAL_ERROR;
465}
466
467
468NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
469{
470 WHV_REGISTER_NAME aenmNames[128];
471
472 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
473 uintptr_t iReg = 0;
474
475 /* GPRs */
476 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
477 {
478 if (fWhat & CPUMCTX_EXTRN_RAX)
479 aenmNames[iReg++] = WHvX64RegisterRax;
480 if (fWhat & CPUMCTX_EXTRN_RCX)
481 aenmNames[iReg++] = WHvX64RegisterRcx;
482 if (fWhat & CPUMCTX_EXTRN_RDX)
483 aenmNames[iReg++] = WHvX64RegisterRdx;
484 if (fWhat & CPUMCTX_EXTRN_RBX)
485 aenmNames[iReg++] = WHvX64RegisterRbx;
486 if (fWhat & CPUMCTX_EXTRN_RSP)
487 aenmNames[iReg++] = WHvX64RegisterRsp;
488 if (fWhat & CPUMCTX_EXTRN_RBP)
489 aenmNames[iReg++] = WHvX64RegisterRbp;
490 if (fWhat & CPUMCTX_EXTRN_RSI)
491 aenmNames[iReg++] = WHvX64RegisterRsi;
492 if (fWhat & CPUMCTX_EXTRN_RDI)
493 aenmNames[iReg++] = WHvX64RegisterRdi;
494 if (fWhat & CPUMCTX_EXTRN_R8_R15)
495 {
496 aenmNames[iReg++] = WHvX64RegisterR8;
497 aenmNames[iReg++] = WHvX64RegisterR9;
498 aenmNames[iReg++] = WHvX64RegisterR10;
499 aenmNames[iReg++] = WHvX64RegisterR11;
500 aenmNames[iReg++] = WHvX64RegisterR12;
501 aenmNames[iReg++] = WHvX64RegisterR13;
502 aenmNames[iReg++] = WHvX64RegisterR14;
503 aenmNames[iReg++] = WHvX64RegisterR15;
504 }
505 }
506
507 /* RIP & Flags */
508 if (fWhat & CPUMCTX_EXTRN_RIP)
509 aenmNames[iReg++] = WHvX64RegisterRip;
510 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
511 aenmNames[iReg++] = WHvX64RegisterRflags;
512
513 /* Segments */
514 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
515 {
516 if (fWhat & CPUMCTX_EXTRN_ES)
517 aenmNames[iReg++] = WHvX64RegisterEs;
518 if (fWhat & CPUMCTX_EXTRN_CS)
519 aenmNames[iReg++] = WHvX64RegisterCs;
520 if (fWhat & CPUMCTX_EXTRN_SS)
521 aenmNames[iReg++] = WHvX64RegisterSs;
522 if (fWhat & CPUMCTX_EXTRN_DS)
523 aenmNames[iReg++] = WHvX64RegisterDs;
524 if (fWhat & CPUMCTX_EXTRN_FS)
525 aenmNames[iReg++] = WHvX64RegisterFs;
526 if (fWhat & CPUMCTX_EXTRN_GS)
527 aenmNames[iReg++] = WHvX64RegisterGs;
528 }
529
530 /* Descriptor tables. */
531 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
532 {
533 if (fWhat & CPUMCTX_EXTRN_LDTR)
534 aenmNames[iReg++] = WHvX64RegisterLdtr;
535 if (fWhat & CPUMCTX_EXTRN_TR)
536 aenmNames[iReg++] = WHvX64RegisterTr;
537 if (fWhat & CPUMCTX_EXTRN_IDTR)
538 aenmNames[iReg++] = WHvX64RegisterIdtr;
539 if (fWhat & CPUMCTX_EXTRN_GDTR)
540 aenmNames[iReg++] = WHvX64RegisterGdtr;
541 }
542
543 /* Control registers. */
544 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
545 {
546 if (fWhat & CPUMCTX_EXTRN_CR0)
547 aenmNames[iReg++] = WHvX64RegisterCr0;
548 if (fWhat & CPUMCTX_EXTRN_CR2)
549 aenmNames[iReg++] = WHvX64RegisterCr2;
550 if (fWhat & CPUMCTX_EXTRN_CR3)
551 aenmNames[iReg++] = WHvX64RegisterCr3;
552 if (fWhat & CPUMCTX_EXTRN_CR4)
553 aenmNames[iReg++] = WHvX64RegisterCr4;
554 }
555 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
556 aenmNames[iReg++] = WHvX64RegisterCr8;
557
558 /* Debug registers. */
559 if (fWhat & CPUMCTX_EXTRN_DR7)
560 aenmNames[iReg++] = WHvX64RegisterDr7;
561 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
562 {
563 if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_DR7))
564 {
565 fWhat |= CPUMCTX_EXTRN_DR7;
566 aenmNames[iReg++] = WHvX64RegisterDr7;
567 }
568 aenmNames[iReg++] = WHvX64RegisterDr0;
569 aenmNames[iReg++] = WHvX64RegisterDr1;
570 aenmNames[iReg++] = WHvX64RegisterDr2;
571 aenmNames[iReg++] = WHvX64RegisterDr3;
572 }
573 if (fWhat & CPUMCTX_EXTRN_DR6)
574 aenmNames[iReg++] = WHvX64RegisterDr6;
575
576 /* Floating point state. */
577 if (fWhat & CPUMCTX_EXTRN_X87)
578 {
579 aenmNames[iReg++] = WHvX64RegisterFpMmx0;
580 aenmNames[iReg++] = WHvX64RegisterFpMmx1;
581 aenmNames[iReg++] = WHvX64RegisterFpMmx2;
582 aenmNames[iReg++] = WHvX64RegisterFpMmx3;
583 aenmNames[iReg++] = WHvX64RegisterFpMmx4;
584 aenmNames[iReg++] = WHvX64RegisterFpMmx5;
585 aenmNames[iReg++] = WHvX64RegisterFpMmx6;
586 aenmNames[iReg++] = WHvX64RegisterFpMmx7;
587 aenmNames[iReg++] = WHvX64RegisterFpControlStatus;
588 }
589 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
590 aenmNames[iReg++] = WHvX64RegisterXmmControlStatus;
591
592 /* Vector state. */
593 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
594 {
595 aenmNames[iReg++] = WHvX64RegisterXmm0;
596 aenmNames[iReg++] = WHvX64RegisterXmm1;
597 aenmNames[iReg++] = WHvX64RegisterXmm2;
598 aenmNames[iReg++] = WHvX64RegisterXmm3;
599 aenmNames[iReg++] = WHvX64RegisterXmm4;
600 aenmNames[iReg++] = WHvX64RegisterXmm5;
601 aenmNames[iReg++] = WHvX64RegisterXmm6;
602 aenmNames[iReg++] = WHvX64RegisterXmm7;
603 aenmNames[iReg++] = WHvX64RegisterXmm8;
604 aenmNames[iReg++] = WHvX64RegisterXmm9;
605 aenmNames[iReg++] = WHvX64RegisterXmm10;
606 aenmNames[iReg++] = WHvX64RegisterXmm11;
607 aenmNames[iReg++] = WHvX64RegisterXmm12;
608 aenmNames[iReg++] = WHvX64RegisterXmm13;
609 aenmNames[iReg++] = WHvX64RegisterXmm14;
610 aenmNames[iReg++] = WHvX64RegisterXmm15;
611 }
612
613 /* MSRs */
614 // WHvX64RegisterTsc - don't touch
615 if (fWhat & CPUMCTX_EXTRN_EFER)
616 aenmNames[iReg++] = WHvX64RegisterEfer;
617 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
618 aenmNames[iReg++] = WHvX64RegisterKernelGsBase;
619 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
620 {
621 aenmNames[iReg++] = WHvX64RegisterSysenterCs;
622 aenmNames[iReg++] = WHvX64RegisterSysenterEip;
623 aenmNames[iReg++] = WHvX64RegisterSysenterEsp;
624 }
625 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
626 {
627 aenmNames[iReg++] = WHvX64RegisterStar;
628 aenmNames[iReg++] = WHvX64RegisterLstar;
629 aenmNames[iReg++] = WHvX64RegisterCstar;
630 aenmNames[iReg++] = WHvX64RegisterSfmask;
631 }
632
633//#ifdef LOG_ENABLED
634// const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM);
635//#endif
636 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
637 aenmNames[iReg++] = WHvX64RegisterTscAux;
638 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
639 {
640 aenmNames[iReg++] = WHvX64RegisterApicBase; /// @todo APIC BASE
641 aenmNames[iReg++] = WHvX64RegisterPat;
642#if 0 /*def LOG_ENABLED*/ /** @todo Check if WHvX64RegisterMsrMtrrCap works... */
643 aenmNames[iReg++] = WHvX64RegisterMsrMtrrCap;
644#endif
645 aenmNames[iReg++] = WHvX64RegisterMsrMtrrDefType;
646 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix64k00000;
647 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16k80000;
648 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16kA0000;
649 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC0000;
650 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC8000;
651 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD0000;
652 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD8000;
653 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE0000;
654 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE8000;
655 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF0000;
656 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF8000;
657 if (pVM->nem.s.fDoIa32SpecCtrl)
658 aenmNames[iReg++] = WHvX64RegisterSpecCtrl;
659 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
660//#ifdef LOG_ENABLED
661// if (enmCpuVendor != CPUMCPUVENDOR_AMD)
662// aenmNames[iReg++] = HvX64RegisterIa32FeatureControl;
663//#endif
664 }
665
666 /* Interruptibility. */
667 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
668 {
669 aenmNames[iReg++] = WHvRegisterInterruptState;
670 aenmNames[iReg++] = WHvX64RegisterRip;
671 }
672
673 /* event injection */
674 aenmNames[iReg++] = WHvRegisterPendingInterruption;
675 aenmNames[iReg++] = WHvRegisterPendingEvent;
676
677 size_t const cRegs = iReg;
678 Assert(cRegs < RT_ELEMENTS(aenmNames));
679
680 /*
681 * Get the registers.
682 */
683 WHV_REGISTER_VALUE aValues[128];
684 RT_ZERO(aValues);
685 Assert(RT_ELEMENTS(aValues) >= cRegs);
686 Assert(RT_ELEMENTS(aenmNames) >= cRegs);
687#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
688 Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
689 pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
690#endif
691 HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues);
692 AssertLogRelMsgReturn(SUCCEEDED(hrc),
693 ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
694 pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
695 , VERR_NEM_GET_REGISTERS_FAILED);
696
697 iReg = 0;
698#define GET_REG64(a_DstVar, a_enmName) do { \
699 Assert(aenmNames[iReg] == (a_enmName)); \
700 (a_DstVar) = aValues[iReg].Reg64; \
701 iReg++; \
702 } while (0)
703#define GET_REG64_LOG7(a_DstVar, a_enmName, a_szLogName) do { \
704 Assert(aenmNames[iReg] == (a_enmName)); \
705 if ((a_DstVar) != aValues[iReg].Reg64) \
706 Log7(("NEM/%u: " a_szLogName " changed %RX64 -> %RX64\n", pVCpu->idCpu, (a_DstVar), aValues[iReg].Reg64)); \
707 (a_DstVar) = aValues[iReg].Reg64; \
708 iReg++; \
709 } while (0)
710#define GET_REG128(a_DstVarLo, a_DstVarHi, a_enmName) do { \
711 Assert(aenmNames[iReg] == a_enmName); \
712 (a_DstVarLo) = aValues[iReg].Reg128.Low64; \
713 (a_DstVarHi) = aValues[iReg].Reg128.High64; \
714 iReg++; \
715 } while (0)
716#define GET_SEG(a_SReg, a_enmName) do { \
717 Assert(aenmNames[iReg] == (a_enmName)); \
718 NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[iReg].Segment); \
719 iReg++; \
720 } while (0)
721
722 /* GPRs */
723 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
724 {
725 if (fWhat & CPUMCTX_EXTRN_RAX)
726 GET_REG64(pVCpu->cpum.GstCtx.rax, WHvX64RegisterRax);
727 if (fWhat & CPUMCTX_EXTRN_RCX)
728 GET_REG64(pVCpu->cpum.GstCtx.rcx, WHvX64RegisterRcx);
729 if (fWhat & CPUMCTX_EXTRN_RDX)
730 GET_REG64(pVCpu->cpum.GstCtx.rdx, WHvX64RegisterRdx);
731 if (fWhat & CPUMCTX_EXTRN_RBX)
732 GET_REG64(pVCpu->cpum.GstCtx.rbx, WHvX64RegisterRbx);
733 if (fWhat & CPUMCTX_EXTRN_RSP)
734 GET_REG64(pVCpu->cpum.GstCtx.rsp, WHvX64RegisterRsp);
735 if (fWhat & CPUMCTX_EXTRN_RBP)
736 GET_REG64(pVCpu->cpum.GstCtx.rbp, WHvX64RegisterRbp);
737 if (fWhat & CPUMCTX_EXTRN_RSI)
738 GET_REG64(pVCpu->cpum.GstCtx.rsi, WHvX64RegisterRsi);
739 if (fWhat & CPUMCTX_EXTRN_RDI)
740 GET_REG64(pVCpu->cpum.GstCtx.rdi, WHvX64RegisterRdi);
741 if (fWhat & CPUMCTX_EXTRN_R8_R15)
742 {
743 GET_REG64(pVCpu->cpum.GstCtx.r8, WHvX64RegisterR8);
744 GET_REG64(pVCpu->cpum.GstCtx.r9, WHvX64RegisterR9);
745 GET_REG64(pVCpu->cpum.GstCtx.r10, WHvX64RegisterR10);
746 GET_REG64(pVCpu->cpum.GstCtx.r11, WHvX64RegisterR11);
747 GET_REG64(pVCpu->cpum.GstCtx.r12, WHvX64RegisterR12);
748 GET_REG64(pVCpu->cpum.GstCtx.r13, WHvX64RegisterR13);
749 GET_REG64(pVCpu->cpum.GstCtx.r14, WHvX64RegisterR14);
750 GET_REG64(pVCpu->cpum.GstCtx.r15, WHvX64RegisterR15);
751 }
752 }
753
754 /* RIP & Flags */
755 if (fWhat & CPUMCTX_EXTRN_RIP)
756 GET_REG64(pVCpu->cpum.GstCtx.rip, WHvX64RegisterRip);
757 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
758 GET_REG64(pVCpu->cpum.GstCtx.rflags.u, WHvX64RegisterRflags);
759
760 /* Segments */
761 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
762 {
763 if (fWhat & CPUMCTX_EXTRN_ES)
764 GET_SEG(pVCpu->cpum.GstCtx.es, WHvX64RegisterEs);
765 if (fWhat & CPUMCTX_EXTRN_CS)
766 GET_SEG(pVCpu->cpum.GstCtx.cs, WHvX64RegisterCs);
767 if (fWhat & CPUMCTX_EXTRN_SS)
768 GET_SEG(pVCpu->cpum.GstCtx.ss, WHvX64RegisterSs);
769 if (fWhat & CPUMCTX_EXTRN_DS)
770 GET_SEG(pVCpu->cpum.GstCtx.ds, WHvX64RegisterDs);
771 if (fWhat & CPUMCTX_EXTRN_FS)
772 GET_SEG(pVCpu->cpum.GstCtx.fs, WHvX64RegisterFs);
773 if (fWhat & CPUMCTX_EXTRN_GS)
774 GET_SEG(pVCpu->cpum.GstCtx.gs, WHvX64RegisterGs);
775 }
776
777 /* Descriptor tables and the task segment. */
778 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
779 {
780 if (fWhat & CPUMCTX_EXTRN_LDTR)
781 GET_SEG(pVCpu->cpum.GstCtx.ldtr, WHvX64RegisterLdtr);
782
783 if (fWhat & CPUMCTX_EXTRN_TR)
784 {
785 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
786 avoid to trigger sanity assertions around the code, always fix this. */
787 GET_SEG(pVCpu->cpum.GstCtx.tr, WHvX64RegisterTr);
788 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
789 {
790 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
791 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
792 break;
793 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
794 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
795 break;
796 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
797 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
798 break;
799 }
800 }
801 if (fWhat & CPUMCTX_EXTRN_IDTR)
802 {
803 Assert(aenmNames[iReg] == WHvX64RegisterIdtr);
804 pVCpu->cpum.GstCtx.idtr.cbIdt = aValues[iReg].Table.Limit;
805 pVCpu->cpum.GstCtx.idtr.pIdt = aValues[iReg].Table.Base;
806 iReg++;
807 }
808 if (fWhat & CPUMCTX_EXTRN_GDTR)
809 {
810 Assert(aenmNames[iReg] == WHvX64RegisterGdtr);
811 pVCpu->cpum.GstCtx.gdtr.cbGdt = aValues[iReg].Table.Limit;
812 pVCpu->cpum.GstCtx.gdtr.pGdt = aValues[iReg].Table.Base;
813 iReg++;
814 }
815 }
816
817 /* Control registers. */
818 bool fMaybeChangedMode = false;
819 bool fUpdateCr3 = false;
820 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
821 {
822 if (fWhat & CPUMCTX_EXTRN_CR0)
823 {
824 Assert(aenmNames[iReg] == WHvX64RegisterCr0);
825 if (pVCpu->cpum.GstCtx.cr0 != aValues[iReg].Reg64)
826 {
827 CPUMSetGuestCR0(pVCpu, aValues[iReg].Reg64);
828 fMaybeChangedMode = true;
829 }
830 iReg++;
831 }
832 if (fWhat & CPUMCTX_EXTRN_CR2)
833 GET_REG64(pVCpu->cpum.GstCtx.cr2, WHvX64RegisterCr2);
834 if (fWhat & CPUMCTX_EXTRN_CR3)
835 {
836 if (pVCpu->cpum.GstCtx.cr3 != aValues[iReg].Reg64)
837 {
838 CPUMSetGuestCR3(pVCpu, aValues[iReg].Reg64);
839 fUpdateCr3 = true;
840 }
841 iReg++;
842 }
843 if (fWhat & CPUMCTX_EXTRN_CR4)
844 {
845 if (pVCpu->cpum.GstCtx.cr4 != aValues[iReg].Reg64)
846 {
847 CPUMSetGuestCR4(pVCpu, aValues[iReg].Reg64);
848 fMaybeChangedMode = true;
849 }
850 iReg++;
851 }
852 }
853 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
854 {
855 Assert(aenmNames[iReg] == WHvX64RegisterCr8);
856 PDMApicSetTpr(pVCpu, (uint8_t)aValues[iReg].Reg64 << 4);
857 iReg++;
858 }
859
860 /* Debug registers. */
861 if (fWhat & CPUMCTX_EXTRN_DR7)
862 {
863 Assert(aenmNames[iReg] == WHvX64RegisterDr7);
864 if (pVCpu->cpum.GstCtx.dr[7] != aValues[iReg].Reg64)
865 CPUMSetGuestDR7(pVCpu, aValues[iReg].Reg64);
866 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
867 iReg++;
868 }
869 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
870 {
871 Assert(aenmNames[iReg] == WHvX64RegisterDr0);
872 Assert(aenmNames[iReg+3] == WHvX64RegisterDr3);
873 if (pVCpu->cpum.GstCtx.dr[0] != aValues[iReg].Reg64)
874 CPUMSetGuestDR0(pVCpu, aValues[iReg].Reg64);
875 iReg++;
876 if (pVCpu->cpum.GstCtx.dr[1] != aValues[iReg].Reg64)
877 CPUMSetGuestDR1(pVCpu, aValues[iReg].Reg64);
878 iReg++;
879 if (pVCpu->cpum.GstCtx.dr[2] != aValues[iReg].Reg64)
880 CPUMSetGuestDR2(pVCpu, aValues[iReg].Reg64);
881 iReg++;
882 if (pVCpu->cpum.GstCtx.dr[3] != aValues[iReg].Reg64)
883 CPUMSetGuestDR3(pVCpu, aValues[iReg].Reg64);
884 iReg++;
885 }
886 if (fWhat & CPUMCTX_EXTRN_DR6)
887 {
888 Assert(aenmNames[iReg] == WHvX64RegisterDr6);
889 if (pVCpu->cpum.GstCtx.dr[6] != aValues[iReg].Reg64)
890 CPUMSetGuestDR6(pVCpu, aValues[iReg].Reg64);
891 iReg++;
892 }
893
894 /* Floating point state. */
895 if (fWhat & CPUMCTX_EXTRN_X87)
896 {
897 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[1], WHvX64RegisterFpMmx0);
898 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[1], WHvX64RegisterFpMmx1);
899 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[1], WHvX64RegisterFpMmx2);
900 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[1], WHvX64RegisterFpMmx3);
901 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[1], WHvX64RegisterFpMmx4);
902 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[1], WHvX64RegisterFpMmx5);
903 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[1], WHvX64RegisterFpMmx6);
904 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[1], WHvX64RegisterFpMmx7);
905
906 Assert(aenmNames[iReg] == WHvX64RegisterFpControlStatus);
907 pVCpu->cpum.GstCtx.XState.x87.FCW = aValues[iReg].FpControlStatus.FpControl;
908 pVCpu->cpum.GstCtx.XState.x87.FSW = aValues[iReg].FpControlStatus.FpStatus;
909 pVCpu->cpum.GstCtx.XState.x87.FTW = aValues[iReg].FpControlStatus.FpTag
910 /*| (aValues[iReg].FpControlStatus.Reserved << 8)*/;
911 pVCpu->cpum.GstCtx.XState.x87.FOP = aValues[iReg].FpControlStatus.LastFpOp;
912 pVCpu->cpum.GstCtx.XState.x87.FPUIP = (uint32_t)aValues[iReg].FpControlStatus.LastFpRip;
913 pVCpu->cpum.GstCtx.XState.x87.CS = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 32);
914 pVCpu->cpum.GstCtx.XState.x87.Rsrvd1 = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 48);
915 iReg++;
916 }
917
918 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
919 {
920 Assert(aenmNames[iReg] == WHvX64RegisterXmmControlStatus);
921 if (fWhat & CPUMCTX_EXTRN_X87)
922 {
923 pVCpu->cpum.GstCtx.XState.x87.FPUDP = (uint32_t)aValues[iReg].XmmControlStatus.LastFpRdp;
924 pVCpu->cpum.GstCtx.XState.x87.DS = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 32);
925 pVCpu->cpum.GstCtx.XState.x87.Rsrvd2 = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 48);
926 }
927 pVCpu->cpum.GstCtx.XState.x87.MXCSR = aValues[iReg].XmmControlStatus.XmmStatusControl;
928 pVCpu->cpum.GstCtx.XState.x87.MXCSR_MASK = aValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
929 iReg++;
930 }
931
932 /* Vector state. */
933 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
934 {
935 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Hi, WHvX64RegisterXmm0);
936 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Hi, WHvX64RegisterXmm1);
937 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Hi, WHvX64RegisterXmm2);
938 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Hi, WHvX64RegisterXmm3);
939 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Hi, WHvX64RegisterXmm4);
940 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Hi, WHvX64RegisterXmm5);
941 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Hi, WHvX64RegisterXmm6);
942 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Hi, WHvX64RegisterXmm7);
943 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Hi, WHvX64RegisterXmm8);
944 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Hi, WHvX64RegisterXmm9);
945 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Hi, WHvX64RegisterXmm10);
946 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Hi, WHvX64RegisterXmm11);
947 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Hi, WHvX64RegisterXmm12);
948 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Hi, WHvX64RegisterXmm13);
949 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Hi, WHvX64RegisterXmm14);
950 GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Hi, WHvX64RegisterXmm15);
951 }
952
953 /* MSRs */
954 // WHvX64RegisterTsc - don't touch
955 if (fWhat & CPUMCTX_EXTRN_EFER)
956 {
957 Assert(aenmNames[iReg] == WHvX64RegisterEfer);
958 if (aValues[iReg].Reg64 != pVCpu->cpum.GstCtx.msrEFER)
959 {
960 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, aValues[iReg].Reg64));
961 if ((aValues[iReg].Reg64 ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
962 PGMNotifyNxeChanged(pVCpu, RT_BOOL(aValues[iReg].Reg64 & MSR_K6_EFER_NXE));
963 pVCpu->cpum.GstCtx.msrEFER = aValues[iReg].Reg64;
964 fMaybeChangedMode = true;
965 }
966 iReg++;
967 }
968 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
969 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrKERNELGSBASE, WHvX64RegisterKernelGsBase, "MSR KERNEL_GS_BASE");
970 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
971 {
972 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.cs, WHvX64RegisterSysenterCs, "MSR SYSENTER.CS");
973 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.eip, WHvX64RegisterSysenterEip, "MSR SYSENTER.EIP");
974 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.esp, WHvX64RegisterSysenterEsp, "MSR SYSENTER.ESP");
975 }
976 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
977 {
978 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSTAR, WHvX64RegisterStar, "MSR STAR");
979 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrLSTAR, WHvX64RegisterLstar, "MSR LSTAR");
980 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrCSTAR, WHvX64RegisterCstar, "MSR CSTAR");
981 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSFMASK, WHvX64RegisterSfmask, "MSR SFMASK");
982 }
983 if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
984 {
985 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
986 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
987 GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
988 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
989 {
990 Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
991 const uint64_t uOldBase = PDMApicGetBaseMsrNoCheck(pVCpu);
992 if (aValues[iReg].Reg64 != uOldBase)
993 {
994 Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
995 pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
996 int rc2 = PDMApicSetBaseMsr(pVCpu, aValues[iReg].Reg64);
997 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
998 }
999 iReg++;
1000
1001 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
1002#if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
1003 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
1004#endif
1005 GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
1006 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
1007 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
1008 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
1009 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
1010 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
1011 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
1012 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
1013 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
1014 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
1015 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
1016 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
1017 if (pVM->nem.s.fDoIa32SpecCtrl)
1018 GET_REG64_LOG7(pCtxMsrs->msr.SpecCtrl, WHvX64RegisterSpecCtrl, "MSR IA32_SPEC_CTRL");
1019 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
1020 }
1021 }
1022
1023 /* Interruptibility. */
1024 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1025 {
1026 Assert(aenmNames[iReg] == WHvRegisterInterruptState);
1027 Assert(aenmNames[iReg + 1] == WHvX64RegisterRip);
1028
1029 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT))
1030 pVCpu->nem.s.fLastInterruptShadow = CPUMUpdateInterruptShadowEx(&pVCpu->cpum.GstCtx,
1031 aValues[iReg].InterruptState.InterruptShadow,
1032 aValues[iReg + 1].Reg64);
1033
1034 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI))
1035 CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, aValues[iReg].InterruptState.NmiMasked);
1036
1037 fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
1038 iReg += 2;
1039 }
1040
1041 /* Event injection. */
1042 /// @todo WHvRegisterPendingInterruption
1043 Assert(aenmNames[iReg] == WHvRegisterPendingInterruption);
1044 if (aValues[iReg].PendingInterruption.InterruptionPending)
1045 {
1046 Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
1047 aValues[iReg].PendingInterruption.InterruptionType, aValues[iReg].PendingInterruption.InterruptionVector,
1048 aValues[iReg].PendingInterruption.DeliverErrorCode, aValues[iReg].PendingInterruption.ErrorCode,
1049 aValues[iReg].PendingInterruption.InstructionLength, aValues[iReg].PendingInterruption.NestedEvent));
1050 AssertMsg((aValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0,
1051 ("%#RX64\n", aValues[iReg].PendingInterruption.AsUINT64));
1052 }
1053
1054 /// @todo WHvRegisterPendingEvent
1055
1056 /* Almost done, just update extrn flags and maybe change PGM mode. */
1057 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1058 if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
1059 pVCpu->cpum.GstCtx.fExtrn = 0;
1060
1061 /* Typical. */
1062 if (!fMaybeChangedMode && !fUpdateCr3)
1063 return VINF_SUCCESS;
1064
1065 /*
1066 * Slow.
1067 */
1068 if (fMaybeChangedMode)
1069 {
1070 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1071 false /* fForce */);
1072 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1073 }
1074
1075 if (fUpdateCr3)
1076 {
1077 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1078 if (rc == VINF_SUCCESS)
1079 { /* likely */ }
1080 else
1081 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1082 }
1083
1084 return VINF_SUCCESS;
1085}
1086
1087
1088/**
1089 * Interface for importing state on demand (used by IEM).
1090 *
1091 * @returns VBox status code.
1092 * @param pVCpu The cross context CPU structure.
1093 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1094 */
1095VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
1096{
1097 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
1098 return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
1099}
1100
1101
1102/**
1103 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
1104 *
1105 * @returns VBox status code.
1106 * @param pVCpu The cross context CPU structure.
1107 * @param pcTicks Where to return the CPU tick count.
1108 * @param puAux Where to return the TSC_AUX register value.
1109 */
1110VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
1111{
1112 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
1113
1114 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1115 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
1116 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
1117
1118 /* Call the offical API. */
1119 WHV_REGISTER_NAME aenmNames[2] = { WHvX64RegisterTsc, WHvX64RegisterTscAux };
1120 WHV_REGISTER_VALUE aValues[2] = { { { { 0, 0 } } }, { { { 0, 0 } } } };
1121 Assert(RT_ELEMENTS(aenmNames) == RT_ELEMENTS(aValues));
1122 HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, 2, aValues);
1123 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1124 ("WHvGetVirtualProcessorRegisters(%p, %u,{tsc,tsc_aux},2,) -> %Rhrc (Last=%#x/%u)\n",
1125 pVM->nem.s.hPartition, pVCpu->idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1126 , VERR_NEM_GET_REGISTERS_FAILED);
1127 *pcTicks = aValues[0].Reg64;
1128 if (puAux)
1129 *puAux = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX ? aValues[1].Reg64 : CPUMGetGuestTscAux(pVCpu);
1130 return VINF_SUCCESS;
1131}
1132
1133
1134/**
1135 * Resumes CPU clock (TSC) on all virtual CPUs.
1136 *
1137 * This is called by TM when the VM is started, restored, resumed or similar.
1138 *
1139 * @returns VBox status code.
1140 * @param pVM The cross context VM structure.
1141 * @param pVCpu The cross context CPU structure of the calling EMT.
1142 * @param uPausedTscValue The TSC value at the time of pausing.
1143 */
1144VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
1145{
1146 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
1147 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
1148
1149 /** @todo Do this WHvSuspendPartitionTime call to when the VM is suspended. */
1150 HRESULT hrcSuspend = E_FAIL;
1151 if (WHvSuspendPartitionTime && WHvResumePartitionTime)
1152 {
1153 hrcSuspend = WHvSuspendPartitionTime(pVM->nem.s.hPartition);
1154 AssertLogRelMsg(SUCCEEDED(hrcSuspend),
1155 ("WHvSuspendPartitionTime(%p) -> %Rhrc (Last=%#x/%u)\n",
1156 pVM->nem.s.hPartition, hrcSuspend, RTNtLastStatusValue(), RTNtLastErrorValue()));
1157 }
1158
1159 /*
1160 * Call the offical API to do the job.
1161 */
1162 if (pVM->cCpus > 1)
1163 RTThreadYield(); /* Try decrease the chance that we get rescheduled in the middle. */
1164
1165 /* Start with the first CPU. */
1166 WHV_REGISTER_NAME enmName = WHvX64RegisterTsc;
1167 WHV_REGISTER_VALUE Value = { { { 0, 0 } } };
1168 Value.Reg64 = uPausedTscValue;
1169 uint64_t const uFirstTsc = ASMReadTSC();
1170 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, 0 /*iCpu*/, &enmName, 1, &Value);
1171 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1172 ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64) -> %Rhrc (Last=%#x/%u)\n",
1173 pVM->nem.s.hPartition, uPausedTscValue, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1174 , VERR_NEM_SET_TSC);
1175
1176 /* Do the other CPUs, adjusting for elapsed TSC and keeping finger crossed
1177 that we don't introduce too much drift here. */
1178 for (VMCPUID iCpu = 1; iCpu < pVM->cCpus; iCpu++)
1179 {
1180 Assert(enmName == WHvX64RegisterTsc);
1181 const uint64_t offDelta = SUCCEEDED(hrcSuspend) ? 0 : ASMReadTSC() - uFirstTsc;
1182 Value.Reg64 = uPausedTscValue + offDelta;
1183 hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, iCpu, &enmName, 1, &Value);
1184 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1185 ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64 + %#RX64) -> %Rhrc (Last=%#x/%u)\n",
1186 pVM->nem.s.hPartition, iCpu, uPausedTscValue, offDelta, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1187 , VERR_NEM_SET_TSC);
1188 }
1189
1190 if (SUCCEEDED(hrcSuspend))
1191 {
1192 hrc = WHvResumePartitionTime(pVM->nem.s.hPartition);
1193 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1194 ("WHvResumePartitionTime(%p) -> %Rhrc (Last=%#x/%u)\n",
1195 pVM->nem.s.hPartition, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1196 , VERR_NEM_SET_TSC);
1197 }
1198
1199 return VINF_SUCCESS;
1200}
1201
1202#ifdef LOG_ENABLED
1203
1204/**
1205 * Get the virtual processor running status.
1206 */
1207DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPUCC pVCpu)
1208{
1209 RTERRVARS Saved;
1210 RTErrVarsSave(&Saved);
1211
1212 /*
1213 * This API is disabled in release builds, it seems. On build 17101 it requires
1214 * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
1215 */
1216 VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
1217 NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
1218 AssertMsg(NT_SUCCESS(rcNt), ("rcNt=%#x\n", rcNt));
1219
1220 RTErrVarsRestore(&Saved);
1221 return enmCpuStatus;
1222}
1223
1224
1225/**
1226 * Logs the current CPU state.
1227 */
1228NEM_TMPL_STATIC void nemHCWinLogState(PVMCC pVM, PVMCPUCC pVCpu)
1229{
1230 if (LogIs3Enabled())
1231 {
1232# if 0 // def IN_RING3 - causes lazy state import assertions all over CPUM.
1233 char szRegs[4096];
1234 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
1235 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
1236 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
1237 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
1238 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
1239 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
1240 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
1241 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
1242 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
1243 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
1244 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
1245 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
1246 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
1247 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
1248 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
1249 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
1250 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
1251 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
1252 " efer=%016VR{efer}\n"
1253 " pat=%016VR{pat}\n"
1254 " sf_mask=%016VR{sf_mask}\n"
1255 "krnl_gs_base=%016VR{krnl_gs_base}\n"
1256 " lstar=%016VR{lstar}\n"
1257 " star=%016VR{star} cstar=%016VR{cstar}\n"
1258 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
1259 );
1260
1261 char szInstr[256];
1262 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
1263 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
1264 szInstr, sizeof(szInstr), NULL);
1265 Log3(("%s%s\n", szRegs, szInstr));
1266# else
1267 /** @todo stat logging in ring-0 */
1268 RT_NOREF(pVM, pVCpu);
1269# endif
1270 }
1271}
1272
1273#endif /* LOG_ENABLED */
1274
1275/**
1276 * Translates the execution stat bitfield into a short log string, WinHv version.
1277 *
1278 * @returns Read-only log string.
1279 * @param pExitCtx The exit context which state to summarize.
1280 */
1281static const char *nemR3WinExecStateToLogStr(WHV_VP_EXIT_CONTEXT const *pExitCtx)
1282{
1283 unsigned u = (unsigned)pExitCtx->ExecutionState.InterruptionPending
1284 | ((unsigned)pExitCtx->ExecutionState.DebugActive << 1)
1285 | ((unsigned)pExitCtx->ExecutionState.InterruptShadow << 2);
1286#define SWITCH_IT(a_szPrefix) \
1287 do \
1288 switch (u)\
1289 { \
1290 case 0x00: return a_szPrefix ""; \
1291 case 0x01: return a_szPrefix ",Pnd"; \
1292 case 0x02: return a_szPrefix ",Dbg"; \
1293 case 0x03: return a_szPrefix ",Pnd,Dbg"; \
1294 case 0x04: return a_szPrefix ",Shw"; \
1295 case 0x05: return a_szPrefix ",Pnd,Shw"; \
1296 case 0x06: return a_szPrefix ",Shw,Dbg"; \
1297 case 0x07: return a_szPrefix ",Pnd,Shw,Dbg"; \
1298 default: AssertFailedReturn("WTF?"); \
1299 } \
1300 while (0)
1301 if (pExitCtx->ExecutionState.EferLma)
1302 SWITCH_IT("LM");
1303 else if (pExitCtx->ExecutionState.Cr0Pe)
1304 SWITCH_IT("PM");
1305 else
1306 SWITCH_IT("RM");
1307#undef SWITCH_IT
1308}
1309
1310
1311/**
1312 * Advances the guest RIP and clear EFLAGS.RF, WinHv version.
1313 *
1314 * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
1315 *
1316 * @param pVCpu The cross context virtual CPU structure.
1317 * @param pExitCtx The exit context.
1318 * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
1319 */
1320DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPUCC pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx, uint8_t cbMinInstr)
1321{
1322 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
1323
1324 /* Advance the RIP. */
1325 Assert(pExitCtx->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
1326 pVCpu->cpum.GstCtx.rip += pExitCtx->InstructionLength;
1327 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
1328 CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);
1329}
1330
1331
1332/**
1333 * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
1334 * and nemHCWinHandleMemoryAccessPageCheckerCallback.
1335 */
1336typedef struct NEMHCWINHMACPCCSTATE
1337{
1338 /** Input: Write access. */
1339 bool fWriteAccess;
1340 /** Output: Set if we did something. */
1341 bool fDidSomething;
1342 /** Output: Set it we should resume. */
1343 bool fCanResume;
1344} NEMHCWINHMACPCCSTATE;
1345
1346/**
1347 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1348 * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
1349 * NEMHCWINHMACPCCSTATE structure. }
1350 */
1351NEM_TMPL_STATIC DECLCALLBACK(int)
1352nemHCWinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1353{
1354 NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
1355 pState->fDidSomething = false;
1356 pState->fCanResume = false;
1357
1358 /* If A20 is disabled, we may need to make another query on the masked
1359 page to get the correct protection information. */
1360 uint8_t u2State = pInfo->u2NemState;
1361 RTGCPHYS GCPhysSrc;
1362#ifdef NEM_WIN_WITH_A20
1363 if ( pVM->nem.s.fA20Enabled
1364 || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
1365#endif
1366 GCPhysSrc = GCPhys;
1367#ifdef NEM_WIN_WITH_A20
1368 else
1369 {
1370 GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
1371 PGMPHYSNEMPAGEINFO Info2;
1372 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
1373 AssertRCReturn(rc, rc);
1374
1375 *pInfo = Info2;
1376 pInfo->u2NemState = u2State;
1377 }
1378#endif
1379
1380 /*
1381 * Consolidate current page state with actual page protection and access type.
1382 * We don't really consider downgrades here, as they shouldn't happen.
1383 */
1384 /** @todo Someone at microsoft please explain:
1385 * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
1386 * readonly page as writable (unmap, then map again). Specifically, this was an
1387 * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
1388 * a hope to work around that we no longer pre-map anything, just unmap stuff
1389 * and do it lazily here. And here we will first unmap, restart, and then remap
1390 * with new protection or backing.
1391 */
1392 int rc;
1393 switch (u2State)
1394 {
1395 case NEM_WIN_PAGE_STATE_UNMAPPED:
1396 case NEM_WIN_PAGE_STATE_NOT_SET:
1397 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1398 {
1399 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1400 return VINF_SUCCESS;
1401 }
1402
1403 /* Don't bother remapping it if it's a write request to a non-writable page. */
1404 if ( pState->fWriteAccess
1405 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1406 {
1407 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1408 return VINF_SUCCESS;
1409 }
1410
1411 /* Map the page. */
1412 rc = nemHCNativeSetPhysPage(pVM,
1413 pVCpu,
1414 GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1415 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1416 pInfo->fNemProt,
1417 &u2State,
1418 true /*fBackingState*/);
1419 pInfo->u2NemState = u2State;
1420 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1421 GCPhys, g_apszPageStates[u2State], rc));
1422 pState->fDidSomething = true;
1423 pState->fCanResume = true;
1424 return rc;
1425
1426 case NEM_WIN_PAGE_STATE_READABLE:
1427 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1428 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1429 {
1430 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1431 return VINF_SUCCESS;
1432 }
1433
1434 break;
1435
1436 case NEM_WIN_PAGE_STATE_WRITABLE:
1437 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1438 {
1439 if (pInfo->u2OldNemState == NEM_WIN_PAGE_STATE_WRITABLE)
1440 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
1441 else
1442 {
1443 pState->fCanResume = true;
1444 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
1445 GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
1446 }
1447 return VINF_SUCCESS;
1448 }
1449 break;
1450
1451 default:
1452 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1453 }
1454
1455 /*
1456 * Unmap and restart the instruction.
1457 * If this fails, which it does every so often, just unmap everything for now.
1458 */
1459 /** @todo figure out whether we mess up the state or if it's WHv. */
1460 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a);
1461 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1462 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a);
1463 if (SUCCEEDED(hrc))
1464 {
1465 pState->fDidSomething = true;
1466 pState->fCanResume = true;
1467 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1468 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
1469 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
1470 Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
1471 return VINF_SUCCESS;
1472 }
1473 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
1474 LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x)\n",
1475 GCPhys, g_apszPageStates[u2State], hrc, hrc));
1476 return VERR_NEM_UNMAP_PAGES_FAILED;
1477}
1478
1479
1480/**
1481 * Wrapper around nemHCWinCopyStateFromHyperV.
1482 *
1483 * Unlike the wrapped APIs, this checks whether it's necessary.
1484 *
1485 * @returns VBox strict status code.
1486 * @param pVCpu The cross context per CPU structure.
1487 * @param fWhat What to import.
1488 * @param pszCaller Who is doing the importing.
1489 */
1490DECLINLINE(VBOXSTRICTRC) nemHCWinImportStateIfNeededStrict(PVMCPUCC pVCpu, uint64_t fWhat, const char *pszCaller)
1491{
1492 if (pVCpu->cpum.GstCtx.fExtrn & fWhat)
1493 {
1494 RT_NOREF(pszCaller);
1495 int rc = nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
1496 AssertRCReturn(rc, rc);
1497 }
1498 return VINF_SUCCESS;
1499}
1500
1501
1502/**
1503 * Copies register state from the (common) exit context.
1504 *
1505 * ASSUMES no state copied yet.
1506 *
1507 * @param pVCpu The cross context per CPU structure.
1508 * @param pExitCtx The common exit context.
1509 * @sa nemHCWinCopyStateFromX64Header
1510 */
1511DECLINLINE(void) nemR3WinCopyStateFromX64Header(PVMCPUCC pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx)
1512{
1513 Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_INHIBIT_INT))
1514 == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_INHIBIT_INT));
1515
1516 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pExitCtx->Cs);
1517 pVCpu->cpum.GstCtx.rip = pExitCtx->Rip;
1518 pVCpu->cpum.GstCtx.rflags.u = pExitCtx->Rflags;
1519 pVCpu->nem.s.fLastInterruptShadow = CPUMUpdateInterruptShadowEx(&pVCpu->cpum.GstCtx,
1520 pExitCtx->ExecutionState.InterruptShadow,
1521 pExitCtx->Rip);
1522 PDMApicSetTpr(pVCpu, pExitCtx->Cr8 << 4);
1523
1524 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_APIC_TPR);
1525}
1526
1527
1528/**
1529 * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess).
1530 *
1531 * @returns Strict VBox status code.
1532 * @param pVM The cross context VM structure.
1533 * @param pVCpu The cross context per CPU structure.
1534 * @param pExit The VM exit information to handle.
1535 * @sa nemHCWinHandleMessageMemory
1536 */
1537NEM_TMPL_STATIC VBOXSTRICTRC
1538nemR3WinHandleExitMemory(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
1539{
1540 uint64_t const uHostTsc = ASMReadTSC();
1541 Assert(pExit->MemoryAccess.AccessInfo.AccessType != 3);
1542
1543 /*
1544 * Whatever we do, we must clear pending event injection upon resume.
1545 */
1546 if (pExit->VpContext.ExecutionState.InterruptionPending)
1547 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
1548
1549 /*
1550 * Ask PGM for information about the given GCPhys. We need to check if we're
1551 * out of sync first.
1552 */
1553 NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
1554 PGMPHYSNEMPAGEINFO Info;
1555 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info,
1556 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
1557 if (RT_SUCCESS(rc))
1558 {
1559 if (Info.fNemProt & ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
1560 ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
1561 {
1562 if (State.fCanResume)
1563 {
1564 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
1565 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1566 pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1567 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1568 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
1569 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
1570 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
1571 return VINF_SUCCESS;
1572 }
1573 }
1574 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
1575 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1576 pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1577 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1578 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
1579 }
1580 else
1581 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
1582 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1583 pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "",
1584 g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
1585
1586 /*
1587 * Emulate the memory access, either access handler or special memory.
1588 */
1589 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
1590 pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
1591 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
1592 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
1593 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
1594 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1595 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
1596 AssertRCReturn(rc, rc);
1597 if (pExit->VpContext.ExecutionState.Reserved0 || pExit->VpContext.ExecutionState.Reserved1)
1598 Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pExit->VpContext.ExecutionState.Reserved0, pExit->VpContext.ExecutionState.Reserved1));
1599
1600 VBOXSTRICTRC rcStrict;
1601 if (!pExitRec)
1602 {
1603 //if (pMsg->InstructionByteCount > 0)
1604 // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
1605 if (pExit->MemoryAccess.InstructionByteCount > 0)
1606 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, pExit->VpContext.Rip, pExit->MemoryAccess.InstructionBytes, pExit->MemoryAccess.InstructionByteCount);
1607 else
1608 rcStrict = IEMExecOne(pVCpu);
1609 /** @todo do we need to do anything wrt debugging here? */
1610 }
1611 else
1612 {
1613 /* Frequent access or probing. */
1614 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
1615 Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
1616 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1617 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
1618 }
1619 return rcStrict;
1620}
1621
1622
1623/**
1624 * Deals with I/O port access exits (WHvRunVpExitReasonX64IoPortAccess).
1625 *
1626 * @returns Strict VBox status code.
1627 * @param pVM The cross context VM structure.
1628 * @param pVCpu The cross context per CPU structure.
1629 * @param pExit The VM exit information to handle.
1630 * @sa nemHCWinHandleMessageIoPort
1631 */
1632NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitIoPort(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
1633{
1634 Assert( pExit->IoPortAccess.AccessInfo.AccessSize == 1
1635 || pExit->IoPortAccess.AccessInfo.AccessSize == 2
1636 || pExit->IoPortAccess.AccessInfo.AccessSize == 4);
1637
1638 /*
1639 * Whatever we do, we must clear pending event injection upon resume.
1640 */
1641 if (pExit->VpContext.ExecutionState.InterruptionPending)
1642 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
1643
1644 /*
1645 * Add history first to avoid two paths doing EMHistoryExec calls.
1646 */
1647 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
1648 !pExit->IoPortAccess.AccessInfo.StringOp
1649 ? ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
1650 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
1651 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
1652 : ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
1653 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
1654 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
1655 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
1656 if (!pExitRec)
1657 {
1658 VBOXSTRICTRC rcStrict;
1659 if (!pExit->IoPortAccess.AccessInfo.StringOp)
1660 {
1661 /*
1662 * Simple port I/O.
1663 */
1664 static uint32_t const s_fAndMask[8] =
1665 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
1666 uint32_t const fAndMask = s_fAndMask[pExit->IoPortAccess.AccessInfo.AccessSize];
1667 if (pExit->IoPortAccess.AccessInfo.IsWrite)
1668 {
1669 rcStrict = IOMIOPortWrite(pVM, pVCpu, pExit->IoPortAccess.PortNumber,
1670 (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
1671 pExit->IoPortAccess.AccessInfo.AccessSize);
1672 Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
1673 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1674 pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
1675 pExit->IoPortAccess.AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
1676 if (IOM_SUCCESS(rcStrict))
1677 {
1678 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1679 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
1680 }
1681 }
1682 else
1683 {
1684 uint32_t uValue = 0;
1685 rcStrict = IOMIOPortRead(pVM, pVCpu, pExit->IoPortAccess.PortNumber, &uValue,
1686 pExit->IoPortAccess.AccessInfo.AccessSize);
1687 Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
1688 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1689 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
1690 if (IOM_SUCCESS(rcStrict))
1691 {
1692 if (pExit->IoPortAccess.AccessInfo.AccessSize != 4)
1693 pVCpu->cpum.GstCtx.rax = (pExit->IoPortAccess.Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
1694 else
1695 pVCpu->cpum.GstCtx.rax = uValue;
1696 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
1697 Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pExit->IoPortAccess.Rax, pVCpu->cpum.GstCtx.rax));
1698 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1699 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
1700 }
1701 }
1702 }
1703 else
1704 {
1705 /*
1706 * String port I/O.
1707 */
1708 /** @todo Someone at Microsoft please explain how we can get the address mode
1709 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
1710 * getting the default mode, it can always be overridden by a prefix. This
1711 * forces us to interpret the instruction from opcodes, which is suboptimal.
1712 * Both AMD-V and VT-x includes the address size in the exit info, at least on
1713 * CPUs that are reasonably new.
1714 *
1715 * Of course, it's possible this is an undocumented and we just need to do some
1716 * experiments to figure out how it's communicated. Alternatively, we can scan
1717 * the opcode bytes for possible evil prefixes.
1718 */
1719 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1720 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
1721 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
1722 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
1723 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
1724 pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
1725 pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
1726 pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
1727 pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
1728 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1729 AssertRCReturn(rc, rc);
1730
1731 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
1732 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1733 pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
1734 pExit->IoPortAccess.AccessInfo.IsWrite ? "OUTS" : "INS",
1735 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize ));
1736 rcStrict = IEMExecOne(pVCpu);
1737 }
1738 if (IOM_SUCCESS(rcStrict))
1739 {
1740 /*
1741 * Do debug checks.
1742 */
1743 if ( pExit->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
1744 || (pExit->VpContext.Rflags & X86_EFL_TF)
1745 || DBGFBpIsHwIoArmed(pVM) )
1746 {
1747 /** @todo Debugging. */
1748 }
1749 }
1750 return rcStrict;
1751 }
1752
1753 /*
1754 * Frequent exit or something needing probing.
1755 * Get state and call EMHistoryExec.
1756 */
1757 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1758 if (!pExit->IoPortAccess.AccessInfo.StringOp)
1759 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
1760 else
1761 {
1762 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
1763 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
1764 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
1765 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
1766 pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
1767 pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
1768 pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
1769 }
1770 pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
1771 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1772 AssertRCReturn(rc, rc);
1773 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
1774 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1775 pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
1776 pExit->IoPortAccess.AccessInfo.IsWrite ? "OUT" : "IN",
1777 pExit->IoPortAccess.AccessInfo.StringOp ? "S" : "",
1778 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize));
1779 VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
1780 Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
1781 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1782 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
1783 return rcStrict;
1784}
1785
1786
1787/**
1788 * Deals with interrupt window exits (WHvRunVpExitReasonX64InterruptWindow).
1789 *
1790 * @returns Strict VBox status code.
1791 * @param pVM The cross context VM structure.
1792 * @param pVCpu The cross context per CPU structure.
1793 * @param pExit The VM exit information to handle.
1794 * @sa nemHCWinHandleMessageInterruptWindow
1795 */
1796NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitInterruptWindow(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
1797{
1798 /*
1799 * Assert message sanity.
1800 */
1801 AssertMsg( pExit->InterruptWindow.DeliverableType == WHvX64PendingInterrupt
1802 || pExit->InterruptWindow.DeliverableType == WHvX64PendingNmi,
1803 ("%#x\n", pExit->InterruptWindow.DeliverableType));
1804
1805 /*
1806 * Just copy the state we've got and handle it in the loop for now.
1807 */
1808 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
1809 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
1810
1811 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1812 Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d CR8=%#x\n",
1813 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1814 pExit->InterruptWindow.DeliverableType, RT_BOOL(pExit->VpContext.Rflags & X86_EFL_IF),
1815 pExit->VpContext.ExecutionState.InterruptShadow, pExit->VpContext.Cr8));
1816
1817 pVCpu->nem.s.fIrqWindowRegistered = false;
1818 pVCpu->nem.s.fPicReadyForInterrupt = true;
1819
1820 /** @todo call nemHCWinHandleInterruptFF */
1821 RT_NOREF(pVM);
1822 return VINF_SUCCESS;
1823}
1824
1825
1826/**
1827 * Deals with CPUID exits (WHvRunVpExitReasonX64Cpuid).
1828 *
1829 * @returns Strict VBox status code.
1830 * @param pVM The cross context VM structure.
1831 * @param pVCpu The cross context per CPU structure.
1832 * @param pExit The VM exit information to handle.
1833 * @sa nemHCWinHandleMessageCpuId
1834 */
1835NEM_TMPL_STATIC VBOXSTRICTRC
1836nemR3WinHandleExitCpuId(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
1837{
1838 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
1839 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
1840 if (!pExitRec)
1841 {
1842 /*
1843 * Soak up state and execute the instruction.
1844 */
1845 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1846 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu,
1847 IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
1848 | CPUMCTX_EXTRN_CR3, /* May call PGMChangeMode() requiring cr3 (due to cr0 being imported). */
1849 "CPUID");
1850 if (rcStrict == VINF_SUCCESS)
1851 {
1852 /* Copy in the low register values (top is always cleared). */
1853 pVCpu->cpum.GstCtx.rax = (uint32_t)pExit->CpuidAccess.Rax;
1854 pVCpu->cpum.GstCtx.rcx = (uint32_t)pExit->CpuidAccess.Rcx;
1855 pVCpu->cpum.GstCtx.rdx = (uint32_t)pExit->CpuidAccess.Rdx;
1856 pVCpu->cpum.GstCtx.rbx = (uint32_t)pExit->CpuidAccess.Rbx;
1857 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
1858
1859 /* Execute the decoded instruction. */
1860 rcStrict = IEMExecDecodedCpuid(pVCpu, pExit->VpContext.InstructionLength);
1861
1862 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
1863 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1864 pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
1865 pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
1866 pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
1867 }
1868
1869 RT_NOREF_PV(pVM);
1870 return rcStrict;
1871 }
1872
1873 /*
1874 * Frequent exit or something needing probing.
1875 * Get state and call EMHistoryExec.
1876 */
1877 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1878 pVCpu->cpum.GstCtx.rax = pExit->CpuidAccess.Rax;
1879 pVCpu->cpum.GstCtx.rcx = pExit->CpuidAccess.Rcx;
1880 pVCpu->cpum.GstCtx.rdx = pExit->CpuidAccess.Rdx;
1881 pVCpu->cpum.GstCtx.rbx = pExit->CpuidAccess.Rbx;
1882 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
1883 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
1884 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1885 pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
1886 pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
1887 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1888 AssertRCReturn(rc, rc);
1889 VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
1890 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
1891 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1892 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
1893 return rcStrict;
1894}
1895
1896
1897/**
1898 * Deals with MSR access exits (WHvRunVpExitReasonX64MsrAccess).
1899 *
1900 * @returns Strict VBox status code.
1901 * @param pVM The cross context VM structure.
1902 * @param pVCpu The cross context per CPU structure.
1903 * @param pExit The VM exit information to handle.
1904 * @sa nemHCWinHandleMessageMsr
1905 */
1906NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMsr(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
1907{
1908 /*
1909 * Check CPL as that's common to both RDMSR and WRMSR.
1910 */
1911 VBOXSTRICTRC rcStrict;
1912 if (pExit->VpContext.ExecutionState.Cpl == 0)
1913 {
1914 /*
1915 * Get all the MSR state. Since we're getting EFER, we also need to
1916 * get CR0, CR4 and CR3.
1917 */
1918 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
1919 pExit->MsrAccess.AccessInfo.IsWrite
1920 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
1921 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
1922 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
1923 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
1924 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu,
1925 (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
1926 | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
1927 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
1928 "MSRs");
1929 if (rcStrict == VINF_SUCCESS)
1930 {
1931 if (!pExitRec)
1932 {
1933 /*
1934 * Handle writes.
1935 */
1936 if (pExit->MsrAccess.AccessInfo.IsWrite)
1937 {
1938 rcStrict = CPUMSetGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber,
1939 RT_MAKE_U64((uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx));
1940 Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
1941 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
1942 (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
1943 if (rcStrict == VINF_SUCCESS)
1944 {
1945 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
1946 return VINF_SUCCESS;
1947 }
1948 LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n", pVCpu->idCpu,
1949 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1950 pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx,
1951 VBOXSTRICTRC_VAL(rcStrict) ));
1952 }
1953 /*
1954 * Handle reads.
1955 */
1956 else
1957 {
1958 uint64_t uValue = 0;
1959 rcStrict = CPUMQueryGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, &uValue);
1960 Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu,
1961 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1962 pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
1963 if (rcStrict == VINF_SUCCESS)
1964 {
1965 pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
1966 pVCpu->cpum.GstCtx.rdx = uValue >> 32;
1967 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
1968 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
1969 return VINF_SUCCESS;
1970 }
1971 LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
1972 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
1973 uValue, VBOXSTRICTRC_VAL(rcStrict) ));
1974 }
1975 }
1976 else
1977 {
1978 /*
1979 * Handle frequent exit or something needing probing.
1980 */
1981 Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
1982 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1983 pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber));
1984 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
1985 Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
1986 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1987 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
1988 return rcStrict;
1989 }
1990 }
1991 else
1992 {
1993 LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
1994 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
1995 pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
1996 return rcStrict;
1997 }
1998 }
1999 else if (pExit->MsrAccess.AccessInfo.IsWrite)
2000 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2001 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
2002 pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx ));
2003 else
2004 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2005 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
2006 pExit->MsrAccess.MsrNumber));
2007
2008 /*
2009 * If we get down here, we're supposed to #GP(0).
2010 */
2011 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
2012 if (rcStrict == VINF_SUCCESS)
2013 {
2014 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
2015 if (rcStrict == VINF_IEM_RAISED_XCPT)
2016 rcStrict = VINF_SUCCESS;
2017 else if (rcStrict != VINF_SUCCESS)
2018 Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
2019 }
2020
2021 RT_NOREF_PV(pVM);
2022 return rcStrict;
2023}
2024
2025
2026/**
2027 * Worker for nemHCWinHandleMessageException & nemR3WinHandleExitException that
2028 * checks if the given opcodes are of interest at all.
2029 *
2030 * @returns true if interesting, false if not.
2031 * @param cbOpcodes Number of opcode bytes available.
2032 * @param pbOpcodes The opcode bytes.
2033 * @param f64BitMode Whether we're in 64-bit mode.
2034 */
2035DECLINLINE(bool) nemHcWinIsInterestingUndefinedOpcode(uint8_t cbOpcodes, uint8_t const *pbOpcodes, bool f64BitMode)
2036{
2037 /*
2038 * Currently only interested in VMCALL and VMMCALL.
2039 */
2040 while (cbOpcodes >= 3)
2041 {
2042 switch (pbOpcodes[0])
2043 {
2044 case 0x0f:
2045 switch (pbOpcodes[1])
2046 {
2047 case 0x01:
2048 switch (pbOpcodes[2])
2049 {
2050 case 0xc1: /* 0f 01 c1 VMCALL */
2051 return true;
2052 case 0xd9: /* 0f 01 d9 VMMCALL */
2053 return true;
2054 default:
2055 break;
2056 }
2057 break;
2058 }
2059 break;
2060
2061 default:
2062 return false;
2063
2064 /* prefixes */
2065 case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
2066 case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
2067 if (!f64BitMode)
2068 return false;
2069 RT_FALL_THRU();
2070 case X86_OP_PRF_CS:
2071 case X86_OP_PRF_SS:
2072 case X86_OP_PRF_DS:
2073 case X86_OP_PRF_ES:
2074 case X86_OP_PRF_FS:
2075 case X86_OP_PRF_GS:
2076 case X86_OP_PRF_SIZE_OP:
2077 case X86_OP_PRF_SIZE_ADDR:
2078 case X86_OP_PRF_LOCK:
2079 case X86_OP_PRF_REPZ:
2080 case X86_OP_PRF_REPNZ:
2081 cbOpcodes--;
2082 pbOpcodes++;
2083 continue;
2084 }
2085 break;
2086 }
2087 return false;
2088}
2089
2090
2091/**
2092 * Copies state included in a exception intercept exit.
2093 *
2094 * @param pVCpu The cross context per CPU structure.
2095 * @param pExit The VM exit information.
2096 * @param fClearXcpt Clear pending exception.
2097 */
2098DECLINLINE(void) nemR3WinCopyStateFromExceptionMessage(PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, bool fClearXcpt)
2099{
2100 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2101 if (fClearXcpt)
2102 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2103}
2104
2105
2106/**
2107 * Advances the guest RIP by the number of bytes specified in @a cb.
2108 *
2109 * @param pVCpu The cross context virtual CPU structure.
2110 * @param cb RIP increment value in bytes.
2111 */
2112DECLINLINE(void) nemHcWinAdvanceRip(PVMCPUCC pVCpu, uint32_t cb)
2113{
2114 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2115 pCtx->rip += cb;
2116 /** @todo Why not clear RF too? */
2117 CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);
2118}
2119
2120
2121/**
2122 * Hacks its way around the lovely mesa driver's backdoor accesses.
2123 *
2124 * @sa hmR0VmxHandleMesaDrvGp
2125 * @sa hmR0SvmHandleMesaDrvGp
2126 */
2127static int nemHcWinHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx)
2128{
2129 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK)));
2130 RT_NOREF(pCtx);
2131
2132 /* For now we'll just skip the instruction. */
2133 nemHcWinAdvanceRip(pVCpu, 1);
2134 return VINF_SUCCESS;
2135}
2136
2137
2138/**
2139 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
2140 * backdoor logging w/o checking what it is running inside.
2141 *
2142 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
2143 * backdoor port and magic numbers loaded in registers.
2144 *
2145 * @returns true if it is, false if it isn't.
2146 * @sa hmR0VmxIsMesaDrvGp
2147 * @sa hmR0SvmIsMesaDrvGp
2148 */
2149DECLINLINE(bool) nemHcWinIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, const uint8_t *pbInsn, uint32_t cbInsn)
2150{
2151 /* #GP(0) is already checked by caller. */
2152
2153 /* Check magic and port. */
2154 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RAX)));
2155 if (pCtx->dx != UINT32_C(0x5658))
2156 return false;
2157 if (pCtx->rax != UINT32_C(0x564d5868))
2158 return false;
2159
2160 /* Flat ring-3 CS. */
2161 if (CPUMGetGuestCPL(pVCpu) != 3)
2162 return false;
2163 if (pCtx->cs.u64Base != 0)
2164 return false;
2165
2166 /* 0xed: IN eAX,dx */
2167 if (cbInsn < 1) /* Play safe (shouldn't happen). */
2168 {
2169 uint8_t abInstr[1];
2170 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
2171 if (RT_FAILURE(rc))
2172 return false;
2173 if (abInstr[0] != 0xed)
2174 return false;
2175 }
2176 else
2177 {
2178 if (pbInsn[0] != 0xed)
2179 return false;
2180 }
2181
2182 return true;
2183}
2184
2185
2186/**
2187 * Deals with MSR access exits (WHvRunVpExitReasonException).
2188 *
2189 * @returns Strict VBox status code.
2190 * @param pVM The cross context VM structure.
2191 * @param pVCpu The cross context per CPU structure.
2192 * @param pExit The VM exit information to handle.
2193 * @sa nemR3WinHandleExitException
2194 */
2195NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitException(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2196{
2197 /*
2198 * Get most of the register state since we'll end up making IEM inject the
2199 * event. The exception isn't normally flaged as a pending event, so duh.
2200 *
2201 * Note! We can optimize this later with event injection.
2202 */
2203 Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2204 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType,
2205 pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter ));
2206 nemR3WinCopyStateFromExceptionMessage(pVCpu, pExit, true /*fClearXcpt*/);
2207 uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
2208 if (pExit->VpException.ExceptionType == X86_XCPT_DB)
2209 fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
2210 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, fWhat, "Xcpt");
2211 if (rcStrict != VINF_SUCCESS)
2212 return rcStrict;
2213
2214 /*
2215 * Handle the intercept.
2216 */
2217 TRPMEVENT enmEvtType = TRPM_TRAP;
2218 switch (pExit->VpException.ExceptionType)
2219 {
2220 /*
2221 * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
2222 * and need to turn them over to GIM.
2223 *
2224 * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
2225 * #UD for handling non-native hypercall instructions. (IEM will
2226 * decode both and let the GIM provider decide whether to accept it.)
2227 */
2228 case X86_XCPT_UD:
2229 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
2230 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
2231 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2232 if (nemHcWinIsInterestingUndefinedOpcode(pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes,
2233 pExit->VpContext.ExecutionState.EferLma && pExit->VpContext.Cs.Long ))
2234 {
2235 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, pExit->VpContext.Rip,
2236 pExit->VpException.InstructionBytes,
2237 pExit->VpException.InstructionByteCount);
2238 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
2239 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
2240 nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) ));
2241 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
2242 return rcStrict;
2243 }
2244
2245 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu,
2246 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2247 pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes ));
2248 break;
2249
2250 /*
2251 * Workaround the lovely mesa driver assuming that vmsvga means vmware
2252 * hypervisor and tries to log stuff to the host.
2253 */
2254 case X86_XCPT_GP:
2255 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionGp);
2256 /** @todo r=bird: Need workaround in IEM for this, right?
2257 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_GP),
2258 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); */
2259 if ( !pVCpu->nem.s.fTrapXcptGpForLovelyMesaDrv
2260 || !nemHcWinIsMesaDrvGp(pVCpu, &pVCpu->cpum.GstCtx, pExit->VpException.InstructionBytes,
2261 pExit->VpException.InstructionByteCount))
2262 {
2263#if 1 /** @todo Need to emulate instruction or we get a triple fault when trying to inject the \#GP... */
2264 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, pExit->VpContext.Rip,
2265 pExit->VpException.InstructionBytes,
2266 pExit->VpException.InstructionByteCount);
2267 Log4(("XcptExit/%u: %04x:%08RX64/%s: #GP -> emulated -> %Rrc\n",
2268 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
2269 nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) ));
2270 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
2271 return rcStrict;
2272#else
2273 break;
2274#endif
2275 }
2276 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionGpMesa);
2277 return nemHcWinHandleMesaDrvGp(pVCpu, &pVCpu->cpum.GstCtx);
2278
2279 /*
2280 * Filter debug exceptions.
2281 */
2282 case X86_XCPT_DB:
2283 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
2284 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
2285 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2286 Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
2287 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext) ));
2288 break;
2289
2290 case X86_XCPT_BP:
2291 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
2292 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
2293 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2294 Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2295 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.InstructionLength));
2296 enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
2297 break;
2298
2299 /* This shouldn't happen. */
2300 default:
2301 AssertLogRelMsgFailedReturn(("ExceptionType=%#x\n", pExit->VpException.ExceptionType), VERR_IEM_IPE_6);
2302 }
2303
2304 /*
2305 * Inject it.
2306 */
2307 rcStrict = IEMInjectTrap(pVCpu, pExit->VpException.ExceptionType, enmEvtType, pExit->VpException.ErrorCode,
2308 pExit->VpException.ExceptionParameter /*??*/, pExit->VpContext.InstructionLength);
2309 Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
2310 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
2311 nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, VBOXSTRICTRC_VAL(rcStrict) ));
2312
2313 RT_NOREF_PV(pVM);
2314 return rcStrict;
2315}
2316
2317
2318/**
2319 * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException).
2320 *
2321 * @returns Strict VBox status code.
2322 * @param pVM The cross context VM structure.
2323 * @param pVCpu The cross context per CPU structure.
2324 * @param pExit The VM exit information to handle.
2325 * @sa nemHCWinHandleMessageUnrecoverableException
2326 */
2327NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitUnrecoverableException(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2328{
2329#if 0
2330 /*
2331 * Just copy the state we've got and handle it in the loop for now.
2332 */
2333 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2334 Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2335 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
2336 RT_NOREF_PV(pVM);
2337 return VINF_EM_TRIPLE_FAULT;
2338#else
2339 /*
2340 * Let IEM decide whether this is really it.
2341 */
2342 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
2343 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2344 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2345 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
2346 if (rcStrict == VINF_SUCCESS)
2347 {
2348 rcStrict = IEMExecOne(pVCpu);
2349 if (rcStrict == VINF_SUCCESS)
2350 {
2351 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2352 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
2353 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
2354 return VINF_SUCCESS;
2355 }
2356 if (rcStrict == VINF_EM_TRIPLE_FAULT)
2357 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2358 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2359 else
2360 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2361 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2362 }
2363 else
2364 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
2365 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2366 RT_NOREF_PV(pVM);
2367 return rcStrict;
2368#endif
2369}
2370
2371
2372/**
2373 * Handles VM exits.
2374 *
2375 * @returns Strict VBox status code.
2376 * @param pVM The cross context VM structure.
2377 * @param pVCpu The cross context per CPU structure.
2378 * @param pExit The VM exit information to handle.
2379 * @sa nemHCWinHandleMessage
2380 */
2381NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2382{
2383 switch (pExit->ExitReason)
2384 {
2385 case WHvRunVpExitReasonMemoryAccess:
2386 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
2387 return nemR3WinHandleExitMemory(pVM, pVCpu, pExit);
2388
2389 case WHvRunVpExitReasonX64IoPortAccess:
2390 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
2391 return nemR3WinHandleExitIoPort(pVM, pVCpu, pExit);
2392
2393 case WHvRunVpExitReasonX64Halt:
2394 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
2395 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
2396 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2397 Log4(("HaltExit/%u\n", pVCpu->idCpu));
2398 return VINF_EM_HALT;
2399
2400 case WHvRunVpExitReasonCanceled:
2401 Log4(("CanceledExit/%u\n", pVCpu->idCpu));
2402 return VINF_SUCCESS;
2403
2404 case WHvRunVpExitReasonX64InterruptWindow:
2405 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
2406 return nemR3WinHandleExitInterruptWindow(pVM, pVCpu, pExit);
2407
2408 case WHvRunVpExitReasonX64Cpuid:
2409 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
2410 return nemR3WinHandleExitCpuId(pVM, pVCpu, pExit);
2411
2412 case WHvRunVpExitReasonX64MsrAccess:
2413 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
2414 return nemR3WinHandleExitMsr(pVM, pVCpu, pExit);
2415
2416 case WHvRunVpExitReasonException:
2417 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
2418 return nemR3WinHandleExitException(pVM, pVCpu, pExit);
2419
2420 case WHvRunVpExitReasonUnrecoverableException:
2421 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
2422 return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit);
2423
2424 case WHvRunVpExitReasonX64ApicEoi:
2425 Assert(pVM->nem.s.fLocalApicEmulation);
2426 PDMIoApicBroadcastEoi(pVCpu->CTX_SUFF(pVM), pExit->ApicEoi.InterruptVector);
2427 return VINF_SUCCESS;
2428
2429 case WHvRunVpExitReasonUnsupportedFeature:
2430 case WHvRunVpExitReasonInvalidVpRegisterValue:
2431 LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
2432 AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n",
2433 pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3);
2434
2435 /* Undesired exits: */
2436 case WHvRunVpExitReasonNone:
2437 default:
2438 LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
2439 AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3);
2440 }
2441}
2442
2443
2444/**
2445 * Deals with pending interrupt related force flags, may inject interrupt.
2446 *
2447 * @returns VBox strict status code.
2448 * @param pVM The cross context VM structure.
2449 * @param pVCpu The cross context per CPU structure.
2450 * @param pfInterruptWindows Where to return interrupt window flags.
2451 */
2452NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleInterruptFF(PVMCC pVM, PVMCPUCC pVCpu, uint8_t *pfInterruptWindows)
2453{
2454 Assert(!TRPMHasTrap(pVCpu) && !pVM->nem.s.fLocalApicEmulation);
2455 RT_NOREF_PV(pVM);
2456
2457 /*
2458 * First update APIC. We ASSUME this won't need TPR/CR8.
2459 */
2460 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
2461 {
2462 PDMApicUpdatePendingInterrupts(pVCpu);
2463 if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
2464 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2465 return VINF_SUCCESS;
2466 }
2467
2468 /*
2469 * We don't currently implement SMIs.
2470 */
2471 AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
2472
2473 /*
2474 * Check if we've got the minimum of state required for deciding whether we
2475 * can inject interrupts and NMIs. If we don't have it, get all we might require
2476 * for injection via IEM.
2477 */
2478 bool const fPendingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2479 uint64_t fNeedExtrn = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
2480 | (fPendingNmi ? CPUMCTX_EXTRN_INHIBIT_NMI : 0);
2481 if (pVCpu->cpum.GstCtx.fExtrn & fNeedExtrn)
2482 {
2483 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "IntFF");
2484 if (rcStrict != VINF_SUCCESS)
2485 return rcStrict;
2486 }
2487
2488 /*
2489 * NMI? Try deliver it first.
2490 */
2491 if (fPendingNmi)
2492 {
2493 if ( !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
2494 && !CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
2495 {
2496 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
2497 if (rcStrict == VINF_SUCCESS)
2498 {
2499 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2500 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_NMI, TRPM_HARDWARE_INT, 0, 0, 0);
2501 Log8(("Injected NMI on %u (%d)\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2502 }
2503 return rcStrict;
2504 }
2505 *pfInterruptWindows |= NEM_WIN_INTW_F_NMI;
2506 Log8(("NMI window pending on %u\n", pVCpu->idCpu));
2507 }
2508
2509 /*
2510 * APIC or PIC interrupt?
2511 */
2512 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2513 {
2514 /** @todo check NMI inhibiting here too! */
2515 if ( !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
2516 && pVCpu->cpum.GstCtx.rflags.Bits.u1IF)
2517 {
2518 AssertCompile(NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT & CPUMCTX_EXTRN_APIC_TPR);
2519 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
2520 if (rcStrict == VINF_SUCCESS)
2521 {
2522 uint8_t bInterrupt;
2523 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
2524 if (RT_SUCCESS(rc))
2525 {
2526 Log8(("Injecting interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u));
2527 rcStrict = IEMInjectTrap(pVCpu, bInterrupt, TRPM_HARDWARE_INT, 0, 0, 0);
2528 Log8(("Injected interrupt %#x on %u (%d)\n", bInterrupt, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2529 }
2530 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
2531 {
2532 *pfInterruptWindows |= ((bInterrupt >> 4) << NEM_WIN_INTW_F_PRIO_SHIFT) | NEM_WIN_INTW_F_REGULAR;
2533 Log8(("VERR_APIC_INTR_MASKED_BY_TPR: *pfInterruptWindows=%#x\n", *pfInterruptWindows));
2534 }
2535 else
2536 Log8(("PDMGetInterrupt failed -> %Rrc\n", rc));
2537 }
2538 return rcStrict;
2539 }
2540
2541 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC) && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC))
2542 {
2543 /* If only an APIC interrupt is pending, we need to know its priority. Otherwise we'll
2544 * likely get pointless deliverability notifications with IF=1 but TPR still too high.
2545 */
2546 bool fPendingIntr = false;
2547 uint8_t bTpr = 0;
2548 uint8_t bPendingIntr = 0;
2549 int rc = PDMApicGetTpr(pVCpu, &bTpr, &fPendingIntr, &bPendingIntr);
2550 AssertRC(rc);
2551 *pfInterruptWindows |= ((bPendingIntr >> 4) << NEM_WIN_INTW_F_PRIO_SHIFT) | NEM_WIN_INTW_F_REGULAR;
2552 Log8(("Interrupt window pending on %u: %#x (bTpr=%#x fPendingIntr=%d bPendingIntr=%#x)\n",
2553 pVCpu->idCpu, *pfInterruptWindows, bTpr, fPendingIntr, bPendingIntr));
2554 }
2555 else
2556 {
2557 *pfInterruptWindows |= NEM_WIN_INTW_F_REGULAR;
2558 Log8(("Interrupt window pending on %u: %#x\n", pVCpu->idCpu, *pfInterruptWindows));
2559 }
2560 }
2561
2562 return VINF_SUCCESS;
2563}
2564
2565
2566/**
2567 * Inner NEM runloop for windows.
2568 *
2569 * @returns Strict VBox status code.
2570 * @param pVM The cross context VM structure.
2571 * @param pVCpu The cross context per CPU structure.
2572 */
2573NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVMCC pVM, PVMCPUCC pVCpu)
2574{
2575 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u));
2576#ifdef LOG_ENABLED
2577 if (LogIs3Enabled())
2578 nemHCWinLogState(pVM, pVCpu);
2579#endif
2580
2581 /*
2582 * Try switch to NEM runloop state.
2583 */
2584 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2585 { /* likely */ }
2586 else
2587 {
2588 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2589 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2590 return VINF_SUCCESS;
2591 }
2592
2593 /*
2594 * The run loop.
2595 *
2596 * Current approach to state updating to use the sledgehammer and sync
2597 * everything every time. This will be optimized later.
2598 */
2599 const bool fSingleStepping = DBGFIsStepping(pVCpu);
2600// const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK
2601// : VM_FF_HP_R0_PRE_HM_STEP_MASK;
2602// const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK;
2603 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2604 for (unsigned iLoop = 0;; iLoop++)
2605 {
2606 /*
2607 * Pending interrupts or such? Need to check and deal with this prior
2608 * to the state syncing.
2609 */
2610 pVCpu->nem.s.fDesiredInterruptWindows = 0;
2611 if (!pVM->nem.s.fLocalApicEmulation)
2612 {
2613 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
2614 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2615 {
2616 /* Try inject interrupt. */
2617 rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, &pVCpu->nem.s.fDesiredInterruptWindows);
2618 if (rcStrict == VINF_SUCCESS)
2619 { /* likely */ }
2620 else
2621 {
2622 LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2623 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2624 break;
2625 }
2626 }
2627 }
2628 else
2629 {
2630 /* We only need to handle the PIC usign ExtInt here, the APIC is handled through the NEM APIC backend. */
2631 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC));
2632
2633 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC))
2634 pVCpu->nem.s.fDesiredInterruptWindows |= NEM_WIN_INTW_F_REGULAR;
2635 }
2636
2637#ifndef NEM_WIN_WITH_A20
2638 /*
2639 * Do not execute in hyper-V if the A20 isn't enabled.
2640 */
2641 if (PGMPhysIsA20Enabled(pVCpu))
2642 { /* likely */ }
2643 else
2644 {
2645 rcStrict = VINF_EM_RESCHEDULE_REM;
2646 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
2647 break;
2648 }
2649#endif
2650
2651 /*
2652 * Ensure that hyper-V has the whole state.
2653 * (We always update the interrupt windows settings when active as hyper-V seems
2654 * to forget about it after an exit.)
2655 */
2656 if ( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK))
2657 != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)
2658 || ( ( pVCpu->nem.s.fDesiredInterruptWindows
2659 || pVCpu->nem.s.fCurrentInterruptWindows != pVCpu->nem.s.fDesiredInterruptWindows) ) )
2660 {
2661 int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu);
2662 AssertRCReturn(rc2, rc2);
2663 }
2664
2665 /*
2666 * Poll timers and run for a bit.
2667 *
2668 * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
2669 * so we take the time of the next timer event and uses that as a deadline.
2670 * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
2671 */
2672 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2673 * the whole polling job when timers have changed... */
2674 uint64_t offDeltaIgnored;
2675 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2676 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2677 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2678 {
2679 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
2680 {
2681#ifdef LOG_ENABLED
2682 if (LogIsFlowEnabled())
2683 {
2684 static const WHV_REGISTER_NAME s_aNames[6] = { WHvX64RegisterCs, WHvX64RegisterRip, WHvX64RegisterRflags,
2685 WHvX64RegisterSs, WHvX64RegisterRsp, WHvX64RegisterCr0 };
2686 WHV_REGISTER_VALUE aRegs[RT_ELEMENTS(s_aNames)] = { { { {0, 0} } } };
2687 WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, s_aNames, RT_ELEMENTS(s_aNames), aRegs);
2688 LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n",
2689 pVCpu->idCpu, aRegs[0].Segment.Selector, aRegs[1].Reg64, RT_BOOL(aRegs[2].Reg64 & X86_EFL_IF),
2690 aRegs[2].Reg64, aRegs[3].Segment.Selector, aRegs[4].Reg64, aRegs[5].Reg64));
2691 }
2692#endif
2693 WHV_RUN_VP_EXIT_CONTEXT ExitReason = {0};
2694 TMNotifyStartOfExecution(pVM, pVCpu);
2695
2696 HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
2697
2698 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
2699 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
2700#ifdef LOG_ENABLED
2701 LogFlow(("NEM/%u: Exit @ %04X:%08RX64 IF=%d CR8=%#x Reason=%#x\n", pVCpu->idCpu, ExitReason.VpContext.Cs.Selector,
2702 ExitReason.VpContext.Rip, RT_BOOL(ExitReason.VpContext.Rflags & X86_EFL_IF), ExitReason.VpContext.Cr8,
2703 ExitReason.ExitReason));
2704#endif
2705 if (SUCCEEDED(hrc))
2706 {
2707 /*
2708 * Deal with the message.
2709 */
2710 rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason);
2711 if (rcStrict == VINF_SUCCESS)
2712 { /* hopefully likely */ }
2713 else
2714 {
2715 LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2716 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2717 break;
2718 }
2719 }
2720 else
2721 AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n",
2722 pVCpu->idCpu, hrc, GetLastError()),
2723 VERR_NEM_IPE_0);
2724
2725 /*
2726 * If no relevant FFs are pending, loop.
2727 */
2728 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2729 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2730 continue;
2731
2732 /** @todo Try handle pending flags, not just return to EM loops. Take care
2733 * not to set important RCs here unless we've handled a message. */
2734 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
2735 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
2736 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
2737 }
2738 else
2739 {
2740 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
2741 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
2742 }
2743 }
2744 else
2745 {
2746 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
2747 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
2748 }
2749 break;
2750 } /* the run loop */
2751
2752
2753 /*
2754 * If the CPU is running, make sure to stop it before we try sync back the
2755 * state and return to EM. We don't sync back the whole state if we can help it.
2756 */
2757 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2758 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2759
2760 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
2761 {
2762 /* Try anticipate what we might need. */
2763 uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
2764 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2765 || RT_FAILURE(rcStrict))
2766 fImport = CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
2767 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
2768 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2769 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2770
2771 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2772 {
2773 int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
2774 if (RT_SUCCESS(rc2))
2775 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2776 else if (RT_SUCCESS(rcStrict))
2777 rcStrict = rc2;
2778 if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
2779 pVCpu->cpum.GstCtx.fExtrn = 0;
2780 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2781 }
2782 else
2783 {
2784 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2785 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2786 }
2787 }
2788 else
2789 {
2790 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2791 pVCpu->cpum.GstCtx.fExtrn = 0;
2792 }
2793
2794 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel,
2795 pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
2796 return rcStrict;
2797}
2798
2799
2800/**
2801 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
2802 */
2803NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys,
2804 PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
2805{
2806 /* We'll just unmap the memory. */
2807 if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
2808 {
2809 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
2810 if (SUCCEEDED(hrc))
2811 {
2812 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
2813 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2814 Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
2815 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
2816 }
2817 else
2818 {
2819 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
2820 LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2821 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2822 return VERR_NEM_IPE_2;
2823 }
2824 }
2825 RT_NOREF(pVCpu, pvUser);
2826 return VINF_SUCCESS;
2827}
2828
2829
2830/**
2831 * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
2832 *
2833 * @returns The PGMPhysNemQueryPageInfo result.
2834 * @param pVM The cross context VM structure.
2835 * @param pVCpu The cross context virtual CPU structure.
2836 * @param GCPhys The page to unmap.
2837 */
2838NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys)
2839{
2840 PGMPHYSNEMPAGEINFO Info;
2841 return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
2842 nemHCWinUnsetForA20CheckerCallback, NULL);
2843}
2844
2845
2846void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
2847{
2848 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
2849 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
2850}
2851
2852
2853VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
2854 RTR3PTR pvMemR3, uint8_t *pu2State)
2855{
2856 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
2857 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
2858
2859 *pu2State = UINT8_MAX;
2860 if (pvMemR3)
2861 {
2862 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a);
2863 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvMemR3, GCPhys, cb,
2864 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
2865 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a);
2866 if (SUCCEEDED(hrc))
2867 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
2868 else
2869 AssertLogRelMsgFailed(("NEMHCNotifyHandlerPhysicalDeregister: WHvMapGpaRange(,%p,%RGp,%RGp,) -> %Rhrc\n",
2870 pvMemR3, GCPhys, cb, hrc));
2871 }
2872 RT_NOREF(enmKind);
2873}
2874
2875
2876void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
2877 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
2878{
2879 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
2880 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
2881 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
2882}
2883
2884
2885/**
2886 * Worker that maps pages into Hyper-V.
2887 *
2888 * This is used by the PGM physical page notifications as well as the memory
2889 * access VMEXIT handlers.
2890 *
2891 * @returns VBox status code.
2892 * @param pVM The cross context VM structure.
2893 * @param pVCpu The cross context virtual CPU structure of the
2894 * calling EMT.
2895 * @param GCPhysSrc The source page address.
2896 * @param GCPhysDst The hyper-V destination page. This may differ from
2897 * GCPhysSrc when A20 is disabled.
2898 * @param fPageProt NEM_PAGE_PROT_XXX.
2899 * @param pu2State Our page state (input/output).
2900 * @param fBackingChanged Set if the page backing is being changed.
2901 * @thread EMT(pVCpu)
2902 */
2903NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
2904 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
2905{
2906 /*
2907 * Looks like we need to unmap a page before we can change the backing
2908 * or even modify the protection. This is going to be *REALLY* efficient.
2909 * PGM lends us two bits to keep track of the state here.
2910 */
2911 RT_NOREF(pVCpu);
2912 uint8_t const u2OldState = *pu2State;
2913 uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
2914 : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
2915 if ( fBackingChanged
2916 || u2NewState != u2OldState)
2917 {
2918 if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
2919 {
2920 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a);
2921 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
2922 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a);
2923 if (SUCCEEDED(hrc))
2924 {
2925 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
2926 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
2927 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2928 if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
2929 {
2930 Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
2931 GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
2932 return VINF_SUCCESS;
2933 }
2934 }
2935 else
2936 {
2937 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
2938 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2939 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2940 return VERR_NEM_INIT_FAILED;
2941 }
2942 }
2943 }
2944
2945 /*
2946 * Writeable mapping?
2947 */
2948 if (fPageProt & NEM_PAGE_PROT_WRITE)
2949 {
2950 void *pvPage;
2951 int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
2952 if (RT_SUCCESS(rc))
2953 {
2954 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
2955 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
2956 if (SUCCEEDED(hrc))
2957 {
2958 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
2959 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
2960 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2961 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
2962 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
2963 return VINF_SUCCESS;
2964 }
2965 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
2966 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2967 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2968 return VERR_NEM_INIT_FAILED;
2969 }
2970 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
2971 return rc;
2972 }
2973
2974 if (fPageProt & NEM_PAGE_PROT_READ)
2975 {
2976 const void *pvPage;
2977 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
2978 if (RT_SUCCESS(rc))
2979 {
2980 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRangePage, a);
2981 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
2982 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
2983 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRangePage, a);
2984 if (SUCCEEDED(hrc))
2985 {
2986 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
2987 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
2988 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2989 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
2990 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
2991 return VINF_SUCCESS;
2992 }
2993 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
2994 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2995 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2996 return VERR_NEM_INIT_FAILED;
2997 }
2998 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
2999 return rc;
3000 }
3001
3002 /* We already unmapped it above. */
3003 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
3004 return VINF_SUCCESS;
3005}
3006
3007
3008NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
3009{
3010 if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
3011 {
3012 Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
3013 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
3014 return VINF_SUCCESS;
3015 }
3016
3017 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a);
3018 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
3019 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a);
3020 if (SUCCEEDED(hrc))
3021 {
3022 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
3023 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
3024 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
3025 Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
3026 return VINF_SUCCESS;
3027 }
3028 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
3029 LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
3030 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
3031 return VERR_NEM_IPE_6;
3032}
3033
3034
3035int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
3036 PGMPAGETYPE enmType, uint8_t *pu2State)
3037{
3038 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3039 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3040 RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
3041
3042 int rc;
3043 RT_NOREF_PV(fPageProt);
3044#ifdef NEM_WIN_WITH_A20
3045 if ( pVM->nem.s.fA20Enabled
3046 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
3047#endif
3048 rc = nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
3049#ifdef NEM_WIN_WITH_A20
3050 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
3051 rc = nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
3052 else
3053 rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
3054#endif
3055 return rc;
3056}
3057
3058
3059VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
3060 PGMPAGETYPE enmType, uint8_t *pu2State)
3061{
3062 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3063 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3064 Assert(VM_IS_NEM_ENABLED(pVM));
3065 RT_NOREF(HCPhys, enmType, pvR3);
3066
3067 RT_NOREF_PV(fPageProt);
3068#ifdef NEM_WIN_WITH_A20
3069 if ( pVM->nem.s.fA20Enabled
3070 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
3071#endif
3072 nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
3073#ifdef NEM_WIN_WITH_A20
3074 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
3075 nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
3076 /* else: ignore since we've got the alias page at this address. */
3077#endif
3078}
3079
3080
3081VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
3082 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
3083{
3084 Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
3085 GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State));
3086 Assert(VM_IS_NEM_ENABLED(pVM));
3087 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, enmType);
3088
3089 RT_NOREF_PV(fPageProt);
3090#ifdef NEM_WIN_WITH_A20
3091 if ( pVM->nem.s.fA20Enabled
3092 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
3093#endif
3094 nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
3095#ifdef NEM_WIN_WITH_A20
3096 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
3097 nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
3098 /* else: ignore since we've got the alias page at this address. */
3099#endif
3100}
3101
3102
3103/**
3104 * Returns features supported by the NEM backend.
3105 *
3106 * @returns Flags of features supported by the native NEM backend.
3107 * @param pVM The cross context VM structure.
3108 */
3109VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
3110{
3111 RT_NOREF(pVM);
3112 /** @todo Make use of the WHvGetVirtualProcessorXsaveState/WHvSetVirtualProcessorXsaveState
3113 * interface added in 2019 to enable passthrough of xsave/xrstor (and depending) features to the guest. */
3114 /** @todo Is NEM_FEAT_F_FULL_GST_EXEC always true? */
3115 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC;
3116}
3117
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette