/* $Id: IOMAllMMIO.cpp 62478 2016-07-22 18:29:06Z vboxsync $ */ /** @file * IOM - Input / Output Monitor - Any Context, MMIO & String I/O. */ /* * Copyright (C) 2006-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_IOM #include #include #include #include #include #include #include #include #include #include "IOMInternal.h" #include #include #include #include "IOMInline.h" #include #include #include #include #include #include #include #include #include #ifndef IN_RING3 /** * Defers a pending MMIO write to ring-3. * * @returns VINF_IOM_R3_MMIO_COMMIT_WRITE * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPhys The write address. * @param pvBuf The bytes being written. * @param cbBuf How many bytes. * @param pRange The range, if resolved. */ static VBOXSTRICTRC iomMmioRing3WritePending(PVMCPU pVCpu, RTGCPHYS GCPhys, void const *pvBuf, size_t cbBuf, PIOMMMIORANGE pRange) { Log5(("iomMmioRing3WritePending: %RGp LB %#x\n", GCPhys, cbBuf)); AssertReturn(pVCpu->iom.s.PendingMmioWrite.cbValue == 0, VERR_IOM_MMIO_IPE_1); pVCpu->iom.s.PendingMmioWrite.GCPhys = GCPhys; AssertReturn(cbBuf <= sizeof(pVCpu->iom.s.PendingMmioWrite.abValue), VERR_IOM_MMIO_IPE_2); pVCpu->iom.s.PendingMmioWrite.cbValue = (uint32_t)cbBuf; memcpy(pVCpu->iom.s.PendingMmioWrite.abValue, pvBuf, cbBuf); VMCPU_FF_SET(pVCpu, VMCPU_FF_IOM); return VINF_IOM_R3_MMIO_COMMIT_WRITE; } #endif /** * Deals with complicated MMIO writes. * * Complicated means unaligned or non-dword/qword sized accesses depending on * the MMIO region's access mode flags. * * @returns Strict VBox status code. Any EM scheduling status code, * VINF_IOM_R3_MMIO_WRITE, VINF_IOM_R3_MMIO_READ_WRITE or * VINF_IOM_R3_MMIO_READ may be returned. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pRange The range to write to. * @param GCPhys The physical address to start writing. * @param pvValue Where to store the value. * @param cbValue The size of the value to write. */ static VBOXSTRICTRC iomMMIODoComplicatedWrite(PVM pVM, PVMCPU pVCpu, PIOMMMIORANGE pRange, RTGCPHYS GCPhys, void const *pvValue, unsigned cbValue) { AssertReturn( (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) != IOMMMIO_FLAGS_WRITE_PASSTHRU && (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) <= IOMMMIO_FLAGS_WRITE_DWORD_QWORD_READ_MISSING, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue != 0 && cbValue <= 16, VERR_IOM_MMIO_IPE_2); RTGCPHYS const GCPhysStart = GCPhys; NOREF(GCPhysStart); bool const fReadMissing = (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_DWORD_READ_MISSING || (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_DWORD_QWORD_READ_MISSING; /* * Do debug stop if requested. */ int rc = VINF_SUCCESS; NOREF(pVM); #ifdef VBOX_STRICT if (pRange->fFlags & IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_WRITE) { # ifdef IN_RING3 LogRel(("IOM: Complicated write %#x byte at %RGp to %s, initiating debugger intervention\n", cbValue, GCPhys, R3STRING(pRange->pszDesc))); rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, RT_SRC_POS, "Complicated write %#x byte at %RGp to %s\n", cbValue, GCPhys, R3STRING(pRange->pszDesc)); if (rc == VERR_DBGF_NOT_ATTACHED) rc = VINF_SUCCESS; # else return VINF_IOM_R3_MMIO_WRITE; # endif } #endif /* * Check if we should ignore the write. */ if ((pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_ONLY_DWORD) { Assert(cbValue != 4 || (GCPhys & 3)); return VINF_SUCCESS; } if ((pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_ONLY_DWORD_QWORD) { Assert((cbValue != 4 && cbValue != 8) || (GCPhys & (cbValue - 1))); return VINF_SUCCESS; } /* * Split and conquer. */ for (;;) { unsigned const offAccess = GCPhys & 3; unsigned cbThisPart = 4 - offAccess; if (cbThisPart > cbValue) cbThisPart = cbValue; /* * Get the missing bits (if any). */ uint32_t u32MissingValue = 0; if (fReadMissing && cbThisPart != 4) { int rc2 = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys & ~(RTGCPHYS)3, &u32MissingValue, sizeof(u32MissingValue)); switch (rc2) { case VINF_SUCCESS: break; case VINF_IOM_MMIO_UNUSED_FF: u32MissingValue = UINT32_C(0xffffffff); break; case VINF_IOM_MMIO_UNUSED_00: u32MissingValue = 0; break; #ifndef IN_RING3 case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: LogFlow(("iomMMIODoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [read]\n", GCPhys, GCPhysStart, cbValue, rc2)); rc2 = VBOXSTRICTRC_TODO(iomMmioRing3WritePending(pVCpu, GCPhys, pvValue, cbValue, pRange)); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; return rc; #endif default: if (RT_FAILURE(rc2)) { Log(("iomMMIODoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [read]\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", rc2), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } } /* * Merge missing and given bits. */ uint32_t u32GivenMask; uint32_t u32GivenValue; switch (cbThisPart) { case 1: u32GivenValue = *(uint8_t const *)pvValue; u32GivenMask = UINT32_C(0x000000ff); break; case 2: u32GivenValue = *(uint16_t const *)pvValue; u32GivenMask = UINT32_C(0x0000ffff); break; case 3: u32GivenValue = RT_MAKE_U32_FROM_U8(((uint8_t const *)pvValue)[0], ((uint8_t const *)pvValue)[1], ((uint8_t const *)pvValue)[2], 0); u32GivenMask = UINT32_C(0x00ffffff); break; case 4: u32GivenValue = *(uint32_t const *)pvValue; u32GivenMask = UINT32_C(0xffffffff); break; default: AssertFailedReturn(VERR_IOM_MMIO_IPE_3); } if (offAccess) { u32GivenValue <<= offAccess * 8; u32GivenMask <<= offAccess * 8; } uint32_t u32Value = (u32MissingValue & ~u32GivenMask) | (u32GivenValue & u32GivenMask); /* * Do DWORD write to the device. */ int rc2 = pRange->CTX_SUFF(pfnWriteCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys & ~(RTGCPHYS)3, &u32Value, sizeof(u32Value)); switch (rc2) { case VINF_SUCCESS: break; #ifndef IN_RING3 case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: Log3(("iomMMIODoComplicatedWrite: deferring GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [write]\n", GCPhys, GCPhysStart, cbValue, rc2)); AssertReturn(pVCpu->iom.s.PendingMmioWrite.cbValue == 0, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue + (GCPhys & 3) <= sizeof(pVCpu->iom.s.PendingMmioWrite.abValue), VERR_IOM_MMIO_IPE_2); pVCpu->iom.s.PendingMmioWrite.GCPhys = GCPhys & ~(RTGCPHYS)3; pVCpu->iom.s.PendingMmioWrite.cbValue = cbValue + (GCPhys & 3); *(uint32_t *)pVCpu->iom.s.PendingMmioWrite.abValue = u32Value; if (cbValue > cbThisPart) memcpy(&pVCpu->iom.s.PendingMmioWrite.abValue[4], (uint8_t const *)pvValue + cbThisPart, cbValue - cbThisPart); VMCPU_FF_SET(pVCpu, VMCPU_FF_IOM); if (rc == VINF_SUCCESS) rc = VINF_IOM_R3_MMIO_COMMIT_WRITE; return rc2; #endif default: if (RT_FAILURE(rc2)) { Log(("iomMMIODoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [write]\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", rc2), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } /* * Advance. */ cbValue -= cbThisPart; if (!cbValue) break; GCPhys += cbThisPart; pvValue = (uint8_t const *)pvValue + cbThisPart; } return rc; } /** * Wrapper which does the write and updates range statistics when such are enabled. * @warning RT_SUCCESS(rc=VINF_IOM_R3_MMIO_WRITE) is TRUE! */ static VBOXSTRICTRC iomMMIODoWrite(PVM pVM, PVMCPU pVCpu, PIOMMMIORANGE pRange, RTGCPHYS GCPhysFault, const void *pvData, unsigned cb) { #ifdef VBOX_WITH_STATISTICS int rcSem = IOM_LOCK_SHARED(pVM); if (rcSem == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_WRITE; PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhysFault, pRange); if (!pStats) # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_WRITE; # endif STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfWrite), a); #else NOREF(pVCpu); #endif VBOXSTRICTRC rcStrict; if (RT_LIKELY(pRange->CTX_SUFF(pfnWriteCallback))) { if ( (cb == 4 && !(GCPhysFault & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_PASSTHRU || (cb == 8 && !(GCPhysFault & 7) && IOMMMIO_DOES_WRITE_MODE_ALLOW_QWORD(pRange->fFlags)) ) rcStrict = pRange->CTX_SUFF(pfnWriteCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhysFault, (void *)pvData, cb); /** @todo fix const!! */ else rcStrict = iomMMIODoComplicatedWrite(pVM, pVCpu, pRange, GCPhysFault, pvData, cb); } else rcStrict = VINF_SUCCESS; STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfWrite), a); STAM_COUNTER_INC(&pStats->Accesses); return rcStrict; } /** * Deals with complicated MMIO reads. * * Complicated means unaligned or non-dword/qword sized accesses depending on * the MMIO region's access mode flags. * * @returns Strict VBox status code. Any EM scheduling status code, * VINF_IOM_R3_MMIO_READ, VINF_IOM_R3_MMIO_READ_WRITE or * VINF_IOM_R3_MMIO_WRITE may be returned. * * @param pVM The cross context VM structure. * @param pRange The range to read from. * @param GCPhys The physical address to start reading. * @param pvValue Where to store the value. * @param cbValue The size of the value to read. */ static VBOXSTRICTRC iomMMIODoComplicatedRead(PVM pVM, PIOMMMIORANGE pRange, RTGCPHYS GCPhys, void *pvValue, unsigned cbValue) { AssertReturn( (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD || (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD_QWORD, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue != 0 && cbValue <= 16, VERR_IOM_MMIO_IPE_2); RTGCPHYS const GCPhysStart = GCPhys; NOREF(GCPhysStart); /* * Do debug stop if requested. */ int rc = VINF_SUCCESS; NOREF(pVM); #ifdef VBOX_STRICT if (pRange->fFlags & IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_READ) { # ifdef IN_RING3 rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, RT_SRC_POS, "Complicated read %#x byte at %RGp to %s\n", cbValue, GCPhys, R3STRING(pRange->pszDesc)); if (rc == VERR_DBGF_NOT_ATTACHED) rc = VINF_SUCCESS; # else return VINF_IOM_R3_MMIO_READ; # endif } #endif /* * Split and conquer. */ for (;;) { /* * Do DWORD read from the device. */ uint32_t u32Value; int rc2 = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys & ~(RTGCPHYS)3, &u32Value, sizeof(u32Value)); switch (rc2) { case VINF_SUCCESS: break; case VINF_IOM_MMIO_UNUSED_FF: u32Value = UINT32_C(0xffffffff); break; case VINF_IOM_MMIO_UNUSED_00: u32Value = 0; break; case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: /** @todo What if we've split a transfer and already read * something? Since reads can have sideeffects we could be * kind of screwed here... */ LogFlow(("iomMMIODoComplicatedRead: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; default: if (RT_FAILURE(rc2)) { Log(("iomMMIODoComplicatedRead: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", rc2), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } u32Value >>= (GCPhys & 3) * 8; /* * Write what we've read. */ unsigned cbThisPart = 4 - (GCPhys & 3); if (cbThisPart > cbValue) cbThisPart = cbValue; switch (cbThisPart) { case 1: *(uint8_t *)pvValue = (uint8_t)u32Value; break; case 2: *(uint16_t *)pvValue = (uint16_t)u32Value; break; case 3: ((uint8_t *)pvValue)[0] = RT_BYTE1(u32Value); ((uint8_t *)pvValue)[1] = RT_BYTE2(u32Value); ((uint8_t *)pvValue)[2] = RT_BYTE3(u32Value); break; case 4: *(uint32_t *)pvValue = u32Value; break; } /* * Advance. */ cbValue -= cbThisPart; if (!cbValue) break; GCPhys += cbThisPart; pvValue = (uint8_t *)pvValue + cbThisPart; } return rc; } /** * Implements VINF_IOM_MMIO_UNUSED_FF. * * @returns VINF_SUCCESS. * @param pvValue Where to store the zeros. * @param cbValue How many bytes to read. */ static int iomMMIODoReadFFs(void *pvValue, size_t cbValue) { switch (cbValue) { case 1: *(uint8_t *)pvValue = UINT8_C(0xff); break; case 2: *(uint16_t *)pvValue = UINT16_C(0xffff); break; case 4: *(uint32_t *)pvValue = UINT32_C(0xffffffff); break; case 8: *(uint64_t *)pvValue = UINT64_C(0xffffffffffffffff); break; default: { uint8_t *pb = (uint8_t *)pvValue; while (cbValue--) *pb++ = UINT8_C(0xff); break; } } return VINF_SUCCESS; } /** * Implements VINF_IOM_MMIO_UNUSED_00. * * @returns VINF_SUCCESS. * @param pvValue Where to store the zeros. * @param cbValue How many bytes to read. */ static int iomMMIODoRead00s(void *pvValue, size_t cbValue) { switch (cbValue) { case 1: *(uint8_t *)pvValue = UINT8_C(0x00); break; case 2: *(uint16_t *)pvValue = UINT16_C(0x0000); break; case 4: *(uint32_t *)pvValue = UINT32_C(0x00000000); break; case 8: *(uint64_t *)pvValue = UINT64_C(0x0000000000000000); break; default: { uint8_t *pb = (uint8_t *)pvValue; while (cbValue--) *pb++ = UINT8_C(0x00); break; } } return VINF_SUCCESS; } /** * Wrapper which does the read and updates range statistics when such are enabled. */ DECLINLINE(VBOXSTRICTRC) iomMMIODoRead(PVM pVM, PVMCPU pVCpu, PIOMMMIORANGE pRange, RTGCPHYS GCPhys, void *pvValue, unsigned cbValue) { #ifdef VBOX_WITH_STATISTICS int rcSem = IOM_LOCK_SHARED(pVM); if (rcSem == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_READ; PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhys, pRange); if (!pStats) # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_READ; # endif STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfRead), a); #else NOREF(pVCpu); #endif VBOXSTRICTRC rcStrict; if (RT_LIKELY(pRange->CTX_SUFF(pfnReadCallback))) { if ( ( cbValue == 4 && !(GCPhys & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_PASSTHRU || ( cbValue == 8 && !(GCPhys & 7) && (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD_QWORD ) ) rcStrict = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys, pvValue, cbValue); else rcStrict = iomMMIODoComplicatedRead(pVM, pRange, GCPhys, pvValue, cbValue); } else rcStrict = VINF_IOM_MMIO_UNUSED_FF; if (rcStrict != VINF_SUCCESS) { switch (VBOXSTRICTRC_VAL(rcStrict)) { case VINF_IOM_MMIO_UNUSED_FF: rcStrict = iomMMIODoReadFFs(pvValue, cbValue); break; case VINF_IOM_MMIO_UNUSED_00: rcStrict = iomMMIODoRead00s(pvValue, cbValue); break; } } STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfRead), a); STAM_COUNTER_INC(&pStats->Accesses); return rcStrict; } /** * Internal - statistics only. */ DECLINLINE(void) iomMMIOStatLength(PVM pVM, unsigned cb) { #ifdef VBOX_WITH_STATISTICS switch (cb) { case 1: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO1Byte); break; case 2: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO2Bytes); break; case 4: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO4Bytes); break; case 8: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO8Bytes); break; default: /* No way. */ AssertMsgFailed(("Invalid data length %d\n", cb)); break; } #else NOREF(pVM); NOREF(cb); #endif } /** * Common worker for the \#PF handler and IOMMMIOPhysHandler (APIC+VT-x). * * @returns VBox status code (appropriate for GC return). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uErrorCode CPU Error code. This is UINT32_MAX when we don't have * any error code (the EPT misconfig hack). * @param pCtxCore Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pvUser Pointer to the MMIO ring-3 range entry. */ static VBOXSTRICTRC iomMmioCommonPfHandler(PVM pVM, PVMCPU pVCpu, uint32_t uErrorCode, PCPUMCTXCORE pCtxCore, RTGCPHYS GCPhysFault, void *pvUser) { int rc = IOM_LOCK_SHARED(pVM); #ifndef IN_RING3 if (rc == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_READ_WRITE; #endif AssertRC(rc); STAM_PROFILE_START(&pVM->iom.s.StatRZMMIOHandler, a); Log(("iomMmioCommonPfHandler: GCPhys=%RGp uErr=%#x rip=%RGv\n", GCPhysFault, uErrorCode, (RTGCPTR)pCtxCore->rip)); PIOMMMIORANGE pRange = (PIOMMMIORANGE)pvUser; Assert(pRange); Assert(pRange == iomMmioGetRange(pVM, pVCpu, GCPhysFault)); iomMmioRetainRange(pRange); #ifndef VBOX_WITH_STATISTICS IOM_UNLOCK_SHARED(pVM); #else /* * Locate the statistics. */ PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhysFault, pRange); if (!pStats) { iomMmioReleaseRange(pVM, pRange); # ifdef IN_RING3 return VERR_NO_MEMORY; # else STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOFailures); return VINF_IOM_R3_MMIO_READ_WRITE; # endif } #endif #ifndef IN_RING3 /* * Should we defer the request right away? This isn't usually the case, so * do the simple test first and the try deal with uErrorCode being N/A. */ if (RT_UNLIKELY( ( !pRange->CTX_SUFF(pfnWriteCallback) || !pRange->CTX_SUFF(pfnReadCallback)) && ( uErrorCode == UINT32_MAX ? pRange->pfnWriteCallbackR3 || pRange->pfnReadCallbackR3 : uErrorCode & X86_TRAP_PF_RW ? !pRange->CTX_SUFF(pfnWriteCallback) && pRange->pfnWriteCallbackR3 : !pRange->CTX_SUFF(pfnReadCallback) && pRange->pfnReadCallbackR3 ) ) ) { if (uErrorCode & X86_TRAP_PF_RW) STAM_COUNTER_INC(&pStats->CTX_MID_Z(Write,ToR3)); else STAM_COUNTER_INC(&pStats->CTX_MID_Z(Read,ToR3)); STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOFailures); iomMmioReleaseRange(pVM, pRange); return VINF_IOM_R3_MMIO_READ_WRITE; } #endif /* !IN_RING3 */ /* * Retain the range and do locking. */ PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_READ_WRITE); if (rc != VINF_SUCCESS) { iomMmioReleaseRange(pVM, pRange); return rc; } /* * Let IEM call us back via iomMmioHandler. */ VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu); NOREF(pCtxCore); NOREF(GCPhysFault); STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); if (RT_SUCCESS(rcStrict)) return rcStrict; if ( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED) { Log(("IOM: Hit unsupported IEM feature!\n")); rcStrict = VINF_EM_RAW_EMULATE_INSTR; } return rcStrict; } /** * @callback_method_impl{FNPGMRZPHYSPFHANDLER, * \#PF access handler callback for MMIO pages.} * * @remarks The @a pvUser argument points to the IOMMMIORANGE. */ DECLEXPORT(VBOXSTRICTRC) iomMmioPfHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pCtxCore, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) { LogFlow(("iomMmioPfHandler: GCPhys=%RGp uErr=%#x pvFault=%RGv rip=%RGv\n", GCPhysFault, (uint32_t)uErrorCode, pvFault, (RTGCPTR)pCtxCore->rip)); NOREF(pvFault); return iomMmioCommonPfHandler(pVM, pVCpu, (uint32_t)uErrorCode, pCtxCore, GCPhysFault, pvUser); } /** * Physical access handler for MMIO ranges. * * @returns VBox status code (appropriate for GC return). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uErrorCode CPU Error code. * @param pCtxCore Trap register frame. * @param GCPhysFault The GC physical address. */ VMMDECL(VBOXSTRICTRC) IOMMMIOPhysHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pCtxCore, RTGCPHYS GCPhysFault) { /* * We don't have a range here, so look it up before calling the common function. */ int rc2 = IOM_LOCK_SHARED(pVM); NOREF(rc2); #ifndef IN_RING3 if (rc2 == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_READ_WRITE; #endif PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhysFault); if (RT_UNLIKELY(!pRange)) { IOM_UNLOCK_SHARED(pVM); return VERR_IOM_MMIO_RANGE_NOT_FOUND; } iomMmioRetainRange(pRange); IOM_UNLOCK_SHARED(pVM); VBOXSTRICTRC rcStrict = iomMmioCommonPfHandler(pVM, pVCpu, (uint32_t)uErrorCode, pCtxCore, GCPhysFault, pRange); iomMmioReleaseRange(pVM, pRange); return VBOXSTRICTRC_VAL(rcStrict); } /** * @callback_method_impl{FNPGMPHYSHANDLER, MMIO page accesses} * * @remarks The @a pvUser argument points to the MMIO range entry. */ PGM_ALL_CB2_DECL(VBOXSTRICTRC) iomMmioHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysFault, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser) { PIOMMMIORANGE pRange = (PIOMMMIORANGE)pvUser; STAM_COUNTER_INC(&pVM->iom.s.StatR3MMIOHandler); NOREF(pvPhys); NOREF(enmOrigin); AssertPtr(pRange); AssertMsg(cbBuf >= 1, ("%zu\n", cbBuf)); #ifndef IN_RING3 /* * If someone is doing FXSAVE, FXRSTOR, XSAVE, XRSTOR or other stuff dealing with * large amounts of data, just go to ring-3 where we don't need to deal with partial * successes. No chance any of these will be problematic read-modify-write stuff. */ if (cbBuf > sizeof(pVCpu->iom.s.PendingMmioWrite.abValue)) return enmAccessType == PGMACCESSTYPE_WRITE ? VINF_IOM_R3_MMIO_WRITE : VINF_IOM_R3_MMIO_READ; #endif /* * Validate the range. */ int rc = IOM_LOCK_SHARED(pVM); #ifndef IN_RING3 if (rc == VERR_SEM_BUSY) { if (enmAccessType == PGMACCESSTYPE_READ) return VINF_IOM_R3_MMIO_READ; Assert(enmAccessType == PGMACCESSTYPE_WRITE); return iomMmioRing3WritePending(pVCpu, GCPhysFault, pvBuf, cbBuf, NULL /*pRange*/); } #endif AssertRC(rc); Assert(pRange == iomMmioGetRange(pVM, pVCpu, GCPhysFault)); /* * Perform locking. */ iomMmioRetainRange(pRange); PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); IOM_UNLOCK_SHARED(pVM); VBOXSTRICTRC rcStrict = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_READ_WRITE); if (rcStrict == VINF_SUCCESS) { /* * Perform the access. */ if (enmAccessType == PGMACCESSTYPE_READ) rcStrict = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, pvBuf, (unsigned)cbBuf); else { rcStrict = iomMMIODoWrite(pVM, pVCpu, pRange, GCPhysFault, pvBuf, (unsigned)cbBuf); #ifndef IN_RING3 if (rcStrict == VINF_IOM_R3_MMIO_WRITE) rcStrict = iomMmioRing3WritePending(pVCpu, GCPhysFault, pvBuf, cbBuf, pRange); #endif } /* Check the return code. */ #ifdef IN_RING3 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc - %RGp - %s\n", VBOXSTRICTRC_VAL(rcStrict), GCPhysFault, pRange->pszDesc)); #else AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == (enmAccessType == PGMACCESSTYPE_READ ? VINF_IOM_R3_MMIO_READ : VINF_IOM_R3_MMIO_WRITE) || (rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE && enmAccessType == PGMACCESSTYPE_WRITE) || rcStrict == VINF_IOM_R3_MMIO_READ_WRITE || rcStrict == VINF_EM_DBG_STOP || rcStrict == VINF_EM_DBG_EVENT || rcStrict == VINF_EM_DBG_BREAKPOINT || rcStrict == VINF_EM_OFF || rcStrict == VINF_EM_SUSPEND || rcStrict == VINF_EM_RESET || rcStrict == VINF_EM_RAW_EMULATE_IO_BLOCK //|| rcStrict == VINF_EM_HALT /* ?? */ //|| rcStrict == VINF_EM_NO_MEMORY /* ?? */ , ("%Rrc - %RGp - %p\n", VBOXSTRICTRC_VAL(rcStrict), GCPhysFault, pDevIns)); #endif iomMmioReleaseRange(pVM, pRange); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); } #ifdef IN_RING3 else iomMmioReleaseRange(pVM, pRange); #else else { if (rcStrict == VINF_IOM_R3_MMIO_READ_WRITE) { if (enmAccessType == PGMACCESSTYPE_READ) rcStrict = VINF_IOM_R3_MMIO_READ; else { Assert(enmAccessType == PGMACCESSTYPE_WRITE); rcStrict = iomMmioRing3WritePending(pVCpu, GCPhysFault, pvBuf, cbBuf, pRange); } } iomMmioReleaseRange(pVM, pRange); } #endif return rcStrict; } #ifdef IN_RING3 /* Only used by REM. */ /** * Reads a MMIO register. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPhys The physical address to read. * @param pu32Value Where to store the value read. * @param cbValue The size of the register to read in bytes. 1, 2 or 4 bytes. */ VMMDECL(VBOXSTRICTRC) IOMMMIORead(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint32_t *pu32Value, size_t cbValue) { Assert(pVCpu->iom.s.PendingMmioWrite.cbValue == 0); /* Take the IOM lock before performing any MMIO. */ VBOXSTRICTRC rc = IOM_LOCK_SHARED(pVM); #ifndef IN_RING3 if (rc == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_WRITE; #endif AssertRC(VBOXSTRICTRC_VAL(rc)); #if defined(IEM_VERIFICATION_MODE) && defined(IN_RING3) IEMNotifyMMIORead(pVM, GCPhys, cbValue); #endif /* * Lookup the current context range node and statistics. */ PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhys); if (!pRange) { AssertMsgFailed(("Handlers and page tables are out of sync or something! GCPhys=%RGp cbValue=%d\n", GCPhys, cbValue)); IOM_UNLOCK_SHARED(pVM); return VERR_IOM_MMIO_RANGE_NOT_FOUND; } iomMmioRetainRange(pRange); #ifndef VBOX_WITH_STATISTICS IOM_UNLOCK_SHARED(pVM); #else /* VBOX_WITH_STATISTICS */ PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhys, pRange); if (!pStats) { iomMmioReleaseRange(pVM, pRange); # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_READ; # endif } STAM_COUNTER_INC(&pStats->Accesses); #endif /* VBOX_WITH_STATISTICS */ if (pRange->CTX_SUFF(pfnReadCallback)) { /* * Perform locking. */ PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_WRITE); if (rc != VINF_SUCCESS) { iomMmioReleaseRange(pVM, pRange); return rc; } /* * Perform the read and deal with the result. */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfRead), a); if ( (cbValue == 4 && !(GCPhys & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_PASSTHRU || (cbValue == 8 && !(GCPhys & 7)) ) rc = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys, pu32Value, (unsigned)cbValue); else rc = iomMMIODoComplicatedRead(pVM, pRange, GCPhys, pu32Value, (unsigned)cbValue); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfRead), a); switch (VBOXSTRICTRC_VAL(rc)) { case VINF_SUCCESS: Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=VINF_SUCCESS\n", GCPhys, *pu32Value, cbValue)); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return rc; #ifndef IN_RING3 case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: STAM_COUNTER_INC(&pStats->CTX_MID_Z(Read,ToR3)); #endif default: Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, *pu32Value, cbValue, VBOXSTRICTRC_VAL(rc))); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return rc; case VINF_IOM_MMIO_UNUSED_00: iomMMIODoRead00s(pu32Value, cbValue); Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, *pu32Value, cbValue, VBOXSTRICTRC_VAL(rc))); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; case VINF_IOM_MMIO_UNUSED_FF: iomMMIODoReadFFs(pu32Value, cbValue); Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, *pu32Value, cbValue, VBOXSTRICTRC_VAL(rc))); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; } /* not reached */ } #ifndef IN_RING3 if (pRange->pfnReadCallbackR3) { STAM_COUNTER_INC(&pStats->CTX_MID_Z(Read,ToR3)); iomMmioReleaseRange(pVM, pRange); return VINF_IOM_R3_MMIO_READ; } #endif /* * Unassigned memory - this is actually not supposed t happen... */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfRead), a); /** @todo STAM_PROFILE_ADD_ZERO_PERIOD */ STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfRead), a); iomMMIODoReadFFs(pu32Value, cbValue); Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=VINF_SUCCESS\n", GCPhys, *pu32Value, cbValue)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; } /** * Writes to a MMIO register. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPhys The physical address to write to. * @param u32Value The value to write. * @param cbValue The size of the register to read in bytes. 1, 2 or 4 bytes. */ VMMDECL(VBOXSTRICTRC) IOMMMIOWrite(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint32_t u32Value, size_t cbValue) { Assert(pVCpu->iom.s.PendingMmioWrite.cbValue == 0); /* Take the IOM lock before performing any MMIO. */ VBOXSTRICTRC rc = IOM_LOCK_SHARED(pVM); #ifndef IN_RING3 if (rc == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_WRITE; #endif AssertRC(VBOXSTRICTRC_VAL(rc)); #if defined(IEM_VERIFICATION_MODE) && defined(IN_RING3) IEMNotifyMMIOWrite(pVM, GCPhys, u32Value, cbValue); #endif /* * Lookup the current context range node. */ PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhys); if (!pRange) { AssertMsgFailed(("Handlers and page tables are out of sync or something! GCPhys=%RGp cbValue=%d\n", GCPhys, cbValue)); IOM_UNLOCK_SHARED(pVM); return VERR_IOM_MMIO_RANGE_NOT_FOUND; } iomMmioRetainRange(pRange); #ifndef VBOX_WITH_STATISTICS IOM_UNLOCK_SHARED(pVM); #else /* VBOX_WITH_STATISTICS */ PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhys, pRange); if (!pStats) { iomMmioReleaseRange(pVM, pRange); # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_WRITE; # endif } STAM_COUNTER_INC(&pStats->Accesses); #endif /* VBOX_WITH_STATISTICS */ if (pRange->CTX_SUFF(pfnWriteCallback)) { /* * Perform locking. */ PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_READ); if (rc != VINF_SUCCESS) { iomMmioReleaseRange(pVM, pRange); return rc; } /* * Perform the write. */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfWrite), a); if ( (cbValue == 4 && !(GCPhys & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_PASSTHRU || (cbValue == 8 && !(GCPhys & 7)) ) rc = pRange->CTX_SUFF(pfnWriteCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys, &u32Value, (unsigned)cbValue); else rc = iomMMIODoComplicatedWrite(pVM, pVCpu, pRange, GCPhys, &u32Value, (unsigned)cbValue); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfWrite), a); #ifndef IN_RING3 if ( rc == VINF_IOM_R3_MMIO_WRITE || rc == VINF_IOM_R3_MMIO_READ_WRITE) STAM_COUNTER_INC(&pStats->CTX_MID_Z(Write,ToR3)); #endif Log4(("IOMMMIOWrite: GCPhys=%RGp u32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, u32Value, cbValue, VBOXSTRICTRC_VAL(rc))); iomMmioReleaseRange(pVM, pRange); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); return rc; } #ifndef IN_RING3 if (pRange->pfnWriteCallbackR3) { STAM_COUNTER_INC(&pStats->CTX_MID_Z(Write,ToR3)); iomMmioReleaseRange(pVM, pRange); return VINF_IOM_R3_MMIO_WRITE; } #endif /* * No write handler, nothing to do. */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfWrite), a); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfWrite), a); Log4(("IOMMMIOWrite: GCPhys=%RGp u32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, u32Value, cbValue, VINF_SUCCESS)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; } #endif /* IN_RING3 - only used by REM. */ #ifndef IN_RC /** * Mapping an MMIO2 page in place of an MMIO page for direct access. * * (This is a special optimization used by the VGA device.) * * @returns VBox status code. This API may return VINF_SUCCESS even if no * remapping is made,. * * @param pVM The cross context VM structure. * @param GCPhys The address of the MMIO page to be changed. * @param GCPhysRemapped The address of the MMIO2 page. * @param fPageFlags Page flags to set. Must be (X86_PTE_RW | X86_PTE_P) * for the time being. */ VMMDECL(int) IOMMMIOMapMMIO2Page(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysRemapped, uint64_t fPageFlags) { # ifndef IEM_VERIFICATION_MODE_FULL /* Currently only called from the VGA device during MMIO. */ Log(("IOMMMIOMapMMIO2Page %RGp -> %RGp flags=%RX64\n", GCPhys, GCPhysRemapped, fPageFlags)); AssertReturn(fPageFlags == (X86_PTE_RW | X86_PTE_P), VERR_INVALID_PARAMETER); PVMCPU pVCpu = VMMGetCpu(pVM); /* This currently only works in real mode, protected mode without paging or with nested paging. */ if ( !HMIsEnabled(pVM) /* useless without VT-x/AMD-V */ || ( CPUMIsGuestInPagedProtectedMode(pVCpu) && !HMIsNestedPagingActive(pVM))) return VINF_SUCCESS; /* ignore */ int rc = IOM_LOCK_SHARED(pVM); if (RT_FAILURE(rc)) return VINF_SUCCESS; /* better luck the next time around */ /* * Lookup the context range node the page belongs to. */ PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhys); AssertMsgReturn(pRange, ("Handlers and page tables are out of sync or something! GCPhys=%RGp\n", GCPhys), VERR_IOM_MMIO_RANGE_NOT_FOUND); Assert((pRange->GCPhys & PAGE_OFFSET_MASK) == 0); Assert((pRange->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); /* * Do the aliasing; page align the addresses since PGM is picky. */ GCPhys &= ~(RTGCPHYS)PAGE_OFFSET_MASK; GCPhysRemapped &= ~(RTGCPHYS)PAGE_OFFSET_MASK; rc = PGMHandlerPhysicalPageAlias(pVM, pRange->GCPhys, GCPhys, GCPhysRemapped); IOM_UNLOCK_SHARED(pVM); AssertRCReturn(rc, rc); /* * Modify the shadow page table. Since it's an MMIO page it won't be present and we * can simply prefetch it. * * Note: This is a NOP in the EPT case; we'll just let it fault again to resync the page. */ # if 0 /* The assertion is wrong for the PGM_SYNC_CLEAR_PGM_POOL and VINF_PGM_HANDLER_ALREADY_ALIASED cases. */ # ifdef VBOX_STRICT uint64_t fFlags; RTHCPHYS HCPhys; rc = PGMShwGetPage(pVCpu, (RTGCPTR)GCPhys, &fFlags, &HCPhys); Assert(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); # endif # endif rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPhys); Assert(rc == VINF_SUCCESS || rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); # endif /* !IEM_VERIFICATION_MODE_FULL */ return VINF_SUCCESS; } # ifndef IEM_VERIFICATION_MODE_FULL /** * Mapping a HC page in place of an MMIO page for direct access. * * (This is a special optimization used by the APIC in the VT-x case.) * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param GCPhys The address of the MMIO page to be changed. * @param HCPhys The address of the host physical page. * @param fPageFlags Page flags to set. Must be (X86_PTE_RW | X86_PTE_P) * for the time being. */ VMMDECL(int) IOMMMIOMapMMIOHCPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint64_t fPageFlags) { /* Currently only called from VT-x code during a page fault. */ Log(("IOMMMIOMapMMIOHCPage %RGp -> %RGp flags=%RX64\n", GCPhys, HCPhys, fPageFlags)); AssertReturn(fPageFlags == (X86_PTE_RW | X86_PTE_P), VERR_INVALID_PARAMETER); Assert(HMIsEnabled(pVM)); /* * Lookup the context range node the page belongs to. */ # ifdef VBOX_STRICT /* Can't lock IOM here due to potential deadlocks in the VGA device; not safe to access. */ PIOMMMIORANGE pRange = iomMMIOGetRangeUnsafe(pVM, pVCpu, GCPhys); AssertMsgReturn(pRange, ("Handlers and page tables are out of sync or something! GCPhys=%RGp\n", GCPhys), VERR_IOM_MMIO_RANGE_NOT_FOUND); Assert((pRange->GCPhys & PAGE_OFFSET_MASK) == 0); Assert((pRange->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); # endif /* * Do the aliasing; page align the addresses since PGM is picky. */ GCPhys &= ~(RTGCPHYS)PAGE_OFFSET_MASK; HCPhys &= ~(RTHCPHYS)PAGE_OFFSET_MASK; int rc = PGMHandlerPhysicalPageAliasHC(pVM, GCPhys, GCPhys, HCPhys); AssertRCReturn(rc, rc); /* * Modify the shadow page table. Since it's an MMIO page it won't be present and we * can simply prefetch it. * * Note: This is a NOP in the EPT case; we'll just let it fault again to resync the page. */ rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPhys); Assert(rc == VINF_SUCCESS || rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); return VINF_SUCCESS; } # endif /* !IEM_VERIFICATION_MODE_FULL */ /** * Reset a previously modified MMIO region; restore the access flags. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param GCPhys Physical address that's part of the MMIO region to be reset. */ VMMDECL(int) IOMMMIOResetRegion(PVM pVM, RTGCPHYS GCPhys) { Log(("IOMMMIOResetRegion %RGp\n", GCPhys)); PVMCPU pVCpu = VMMGetCpu(pVM); /* This currently only works in real mode, protected mode without paging or with nested paging. */ if ( !HMIsEnabled(pVM) /* useless without VT-x/AMD-V */ || ( CPUMIsGuestInPagedProtectedMode(pVCpu) && !HMIsNestedPagingActive(pVM))) return VINF_SUCCESS; /* ignore */ /* * Lookup the context range node the page belongs to. */ # ifdef VBOX_STRICT /* Can't lock IOM here due to potential deadlocks in the VGA device; not safe to access. */ PIOMMMIORANGE pRange = iomMMIOGetRangeUnsafe(pVM, pVCpu, GCPhys); AssertMsgReturn(pRange, ("Handlers and page tables are out of sync or something! GCPhys=%RGp\n", GCPhys), VERR_IOM_MMIO_RANGE_NOT_FOUND); Assert((pRange->GCPhys & PAGE_OFFSET_MASK) == 0); Assert((pRange->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); # endif /* * Call PGM to do the job work. * * After the call, all the pages should be non-present... unless there is * a page pool flush pending (unlikely). */ int rc = PGMHandlerPhysicalReset(pVM, GCPhys); AssertRC(rc); # ifdef VBOX_STRICT if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)) { uint32_t cb = pRange->cb; GCPhys = pRange->GCPhys; while (cb) { uint64_t fFlags; RTHCPHYS HCPhys; rc = PGMShwGetPage(pVCpu, (RTGCPTR)GCPhys, &fFlags, &HCPhys); Assert(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); cb -= PAGE_SIZE; GCPhys += PAGE_SIZE; } } # endif return rc; } #endif /* !IN_RC */