/* $Id: IEMAllInstructionsOneByte.cpp.h 84247 2020-05-11 11:35:10Z vboxsync $ */ /** @file * IEM - Instruction Decoding and Emulation. */ /* * Copyright (C) 2011-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Global Variables * *******************************************************************************/ extern const PFNIEMOP g_apfnOneByteMap[256]; /* not static since we need to forward declare it. */ /* Instruction group definitions: */ /** @defgroup og_gen General * @{ */ /** @defgroup og_gen_arith Arithmetic * @{ */ /** @defgroup og_gen_arith_bin Binary numbers */ /** @defgroup og_gen_arith_dec Decimal numbers */ /** @} */ /** @} */ /** @defgroup og_stack Stack * @{ */ /** @defgroup og_stack_sreg Segment registers */ /** @} */ /** @defgroup og_prefix Prefixes */ /** @defgroup og_escapes Escape bytes */ /** @name One byte opcodes. * @{ */ /* Instruction specification format - work in progress: */ /** * @opcode 0x00 * @opmnemonic add * @op1 rm:Eb * @op2 reg:Gb * @opmaps one * @openc ModR/M * @opflmodify cf,pf,af,zf,sf,of * @ophints harmless ignores_op_sizes * @opstats add_Eb_Gb * @opgroup og_gen_arith_bin * @optest op1=1 op2=1 -> op1=2 efl&|=nc,pe,na,nz,pl,nv * @optest efl|=cf op1=1 op2=2 -> op1=3 efl&|=nc,po,na,nz,pl,nv * @optest op1=254 op2=1 -> op1=255 efl&|=nc,po,na,nz,ng,nv * @optest op1=128 op2=128 -> op1=0 efl&|=ov,pl,zf,na,po,cf */ FNIEMOP_DEF(iemOp_add_Eb_Gb) { IEMOP_MNEMONIC2(MR, ADD, add, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_add); } /** * @opcode 0x01 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @optest op1=1 op2=1 -> op1=2 efl&|=nc,pe,na,nz,pl,nv * @optest efl|=cf op1=2 op2=2 -> op1=4 efl&|=nc,pe,na,nz,pl,nv * @optest efl&~=cf op1=-1 op2=1 -> op1=0 efl&|=cf,po,af,zf,pl,nv * @optest op1=-1 op2=-1 -> op1=-2 efl&|=cf,pe,af,nz,ng,nv */ FNIEMOP_DEF(iemOp_add_Ev_Gv) { IEMOP_MNEMONIC2(MR, ADD, add, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_add); } /** * @opcode 0x02 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opcopytests iemOp_add_Eb_Gb */ FNIEMOP_DEF(iemOp_add_Gb_Eb) { IEMOP_MNEMONIC2(RM, ADD, add, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_add); } /** * @opcode 0x03 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opcopytests iemOp_add_Ev_Gv */ FNIEMOP_DEF(iemOp_add_Gv_Ev) { IEMOP_MNEMONIC2(RM, ADD, add, Gv, Ev, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_add); } /** * @opcode 0x04 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opcopytests iemOp_add_Eb_Gb */ FNIEMOP_DEF(iemOp_add_Al_Ib) { IEMOP_MNEMONIC2(FIXED, ADD, add, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_add); } /** * @opcode 0x05 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @optest op1=1 op2=1 -> op1=2 efl&|=nv,pl,nz,na,pe * @optest efl|=cf op1=2 op2=2 -> op1=4 efl&|=nc,pe,na,nz,pl,nv * @optest efl&~=cf op1=-1 op2=1 -> op1=0 efl&|=cf,po,af,zf,pl,nv * @optest op1=-1 op2=-1 -> op1=-2 efl&|=cf,pe,af,nz,ng,nv */ FNIEMOP_DEF(iemOp_add_eAX_Iz) { IEMOP_MNEMONIC2(FIXED, ADD, add, rAX, Iz, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_add); } /** * @opcode 0x06 * @opgroup og_stack_sreg */ FNIEMOP_DEF(iemOp_push_ES) { IEMOP_MNEMONIC1(FIXED, PUSH, push, ES, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); IEMOP_HLP_NO_64BIT(); return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_ES); } /** * @opcode 0x07 * @opgroup og_stack_sreg */ FNIEMOP_DEF(iemOp_pop_ES) { IEMOP_MNEMONIC1(FIXED, POP, pop, ES, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); IEMOP_HLP_NO_64BIT(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_ES, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0x08 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf * @optest op1=7 op2=12 -> op1=15 efl&|=nc,po,na,nz,pl,nv * @optest efl|=of,cf op1=0 op2=0 -> op1=0 efl&|=nc,po,na,zf,pl,nv * @optest op1=0xee op2=0x11 -> op1=0xff efl&|=nc,po,na,nz,ng,nv * @optest op1=0xff op2=0xff -> op1=0xff efl&|=nc,po,na,nz,ng,nv */ FNIEMOP_DEF(iemOp_or_Eb_Gb) { IEMOP_MNEMONIC2(MR, OR, or, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_or); } /* * @opcode 0x09 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf * @optest efl|=of,cf op1=12 op2=7 -> op1=15 efl&|=nc,po,na,nz,pl,nv * @optest efl|=of,cf op1=0 op2=0 -> op1=0 efl&|=nc,po,na,zf,pl,nv * @optest op1=-2 op2=1 -> op1=-1 efl&|=nc,po,na,nz,ng,nv * @optest o16 / op1=0x5a5a op2=0xa5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv * @optest o32 / op1=0x5a5a5a5a op2=0xa5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv * @optest o64 / op1=0x5a5a5a5a5a5a5a5a op2=0xa5a5a5a5a5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv */ FNIEMOP_DEF(iemOp_or_Ev_Gv) { IEMOP_MNEMONIC2(MR, OR, or, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_or); } /** * @opcode 0x0a * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf * @opcopytests iemOp_or_Eb_Gb */ FNIEMOP_DEF(iemOp_or_Gb_Eb) { IEMOP_MNEMONIC2(RM, OR, or, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_or); } /** * @opcode 0x0b * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf * @opcopytests iemOp_or_Ev_Gv */ FNIEMOP_DEF(iemOp_or_Gv_Ev) { IEMOP_MNEMONIC2(RM, OR, or, Gv, Ev, DISOPTYPE_HARMLESS, 0); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_or); } /** * @opcode 0x0c * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf * @opcopytests iemOp_or_Eb_Gb */ FNIEMOP_DEF(iemOp_or_Al_Ib) { IEMOP_MNEMONIC2(FIXED, OR, or, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_or); } /** * @opcode 0x0d * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf * @optest efl|=of,cf op1=12 op2=7 -> op1=15 efl&|=nc,po,na,nz,pl,nv * @optest efl|=of,cf op1=0 op2=0 -> op1=0 efl&|=nc,po,na,zf,pl,nv * @optest op1=-2 op2=1 -> op1=-1 efl&|=nc,po,na,nz,ng,nv * @optest o16 / op1=0x5a5a op2=0xa5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv * @optest o32 / op1=0x5a5a5a5a op2=0xa5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv * @optest o64 / op1=0x5a5a5a5a5a5a5a5a op2=0xa5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv * @optest o64 / op1=0x5a5a5a5aa5a5a5a5 op2=0x5a5a5a5a -> op1=0x5a5a5a5affffffff efl&|=nc,po,na,nz,pl,nv */ FNIEMOP_DEF(iemOp_or_eAX_Iz) { IEMOP_MNEMONIC2(FIXED, OR, or, rAX, Iz, DISOPTYPE_HARMLESS, 0); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_or); } /** * @opcode 0x0e * @opgroup og_stack_sreg */ FNIEMOP_DEF(iemOp_push_CS) { IEMOP_MNEMONIC1(FIXED, PUSH, push, CS, DISOPTYPE_HARMLESS | DISOPTYPE_POTENTIALLY_DANGEROUS | DISOPTYPE_INVALID_64, 0); IEMOP_HLP_NO_64BIT(); return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_CS); } /** * @opcode 0x0f * @opmnemonic EscTwo0f * @openc two0f * @opdisenum OP_2B_ESC * @ophints harmless * @opgroup og_escapes */ FNIEMOP_DEF(iemOp_2byteEscape) { #ifdef VBOX_STRICT /* Sanity check the table the first time around. */ static bool s_fTested = false; if (RT_LIKELY(s_fTested)) { /* likely */ } else { s_fTested = true; Assert(g_apfnTwoByteMap[0xbc * 4 + 0] == iemOp_bsf_Gv_Ev); Assert(g_apfnTwoByteMap[0xbc * 4 + 1] == iemOp_bsf_Gv_Ev); Assert(g_apfnTwoByteMap[0xbc * 4 + 2] == iemOp_tzcnt_Gv_Ev); Assert(g_apfnTwoByteMap[0xbc * 4 + 3] == iemOp_bsf_Gv_Ev); } #endif if (RT_LIKELY(IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_286)) { uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); IEMOP_HLP_MIN_286(); return FNIEMOP_CALL(g_apfnTwoByteMap[(uintptr_t)b * 4 + pVCpu->iem.s.idxPrefix]); } /* @opdone */ /* * On the 8086 this is a POP CS instruction. * For the time being we don't specify this this. */ IEMOP_MNEMONIC1(FIXED, POP, pop, CS, DISOPTYPE_HARMLESS | DISOPTYPE_POTENTIALLY_DANGEROUS | DISOPTYPE_INVALID_64, IEMOPHINT_SKIP_PYTHON); IEMOP_HLP_NO_64BIT(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_ES, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0x10 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of * @optest op1=1 op2=1 efl&~=cf -> op1=2 efl&|=nc,pe,na,nz,pl,nv * @optest op1=1 op2=1 efl|=cf -> op1=3 efl&|=nc,po,na,nz,pl,nv * @optest op1=0xff op2=0 efl|=cf -> op1=0 efl&|=cf,po,af,zf,pl,nv * @optest op1=0 op2=0 efl|=cf -> op1=1 efl&|=nc,pe,na,nz,pl,nv * @optest op1=0 op2=0 efl&~=cf -> op1=0 efl&|=nc,po,na,zf,pl,nv */ FNIEMOP_DEF(iemOp_adc_Eb_Gb) { IEMOP_MNEMONIC2(MR, ADC, adc, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_adc); } /** * @opcode 0x11 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of * @optest op1=1 op2=1 efl&~=cf -> op1=2 efl&|=nc,pe,na,nz,pl,nv * @optest op1=1 op2=1 efl|=cf -> op1=3 efl&|=nc,po,na,nz,pl,nv * @optest op1=-1 op2=0 efl|=cf -> op1=0 efl&|=cf,po,af,zf,pl,nv * @optest op1=0 op2=0 efl|=cf -> op1=1 efl&|=nc,pe,na,nz,pl,nv * @optest op1=0 op2=0 efl&~=cf -> op1=0 efl&|=nc,po,na,zf,pl,nv */ FNIEMOP_DEF(iemOp_adc_Ev_Gv) { IEMOP_MNEMONIC2(MR, ADC, adc, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_adc); } /** * @opcode 0x12 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of * @opcopytests iemOp_adc_Eb_Gb */ FNIEMOP_DEF(iemOp_adc_Gb_Eb) { IEMOP_MNEMONIC2(RM, ADC, adc, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_adc); } /** * @opcode 0x13 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of * @opcopytests iemOp_adc_Ev_Gv */ FNIEMOP_DEF(iemOp_adc_Gv_Ev) { IEMOP_MNEMONIC2(RM, ADC, adc, Gv, Ev, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_adc); } /** * @opcode 0x14 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of * @opcopytests iemOp_adc_Eb_Gb */ FNIEMOP_DEF(iemOp_adc_Al_Ib) { IEMOP_MNEMONIC2(FIXED, ADC, adc, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_adc); } /** * @opcode 0x15 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of * @opcopytests iemOp_adc_Ev_Gv */ FNIEMOP_DEF(iemOp_adc_eAX_Iz) { IEMOP_MNEMONIC2(FIXED, ADC, adc, rAX, Iz, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_adc); } /** * @opcode 0x16 */ FNIEMOP_DEF(iemOp_push_SS) { IEMOP_MNEMONIC1(FIXED, PUSH, push, SS, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64 | DISOPTYPE_RRM_DANGEROUS, 0); IEMOP_HLP_NO_64BIT(); return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_SS); } /** * @opcode 0x17 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_pop_SS) { IEMOP_MNEMONIC1(FIXED, POP, pop, SS, DISOPTYPE_HARMLESS | DISOPTYPE_INHIBIT_IRQS | DISOPTYPE_INVALID_64 | DISOPTYPE_RRM_DANGEROUS , 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_NO_64BIT(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_SS, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0x18 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sbb_Eb_Gb) { IEMOP_MNEMONIC2(MR, SBB, sbb, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_sbb); } /** * @opcode 0x19 * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sbb_Ev_Gv) { IEMOP_MNEMONIC2(MR, SBB, sbb, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_sbb); } /** * @opcode 0x1a * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sbb_Gb_Eb) { IEMOP_MNEMONIC2(RM, SBB, sbb, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_sbb); } /** * @opcode 0x1b * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sbb_Gv_Ev) { IEMOP_MNEMONIC2(RM, SBB, sbb, Gv, Ev, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_sbb); } /** * @opcode 0x1c * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sbb_Al_Ib) { IEMOP_MNEMONIC2(FIXED, SBB, sbb, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_sbb); } /** * @opcode 0x1d * @opgroup og_gen_arith_bin * @opfltest cf * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sbb_eAX_Iz) { IEMOP_MNEMONIC2(FIXED, SBB, sbb, rAX, Iz, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_sbb); } /** * @opcode 0x1e * @opgroup og_stack_sreg */ FNIEMOP_DEF(iemOp_push_DS) { IEMOP_MNEMONIC1(FIXED, PUSH, push, DS, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); IEMOP_HLP_NO_64BIT(); return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_DS); } /** * @opcode 0x1f * @opgroup og_stack_sreg */ FNIEMOP_DEF(iemOp_pop_DS) { IEMOP_MNEMONIC1(FIXED, POP, pop, DS, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64 | DISOPTYPE_RRM_DANGEROUS, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_NO_64BIT(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_DS, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0x20 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_and_Eb_Gb) { IEMOP_MNEMONIC2(MR, AND, and, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_and); } /** * @opcode 0x21 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_and_Ev_Gv) { IEMOP_MNEMONIC2(MR, AND, and, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_and); } /** * @opcode 0x22 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_and_Gb_Eb) { IEMOP_MNEMONIC2(RM, AND, and, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_and); } /** * @opcode 0x23 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_and_Gv_Ev) { IEMOP_MNEMONIC2(RM, AND, and, Gv, Ev, DISOPTYPE_HARMLESS, 0); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_and); } /** * @opcode 0x24 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_and_Al_Ib) { IEMOP_MNEMONIC2(FIXED, AND, and, AL, Ib, DISOPTYPE_HARMLESS, 0); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_and); } /** * @opcode 0x25 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_and_eAX_Iz) { IEMOP_MNEMONIC2(FIXED, AND, and, rAX, Iz, DISOPTYPE_HARMLESS, 0); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_and); } /** * @opcode 0x26 * @opmnemonic SEG * @op1 ES * @opgroup og_prefix * @openc prefix * @opdisenum OP_SEG * @ophints harmless */ FNIEMOP_DEF(iemOp_seg_ES) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg es"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_ES; pVCpu->iem.s.iEffSeg = X86_SREG_ES; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x27 * @opfltest af,cf * @opflmodify cf,pf,af,zf,sf,of * @opflundef of */ FNIEMOP_DEF(iemOp_daa) { IEMOP_MNEMONIC0(FIXED, DAA, daa, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL register use */ IEMOP_HLP_NO_64BIT(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_daa); } /** * @opcode 0x28 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sub_Eb_Gb) { IEMOP_MNEMONIC2(MR, SUB, sub, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_sub); } /** * @opcode 0x29 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sub_Ev_Gv) { IEMOP_MNEMONIC2(MR, SUB, sub, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_sub); } /** * @opcode 0x2a * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sub_Gb_Eb) { IEMOP_MNEMONIC2(RM, SUB, sub, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_sub); } /** * @opcode 0x2b * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sub_Gv_Ev) { IEMOP_MNEMONIC2(RM, SUB, sub, Gv, Ev, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_sub); } /** * @opcode 0x2c * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sub_Al_Ib) { IEMOP_MNEMONIC2(FIXED, SUB, sub, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_sub); } /** * @opcode 0x2d * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of */ FNIEMOP_DEF(iemOp_sub_eAX_Iz) { IEMOP_MNEMONIC2(FIXED, SUB, sub, rAX, Iz, DISOPTYPE_HARMLESS, 0); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_sub); } /** * @opcode 0x2e * @opmnemonic SEG * @op1 CS * @opgroup og_prefix * @openc prefix * @opdisenum OP_SEG * @ophints harmless */ FNIEMOP_DEF(iemOp_seg_CS) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg cs"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_CS; pVCpu->iem.s.iEffSeg = X86_SREG_CS; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x2f * @opfltest af,cf * @opflmodify cf,pf,af,zf,sf,of * @opflundef of */ FNIEMOP_DEF(iemOp_das) { IEMOP_MNEMONIC0(FIXED, DAS, das, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL register use */ IEMOP_HLP_NO_64BIT(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_das); } /** * @opcode 0x30 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_xor_Eb_Gb) { IEMOP_MNEMONIC2(MR, XOR, xor, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES | IEMOPHINT_LOCK_ALLOWED); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_xor); } /** * @opcode 0x31 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_xor_Ev_Gv) { IEMOP_MNEMONIC2(MR, XOR, xor, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_xor); } /** * @opcode 0x32 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_xor_Gb_Eb) { IEMOP_MNEMONIC2(RM, XOR, xor, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_xor); } /** * @opcode 0x33 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_xor_Gv_Ev) { IEMOP_MNEMONIC2(RM, XOR, xor, Gv, Ev, DISOPTYPE_HARMLESS, 0); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_xor); } /** * @opcode 0x34 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_xor_Al_Ib) { IEMOP_MNEMONIC2(FIXED, XOR, xor, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_xor); } /** * @opcode 0x35 * @opgroup og_gen_arith_bin * @opflmodify cf,pf,af,zf,sf,of * @opflundef af * @opflclear of,cf */ FNIEMOP_DEF(iemOp_xor_eAX_Iz) { IEMOP_MNEMONIC2(FIXED, XOR, xor, rAX, Iz, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_xor); } /** * @opcode 0x36 * @opmnemonic SEG * @op1 SS * @opgroup og_prefix * @openc prefix * @opdisenum OP_SEG * @ophints harmless */ FNIEMOP_DEF(iemOp_seg_SS) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg ss"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_SS; pVCpu->iem.s.iEffSeg = X86_SREG_SS; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x37 * @opfltest af,cf * @opflmodify cf,pf,af,zf,sf,of * @opflundef pf,zf,sf,of * @opgroup og_gen_arith_dec * @optest efl&~=af ax=9 -> efl&|=nc,po,na,nz,pl,nv * @optest efl&~=af ax=0 -> efl&|=nc,po,na,zf,pl,nv * @optest intel / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,zf,pl,nv * @optest amd / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,nz,pl,nv * @optest efl&~=af ax=0x00f9 -> ax=0x0009 efl&|=nc,po,na,nz,pl,nv * @optest efl|=af ax=0 -> ax=0x0106 efl&|=cf,po,af,nz,pl,nv * @optest efl|=af ax=0x0100 -> ax=0x0206 efl&|=cf,po,af,nz,pl,nv * @optest intel / efl|=af ax=0x000a -> ax=0x0100 efl&|=cf,po,af,zf,pl,nv * @optest amd / efl|=af ax=0x000a -> ax=0x0100 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl|=af ax=0x010a -> ax=0x0200 efl&|=cf,po,af,zf,pl,nv * @optest amd / efl|=af ax=0x010a -> ax=0x0200 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl|=af ax=0x0f0a -> ax=0x1000 efl&|=cf,po,af,zf,pl,nv * @optest amd / efl|=af ax=0x0f0a -> ax=0x1000 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl|=af ax=0x7f0a -> ax=0x8000 efl&|=cf,po,af,zf,pl,nv * @optest amd / efl|=af ax=0x7f0a -> ax=0x8000 efl&|=cf,pe,af,nz,ng,ov * @optest intel / efl|=af ax=0xff0a -> ax=0x0000 efl&|=cf,po,af,zf,pl,nv * @optest amd / efl|=af ax=0xff0a -> ax=0x0000 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl&~=af ax=0xff0a -> ax=0x0000 efl&|=cf,po,af,zf,pl,nv * @optest amd / efl&~=af ax=0xff0a -> ax=0x0000 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl&~=af ax=0x000b -> ax=0x0101 efl&|=cf,pe,af,nz,pl,nv * @optest amd / efl&~=af ax=0x000b -> ax=0x0101 efl&|=cf,po,af,nz,pl,nv * @optest intel / efl&~=af ax=0x000c -> ax=0x0102 efl&|=cf,pe,af,nz,pl,nv * @optest amd / efl&~=af ax=0x000c -> ax=0x0102 efl&|=cf,po,af,nz,pl,nv * @optest intel / efl&~=af ax=0x000d -> ax=0x0103 efl&|=cf,po,af,nz,pl,nv * @optest amd / efl&~=af ax=0x000d -> ax=0x0103 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl&~=af ax=0x000e -> ax=0x0104 efl&|=cf,pe,af,nz,pl,nv * @optest amd / efl&~=af ax=0x000e -> ax=0x0104 efl&|=cf,po,af,nz,pl,nv * @optest intel / efl&~=af ax=0x000f -> ax=0x0105 efl&|=cf,po,af,nz,pl,nv * @optest amd / efl&~=af ax=0x000f -> ax=0x0105 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl&~=af ax=0x020f -> ax=0x0305 efl&|=cf,po,af,nz,pl,nv * @optest amd / efl&~=af ax=0x020f -> ax=0x0305 efl&|=cf,pe,af,nz,pl,nv */ FNIEMOP_DEF(iemOp_aaa) { IEMOP_MNEMONIC0(FIXED, AAA, aaa, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL/AX register use */ IEMOP_HLP_NO_64BIT(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_aaa); } /** * @opcode 0x38 */ FNIEMOP_DEF(iemOp_cmp_Eb_Gb) { IEMOP_MNEMONIC(cmp_Eb_Gb, "cmp Eb,Gb"); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_cmp); } /** * @opcode 0x39 */ FNIEMOP_DEF(iemOp_cmp_Ev_Gv) { IEMOP_MNEMONIC(cmp_Ev_Gv, "cmp Ev,Gv"); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_cmp); } /** * @opcode 0x3a */ FNIEMOP_DEF(iemOp_cmp_Gb_Eb) { IEMOP_MNEMONIC(cmp_Gb_Eb, "cmp Gb,Eb"); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_cmp); } /** * @opcode 0x3b */ FNIEMOP_DEF(iemOp_cmp_Gv_Ev) { IEMOP_MNEMONIC(cmp_Gv_Ev, "cmp Gv,Ev"); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_cmp); } /** * @opcode 0x3c */ FNIEMOP_DEF(iemOp_cmp_Al_Ib) { IEMOP_MNEMONIC(cmp_al_Ib, "cmp al,Ib"); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_cmp); } /** * @opcode 0x3d */ FNIEMOP_DEF(iemOp_cmp_eAX_Iz) { IEMOP_MNEMONIC(cmp_rAX_Iz, "cmp rAX,Iz"); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_cmp); } /** * @opcode 0x3e */ FNIEMOP_DEF(iemOp_seg_DS) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg ds"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_DS; pVCpu->iem.s.iEffSeg = X86_SREG_DS; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x3f * @opfltest af,cf * @opflmodify cf,pf,af,zf,sf,of * @opflundef pf,zf,sf,of * @opgroup og_gen_arith_dec * @optest / efl&~=af ax=0x0009 -> efl&|=nc,po,na,nz,pl,nv * @optest / efl&~=af ax=0x0000 -> efl&|=nc,po,na,zf,pl,nv * @optest intel / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,zf,pl,nv * @optest amd / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,nz,pl,nv * @optest / efl&~=af ax=0x00f9 -> ax=0x0009 efl&|=nc,po,na,nz,pl,nv * @optest intel / efl|=af ax=0x0000 -> ax=0xfe0a efl&|=cf,po,af,nz,pl,nv * @optest amd / efl|=af ax=0x0000 -> ax=0xfe0a efl&|=cf,po,af,nz,ng,nv * @optest intel / efl|=af ax=0x0100 -> ax=0xff0a efl&|=cf,po,af,nz,pl,nv * @optest8 amd / efl|=af ax=0x0100 -> ax=0xff0a efl&|=cf,po,af,nz,ng,nv * @optest intel / efl|=af ax=0x000a -> ax=0xff04 efl&|=cf,pe,af,nz,pl,nv * @optest10 amd / efl|=af ax=0x000a -> ax=0xff04 efl&|=cf,pe,af,nz,ng,nv * @optest / efl|=af ax=0x010a -> ax=0x0004 efl&|=cf,pe,af,nz,pl,nv * @optest / efl|=af ax=0x020a -> ax=0x0104 efl&|=cf,pe,af,nz,pl,nv * @optest / efl|=af ax=0x0f0a -> ax=0x0e04 efl&|=cf,pe,af,nz,pl,nv * @optest / efl|=af ax=0x7f0a -> ax=0x7e04 efl&|=cf,pe,af,nz,pl,nv * @optest intel / efl|=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,pl,nv * @optest amd / efl|=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,ng,nv * @optest intel / efl&~=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,pl,nv * @optest amd / efl&~=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,ng,nv * @optest intel / efl&~=af ax=0xff09 -> ax=0xff09 efl&|=nc,po,na,nz,pl,nv * @optest amd / efl&~=af ax=0xff09 -> ax=0xff09 efl&|=nc,po,na,nz,ng,nv * @optest intel / efl&~=af ax=0x000b -> ax=0xff05 efl&|=cf,po,af,nz,pl,nv * @optest22 amd / efl&~=af ax=0x000b -> ax=0xff05 efl&|=cf,po,af,nz,ng,nv * @optest intel / efl&~=af ax=0x000c -> ax=0xff06 efl&|=cf,po,af,nz,pl,nv * @optest24 amd / efl&~=af ax=0x000c -> ax=0xff06 efl&|=cf,po,af,nz,ng,nv * @optest intel / efl&~=af ax=0x000d -> ax=0xff07 efl&|=cf,pe,af,nz,pl,nv * @optest26 amd / efl&~=af ax=0x000d -> ax=0xff07 efl&|=cf,pe,af,nz,ng,nv * @optest intel / efl&~=af ax=0x000e -> ax=0xff08 efl&|=cf,pe,af,nz,pl,nv * @optest28 amd / efl&~=af ax=0x000e -> ax=0xff08 efl&|=cf,pe,af,nz,ng,nv * @optest intel / efl&~=af ax=0x000f -> ax=0xff09 efl&|=cf,po,af,nz,pl,nv * @optest30 amd / efl&~=af ax=0x000f -> ax=0xff09 efl&|=cf,po,af,nz,ng,nv * @optest31 intel / efl&~=af ax=0x00fa -> ax=0xff04 efl&|=cf,pe,af,nz,pl,nv * @optest32 amd / efl&~=af ax=0x00fa -> ax=0xff04 efl&|=cf,pe,af,nz,ng,nv * @optest33 intel / efl&~=af ax=0xfffa -> ax=0xfe04 efl&|=cf,pe,af,nz,pl,nv * @optest34 amd / efl&~=af ax=0xfffa -> ax=0xfe04 efl&|=cf,pe,af,nz,ng,nv */ FNIEMOP_DEF(iemOp_aas) { IEMOP_MNEMONIC0(FIXED, AAS, aas, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL/AX register use */ IEMOP_HLP_NO_64BIT(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_OF); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_aas); } /** * Common 'inc/dec/not/neg register' helper. */ FNIEMOP_DEF_2(iemOpCommonUnaryGReg, PCIEMOPUNARYSIZES, pImpl, uint8_t, iReg) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(2, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint32_t *, pEFlags, 1); IEM_MC_REF_GREG_U16(pu16Dst, iReg); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU16, pu16Dst, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(2, 0); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint32_t *, pEFlags, 1); IEM_MC_REF_GREG_U32(pu32Dst, iReg); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU32, pu32Dst, pEFlags); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(2, 0); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint32_t *, pEFlags, 1); IEM_MC_REF_GREG_U64(pu64Dst, iReg); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU64, pu64Dst, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } return VINF_SUCCESS; } /** * @opcode 0x40 */ FNIEMOP_DEF(iemOp_inc_eAX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eAX, "inc eAX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xAX); } /** * @opcode 0x41 */ FNIEMOP_DEF(iemOp_inc_eCX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.b"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B; pVCpu->iem.s.uRexB = 1 << 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eCX, "inc eCX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xCX); } /** * @opcode 0x42 */ FNIEMOP_DEF(iemOp_inc_eDX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.x"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_X; pVCpu->iem.s.uRexIndex = 1 << 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eDX, "inc eDX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xDX); } /** * @opcode 0x43 */ FNIEMOP_DEF(iemOp_inc_eBX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.bx"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X; pVCpu->iem.s.uRexB = 1 << 3; pVCpu->iem.s.uRexIndex = 1 << 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eBX, "inc eBX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xBX); } /** * @opcode 0x44 */ FNIEMOP_DEF(iemOp_inc_eSP) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.r"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R; pVCpu->iem.s.uRexReg = 1 << 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eSP, "inc eSP"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xSP); } /** * @opcode 0x45 */ FNIEMOP_DEF(iemOp_inc_eBP) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rb"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B; pVCpu->iem.s.uRexReg = 1 << 3; pVCpu->iem.s.uRexB = 1 << 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eBP, "inc eBP"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xBP); } /** * @opcode 0x46 */ FNIEMOP_DEF(iemOp_inc_eSI) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rx"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_X; pVCpu->iem.s.uRexReg = 1 << 3; pVCpu->iem.s.uRexIndex = 1 << 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eSI, "inc eSI"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xSI); } /** * @opcode 0x47 */ FNIEMOP_DEF(iemOp_inc_eDI) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rbx"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X; pVCpu->iem.s.uRexReg = 1 << 3; pVCpu->iem.s.uRexB = 1 << 3; pVCpu->iem.s.uRexIndex = 1 << 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(inc_eDI, "inc eDI"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xDI); } /** * @opcode 0x48 */ FNIEMOP_DEF(iemOp_dec_eAX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.w"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_SIZE_REX_W; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eAX, "dec eAX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xAX); } /** * @opcode 0x49 */ FNIEMOP_DEF(iemOp_dec_eCX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.bw"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B | IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexB = 1 << 3; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eCX, "dec eCX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xCX); } /** * @opcode 0x4a */ FNIEMOP_DEF(iemOp_dec_eDX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.xw"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexIndex = 1 << 3; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eDX, "dec eDX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xDX); } /** * @opcode 0x4b */ FNIEMOP_DEF(iemOp_dec_eBX) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.bxw"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexB = 1 << 3; pVCpu->iem.s.uRexIndex = 1 << 3; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eBX, "dec eBX"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xBX); } /** * @opcode 0x4c */ FNIEMOP_DEF(iemOp_dec_eSP) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rw"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexReg = 1 << 3; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eSP, "dec eSP"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xSP); } /** * @opcode 0x4d */ FNIEMOP_DEF(iemOp_dec_eBP) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rbw"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexReg = 1 << 3; pVCpu->iem.s.uRexB = 1 << 3; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eBP, "dec eBP"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xBP); } /** * @opcode 0x4e */ FNIEMOP_DEF(iemOp_dec_eSI) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rxw"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexReg = 1 << 3; pVCpu->iem.s.uRexIndex = 1 << 3; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eSI, "dec eSI"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xSI); } /** * @opcode 0x4f */ FNIEMOP_DEF(iemOp_dec_eDI) { /* * This is a REX prefix in 64-bit mode. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rbxw"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexReg = 1 << 3; pVCpu->iem.s.uRexB = 1 << 3; pVCpu->iem.s.uRexIndex = 1 << 3; iemRecalEffOpSize(pVCpu); uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } IEMOP_MNEMONIC(dec_eDI, "dec eDI"); return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xDI); } /** * Common 'push register' helper. */ FNIEMOP_DEF_1(iemOpCommonPushGReg, uint8_t, iReg) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { iReg |= pVCpu->iem.s.uRexB; pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT; pVCpu->iem.s.enmEffOpSize = !(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP) ? IEMMODE_64BIT : IEMMODE_16BIT; } switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_FETCH_GREG_U16(u16Value, iReg); IEM_MC_PUSH_U16(u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint32_t, u32Value); IEM_MC_FETCH_GREG_U32(u32Value, iReg); IEM_MC_PUSH_U32(u32Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_FETCH_GREG_U64(u64Value, iReg); IEM_MC_PUSH_U64(u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } return VINF_SUCCESS; } /** * @opcode 0x50 */ FNIEMOP_DEF(iemOp_push_eAX) { IEMOP_MNEMONIC(push_rAX, "push rAX"); return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xAX); } /** * @opcode 0x51 */ FNIEMOP_DEF(iemOp_push_eCX) { IEMOP_MNEMONIC(push_rCX, "push rCX"); return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xCX); } /** * @opcode 0x52 */ FNIEMOP_DEF(iemOp_push_eDX) { IEMOP_MNEMONIC(push_rDX, "push rDX"); return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xDX); } /** * @opcode 0x53 */ FNIEMOP_DEF(iemOp_push_eBX) { IEMOP_MNEMONIC(push_rBX, "push rBX"); return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xBX); } /** * @opcode 0x54 */ FNIEMOP_DEF(iemOp_push_eSP) { IEMOP_MNEMONIC(push_rSP, "push rSP"); if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_8086) { IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_FETCH_GREG_U16(u16Value, X86_GREG_xSP); IEM_MC_SUB_LOCAL_U16(u16Value, 2); IEM_MC_PUSH_U16(u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xSP); } /** * @opcode 0x55 */ FNIEMOP_DEF(iemOp_push_eBP) { IEMOP_MNEMONIC(push_rBP, "push rBP"); return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xBP); } /** * @opcode 0x56 */ FNIEMOP_DEF(iemOp_push_eSI) { IEMOP_MNEMONIC(push_rSI, "push rSI"); return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xSI); } /** * @opcode 0x57 */ FNIEMOP_DEF(iemOp_push_eDI) { IEMOP_MNEMONIC(push_rDI, "push rDI"); return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xDI); } /** * Common 'pop register' helper. */ FNIEMOP_DEF_1(iemOpCommonPopGReg, uint8_t, iReg) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { iReg |= pVCpu->iem.s.uRexB; pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT; pVCpu->iem.s.enmEffOpSize = !(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP) ? IEMMODE_64BIT : IEMMODE_16BIT; } switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t *, pu16Dst); IEM_MC_REF_GREG_U16(pu16Dst, iReg); IEM_MC_POP_U16(pu16Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint32_t *, pu32Dst); IEM_MC_REF_GREG_U32(pu32Dst, iReg); IEM_MC_POP_U32(pu32Dst); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); /** @todo testcase*/ IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t *, pu64Dst); IEM_MC_REF_GREG_U64(pu64Dst, iReg); IEM_MC_POP_U64(pu64Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } return VINF_SUCCESS; } /** * @opcode 0x58 */ FNIEMOP_DEF(iemOp_pop_eAX) { IEMOP_MNEMONIC(pop_rAX, "pop rAX"); return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xAX); } /** * @opcode 0x59 */ FNIEMOP_DEF(iemOp_pop_eCX) { IEMOP_MNEMONIC(pop_rCX, "pop rCX"); return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xCX); } /** * @opcode 0x5a */ FNIEMOP_DEF(iemOp_pop_eDX) { IEMOP_MNEMONIC(pop_rDX, "pop rDX"); return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xDX); } /** * @opcode 0x5b */ FNIEMOP_DEF(iemOp_pop_eBX) { IEMOP_MNEMONIC(pop_rBX, "pop rBX"); return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xBX); } /** * @opcode 0x5c */ FNIEMOP_DEF(iemOp_pop_eSP) { IEMOP_MNEMONIC(pop_rSP, "pop rSP"); if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { if (pVCpu->iem.s.uRexB) return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xSP); pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT; pVCpu->iem.s.enmEffOpSize = !(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP) ? IEMMODE_64BIT : IEMMODE_16BIT; } IEMOP_HLP_DECODED_NL_1(OP_POP, IEMOPFORM_FIXED, OP_PARM_REG_ESP, DISOPTYPE_HARMLESS | DISOPTYPE_DEFAULT_64_OP_SIZE | DISOPTYPE_REXB_EXTENDS_OPREG); /** @todo add testcase for this instruction. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Dst); IEM_MC_POP_U16(&u16Dst); /** @todo not correct MC, fix later. */ IEM_MC_STORE_GREG_U16(X86_GREG_xSP, u16Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint32_t, u32Dst); IEM_MC_POP_U32(&u32Dst); IEM_MC_STORE_GREG_U32(X86_GREG_xSP, u32Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t, u64Dst); IEM_MC_POP_U64(&u64Dst); IEM_MC_STORE_GREG_U64(X86_GREG_xSP, u64Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } return VINF_SUCCESS; } /** * @opcode 0x5d */ FNIEMOP_DEF(iemOp_pop_eBP) { IEMOP_MNEMONIC(pop_rBP, "pop rBP"); return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xBP); } /** * @opcode 0x5e */ FNIEMOP_DEF(iemOp_pop_eSI) { IEMOP_MNEMONIC(pop_rSI, "pop rSI"); return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xSI); } /** * @opcode 0x5f */ FNIEMOP_DEF(iemOp_pop_eDI) { IEMOP_MNEMONIC(pop_rDI, "pop rDI"); return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xDI); } /** * @opcode 0x60 */ FNIEMOP_DEF(iemOp_pusha) { IEMOP_MNEMONIC(pusha, "pusha"); IEMOP_HLP_MIN_186(); IEMOP_HLP_NO_64BIT(); if (pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT) return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_pusha_16); Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_32BIT); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_pusha_32); } /** * @opcode 0x61 */ FNIEMOP_DEF(iemOp_popa__mvex) { if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT) { IEMOP_MNEMONIC(popa, "popa"); IEMOP_HLP_MIN_186(); IEMOP_HLP_NO_64BIT(); if (pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT) return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_popa_16); Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_32BIT); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_popa_32); } IEMOP_MNEMONIC(mvex, "mvex"); Log(("mvex prefix is not supported!\n")); return IEMOP_RAISE_INVALID_OPCODE(); } /** * @opcode 0x62 * @opmnemonic bound * @op1 Gv_RO * @op2 Ma * @opmincpu 80186 * @ophints harmless invalid_64 * @optest op1=0 op2=0 -> * @optest op1=1 op2=0 -> value.xcpt=5 * @optest o16 / op1=0xffff op2=0x0000fffe -> * @optest o16 / op1=0xfffe op2=0x0000fffe -> * @optest o16 / op1=0x7fff op2=0x0000fffe -> value.xcpt=5 * @optest o16 / op1=0x7fff op2=0x7ffffffe -> * @optest o16 / op1=0x7fff op2=0xfffe8000 -> value.xcpt=5 * @optest o16 / op1=0x8000 op2=0xfffe8000 -> * @optest o16 / op1=0xffff op2=0xfffe8000 -> value.xcpt=5 * @optest o16 / op1=0xfffe op2=0xfffe8000 -> * @optest o16 / op1=0xfffe op2=0x8000fffe -> value.xcpt=5 * @optest o16 / op1=0x8000 op2=0x8000fffe -> value.xcpt=5 * @optest o16 / op1=0x0000 op2=0x8000fffe -> value.xcpt=5 * @optest o16 / op1=0x0001 op2=0x8000fffe -> value.xcpt=5 * @optest o16 / op1=0xffff op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x0000 op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x0001 op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x0002 op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x0003 op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x0004 op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x000e op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x000f op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x0010 op2=0x0001000f -> value.xcpt=5 * @optest o16 / op1=0x0011 op2=0x0001000f -> value.xcpt=5 * @optest o32 / op1=0xffffffff op2=0x00000000fffffffe -> * @optest o32 / op1=0xfffffffe op2=0x00000000fffffffe -> * @optest o32 / op1=0x7fffffff op2=0x00000000fffffffe -> value.xcpt=5 * @optest o32 / op1=0x7fffffff op2=0x7ffffffffffffffe -> * @optest o32 / op1=0x7fffffff op2=0xfffffffe80000000 -> value.xcpt=5 * @optest o32 / op1=0x80000000 op2=0xfffffffe80000000 -> * @optest o32 / op1=0xffffffff op2=0xfffffffe80000000 -> value.xcpt=5 * @optest o32 / op1=0xfffffffe op2=0xfffffffe80000000 -> * @optest o32 / op1=0xfffffffe op2=0x80000000fffffffe -> value.xcpt=5 * @optest o32 / op1=0x80000000 op2=0x80000000fffffffe -> value.xcpt=5 * @optest o32 / op1=0x00000000 op2=0x80000000fffffffe -> value.xcpt=5 * @optest o32 / op1=0x00000002 op2=0x80000000fffffffe -> value.xcpt=5 * @optest o32 / op1=0x00000001 op2=0x0000000100000003 -> value.xcpt=5 * @optest o32 / op1=0x00000002 op2=0x0000000100000003 -> value.xcpt=5 * @optest o32 / op1=0x00000003 op2=0x0000000100000003 -> value.xcpt=5 * @optest o32 / op1=0x00000004 op2=0x0000000100000003 -> value.xcpt=5 * @optest o32 / op1=0x00000005 op2=0x0000000100000003 -> value.xcpt=5 * @optest o32 / op1=0x0000000e op2=0x0000000100000003 -> value.xcpt=5 * @optest o32 / op1=0x0000000f op2=0x0000000100000003 -> value.xcpt=5 * @optest o32 / op1=0x00000010 op2=0x0000000100000003 -> value.xcpt=5 */ FNIEMOP_DEF(iemOp_bound_Gv_Ma__evex) { /* The BOUND instruction is invalid 64-bit mode. In legacy and compatability mode it is invalid with MOD=3. In 32-bit mode, the EVEX prefix works by having the top two bits (MOD) both be set. In the Intel EVEX documentation (sdm vol 2) these are simply given as R and X without an exact description, so we assume it builds on the VEX one and means they are inverted wrt REX.R and REX.X. Thus, just like with the 3-byte VEX, 32-bit code is restrict wrt addressable registers. */ uint8_t bRm; if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT) { IEMOP_MNEMONIC2(RM_MEM, BOUND, bound, Gv_RO, Ma, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZES); IEMOP_HLP_MIN_186(); IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT)) { /** @todo testcase: check that there are two memory accesses involved. Check * whether they're both read before the \#BR triggers. */ if (pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT) { IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint16_t, u16Index, 0); /* Note! All operands are actually signed. Lazy unsigned bird. */ IEM_MC_ARG(uint16_t, u16LowerBounds, 1); IEM_MC_ARG(uint16_t, u16UpperBounds, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U16(u16Index, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK); IEM_MC_FETCH_MEM_U16(u16LowerBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_FETCH_MEM_U16_DISP(u16UpperBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 2); IEM_MC_CALL_CIMPL_3(iemCImpl_bound_16, u16Index, u16LowerBounds, u16UpperBounds); /* returns */ IEM_MC_END(); } else /* 32-bit operands */ { IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint32_t, u32Index, 0); /* Note! All operands are actually signed. Lazy unsigned bird. */ IEM_MC_ARG(uint32_t, u32LowerBounds, 1); IEM_MC_ARG(uint32_t, u32UpperBounds, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U32(u32Index, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK); IEM_MC_FETCH_MEM_U32(u32LowerBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_FETCH_MEM_U32_DISP(u32UpperBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 4); IEM_MC_CALL_CIMPL_3(iemCImpl_bound_32, u32Index, u32LowerBounds, u32UpperBounds); /* returns */ IEM_MC_END(); } } /* * @opdone */ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx512Foundation) { /* Note that there is no need for the CPU to fetch further bytes here because MODRM.MOD == 3. */ Log(("evex not supported by the guest CPU!\n")); return IEMOP_RAISE_INVALID_OPCODE(); } } else { /** @todo check how this is decoded in 64-bit mode w/o EVEX. Intel probably * does modr/m read, whereas AMD probably doesn't... */ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx512Foundation) { Log(("evex not supported by the guest CPU!\n")); return FNIEMOP_CALL(iemOp_InvalidAllNeedRM); } IEM_OPCODE_GET_NEXT_U8(&bRm); } IEMOP_MNEMONIC(evex, "evex"); uint8_t bP2; IEM_OPCODE_GET_NEXT_U8(&bP2); uint8_t bP3; IEM_OPCODE_GET_NEXT_U8(&bP3); Log(("evex prefix is not implemented!\n")); return VERR_IEM_INSTR_NOT_IMPLEMENTED; } /** Opcode 0x63 - non-64-bit modes. */ FNIEMOP_DEF(iemOp_arpl_Ew_Gw) { IEMOP_MNEMONIC(arpl_Ew_Gw, "arpl Ew,Gw"); IEMOP_HLP_MIN_286(); IEMOP_HLP_NO_REAL_OR_V86_MODE(); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* Register */ IEMOP_HLP_DECODED_NL_2(OP_ARPL, IEMOPFORM_MR_REG, OP_PARM_Ew, OP_PARM_Gw, DISOPTYPE_HARMLESS); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint16_t, u16Src, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_FETCH_GREG_U16(u16Src, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK); IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK)); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_arpl, pu16Dst, u16Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* Memory */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint16_t, u16Src, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DECODED_NL_2(OP_ARPL, IEMOPFORM_MR_REG, OP_PARM_Ew, OP_PARM_Gw, DISOPTYPE_HARMLESS); IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_GREG_U16(u16Src, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_arpl, pu16Dst, u16Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0x63 * * @note This is a weird one. It works like a regular move instruction if * REX.W isn't set, at least according to AMD docs (rev 3.15, 2009-11). * @todo This definitely needs a testcase to verify the odd cases. */ FNIEMOP_DEF(iemOp_movsxd_Gv_Ev) { Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT); /* Caller branched already . */ IEMOP_MNEMONIC(movsxd_Gv_Ev, "movsxd Gv,Ev"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* * Register to register. */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_FETCH_GREG_U32_SX_U64(u64Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* * We're loading a register from memory. */ IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32_SX_U64(u64Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0x64 * @opmnemonic segfs * @opmincpu 80386 * @opgroup og_prefixes */ FNIEMOP_DEF(iemOp_seg_FS) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg fs"); IEMOP_HLP_MIN_386(); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_FS; pVCpu->iem.s.iEffSeg = X86_SREG_FS; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x65 * @opmnemonic seggs * @opmincpu 80386 * @opgroup og_prefixes */ FNIEMOP_DEF(iemOp_seg_GS) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg gs"); IEMOP_HLP_MIN_386(); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_GS; pVCpu->iem.s.iEffSeg = X86_SREG_GS; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x66 * @opmnemonic opsize * @openc prefix * @opmincpu 80386 * @ophints harmless * @opgroup og_prefixes */ FNIEMOP_DEF(iemOp_op_size) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("op size"); IEMOP_HLP_MIN_386(); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_OP; iemRecalEffOpSize(pVCpu); /* For the 4 entry opcode tables, the operand prefix doesn't not count when REPZ or REPNZ are present. */ if (pVCpu->iem.s.idxPrefix == 0) pVCpu->iem.s.idxPrefix = 1; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x67 * @opmnemonic addrsize * @openc prefix * @opmincpu 80386 * @ophints harmless * @opgroup og_prefixes */ FNIEMOP_DEF(iemOp_addr_size) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("addr size"); IEMOP_HLP_MIN_386(); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_ADDR; switch (pVCpu->iem.s.enmDefAddrMode) { case IEMMODE_16BIT: pVCpu->iem.s.enmEffAddrMode = IEMMODE_32BIT; break; case IEMMODE_32BIT: pVCpu->iem.s.enmEffAddrMode = IEMMODE_16BIT; break; case IEMMODE_64BIT: pVCpu->iem.s.enmEffAddrMode = IEMMODE_32BIT; break; default: AssertFailed(); } uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0x68 */ FNIEMOP_DEF(iemOp_push_Iz) { IEMOP_MNEMONIC(push_Iz, "push Iz"); IEMOP_HLP_MIN_186(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_PUSH_U16(u16Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_32BIT: { uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_PUSH_U32(u32Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_64BIT: { uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_PUSH_U64(u64Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0x69 */ FNIEMOP_DEF(iemOp_imul_Gv_Ev_Iz) { IEMOP_MNEMONIC(imul_Gv_Ev_Iz, "imul Gv,Ev,Iz"); /* Gv = Ev * Iz; */ IEMOP_HLP_MIN_186(); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register operand */ uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint16_t, u16Src,/*=*/ u16Imm,1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_FETCH_GREG_U16(u16Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_LOCAL(pu16Dst, u16Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory operand */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint16_t, u16Src, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEM_MC_ASSIGN(u16Src, u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_LOCAL(pu16Dst, u16Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } case IEMMODE_32BIT: { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register operand */ uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint32_t, u32Src,/*=*/ u32Imm,1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint32_t, u32Tmp); IEM_MC_FETCH_GREG_U32(u32Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_LOCAL(pu32Dst, u32Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory operand */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint32_t, u32Src, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint32_t, u32Tmp); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEM_MC_ASSIGN(u32Src, u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(u32Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_LOCAL(pu32Dst, u32Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } case IEMMODE_64BIT: { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register operand */ uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint64_t, u64Src,/*=*/ u64Imm,1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint64_t, u64Tmp); IEM_MC_FETCH_GREG_U64(u64Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_LOCAL(pu64Dst, u64Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory operand */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint64_t, u64Src, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint64_t, u64Tmp); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEM_MC_ASSIGN(u64Src, u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(u64Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_LOCAL(pu64Dst, u64Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } } AssertFailedReturn(VERR_IEM_IPE_9); } /** * @opcode 0x6a */ FNIEMOP_DEF(iemOp_push_Ib) { IEMOP_MNEMONIC(push_Ib, "push Ib"); IEMOP_HLP_MIN_186(); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0,0); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_PUSH_U16(i8Imm); break; case IEMMODE_32BIT: IEM_MC_PUSH_U32(i8Imm); break; case IEMMODE_64BIT: IEM_MC_PUSH_U64(i8Imm); break; } IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x6b */ FNIEMOP_DEF(iemOp_imul_Gv_Ev_Ib) { IEMOP_MNEMONIC(imul_Gv_Ev_Ib, "imul Gv,Ev,Ib"); /* Gv = Ev * Iz; */ IEMOP_HLP_MIN_186(); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register operand */ uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint16_t, u16Src,/*=*/ (int8_t)u8Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_FETCH_GREG_U16(u16Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_LOCAL(pu16Dst, u16Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory operand */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint16_t, u16Src, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16Imm); IEM_MC_ASSIGN(u16Src, u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_LOCAL(pu16Dst, u16Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; case IEMMODE_32BIT: if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register operand */ uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint32_t, u32Src,/*=*/ (int8_t)u8Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint32_t, u32Tmp); IEM_MC_FETCH_GREG_U32(u32Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_LOCAL(pu32Dst, u32Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory operand */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint32_t, u32Src, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint32_t, u32Tmp); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint32_t u32Imm; IEM_OPCODE_GET_NEXT_S8_SX_U32(&u32Imm); IEM_MC_ASSIGN(u32Src, u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(u32Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_LOCAL(pu32Dst, u32Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; case IEMMODE_64BIT: if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register operand */ uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint64_t, u64Src,/*=*/ (int8_t)u8Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint64_t, u64Tmp); IEM_MC_FETCH_GREG_U64(u64Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_LOCAL(pu64Dst, u64Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory operand */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint64_t, u64Src, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(uint64_t, u64Tmp); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S8_SX_U64(&u64Imm); IEM_MC_ASSIGN(u64Src, u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(u64Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_LOCAL(pu64Dst, u64Tmp); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } AssertFailedReturn(VERR_IEM_IPE_8); } /** * @opcode 0x6c */ FNIEMOP_DEF(iemOp_insb_Yb_DX) { IEMOP_HLP_MIN_186(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_insb_Yb_DX, "rep ins Yb,DX"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op8_addr16, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op8_addr32, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op8_addr64, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { IEMOP_MNEMONIC(ins_Yb_DX, "ins Yb,DX"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op8_addr16, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op8_addr32, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op8_addr64, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0x6d */ FNIEMOP_DEF(iemOp_inswd_Yv_DX) { IEMOP_HLP_MIN_186(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPZ | IEM_OP_PRF_REPNZ)) { IEMOP_MNEMONIC(rep_ins_Yv_DX, "rep ins Yv,DX"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op16_addr16, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op16_addr32, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op16_addr64, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op32_addr16, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op32_addr32, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op32_addr64, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { IEMOP_MNEMONIC(ins_Yv_DX, "ins Yv,DX"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op16_addr16, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op16_addr32, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op16_addr64, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op32_addr16, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op32_addr32, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op32_addr64, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0x6e */ FNIEMOP_DEF(iemOp_outsb_Yb_DX) { IEMOP_HLP_MIN_186(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_outsb_DX_Yb, "rep outs DX,Yb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op8_addr16, pVCpu->iem.s.iEffSeg, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op8_addr32, pVCpu->iem.s.iEffSeg, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op8_addr64, pVCpu->iem.s.iEffSeg, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { IEMOP_MNEMONIC(outs_DX_Yb, "outs DX,Yb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op8_addr16, pVCpu->iem.s.iEffSeg, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op8_addr32, pVCpu->iem.s.iEffSeg, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op8_addr64, pVCpu->iem.s.iEffSeg, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0x6f */ FNIEMOP_DEF(iemOp_outswd_Yv_DX) { IEMOP_HLP_MIN_186(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPZ | IEM_OP_PRF_REPNZ)) { IEMOP_MNEMONIC(rep_outs_DX_Yv, "rep outs DX,Yv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op16_addr16, pVCpu->iem.s.iEffSeg, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op16_addr32, pVCpu->iem.s.iEffSeg, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op16_addr64, pVCpu->iem.s.iEffSeg, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op32_addr16, pVCpu->iem.s.iEffSeg, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op32_addr32, pVCpu->iem.s.iEffSeg, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op32_addr64, pVCpu->iem.s.iEffSeg, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { IEMOP_MNEMONIC(outs_DX_Yv, "outs DX,Yv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op16_addr16, pVCpu->iem.s.iEffSeg, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op16_addr32, pVCpu->iem.s.iEffSeg, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op16_addr64, pVCpu->iem.s.iEffSeg, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op32_addr16, pVCpu->iem.s.iEffSeg, false); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op32_addr32, pVCpu->iem.s.iEffSeg, false); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op32_addr64, pVCpu->iem.s.iEffSeg, false); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0x70 */ FNIEMOP_DEF(iemOp_jo_Jb) { IEMOP_MNEMONIC(jo_Jb, "jo Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_OF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x71 */ FNIEMOP_DEF(iemOp_jno_Jb) { IEMOP_MNEMONIC(jno_Jb, "jno Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_OF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x72 */ FNIEMOP_DEF(iemOp_jc_Jb) { IEMOP_MNEMONIC(jc_Jb, "jc/jnae Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x73 */ FNIEMOP_DEF(iemOp_jnc_Jb) { IEMOP_MNEMONIC(jnc_Jb, "jnc/jnb Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x74 */ FNIEMOP_DEF(iemOp_je_Jb) { IEMOP_MNEMONIC(je_Jb, "je/jz Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x75 */ FNIEMOP_DEF(iemOp_jne_Jb) { IEMOP_MNEMONIC(jne_Jb, "jne/jnz Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_ZF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x76 */ FNIEMOP_DEF(iemOp_jbe_Jb) { IEMOP_MNEMONIC(jbe_Jb, "jbe/jna Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_ANY_BITS_SET(X86_EFL_CF | X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x77 */ FNIEMOP_DEF(iemOp_jnbe_Jb) { IEMOP_MNEMONIC(ja_Jb, "ja/jnbe Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_ANY_BITS_SET(X86_EFL_CF | X86_EFL_ZF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x78 */ FNIEMOP_DEF(iemOp_js_Jb) { IEMOP_MNEMONIC(js_Jb, "js Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_SF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x79 */ FNIEMOP_DEF(iemOp_jns_Jb) { IEMOP_MNEMONIC(jns_Jb, "jns Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_SF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x7a */ FNIEMOP_DEF(iemOp_jp_Jb) { IEMOP_MNEMONIC(jp_Jb, "jp Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_PF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x7b */ FNIEMOP_DEF(iemOp_jnp_Jb) { IEMOP_MNEMONIC(jnp_Jb, "jnp Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_PF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x7c */ FNIEMOP_DEF(iemOp_jl_Jb) { IEMOP_MNEMONIC(jl_Jb, "jl/jnge Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BITS_NE(X86_EFL_SF, X86_EFL_OF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x7d */ FNIEMOP_DEF(iemOp_jnl_Jb) { IEMOP_MNEMONIC(jge_Jb, "jnl/jge Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BITS_NE(X86_EFL_SF, X86_EFL_OF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x7e */ FNIEMOP_DEF(iemOp_jle_Jb) { IEMOP_MNEMONIC(jle_Jb, "jle/jng Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(X86_EFL_ZF, X86_EFL_SF, X86_EFL_OF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x7f */ FNIEMOP_DEF(iemOp_jnle_Jb) { IEMOP_MNEMONIC(jg_Jb, "jnle/jg Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(X86_EFL_ZF, X86_EFL_SF, X86_EFL_OF) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x80 */ FNIEMOP_DEF(iemOp_Grp1_Eb_Ib_80) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: IEMOP_MNEMONIC(add_Eb_Ib, "add Eb,Ib"); break; case 1: IEMOP_MNEMONIC(or_Eb_Ib, "or Eb,Ib"); break; case 2: IEMOP_MNEMONIC(adc_Eb_Ib, "adc Eb,Ib"); break; case 3: IEMOP_MNEMONIC(sbb_Eb_Ib, "sbb Eb,Ib"); break; case 4: IEMOP_MNEMONIC(and_Eb_Ib, "and Eb,Ib"); break; case 5: IEMOP_MNEMONIC(sub_Eb_Ib, "sub Eb,Ib"); break; case 6: IEMOP_MNEMONIC(xor_Eb_Ib, "xor Eb,Ib"); break; case 7: IEMOP_MNEMONIC(cmp_Eb_Ib, "cmp Eb,Ib"); break; } PCIEMOPBINSIZES pImpl = g_apIemImplGrp1[(bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK]; if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register target */ uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG_CONST(uint8_t, u8Src, /*=*/ u8Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, u8Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory target */ uint32_t fAccess; if (pImpl->pfnLockedU8) fAccess = IEM_ACCESS_DATA_RW; else /* CMP */ fAccess = IEM_ACCESS_DATA_R; IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEM_MC_ARG_CONST(uint8_t, u8Src, /*=*/ u8Imm, 1); if (pImpl->pfnLockedU8) IEMOP_HLP_DONE_DECODING(); else IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu8Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, u8Src, pEFlags); else IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU8, pu8Dst, u8Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, fAccess); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0x81 */ FNIEMOP_DEF(iemOp_Grp1_Ev_Iz) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: IEMOP_MNEMONIC(add_Ev_Iz, "add Ev,Iz"); break; case 1: IEMOP_MNEMONIC(or_Ev_Iz, "or Ev,Iz"); break; case 2: IEMOP_MNEMONIC(adc_Ev_Iz, "adc Ev,Iz"); break; case 3: IEMOP_MNEMONIC(sbb_Ev_Iz, "sbb Ev,Iz"); break; case 4: IEMOP_MNEMONIC(and_Ev_Iz, "and Ev,Iz"); break; case 5: IEMOP_MNEMONIC(sub_Ev_Iz, "sub Ev,Iz"); break; case 6: IEMOP_MNEMONIC(xor_Ev_Iz, "xor Ev,Iz"); break; case 7: IEMOP_MNEMONIC(cmp_Ev_Iz, "cmp Ev,Iz"); break; } PCIEMOPBINSIZES pImpl = g_apIemImplGrp1[(bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK]; switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register target */ uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint16_t, u16Src, /*=*/ u16Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory target */ uint32_t fAccess; if (pImpl->pfnLockedU16) fAccess = IEM_ACCESS_DATA_RW; else /* CMP, TEST */ fAccess = IEM_ACCESS_DATA_R; IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint16_t, u16Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEM_MC_ASSIGN(u16Src, u16Imm); if (pImpl->pfnLockedU16) IEMOP_HLP_DONE_DECODING(); else IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu16Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags); else IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU16, pu16Dst, u16Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, fAccess); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } break; } case IEMMODE_32BIT: { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register target */ uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint32_t, u32Src, /*=*/ u32Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory target */ uint32_t fAccess; if (pImpl->pfnLockedU32) fAccess = IEM_ACCESS_DATA_RW; else /* CMP, TEST */ fAccess = IEM_ACCESS_DATA_R; IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint32_t, u32Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEM_MC_ASSIGN(u32Src, u32Imm); if (pImpl->pfnLockedU32) IEMOP_HLP_DONE_DECODING(); else IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu32Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags); else IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU32, pu32Dst, u32Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, fAccess); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } break; } case IEMMODE_64BIT: { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register target */ uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint64_t, u64Src, /*=*/ u64Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory target */ uint32_t fAccess; if (pImpl->pfnLockedU64) fAccess = IEM_ACCESS_DATA_RW; else /* CMP */ fAccess = IEM_ACCESS_DATA_R; IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint64_t, u64Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); if (pImpl->pfnLockedU64) IEMOP_HLP_DONE_DECODING(); else IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_ASSIGN(u64Src, u64Imm); IEM_MC_MEM_MAP(pu64Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags); else IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU64, pu64Dst, u64Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, fAccess); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } break; } } return VINF_SUCCESS; } /** * @opcode 0x82 * @opmnemonic grp1_82 * @opgroup og_groups */ FNIEMOP_DEF(iemOp_Grp1_Eb_Ib_82) { IEMOP_HLP_NO_64BIT(); /** @todo do we need to decode the whole instruction or is this ok? */ return FNIEMOP_CALL(iemOp_Grp1_Eb_Ib_80); } /** * @opcode 0x83 */ FNIEMOP_DEF(iemOp_Grp1_Ev_Ib) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: IEMOP_MNEMONIC(add_Ev_Ib, "add Ev,Ib"); break; case 1: IEMOP_MNEMONIC(or_Ev_Ib, "or Ev,Ib"); break; case 2: IEMOP_MNEMONIC(adc_Ev_Ib, "adc Ev,Ib"); break; case 3: IEMOP_MNEMONIC(sbb_Ev_Ib, "sbb Ev,Ib"); break; case 4: IEMOP_MNEMONIC(and_Ev_Ib, "and Ev,Ib"); break; case 5: IEMOP_MNEMONIC(sub_Ev_Ib, "sub Ev,Ib"); break; case 6: IEMOP_MNEMONIC(xor_Ev_Ib, "xor Ev,Ib"); break; case 7: IEMOP_MNEMONIC(cmp_Ev_Ib, "cmp Ev,Ib"); break; } /* Note! Seems the OR, AND, and XOR instructions are present on CPUs prior to the 386 even if absent in the intel reference manuals and some 3rd party opcode listings. */ PCIEMOPBINSIZES pImpl = g_apIemImplGrp1[(bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK]; if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* * Register target */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint16_t, u16Src, /*=*/ (int8_t)u8Imm,1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } case IEMMODE_32BIT: { IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint32_t, u32Src, /*=*/ (int8_t)u8Imm,1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } case IEMMODE_64BIT: { IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint64_t, u64Src, /*=*/ (int8_t)u8Imm,1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } } else { /* * Memory target. */ uint32_t fAccess; if (pImpl->pfnLockedU16) fAccess = IEM_ACCESS_DATA_RW; else /* CMP */ fAccess = IEM_ACCESS_DATA_R; switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint16_t, u16Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEM_MC_ASSIGN(u16Src, (int8_t)u8Imm); if (pImpl->pfnLockedU16) IEMOP_HLP_DONE_DECODING(); else IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu16Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags); else IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU16, pu16Dst, u16Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, fAccess); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } case IEMMODE_32BIT: { IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint32_t, u32Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEM_MC_ASSIGN(u32Src, (int8_t)u8Imm); if (pImpl->pfnLockedU32) IEMOP_HLP_DONE_DECODING(); else IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu32Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags); else IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU32, pu32Dst, u32Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, fAccess); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } case IEMMODE_64BIT: { IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint64_t, u64Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEM_MC_ASSIGN(u64Src, (int8_t)u8Imm); if (pImpl->pfnLockedU64) IEMOP_HLP_DONE_DECODING(); else IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu64Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags); else IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU64, pu64Dst, u64Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, fAccess); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } } return VINF_SUCCESS; } /** * @opcode 0x84 */ FNIEMOP_DEF(iemOp_test_Eb_Gb) { IEMOP_MNEMONIC(test_Eb_Gb, "test Eb,Gb"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_test); } /** * @opcode 0x85 */ FNIEMOP_DEF(iemOp_test_Ev_Gv) { IEMOP_MNEMONIC(test_Ev_Gv, "test Ev,Gv"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_test); } /** * @opcode 0x86 */ FNIEMOP_DEF(iemOp_xchg_Eb_Gb) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); IEMOP_MNEMONIC(xchg_Eb_Gb, "xchg Eb,Gb"); /* * If rm is denoting a register, no more instruction bytes. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint8_t, uTmp1); IEM_MC_LOCAL(uint8_t, uTmp2); IEM_MC_FETCH_GREG_U8(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_FETCH_GREG_U8(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U8((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1); IEM_MC_STORE_GREG_U8(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* * We're accessing memory. */ /** @todo the register must be committed separately! */ IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint8_t *, pu8Mem, 0); IEM_MC_ARG(uint8_t *, pu8Reg, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu8Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_REF_GREG_U8(pu8Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u8, pu8Mem, pu8Reg); IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Mem, IEM_ACCESS_DATA_RW); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0x87 */ FNIEMOP_DEF(iemOp_xchg_Ev_Gv) { IEMOP_MNEMONIC(xchg_Ev_Gv, "xchg Ev,Gv"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); /* * If rm is denoting a register, no more instruction bytes. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, uTmp1); IEM_MC_LOCAL(uint16_t, uTmp2); IEM_MC_FETCH_GREG_U16(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_FETCH_GREG_U16(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint32_t, uTmp1); IEM_MC_LOCAL(uint32_t, uTmp2); IEM_MC_FETCH_GREG_U32(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_FETCH_GREG_U32(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint64_t, uTmp1); IEM_MC_LOCAL(uint64_t, uTmp2); IEM_MC_FETCH_GREG_U64(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_FETCH_GREG_U64(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* * We're accessing memory. */ switch (pVCpu->iem.s.enmEffOpSize) { /** @todo the register must be committed separately! */ case IEMMODE_16BIT: IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint16_t *, pu16Mem, 0); IEM_MC_ARG(uint16_t *, pu16Reg, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu16Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_REF_GREG_U16(pu16Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u16, pu16Mem, pu16Reg); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Mem, IEM_ACCESS_DATA_RW); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint32_t *, pu32Mem, 0); IEM_MC_ARG(uint32_t *, pu32Reg, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu32Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_REF_GREG_U32(pu32Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u32, pu32Mem, pu32Reg); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Mem, IEM_ACCESS_DATA_RW); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Reg); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint64_t *, pu64Mem, 0); IEM_MC_ARG(uint64_t *, pu64Reg, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu64Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_REF_GREG_U64(pu64Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u64, pu64Mem, pu64Reg); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Mem, IEM_ACCESS_DATA_RW); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0x88 */ FNIEMOP_DEF(iemOp_mov_Eb_Gb) { IEMOP_MNEMONIC(mov_Eb_Gb, "mov Eb,Gb"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); /* * If rm is denoting a register, no more instruction bytes. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint8_t, u8Value); IEM_MC_FETCH_GREG_U8(u8Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_GREG_U8((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u8Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* * We're writing a register to memory. */ IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint8_t, u8Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U8(u8Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_MEM_U8(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u8Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0x89 */ FNIEMOP_DEF(iemOp_mov_Ev_Gv) { IEMOP_MNEMONIC(mov_Ev_Gv, "mov Ev,Gv"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); /* * If rm is denoting a register, no more instruction bytes. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_FETCH_GREG_U16(u16Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint32_t, u32Value); IEM_MC_FETCH_GREG_U32(u32Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u32Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_FETCH_GREG_U64(u64Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } else { /* * We're writing a register to memory. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U16(u16Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint32_t, u32Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U32(u32Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_MEM_U32(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u32Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U64(u64Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg); IEM_MC_STORE_MEM_U64(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } return VINF_SUCCESS; } /** * @opcode 0x8a */ FNIEMOP_DEF(iemOp_mov_Gb_Eb) { IEMOP_MNEMONIC(mov_Gb_Eb, "mov Gb,Eb"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); /* * If rm is denoting a register, no more instruction bytes. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint8_t, u8Value); IEM_MC_FETCH_GREG_U8(u8Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U8(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u8Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* * We're loading a register from memory. */ IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint8_t, u8Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U8(u8Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_STORE_GREG_U8(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u8Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0x8b */ FNIEMOP_DEF(iemOp_mov_Gv_Ev) { IEMOP_MNEMONIC(mov_Gv_Ev, "mov Gv,Ev"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); /* * If rm is denoting a register, no more instruction bytes. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_FETCH_GREG_U16(u16Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint32_t, u32Value); IEM_MC_FETCH_GREG_U32(u32Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_FETCH_GREG_U64(u64Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } else { /* * We're loading a register from memory. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint32_t, u32Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(u32Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(u64Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } return VINF_SUCCESS; } /** * opcode 0x63 * @todo Table fixme */ FNIEMOP_DEF(iemOp_arpl_Ew_Gw_movsx_Gv_Ev) { if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT) return FNIEMOP_CALL(iemOp_arpl_Ew_Gw); if (pVCpu->iem.s.enmEffOpSize != IEMMODE_64BIT) return FNIEMOP_CALL(iemOp_mov_Gv_Ev); return FNIEMOP_CALL(iemOp_movsxd_Gv_Ev); } /** * @opcode 0x8c */ FNIEMOP_DEF(iemOp_mov_Ev_Sw) { IEMOP_MNEMONIC(mov_Ev_Sw, "mov Ev,Sw"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); /* * Check that the destination register exists. The REX.R prefix is ignored. */ uint8_t const iSegReg = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK); if ( iSegReg > X86_SREG_GS) return IEMOP_RAISE_INVALID_OPCODE(); /** @todo should probably not be raised until we've fetched all the opcode bytes? */ /* * If rm is denoting a register, no more instruction bytes. * In that case, the operand size is respected and the upper bits are * cleared (starting with some pentium). */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_FETCH_SREG_U16(u16Value, iSegReg); IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint32_t, u32Value); IEM_MC_FETCH_SREG_ZX_U32(u32Value, iSegReg); IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u32Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t, u64Value); IEM_MC_FETCH_SREG_ZX_U64(u64Value, iSegReg); IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } else { /* * We're saving the register to memory. The access is word sized * regardless of operand size prefixes. */ #if 0 /* not necessary */ pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize = IEMMODE_16BIT; #endif IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, u16Value); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_SREG_U16(u16Value, iSegReg); IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0x8d */ FNIEMOP_DEF(iemOp_lea_Gv_M) { IEMOP_MNEMONIC(lea_Gv_M, "lea Gv,M"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) return IEMOP_RAISE_INVALID_OPCODE(); /* no register form */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Cast); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_ASSIGN_TO_SMALLER(u16Cast, GCPtrEffSrc); IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Cast); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint32_t, u32Cast); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_ASSIGN_TO_SMALLER(u32Cast, GCPtrEffSrc); IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Cast); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, GCPtrEffSrc); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } AssertFailedReturn(VERR_IEM_IPE_7); } /** * @opcode 0x8e */ FNIEMOP_DEF(iemOp_mov_Sw_Ev) { IEMOP_MNEMONIC(mov_Sw_Ev, "mov Sw,Ev"); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); /* * The practical operand size is 16-bit. */ #if 0 /* not necessary */ pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize = IEMMODE_16BIT; #endif /* * Check that the destination register exists and can be used with this * instruction. The REX.R prefix is ignored. */ uint8_t const iSegReg = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK); if ( iSegReg == X86_SREG_CS || iSegReg > X86_SREG_GS) return IEMOP_RAISE_INVALID_OPCODE(); /** @todo should probably not be raised until we've fetched all the opcode bytes? */ /* * If rm is denoting a register, no more instruction bytes. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(2, 0); IEM_MC_ARG_CONST(uint8_t, iSRegArg, iSegReg, 0); IEM_MC_ARG(uint16_t, u16Value, 1); IEM_MC_FETCH_GREG_U16(u16Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_CALL_CIMPL_2(iemCImpl_load_SReg, iSRegArg, u16Value); IEM_MC_END(); } else { /* * We're loading the register from memory. The access is word sized * regardless of operand size prefixes. */ IEM_MC_BEGIN(2, 1); IEM_MC_ARG_CONST(uint8_t, iSRegArg, iSegReg, 0); IEM_MC_ARG(uint16_t, u16Value, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_CALL_CIMPL_2(iemCImpl_load_SReg, iSRegArg, u16Value); IEM_MC_END(); } return VINF_SUCCESS; } /** Opcode 0x8f /0. */ FNIEMOP_DEF_1(iemOp_pop_Ev, uint8_t, bRm) { /* This bugger is rather annoying as it requires rSP to be updated before doing the effective address calculations. Will eventually require a split between the R/M+SIB decoding and the effective address calculation - which is something that is required for any attempt at reusing this code for a recompiler. It may also be good to have if we need to delay #UD exception caused by invalid lock prefixes. For now, we'll do a mostly safe interpreter-only implementation here. */ /** @todo What's the deal with the 'reg' field and pop Ev? Ignorning it for * now until tests show it's checked.. */ IEMOP_MNEMONIC(pop_Ev, "pop Ev"); /* Register access is relatively easy and can share code. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) return FNIEMOP_CALL_1(iemOpCommonPopGReg, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); /* * Memory target. * * Intel says that RSP is incremented before it's used in any effective * address calcuations. This means some serious extra annoyance here since * we decode and calculate the effective address in one step and like to * delay committing registers till everything is done. * * So, we'll decode and calculate the effective address twice. This will * require some recoding if turned into a recompiler. */ IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); /* The common code does this differently. */ #ifndef TST_IEM_CHECK_MC /* Calc effective address with modified ESP. */ /** @todo testcase */ RTGCPTR GCPtrEff; VBOXSTRICTRC rcStrict; switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: rcStrict = iemOpHlpCalcRmEffAddrEx(pVCpu, bRm, 0, &GCPtrEff, 2); break; case IEMMODE_32BIT: rcStrict = iemOpHlpCalcRmEffAddrEx(pVCpu, bRm, 0, &GCPtrEff, 4); break; case IEMMODE_64BIT: rcStrict = iemOpHlpCalcRmEffAddrEx(pVCpu, bRm, 0, &GCPtrEff, 8); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } if (rcStrict != VINF_SUCCESS) return rcStrict; IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* Perform the operation - this should be CImpl. */ RTUINT64U TmpRsp; TmpRsp.u = pVCpu->cpum.GstCtx.rsp; switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { uint16_t u16Value; rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStoreDataU16(pVCpu, pVCpu->iem.s.iEffSeg, GCPtrEff, u16Value); break; } case IEMMODE_32BIT: { uint32_t u32Value; rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStoreDataU32(pVCpu, pVCpu->iem.s.iEffSeg, GCPtrEff, u32Value); break; } case IEMMODE_64BIT: { uint64_t u64Value; rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStoreDataU64(pVCpu, pVCpu->iem.s.iEffSeg, GCPtrEff, u64Value); break; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } if (rcStrict == VINF_SUCCESS) { pVCpu->cpum.GstCtx.rsp = TmpRsp.u; iemRegUpdateRipAndClearRF(pVCpu); } return rcStrict; #else return VERR_IEM_IPE_2; #endif } /** * @opcode 0x8f */ FNIEMOP_DEF(iemOp_Grp1A__xop) { /* * AMD has defined /1 thru /7 as XOP prefix. The prefix is similar to the * three byte VEX prefix, except that the mmmmm field cannot have the values * 0 thru 7, because it would then be confused with pop Ev (modrm.reg == 0). */ uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_REG_MASK) == (0 << X86_MODRM_REG_SHIFT)) /* /0 */ return FNIEMOP_CALL_1(iemOp_pop_Ev, bRm); IEMOP_MNEMONIC(xop, "xop"); if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXop) { /** @todo Test when exctly the XOP conformance checks kick in during * instruction decoding and fetching (using \#PF). */ uint8_t bXop2; IEM_OPCODE_GET_NEXT_U8(&bXop2); uint8_t bOpcode; IEM_OPCODE_GET_NEXT_U8(&bOpcode); if ( ( pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_OP | IEM_OP_PRF_REPZ | IEM_OP_PRF_REPNZ | IEM_OP_PRF_LOCK | IEM_OP_PRF_REX)) == 0) { pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_XOP; if ((bXop2 & 0x80 /* XOP.W */) && pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexReg = (~bRm >> (7 - 3)) & 0x8; pVCpu->iem.s.uRexIndex = (~bRm >> (6 - 3)) & 0x8; pVCpu->iem.s.uRexB = (~bRm >> (5 - 3)) & 0x8; pVCpu->iem.s.uVex3rdReg = (~bXop2 >> 3) & 0xf; pVCpu->iem.s.uVexLength = (bXop2 >> 2) & 1; pVCpu->iem.s.idxPrefix = bXop2 & 0x3; /** @todo XOP: Just use new tables and decoders. */ switch (bRm & 0x1f) { case 8: /* xop opcode map 8. */ IEMOP_BITCH_ABOUT_STUB(); return VERR_IEM_INSTR_NOT_IMPLEMENTED; case 9: /* xop opcode map 9. */ IEMOP_BITCH_ABOUT_STUB(); return VERR_IEM_INSTR_NOT_IMPLEMENTED; case 10: /* xop opcode map 10. */ IEMOP_BITCH_ABOUT_STUB(); return VERR_IEM_INSTR_NOT_IMPLEMENTED; default: Log(("XOP: Invalid vvvv value: %#x!\n", bRm & 0x1f)); return IEMOP_RAISE_INVALID_OPCODE(); } } else Log(("XOP: Invalid prefix mix!\n")); } else Log(("XOP: XOP support disabled!\n")); return IEMOP_RAISE_INVALID_OPCODE(); } /** * Common 'xchg reg,rAX' helper. */ FNIEMOP_DEF_1(iemOpCommonXchgGRegRax, uint8_t, iReg) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); iReg |= pVCpu->iem.s.uRexB; switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, u16Tmp1); IEM_MC_LOCAL(uint16_t, u16Tmp2); IEM_MC_FETCH_GREG_U16(u16Tmp1, iReg); IEM_MC_FETCH_GREG_U16(u16Tmp2, X86_GREG_xAX); IEM_MC_STORE_GREG_U16(X86_GREG_xAX, u16Tmp1); IEM_MC_STORE_GREG_U16(iReg, u16Tmp2); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint32_t, u32Tmp1); IEM_MC_LOCAL(uint32_t, u32Tmp2); IEM_MC_FETCH_GREG_U32(u32Tmp1, iReg); IEM_MC_FETCH_GREG_U32(u32Tmp2, X86_GREG_xAX); IEM_MC_STORE_GREG_U32(X86_GREG_xAX, u32Tmp1); IEM_MC_STORE_GREG_U32(iReg, u32Tmp2); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint64_t, u64Tmp1); IEM_MC_LOCAL(uint64_t, u64Tmp2); IEM_MC_FETCH_GREG_U64(u64Tmp1, iReg); IEM_MC_FETCH_GREG_U64(u64Tmp2, X86_GREG_xAX); IEM_MC_STORE_GREG_U64(X86_GREG_xAX, u64Tmp1); IEM_MC_STORE_GREG_U64(iReg, u64Tmp2); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0x90 */ FNIEMOP_DEF(iemOp_nop) { /* R8/R8D and RAX/EAX can be exchanged. */ if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX_B) { IEMOP_MNEMONIC(xchg_r8_rAX, "xchg r8,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xAX); } if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK) { IEMOP_MNEMONIC(pause, "pause"); #ifdef VBOX_WITH_NESTED_HWVIRT_VMX if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmx) return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_vmx_pause); #endif #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvm) return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_svm_pause); #endif } else IEMOP_MNEMONIC(nop, "nop"); IEM_MC_BEGIN(0, 0); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x91 */ FNIEMOP_DEF(iemOp_xchg_eCX_eAX) { IEMOP_MNEMONIC(xchg_rCX_rAX, "xchg rCX,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xCX); } /** * @opcode 0x92 */ FNIEMOP_DEF(iemOp_xchg_eDX_eAX) { IEMOP_MNEMONIC(xchg_rDX_rAX, "xchg rDX,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xDX); } /** * @opcode 0x93 */ FNIEMOP_DEF(iemOp_xchg_eBX_eAX) { IEMOP_MNEMONIC(xchg_rBX_rAX, "xchg rBX,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xBX); } /** * @opcode 0x94 */ FNIEMOP_DEF(iemOp_xchg_eSP_eAX) { IEMOP_MNEMONIC(xchg_rSX_rAX, "xchg rSX,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xSP); } /** * @opcode 0x95 */ FNIEMOP_DEF(iemOp_xchg_eBP_eAX) { IEMOP_MNEMONIC(xchg_rBP_rAX, "xchg rBP,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xBP); } /** * @opcode 0x96 */ FNIEMOP_DEF(iemOp_xchg_eSI_eAX) { IEMOP_MNEMONIC(xchg_rSI_rAX, "xchg rSI,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xSI); } /** * @opcode 0x97 */ FNIEMOP_DEF(iemOp_xchg_eDI_eAX) { IEMOP_MNEMONIC(xchg_rDI_rAX, "xchg rDI,rAX"); return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xDI); } /** * @opcode 0x98 */ FNIEMOP_DEF(iemOp_cbw) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEMOP_MNEMONIC(cbw, "cbw"); IEM_MC_BEGIN(0, 1); IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 7) { IEM_MC_OR_GREG_U16(X86_GREG_xAX, UINT16_C(0xff00)); } IEM_MC_ELSE() { IEM_MC_AND_GREG_U16(X86_GREG_xAX, UINT16_C(0x00ff)); } IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEMOP_MNEMONIC(cwde, "cwde"); IEM_MC_BEGIN(0, 1); IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 15) { IEM_MC_OR_GREG_U32(X86_GREG_xAX, UINT32_C(0xffff0000)); } IEM_MC_ELSE() { IEM_MC_AND_GREG_U32(X86_GREG_xAX, UINT32_C(0x0000ffff)); } IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEMOP_MNEMONIC(cdqe, "cdqe"); IEM_MC_BEGIN(0, 1); IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 31) { IEM_MC_OR_GREG_U64(X86_GREG_xAX, UINT64_C(0xffffffff00000000)); } IEM_MC_ELSE() { IEM_MC_AND_GREG_U64(X86_GREG_xAX, UINT64_C(0x00000000ffffffff)); } IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0x99 */ FNIEMOP_DEF(iemOp_cwd) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEMOP_MNEMONIC(cwd, "cwd"); IEM_MC_BEGIN(0, 1); IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 15) { IEM_MC_STORE_GREG_U16_CONST(X86_GREG_xDX, UINT16_C(0xffff)); } IEM_MC_ELSE() { IEM_MC_STORE_GREG_U16_CONST(X86_GREG_xDX, 0); } IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEMOP_MNEMONIC(cdq, "cdq"); IEM_MC_BEGIN(0, 1); IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 31) { IEM_MC_STORE_GREG_U32_CONST(X86_GREG_xDX, UINT32_C(0xffffffff)); } IEM_MC_ELSE() { IEM_MC_STORE_GREG_U32_CONST(X86_GREG_xDX, 0); } IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEMOP_MNEMONIC(cqo, "cqo"); IEM_MC_BEGIN(0, 1); IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 63) { IEM_MC_STORE_GREG_U64_CONST(X86_GREG_xDX, UINT64_C(0xffffffffffffffff)); } IEM_MC_ELSE() { IEM_MC_STORE_GREG_U64_CONST(X86_GREG_xDX, 0); } IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0x9a */ FNIEMOP_DEF(iemOp_call_Ap) { IEMOP_MNEMONIC(call_Ap, "call Ap"); IEMOP_HLP_NO_64BIT(); /* Decode the far pointer address and pass it on to the far call C implementation. */ uint32_t offSeg; if (pVCpu->iem.s.enmEffOpSize != IEMMODE_16BIT) IEM_OPCODE_GET_NEXT_U32(&offSeg); else IEM_OPCODE_GET_NEXT_U16_ZX_U32(&offSeg); uint16_t uSel; IEM_OPCODE_GET_NEXT_U16(&uSel); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_callf, uSel, offSeg, pVCpu->iem.s.enmEffOpSize); } /** Opcode 0x9b. (aka fwait) */ FNIEMOP_DEF(iemOp_wait) { IEMOP_MNEMONIC(wait, "wait"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x9c */ FNIEMOP_DEF(iemOp_pushf_Fv) { IEMOP_MNEMONIC(pushf_Fv, "pushf Fv"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_pushf, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0x9d */ FNIEMOP_DEF(iemOp_popf_Fv) { IEMOP_MNEMONIC(popf_Fv, "popf Fv"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_popf, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0x9e */ FNIEMOP_DEF(iemOp_sahf) { IEMOP_MNEMONIC(sahf, "sahf"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLahfSahf) return IEMOP_RAISE_INVALID_OPCODE(); IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint32_t, u32Flags); IEM_MC_LOCAL(uint32_t, EFlags); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_FETCH_GREG_U8_ZX_U32(u32Flags, X86_GREG_xSP/*=AH*/); IEM_MC_AND_LOCAL_U32(u32Flags, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); IEM_MC_AND_LOCAL_U32(EFlags, UINT32_C(0xffffff00)); IEM_MC_OR_LOCAL_U32(u32Flags, X86_EFL_1); IEM_MC_OR_2LOCS_U32(EFlags, u32Flags); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0x9f */ FNIEMOP_DEF(iemOp_lahf) { IEMOP_MNEMONIC(lahf, "lahf"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLahfSahf) return IEMOP_RAISE_INVALID_OPCODE(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint8_t, u8Flags); IEM_MC_FETCH_EFLAGS_U8(u8Flags); IEM_MC_STORE_GREG_U8(X86_GREG_xSP/*=AH*/, u8Flags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * Macro used by iemOp_mov_AL_Ob, iemOp_mov_rAX_Ov, iemOp_mov_Ob_AL and * iemOp_mov_Ov_rAX to fetch the moffsXX bit of the opcode and fend off lock * prefixes. Will return on failures. * @param a_GCPtrMemOff The variable to store the offset in. */ #define IEMOP_FETCH_MOFFS_XX(a_GCPtrMemOff) \ do \ { \ switch (pVCpu->iem.s.enmEffAddrMode) \ { \ case IEMMODE_16BIT: \ IEM_OPCODE_GET_NEXT_U16_ZX_U64(&(a_GCPtrMemOff)); \ break; \ case IEMMODE_32BIT: \ IEM_OPCODE_GET_NEXT_U32_ZX_U64(&(a_GCPtrMemOff)); \ break; \ case IEMMODE_64BIT: \ IEM_OPCODE_GET_NEXT_U64(&(a_GCPtrMemOff)); \ break; \ IEM_NOT_REACHED_DEFAULT_CASE_RET(); \ } \ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); \ } while (0) /** * @opcode 0xa0 */ FNIEMOP_DEF(iemOp_mov_AL_Ob) { /* * Get the offset and fend off lock prefixes. */ IEMOP_MNEMONIC(mov_AL_Ob, "mov AL,Ob"); RTGCPTR GCPtrMemOff; IEMOP_FETCH_MOFFS_XX(GCPtrMemOff); /* * Fetch AL. */ IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint8_t, u8Tmp); IEM_MC_FETCH_MEM_U8(u8Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff); IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xa1 */ FNIEMOP_DEF(iemOp_mov_rAX_Ov) { /* * Get the offset and fend off lock prefixes. */ IEMOP_MNEMONIC(mov_rAX_Ov, "mov rAX,Ov"); RTGCPTR GCPtrMemOff; IEMOP_FETCH_MOFFS_XX(GCPtrMemOff); /* * Fetch rAX. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_FETCH_MEM_U16(u16Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff); IEM_MC_STORE_GREG_U16(X86_GREG_xAX, u16Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint32_t, u32Tmp); IEM_MC_FETCH_MEM_U32(u32Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff); IEM_MC_STORE_GREG_U32(X86_GREG_xAX, u32Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint64_t, u64Tmp); IEM_MC_FETCH_MEM_U64(u64Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff); IEM_MC_STORE_GREG_U64(X86_GREG_xAX, u64Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xa2 */ FNIEMOP_DEF(iemOp_mov_Ob_AL) { /* * Get the offset and fend off lock prefixes. */ IEMOP_MNEMONIC(mov_Ob_AL, "mov Ob,AL"); RTGCPTR GCPtrMemOff; IEMOP_FETCH_MOFFS_XX(GCPtrMemOff); /* * Store AL. */ IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint8_t, u8Tmp); IEM_MC_FETCH_GREG_U8(u8Tmp, X86_GREG_xAX); IEM_MC_STORE_MEM_U8(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u8Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xa3 */ FNIEMOP_DEF(iemOp_mov_Ov_rAX) { /* * Get the offset and fend off lock prefixes. */ IEMOP_MNEMONIC(mov_Ov_rAX, "mov Ov,rAX"); RTGCPTR GCPtrMemOff; IEMOP_FETCH_MOFFS_XX(GCPtrMemOff); /* * Store rAX. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_FETCH_GREG_U16(u16Tmp, X86_GREG_xAX); IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u16Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint32_t, u32Tmp); IEM_MC_FETCH_GREG_U32(u32Tmp, X86_GREG_xAX); IEM_MC_STORE_MEM_U32(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u32Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0,1); IEM_MC_LOCAL(uint64_t, u64Tmp); IEM_MC_FETCH_GREG_U64(u64Tmp, X86_GREG_xAX); IEM_MC_STORE_MEM_U64(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u64Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** Macro used by iemOp_movsb_Xb_Yb and iemOp_movswd_Xv_Yv */ #define IEM_MOVS_CASE(ValBits, AddrBits) \ IEM_MC_BEGIN(0, 2); \ IEM_MC_LOCAL(uint##ValBits##_t, uValue); \ IEM_MC_LOCAL(RTGCPTR, uAddr); \ IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xSI); \ IEM_MC_FETCH_MEM_U##ValBits(uValue, pVCpu->iem.s.iEffSeg, uAddr); \ IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \ IEM_MC_STORE_MEM_U##ValBits(X86_SREG_ES, uAddr, uValue); \ IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \ IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \ } IEM_MC_ELSE() { \ IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \ } IEM_MC_ENDIF(); \ IEM_MC_ADVANCE_RIP(); \ IEM_MC_END(); /** * @opcode 0xa4 */ FNIEMOP_DEF(iemOp_movsb_Xb_Yb) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_movsb_Xb_Yb, "rep movsb Xb,Yb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op8_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op8_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op8_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(movsb_Xb_Yb, "movsb Xb,Yb"); /* * Sharing case implementation with movs[wdq] below. */ switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MOVS_CASE(8, 16); break; case IEMMODE_32BIT: IEM_MOVS_CASE(8, 32); break; case IEMMODE_64BIT: IEM_MOVS_CASE(8, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } /** * @opcode 0xa5 */ FNIEMOP_DEF(iemOp_movswd_Xv_Yv) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_movs_Xv_Yv, "rep movs Xv,Yv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op16_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op16_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op16_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op32_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op32_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op32_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_6); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op64_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op64_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(movs_Xv_Yv, "movs Xv,Yv"); /* * Annoying double switch here. * Using ugly macro for implementing the cases, sharing it with movsb. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MOVS_CASE(16, 16); break; case IEMMODE_32BIT: IEM_MOVS_CASE(16, 32); break; case IEMMODE_64BIT: IEM_MOVS_CASE(16, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MOVS_CASE(32, 16); break; case IEMMODE_32BIT: IEM_MOVS_CASE(32, 32); break; case IEMMODE_64BIT: IEM_MOVS_CASE(32, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break; case IEMMODE_32BIT: IEM_MOVS_CASE(64, 32); break; case IEMMODE_64BIT: IEM_MOVS_CASE(64, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } #undef IEM_MOVS_CASE /** Macro used by iemOp_cmpsb_Xb_Yb and iemOp_cmpswd_Xv_Yv */ #define IEM_CMPS_CASE(ValBits, AddrBits) \ IEM_MC_BEGIN(3, 3); \ IEM_MC_ARG(uint##ValBits##_t *, puValue1, 0); \ IEM_MC_ARG(uint##ValBits##_t, uValue2, 1); \ IEM_MC_ARG(uint32_t *, pEFlags, 2); \ IEM_MC_LOCAL(uint##ValBits##_t, uValue1); \ IEM_MC_LOCAL(RTGCPTR, uAddr); \ \ IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xSI); \ IEM_MC_FETCH_MEM_U##ValBits(uValue1, pVCpu->iem.s.iEffSeg, uAddr); \ IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \ IEM_MC_FETCH_MEM_U##ValBits(uValue2, X86_SREG_ES, uAddr); \ IEM_MC_REF_LOCAL(puValue1, uValue1); \ IEM_MC_REF_EFLAGS(pEFlags); \ IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_cmp_u##ValBits, puValue1, uValue2, pEFlags); \ \ IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \ IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \ } IEM_MC_ELSE() { \ IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \ } IEM_MC_ENDIF(); \ IEM_MC_ADVANCE_RIP(); \ IEM_MC_END(); \ /** * @opcode 0xa6 */ FNIEMOP_DEF(iemOp_cmpsb_Xb_Yb) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ) { IEMOP_MNEMONIC(repz_cmps_Xb_Yb, "repz cmps Xb,Yb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op8_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op8_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op8_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ) { IEMOP_MNEMONIC(repnz_cmps_Xb_Yb, "repnz cmps Xb,Yb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op8_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op8_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op8_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(cmps_Xb_Yb, "cmps Xb,Yb"); /* * Sharing case implementation with cmps[wdq] below. */ switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_CMPS_CASE(8, 16); break; case IEMMODE_32BIT: IEM_CMPS_CASE(8, 32); break; case IEMMODE_64BIT: IEM_CMPS_CASE(8, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } /** * @opcode 0xa7 */ FNIEMOP_DEF(iemOp_cmpswd_Xv_Yv) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ) { IEMOP_MNEMONIC(repe_cmps_Xv_Yv, "repe cmps Xv,Yv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op16_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op16_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op16_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op32_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op32_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op32_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_4); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op64_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op64_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ) { IEMOP_MNEMONIC(repne_cmps_Xv_Yv, "repne cmps Xv,Yv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op16_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op16_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op16_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op32_addr16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op32_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op32_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_2); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op64_addr32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op64_addr64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(cmps_Xv_Yv, "cmps Xv,Yv"); /* * Annoying double switch here. * Using ugly macro for implementing the cases, sharing it with cmpsb. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_CMPS_CASE(16, 16); break; case IEMMODE_32BIT: IEM_CMPS_CASE(16, 32); break; case IEMMODE_64BIT: IEM_CMPS_CASE(16, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_CMPS_CASE(32, 16); break; case IEMMODE_32BIT: IEM_CMPS_CASE(32, 32); break; case IEMMODE_64BIT: IEM_CMPS_CASE(32, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break; case IEMMODE_32BIT: IEM_CMPS_CASE(64, 32); break; case IEMMODE_64BIT: IEM_CMPS_CASE(64, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } #undef IEM_CMPS_CASE /** * @opcode 0xa8 */ FNIEMOP_DEF(iemOp_test_AL_Ib) { IEMOP_MNEMONIC(test_al_Ib, "test al,Ib"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_test); } /** * @opcode 0xa9 */ FNIEMOP_DEF(iemOp_test_eAX_Iz) { IEMOP_MNEMONIC(test_rAX_Iz, "test rAX,Iz"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_test); } /** Macro used by iemOp_stosb_Yb_AL and iemOp_stoswd_Yv_eAX */ #define IEM_STOS_CASE(ValBits, AddrBits) \ IEM_MC_BEGIN(0, 2); \ IEM_MC_LOCAL(uint##ValBits##_t, uValue); \ IEM_MC_LOCAL(RTGCPTR, uAddr); \ IEM_MC_FETCH_GREG_U##ValBits(uValue, X86_GREG_xAX); \ IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \ IEM_MC_STORE_MEM_U##ValBits(X86_SREG_ES, uAddr, uValue); \ IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \ IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ } IEM_MC_ELSE() { \ IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ } IEM_MC_ENDIF(); \ IEM_MC_ADVANCE_RIP(); \ IEM_MC_END(); \ /** * @opcode 0xaa */ FNIEMOP_DEF(iemOp_stosb_Yb_AL) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_stos_Yb_al, "rep stos Yb,al"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_al_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_al_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_al_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(stos_Yb_al, "stos Yb,al"); /* * Sharing case implementation with stos[wdq] below. */ switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_STOS_CASE(8, 16); break; case IEMMODE_32BIT: IEM_STOS_CASE(8, 32); break; case IEMMODE_64BIT: IEM_STOS_CASE(8, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } /** * @opcode 0xab */ FNIEMOP_DEF(iemOp_stoswd_Yv_eAX) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_stos_Yv_rAX, "rep stos Yv,rAX"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_ax_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_ax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_ax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_eax_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_eax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_eax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_9); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_rax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_rax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(stos_Yv_rAX, "stos Yv,rAX"); /* * Annoying double switch here. * Using ugly macro for implementing the cases, sharing it with stosb. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_STOS_CASE(16, 16); break; case IEMMODE_32BIT: IEM_STOS_CASE(16, 32); break; case IEMMODE_64BIT: IEM_STOS_CASE(16, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_STOS_CASE(32, 16); break; case IEMMODE_32BIT: IEM_STOS_CASE(32, 32); break; case IEMMODE_64BIT: IEM_STOS_CASE(32, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break; case IEMMODE_32BIT: IEM_STOS_CASE(64, 32); break; case IEMMODE_64BIT: IEM_STOS_CASE(64, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } #undef IEM_STOS_CASE /** Macro used by iemOp_lodsb_AL_Xb and iemOp_lodswd_eAX_Xv */ #define IEM_LODS_CASE(ValBits, AddrBits) \ IEM_MC_BEGIN(0, 2); \ IEM_MC_LOCAL(uint##ValBits##_t, uValue); \ IEM_MC_LOCAL(RTGCPTR, uAddr); \ IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xSI); \ IEM_MC_FETCH_MEM_U##ValBits(uValue, pVCpu->iem.s.iEffSeg, uAddr); \ IEM_MC_STORE_GREG_U##ValBits(X86_GREG_xAX, uValue); \ IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \ IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \ } IEM_MC_ELSE() { \ IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \ } IEM_MC_ENDIF(); \ IEM_MC_ADVANCE_RIP(); \ IEM_MC_END(); /** * @opcode 0xac */ FNIEMOP_DEF(iemOp_lodsb_AL_Xb) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_lodsb_AL_Xb, "rep lodsb AL,Xb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_al_m16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_al_m32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_al_m64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(lodsb_AL_Xb, "lodsb AL,Xb"); /* * Sharing case implementation with stos[wdq] below. */ switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_LODS_CASE(8, 16); break; case IEMMODE_32BIT: IEM_LODS_CASE(8, 32); break; case IEMMODE_64BIT: IEM_LODS_CASE(8, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } /** * @opcode 0xad */ FNIEMOP_DEF(iemOp_lodswd_eAX_Xv) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)) { IEMOP_MNEMONIC(rep_lods_rAX_Xv, "rep lods rAX,Xv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_ax_m16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_ax_m32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_ax_m64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_eax_m16, pVCpu->iem.s.iEffSeg); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_eax_m32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_eax_m64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_7); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_rax_m32, pVCpu->iem.s.iEffSeg); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_rax_m64, pVCpu->iem.s.iEffSeg); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(lods_rAX_Xv, "lods rAX,Xv"); /* * Annoying double switch here. * Using ugly macro for implementing the cases, sharing it with lodsb. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_LODS_CASE(16, 16); break; case IEMMODE_32BIT: IEM_LODS_CASE(16, 32); break; case IEMMODE_64BIT: IEM_LODS_CASE(16, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_LODS_CASE(32, 16); break; case IEMMODE_32BIT: IEM_LODS_CASE(32, 32); break; case IEMMODE_64BIT: IEM_LODS_CASE(32, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break; case IEMMODE_32BIT: IEM_LODS_CASE(64, 32); break; case IEMMODE_64BIT: IEM_LODS_CASE(64, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } #undef IEM_LODS_CASE /** Macro used by iemOp_scasb_AL_Xb and iemOp_scaswd_eAX_Xv */ #define IEM_SCAS_CASE(ValBits, AddrBits) \ IEM_MC_BEGIN(3, 2); \ IEM_MC_ARG(uint##ValBits##_t *, puRax, 0); \ IEM_MC_ARG(uint##ValBits##_t, uValue, 1); \ IEM_MC_ARG(uint32_t *, pEFlags, 2); \ IEM_MC_LOCAL(RTGCPTR, uAddr); \ \ IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \ IEM_MC_FETCH_MEM_U##ValBits(uValue, X86_SREG_ES, uAddr); \ IEM_MC_REF_GREG_U##ValBits(puRax, X86_GREG_xAX); \ IEM_MC_REF_EFLAGS(pEFlags); \ IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_cmp_u##ValBits, puRax, uValue, pEFlags); \ \ IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \ IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ } IEM_MC_ELSE() { \ IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \ } IEM_MC_ENDIF(); \ IEM_MC_ADVANCE_RIP(); \ IEM_MC_END(); /** * @opcode 0xae */ FNIEMOP_DEF(iemOp_scasb_AL_Xb) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ) { IEMOP_MNEMONIC(repe_scasb_AL_Xb, "repe scasb AL,Xb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_al_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_al_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_al_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ) { IEMOP_MNEMONIC(repone_scasb_AL_Xb, "repne scasb AL,Xb"); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_al_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_al_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_al_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(scasb_AL_Xb, "scasb AL,Xb"); /* * Sharing case implementation with stos[wdq] below. */ switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_SCAS_CASE(8, 16); break; case IEMMODE_32BIT: IEM_SCAS_CASE(8, 32); break; case IEMMODE_64BIT: IEM_SCAS_CASE(8, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } /** * @opcode 0xaf */ FNIEMOP_DEF(iemOp_scaswd_eAX_Xv) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* * Use the C implementation if a repeat prefix is encountered. */ if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ) { IEMOP_MNEMONIC(repe_scas_rAX_Xv, "repe scas rAX,Xv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_ax_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_ax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_ax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_eax_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_eax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_eax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_6); /** @todo It's this wrong, we can do 16-bit addressing in 64-bit mode, but not 32-bit. right? */ case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_rax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_rax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ) { IEMOP_MNEMONIC(repne_scas_rAX_Xv, "repne scas rAX,Xv"); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_ax_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_ax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_ax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_eax_m16); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_eax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_eax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_5); case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_rax_m32); case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_rax_m64); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } IEMOP_MNEMONIC(scas_rAX_Xv, "scas rAX,Xv"); /* * Annoying double switch here. * Using ugly macro for implementing the cases, sharing it with scasb. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_SCAS_CASE(16, 16); break; case IEMMODE_32BIT: IEM_SCAS_CASE(16, 32); break; case IEMMODE_64BIT: IEM_SCAS_CASE(16, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_32BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_SCAS_CASE(32, 16); break; case IEMMODE_32BIT: IEM_SCAS_CASE(32, 32); break; case IEMMODE_64BIT: IEM_SCAS_CASE(32, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case IEMMODE_64BIT: switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break; case IEMMODE_32BIT: IEM_SCAS_CASE(64, 32); break; case IEMMODE_64BIT: IEM_SCAS_CASE(64, 64); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } return VINF_SUCCESS; } #undef IEM_SCAS_CASE /** * Common 'mov r8, imm8' helper. */ FNIEMOP_DEF_1(iemOpCommonMov_r8_Ib, uint8_t, iReg) { uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL_CONST(uint8_t, u8Value,/*=*/ u8Imm); IEM_MC_STORE_GREG_U8(iReg, u8Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xb0 */ FNIEMOP_DEF(iemOp_mov_AL_Ib) { IEMOP_MNEMONIC(mov_AL_Ib, "mov AL,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xAX | pVCpu->iem.s.uRexB); } /** * @opcode 0xb1 */ FNIEMOP_DEF(iemOp_CL_Ib) { IEMOP_MNEMONIC(mov_CL_Ib, "mov CL,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xCX | pVCpu->iem.s.uRexB); } /** * @opcode 0xb2 */ FNIEMOP_DEF(iemOp_DL_Ib) { IEMOP_MNEMONIC(mov_DL_Ib, "mov DL,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xDX | pVCpu->iem.s.uRexB); } /** * @opcode 0xb3 */ FNIEMOP_DEF(iemOp_BL_Ib) { IEMOP_MNEMONIC(mov_BL_Ib, "mov BL,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xBX | pVCpu->iem.s.uRexB); } /** * @opcode 0xb4 */ FNIEMOP_DEF(iemOp_mov_AH_Ib) { IEMOP_MNEMONIC(mov_AH_Ib, "mov AH,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xSP | pVCpu->iem.s.uRexB); } /** * @opcode 0xb5 */ FNIEMOP_DEF(iemOp_CH_Ib) { IEMOP_MNEMONIC(mov_CH_Ib, "mov CH,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xBP | pVCpu->iem.s.uRexB); } /** * @opcode 0xb6 */ FNIEMOP_DEF(iemOp_DH_Ib) { IEMOP_MNEMONIC(mov_DH_Ib, "mov DH,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xSI | pVCpu->iem.s.uRexB); } /** * @opcode 0xb7 */ FNIEMOP_DEF(iemOp_BH_Ib) { IEMOP_MNEMONIC(mov_BH_Ib, "mov BH,Ib"); return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xDI | pVCpu->iem.s.uRexB); } /** * Common 'mov regX,immX' helper. */ FNIEMOP_DEF_1(iemOpCommonMov_Rv_Iv, uint8_t, iReg) { switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL_CONST(uint16_t, u16Value,/*=*/ u16Imm); IEM_MC_STORE_GREG_U16(iReg, u16Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } case IEMMODE_32BIT: { uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL_CONST(uint32_t, u32Value,/*=*/ u32Imm); IEM_MC_STORE_GREG_U32(iReg, u32Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } case IEMMODE_64BIT: { uint64_t u64Imm; IEM_OPCODE_GET_NEXT_U64(&u64Imm); /* 64-bit immediate! */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL_CONST(uint64_t, u64Value,/*=*/ u64Imm); IEM_MC_STORE_GREG_U64(iReg, u64Value); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); break; } } return VINF_SUCCESS; } /** * @opcode 0xb8 */ FNIEMOP_DEF(iemOp_eAX_Iv) { IEMOP_MNEMONIC(mov_rAX_IV, "mov rAX,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xAX | pVCpu->iem.s.uRexB); } /** * @opcode 0xb9 */ FNIEMOP_DEF(iemOp_eCX_Iv) { IEMOP_MNEMONIC(mov_rCX_IV, "mov rCX,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xCX | pVCpu->iem.s.uRexB); } /** * @opcode 0xba */ FNIEMOP_DEF(iemOp_eDX_Iv) { IEMOP_MNEMONIC(mov_rDX_IV, "mov rDX,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xDX | pVCpu->iem.s.uRexB); } /** * @opcode 0xbb */ FNIEMOP_DEF(iemOp_eBX_Iv) { IEMOP_MNEMONIC(mov_rBX_IV, "mov rBX,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xBX | pVCpu->iem.s.uRexB); } /** * @opcode 0xbc */ FNIEMOP_DEF(iemOp_eSP_Iv) { IEMOP_MNEMONIC(mov_rSP_IV, "mov rSP,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xSP | pVCpu->iem.s.uRexB); } /** * @opcode 0xbd */ FNIEMOP_DEF(iemOp_eBP_Iv) { IEMOP_MNEMONIC(mov_rBP_IV, "mov rBP,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xBP | pVCpu->iem.s.uRexB); } /** * @opcode 0xbe */ FNIEMOP_DEF(iemOp_eSI_Iv) { IEMOP_MNEMONIC(mov_rSI_IV, "mov rSI,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xSI | pVCpu->iem.s.uRexB); } /** * @opcode 0xbf */ FNIEMOP_DEF(iemOp_eDI_Iv) { IEMOP_MNEMONIC(mov_rDI_IV, "mov rDI,IV"); return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xDI | pVCpu->iem.s.uRexB); } /** * @opcode 0xc0 */ FNIEMOP_DEF(iemOp_Grp2_Eb_Ib) { IEMOP_HLP_MIN_186(); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); PCIEMOPSHIFTSIZES pImpl; switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Eb_Ib, "rol Eb,Ib"); break; case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Eb_Ib, "ror Eb,Ib"); break; case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Eb_Ib, "rcl Eb,Ib"); break; case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Eb_Ib, "rcr Eb,Ib"); break; case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Eb_Ib, "shl Eb,Ib"); break; case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Eb_Ib, "shr Eb,Ib"); break; case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Eb_Ib, "sar Eb,Ib"); break; case 6: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe stupid */ } IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register */ uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift); IEM_MC_ASSIGN(cShiftArg, cShift); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0xc1 */ FNIEMOP_DEF(iemOp_Grp2_Ev_Ib) { IEMOP_HLP_MIN_186(); uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); PCIEMOPSHIFTSIZES pImpl; switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Ev_Ib, "rol Ev,Ib"); break; case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Ev_Ib, "ror Ev,Ib"); break; case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Ev_Ib, "rcl Ev,Ib"); break; case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Ev_Ib, "rcr Ev,Ib"); break; case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Ev_Ib, "shl Ev,Ib"); break; case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Ev_Ib, "shr Ev,Ib"); break; case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Ev_Ib, "sar Ev,Ib"); break; case 6: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe stupid */ } IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register */ uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* memory */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift); IEM_MC_ASSIGN(cShiftArg, cShift); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift); IEM_MC_ASSIGN(cShiftArg, cShift); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift); IEM_MC_ASSIGN(cShiftArg, cShift); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0xc2 */ FNIEMOP_DEF(iemOp_retn_Iw) { IEMOP_MNEMONIC(retn_Iw, "retn Iw"); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retn, pVCpu->iem.s.enmEffOpSize, u16Imm); } /** * @opcode 0xc3 */ FNIEMOP_DEF(iemOp_retn) { IEMOP_MNEMONIC(retn, "retn"); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retn, pVCpu->iem.s.enmEffOpSize, 0); } /** * @opcode 0xc4 */ FNIEMOP_DEF(iemOp_les_Gv_Mp__vex3) { /* The LDS instruction is invalid 64-bit mode. In legacy and compatability mode it is invalid with MOD=3. The use as a VEX prefix is made possible by assigning the inverted REX.R and REX.X to the two MOD bits, since the REX bits are ignored outside of 64-bit mode. VEX is not available in real or v86 mode. */ uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT || (bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) ) { IEMOP_MNEMONIC(vex3_prefix, "vex3"); if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx) { /* Note! The real mode, v8086 mode and invalid prefix checks are done once the instruction is fully decoded. Even when XCR0=3 and CR4.OSXSAVE=0. */ uint8_t bVex2; IEM_OPCODE_GET_NEXT_U8(&bVex2); uint8_t bOpcode; IEM_OPCODE_GET_NEXT_U8(&bOpcode); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_VEX; if ((bVex2 & 0x80 /* VEX.W */) && pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_REX_W; pVCpu->iem.s.uRexReg = (~bRm >> (7 - 3)) & 0x8; pVCpu->iem.s.uRexIndex = (~bRm >> (6 - 3)) & 0x8; pVCpu->iem.s.uRexB = (~bRm >> (5 - 3)) & 0x8; pVCpu->iem.s.uVex3rdReg = (~bVex2 >> 3) & 0xf; pVCpu->iem.s.uVexLength = (bVex2 >> 2) & 1; pVCpu->iem.s.idxPrefix = bVex2 & 0x3; switch (bRm & 0x1f) { case 1: /* 0x0f lead opcode byte. */ #ifdef IEM_WITH_VEX return FNIEMOP_CALL(g_apfnVexMap1[(uintptr_t)bOpcode * 4 + pVCpu->iem.s.idxPrefix]); #else IEMOP_BITCH_ABOUT_STUB(); return VERR_IEM_INSTR_NOT_IMPLEMENTED; #endif case 2: /* 0x0f 0x38 lead opcode bytes. */ #ifdef IEM_WITH_VEX return FNIEMOP_CALL(g_apfnVexMap2[(uintptr_t)bOpcode * 4 + pVCpu->iem.s.idxPrefix]); #else IEMOP_BITCH_ABOUT_STUB(); return VERR_IEM_INSTR_NOT_IMPLEMENTED; #endif case 3: /* 0x0f 0x3a lead opcode bytes. */ #ifdef IEM_WITH_VEX return FNIEMOP_CALL(g_apfnVexMap3[(uintptr_t)bOpcode * 4 + pVCpu->iem.s.idxPrefix]); #else IEMOP_BITCH_ABOUT_STUB(); return VERR_IEM_INSTR_NOT_IMPLEMENTED; #endif default: Log(("VEX3: Invalid vvvv value: %#x!\n", bRm & 0x1f)); return IEMOP_RAISE_INVALID_OPCODE(); } } Log(("VEX3: AVX support disabled!\n")); return IEMOP_RAISE_INVALID_OPCODE(); } IEMOP_MNEMONIC(les_Gv_Mp, "les Gv,Mp"); return FNIEMOP_CALL_2(iemOpCommonLoadSRegAndGreg, X86_SREG_ES, bRm); } /** * @opcode 0xc5 */ FNIEMOP_DEF(iemOp_lds_Gv_Mp__vex2) { /* The LES instruction is invalid 64-bit mode. In legacy and compatability mode it is invalid with MOD=3. The use as a VEX prefix is made possible by assigning the inverted REX.R to the top MOD bit, and the top bit in the inverted register specifier to the bottom MOD bit, thereby effectively limiting 32-bit to accessing registers 0..7 in this VEX form. */ uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT || (bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { IEMOP_MNEMONIC(vex2_prefix, "vex2"); if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx) { /* Note! The real mode, v8086 mode and invalid prefix checks are done once the instruction is fully decoded. Even when XCR0=3 and CR4.OSXSAVE=0. */ uint8_t bOpcode; IEM_OPCODE_GET_NEXT_U8(&bOpcode); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_VEX; pVCpu->iem.s.uRexReg = (~bRm >> (7 - 3)) & 0x8; pVCpu->iem.s.uVex3rdReg = (~bRm >> 3) & 0xf; pVCpu->iem.s.uVexLength = (bRm >> 2) & 1; pVCpu->iem.s.idxPrefix = bRm & 0x3; #ifdef IEM_WITH_VEX return FNIEMOP_CALL(g_apfnVexMap1[(uintptr_t)bOpcode * 4 + pVCpu->iem.s.idxPrefix]); #else IEMOP_BITCH_ABOUT_STUB(); return VERR_IEM_INSTR_NOT_IMPLEMENTED; #endif } /** @todo does intel completely decode the sequence with SIB/disp before \#UD? */ Log(("VEX2: AVX support disabled!\n")); return IEMOP_RAISE_INVALID_OPCODE(); } IEMOP_MNEMONIC(lds_Gv_Mp, "lds Gv,Mp"); return FNIEMOP_CALL_2(iemOpCommonLoadSRegAndGreg, X86_SREG_DS, bRm); } /** * @opcode 0xc6 */ FNIEMOP_DEF(iemOp_Grp11_Eb_Ib) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_REG_MASK) != (0 << X86_MODRM_REG_SHIFT)) /* only mov Eb,Ib in this group. */ return IEMOP_RAISE_INVALID_OPCODE(); IEMOP_MNEMONIC(mov_Eb_Ib, "mov Eb,Ib"); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register access */ uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_STORE_GREG_U8((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u8Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory access. */ IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_MEM_U8(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u8Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0xc7 */ FNIEMOP_DEF(iemOp_Grp11_Ev_Iz) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_REG_MASK) != (0 << X86_MODRM_REG_SHIFT)) /* only mov Eb,Ib in this group. */ return IEMOP_RAISE_INVALID_OPCODE(); IEMOP_MNEMONIC(mov_Ev_Iz, "mov Ev,Iz"); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register access */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 0); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u16Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 0); uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u32Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 0); uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u64Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* memory access. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_MEM_U32(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u32Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_STORE_MEM_U64(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u64Imm); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0xc8 */ FNIEMOP_DEF(iemOp_enter_Iw_Ib) { IEMOP_MNEMONIC(enter_Iw_Ib, "enter Iw,Ib"); IEMOP_HLP_MIN_186(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); uint16_t cbFrame; IEM_OPCODE_GET_NEXT_U16(&cbFrame); uint8_t u8NestingLevel; IEM_OPCODE_GET_NEXT_U8(&u8NestingLevel); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_enter, pVCpu->iem.s.enmEffOpSize, cbFrame, u8NestingLevel); } /** * @opcode 0xc9 */ FNIEMOP_DEF(iemOp_leave) { IEMOP_MNEMONIC(leave, "leave"); IEMOP_HLP_MIN_186(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_leave, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0xca */ FNIEMOP_DEF(iemOp_retf_Iw) { IEMOP_MNEMONIC(retf_Iw, "retf Iw"); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retf, pVCpu->iem.s.enmEffOpSize, u16Imm); } /** * @opcode 0xcb */ FNIEMOP_DEF(iemOp_retf) { IEMOP_MNEMONIC(retf, "retf"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retf, pVCpu->iem.s.enmEffOpSize, 0); } /** * @opcode 0xcc */ FNIEMOP_DEF(iemOp_int3) { IEMOP_MNEMONIC(int3, "int3"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_int, X86_XCPT_BP, IEMINT_INT3); } /** * @opcode 0xcd */ FNIEMOP_DEF(iemOp_int_Ib) { IEMOP_MNEMONIC(int_Ib, "int Ib"); uint8_t u8Int; IEM_OPCODE_GET_NEXT_U8(&u8Int); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_int, u8Int, IEMINT_INTN); } /** * @opcode 0xce */ FNIEMOP_DEF(iemOp_into) { IEMOP_MNEMONIC(into, "into"); IEMOP_HLP_NO_64BIT(); IEM_MC_BEGIN(2, 0); IEM_MC_ARG_CONST(uint8_t, u8Int, /*=*/ X86_XCPT_OF, 0); IEM_MC_ARG_CONST(IEMINT, enmInt, /*=*/ IEMINT_INTO, 1); IEM_MC_CALL_CIMPL_2(iemCImpl_int, u8Int, enmInt); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xcf */ FNIEMOP_DEF(iemOp_iret) { IEMOP_MNEMONIC(iret, "iret"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_iret, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0xd0 */ FNIEMOP_DEF(iemOp_Grp2_Eb_1) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); PCIEMOPSHIFTSIZES pImpl; switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Eb_1, "rol Eb,1"); break; case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Eb_1, "ror Eb,1"); break; case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Eb_1, "rcl Eb,1"); break; case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Eb_1, "rcr Eb,1"); break; case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Eb_1, "shl Eb,1"); break; case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Eb_1, "shr Eb,1"); break; case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Eb_1, "sar Eb,1"); break; case 6: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe, well... */ } IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=*/1, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=*/1, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0xd1 */ FNIEMOP_DEF(iemOp_Grp2_Ev_1) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); PCIEMOPSHIFTSIZES pImpl; switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Ev_1, "rol Ev,1"); break; case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Ev_1, "ror Ev,1"); break; case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Ev_1, "rcl Ev,1"); break; case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Ev_1, "rcr Ev,1"); break; case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Ev_1, "shl Ev,1"); break; case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Ev_1, "shr Ev,1"); break; case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Ev_1, "sar Ev,1"); break; case 6: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe, well... */ } IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* memory */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0xd2 */ FNIEMOP_DEF(iemOp_Grp2_Eb_CL) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); PCIEMOPSHIFTSIZES pImpl; switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Eb_CL, "rol Eb,CL"); break; case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Eb_CL, "ror Eb,CL"); break; case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Eb_CL, "rcl Eb,CL"); break; case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Eb_CL, "rcr Eb,CL"); break; case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Eb_CL, "shl Eb,CL"); break; case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Eb_CL, "shr Eb,CL"); break; case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Eb_CL, "sar Eb,CL"); break; case 6: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc, grr. */ } IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * @opcode 0xd3 */ FNIEMOP_DEF(iemOp_Grp2_Ev_CL) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); PCIEMOPSHIFTSIZES pImpl; switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Ev_CL, "rol Ev,CL"); break; case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Ev_CL, "ror Ev,CL"); break; case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Ev_CL, "rcl Ev,CL"); break; case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Ev_CL, "rcr Ev,CL"); break; case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Ev_CL, "shl Ev,CL"); break; case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Ev_CL, "shr Ev,CL"); break; case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Ev_CL, "sar Ev,CL"); break; case 6: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe stupid */ } IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* memory */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint8_t, cShiftArg, 1); IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX); IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0xd4 */ FNIEMOP_DEF(iemOp_aam_Ib) { IEMOP_MNEMONIC(aam_Ib, "aam Ib"); uint8_t bImm; IEM_OPCODE_GET_NEXT_U8(&bImm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_NO_64BIT(); if (!bImm) return IEMOP_RAISE_DIVIDE_ERROR(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_aam, bImm); } /** * @opcode 0xd5 */ FNIEMOP_DEF(iemOp_aad_Ib) { IEMOP_MNEMONIC(aad_Ib, "aad Ib"); uint8_t bImm; IEM_OPCODE_GET_NEXT_U8(&bImm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_NO_64BIT(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_aad, bImm); } /** * @opcode 0xd6 */ FNIEMOP_DEF(iemOp_salc) { IEMOP_MNEMONIC(salc, "salc"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_NO_64BIT(); IEM_MC_BEGIN(0, 0); IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF) { IEM_MC_STORE_GREG_U8_CONST(X86_GREG_xAX, 0xff); } IEM_MC_ELSE() { IEM_MC_STORE_GREG_U8_CONST(X86_GREG_xAX, 0x00); } IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xd7 */ FNIEMOP_DEF(iemOp_xlat) { IEMOP_MNEMONIC(xlat, "xlat"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MC_BEGIN(2, 0); IEM_MC_LOCAL(uint8_t, u8Tmp); IEM_MC_LOCAL(uint16_t, u16Addr); IEM_MC_FETCH_GREG_U8_ZX_U16(u16Addr, X86_GREG_xAX); IEM_MC_ADD_GREG_U16_TO_LOCAL(u16Addr, X86_GREG_xBX); IEM_MC_FETCH_MEM16_U8(u8Tmp, pVCpu->iem.s.iEffSeg, u16Addr); IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(2, 0); IEM_MC_LOCAL(uint8_t, u8Tmp); IEM_MC_LOCAL(uint32_t, u32Addr); IEM_MC_FETCH_GREG_U8_ZX_U32(u32Addr, X86_GREG_xAX); IEM_MC_ADD_GREG_U32_TO_LOCAL(u32Addr, X86_GREG_xBX); IEM_MC_FETCH_MEM32_U8(u8Tmp, pVCpu->iem.s.iEffSeg, u32Addr); IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(2, 0); IEM_MC_LOCAL(uint8_t, u8Tmp); IEM_MC_LOCAL(uint64_t, u64Addr); IEM_MC_FETCH_GREG_U8_ZX_U64(u64Addr, X86_GREG_xAX); IEM_MC_ADD_GREG_U64_TO_LOCAL(u64Addr, X86_GREG_xBX); IEM_MC_FETCH_MEM_U8(u8Tmp, pVCpu->iem.s.iEffSeg, u64Addr); IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * Common worker for FPU instructions working on ST0 and STn, and storing the * result in ST0. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpu_st0_stN, uint8_t, bRm, PFNIEMAIMPLFPUR80, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr80Value2); IEM_MC_STORE_FPU_RESULT(FpuRes, 0); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * Common worker for FPU instructions working on ST0 and STn, and only affecting * flags. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpuNoStore_st0_stN, uint8_t, bRm, PFNIEMAIMPLFPUR80FSW, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pu16Fsw, pr80Value1, pr80Value2); IEM_MC_UPDATE_FSW(u16Fsw); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(UINT8_MAX); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * Common worker for FPU instructions working on ST0 and STn, only affecting * flags, and popping when done. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpuNoStore_st0_stN_pop, uint8_t, bRm, PFNIEMAIMPLFPUR80FSW, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pu16Fsw, pr80Value1, pr80Value2); IEM_MC_UPDATE_FSW_THEN_POP(u16Fsw); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(UINT8_MAX); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd8 11/0. */ FNIEMOP_DEF_1(iemOp_fadd_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fadd_st0_stN, "fadd st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fadd_r80_by_r80); } /** Opcode 0xd8 11/1. */ FNIEMOP_DEF_1(iemOp_fmul_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fmul_st0_stN, "fmul st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fmul_r80_by_r80); } /** Opcode 0xd8 11/2. */ FNIEMOP_DEF_1(iemOp_fcom_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcom_st0_stN, "fcom st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN, bRm, iemAImpl_fcom_r80_by_r80); } /** Opcode 0xd8 11/3. */ FNIEMOP_DEF_1(iemOp_fcomp_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcomp_st0_stN, "fcomp st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN_pop, bRm, iemAImpl_fcom_r80_by_r80); } /** Opcode 0xd8 11/4. */ FNIEMOP_DEF_1(iemOp_fsub_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fsub_st0_stN, "fsub st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fsub_r80_by_r80); } /** Opcode 0xd8 11/5. */ FNIEMOP_DEF_1(iemOp_fsubr_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fsubr_st0_stN, "fsubr st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fsubr_r80_by_r80); } /** Opcode 0xd8 11/6. */ FNIEMOP_DEF_1(iemOp_fdiv_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fdiv_st0_stN, "fdiv st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fdiv_r80_by_r80); } /** Opcode 0xd8 11/7. */ FNIEMOP_DEF_1(iemOp_fdivr_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fdivr_st0_stN, "fdivr st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fdivr_r80_by_r80); } /** * Common worker for FPU instructions working on ST0 and an m32r, and storing * the result in ST0. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpu_st0_m32r, uint8_t, bRm, PFNIEMAIMPLFPUR32, pfnAImpl) { IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(RTFLOAT32U, r32Val2); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val2, r32Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R32(r32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr32Val2); IEM_MC_STORE_FPU_RESULT(FpuRes, 0); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd8 !11/0. */ FNIEMOP_DEF_1(iemOp_fadd_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fadd_st0_m32r, "fadd st0,m32r"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fadd_r80_by_r32); } /** Opcode 0xd8 !11/1. */ FNIEMOP_DEF_1(iemOp_fmul_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fmul_st0_m32r, "fmul st0,m32r"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fmul_r80_by_r32); } /** Opcode 0xd8 !11/2. */ FNIEMOP_DEF_1(iemOp_fcom_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fcom_st0_m32r, "fcom st0,m32r"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(RTFLOAT32U, r32Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val2, r32Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R32(r32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r32, pu16Fsw, pr80Value1, pr32Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd8 !11/3. */ FNIEMOP_DEF_1(iemOp_fcomp_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fcomp_st0_m32r, "fcomp st0,m32r"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(RTFLOAT32U, r32Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val2, r32Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R32(r32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r32, pu16Fsw, pr80Value1, pr32Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd8 !11/4. */ FNIEMOP_DEF_1(iemOp_fsub_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fsub_st0_m32r, "fsub st0,m32r"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fsub_r80_by_r32); } /** Opcode 0xd8 !11/5. */ FNIEMOP_DEF_1(iemOp_fsubr_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fsubr_st0_m32r, "fsubr st0,m32r"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fsubr_r80_by_r32); } /** Opcode 0xd8 !11/6. */ FNIEMOP_DEF_1(iemOp_fdiv_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fdiv_st0_m32r, "fdiv st0,m32r"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fdiv_r80_by_r32); } /** Opcode 0xd8 !11/7. */ FNIEMOP_DEF_1(iemOp_fdivr_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fdivr_st0_m32r, "fdivr st0,m32r"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fdivr_r80_by_r32); } /** * @opcode 0xd8 */ FNIEMOP_DEF(iemOp_EscF0) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xd8 & 0x7); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fadd_stN, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fmul_stN, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fcom_stN, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fcomp_stN, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fsub_stN, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fsubr_stN, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fdiv_stN, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fdivr_stN, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fadd_m32r, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fmul_m32r, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fcom_m32r, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fcomp_m32r, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fsub_m32r, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fsubr_m32r, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fdiv_m32r, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fdivr_m32r, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** Opcode 0xd9 /0 mem32real * @sa iemOp_fld_m64r */ FNIEMOP_DEF_1(iemOp_fld_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fld_m32r, "fld m32r"); IEM_MC_BEGIN(2, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(RTFLOAT32U, r32Val); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val, r32Val, 1); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R32(r32Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_IS_EMPTY(7) IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fld_r32_to_r80, pFpuRes, pr32Val); IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 !11/2 mem32real */ FNIEMOP_DEF_1(iemOp_fst_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fst_m32r, "fst m32r"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PRTFLOAT32U, pr32Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pr32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r32, pu16Fsw, pr32Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr32Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(pr32Dst); IEM_MC_MEM_COMMIT_AND_UNMAP(pr32Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 !11/3 */ FNIEMOP_DEF_1(iemOp_fstp_m32r, uint8_t, bRm) { IEMOP_MNEMONIC(fstp_m32r, "fstp m32r"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PRTFLOAT32U, pr32Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pr32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r32, pu16Fsw, pr32Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr32Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(pr32Dst); IEM_MC_MEM_COMMIT_AND_UNMAP(pr32Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 !11/4 */ FNIEMOP_DEF_1(iemOp_fldenv, uint8_t, bRm) { IEMOP_MNEMONIC(fldenv, "fldenv m14/28byte"); IEM_MC_BEGIN(3, 0); IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0); IEM_MC_ARG(uint8_t, iEffSeg, 1); IEM_MC_ARG(RTGCPTR, GCPtrEffSrc, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg); IEM_MC_CALL_CIMPL_3(iemCImpl_fldenv, enmEffOpSize, iEffSeg, GCPtrEffSrc); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 !11/5 */ FNIEMOP_DEF_1(iemOp_fldcw, uint8_t, bRm) { IEMOP_MNEMONIC(fldcw_m2byte, "fldcw m2byte"); IEM_MC_BEGIN(1, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_ARG(uint16_t, u16Fsw, 0); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_FETCH_MEM_U16(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_CALL_CIMPL_1(iemCImpl_fldcw, u16Fsw); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 !11/6 */ FNIEMOP_DEF_1(iemOp_fnstenv, uint8_t, bRm) { IEMOP_MNEMONIC(fstenv, "fstenv m14/m28byte"); IEM_MC_BEGIN(3, 0); IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0); IEM_MC_ARG(uint8_t, iEffSeg, 1); IEM_MC_ARG(RTGCPTR, GCPtrEffDst, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ(); IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg); IEM_MC_CALL_CIMPL_3(iemCImpl_fnstenv, enmEffOpSize, iEffSeg, GCPtrEffDst); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 !11/7 */ FNIEMOP_DEF_1(iemOp_fnstcw, uint8_t, bRm) { IEMOP_MNEMONIC(fnstcw_m2byte, "fnstcw m2byte"); IEM_MC_BEGIN(2, 0); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fcw); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ(); IEM_MC_FETCH_FCW(u16Fcw); IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Fcw); IEM_MC_ADVANCE_RIP(); /* C0-C3 are documented as undefined, we leave them unmodified. */ IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xd0, 0xd9 0xd8-0xdf, ++?. */ FNIEMOP_DEF(iemOp_fnop) { IEMOP_MNEMONIC(fnop, "fnop"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); /** @todo Testcase: looks like FNOP leaves FOP alone but updates FPUIP. Could be * intel optimizations. Investigate. */ IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ADVANCE_RIP(); /* C0-C3 are documented as undefined, we leave them unmodified. */ IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 11/0 stN */ FNIEMOP_DEF_1(iemOp_fld_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fld_stN, "fld stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /** @todo Testcase: Check if this raises \#MF? Intel mentioned it not. AMD * indicates that it does. */ IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, bRm & X86_MODRM_RM_MASK) IEM_MC_SET_FPU_RESULT(FpuRes, 0 /*FSW*/, pr80Value); IEM_MC_PUSH_FPU_RESULT(FpuRes); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_UNDERFLOW(); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 11/3 stN */ FNIEMOP_DEF_1(iemOp_fxch_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fxch_stN, "fxch stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /** @todo Testcase: Check if this raises \#MF? Intel mentioned it not. AMD * indicates that it does. */ IEM_MC_BEGIN(1, 3); IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value2); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_ARG_CONST(uint8_t, iStReg, /*=*/ bRm & X86_MODRM_RM_MASK, 0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK) IEM_MC_SET_FPU_RESULT(FpuRes, X86_FSW_C1, pr80Value2); IEM_MC_STORE_FPUREG_R80_SRC_REF(bRm & X86_MODRM_RM_MASK, pr80Value1); IEM_MC_STORE_FPU_RESULT(FpuRes, 0); IEM_MC_ELSE() IEM_MC_CALL_CIMPL_1(iemCImpl_fxch_underflow, iStReg); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 11/4, 0xdd 11/2. */ FNIEMOP_DEF_1(iemOp_fstp_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fstp_st0_stN, "fstp st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* fstp st0, st0 is frequently used as an official 'ffreep st0' sequence. */ uint8_t const iDstReg = bRm & X86_MODRM_RM_MASK; if (!iDstReg) { IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL_CONST(uint16_t, u16Fsw, /*=*/ 0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY(0) IEM_MC_UPDATE_FSW_THEN_POP(u16Fsw); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_SET_FPU_RESULT(FpuRes, 0 /*FSW*/, pr80Value); IEM_MC_STORE_FPU_RESULT_THEN_POP(FpuRes, iDstReg); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(iDstReg); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * Common worker for FPU instructions working on ST0 and replaces it with the * result, i.e. unary operators. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_1(iemOpHlpFpu_st0, PFNIEMAIMPLFPUR80UNARY, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(2, 1); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 1); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_2(pfnAImpl, pFpuRes, pr80Value); IEM_MC_STORE_FPU_RESULT(FpuRes, 0); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xe0. */ FNIEMOP_DEF(iemOp_fchs) { IEMOP_MNEMONIC(fchs_st0, "fchs st0"); return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fchs_r80); } /** Opcode 0xd9 0xe1. */ FNIEMOP_DEF(iemOp_fabs) { IEMOP_MNEMONIC(fabs_st0, "fabs st0"); return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fabs_r80); } /** * Common worker for FPU instructions working on ST0 and only returns FSW. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_1(iemOpHlpFpuNoStore_st0, PFNIEMAIMPLFPUR80UNARYFSW, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(2, 1); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 1); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_2(pfnAImpl, pu16Fsw, pr80Value); IEM_MC_UPDATE_FSW(u16Fsw); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(UINT8_MAX); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xe4. */ FNIEMOP_DEF(iemOp_ftst) { IEMOP_MNEMONIC(ftst_st0, "ftst st0"); return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0, iemAImpl_ftst_r80); } /** Opcode 0xd9 0xe5. */ FNIEMOP_DEF(iemOp_fxam) { IEMOP_MNEMONIC(fxam_st0, "fxam st0"); return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0, iemAImpl_fxam_r80); } /** * Common worker for FPU instructions pushing a constant onto the FPU stack. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_1(iemOpHlpFpuPushConstant, PFNIEMAIMPLFPUR80LDCONST, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(1, 1); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_IS_EMPTY(7) IEM_MC_CALL_FPU_AIMPL_1(pfnAImpl, pFpuRes); IEM_MC_PUSH_FPU_RESULT(FpuRes); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_OVERFLOW(); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xe8. */ FNIEMOP_DEF(iemOp_fld1) { IEMOP_MNEMONIC(fld1, "fld1"); return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fld1); } /** Opcode 0xd9 0xe9. */ FNIEMOP_DEF(iemOp_fldl2t) { IEMOP_MNEMONIC(fldl2t, "fldl2t"); return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldl2t); } /** Opcode 0xd9 0xea. */ FNIEMOP_DEF(iemOp_fldl2e) { IEMOP_MNEMONIC(fldl2e, "fldl2e"); return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldl2e); } /** Opcode 0xd9 0xeb. */ FNIEMOP_DEF(iemOp_fldpi) { IEMOP_MNEMONIC(fldpi, "fldpi"); return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldpi); } /** Opcode 0xd9 0xec. */ FNIEMOP_DEF(iemOp_fldlg2) { IEMOP_MNEMONIC(fldlg2, "fldlg2"); return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldlg2); } /** Opcode 0xd9 0xed. */ FNIEMOP_DEF(iemOp_fldln2) { IEMOP_MNEMONIC(fldln2, "fldln2"); return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldln2); } /** Opcode 0xd9 0xee. */ FNIEMOP_DEF(iemOp_fldz) { IEMOP_MNEMONIC(fldz, "fldz"); return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldz); } /** Opcode 0xd9 0xf0. */ FNIEMOP_DEF(iemOp_f2xm1) { IEMOP_MNEMONIC(f2xm1_st0, "f2xm1 st0"); return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_f2xm1_r80); } /** * Common worker for FPU instructions working on STn and ST0, storing the result * in STn, and popping the stack unless IE, DE or ZE was raised. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpu_stN_st0_pop, uint8_t, bRm, PFNIEMAIMPLFPUR80, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, bRm & X86_MODRM_RM_MASK, pr80Value2, 0) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr80Value2); IEM_MC_STORE_FPU_RESULT_THEN_POP(FpuRes, bRm & X86_MODRM_RM_MASK); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(bRm & X86_MODRM_RM_MASK); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xf1. */ FNIEMOP_DEF(iemOp_fyl2x) { IEMOP_MNEMONIC(fyl2x_st0, "fyl2x st1,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, 1, iemAImpl_fyl2x_r80_by_r80); } /** * Common worker for FPU instructions working on ST0 and having two outputs, one * replacing ST0 and one pushed onto the stack. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_1(iemOpHlpFpuReplace_st0_push, PFNIEMAIMPLFPUR80UNARYTWO, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(2, 1); IEM_MC_LOCAL(IEMFPURESULTTWO, FpuResTwo); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULTTWO, pFpuResTwo, FpuResTwo, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 1); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_2(pfnAImpl, pFpuResTwo, pr80Value); IEM_MC_PUSH_FPU_RESULT_TWO(FpuResTwo); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO(); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xf2. */ FNIEMOP_DEF(iemOp_fptan) { IEMOP_MNEMONIC(fptan_st0, "fptan st0"); return FNIEMOP_CALL_1(iemOpHlpFpuReplace_st0_push, iemAImpl_fptan_r80_r80); } /** Opcode 0xd9 0xf3. */ FNIEMOP_DEF(iemOp_fpatan) { IEMOP_MNEMONIC(fpatan_st1_st0, "fpatan st1,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, 1, iemAImpl_fpatan_r80_by_r80); } /** Opcode 0xd9 0xf4. */ FNIEMOP_DEF(iemOp_fxtract) { IEMOP_MNEMONIC(fxtract_st0, "fxtract st0"); return FNIEMOP_CALL_1(iemOpHlpFpuReplace_st0_push, iemAImpl_fxtract_r80_r80); } /** Opcode 0xd9 0xf5. */ FNIEMOP_DEF(iemOp_fprem1) { IEMOP_MNEMONIC(fprem1_st0_st1, "fprem1 st0,st1"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, 1, iemAImpl_fprem1_r80_by_r80); } /** Opcode 0xd9 0xf6. */ FNIEMOP_DEF(iemOp_fdecstp) { IEMOP_MNEMONIC(fdecstp, "fdecstp"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* Note! C0, C2 and C3 are documented as undefined, we clear them. */ /** @todo Testcase: Check whether FOP, FPUIP and FPUCS are affected by * FINCSTP and FDECSTP. */ IEM_MC_BEGIN(0,0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_FPU_STACK_DEC_TOP(); IEM_MC_UPDATE_FSW_CONST(0); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xf7. */ FNIEMOP_DEF(iemOp_fincstp) { IEMOP_MNEMONIC(fincstp, "fincstp"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* Note! C0, C2 and C3 are documented as undefined, we clear them. */ /** @todo Testcase: Check whether FOP, FPUIP and FPUCS are affected by * FINCSTP and FDECSTP. */ IEM_MC_BEGIN(0,0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_FPU_STACK_INC_TOP(); IEM_MC_UPDATE_FSW_CONST(0); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xd9 0xf8. */ FNIEMOP_DEF(iemOp_fprem) { IEMOP_MNEMONIC(fprem_st0_st1, "fprem st0,st1"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, 1, iemAImpl_fprem_r80_by_r80); } /** Opcode 0xd9 0xf9. */ FNIEMOP_DEF(iemOp_fyl2xp1) { IEMOP_MNEMONIC(fyl2xp1_st1_st0, "fyl2xp1 st1,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, 1, iemAImpl_fyl2xp1_r80_by_r80); } /** Opcode 0xd9 0xfa. */ FNIEMOP_DEF(iemOp_fsqrt) { IEMOP_MNEMONIC(fsqrt_st0, "fsqrt st0"); return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fsqrt_r80); } /** Opcode 0xd9 0xfb. */ FNIEMOP_DEF(iemOp_fsincos) { IEMOP_MNEMONIC(fsincos_st0, "fsincos st0"); return FNIEMOP_CALL_1(iemOpHlpFpuReplace_st0_push, iemAImpl_fsincos_r80_r80); } /** Opcode 0xd9 0xfc. */ FNIEMOP_DEF(iemOp_frndint) { IEMOP_MNEMONIC(frndint_st0, "frndint st0"); return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_frndint_r80); } /** Opcode 0xd9 0xfd. */ FNIEMOP_DEF(iemOp_fscale) { IEMOP_MNEMONIC(fscale_st0_st1, "fscale st0,st1"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, 1, iemAImpl_fscale_r80_by_r80); } /** Opcode 0xd9 0xfe. */ FNIEMOP_DEF(iemOp_fsin) { IEMOP_MNEMONIC(fsin_st0, "fsin st0"); return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fsin_r80); } /** Opcode 0xd9 0xff. */ FNIEMOP_DEF(iemOp_fcos) { IEMOP_MNEMONIC(fcos_st0, "fcos st0"); return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fcos_r80); } /** Used by iemOp_EscF1. */ IEM_STATIC const PFNIEMOP g_apfnEscF1_E0toFF[32] = { /* 0xe0 */ iemOp_fchs, /* 0xe1 */ iemOp_fabs, /* 0xe2 */ iemOp_Invalid, /* 0xe3 */ iemOp_Invalid, /* 0xe4 */ iemOp_ftst, /* 0xe5 */ iemOp_fxam, /* 0xe6 */ iemOp_Invalid, /* 0xe7 */ iemOp_Invalid, /* 0xe8 */ iemOp_fld1, /* 0xe9 */ iemOp_fldl2t, /* 0xea */ iemOp_fldl2e, /* 0xeb */ iemOp_fldpi, /* 0xec */ iemOp_fldlg2, /* 0xed */ iemOp_fldln2, /* 0xee */ iemOp_fldz, /* 0xef */ iemOp_Invalid, /* 0xf0 */ iemOp_f2xm1, /* 0xf1 */ iemOp_fyl2x, /* 0xf2 */ iemOp_fptan, /* 0xf3 */ iemOp_fpatan, /* 0xf4 */ iemOp_fxtract, /* 0xf5 */ iemOp_fprem1, /* 0xf6 */ iemOp_fdecstp, /* 0xf7 */ iemOp_fincstp, /* 0xf8 */ iemOp_fprem, /* 0xf9 */ iemOp_fyl2xp1, /* 0xfa */ iemOp_fsqrt, /* 0xfb */ iemOp_fsincos, /* 0xfc */ iemOp_frndint, /* 0xfd */ iemOp_fscale, /* 0xfe */ iemOp_fsin, /* 0xff */ iemOp_fcos }; /** * @opcode 0xd9 */ FNIEMOP_DEF(iemOp_EscF1) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xd9 & 0x7); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fld_stN, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fxch_stN, bRm); case 2: if (bRm == 0xd0) return FNIEMOP_CALL(iemOp_fnop); return IEMOP_RAISE_INVALID_OPCODE(); case 3: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm); /* Reserved. Intel behavior seems to be FSTP ST(i) though. */ case 4: case 5: case 6: case 7: Assert((unsigned)bRm - 0xe0U < RT_ELEMENTS(g_apfnEscF1_E0toFF)); return FNIEMOP_CALL(g_apfnEscF1_E0toFF[bRm - 0xe0]); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fld_m32r, bRm); case 1: return IEMOP_RAISE_INVALID_OPCODE(); case 2: return FNIEMOP_CALL_1(iemOp_fst_m32r, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fstp_m32r, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fldenv, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fldcw, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fnstenv, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fnstcw, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** Opcode 0xda 11/0. */ FNIEMOP_DEF_1(iemOp_fcmovb_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmovb_st0_stN, "fcmovb st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xda 11/1. */ FNIEMOP_DEF_1(iemOp_fcmove_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmove_st0_stN, "fcmove st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_BIT_SET(X86_EFL_ZF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xda 11/2. */ FNIEMOP_DEF_1(iemOp_fcmovbe_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmovbe_st0_stN, "fcmovbe st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_ANY_BITS_SET(X86_EFL_CF | X86_EFL_ZF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xda 11/3. */ FNIEMOP_DEF_1(iemOp_fcmovu_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmovu_st0_stN, "fcmovu st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_BIT_SET(X86_EFL_PF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * Common worker for FPU instructions working on ST0 and STn, only affecting * flags, and popping twice when done. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_1(iemOpHlpFpuNoStore_st0_stN_pop_pop, PFNIEMAIMPLFPUR80FSW, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, 1) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pu16Fsw, pr80Value1, pr80Value2); IEM_MC_UPDATE_FSW_THEN_POP_POP(u16Fsw); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP(); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xda 0xe9. */ FNIEMOP_DEF(iemOp_fucompp) { IEMOP_MNEMONIC(fucompp_st0_stN, "fucompp st0,stN"); return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0_stN_pop_pop, iemAImpl_fucom_r80_by_r80); } /** * Common worker for FPU instructions working on ST0 and an m32i, and storing * the result in ST0. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpu_st0_m32i, uint8_t, bRm, PFNIEMAIMPLFPUI32, pfnAImpl) { IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(int32_t, i32Val2); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val2, i32Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I32(i32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pi32Val2); IEM_MC_STORE_FPU_RESULT(FpuRes, 0); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xda !11/0. */ FNIEMOP_DEF_1(iemOp_fiadd_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fiadd_m32i, "fiadd m32i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fiadd_r80_by_i32); } /** Opcode 0xda !11/1. */ FNIEMOP_DEF_1(iemOp_fimul_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fimul_m32i, "fimul m32i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fimul_r80_by_i32); } /** Opcode 0xda !11/2. */ FNIEMOP_DEF_1(iemOp_ficom_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(ficom_st0_m32i, "ficom st0,m32i"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(int32_t, i32Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val2, i32Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I32(i32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i32, pu16Fsw, pr80Value1, pi32Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xda !11/3. */ FNIEMOP_DEF_1(iemOp_ficomp_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(ficomp_st0_m32i, "ficomp st0,m32i"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(int32_t, i32Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val2, i32Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I32(i32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i32, pu16Fsw, pr80Value1, pi32Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xda !11/4. */ FNIEMOP_DEF_1(iemOp_fisub_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fisub_m32i, "fisub m32i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fisub_r80_by_i32); } /** Opcode 0xda !11/5. */ FNIEMOP_DEF_1(iemOp_fisubr_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fisubr_m32i, "fisubr m32i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fisubr_r80_by_i32); } /** Opcode 0xda !11/6. */ FNIEMOP_DEF_1(iemOp_fidiv_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fidiv_m32i, "fidiv m32i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fidiv_r80_by_i32); } /** Opcode 0xda !11/7. */ FNIEMOP_DEF_1(iemOp_fidivr_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fidivr_m32i, "fidivr m32i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fidivr_r80_by_i32); } /** * @opcode 0xda */ FNIEMOP_DEF(iemOp_EscF2) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xda & 0x7); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fcmovb_stN, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fcmove_stN, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fcmovbe_stN, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fcmovu_stN, bRm); case 4: return IEMOP_RAISE_INVALID_OPCODE(); case 5: if (bRm == 0xe9) return FNIEMOP_CALL(iemOp_fucompp); return IEMOP_RAISE_INVALID_OPCODE(); case 6: return IEMOP_RAISE_INVALID_OPCODE(); case 7: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fiadd_m32i, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fimul_m32i, bRm); case 2: return FNIEMOP_CALL_1(iemOp_ficom_m32i, bRm); case 3: return FNIEMOP_CALL_1(iemOp_ficomp_m32i, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fisub_m32i, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fisubr_m32i, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fidiv_m32i, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fidivr_m32i, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** Opcode 0xdb !11/0. */ FNIEMOP_DEF_1(iemOp_fild_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fild_m32i, "fild m32i"); IEM_MC_BEGIN(2, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(int32_t, i32Val); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val, i32Val, 1); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I32(i32Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_IS_EMPTY(7) IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fild_i32_to_r80, pFpuRes, pi32Val); IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb !11/1. */ FNIEMOP_DEF_1(iemOp_fisttp_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fisttp_m32i, "fisttp m32i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int32_t *, pi32Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fistt_r80_to_i32, pu16Fsw, pi32Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi32Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I32_CONST_BY_REF(pi32Dst, INT32_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi32Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb !11/2. */ FNIEMOP_DEF_1(iemOp_fist_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fist_m32i, "fist m32i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int32_t *, pi32Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i32, pu16Fsw, pi32Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi32Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I32_CONST_BY_REF(pi32Dst, INT32_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi32Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb !11/3. */ FNIEMOP_DEF_1(iemOp_fistp_m32i, uint8_t, bRm) { IEMOP_MNEMONIC(fistp_m32i, "fistp m32i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int32_t *, pi32Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i32, pu16Fsw, pi32Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi32Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I32_CONST_BY_REF(pi32Dst, INT32_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi32Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb !11/5. */ FNIEMOP_DEF_1(iemOp_fld_m80r, uint8_t, bRm) { IEMOP_MNEMONIC(fld_m80r, "fld m80r"); IEM_MC_BEGIN(2, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(RTFLOAT80U, r80Val); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT80U, pr80Val, r80Val, 1); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R80(r80Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_IS_EMPTY(7) IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fld_r80_from_r80, pFpuRes, pr80Val); IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb !11/7. */ FNIEMOP_DEF_1(iemOp_fstp_m80r, uint8_t, bRm) { IEMOP_MNEMONIC(fstp_m80r, "fstp m80r"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PRTFLOAT80U, pr80Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pr80Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r80, pu16Fsw, pr80Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr80Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(pr80Dst); IEM_MC_MEM_COMMIT_AND_UNMAP(pr80Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 11/0. */ FNIEMOP_DEF_1(iemOp_fcmovnb_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmovnb_st0_stN, "fcmovnb st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_BIT_NOT_SET(X86_EFL_CF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 11/1. */ FNIEMOP_DEF_1(iemOp_fcmovne_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmovne_st0_stN, "fcmovne st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_BIT_NOT_SET(X86_EFL_ZF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 11/2. */ FNIEMOP_DEF_1(iemOp_fcmovnbe_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmovnbe_st0_stN, "fcmovnbe st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_NO_BITS_SET(X86_EFL_CF | X86_EFL_ZF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 11/3. */ FNIEMOP_DEF_1(iemOp_fcmovnnu_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcmovnnu_st0_stN, "fcmovnnu st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0) IEM_MC_IF_EFL_BIT_NOT_SET(X86_EFL_PF) IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN); IEM_MC_ENDIF(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 0xe0. */ FNIEMOP_DEF(iemOp_fneni) { IEMOP_MNEMONIC(fneni, "fneni (8087/ign)"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 0xe1. */ FNIEMOP_DEF(iemOp_fndisi) { IEMOP_MNEMONIC(fndisi, "fndisi (8087/ign)"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 0xe2. */ FNIEMOP_DEF(iemOp_fnclex) { IEMOP_MNEMONIC(fnclex, "fnclex"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_CLEAR_FSW_EX(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 0xe3. */ FNIEMOP_DEF(iemOp_fninit) { IEMOP_MNEMONIC(fninit, "fninit"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_finit, false /*fCheckXcpts*/); } /** Opcode 0xdb 0xe4. */ FNIEMOP_DEF(iemOp_fnsetpm) { IEMOP_MNEMONIC(fnsetpm, "fnsetpm (80287/ign)"); /* set protected mode on fpu. */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdb 0xe5. */ FNIEMOP_DEF(iemOp_frstpm) { IEMOP_MNEMONIC(frstpm, "frstpm (80287XL/ign)"); /* reset pm, back to real mode. */ #if 0 /* #UDs on newer CPUs */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0,0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; #else return IEMOP_RAISE_INVALID_OPCODE(); #endif } /** Opcode 0xdb 11/5. */ FNIEMOP_DEF_1(iemOp_fucomi_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fucomi_st0_stN, "fucomi st0,stN"); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fucomi_r80_by_r80, false /*fPop*/); } /** Opcode 0xdb 11/6. */ FNIEMOP_DEF_1(iemOp_fcomi_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcomi_st0_stN, "fcomi st0,stN"); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fcomi_r80_by_r80, false /*fPop*/); } /** * @opcode 0xdb */ FNIEMOP_DEF(iemOp_EscF3) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xdb & 0x7); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fcmovnb_stN, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fcmovne_stN, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fcmovnbe_stN, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fcmovnnu_stN, bRm); case 4: switch (bRm) { case 0xe0: return FNIEMOP_CALL(iemOp_fneni); case 0xe1: return FNIEMOP_CALL(iemOp_fndisi); case 0xe2: return FNIEMOP_CALL(iemOp_fnclex); case 0xe3: return FNIEMOP_CALL(iemOp_fninit); case 0xe4: return FNIEMOP_CALL(iemOp_fnsetpm); case 0xe5: return FNIEMOP_CALL(iemOp_frstpm); case 0xe6: return IEMOP_RAISE_INVALID_OPCODE(); case 0xe7: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } break; case 5: return FNIEMOP_CALL_1(iemOp_fucomi_stN, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fcomi_stN, bRm); case 7: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fild_m32i, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fisttp_m32i,bRm); case 2: return FNIEMOP_CALL_1(iemOp_fist_m32i, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fistp_m32i, bRm); case 4: return IEMOP_RAISE_INVALID_OPCODE(); case 5: return FNIEMOP_CALL_1(iemOp_fld_m80r, bRm); case 6: return IEMOP_RAISE_INVALID_OPCODE(); case 7: return FNIEMOP_CALL_1(iemOp_fstp_m80r, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * Common worker for FPU instructions working on STn and ST0, and storing the * result in STn unless IE, DE or ZE was raised. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpu_stN_st0, uint8_t, bRm, PFNIEMAIMPLFPUR80, pfnAImpl) { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, bRm & X86_MODRM_RM_MASK, pr80Value2, 0) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr80Value2); IEM_MC_STORE_FPU_RESULT(FpuRes, bRm & X86_MODRM_RM_MASK); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(bRm & X86_MODRM_RM_MASK); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdc 11/0. */ FNIEMOP_DEF_1(iemOp_fadd_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fadd_stN_st0, "fadd stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fadd_r80_by_r80); } /** Opcode 0xdc 11/1. */ FNIEMOP_DEF_1(iemOp_fmul_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fmul_stN_st0, "fmul stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fmul_r80_by_r80); } /** Opcode 0xdc 11/4. */ FNIEMOP_DEF_1(iemOp_fsubr_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fsubr_stN_st0, "fsubr stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fsubr_r80_by_r80); } /** Opcode 0xdc 11/5. */ FNIEMOP_DEF_1(iemOp_fsub_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fsub_stN_st0, "fsub stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fsub_r80_by_r80); } /** Opcode 0xdc 11/6. */ FNIEMOP_DEF_1(iemOp_fdivr_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fdivr_stN_st0, "fdivr stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fdivr_r80_by_r80); } /** Opcode 0xdc 11/7. */ FNIEMOP_DEF_1(iemOp_fdiv_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fdiv_stN_st0, "fdiv stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fdiv_r80_by_r80); } /** * Common worker for FPU instructions working on ST0 and a 64-bit floating point * memory operand, and storing the result in ST0. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpu_ST0_m64r, uint8_t, bRm, PFNIEMAIMPLFPUR64, pfnImpl) { IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(RTFLOAT64U, r64Factor2); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Factor1, 1); IEM_MC_ARG_LOCAL_REF(PRTFLOAT64U, pr64Factor2, r64Factor2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R64(r64Factor2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Factor1, 0) IEM_MC_CALL_FPU_AIMPL_3(pfnImpl, pFpuRes, pr80Factor1, pr64Factor2); IEM_MC_STORE_FPU_RESULT_MEM_OP(FpuRes, 0, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(0, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdc !11/0. */ FNIEMOP_DEF_1(iemOp_fadd_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fadd_m64r, "fadd m64r"); return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fadd_r80_by_r64); } /** Opcode 0xdc !11/1. */ FNIEMOP_DEF_1(iemOp_fmul_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fmul_m64r, "fmul m64r"); return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fmul_r80_by_r64); } /** Opcode 0xdc !11/2. */ FNIEMOP_DEF_1(iemOp_fcom_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fcom_st0_m64r, "fcom st0,m64r"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(RTFLOAT64U, r64Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT64U, pr64Val2, r64Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R64(r64Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r64, pu16Fsw, pr80Value1, pr64Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdc !11/3. */ FNIEMOP_DEF_1(iemOp_fcomp_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fcomp_st0_m64r, "fcomp st0,m64r"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(RTFLOAT64U, r64Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT64U, pr64Val2, r64Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R64(r64Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r64, pu16Fsw, pr80Value1, pr64Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdc !11/4. */ FNIEMOP_DEF_1(iemOp_fsub_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fsub_m64r, "fsub m64r"); return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fsub_r80_by_r64); } /** Opcode 0xdc !11/5. */ FNIEMOP_DEF_1(iemOp_fsubr_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fsubr_m64r, "fsubr m64r"); return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fsubr_r80_by_r64); } /** Opcode 0xdc !11/6. */ FNIEMOP_DEF_1(iemOp_fdiv_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fdiv_m64r, "fdiv m64r"); return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fdiv_r80_by_r64); } /** Opcode 0xdc !11/7. */ FNIEMOP_DEF_1(iemOp_fdivr_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fdivr_m64r, "fdivr m64r"); return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fdivr_r80_by_r64); } /** * @opcode 0xdc */ FNIEMOP_DEF(iemOp_EscF4) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xdc & 0x7); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fadd_stN_st0, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fmul_stN_st0, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fcom_stN, bRm); /* Marked reserved, intel behavior is that of FCOM ST(i). */ case 3: return FNIEMOP_CALL_1(iemOp_fcomp_stN, bRm); /* Marked reserved, intel behavior is that of FCOMP ST(i). */ case 4: return FNIEMOP_CALL_1(iemOp_fsubr_stN_st0, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fsub_stN_st0, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fdivr_stN_st0, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fdiv_stN_st0, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fadd_m64r, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fmul_m64r, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fcom_m64r, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fcomp_m64r, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fsub_m64r, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fsubr_m64r, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fdiv_m64r, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fdivr_m64r, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** Opcode 0xdd !11/0. * @sa iemOp_fld_m32r */ FNIEMOP_DEF_1(iemOp_fld_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fld_m64r, "fld m64r"); IEM_MC_BEGIN(2, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(RTFLOAT64U, r64Val); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG_LOCAL_REF(PCRTFLOAT64U, pr64Val, r64Val, 1); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_R64(r64Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_IS_EMPTY(7) IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fld_r64_to_r80, pFpuRes, pr64Val); IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd !11/0. */ FNIEMOP_DEF_1(iemOp_fisttp_m64i, uint8_t, bRm) { IEMOP_MNEMONIC(fisttp_m64i, "fisttp m64i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int64_t *, pi64Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fistt_r80_to_i64, pu16Fsw, pi64Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi64Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I64_CONST_BY_REF(pi64Dst, INT64_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi64Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd !11/0. */ FNIEMOP_DEF_1(iemOp_fst_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fst_m64r, "fst m64r"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PRTFLOAT64U, pr64Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pr64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r64, pu16Fsw, pr64Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr64Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(pr64Dst); IEM_MC_MEM_COMMIT_AND_UNMAP(pr64Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd !11/0. */ FNIEMOP_DEF_1(iemOp_fstp_m64r, uint8_t, bRm) { IEMOP_MNEMONIC(fstp_m64r, "fstp m64r"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PRTFLOAT64U, pr64Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pr64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r64, pu16Fsw, pr64Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr64Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(pr64Dst); IEM_MC_MEM_COMMIT_AND_UNMAP(pr64Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd !11/0. */ FNIEMOP_DEF_1(iemOp_frstor, uint8_t, bRm) { IEMOP_MNEMONIC(frstor, "frstor m94/108byte"); IEM_MC_BEGIN(3, 0); IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0); IEM_MC_ARG(uint8_t, iEffSeg, 1); IEM_MC_ARG(RTGCPTR, GCPtrEffSrc, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg); IEM_MC_CALL_CIMPL_3(iemCImpl_frstor, enmEffOpSize, iEffSeg, GCPtrEffSrc); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd !11/0. */ FNIEMOP_DEF_1(iemOp_fnsave, uint8_t, bRm) { IEMOP_MNEMONIC(fnsave, "fnsave m94/108byte"); IEM_MC_BEGIN(3, 0); IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0); IEM_MC_ARG(uint8_t, iEffSeg, 1); IEM_MC_ARG(RTGCPTR, GCPtrEffDst, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ(); IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg); IEM_MC_CALL_CIMPL_3(iemCImpl_fnsave, enmEffOpSize, iEffSeg, GCPtrEffDst); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd !11/0. */ FNIEMOP_DEF_1(iemOp_fnstsw, uint8_t, bRm) { IEMOP_MNEMONIC(fnstsw_m16, "fnstsw m16"); IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ(); IEM_MC_FETCH_FSW(u16Tmp); IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Tmp); IEM_MC_ADVANCE_RIP(); /** @todo Debug / drop a hint to the verifier that things may differ * from REM. Seen 0x4020 (iem) vs 0x4000 (rem) at 0008:801c6b88 booting * NT4SP1. (X86_FSW_PE) */ IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd 11/0. */ FNIEMOP_DEF_1(iemOp_ffree_stN, uint8_t, bRm) { IEMOP_MNEMONIC(ffree_stN, "ffree stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); /* Note! C0, C1, C2 and C3 are documented as undefined, we leave the unmodified. */ IEM_MC_BEGIN(0, 0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_FPU_STACK_FREE(bRm & X86_MODRM_RM_MASK); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd 11/1. */ FNIEMOP_DEF_1(iemOp_fst_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fst_st0_stN, "fst st0,stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_SET_FPU_RESULT(FpuRes, 0 /*FSW*/, pr80Value); IEM_MC_STORE_FPU_RESULT(FpuRes, bRm & X86_MODRM_RM_MASK); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(bRm & X86_MODRM_RM_MASK); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdd 11/3. */ FNIEMOP_DEF_1(iemOp_fucom_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fucom_st0_stN, "fucom st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN, bRm, iemAImpl_fucom_r80_by_r80); } /** Opcode 0xdd 11/4. */ FNIEMOP_DEF_1(iemOp_fucomp_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fucomp_st0_stN, "fucomp st0,stN"); return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN_pop, bRm, iemAImpl_fucom_r80_by_r80); } /** * @opcode 0xdd */ FNIEMOP_DEF(iemOp_EscF5) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xdd & 0x7); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_ffree_stN, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fxch_stN, bRm); /* Reserved, intel behavior is that of XCHG ST(i). */ case 2: return FNIEMOP_CALL_1(iemOp_fst_stN, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fucom_stN_st0,bRm); case 5: return FNIEMOP_CALL_1(iemOp_fucomp_stN, bRm); case 6: return IEMOP_RAISE_INVALID_OPCODE(); case 7: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fld_m64r, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fisttp_m64i, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fst_m64r, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fstp_m64r, bRm); case 4: return FNIEMOP_CALL_1(iemOp_frstor, bRm); case 5: return IEMOP_RAISE_INVALID_OPCODE(); case 6: return FNIEMOP_CALL_1(iemOp_fnsave, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fnstsw, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** Opcode 0xde 11/0. */ FNIEMOP_DEF_1(iemOp_faddp_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(faddp_stN_st0, "faddp stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fadd_r80_by_r80); } /** Opcode 0xde 11/0. */ FNIEMOP_DEF_1(iemOp_fmulp_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fmulp_stN_st0, "fmulp stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fmul_r80_by_r80); } /** Opcode 0xde 0xd9. */ FNIEMOP_DEF(iemOp_fcompp) { IEMOP_MNEMONIC(fcompp_st0_stN, "fcompp st0,stN"); return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0_stN_pop_pop, iemAImpl_fcom_r80_by_r80); } /** Opcode 0xde 11/4. */ FNIEMOP_DEF_1(iemOp_fsubrp_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fsubrp_stN_st0, "fsubrp stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fsubr_r80_by_r80); } /** Opcode 0xde 11/5. */ FNIEMOP_DEF_1(iemOp_fsubp_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fsubp_stN_st0, "fsubp stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fsub_r80_by_r80); } /** Opcode 0xde 11/6. */ FNIEMOP_DEF_1(iemOp_fdivrp_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fdivrp_stN_st0, "fdivrp stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fdivr_r80_by_r80); } /** Opcode 0xde 11/7. */ FNIEMOP_DEF_1(iemOp_fdivp_stN_st0, uint8_t, bRm) { IEMOP_MNEMONIC(fdivp_stN_st0, "fdivp stN,st0"); return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fdiv_r80_by_r80); } /** * Common worker for FPU instructions working on ST0 and an m16i, and storing * the result in ST0. * * @param pfnAImpl Pointer to the instruction implementation (assembly). */ FNIEMOP_DEF_2(iemOpHlpFpu_st0_m16i, uint8_t, bRm, PFNIEMAIMPLFPUI16, pfnAImpl) { IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(int16_t, i16Val2); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val2, i16Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I16(i16Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pi16Val2); IEM_MC_STORE_FPU_RESULT(FpuRes, 0); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW(0); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xde !11/0. */ FNIEMOP_DEF_1(iemOp_fiadd_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fiadd_m16i, "fiadd m16i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fiadd_r80_by_i16); } /** Opcode 0xde !11/1. */ FNIEMOP_DEF_1(iemOp_fimul_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fimul_m16i, "fimul m16i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fimul_r80_by_i16); } /** Opcode 0xde !11/2. */ FNIEMOP_DEF_1(iemOp_ficom_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(ficom_st0_m16i, "ficom st0,m16i"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(int16_t, i16Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val2, i16Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I16(i16Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i16, pu16Fsw, pr80Value1, pi16Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xde !11/3. */ FNIEMOP_DEF_1(iemOp_ficomp_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(ficomp_st0_m16i, "ficomp st0,m16i"); IEM_MC_BEGIN(3, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_LOCAL(int16_t, i16Val2); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1); IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val2, i16Val2, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I16(i16Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i16, pu16Fsw, pr80Value1, pi16Val2); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xde !11/4. */ FNIEMOP_DEF_1(iemOp_fisub_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fisub_m16i, "fisub m16i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fisub_r80_by_i16); } /** Opcode 0xde !11/5. */ FNIEMOP_DEF_1(iemOp_fisubr_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fisubr_m16i, "fisubr m16i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fisubr_r80_by_i16); } /** Opcode 0xde !11/6. */ FNIEMOP_DEF_1(iemOp_fidiv_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fidiv_m16i, "fidiv m16i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fidiv_r80_by_i16); } /** Opcode 0xde !11/7. */ FNIEMOP_DEF_1(iemOp_fidivr_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fidivr_m16i, "fidivr m16i"); return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fidivr_r80_by_i16); } /** * @opcode 0xde */ FNIEMOP_DEF(iemOp_EscF6) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xde & 0x7); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_faddp_stN_st0, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fmulp_stN_st0, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fcomp_stN, bRm); case 3: if (bRm == 0xd9) return FNIEMOP_CALL(iemOp_fcompp); return IEMOP_RAISE_INVALID_OPCODE(); case 4: return FNIEMOP_CALL_1(iemOp_fsubrp_stN_st0, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fsubp_stN_st0, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fdivrp_stN_st0, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fdivp_stN_st0, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fiadd_m16i, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fimul_m16i, bRm); case 2: return FNIEMOP_CALL_1(iemOp_ficom_m16i, bRm); case 3: return FNIEMOP_CALL_1(iemOp_ficomp_m16i, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fisub_m16i, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fisubr_m16i, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fidiv_m16i, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fidivr_m16i, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** Opcode 0xdf 11/0. * Undocument instruction, assumed to work like ffree + fincstp. */ FNIEMOP_DEF_1(iemOp_ffreep_stN, uint8_t, bRm) { IEMOP_MNEMONIC(ffreep_stN, "ffreep stN"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE(); IEM_MC_FPU_STACK_FREE(bRm & X86_MODRM_RM_MASK); IEM_MC_FPU_STACK_INC_TOP(); IEM_MC_UPDATE_FPU_OPCODE_IP(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdf 0xe0. */ FNIEMOP_DEF(iemOp_fnstsw_ax) { IEMOP_MNEMONIC(fnstsw_ax, "fnstsw ax"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Tmp); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ(); IEM_MC_FETCH_FSW(u16Tmp); IEM_MC_STORE_GREG_U16(X86_GREG_xAX, u16Tmp); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdf 11/5. */ FNIEMOP_DEF_1(iemOp_fucomip_st0_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fucomip_st0_stN, "fucomip st0,stN"); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fcomi_r80_by_r80, true /*fPop*/); } /** Opcode 0xdf 11/6. */ FNIEMOP_DEF_1(iemOp_fcomip_st0_stN, uint8_t, bRm) { IEMOP_MNEMONIC(fcomip_st0_stN, "fcomip st0,stN"); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fcomi_r80_by_r80, true /*fPop*/); } /** Opcode 0xdf !11/0. */ FNIEMOP_DEF_1(iemOp_fild_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fild_m16i, "fild m16i"); IEM_MC_BEGIN(2, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(int16_t, i16Val); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val, i16Val, 1); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I16(i16Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_IS_EMPTY(7) IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fild_i16_to_r80, pFpuRes, pi16Val); IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdf !11/1. */ FNIEMOP_DEF_1(iemOp_fisttp_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fisttp_m16i, "fisttp m16i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int16_t *, pi16Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi16Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fistt_r80_to_i16, pu16Fsw, pi16Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi16Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I16_CONST_BY_REF(pi16Dst, INT16_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi16Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdf !11/2. */ FNIEMOP_DEF_1(iemOp_fist_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fist_m16i, "fist m16i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int16_t *, pi16Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi16Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i16, pu16Fsw, pi16Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi16Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I16_CONST_BY_REF(pi16Dst, INT16_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi16Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdf !11/3. */ FNIEMOP_DEF_1(iemOp_fistp_m16i, uint8_t, bRm) { IEMOP_MNEMONIC(fistp_m16i, "fistp m16i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int16_t *, pi16Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi16Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i16, pu16Fsw, pi16Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi16Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I16_CONST_BY_REF(pi16Dst, INT16_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi16Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdf !11/4. */ FNIEMOP_STUB_1(iemOp_fbld_m80d, uint8_t, bRm); /** Opcode 0xdf !11/5. */ FNIEMOP_DEF_1(iemOp_fild_m64i, uint8_t, bRm) { IEMOP_MNEMONIC(fild_m64i, "fild m64i"); IEM_MC_BEGIN(2, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_LOCAL(IEMFPURESULT, FpuRes); IEM_MC_LOCAL(int64_t, i64Val); IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0); IEM_MC_ARG_LOCAL_REF(int64_t const *, pi64Val, i64Val, 1); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_FETCH_MEM_I64(i64Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_IS_EMPTY(7) IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fild_i64_to_r80, pFpuRes, pi64Val); IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ELSE() IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xdf !11/6. */ FNIEMOP_STUB_1(iemOp_fbstp_m80d, uint8_t, bRm); /** Opcode 0xdf !11/7. */ FNIEMOP_DEF_1(iemOp_fistp_m64i, uint8_t, bRm) { IEMOP_MNEMONIC(fistp_m64i, "fistp m64i"); IEM_MC_BEGIN(3, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(uint16_t, u16Fsw); IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0); IEM_MC_ARG(int64_t *, pi64Dst, 1); IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE(); IEM_MC_MAYBE_RAISE_FPU_XCPT(); IEM_MC_MEM_MAP(pi64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/); IEM_MC_PREPARE_FPU_USAGE(); IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0) IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i64, pu16Fsw, pi64Dst, pr80Value); IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi64Dst, IEM_ACCESS_DATA_W, u16Fsw); IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ELSE() IEM_MC_IF_FCW_IM() IEM_MC_STORE_MEM_I64_CONST_BY_REF(pi64Dst, INT64_MIN /* (integer indefinite) */); IEM_MC_MEM_COMMIT_AND_UNMAP(pi64Dst, IEM_ACCESS_DATA_W); IEM_MC_ENDIF(); IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_ENDIF(); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xdf */ FNIEMOP_DEF(iemOp_EscF7) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_ffreep_stN, bRm); /* ffree + pop afterwards, since forever according to AMD. */ case 1: return FNIEMOP_CALL_1(iemOp_fxch_stN, bRm); /* Reserved, behaves like FXCH ST(i) on intel. */ case 2: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm); /* Reserved, behaves like FSTP ST(i) on intel. */ case 3: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm); /* Reserved, behaves like FSTP ST(i) on intel. */ case 4: if (bRm == 0xe0) return FNIEMOP_CALL(iemOp_fnstsw_ax); return IEMOP_RAISE_INVALID_OPCODE(); case 5: return FNIEMOP_CALL_1(iemOp_fucomip_st0_stN, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fcomip_st0_stN, bRm); case 7: return IEMOP_RAISE_INVALID_OPCODE(); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_fild_m16i, bRm); case 1: return FNIEMOP_CALL_1(iemOp_fisttp_m16i, bRm); case 2: return FNIEMOP_CALL_1(iemOp_fist_m16i, bRm); case 3: return FNIEMOP_CALL_1(iemOp_fistp_m16i, bRm); case 4: return FNIEMOP_CALL_1(iemOp_fbld_m80d, bRm); case 5: return FNIEMOP_CALL_1(iemOp_fild_m64i, bRm); case 6: return FNIEMOP_CALL_1(iemOp_fbstp_m80d, bRm); case 7: return FNIEMOP_CALL_1(iemOp_fistp_m64i, bRm); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0xe0 */ FNIEMOP_DEF(iemOp_loopne_Jb) { IEMOP_MNEMONIC(loopne_Jb, "loopne Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MC_BEGIN(0,0); IEM_MC_SUB_GREG_U16(X86_GREG_xCX, 1); IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0,0); IEM_MC_SUB_GREG_U32(X86_GREG_xCX, 1); IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0,0); IEM_MC_SUB_GREG_U64(X86_GREG_xCX, 1); IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xe1 */ FNIEMOP_DEF(iemOp_loope_Jb) { IEMOP_MNEMONIC(loope_Jb, "loope Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MC_BEGIN(0,0); IEM_MC_SUB_GREG_U16(X86_GREG_xCX, 1); IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0,0); IEM_MC_SUB_GREG_U32(X86_GREG_xCX, 1); IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0,0); IEM_MC_SUB_GREG_U64(X86_GREG_xCX, 1); IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(X86_EFL_ZF) { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xe2 */ FNIEMOP_DEF(iemOp_loop_Jb) { IEMOP_MNEMONIC(loop_Jb, "loop Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); /** @todo Check out the #GP case if EIP < CS.Base or EIP > CS.Limit when * using the 32-bit operand size override. How can that be restarted? See * weird pseudo code in intel manual. */ switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MC_BEGIN(0,0); if (-(int8_t)IEM_GET_INSTR_LEN(pVCpu) != i8Imm) /** @todo Harmfull to windows 3.11 for workgroups and such. Make optional. */ { IEM_MC_SUB_GREG_U16(X86_GREG_xCX, 1); IEM_MC_IF_CX_IS_NZ() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); } else { IEM_MC_STORE_GREG_U16_CONST(X86_GREG_xCX, 0); IEM_MC_ADVANCE_RIP(); } IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0,0); if (-(int8_t)IEM_GET_INSTR_LEN(pVCpu) != i8Imm) { IEM_MC_SUB_GREG_U32(X86_GREG_xCX, 1); IEM_MC_IF_ECX_IS_NZ() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); } else { IEM_MC_STORE_GREG_U32_CONST(X86_GREG_xCX, 0); IEM_MC_ADVANCE_RIP(); } IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0,0); if (-(int8_t)IEM_GET_INSTR_LEN(pVCpu) != i8Imm) { IEM_MC_SUB_GREG_U64(X86_GREG_xCX, 1); IEM_MC_IF_RCX_IS_NZ() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ELSE() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ENDIF(); } else { IEM_MC_STORE_GREG_U64_CONST(X86_GREG_xCX, 0); IEM_MC_ADVANCE_RIP(); } IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xe3 */ FNIEMOP_DEF(iemOp_jecxz_Jb) { IEMOP_MNEMONIC(jecxz_Jb, "jecxz Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: IEM_MC_BEGIN(0,0); IEM_MC_IF_CX_IS_NZ() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0,0); IEM_MC_IF_ECX_IS_NZ() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0,0); IEM_MC_IF_RCX_IS_NZ() { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_REL_JMP_S8(i8Imm); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** Opcode 0xe4 */ FNIEMOP_DEF(iemOp_in_AL_Ib) { IEMOP_MNEMONIC(in_AL_Ib, "in AL,Ib"); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_in, u8Imm, true /* fImm */, 1); } /** Opcode 0xe5 */ FNIEMOP_DEF(iemOp_in_eAX_Ib) { IEMOP_MNEMONIC(in_eAX_Ib, "in eAX,Ib"); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_in, u8Imm, true /* fImm */, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4); } /** Opcode 0xe6 */ FNIEMOP_DEF(iemOp_out_Ib_AL) { IEMOP_MNEMONIC(out_Ib_AL, "out Ib,AL"); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_out, u8Imm, true /* fImm */, 1); } /** Opcode 0xe7 */ FNIEMOP_DEF(iemOp_out_Ib_eAX) { IEMOP_MNEMONIC(out_Ib_eAX, "out Ib,eAX"); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_out, u8Imm, true /* fImm */, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4); } /** * @opcode 0xe8 */ FNIEMOP_DEF(iemOp_call_Jv) { IEMOP_MNEMONIC(call_Jv, "call Jv"); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_call_rel_16, (int16_t)u16Imm); } case IEMMODE_32BIT: { uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_call_rel_32, (int32_t)u32Imm); } case IEMMODE_64BIT: { uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_call_rel_64, u64Imm); } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xe9 */ FNIEMOP_DEF(iemOp_jmp_Jv) { IEMOP_MNEMONIC(jmp_Jv, "jmp Jv"); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { int16_t i16Imm; IEM_OPCODE_GET_NEXT_S16(&i16Imm); IEM_MC_BEGIN(0, 0); IEM_MC_REL_JMP_S16(i16Imm); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_64BIT: case IEMMODE_32BIT: { int32_t i32Imm; IEM_OPCODE_GET_NEXT_S32(&i32Imm); IEM_MC_BEGIN(0, 0); IEM_MC_REL_JMP_S32(i32Imm); IEM_MC_END(); return VINF_SUCCESS; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xea */ FNIEMOP_DEF(iemOp_jmp_Ap) { IEMOP_MNEMONIC(jmp_Ap, "jmp Ap"); IEMOP_HLP_NO_64BIT(); /* Decode the far pointer address and pass it on to the far call C implementation. */ uint32_t offSeg; if (pVCpu->iem.s.enmEffOpSize != IEMMODE_16BIT) IEM_OPCODE_GET_NEXT_U32(&offSeg); else IEM_OPCODE_GET_NEXT_U16_ZX_U32(&offSeg); uint16_t uSel; IEM_OPCODE_GET_NEXT_U16(&uSel); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_FarJmp, uSel, offSeg, pVCpu->iem.s.enmEffOpSize); } /** * @opcode 0xeb */ FNIEMOP_DEF(iemOp_jmp_Jb) { IEMOP_MNEMONIC(jmp_Jb, "jmp Jb"); int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); IEM_MC_BEGIN(0, 0); IEM_MC_REL_JMP_S8(i8Imm); IEM_MC_END(); return VINF_SUCCESS; } /** Opcode 0xec */ FNIEMOP_DEF(iemOp_in_AL_DX) { IEMOP_MNEMONIC(in_AL_DX, "in AL,DX"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_in_eAX_DX, 1); } /** Opcode 0xed */ FNIEMOP_DEF(iemOp_in_eAX_DX) { IEMOP_MNEMONIC(in_eAX_DX, "in eAX,DX"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_in_eAX_DX, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4); } /** Opcode 0xee */ FNIEMOP_DEF(iemOp_out_DX_AL) { IEMOP_MNEMONIC(out_DX_AL, "out DX,AL"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_out_DX_eAX, 1); } /** Opcode 0xef */ FNIEMOP_DEF(iemOp_out_DX_eAX) { IEMOP_MNEMONIC(out_DX_eAX, "out DX,eAX"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_out_DX_eAX, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4); } /** * @opcode 0xf0 */ FNIEMOP_DEF(iemOp_lock) { IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("lock"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_LOCK; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0xf1 */ FNIEMOP_DEF(iemOp_int1) { IEMOP_MNEMONIC(int1, "int1"); /* icebp */ IEMOP_HLP_MIN_386(); /** @todo does not generate #UD on 286, or so they say... */ /** @todo testcase! */ return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_int, X86_XCPT_DB, IEMINT_INT1); } /** * @opcode 0xf2 */ FNIEMOP_DEF(iemOp_repne) { /* This overrides any previous REPE prefix. */ pVCpu->iem.s.fPrefixes &= ~IEM_OP_PRF_REPZ; IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("repne"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REPNZ; /* For the 4 entry opcode tables, REPNZ overrides any previous REPZ and operand size prefixes. */ pVCpu->iem.s.idxPrefix = 3; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0xf3 */ FNIEMOP_DEF(iemOp_repe) { /* This overrides any previous REPNE prefix. */ pVCpu->iem.s.fPrefixes &= ~IEM_OP_PRF_REPNZ; IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("repe"); pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REPZ; /* For the 4 entry opcode tables, REPNZ overrides any previous REPNZ and operand size prefixes. */ pVCpu->iem.s.idxPrefix = 2; uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b); return FNIEMOP_CALL(g_apfnOneByteMap[b]); } /** * @opcode 0xf4 */ FNIEMOP_DEF(iemOp_hlt) { IEMOP_MNEMONIC(hlt, "hlt"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_hlt); } /** * @opcode 0xf5 */ FNIEMOP_DEF(iemOp_cmc) { IEMOP_MNEMONIC(cmc, "cmc"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_FLIP_EFL_BIT(X86_EFL_CF); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * Common implementation of 'inc/dec/not/neg Eb'. * * @param bRm The RM byte. * @param pImpl The instruction implementation. */ FNIEMOP_DEF_2(iemOpCommonUnaryEb, uint8_t, bRm, PCIEMOPUNARYSIZES, pImpl) { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register access */ IEM_MC_BEGIN(2, 0); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG(uint32_t *, pEFlags, 1); IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU8, pu8Dst, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory access. */ IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU8, pu8Dst, pEFlags); else IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU8, pu8Dst, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** * Common implementation of 'inc/dec/not/neg Ev'. * * @param bRm The RM byte. * @param pImpl The instruction implementation. */ FNIEMOP_DEF_2(iemOpCommonUnaryEv, uint8_t, bRm, PCIEMOPUNARYSIZES, pImpl) { /* Registers are handled by a common worker. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, pImpl, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); /* Memory we do here. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU16, pu16Dst, pEFlags); else IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU16, pu16Dst, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU32, pu32Dst, pEFlags); else IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU32, pu32Dst, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(2, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)) IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU64, pu64Dst, pEFlags); else IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU64, pu64Dst, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** Opcode 0xf6 /0. */ FNIEMOP_DEF_1(iemOp_grp3_test_Eb, uint8_t, bRm) { IEMOP_MNEMONIC(test_Eb_Ib, "test Eb,Ib"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register access */ uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG_CONST(uint8_t, u8Src,/*=*/u8Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u8, pu8Dst, u8Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } else { /* memory access. */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint8_t *, pu8Dst, 0); IEM_MC_ARG(uint8_t, u8Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1); uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm); IEM_MC_ASSIGN(u8Src, u8Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u8, pu8Dst, u8Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_R); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); } return VINF_SUCCESS; } /** Opcode 0xf7 /0. */ FNIEMOP_DEF_1(iemOp_grp3_test_Ev, uint8_t, bRm) { IEMOP_MNEMONIC(test_Ev_Iv, "test Ev,Iv"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register access */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG_CONST(uint16_t, u16Src,/*=*/u16Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u16, pu16Dst, u16Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_32BIT: { uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG_CONST(uint32_t, u32Src,/*=*/u32Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u32, pu32Dst, u32Src, pEFlags); /* No clearing the high dword here - test doesn't write back the result. */ IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_64BIT: { uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEM_MC_BEGIN(3, 0); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG_CONST(uint64_t, u64Src,/*=*/u64Imm, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u64, pu64Dst, u64Src, pEFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* memory access. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16Dst, 0); IEM_MC_ARG(uint16_t, u16Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2); uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm); IEM_MC_ASSIGN(u16Src, u16Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u16, pu16Dst, u16Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_R); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_32BIT: { IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint32_t *, pu32Dst, 0); IEM_MC_ARG(uint32_t, u32Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm); IEM_MC_ASSIGN(u32Src, u32Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u32, pu32Dst, u32Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_R); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_64BIT: { IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint64_t *, pu64Dst, 0); IEM_MC_ARG(uint64_t, u64Src, 1); IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4); uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm); IEM_MC_ASSIGN(u64Src, u64Imm); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/); IEM_MC_FETCH_EFLAGS(EFlags); IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u64, pu64Dst, u64Src, pEFlags); IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_R); IEM_MC_COMMIT_EFLAGS(EFlags); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** Opcode 0xf6 /4, /5, /6 and /7. */ FNIEMOP_DEF_2(iemOpCommonGrp3MulDivEb, uint8_t, bRm, PFNIEMAIMPLMULDIVU8, pfnU8) { if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register access */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint16_t *, pu16AX, 0); IEM_MC_ARG(uint8_t, u8Value, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(int32_t, rc); IEM_MC_FETCH_GREG_U8(u8Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_3(rc, pfnU8, pu16AX, u8Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); } else { /* memory access. */ IEM_MC_BEGIN(3, 2); IEM_MC_ARG(uint16_t *, pu16AX, 0); IEM_MC_ARG(uint8_t, u8Value, 1); IEM_MC_ARG(uint32_t *, pEFlags, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(int32_t, rc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U8(u8Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_3(rc, pfnU8, pu16AX, u8Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); } return VINF_SUCCESS; } /** Opcode 0xf7 /4, /5, /6 and /7. */ FNIEMOP_DEF_2(iemOpCommonGrp3MulDivEv, uint8_t, bRm, PCIEMOPMULDIVSIZES, pImpl) { IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* register access */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(4, 1); IEM_MC_ARG(uint16_t *, pu16AX, 0); IEM_MC_ARG(uint16_t *, pu16DX, 1); IEM_MC_ARG(uint16_t, u16Value, 2); IEM_MC_ARG(uint32_t *, pEFlags, 3); IEM_MC_LOCAL(int32_t, rc); IEM_MC_FETCH_GREG_U16(u16Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX); IEM_MC_REF_GREG_U16(pu16DX, X86_GREG_xDX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU16, pu16AX, pu16DX, u16Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_32BIT: { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(4, 1); IEM_MC_ARG(uint32_t *, pu32AX, 0); IEM_MC_ARG(uint32_t *, pu32DX, 1); IEM_MC_ARG(uint32_t, u32Value, 2); IEM_MC_ARG(uint32_t *, pEFlags, 3); IEM_MC_LOCAL(int32_t, rc); IEM_MC_FETCH_GREG_U32(u32Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_GREG_U32(pu32AX, X86_GREG_xAX); IEM_MC_REF_GREG_U32(pu32DX, X86_GREG_xDX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU32, pu32AX, pu32DX, u32Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32AX); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32DX); IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_64BIT: { IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(4, 1); IEM_MC_ARG(uint64_t *, pu64AX, 0); IEM_MC_ARG(uint64_t *, pu64DX, 1); IEM_MC_ARG(uint64_t, u64Value, 2); IEM_MC_ARG(uint32_t *, pEFlags, 3); IEM_MC_LOCAL(int32_t, rc); IEM_MC_FETCH_GREG_U64(u64Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_REF_GREG_U64(pu64AX, X86_GREG_xAX); IEM_MC_REF_GREG_U64(pu64DX, X86_GREG_xDX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU64, pu64AX, pu64DX, u64Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* memory access. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: { IEM_MC_BEGIN(4, 2); IEM_MC_ARG(uint16_t *, pu16AX, 0); IEM_MC_ARG(uint16_t *, pu16DX, 1); IEM_MC_ARG(uint16_t, u16Value, 2); IEM_MC_ARG(uint32_t *, pEFlags, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(int32_t, rc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX); IEM_MC_REF_GREG_U16(pu16DX, X86_GREG_xDX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU16, pu16AX, pu16DX, u16Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_32BIT: { IEM_MC_BEGIN(4, 2); IEM_MC_ARG(uint32_t *, pu32AX, 0); IEM_MC_ARG(uint32_t *, pu32DX, 1); IEM_MC_ARG(uint32_t, u32Value, 2); IEM_MC_ARG(uint32_t *, pEFlags, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(int32_t, rc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(u32Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_GREG_U32(pu32AX, X86_GREG_xAX); IEM_MC_REF_GREG_U32(pu32DX, X86_GREG_xDX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU32, pu32AX, pu32DX, u32Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32AX); IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32DX); IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } case IEMMODE_64BIT: { IEM_MC_BEGIN(4, 2); IEM_MC_ARG(uint64_t *, pu64AX, 0); IEM_MC_ARG(uint64_t *, pu64DX, 1); IEM_MC_ARG(uint64_t, u64Value, 2); IEM_MC_ARG(uint32_t *, pEFlags, 3); IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst); IEM_MC_LOCAL(int32_t, rc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(u64Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst); IEM_MC_REF_GREG_U64(pu64AX, X86_GREG_xAX); IEM_MC_REF_GREG_U64(pu64DX, X86_GREG_xDX); IEM_MC_REF_EFLAGS(pEFlags); IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU64, pu64AX, pu64DX, u64Value, pEFlags); IEM_MC_IF_LOCAL_IS_Z(rc) { IEM_MC_ADVANCE_RIP(); } IEM_MC_ELSE() { IEM_MC_RAISE_DIVIDE_ERROR(); } IEM_MC_ENDIF(); IEM_MC_END(); return VINF_SUCCESS; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * @opcode 0xf6 */ FNIEMOP_DEF(iemOp_Grp3_Eb) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_grp3_test_Eb, bRm); case 1: /** @todo testcase: Present on <=386, most 486 (not early), Pentiums, and current CPUs too. CPUUNDOC.EXE */ return IEMOP_RAISE_INVALID_OPCODE(); case 2: IEMOP_MNEMONIC(not_Eb, "not Eb"); return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_not); case 3: IEMOP_MNEMONIC(neg_Eb, "neg Eb"); return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_neg); case 4: IEMOP_MNEMONIC(mul_Eb, "mul Eb"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_mul_u8); case 5: IEMOP_MNEMONIC(imul_Eb, "imul Eb"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_imul_u8); case 6: IEMOP_MNEMONIC(div_Eb, "div Eb"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_div_u8); case 7: IEMOP_MNEMONIC(idiv_Eb, "idiv Eb"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_idiv_u8); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xf7 */ FNIEMOP_DEF(iemOp_Grp3_Ev) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: return FNIEMOP_CALL_1(iemOp_grp3_test_Ev, bRm); case 1: /** @todo testcase: Present on <=386, most 486 (not early), Pentiums, and current CPUs too. CPUUNDOC.EXE */ return IEMOP_RAISE_INVALID_OPCODE(); case 2: IEMOP_MNEMONIC(not_Ev, "not Ev"); return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_not); case 3: IEMOP_MNEMONIC(neg_Ev, "neg Ev"); return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_neg); case 4: IEMOP_MNEMONIC(mul_Ev, "mul Ev"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_mul); case 5: IEMOP_MNEMONIC(imul_Ev, "imul Ev"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_imul); case 6: IEMOP_MNEMONIC(div_Ev, "div Ev"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_div); case 7: IEMOP_MNEMONIC(idiv_Ev, "idiv Ev"); IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF); return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_idiv); IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xf8 */ FNIEMOP_DEF(iemOp_clc) { IEMOP_MNEMONIC(clc, "clc"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_CLEAR_EFL_BIT(X86_EFL_CF); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xf9 */ FNIEMOP_DEF(iemOp_stc) { IEMOP_MNEMONIC(stc, "stc"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_SET_EFL_BIT(X86_EFL_CF); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xfa */ FNIEMOP_DEF(iemOp_cli) { IEMOP_MNEMONIC(cli, "cli"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_cli); } FNIEMOP_DEF(iemOp_sti) { IEMOP_MNEMONIC(sti, "sti"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_sti); } /** * @opcode 0xfc */ FNIEMOP_DEF(iemOp_cld) { IEMOP_MNEMONIC(cld, "cld"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_CLEAR_EFL_BIT(X86_EFL_DF); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xfd */ FNIEMOP_DEF(iemOp_std) { IEMOP_MNEMONIC(std, "std"); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_BEGIN(0, 0); IEM_MC_SET_EFL_BIT(X86_EFL_DF); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; } /** * @opcode 0xfe */ FNIEMOP_DEF(iemOp_Grp4) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: IEMOP_MNEMONIC(inc_Eb, "inc Eb"); return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_inc); case 1: IEMOP_MNEMONIC(dec_Eb, "dec Eb"); return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_dec); default: IEMOP_MNEMONIC(grp4_ud, "grp4-ud"); return IEMOP_RAISE_INVALID_OPCODE(); } } /** * Opcode 0xff /2. * @param bRm The RM byte. */ FNIEMOP_DEF_1(iemOp_Grp5_calln_Ev, uint8_t, bRm) { IEMOP_MNEMONIC(calln_Ev, "calln Ev"); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* The new RIP is taken from a register. */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(1, 0); IEM_MC_ARG(uint16_t, u16Target, 0); IEM_MC_FETCH_GREG_U16(u16Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_CALL_CIMPL_1(iemCImpl_call_16, u16Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(1, 0); IEM_MC_ARG(uint32_t, u32Target, 0); IEM_MC_FETCH_GREG_U32(u32Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_CALL_CIMPL_1(iemCImpl_call_32, u32Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(1, 0); IEM_MC_ARG(uint64_t, u64Target, 0); IEM_MC_FETCH_GREG_U64(u64Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_CALL_CIMPL_1(iemCImpl_call_64, u64Target); IEM_MC_END() return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* The new RIP is taken from a register. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(1, 1); IEM_MC_ARG(uint16_t, u16Target, 0); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_CALL_CIMPL_1(iemCImpl_call_16, u16Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(1, 1); IEM_MC_ARG(uint32_t, u32Target, 0); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(u32Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_CALL_CIMPL_1(iemCImpl_call_32, u32Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(1, 1); IEM_MC_ARG(uint64_t, u64Target, 0); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(u64Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_CALL_CIMPL_1(iemCImpl_call_64, u64Target); IEM_MC_END() return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmOpSize); FNIEMOP_DEF_2(iemOpHlp_Grp5_far_Ep, uint8_t, bRm, FNIEMCIMPLFARBRANCH *, pfnCImpl) { /* Registers? How?? */ if (RT_LIKELY((bRm & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT))) { /* likely */ } else return IEMOP_RAISE_INVALID_OPCODE(); /* callf eax is not legal */ /* Far pointer loaded from memory. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint16_t, u16Sel, 0); IEM_MC_ARG(uint16_t, offSeg, 1); IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, IEMMODE_16BIT, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(offSeg, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_FETCH_MEM_U16_DISP(u16Sel, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 2); IEM_MC_CALL_CIMPL_3(pfnCImpl, u16Sel, offSeg, enmEffOpSize); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: /** @todo testcase: AMD does not seem to believe in the case (see bs-cpu-xcpt-1) * and will apparently ignore REX.W, at least for the jmp far qword [rsp] * and call far qword [rsp] encodings. */ if (!IEM_IS_GUEST_CPU_AMD(pVCpu)) { IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint16_t, u16Sel, 0); IEM_MC_ARG(uint64_t, offSeg, 1); IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, IEMMODE_16BIT, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(offSeg, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_FETCH_MEM_U16_DISP(u16Sel, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 8); IEM_MC_CALL_CIMPL_3(pfnCImpl, u16Sel, offSeg, enmEffOpSize); IEM_MC_END(); return VINF_SUCCESS; } /* AMD falls thru. */ RT_FALL_THRU(); case IEMMODE_32BIT: IEM_MC_BEGIN(3, 1); IEM_MC_ARG(uint16_t, u16Sel, 0); IEM_MC_ARG(uint32_t, offSeg, 1); IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, IEMMODE_32BIT, 2); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(offSeg, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_FETCH_MEM_U16_DISP(u16Sel, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 4); IEM_MC_CALL_CIMPL_3(pfnCImpl, u16Sel, offSeg, enmEffOpSize); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * Opcode 0xff /3. * @param bRm The RM byte. */ FNIEMOP_DEF_1(iemOp_Grp5_callf_Ep, uint8_t, bRm) { IEMOP_MNEMONIC(callf_Ep, "callf Ep"); return FNIEMOP_CALL_2(iemOpHlp_Grp5_far_Ep, bRm, iemCImpl_callf); } /** * Opcode 0xff /4. * @param bRm The RM byte. */ FNIEMOP_DEF_1(iemOp_Grp5_jmpn_Ev, uint8_t, bRm) { IEMOP_MNEMONIC(jmpn_Ev, "jmpn Ev"); IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) { /* The new RIP is taken from a register. */ IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint16_t, u16Target); IEM_MC_FETCH_GREG_U16(u16Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_SET_RIP_U16(u16Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint32_t, u32Target); IEM_MC_FETCH_GREG_U32(u32Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_SET_RIP_U32(u32Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 1); IEM_MC_LOCAL(uint64_t, u64Target); IEM_MC_FETCH_GREG_U64(u64Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); IEM_MC_SET_RIP_U64(u64Target); IEM_MC_END() return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } else { /* The new RIP is taken from a memory location. */ switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, u16Target); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_SET_RIP_U16(u16Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint32_t, u32Target); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(u32Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_SET_RIP_U32(u32Target); IEM_MC_END() return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint64_t, u64Target); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(u64Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_SET_RIP_U64(u64Target); IEM_MC_END() return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } } /** * Opcode 0xff /5. * @param bRm The RM byte. */ FNIEMOP_DEF_1(iemOp_Grp5_jmpf_Ep, uint8_t, bRm) { IEMOP_MNEMONIC(jmpf_Ep, "jmpf Ep"); return FNIEMOP_CALL_2(iemOpHlp_Grp5_far_Ep, bRm, iemCImpl_FarJmp); } /** * Opcode 0xff /6. * @param bRm The RM byte. */ FNIEMOP_DEF_1(iemOp_Grp5_push_Ev, uint8_t, bRm) { IEMOP_MNEMONIC(push_Ev, "push Ev"); /* Registers are handled by a common worker. */ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) return FNIEMOP_CALL_1(iemOpCommonPushGReg, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB); /* Memory we do here. */ IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); switch (pVCpu->iem.s.enmEffOpSize) { case IEMMODE_16BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint16_t, u16Src); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U16(u16Src, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PUSH_U16(u16Src); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_32BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint32_t, u32Src); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U32(u32Src, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PUSH_U32(u32Src); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; case IEMMODE_64BIT: IEM_MC_BEGIN(0, 2); IEM_MC_LOCAL(uint64_t, u64Src); IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc); IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0); IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); IEM_MC_FETCH_MEM_U64(u64Src, pVCpu->iem.s.iEffSeg, GCPtrEffSrc); IEM_MC_PUSH_U64(u64Src); IEM_MC_ADVANCE_RIP(); IEM_MC_END(); return VINF_SUCCESS; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } /** * @opcode 0xff */ FNIEMOP_DEF(iemOp_Grp5) { uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm); switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) { case 0: IEMOP_MNEMONIC(inc_Ev, "inc Ev"); return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_inc); case 1: IEMOP_MNEMONIC(dec_Ev, "dec Ev"); return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_dec); case 2: return FNIEMOP_CALL_1(iemOp_Grp5_calln_Ev, bRm); case 3: return FNIEMOP_CALL_1(iemOp_Grp5_callf_Ep, bRm); case 4: return FNIEMOP_CALL_1(iemOp_Grp5_jmpn_Ev, bRm); case 5: return FNIEMOP_CALL_1(iemOp_Grp5_jmpf_Ep, bRm); case 6: return FNIEMOP_CALL_1(iemOp_Grp5_push_Ev, bRm); case 7: IEMOP_MNEMONIC(grp5_ud, "grp5-ud"); return IEMOP_RAISE_INVALID_OPCODE(); } AssertFailedReturn(VERR_IEM_IPE_3); } const PFNIEMOP g_apfnOneByteMap[256] = { /* 0x00 */ iemOp_add_Eb_Gb, iemOp_add_Ev_Gv, iemOp_add_Gb_Eb, iemOp_add_Gv_Ev, /* 0x04 */ iemOp_add_Al_Ib, iemOp_add_eAX_Iz, iemOp_push_ES, iemOp_pop_ES, /* 0x08 */ iemOp_or_Eb_Gb, iemOp_or_Ev_Gv, iemOp_or_Gb_Eb, iemOp_or_Gv_Ev, /* 0x0c */ iemOp_or_Al_Ib, iemOp_or_eAX_Iz, iemOp_push_CS, iemOp_2byteEscape, /* 0x10 */ iemOp_adc_Eb_Gb, iemOp_adc_Ev_Gv, iemOp_adc_Gb_Eb, iemOp_adc_Gv_Ev, /* 0x14 */ iemOp_adc_Al_Ib, iemOp_adc_eAX_Iz, iemOp_push_SS, iemOp_pop_SS, /* 0x18 */ iemOp_sbb_Eb_Gb, iemOp_sbb_Ev_Gv, iemOp_sbb_Gb_Eb, iemOp_sbb_Gv_Ev, /* 0x1c */ iemOp_sbb_Al_Ib, iemOp_sbb_eAX_Iz, iemOp_push_DS, iemOp_pop_DS, /* 0x20 */ iemOp_and_Eb_Gb, iemOp_and_Ev_Gv, iemOp_and_Gb_Eb, iemOp_and_Gv_Ev, /* 0x24 */ iemOp_and_Al_Ib, iemOp_and_eAX_Iz, iemOp_seg_ES, iemOp_daa, /* 0x28 */ iemOp_sub_Eb_Gb, iemOp_sub_Ev_Gv, iemOp_sub_Gb_Eb, iemOp_sub_Gv_Ev, /* 0x2c */ iemOp_sub_Al_Ib, iemOp_sub_eAX_Iz, iemOp_seg_CS, iemOp_das, /* 0x30 */ iemOp_xor_Eb_Gb, iemOp_xor_Ev_Gv, iemOp_xor_Gb_Eb, iemOp_xor_Gv_Ev, /* 0x34 */ iemOp_xor_Al_Ib, iemOp_xor_eAX_Iz, iemOp_seg_SS, iemOp_aaa, /* 0x38 */ iemOp_cmp_Eb_Gb, iemOp_cmp_Ev_Gv, iemOp_cmp_Gb_Eb, iemOp_cmp_Gv_Ev, /* 0x3c */ iemOp_cmp_Al_Ib, iemOp_cmp_eAX_Iz, iemOp_seg_DS, iemOp_aas, /* 0x40 */ iemOp_inc_eAX, iemOp_inc_eCX, iemOp_inc_eDX, iemOp_inc_eBX, /* 0x44 */ iemOp_inc_eSP, iemOp_inc_eBP, iemOp_inc_eSI, iemOp_inc_eDI, /* 0x48 */ iemOp_dec_eAX, iemOp_dec_eCX, iemOp_dec_eDX, iemOp_dec_eBX, /* 0x4c */ iemOp_dec_eSP, iemOp_dec_eBP, iemOp_dec_eSI, iemOp_dec_eDI, /* 0x50 */ iemOp_push_eAX, iemOp_push_eCX, iemOp_push_eDX, iemOp_push_eBX, /* 0x54 */ iemOp_push_eSP, iemOp_push_eBP, iemOp_push_eSI, iemOp_push_eDI, /* 0x58 */ iemOp_pop_eAX, iemOp_pop_eCX, iemOp_pop_eDX, iemOp_pop_eBX, /* 0x5c */ iemOp_pop_eSP, iemOp_pop_eBP, iemOp_pop_eSI, iemOp_pop_eDI, /* 0x60 */ iemOp_pusha, iemOp_popa__mvex, iemOp_bound_Gv_Ma__evex, iemOp_arpl_Ew_Gw_movsx_Gv_Ev, /* 0x64 */ iemOp_seg_FS, iemOp_seg_GS, iemOp_op_size, iemOp_addr_size, /* 0x68 */ iemOp_push_Iz, iemOp_imul_Gv_Ev_Iz, iemOp_push_Ib, iemOp_imul_Gv_Ev_Ib, /* 0x6c */ iemOp_insb_Yb_DX, iemOp_inswd_Yv_DX, iemOp_outsb_Yb_DX, iemOp_outswd_Yv_DX, /* 0x70 */ iemOp_jo_Jb, iemOp_jno_Jb, iemOp_jc_Jb, iemOp_jnc_Jb, /* 0x74 */ iemOp_je_Jb, iemOp_jne_Jb, iemOp_jbe_Jb, iemOp_jnbe_Jb, /* 0x78 */ iemOp_js_Jb, iemOp_jns_Jb, iemOp_jp_Jb, iemOp_jnp_Jb, /* 0x7c */ iemOp_jl_Jb, iemOp_jnl_Jb, iemOp_jle_Jb, iemOp_jnle_Jb, /* 0x80 */ iemOp_Grp1_Eb_Ib_80, iemOp_Grp1_Ev_Iz, iemOp_Grp1_Eb_Ib_82, iemOp_Grp1_Ev_Ib, /* 0x84 */ iemOp_test_Eb_Gb, iemOp_test_Ev_Gv, iemOp_xchg_Eb_Gb, iemOp_xchg_Ev_Gv, /* 0x88 */ iemOp_mov_Eb_Gb, iemOp_mov_Ev_Gv, iemOp_mov_Gb_Eb, iemOp_mov_Gv_Ev, /* 0x8c */ iemOp_mov_Ev_Sw, iemOp_lea_Gv_M, iemOp_mov_Sw_Ev, iemOp_Grp1A__xop, /* 0x90 */ iemOp_nop, iemOp_xchg_eCX_eAX, iemOp_xchg_eDX_eAX, iemOp_xchg_eBX_eAX, /* 0x94 */ iemOp_xchg_eSP_eAX, iemOp_xchg_eBP_eAX, iemOp_xchg_eSI_eAX, iemOp_xchg_eDI_eAX, /* 0x98 */ iemOp_cbw, iemOp_cwd, iemOp_call_Ap, iemOp_wait, /* 0x9c */ iemOp_pushf_Fv, iemOp_popf_Fv, iemOp_sahf, iemOp_lahf, /* 0xa0 */ iemOp_mov_AL_Ob, iemOp_mov_rAX_Ov, iemOp_mov_Ob_AL, iemOp_mov_Ov_rAX, /* 0xa4 */ iemOp_movsb_Xb_Yb, iemOp_movswd_Xv_Yv, iemOp_cmpsb_Xb_Yb, iemOp_cmpswd_Xv_Yv, /* 0xa8 */ iemOp_test_AL_Ib, iemOp_test_eAX_Iz, iemOp_stosb_Yb_AL, iemOp_stoswd_Yv_eAX, /* 0xac */ iemOp_lodsb_AL_Xb, iemOp_lodswd_eAX_Xv, iemOp_scasb_AL_Xb, iemOp_scaswd_eAX_Xv, /* 0xb0 */ iemOp_mov_AL_Ib, iemOp_CL_Ib, iemOp_DL_Ib, iemOp_BL_Ib, /* 0xb4 */ iemOp_mov_AH_Ib, iemOp_CH_Ib, iemOp_DH_Ib, iemOp_BH_Ib, /* 0xb8 */ iemOp_eAX_Iv, iemOp_eCX_Iv, iemOp_eDX_Iv, iemOp_eBX_Iv, /* 0xbc */ iemOp_eSP_Iv, iemOp_eBP_Iv, iemOp_eSI_Iv, iemOp_eDI_Iv, /* 0xc0 */ iemOp_Grp2_Eb_Ib, iemOp_Grp2_Ev_Ib, iemOp_retn_Iw, iemOp_retn, /* 0xc4 */ iemOp_les_Gv_Mp__vex3, iemOp_lds_Gv_Mp__vex2, iemOp_Grp11_Eb_Ib, iemOp_Grp11_Ev_Iz, /* 0xc8 */ iemOp_enter_Iw_Ib, iemOp_leave, iemOp_retf_Iw, iemOp_retf, /* 0xcc */ iemOp_int3, iemOp_int_Ib, iemOp_into, iemOp_iret, /* 0xd0 */ iemOp_Grp2_Eb_1, iemOp_Grp2_Ev_1, iemOp_Grp2_Eb_CL, iemOp_Grp2_Ev_CL, /* 0xd4 */ iemOp_aam_Ib, iemOp_aad_Ib, iemOp_salc, iemOp_xlat, /* 0xd8 */ iemOp_EscF0, iemOp_EscF1, iemOp_EscF2, iemOp_EscF3, /* 0xdc */ iemOp_EscF4, iemOp_EscF5, iemOp_EscF6, iemOp_EscF7, /* 0xe0 */ iemOp_loopne_Jb, iemOp_loope_Jb, iemOp_loop_Jb, iemOp_jecxz_Jb, /* 0xe4 */ iemOp_in_AL_Ib, iemOp_in_eAX_Ib, iemOp_out_Ib_AL, iemOp_out_Ib_eAX, /* 0xe8 */ iemOp_call_Jv, iemOp_jmp_Jv, iemOp_jmp_Ap, iemOp_jmp_Jb, /* 0xec */ iemOp_in_AL_DX, iemOp_in_eAX_DX, iemOp_out_DX_AL, iemOp_out_DX_eAX, /* 0xf0 */ iemOp_lock, iemOp_int1, iemOp_repne, iemOp_repe, /* 0xf4 */ iemOp_hlt, iemOp_cmc, iemOp_Grp3_Eb, iemOp_Grp3_Ev, /* 0xf8 */ iemOp_clc, iemOp_stc, iemOp_cli, iemOp_sti, /* 0xfc */ iemOp_cld, iemOp_std, iemOp_Grp4, iemOp_Grp5, }; /** @} */