VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllThreadedFunctions.cpp@ 100111

Last change on this file since 100111 was 100096, checked in by vboxsync, 18 months ago

VMM/IEM: Adjusted/reworked the relative jump MCs in the threaded function file. bugref:10369

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 24.9 KB
Line 
1/* $Id: IEMAllThreadedFunctions.cpp 100096 2023-06-07 15:14:56Z vboxsync $ */
2/** @file
3 * IEM - Instruction Decoding and Emulation, Threaded Functions.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
33# define LOG_GROUP LOG_GROUP_IEM
34#endif
35#define VMCPU_INCL_CPUM_GST_CTX
36#define IEM_WITH_OPAQUE_DECODER_STATE
37#include <VBox/vmm/iem.h>
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/apic.h>
40#include <VBox/vmm/pdm.h>
41#include <VBox/vmm/pgm.h>
42#include <VBox/vmm/iom.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/nem.h>
46#include <VBox/vmm/gim.h>
47#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
48# include <VBox/vmm/em.h>
49# include <VBox/vmm/hm_svm.h>
50#endif
51#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
52# include <VBox/vmm/hmvmxinline.h>
53#endif
54#include <VBox/vmm/tm.h>
55#include <VBox/vmm/dbgf.h>
56#include <VBox/vmm/dbgftrace.h>
57#include "IEMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62#include <VBox/dis.h>
63#include <VBox/disopcode-x86-amd64.h>
64#include <iprt/asm-math.h>
65#include <iprt/assert.h>
66#include <iprt/string.h>
67#include <iprt/x86.h>
68
69#include "IEMInline.h"
70#include "IEMMc.h"
71
72#include "IEMThreadedFunctions.h"
73
74
75/*********************************************************************************************************************************
76* Defined Constants And Macros *
77*********************************************************************************************************************************/
78
79/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
80 * and only used when we're in 16-bit code on a pre-386 CPU. */
81#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16(a_cbInstr) \
82 return iemRegAddToIp16AndFinishingClearingRF(pVCpu, a_cbInstr)
83
84/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
85 * and used for 16-bit and 32-bit code on 386 and later CPUs. */
86#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32(a_cbInstr) \
87 return iemRegAddToEip32AndFinishingClearingRF(pVCpu, a_cbInstr)
88
89/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
90 * and only used when we're in 64-bit code. */
91#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64(a_cbInstr) \
92 return iemRegAddToRip64AndFinishingClearingRF(pVCpu, a_cbInstr)
93
94#undef IEM_MC_ADVANCE_RIP_AND_FINISH
95
96
97/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length as extra
98 * parameter, for use in 16-bit code on a pre-386 CPU. */
99#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16(a_i8, a_cbInstr) \
100 return iemRegIp16RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8))
101
102/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
103 * size as extra parameters, for use in 16-bit and 32-bit code on 386 and
104 * later CPUs. */
105#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32(a_i8, a_cbInstr, a_enmEffOpSize) \
106 return iemRegEip32RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
107
108/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
109 * size as extra parameters, for use in 64-bit code. */
110#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64(a_i8, a_cbInstr, a_enmEffOpSize) \
111 return iemRegRip64RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
112
113#undef IEM_MC_REL_JMP_S8_AND_FINISH
114
115
116/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
117 * param, for use in 16-bit code on a pre-386 CPU. */
118#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr) \
119 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
120
121/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
122 * param, for use in 16-bit and 32-bit code on 386 and later CPUs. */
123#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr) \
124 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
125
126/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
127 * param, for use in 64-bit code. */
128#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr) \
129 return iemRegRip64RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
130
131#undef IEM_MC_REL_JMP_S16_AND_FINISH
132
133
134/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
135 * an extra parameter - dummy for pre-386 variations not eliminated by the
136 * python script. */
137#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr) \
138 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
139
140/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
141 * an extra parameter, for use in 16-bit and 32-bit code on 386+. */
142#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr) \
143 return iemRegEip32RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32))
144
145/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
146 * an extra parameter, for use in 64-bit code. */
147#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr) \
148 return iemRegRip64RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32))
149
150#undef IEM_MC_REL_JMP_S32_AND_FINISH
151
152
153/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 16-bit. */
154#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp) \
155 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr16(pVCpu, a_bRm, a_u16Disp)
156
157/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, pre-386 16-bit. */
158#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16_PRE386(a_GCPtrEff, a_bRm, a_u16Disp) \
159 IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp)
160
161/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit with address prefix. */
162#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32_ADDR16(a_GCPtrEff, a_bRm, a_u16Disp) \
163 IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp)
164
165
166/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit. */
167#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32(a_GCPtrEff, a_bRm, a_bSib, a_u32Disp) \
168 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_bSib, a_u32Disp)
169
170/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit flat. */
171#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32_FLAT(a_GCPtrEff, a_bRm, a_bSib, a_u32Disp) \
172 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_bSib, a_u32Disp)
173
174/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 16-bit with address prefix. */
175#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16_ADDR32(a_GCPtrEff, a_bRm, a_bSib, a_u32Disp) \
176 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_bSib, a_u32Disp)
177
178
179/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
180#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64(a_GCPtrEff, a_bRmEx, a_bSib, a_u32Disp, a_cbImm) \
181 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_bSib, a_u32Disp, a_cbImm)
182
183/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters.
184 * @todo How did that address prefix thing work for 64-bit code again? */
185#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_ADDR32(a_GCPtrEff, a_bRmEx, a_bSib, a_u32Disp, a_cbImm) \
186 (a_GCPtrEff) = (uint32_t)iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_bSib, a_u32Disp, a_cbImm)
187
188#undef IEM_MC_CALC_RM_EFF_ADDR
189
190
191/** Variant of IEM_MC_CALL_CIMPL_1 with explicit instruction length parameter. */
192#define IEM_MC_CALL_CIMPL_1_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0) \
193 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
194#undef IEM_MC_CALL_CIMPL_1
195
196/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
197#define IEM_MC_CALL_CIMPL_2_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1) \
198 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
199#undef IEM_MC_CALL_CIMPL_2
200
201/** Variant of IEM_MC_CALL_CIMPL_3 with explicit instruction length parameter. */
202#define IEM_MC_CALL_CIMPL_3_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2) \
203 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
204#undef IEM_MC_CALL_CIMPL_3
205
206/** Variant of IEM_MC_CALL_CIMPL_4 with explicit instruction length parameter. */
207#define IEM_MC_CALL_CIMPL_4_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3) \
208 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
209#undef IEM_MC_CALL_CIMPL_4
210
211/** Variant of IEM_MC_CALL_CIMPL_5 with explicit instruction length parameter. */
212#define IEM_MC_CALL_CIMPL_5_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3, a4) \
213 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
214#undef IEM_MC_CALL_CIMPL_5
215
216/** Variant of IEM_MC_FETCH_GREG_U8 with extended (20) register index. */
217#define IEM_MC_FETCH_GREG_U8_THREADED(a_u8Dst, a_iGRegEx) \
218 (a_u8Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
219
220/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U16 with extended (20) register index. */
221#define IEM_MC_FETCH_GREG_U8_ZX_U16_THREADED(a_u16Dst, a_iGRegEx) \
222 (a_u16Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
223
224/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U32 with extended (20) register index. */
225#define IEM_MC_FETCH_GREG_U8_ZX_U32_THREADED(a_u32Dst, a_iGRegEx) \
226 (a_u32Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
227
228/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U64 with extended (20) register index. */
229#define IEM_MC_FETCH_GREG_U8_ZX_U64_THREADED(a_u64Dst, a_iGRegEx) \
230 (a_u64Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
231
232/** Variant of IEM_MC_FETCH_GREG_U8_SX_U16 with extended (20) register index. */
233#define IEM_MC_FETCH_GREG_U8_SX_U16_THREADED(a_u16Dst, a_iGRegEx) \
234 (a_u16Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
235
236/** Variant of IEM_MC_FETCH_GREG_U8_SX_U32 with extended (20) register index. */
237#define IEM_MC_FETCH_GREG_U8_SX_U32_THREADED(a_u32Dst, a_iGRegEx) \
238 (a_u32Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
239#undef IEM_MC_FETCH_GREG_U8_SX_U32
240
241/** Variant of IEM_MC_FETCH_GREG_U8_SX_U64 with extended (20) register index. */
242#define IEM_MC_FETCH_GREG_U8_SX_U64_THREADED(a_u64Dst, a_iGRegEx) \
243 (a_u64Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
244#undef IEM_MC_FETCH_GREG_U8_SX_U64
245
246/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
247#define IEM_MC_STORE_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
248 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
249#undef IEM_MC_STORE_GREG_U8
250
251/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
252#define IEM_MC_STORE_GREG_U8_CONST_THREADED(a_iGRegEx, a_u8Value) \
253 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
254#undef IEM_MC_STORE_GREG_U8
255
256/** Variant of IEM_MC_REF_GREG_U8 with extended (20) register index. */
257#define IEM_MC_REF_GREG_U8_THREADED(a_pu8Dst, a_iGRegEx) \
258 (a_pu8Dst) = iemGRegRefU8Ex(pVCpu, (a_iGRegEx))
259#undef IEM_MC_REF_GREG_U8
260
261/** Variant of IEM_MC_ADD_GREG_U8 with extended (20) register index. */
262#define IEM_MC_ADD_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
263 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) += (a_u8Value)
264#undef IEM_MC_ADD_GREG_U8
265
266/** Variant of IEM_MC_SUB_GREG_U8 with extended (20) register index. */
267#define IEM_MC_SUB_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
268 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) -= (a_u8Value)
269#undef IEM_MC_SUB_GREG_U8
270
271/** Variant of IEM_MC_ADD_GREG_U8_TO_LOCAL with extended (20) register index. */
272#define IEM_MC_ADD_GREG_U8_TO_LOCAL_THREADED(a_u8Value, a_iGRegEx) \
273 do { (a_u8Value) += iemGRegFetchU8Ex(pVCpu, (a_iGRegEx)); } while (0)
274#undef IEM_MC_ADD_GREG_U8_TO_LOCAL
275
276/** Variant of IEM_MC_AND_GREG_U8 with extended (20) register index. */
277#define IEM_MC_AND_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
278 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) &= (a_u8Value)
279#undef IEM_MC_AND_GREG_U8
280
281/** Variant of IEM_MC_OR_GREG_U8 with extended (20) register index. */
282#define IEM_MC_OR_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
283 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) |= (a_u8Value)
284#undef IEM_MC_OR_GREG_U8
285
286/**
287 * Calculates the effective address of a ModR/M memory operand, 16-bit
288 * addressing variant.
289 *
290 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR16.
291 *
292 * @returns The effective address.
293 * @param pVCpu The cross context virtual CPU structure of the calling thread.
294 * @param bRm The ModRM byte.
295 * @param u16Disp The displacement byte/word, if any.
296 * RIP relative addressing.
297 */
298static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr16(PVMCPUCC pVCpu, uint8_t bRm, uint16_t u16Disp) RT_NOEXCEPT
299{
300 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: bRm=%#x\n", bRm));
301 Assert(!IEM_IS_64BIT_CODE(pVCpu));
302
303 /* Handle the disp16 form with no registers first. */
304 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
305 {
306 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16Disp));
307 return u16Disp;
308 }
309
310 /* Get the displacment. */
311 /** @todo we can eliminate this step by making u16Disp have this value
312 * already! */
313 uint16_t u16EffAddr;
314 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
315 {
316 case 0: u16EffAddr = 0; break;
317 case 1: u16EffAddr = (int16_t)(int8_t)u16Disp; break;
318 case 2: u16EffAddr = u16Disp; break;
319 default: AssertFailedStmt(u16EffAddr = 0);
320 }
321
322 /* Add the base and index registers to the disp. */
323 switch (bRm & X86_MODRM_RM_MASK)
324 {
325 case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
326 case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
327 case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; break;
328 case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; break;
329 case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
330 case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
331 case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; break;
332 case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
333 }
334
335 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16EffAddr));
336 return u16EffAddr;
337}
338
339
340/**
341 * Calculates the effective address of a ModR/M memory operand, 32-bit
342 * addressing variant.
343 *
344 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32 and
345 * IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32FLAT.
346 *
347 * @returns The effective address.
348 * @param pVCpu The cross context virtual CPU structure of the calling thread.
349 * @param bRm The ModRM byte.
350 * @param bSib The SIB byte, if any.
351 * @param u32Disp The displacement byte/dword, if any.
352 */
353static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr32(PVMCPUCC pVCpu, uint8_t bRm, uint8_t bSib, uint32_t u32Disp) RT_NOEXCEPT
354{
355 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: bRm=%#x\n", bRm));
356
357 /* Handle the disp32 form with no registers first. */
358 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
359 {
360 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32Disp));
361 return u32Disp;
362 }
363
364 /* Get the register (or SIB) value. */
365 uint32_t u32EffAddr;
366#ifdef _MSC_VER
367 u32EffAddr = 0;/* MSC uninitialized variable analysis is too simple, it seems. */
368#endif
369 switch (bRm & X86_MODRM_RM_MASK)
370 {
371 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
372 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
373 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
374 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
375 case 4: /* SIB */
376 {
377 /* Get the index and scale it. */
378 switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
379 {
380 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
381 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
382 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
383 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
384 case 4: u32EffAddr = 0; /*none */ break;
385 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
386 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
387 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
388 }
389 u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
390
391 /* add base */
392 switch (bSib & X86_SIB_BASE_MASK)
393 {
394 case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
395 case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
396 case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
397 case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
398 case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp; break;
399 case 5:
400 if ((bRm & X86_MODRM_MOD_MASK) != 0)
401 u32EffAddr += pVCpu->cpum.GstCtx.ebp;
402 else
403 u32EffAddr += u32Disp;
404 break;
405 case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
406 case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
407 }
408 break;
409 }
410 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
411 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
412 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
413 }
414
415 /* Get and add the displacement. */
416 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
417 {
418 case 0: break;
419 case 1: u32EffAddr += (int8_t)u32Disp; break;
420 case 2: u32EffAddr += u32Disp; break;
421 default: AssertFailed();
422 }
423
424 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32EffAddr));
425 return u32EffAddr;
426}
427
428
429/**
430 * Calculates the effective address of a ModR/M memory operand.
431 *
432 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR64.
433 *
434 * @returns The effective address.
435 * @param pVCpu The cross context virtual CPU structure of the calling thread.
436 * @param bRmEx The ModRM byte but with bit 3 set to REX.B and
437 * bit 4 to REX.X. The two bits are part of the
438 * REG sub-field, which isn't needed in this
439 * function.
440 * @param bSib The SIB byte, if any.
441 * @param u32Disp The displacement byte/word/dword, if any.
442 * @param cbInstr The size of the fully decoded instruction. Used
443 * for RIP relative addressing.
444 * @todo combine cbInstr and cbImm!
445 */
446static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr64(PVMCPUCC pVCpu, uint8_t bRmEx, uint8_t bSib,
447 uint32_t u32Disp, uint8_t cbInstr) RT_NOEXCEPT
448{
449 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: bRmEx=%#x\n", bRmEx));
450 Assert(IEM_IS_64BIT_CODE(pVCpu));
451
452 uint64_t u64EffAddr;
453
454 /* Handle the rip+disp32 form with no registers first. */
455 if ((bRmEx & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
456 {
457 u64EffAddr = (int32_t)u32Disp;
458 u64EffAddr += pVCpu->cpum.GstCtx.rip + cbInstr;
459 }
460 else
461 {
462 /* Get the register (or SIB) value. */
463#ifdef _MSC_VER
464 u64EffAddr = 0; /* MSC uninitialized variable analysis is too simple, it seems. */
465#endif
466 switch (bRmEx & (X86_MODRM_RM_MASK | 0x8)) /* bRmEx[bit 3] = REX.B */
467 {
468 default:
469 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
470 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
471 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
472 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
473 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
474 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
475 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
476 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
477 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
478 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
479 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
480 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
481 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
482 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
483 /* SIB */
484 case 4:
485 case 12:
486 {
487 /* Get the index and scale it. */
488 switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | ((bRmEx & 0x10) >> 1)) /* bRmEx[bit 4] = REX.X */
489 {
490 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
491 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
492 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
493 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
494 case 4: u64EffAddr = 0; /*none */ break;
495 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
496 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
497 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
498 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
499 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
500 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
501 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
502 case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
503 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
504 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
505 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
506 }
507 u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
508
509 /* add base */
510 switch ((bSib & X86_SIB_BASE_MASK) | (bRmEx & 0x8)) /* bRmEx[bit 3] = REX.B */
511 {
512 case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
513 case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
514 case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
515 case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
516 case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp; break;
517 case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
518 case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
519 case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
520 case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
521 case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
522 case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
523 case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
524 case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
525 case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
526 /* complicated encodings */
527 case 5:
528 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
529 u64EffAddr += pVCpu->cpum.GstCtx.rbp;
530 else
531 u64EffAddr += (int32_t)u32Disp;
532 break;
533 case 13:
534 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
535 u64EffAddr += pVCpu->cpum.GstCtx.r13;
536 else
537 u64EffAddr += (int32_t)u32Disp;
538 break;
539 }
540 break;
541 }
542 }
543
544 /* Get and add the displacement. */
545 switch ((bRmEx >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
546 {
547 case 0: break;
548 case 1: u64EffAddr += (int8_t)u32Disp; break;
549 case 2: u64EffAddr += (int32_t)u32Disp; break;
550 default: AssertFailed();
551 }
552 }
553
554 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: EffAddr=%#010RGv\n", u64EffAddr));
555 return u64EffAddr;
556}
557
558
559
560/*
561 * The threaded functions.
562 */
563#include "IEMThreadedFunctions.cpp.h"
564
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette