VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp@ 95085

Last change on this file since 95085 was 94842, checked in by vboxsync, 3 years ago

VMM/IEM: Arm build fixes. bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 401.1 KB
Line 
1/* $Id: IEMAllCImplVmxInstr.cpp 94842 2022-05-05 10:38:40Z vboxsync $ */
2/** @file
3 * IEM - VT-x instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_IEM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <VBox/vmm/iem.h>
25#include <VBox/vmm/cpum.h>
26#include <VBox/vmm/apic.h>
27#include <VBox/vmm/pgm.h>
28#include <VBox/vmm/em.h>
29#include <VBox/vmm/hm.h>
30#include <VBox/vmm/gim.h>
31#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
32# include <VBox/vmm/hmvmxinline.h>
33#endif
34#include <VBox/vmm/tm.h>
35#include "IEMInternal.h"
36#include <VBox/vmm/vmcc.h>
37#include <VBox/log.h>
38#include <VBox/err.h>
39#include <VBox/param.h>
40#include <VBox/disopcode.h>
41#include <iprt/asm-math.h>
42#include <iprt/assert.h>
43#include <iprt/string.h>
44#include <iprt/x86.h>
45
46#include "IEMInline.h"
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
53/**
54 * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
55 * relative offsets.
56 */
57# ifdef IEM_WITH_CODE_TLB /** @todo IEM TLB */
58# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { a_bModRm = 0; RT_NOREF(a_offModRm); } while (0)
59# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { a_bSib = 0; RT_NOREF(a_offSib); } while (0)
60# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
61# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
62# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
63# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
64# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
65# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
66# if 0
67# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
68# endif
69# else /* !IEM_WITH_CODE_TLB */
70# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
71 do \
72 { \
73 Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
74 (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
75 } while (0)
76
77# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
78
79# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
80 do \
81 { \
82 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
83 uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
84 uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
85 (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
86 } while (0)
87
88# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
89 do \
90 { \
91 Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
92 (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
93 } while (0)
94
95# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
96 do \
97 { \
98 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
99 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
100 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
101 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
102 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
103 (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
104 } while (0)
105
106# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
107 do \
108 { \
109 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
110 (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
111 } while (0)
112
113# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
114 do \
115 { \
116 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
117 (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
118 } while (0)
119
120# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
121 do \
122 { \
123 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
124 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
125 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
126 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
127 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
128 (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
129 } while (0)
130# endif /* !IEM_WITH_CODE_TLB */
131
132/** Check for VMX instructions requiring to be in VMX operation.
133 * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
134# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
135 do \
136 { \
137 if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
138 { /* likely */ } \
139 else \
140 { \
141 Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
142 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
143 return iemRaiseUndefinedOpcode(a_pVCpu); \
144 } \
145 } while (0)
146
147/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
148# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
149 do \
150 { \
151 LogRel(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
152 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
153 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
154 return VERR_VMX_VMENTRY_FAILED; \
155 } while (0)
156
157/** Marks a VM-exit failure with a diagnostic reason and logs. */
158# define IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
159 do \
160 { \
161 LogRel(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
162 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
163 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
164 } while (0)
165
166/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
167# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
168 do \
169 { \
170 IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag); \
171 return VERR_VMX_VMEXIT_FAILED; \
172 } while (0)
173
174
175/*********************************************************************************************************************************
176* Global Variables *
177*********************************************************************************************************************************/
178/** @todo NSTVMX: The following VM-exit intercepts are pending:
179 * VMX_EXIT_IO_SMI
180 * VMX_EXIT_SMI
181 * VMX_EXIT_GETSEC
182 * VMX_EXIT_RSM
183 * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
184 * VMX_EXIT_ERR_MACHINE_CHECK (we never need to raise this?)
185 * VMX_EXIT_RDRAND
186 * VMX_EXIT_VMFUNC
187 * VMX_EXIT_ENCLS
188 * VMX_EXIT_RDSEED
189 * VMX_EXIT_PML_FULL
190 * VMX_EXIT_XSAVES
191 * VMX_EXIT_XRSTORS
192 */
193/**
194 * Map of VMCS field encodings to their virtual-VMCS structure offsets.
195 *
196 * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
197 * second dimension is the Index, see VMXVMCSFIELD.
198 */
199uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
200{
201 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
202 {
203 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
204 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
205 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
206 /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
207 /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
208 /* 19-26 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
209 /* 27 */ UINT16_MAX,
210 },
211 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
212 {
213 /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
214 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
215 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
216 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
217 },
218 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
219 {
220 /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
221 /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
222 /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
223 /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
224 /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
225 /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
226 /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
227 /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
228 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
229 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
230 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
231 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
232 /* 26-27 */ UINT16_MAX, UINT16_MAX
233 },
234 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
235 {
236 /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
237 /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
238 /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
239 /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
240 /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
241 /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
242 /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
243 /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
244 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
245 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
246 },
247 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
248 {
249 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
250 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
251 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
252 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
253 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
254 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
255 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
256 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
257 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
258 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
259 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
260 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
261 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
262 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptPtr),
263 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
264 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
265 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
266 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
267 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
268 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
269 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
270 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
271 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssExitBitmap),
272 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64EnclsExitBitmap),
273 /* 24 */ RT_UOFFSETOF(VMXVVMCS, u64SppTablePtr),
274 /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier),
275 /* 26 */ RT_UOFFSETOF(VMXVVMCS, u64ProcCtls3),
276 /* 27 */ RT_UOFFSETOF(VMXVVMCS, u64EnclvExitBitmap)
277 },
278 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
279 {
280 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
281 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
282 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
283 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
284 /* 25-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
285 },
286 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
287 {
288 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
289 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
290 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
291 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
292 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
293 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
294 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
295 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
296 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
297 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
298 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRtitCtlMsr),
299 /* 11 */ UINT16_MAX,
300 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPkrsMsr),
301 /* 13-20 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
302 /* 21-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
303 },
304 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
305 {
306 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
307 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
308 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
309 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostPkrsMsr),
310 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
311 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
312 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
313 },
314 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
315 {
316 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
317 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
318 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
319 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
320 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
321 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
322 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
323 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
324 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
325 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
326 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
327 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
328 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
329 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
330 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
331 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
332 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
333 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
334 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
335 /* 26-27 */ UINT16_MAX, UINT16_MAX
336 },
337 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
338 {
339 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
340 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
341 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
342 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
343 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
344 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
345 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
346 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
347 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
348 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
349 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
350 },
351 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
352 {
353 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
354 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
355 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
356 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
357 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
358 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
359 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
360 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
361 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
362 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
363 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
364 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
365 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
366 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
367 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
368 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
369 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
370 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
371 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
372 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
373 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
374 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
375 /* 22 */ UINT16_MAX,
376 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
377 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
378 },
379 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
380 {
381 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
382 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
383 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
384 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
385 /* 25-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
386 },
387 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_CONTROL: */
388 {
389 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
390 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
391 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
392 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
393 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
394 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
395 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
396 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
397 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
398 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
399 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
400 },
401 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
402 {
403 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
404 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
405 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
406 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
407 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
408 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
409 /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
410 /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
411 /* 22-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
412 },
413 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
414 {
415 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
416 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
417 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
418 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
419 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
420 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
421 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
422 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
423 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
424 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
425 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
426 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
427 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
428 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
429 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
430 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
431 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
432 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpts),
433 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
434 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
435 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSCetMsr),
436 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsp),
437 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIntrSspTableAddrMsr),
438 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
439 },
440 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_HOST_STATE: */
441 {
442 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
443 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
444 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
445 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
446 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
447 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
448 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
449 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
450 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
451 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
452 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
453 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
454 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64HostSCetMsr),
455 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64HostSsp),
456 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64HostIntrSspTableAddrMsr),
457 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
458 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
459 }
460};
461
462
463/**
464 * Gets a host selector from the VMCS.
465 *
466 * @param pVmcs Pointer to the virtual VMCS.
467 * @param iSelReg The index of the segment register (X86_SREG_XXX).
468 */
469DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
470{
471 Assert(iSegReg < X86_SREG_COUNT);
472 RTSEL HostSel;
473 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
474 uint8_t const uType = VMX_VMCSFIELD_TYPE_HOST_STATE;
475 uint8_t const uWidthType = (uWidth << 2) | uType;
476 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
477 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
478 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
479 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
480 uint8_t const *pbField = pbVmcs + offField;
481 HostSel = *(uint16_t *)pbField;
482 return HostSel;
483}
484
485
486/**
487 * Sets a guest segment register in the VMCS.
488 *
489 * @param pVmcs Pointer to the virtual VMCS.
490 * @param iSegReg The index of the segment register (X86_SREG_XXX).
491 * @param pSelReg Pointer to the segment register.
492 */
493static void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg) RT_NOEXCEPT
494{
495 Assert(pSelReg);
496 Assert(iSegReg < X86_SREG_COUNT);
497
498 /* Selector. */
499 {
500 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
501 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
502 uint8_t const uWidthType = (uWidth << 2) | uType;
503 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
504 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
505 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
506 uint8_t *pbVmcs = (uint8_t *)pVmcs;
507 uint8_t *pbField = pbVmcs + offField;
508 *(uint16_t *)pbField = pSelReg->Sel;
509 }
510
511 /* Limit. */
512 {
513 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
514 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
515 uint8_t const uWidthType = (uWidth << 2) | uType;
516 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
517 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
518 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
519 uint8_t *pbVmcs = (uint8_t *)pVmcs;
520 uint8_t *pbField = pbVmcs + offField;
521 *(uint32_t *)pbField = pSelReg->u32Limit;
522 }
523
524 /* Base. */
525 {
526 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
527 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
528 uint8_t const uWidthType = (uWidth << 2) | uType;
529 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
530 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
531 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
532 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
533 uint8_t const *pbField = pbVmcs + offField;
534 *(uint64_t *)pbField = pSelReg->u64Base;
535 }
536
537 /* Attributes. */
538 {
539 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
540 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
541 | X86DESCATTR_UNUSABLE;
542 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
543 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
544 uint8_t const uWidthType = (uWidth << 2) | uType;
545 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
546 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
547 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
548 uint8_t *pbVmcs = (uint8_t *)pVmcs;
549 uint8_t *pbField = pbVmcs + offField;
550 *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
551 }
552}
553
554
555/**
556 * Gets a guest segment register from the VMCS.
557 *
558 * @returns VBox status code.
559 * @param pVmcs Pointer to the virtual VMCS.
560 * @param iSegReg The index of the segment register (X86_SREG_XXX).
561 * @param pSelReg Where to store the segment register (only updated when
562 * VINF_SUCCESS is returned).
563 *
564 * @remarks Warning! This does not validate the contents of the retrieved segment
565 * register.
566 */
567static int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg) RT_NOEXCEPT
568{
569 Assert(pSelReg);
570 Assert(iSegReg < X86_SREG_COUNT);
571
572 /* Selector. */
573 uint16_t u16Sel;
574 {
575 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
576 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
577 uint8_t const uWidthType = (uWidth << 2) | uType;
578 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
579 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
580 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
581 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
582 uint8_t const *pbField = pbVmcs + offField;
583 u16Sel = *(uint16_t *)pbField;
584 }
585
586 /* Limit. */
587 uint32_t u32Limit;
588 {
589 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
590 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
591 uint8_t const uWidthType = (uWidth << 2) | uType;
592 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
593 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
594 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
595 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
596 uint8_t const *pbField = pbVmcs + offField;
597 u32Limit = *(uint32_t *)pbField;
598 }
599
600 /* Base. */
601 uint64_t u64Base;
602 {
603 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
604 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
605 uint8_t const uWidthType = (uWidth << 2) | uType;
606 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
607 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
608 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
609 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
610 uint8_t const *pbField = pbVmcs + offField;
611 u64Base = *(uint64_t *)pbField;
612 /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
613 }
614
615 /* Attributes. */
616 uint32_t u32Attr;
617 {
618 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
619 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
620 uint8_t const uWidthType = (uWidth << 2) | uType;
621 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
622 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
623 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
624 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
625 uint8_t const *pbField = pbVmcs + offField;
626 u32Attr = *(uint32_t *)pbField;
627 }
628
629 pSelReg->Sel = u16Sel;
630 pSelReg->ValidSel = u16Sel;
631 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
632 pSelReg->u32Limit = u32Limit;
633 pSelReg->u64Base = u64Base;
634 pSelReg->Attr.u = u32Attr;
635 return VINF_SUCCESS;
636}
637
638
639/**
640 * Converts an IEM exception event type to a VMX event type.
641 *
642 * @returns The VMX event type.
643 * @param uVector The interrupt / exception vector.
644 * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
645 */
646DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
647{
648 /* Paranoia (callers may use these interchangeably). */
649 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
650 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
651 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
652 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
653 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
654 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
655 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
656 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
657 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
658 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
659 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
660 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
661
662 if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
663 {
664 if (uVector == X86_XCPT_NMI)
665 return VMX_EXIT_INT_INFO_TYPE_NMI;
666 return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
667 }
668
669 if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
670 {
671 if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
672 return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
673 if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
674 return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
675 return VMX_EXIT_INT_INFO_TYPE_SW_INT;
676 }
677
678 Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
679 return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
680}
681
682
683/**
684 * Determines whether the guest is using PAE paging given the VMCS.
685 *
686 * @returns @c true if PAE paging mode is used, @c false otherwise.
687 * @param pVmcs Pointer to the virtual VMCS.
688 */
689DECL_FORCE_INLINE(bool) iemVmxVmcsIsGuestPaePagingEnabled(PCVMXVVMCS pVmcs)
690{
691 return ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
692 && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
693 && (pVmcs->u64GuestCr0.u & X86_CR0_PG));
694}
695
696
697/**
698 * Sets the Exit qualification VMCS field.
699 *
700 * @param pVCpu The cross context virtual CPU structure.
701 * @param u64ExitQual The Exit qualification.
702 */
703DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPUCC pVCpu, uint64_t u64ExitQual)
704{
705 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoExitQual.u = u64ExitQual;
706}
707
708
709/**
710 * Sets the VM-exit interruption information field.
711 *
712 * @param pVCpu The cross context virtual CPU structure.
713 * @param uExitIntInfo The VM-exit interruption information.
714 */
715DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPUCC pVCpu, uint32_t uExitIntInfo)
716{
717 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntInfo = uExitIntInfo;
718}
719
720
721/**
722 * Sets the VM-exit interruption error code.
723 *
724 * @param pVCpu The cross context virtual CPU structure.
725 * @param uErrCode The error code.
726 */
727DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
728{
729 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntErrCode = uErrCode;
730}
731
732
733/**
734 * Sets the IDT-vectoring information field.
735 *
736 * @param pVCpu The cross context virtual CPU structure.
737 * @param uIdtVectorInfo The IDT-vectoring information.
738 */
739DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPUCC pVCpu, uint32_t uIdtVectorInfo)
740{
741 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo = uIdtVectorInfo;
742}
743
744
745/**
746 * Sets the IDT-vectoring error code field.
747 *
748 * @param pVCpu The cross context virtual CPU structure.
749 * @param uErrCode The error code.
750 */
751DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
752{
753 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringErrCode = uErrCode;
754}
755
756
757/**
758 * Sets the VM-exit guest-linear address VMCS field.
759 *
760 * @param pVCpu The cross context virtual CPU structure.
761 * @param uGuestLinearAddr The VM-exit guest-linear address.
762 */
763DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPUCC pVCpu, uint64_t uGuestLinearAddr)
764{
765 /* Bits 63:32 of guest-linear address MBZ if the guest isn't in long mode prior to the VM-exit. */
766 Assert(CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)) || !(uGuestLinearAddr & UINT64_C(0xffffffff00000000)));
767 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestLinearAddr.u = uGuestLinearAddr;
768}
769
770
771/**
772 * Sets the VM-exit guest-physical address VMCS field.
773 *
774 * @param pVCpu The cross context virtual CPU structure.
775 * @param uGuestPhysAddr The VM-exit guest-physical address.
776 */
777DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPUCC pVCpu, uint64_t uGuestPhysAddr)
778{
779 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestPhysAddr.u = uGuestPhysAddr;
780}
781
782
783/**
784 * Sets the VM-exit instruction length VMCS field.
785 *
786 * @param pVCpu The cross context virtual CPU structure.
787 * @param cbInstr The VM-exit instruction length in bytes.
788 *
789 * @remarks Callers may clear this field to 0. Hence, this function does not check
790 * the validity of the instruction length.
791 */
792DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPUCC pVCpu, uint32_t cbInstr)
793{
794 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrLen = cbInstr;
795}
796
797
798/**
799 * Sets the VM-exit instruction info. VMCS field.
800 *
801 * @param pVCpu The cross context virtual CPU structure.
802 * @param uExitInstrInfo The VM-exit instruction information.
803 */
804DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitInstrInfo)
805{
806 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrInfo = uExitInstrInfo;
807}
808
809
810/**
811 * Sets the guest pending-debug exceptions field.
812 *
813 * @param pVCpu The cross context virtual CPU structure.
814 * @param uGuestPendingDbgXcpts The guest pending-debug exceptions.
815 */
816DECL_FORCE_INLINE(void) iemVmxVmcsSetGuestPendingDbgXcpts(PVMCPUCC pVCpu, uint64_t uGuestPendingDbgXcpts)
817{
818 Assert(!(uGuestPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK));
819 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestPendingDbgXcpts.u = uGuestPendingDbgXcpts;
820}
821
822
823/**
824 * Implements VMSucceed for VMX instruction success.
825 *
826 * @param pVCpu The cross context virtual CPU structure.
827 */
828DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPUCC pVCpu)
829{
830 return CPUMSetGuestVmxVmSucceed(&pVCpu->cpum.GstCtx);
831}
832
833
834/**
835 * Implements VMFailInvalid for VMX instruction failure.
836 *
837 * @param pVCpu The cross context virtual CPU structure.
838 */
839DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPUCC pVCpu)
840{
841 return CPUMSetGuestVmxVmFailInvalid(&pVCpu->cpum.GstCtx);
842}
843
844
845/**
846 * Implements VMFail for VMX instruction failure.
847 *
848 * @param pVCpu The cross context virtual CPU structure.
849 * @param enmInsErr The VM instruction error.
850 */
851DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPUCC pVCpu, VMXINSTRERR enmInsErr)
852{
853 return CPUMSetGuestVmxVmFail(&pVCpu->cpum.GstCtx, enmInsErr);
854}
855
856
857/**
858 * Checks if the given auto-load/store MSR area count is valid for the
859 * implementation.
860 *
861 * @returns @c true if it's within the valid limit, @c false otherwise.
862 * @param pVCpu The cross context virtual CPU structure.
863 * @param uMsrCount The MSR area count to check.
864 */
865DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PCVMCPU pVCpu, uint32_t uMsrCount)
866{
867 uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
868 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
869 Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
870 if (uMsrCount <= cMaxSupportedMsrs)
871 return true;
872 return false;
873}
874
875
876/**
877 * Flushes the current VMCS contents back to guest memory.
878 *
879 * @returns VBox status code.
880 * @param pVCpu The cross context virtual CPU structure.
881 */
882DECL_FORCE_INLINE(int) iemVmxWriteCurrentVmcsToGstMem(PVMCPUCC pVCpu)
883{
884 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
885 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
886 &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
887 return rc;
888}
889
890
891/**
892 * Populates the current VMCS contents from guest memory.
893 *
894 * @returns VBox status code.
895 * @param pVCpu The cross context virtual CPU structure.
896 */
897DECL_FORCE_INLINE(int) iemVmxReadCurrentVmcsFromGstMem(PVMCPUCC pVCpu)
898{
899 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
900 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs,
901 IEM_VMX_GET_CURRENT_VMCS(pVCpu), sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
902 return rc;
903}
904
905
906/**
907 * Gets the instruction diagnostic for segment base checks during VM-entry of a
908 * nested-guest.
909 *
910 * @param iSegReg The segment index (X86_SREG_XXX).
911 */
912static VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg) RT_NOEXCEPT
913{
914 switch (iSegReg)
915 {
916 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
917 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
918 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
919 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
920 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
921 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
922 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
923 }
924}
925
926
927/**
928 * Gets the instruction diagnostic for segment base checks during VM-entry of a
929 * nested-guest that is in Virtual-8086 mode.
930 *
931 * @param iSegReg The segment index (X86_SREG_XXX).
932 */
933static VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg) RT_NOEXCEPT
934{
935 switch (iSegReg)
936 {
937 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
938 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
939 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
940 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
941 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
942 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
943 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
944 }
945}
946
947
948/**
949 * Gets the instruction diagnostic for segment limit checks during VM-entry of a
950 * nested-guest that is in Virtual-8086 mode.
951 *
952 * @param iSegReg The segment index (X86_SREG_XXX).
953 */
954static VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg) RT_NOEXCEPT
955{
956 switch (iSegReg)
957 {
958 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
959 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
960 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
961 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
962 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
963 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
964 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
965 }
966}
967
968
969/**
970 * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
971 * nested-guest that is in Virtual-8086 mode.
972 *
973 * @param iSegReg The segment index (X86_SREG_XXX).
974 */
975static VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg) RT_NOEXCEPT
976{
977 switch (iSegReg)
978 {
979 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
980 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
981 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
982 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
983 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
984 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
985 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
986 }
987}
988
989
990/**
991 * Gets the instruction diagnostic for segment attributes reserved bits failure
992 * during VM-entry of a nested-guest.
993 *
994 * @param iSegReg The segment index (X86_SREG_XXX).
995 */
996static VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg) RT_NOEXCEPT
997{
998 switch (iSegReg)
999 {
1000 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
1001 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
1002 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
1003 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
1004 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
1005 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
1006 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
1007 }
1008}
1009
1010
1011/**
1012 * Gets the instruction diagnostic for segment attributes descriptor-type
1013 * (code/segment or system) failure during VM-entry of a nested-guest.
1014 *
1015 * @param iSegReg The segment index (X86_SREG_XXX).
1016 */
1017static VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg) RT_NOEXCEPT
1018{
1019 switch (iSegReg)
1020 {
1021 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
1022 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
1023 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
1024 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
1025 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
1026 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
1027 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
1028 }
1029}
1030
1031
1032/**
1033 * Gets the instruction diagnostic for segment attributes descriptor-type
1034 * (code/segment or system) failure during VM-entry of a nested-guest.
1035 *
1036 * @param iSegReg The segment index (X86_SREG_XXX).
1037 */
1038static VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg) RT_NOEXCEPT
1039{
1040 switch (iSegReg)
1041 {
1042 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
1043 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
1044 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
1045 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
1046 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
1047 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
1048 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
1049 }
1050}
1051
1052
1053/**
1054 * Gets the instruction diagnostic for segment attribute granularity failure during
1055 * VM-entry of a nested-guest.
1056 *
1057 * @param iSegReg The segment index (X86_SREG_XXX).
1058 */
1059static VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg) RT_NOEXCEPT
1060{
1061 switch (iSegReg)
1062 {
1063 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
1064 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
1065 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
1066 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
1067 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
1068 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
1069 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
1070 }
1071}
1072
1073/**
1074 * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
1075 * VM-entry of a nested-guest.
1076 *
1077 * @param iSegReg The segment index (X86_SREG_XXX).
1078 */
1079static VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg) RT_NOEXCEPT
1080{
1081 switch (iSegReg)
1082 {
1083 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
1084 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
1085 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
1086 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
1087 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
1088 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
1089 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
1090 }
1091}
1092
1093
1094/**
1095 * Gets the instruction diagnostic for segment attribute type accessed failure
1096 * during VM-entry of a nested-guest.
1097 *
1098 * @param iSegReg The segment index (X86_SREG_XXX).
1099 */
1100static VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg) RT_NOEXCEPT
1101{
1102 switch (iSegReg)
1103 {
1104 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
1105 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
1106 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
1107 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
1108 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
1109 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
1110 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
1111 }
1112}
1113
1114
1115/**
1116 * Saves the guest control registers, debug registers and some MSRs are part of
1117 * VM-exit.
1118 *
1119 * @param pVCpu The cross context virtual CPU structure.
1120 */
1121static void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1122{
1123 /*
1124 * Saves the guest control registers, debug registers and some MSRs.
1125 * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
1126 */
1127 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1128
1129 /* Save control registers. */
1130 pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
1131 pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
1132 pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
1133
1134 /* Save SYSENTER CS, ESP, EIP. */
1135 pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1136 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1137 {
1138 pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
1139 pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
1140 }
1141 else
1142 {
1143 pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
1144 pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
1145 }
1146
1147 /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
1148 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
1149 {
1150 pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
1151 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1152 }
1153
1154 /* Save PAT MSR. */
1155 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
1156 pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
1157
1158 /* Save EFER MSR. */
1159 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
1160 pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
1161
1162 /* We don't support clearing IA32_BNDCFGS MSR yet. */
1163 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
1164
1165 /* Nothing to do for SMBASE register - We don't support SMM yet. */
1166}
1167
1168
1169/**
1170 * Saves the guest force-flags in preparation of entering the nested-guest.
1171 *
1172 * @param pVCpu The cross context virtual CPU structure.
1173 */
1174static void iemVmxVmentrySaveNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1175{
1176 /* We shouldn't be called multiple times during VM-entry. */
1177 Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0);
1178
1179 /* MTF should not be set outside VMX non-root mode. */
1180 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
1181
1182 /*
1183 * Preserve the required force-flags.
1184 *
1185 * We cache and clear force-flags that would affect the execution of the
1186 * nested-guest. Cached flags are then restored while returning to the guest
1187 * if necessary.
1188 *
1189 * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
1190 * interrupts until the completion of the current VMLAUNCH/VMRESUME
1191 * instruction. Interrupt inhibition for any nested-guest instruction
1192 * is supplied by the guest-interruptibility state VMCS field and will
1193 * be set up as part of loading the guest state.
1194 *
1195 * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
1196 * successful VM-entry (due to invalid guest-state) need to continue
1197 * blocking NMIs if it was in effect before VM-entry.
1198 *
1199 * - MTF need not be preserved as it's used only in VMX non-root mode and
1200 * is supplied through the VM-execution controls.
1201 *
1202 * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
1203 * we will be able to generate interrupts that may cause VM-exits for
1204 * the nested-guest.
1205 */
1206 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
1207}
1208
1209
1210/**
1211 * Restores the guest force-flags in preparation of exiting the nested-guest.
1212 *
1213 * @param pVCpu The cross context virtual CPU structure.
1214 */
1215static void iemVmxVmexitRestoreNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1216{
1217 if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
1218 {
1219 VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
1220 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
1221 }
1222}
1223
1224
1225/**
1226 * Performs the VMX transition to/from VMX non-root mode.
1227 *
1228 * @param pVCpu The cross context virtual CPU structure.
1229*/
1230static int iemVmxTransition(PVMCPUCC pVCpu) RT_NOEXCEPT
1231{
1232 /*
1233 * Inform PGM about paging mode changes.
1234 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
1235 * see comment in iemMemPageTranslateAndCheckAccess().
1236 */
1237 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1238 true /* fForce */);
1239 AssertRCReturn(rc, rc);
1240
1241 /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
1242 IEMTlbInvalidateAll(pVCpu);
1243
1244 /* Inform CPUM (recompiler), can later be removed. */
1245 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
1246
1247 /* Re-initialize IEM cache/state after the drastic mode switch. */
1248 iemReInitExec(pVCpu);
1249 return rc;
1250}
1251
1252
1253/**
1254 * Calculates the current VMX-preemption timer value.
1255 *
1256 * @returns The current VMX-preemption timer value.
1257 * @param pVCpu The cross context virtual CPU structure.
1258 */
1259static uint32_t iemVmxCalcPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
1260{
1261 /*
1262 * Assume the following:
1263 * PreemptTimerShift = 5
1264 * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
1265 * EntryTick = 50000 (TSC at time of VM-entry)
1266 *
1267 * CurTick Delta PreemptTimerVal
1268 * ----------------------------------
1269 * 60000 10000 2
1270 * 80000 30000 1
1271 * 90000 40000 0 -> VM-exit.
1272 *
1273 * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
1274 * The saved VMX-preemption timer value is calculated as follows:
1275 * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
1276 * E.g.:
1277 * Delta = 10000
1278 * Tmp = 10000 / (2 * 10000) = 0.5
1279 * NewPt = 2 - 0.5 = 2
1280 * Delta = 30000
1281 * Tmp = 30000 / (2 * 10000) = 1.5
1282 * NewPt = 2 - 1.5 = 1
1283 * Delta = 40000
1284 * Tmp = 40000 / 20000 = 2
1285 * NewPt = 2 - 2 = 0
1286 */
1287 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1288 uint32_t const uVmcsPreemptVal = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer;
1289 if (uVmcsPreemptVal > 0)
1290 {
1291 uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
1292 uint64_t const uEntryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick;
1293 uint64_t const uDelta = uCurTick - uEntryTick;
1294 uint32_t const uPreemptTimer = uVmcsPreemptVal
1295 - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
1296 return uPreemptTimer;
1297 }
1298 return 0;
1299}
1300
1301
1302/**
1303 * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
1304 *
1305 * @param pVCpu The cross context virtual CPU structure.
1306 */
1307static void iemVmxVmexitSaveGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1308{
1309 /*
1310 * Save guest segment registers, GDTR, IDTR, LDTR, TR.
1311 * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
1312 */
1313 /* CS, SS, ES, DS, FS, GS. */
1314 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1315 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1316 {
1317 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1318 if (!pSelReg->Attr.n.u1Unusable)
1319 iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
1320 else
1321 {
1322 /*
1323 * For unusable segments the attributes are undefined except for CS and SS.
1324 * For the rest we don't bother preserving anything but the unusable bit.
1325 */
1326 switch (iSegReg)
1327 {
1328 case X86_SREG_CS:
1329 pVmcs->GuestCs = pSelReg->Sel;
1330 pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
1331 pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
1332 pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1333 | X86DESCATTR_UNUSABLE);
1334 break;
1335
1336 case X86_SREG_SS:
1337 pVmcs->GuestSs = pSelReg->Sel;
1338 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1339 pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
1340 pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
1341 break;
1342
1343 case X86_SREG_DS:
1344 pVmcs->GuestDs = pSelReg->Sel;
1345 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1346 pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
1347 pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
1348 break;
1349
1350 case X86_SREG_ES:
1351 pVmcs->GuestEs = pSelReg->Sel;
1352 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1353 pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
1354 pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
1355 break;
1356
1357 case X86_SREG_FS:
1358 pVmcs->GuestFs = pSelReg->Sel;
1359 pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
1360 pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
1361 break;
1362
1363 case X86_SREG_GS:
1364 pVmcs->GuestGs = pSelReg->Sel;
1365 pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
1366 pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
1367 break;
1368 }
1369 }
1370 }
1371
1372 /* Segment attribute bits 31:17 and 11:8 MBZ. */
1373 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
1374 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1375 | X86DESCATTR_UNUSABLE;
1376 /* LDTR. */
1377 {
1378 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
1379 pVmcs->GuestLdtr = pSelReg->Sel;
1380 pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
1381 Assert(X86_IS_CANONICAL(pSelReg->u64Base));
1382 pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
1383 pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
1384 }
1385
1386 /* TR. */
1387 {
1388 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
1389 pVmcs->GuestTr = pSelReg->Sel;
1390 pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
1391 pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
1392 pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
1393 }
1394
1395 /* GDTR. */
1396 pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
1397 pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
1398
1399 /* IDTR. */
1400 pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
1401 pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
1402}
1403
1404
1405/**
1406 * Saves guest non-register state as part of VM-exit.
1407 *
1408 * @param pVCpu The cross context virtual CPU structure.
1409 * @param uExitReason The VM-exit reason.
1410 */
1411static void iemVmxVmexitSaveGuestNonRegState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1412{
1413 /*
1414 * Save guest non-register state.
1415 * See Intel spec. 27.3.4 "Saving Non-Register State".
1416 */
1417 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1418
1419 /*
1420 * Activity state.
1421 * Most VM-exits will occur in the active state. However, if the first instruction
1422 * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
1423 * the VM-exit will be from the HLT activity state.
1424 *
1425 * See Intel spec. 25.5.2 "Monitor Trap Flag".
1426 */
1427 /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
1428 * not? */
1429 EMSTATE const enmActivityState = EMGetState(pVCpu);
1430 switch (enmActivityState)
1431 {
1432 case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
1433 default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
1434 }
1435
1436 /*
1437 * Interruptibility-state.
1438 */
1439 /* NMI. */
1440 pVmcs->u32GuestIntrState = 0;
1441 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
1442 {
1443 if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
1444 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1445 }
1446 else
1447 {
1448 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1449 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1450 }
1451
1452 /* Blocking-by-STI. */
1453 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
1454 && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
1455 {
1456 /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
1457 * currently. */
1458 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
1459 }
1460 /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
1461
1462 /*
1463 * Pending debug exceptions.
1464 *
1465 * For VM-exits where it is not applicable, we can safely zero out the field.
1466 * For VM-exits where it is applicable, it's expected to be updated by the caller already.
1467 */
1468 if ( uExitReason != VMX_EXIT_INIT_SIGNAL
1469 && uExitReason != VMX_EXIT_SMI
1470 && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
1471 && !VMXIsVmexitTrapLike(uExitReason))
1472 {
1473 /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
1474 * block-by-MovSS is in effect. */
1475 pVmcs->u64GuestPendingDbgXcpts.u = 0;
1476 }
1477
1478 /*
1479 * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
1480 *
1481 * For VMX-preemption timer VM-exits, we should have already written back 0 if the
1482 * feature is supported back into the VMCS, and thus there is nothing further to do here.
1483 */
1484 if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
1485 && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
1486 pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
1487
1488 /*
1489 * PAE PDPTEs.
1490 *
1491 * If EPT is enabled and PAE paging was used at the time of the VM-exit,
1492 * the PDPTEs are saved from the VMCS. Otherwise they're undefined but
1493 * we zero them for consistency.
1494 */
1495 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
1496 {
1497 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
1498 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
1499 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG))
1500 {
1501 pVmcs->u64GuestPdpte0.u = pVCpu->cpum.GstCtx.aPaePdpes[0].u;
1502 pVmcs->u64GuestPdpte1.u = pVCpu->cpum.GstCtx.aPaePdpes[1].u;
1503 pVmcs->u64GuestPdpte2.u = pVCpu->cpum.GstCtx.aPaePdpes[2].u;
1504 pVmcs->u64GuestPdpte3.u = pVCpu->cpum.GstCtx.aPaePdpes[3].u;
1505 }
1506 else
1507 {
1508 pVmcs->u64GuestPdpte0.u = 0;
1509 pVmcs->u64GuestPdpte1.u = 0;
1510 pVmcs->u64GuestPdpte2.u = 0;
1511 pVmcs->u64GuestPdpte3.u = 0;
1512 }
1513
1514 /* Clear PGM's copy of the EPT pointer for added safety. */
1515 PGMSetGuestEptPtr(pVCpu, 0 /* uEptPtr */);
1516 }
1517 else
1518 {
1519 pVmcs->u64GuestPdpte0.u = 0;
1520 pVmcs->u64GuestPdpte1.u = 0;
1521 pVmcs->u64GuestPdpte2.u = 0;
1522 pVmcs->u64GuestPdpte3.u = 0;
1523 }
1524}
1525
1526
1527/**
1528 * Saves the guest-state as part of VM-exit.
1529 *
1530 * @returns VBox status code.
1531 * @param pVCpu The cross context virtual CPU structure.
1532 * @param uExitReason The VM-exit reason.
1533 */
1534static void iemVmxVmexitSaveGuestState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1535{
1536 iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
1537 iemVmxVmexitSaveGuestSegRegs(pVCpu);
1538
1539 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
1540 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
1541 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
1542
1543 iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
1544}
1545
1546
1547/**
1548 * Saves the guest MSRs into the VM-exit MSR-store area as part of VM-exit.
1549 *
1550 * @returns VBox status code.
1551 * @param pVCpu The cross context virtual CPU structure.
1552 * @param uExitReason The VM-exit reason (for diagnostic purposes).
1553 */
1554static int iemVmxVmexitSaveGuestAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1555{
1556 /*
1557 * Save guest MSRs.
1558 * See Intel spec. 27.4 "Saving MSRs".
1559 */
1560 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1561 const char * const pszFailure = "VMX-abort";
1562
1563 /*
1564 * The VM-exit MSR-store area address need not be a valid guest-physical address if the
1565 * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
1566 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1567 */
1568 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrStoreCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea));
1569 if (!cMsrs)
1570 return VINF_SUCCESS;
1571
1572 /*
1573 * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
1574 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1575 * implementation causes a VMX-abort followed by a triple-fault.
1576 */
1577 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1578 if (fIsMsrCountValid)
1579 { /* likely */ }
1580 else
1581 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
1582
1583 /*
1584 * Optimization if the nested hypervisor is using the same guest-physical page for both
1585 * the VM-entry MSR-load area as well as the VM-exit MSR store area.
1586 */
1587 PVMXAUTOMSR pMsrArea;
1588 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
1589 RTGCPHYS const GCPhysVmExitMsrStoreArea = pVmcs->u64AddrExitMsrStore.u;
1590 if (GCPhysVmEntryMsrLoadArea == GCPhysVmExitMsrStoreArea)
1591 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea;
1592 else
1593 {
1594 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea[0],
1595 GCPhysVmExitMsrStoreArea, cMsrs * sizeof(VMXAUTOMSR));
1596 if (RT_SUCCESS(rc))
1597 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea;
1598 else
1599 {
1600 AssertMsgFailed(("VM-exit: Failed to read MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1601 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrReadPhys);
1602 }
1603 }
1604
1605 /*
1606 * Update VM-exit MSR store area.
1607 */
1608 PVMXAUTOMSR pMsr = pMsrArea;
1609 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1610 {
1611 if ( !pMsr->u32Reserved
1612 && pMsr->u32Msr != MSR_IA32_SMBASE
1613 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1614 {
1615 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
1616 if (rcStrict == VINF_SUCCESS)
1617 continue;
1618
1619 /*
1620 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1621 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1622 * recording the MSR index in the auxiliary info. field and indicated further by our
1623 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1624 * if possible, or come up with a better, generic solution.
1625 */
1626 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1627 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
1628 ? kVmxVDiag_Vmexit_MsrStoreRing3
1629 : kVmxVDiag_Vmexit_MsrStore;
1630 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1631 }
1632 else
1633 {
1634 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1635 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
1636 }
1637 }
1638
1639 /*
1640 * Commit the VM-exit MSR store are to guest memory.
1641 */
1642 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmExitMsrStoreArea, pMsrArea, cMsrs * sizeof(VMXAUTOMSR));
1643 if (RT_SUCCESS(rc))
1644 return VINF_SUCCESS;
1645
1646 NOREF(uExitReason);
1647 NOREF(pszFailure);
1648
1649 AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1650 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
1651}
1652
1653
1654/**
1655 * Performs a VMX abort (due to an fatal error during VM-exit).
1656 *
1657 * @returns Strict VBox status code.
1658 * @param pVCpu The cross context virtual CPU structure.
1659 * @param enmAbort The VMX abort reason.
1660 */
1661static VBOXSTRICTRC iemVmxAbort(PVMCPUCC pVCpu, VMXABORT enmAbort) RT_NOEXCEPT
1662{
1663 /*
1664 * Perform the VMX abort.
1665 * See Intel spec. 27.7 "VMX Aborts".
1666 */
1667 LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, VMXGetAbortDesc(enmAbort)));
1668
1669 /* We don't support SMX yet. */
1670 pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
1671 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
1672 {
1673 RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
1674 uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
1675 PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
1676 }
1677
1678 return VINF_EM_TRIPLE_FAULT;
1679}
1680
1681
1682/**
1683 * Loads host control registers, debug registers and MSRs as part of VM-exit.
1684 *
1685 * @param pVCpu The cross context virtual CPU structure.
1686 */
1687static void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1688{
1689 /*
1690 * Load host control registers, debug registers and MSRs.
1691 * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
1692 */
1693 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1694 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1695
1696 /* CR0. */
1697 {
1698 /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 fixed bits are not modified. */
1699 uint64_t const uCr0Mb1 = iemVmxGetCr0Fixed0(pVCpu);
1700 uint64_t const uCr0Mb0 = VMX_V_CR0_FIXED1;
1701 uint64_t const fCr0IgnMask = VMX_EXIT_HOST_CR0_IGNORE_MASK | uCr0Mb1 | ~uCr0Mb0;
1702 uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
1703 uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
1704 uint64_t const uValidHostCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
1705
1706 /* Verify we have not modified CR0 fixed bits in VMX non-root operation. */
1707 Assert((uGuestCr0 & uCr0Mb1) == uCr0Mb1);
1708 Assert((uGuestCr0 & ~uCr0Mb0) == 0);
1709 CPUMSetGuestCR0(pVCpu, uValidHostCr0);
1710 }
1711
1712 /* CR4. */
1713 {
1714 /* CR4 fixed bits are not modified. */
1715 uint64_t const uCr4Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
1716 uint64_t const uCr4Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
1717 uint64_t const fCr4IgnMask = uCr4Mb1 | ~uCr4Mb0;
1718 uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
1719 uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4;
1720 uint64_t uValidHostCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask);
1721 if (fHostInLongMode)
1722 uValidHostCr4 |= X86_CR4_PAE;
1723 else
1724 uValidHostCr4 &= ~(uint64_t)X86_CR4_PCIDE;
1725
1726 /* Verify we have not modified CR4 fixed bits in VMX non-root operation. */
1727 Assert((uGuestCr4 & uCr4Mb1) == uCr4Mb1);
1728 Assert((uGuestCr4 & ~uCr4Mb0) == 0);
1729 CPUMSetGuestCR4(pVCpu, uValidHostCr4);
1730 }
1731
1732 /* CR3 (host value validated while checking host-state during VM-entry). */
1733 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
1734
1735 /* DR7. */
1736 pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
1737
1738 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1739
1740 /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
1741 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
1742 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
1743 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
1744
1745 /* FS, GS bases are loaded later while we load host segment registers. */
1746
1747 /* EFER MSR (host value validated while checking host-state during VM-entry). */
1748 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1749 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
1750 else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1751 {
1752 if (fHostInLongMode)
1753 pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1754 else
1755 pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1756 }
1757
1758 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
1759
1760 /* PAT MSR (host value is validated while checking host-state during VM-entry). */
1761 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
1762 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
1763
1764 /* We don't support IA32_BNDCFGS MSR yet. */
1765}
1766
1767
1768/**
1769 * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
1770 *
1771 * @param pVCpu The cross context virtual CPU structure.
1772 */
1773static void iemVmxVmexitLoadHostSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1774{
1775 /*
1776 * Load host segment registers, GDTR, IDTR, LDTR and TR.
1777 * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
1778 *
1779 * Warning! Be careful to not touch fields that are reserved by VT-x,
1780 * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
1781 */
1782 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1783 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1784
1785 /* CS, SS, ES, DS, FS, GS. */
1786 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1787 {
1788 RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
1789 bool const fUnusable = RT_BOOL(HostSel == 0);
1790 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1791
1792 /* Selector. */
1793 pSelReg->Sel = HostSel;
1794 pSelReg->ValidSel = HostSel;
1795 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
1796
1797 /* Limit. */
1798 pSelReg->u32Limit = 0xffffffff;
1799
1800 /* Base. */
1801 pSelReg->u64Base = 0;
1802
1803 /* Attributes. */
1804 if (iSegReg == X86_SREG_CS)
1805 {
1806 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
1807 pSelReg->Attr.n.u1DescType = 1;
1808 pSelReg->Attr.n.u2Dpl = 0;
1809 pSelReg->Attr.n.u1Present = 1;
1810 pSelReg->Attr.n.u1Long = fHostInLongMode;
1811 pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
1812 pSelReg->Attr.n.u1Granularity = 1;
1813 Assert(!pSelReg->Attr.n.u1Unusable);
1814 Assert(!fUnusable);
1815 }
1816 else
1817 {
1818 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
1819 pSelReg->Attr.n.u1DescType = 1;
1820 pSelReg->Attr.n.u2Dpl = 0;
1821 pSelReg->Attr.n.u1Present = 1;
1822 pSelReg->Attr.n.u1DefBig = 1;
1823 pSelReg->Attr.n.u1Granularity = 1;
1824 pSelReg->Attr.n.u1Unusable = fUnusable;
1825 }
1826 }
1827
1828 /* FS base. */
1829 if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
1830 || fHostInLongMode)
1831 {
1832 Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
1833 pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
1834 }
1835
1836 /* GS base. */
1837 if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
1838 || fHostInLongMode)
1839 {
1840 Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
1841 pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
1842 }
1843
1844 /* TR. */
1845 Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
1846 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
1847 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
1848 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
1849 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1850 pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
1851 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
1852 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1853 pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
1854 pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
1855 pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
1856 pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
1857 pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
1858
1859 /* LDTR (Warning! do not touch the base and limits here). */
1860 pVCpu->cpum.GstCtx.ldtr.Sel = 0;
1861 pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
1862 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1863 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
1864
1865 /* GDTR. */
1866 Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
1867 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
1868 pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
1869
1870 /* IDTR.*/
1871 Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
1872 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
1873 pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
1874}
1875
1876
1877/**
1878 * Loads the host MSRs from the VM-exit MSR-load area as part of VM-exit.
1879 *
1880 * @returns VBox status code.
1881 * @param pVCpu The cross context virtual CPU structure.
1882 * @param uExitReason The VMX instruction name (for logging purposes).
1883 */
1884static int iemVmxVmexitLoadHostAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1885{
1886 /*
1887 * Load host MSRs.
1888 * See Intel spec. 27.6 "Loading MSRs".
1889 */
1890 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1891 const char * const pszFailure = "VMX-abort";
1892
1893 /*
1894 * The VM-exit MSR-load area address need not be a valid guest-physical address if the
1895 * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
1896 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1897 */
1898 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea));
1899 if (!cMsrs)
1900 return VINF_SUCCESS;
1901
1902 /*
1903 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
1904 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1905 * implementation causes a VMX-abort followed by a triple-fault.
1906 */
1907 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1908 if (fIsMsrCountValid)
1909 { /* likely */ }
1910 else
1911 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
1912
1913 RTGCPHYS const GCPhysVmExitMsrLoadArea = pVmcs->u64AddrExitMsrLoad.u;
1914 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea[0],
1915 GCPhysVmExitMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
1916 if (RT_SUCCESS(rc))
1917 {
1918 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea;
1919 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1920 {
1921 if ( !pMsr->u32Reserved
1922 && pMsr->u32Msr != MSR_K8_FS_BASE
1923 && pMsr->u32Msr != MSR_K8_GS_BASE
1924 && pMsr->u32Msr != MSR_K6_EFER
1925 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
1926 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1927 {
1928 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
1929 if (rcStrict == VINF_SUCCESS)
1930 continue;
1931
1932 /*
1933 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1934 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1935 * recording the MSR index in the auxiliary info. field and indicated further by our
1936 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1937 * if possible, or come up with a better, generic solution.
1938 */
1939 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1940 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
1941 ? kVmxVDiag_Vmexit_MsrLoadRing3
1942 : kVmxVDiag_Vmexit_MsrLoad;
1943 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1944 }
1945 else
1946 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
1947 }
1948 }
1949 else
1950 {
1951 AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrLoadArea, rc));
1952 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
1953 }
1954
1955 NOREF(uExitReason);
1956 NOREF(pszFailure);
1957 return VINF_SUCCESS;
1958}
1959
1960
1961/**
1962 * Loads the host state as part of VM-exit.
1963 *
1964 * @returns Strict VBox status code.
1965 * @param pVCpu The cross context virtual CPU structure.
1966 * @param uExitReason The VM-exit reason (for logging purposes).
1967 */
1968static VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1969{
1970 /*
1971 * Load host state.
1972 * See Intel spec. 27.5 "Loading Host State".
1973 */
1974 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1975 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1976
1977 /* We cannot return from a long-mode guest to a host that is not in long mode. */
1978 if ( CPUMIsGuestInLongMode(pVCpu)
1979 && !fHostInLongMode)
1980 {
1981 Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
1982 return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
1983 }
1984
1985 /*
1986 * Check host PAE PDPTEs prior to loading the host state.
1987 * See Intel spec. 26.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
1988 */
1989 if ( (pVmcs->u64HostCr4.u & X86_CR4_PAE)
1990 && !fHostInLongMode
1991 && ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
1992 || pVmcs->u64HostCr3.u != pVCpu->cpum.GstCtx.cr3))
1993 {
1994 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64HostCr3.u);
1995 if (RT_SUCCESS(rc))
1996 { /* likely*/ }
1997 else
1998 {
1999 IEM_VMX_VMEXIT_FAILED(pVCpu, uExitReason, "VMX-abort", kVmxVDiag_Vmexit_HostPdpte);
2000 return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
2001 }
2002 }
2003
2004 iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
2005 iemVmxVmexitLoadHostSegRegs(pVCpu);
2006
2007 /*
2008 * Load host RIP, RSP and RFLAGS.
2009 * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
2010 */
2011 pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
2012 pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
2013 pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
2014
2015 /* Clear address range monitoring. */
2016 EMMonitorWaitClear(pVCpu);
2017
2018 /* Perform the VMX transition (PGM updates). */
2019 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
2020 if (rcStrict == VINF_SUCCESS)
2021 { /* likely */ }
2022 else if (RT_SUCCESS(rcStrict))
2023 {
2024 Log3(("VM-exit: iemVmxTransition returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
2025 uExitReason));
2026 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
2027 }
2028 else
2029 {
2030 Log3(("VM-exit: iemVmxTransition failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
2031 return VBOXSTRICTRC_VAL(rcStrict);
2032 }
2033
2034 Assert(rcStrict == VINF_SUCCESS);
2035
2036 /* Load MSRs from the VM-exit auto-load MSR area. */
2037 int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
2038 if (RT_FAILURE(rc))
2039 {
2040 Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
2041 return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
2042 }
2043 return VINF_SUCCESS;
2044}
2045
2046
2047/**
2048 * Gets VM-exit instruction information along with any displacement for an
2049 * instruction VM-exit.
2050 *
2051 * @returns The VM-exit instruction information.
2052 * @param pVCpu The cross context virtual CPU structure.
2053 * @param uExitReason The VM-exit reason.
2054 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
2055 * @param pGCPtrDisp Where to store the displacement field. Optional, can be
2056 * NULL.
2057 */
2058static uint32_t iemVmxGetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp) RT_NOEXCEPT
2059{
2060 RTGCPTR GCPtrDisp;
2061 VMXEXITINSTRINFO ExitInstrInfo;
2062 ExitInstrInfo.u = 0;
2063
2064 /*
2065 * Get and parse the ModR/M byte from our decoded opcodes.
2066 */
2067 uint8_t bRm;
2068 uint8_t const offModRm = pVCpu->iem.s.offModRm;
2069 IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
2070 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2071 {
2072 /*
2073 * ModR/M indicates register addressing.
2074 *
2075 * The primary/secondary register operands are reported in the iReg1 or iReg2
2076 * fields depending on whether it is a read/write form.
2077 */
2078 uint8_t idxReg1;
2079 uint8_t idxReg2;
2080 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2081 {
2082 idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2083 idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2084 }
2085 else
2086 {
2087 idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2088 idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2089 }
2090 ExitInstrInfo.All.u2Scaling = 0;
2091 ExitInstrInfo.All.iReg1 = idxReg1;
2092 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2093 ExitInstrInfo.All.fIsRegOperand = 1;
2094 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2095 ExitInstrInfo.All.iSegReg = 0;
2096 ExitInstrInfo.All.iIdxReg = 0;
2097 ExitInstrInfo.All.fIdxRegInvalid = 1;
2098 ExitInstrInfo.All.iBaseReg = 0;
2099 ExitInstrInfo.All.fBaseRegInvalid = 1;
2100 ExitInstrInfo.All.iReg2 = idxReg2;
2101
2102 /* Displacement not applicable for register addressing. */
2103 GCPtrDisp = 0;
2104 }
2105 else
2106 {
2107 /*
2108 * ModR/M indicates memory addressing.
2109 */
2110 uint8_t uScale = 0;
2111 bool fBaseRegValid = false;
2112 bool fIdxRegValid = false;
2113 uint8_t iBaseReg = 0;
2114 uint8_t iIdxReg = 0;
2115 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
2116 {
2117 /*
2118 * Parse the ModR/M, displacement for 16-bit addressing mode.
2119 * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
2120 */
2121 uint16_t u16Disp = 0;
2122 uint8_t const offDisp = offModRm + sizeof(bRm);
2123 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
2124 {
2125 /* Displacement without any registers. */
2126 IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
2127 }
2128 else
2129 {
2130 /* Register (index and base). */
2131 switch (bRm & X86_MODRM_RM_MASK)
2132 {
2133 case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2134 case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2135 case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2136 case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2137 case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2138 case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2139 case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
2140 case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
2141 }
2142
2143 /* Register + displacement. */
2144 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2145 {
2146 case 0: break;
2147 case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
2148 case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
2149 default:
2150 {
2151 /* Register addressing, handled at the beginning. */
2152 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2153 break;
2154 }
2155 }
2156 }
2157
2158 Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
2159 GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
2160 }
2161 else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
2162 {
2163 /*
2164 * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
2165 * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
2166 */
2167 uint32_t u32Disp = 0;
2168 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
2169 {
2170 /* Displacement without any registers. */
2171 uint8_t const offDisp = offModRm + sizeof(bRm);
2172 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2173 }
2174 else
2175 {
2176 /* Register (and perhaps scale, index and base). */
2177 uint8_t offDisp = offModRm + sizeof(bRm);
2178 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2179 if (iBaseReg == 4)
2180 {
2181 /* An SIB byte follows the ModR/M byte, parse it. */
2182 uint8_t bSib;
2183 uint8_t const offSib = offModRm + sizeof(bRm);
2184 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2185
2186 /* A displacement may follow SIB, update its offset. */
2187 offDisp += sizeof(bSib);
2188
2189 /* Get the scale. */
2190 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2191
2192 /* Get the index register. */
2193 iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
2194 fIdxRegValid = RT_BOOL(iIdxReg != 4);
2195
2196 /* Get the base register. */
2197 iBaseReg = bSib & X86_SIB_BASE_MASK;
2198 fBaseRegValid = true;
2199 if (iBaseReg == 5)
2200 {
2201 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2202 {
2203 /* Mod is 0 implies a 32-bit displacement with no base. */
2204 fBaseRegValid = false;
2205 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2206 }
2207 else
2208 {
2209 /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
2210 iBaseReg = X86_GREG_xBP;
2211 }
2212 }
2213 }
2214
2215 /* Register + displacement. */
2216 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2217 {
2218 case 0: /* Handled above */ break;
2219 case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
2220 case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
2221 default:
2222 {
2223 /* Register addressing, handled at the beginning. */
2224 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2225 break;
2226 }
2227 }
2228 }
2229
2230 GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
2231 }
2232 else
2233 {
2234 Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
2235
2236 /*
2237 * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
2238 * See Intel instruction spec. 2.2 "IA-32e Mode".
2239 */
2240 uint64_t u64Disp = 0;
2241 bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
2242 if (fRipRelativeAddr)
2243 {
2244 /*
2245 * RIP-relative addressing mode.
2246 *
2247 * The displacement is 32-bit signed implying an offset range of +/-2G.
2248 * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
2249 */
2250 uint8_t const offDisp = offModRm + sizeof(bRm);
2251 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2252 }
2253 else
2254 {
2255 uint8_t offDisp = offModRm + sizeof(bRm);
2256
2257 /*
2258 * Register (and perhaps scale, index and base).
2259 *
2260 * REX.B extends the most-significant bit of the base register. However, REX.B
2261 * is ignored while determining whether an SIB follows the opcode. Hence, we
2262 * shall OR any REX.B bit -after- inspecting for an SIB byte below.
2263 *
2264 * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
2265 */
2266 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2267 if (iBaseReg == 4)
2268 {
2269 /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
2270 uint8_t bSib;
2271 uint8_t const offSib = offModRm + sizeof(bRm);
2272 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2273
2274 /* Displacement may follow SIB, update its offset. */
2275 offDisp += sizeof(bSib);
2276
2277 /* Get the scale. */
2278 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2279
2280 /* Get the index. */
2281 iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
2282 fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
2283
2284 /* Get the base. */
2285 iBaseReg = (bSib & X86_SIB_BASE_MASK);
2286 fBaseRegValid = true;
2287 if (iBaseReg == 5)
2288 {
2289 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2290 {
2291 /* Mod is 0 implies a signed 32-bit displacement with no base. */
2292 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2293 }
2294 else
2295 {
2296 /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
2297 iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
2298 }
2299 }
2300 }
2301 iBaseReg |= pVCpu->iem.s.uRexB;
2302
2303 /* Register + displacement. */
2304 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2305 {
2306 case 0: /* Handled above */ break;
2307 case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
2308 case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
2309 default:
2310 {
2311 /* Register addressing, handled at the beginning. */
2312 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2313 break;
2314 }
2315 }
2316 }
2317
2318 GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
2319 }
2320
2321 /*
2322 * The primary or secondary register operand is reported in iReg2 depending
2323 * on whether the primary operand is in read/write form.
2324 */
2325 uint8_t idxReg2;
2326 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2327 {
2328 idxReg2 = bRm & X86_MODRM_RM_MASK;
2329 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2330 idxReg2 |= pVCpu->iem.s.uRexB;
2331 }
2332 else
2333 {
2334 idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
2335 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2336 idxReg2 |= pVCpu->iem.s.uRexReg;
2337 }
2338 ExitInstrInfo.All.u2Scaling = uScale;
2339 ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
2340 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2341 ExitInstrInfo.All.fIsRegOperand = 0;
2342 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2343 ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
2344 ExitInstrInfo.All.iIdxReg = iIdxReg;
2345 ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
2346 ExitInstrInfo.All.iBaseReg = iBaseReg;
2347 ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
2348 ExitInstrInfo.All.iReg2 = idxReg2;
2349 }
2350
2351 /*
2352 * Handle exceptions to the norm for certain instructions.
2353 * (e.g. some instructions convey an instruction identity in place of iReg2).
2354 */
2355 switch (uExitReason)
2356 {
2357 case VMX_EXIT_GDTR_IDTR_ACCESS:
2358 {
2359 Assert(VMXINSTRID_IS_VALID(uInstrId));
2360 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2361 ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2362 ExitInstrInfo.GdtIdt.u2Undef0 = 0;
2363 break;
2364 }
2365
2366 case VMX_EXIT_LDTR_TR_ACCESS:
2367 {
2368 Assert(VMXINSTRID_IS_VALID(uInstrId));
2369 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2370 ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2371 ExitInstrInfo.LdtTr.u2Undef0 = 0;
2372 break;
2373 }
2374
2375 case VMX_EXIT_RDRAND:
2376 case VMX_EXIT_RDSEED:
2377 {
2378 Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
2379 break;
2380 }
2381 }
2382
2383 /* Update displacement and return the constructed VM-exit instruction information field. */
2384 if (pGCPtrDisp)
2385 *pGCPtrDisp = GCPtrDisp;
2386
2387 return ExitInstrInfo.u;
2388}
2389
2390
2391/**
2392 * VMX VM-exit handler.
2393 *
2394 * @returns Strict VBox status code.
2395 * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
2396 * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
2397 * triple-fault.
2398 *
2399 * @param pVCpu The cross context virtual CPU structure.
2400 * @param uExitReason The VM-exit reason.
2401 * @param u64ExitQual The Exit qualification.
2402 *
2403 * @remarks We need not necessarily have completed VM-entry before a VM-exit is
2404 * called. Failures during VM-entry can cause VM-exits as well, so we
2405 * -cannot- assert we're in VMX non-root mode here.
2406 */
2407VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT
2408{
2409# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
2410 RT_NOREF3(pVCpu, uExitReason, u64ExitQual);
2411 AssertMsgFailed(("VM-exit should only be invoked from ring-3 when nested-guest executes only in ring-3!\n"));
2412 return VERR_IEM_IPE_7;
2413# else
2414 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2415
2416 /*
2417 * Import all the guest-CPU state.
2418 *
2419 * HM on returning to guest execution would have to reset up a whole lot of state
2420 * anyway, (e.g., VM-entry/VM-exit controls) and we do not ever import a part of
2421 * the state and flag reloading the entire state on re-entry. So import the entire
2422 * state here, see HMNotifyVmxNstGstVmexit() for more comments.
2423 */
2424 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL);
2425
2426 /*
2427 * Ensure VM-entry interruption information valid bit is cleared.
2428 *
2429 * We do it here on every VM-exit so that even premature VM-exits (e.g. those caused
2430 * by invalid-guest state or machine-check exceptions) also clear this bit.
2431 *
2432 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry control fields".
2433 */
2434 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
2435 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
2436
2437 /*
2438 * Update the VM-exit reason and Exit qualification.
2439 * Other VMCS read-only data fields are expected to be updated by the caller already.
2440 */
2441 pVmcs->u32RoExitReason = uExitReason;
2442 pVmcs->u64RoExitQual.u = u64ExitQual;
2443
2444 LogFlow(("vmexit: reason=%#RX32 qual=%#RX64 cs:rip=%04x:%#RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", uExitReason,
2445 pVmcs->u64RoExitQual.u, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
2446 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4));
2447
2448 /*
2449 * Update the IDT-vectoring information fields if the VM-exit is triggered during delivery of an event.
2450 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2451 */
2452 {
2453 uint8_t uVector;
2454 uint32_t fFlags;
2455 uint32_t uErrCode;
2456 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* puCr2 */);
2457 if (fInEventDelivery)
2458 {
2459 /*
2460 * A VM-exit is not considered to occur during event delivery when the VM-exit is
2461 * caused by a triple-fault or the original event results in a double-fault that
2462 * causes the VM exit directly (exception bitmap). Therefore, we must not set the
2463 * original event information into the IDT-vectoring information fields.
2464 *
2465 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2466 */
2467 if ( uExitReason != VMX_EXIT_TRIPLE_FAULT
2468 && ( uExitReason != VMX_EXIT_XCPT_OR_NMI
2469 || !VMX_EXIT_INT_INFO_IS_XCPT_DF(pVmcs->u32RoExitIntInfo)))
2470 {
2471 uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
2472 uint8_t const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
2473 uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
2474 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
2475 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
2476 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
2477 iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
2478 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
2479 LogFlow(("vmexit: idt_info=%#RX32 idt_err_code=%#RX32 cr2=%#RX64\n", uIdtVectoringInfo, uErrCode,
2480 pVCpu->cpum.GstCtx.cr2));
2481 }
2482 }
2483 }
2484
2485 /* The following VMCS fields should always be zero since we don't support injecting SMIs into a guest. */
2486 Assert(pVmcs->u64RoIoRcx.u == 0);
2487 Assert(pVmcs->u64RoIoRsi.u == 0);
2488 Assert(pVmcs->u64RoIoRdi.u == 0);
2489 Assert(pVmcs->u64RoIoRip.u == 0);
2490
2491 /*
2492 * Save the guest state back into the VMCS.
2493 * We only need to save the state when the VM-entry was successful.
2494 */
2495 bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2496 if (!fVmentryFailed)
2497 {
2498 /* We should not cause an NMI-window/interrupt-window VM-exit when injecting events as part of VM-entry. */
2499 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
2500 {
2501 Assert(uExitReason != VMX_EXIT_NMI_WINDOW);
2502 Assert(uExitReason != VMX_EXIT_INT_WINDOW);
2503 }
2504
2505 /* For exception or NMI VM-exits the VM-exit interruption info. field must be valid. */
2506 Assert(uExitReason != VMX_EXIT_XCPT_OR_NMI || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2507
2508 /*
2509 * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
2510 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
2511 *
2512 * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
2513 * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
2514 * as guest-CPU state would not been modified. Hence for now, we do this only when
2515 * the VM-entry succeeded.
2516 */
2517 /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
2518 * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
2519 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
2520 {
2521 if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
2522 pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2523 else
2524 pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2525 }
2526
2527 /*
2528 * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
2529 * occurs in enclave mode/SMM which we don't support yet.
2530 *
2531 * If we ever add support for it, we can pass just the lower bits to the functions
2532 * below, till then an assert should suffice.
2533 */
2534 Assert(!RT_HI_U16(uExitReason));
2535
2536 /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
2537 iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
2538 int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
2539 if (RT_SUCCESS(rc))
2540 { /* likely */ }
2541 else
2542 return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
2543
2544 /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
2545 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions &= ~VMCPU_FF_BLOCK_NMIS;
2546 }
2547 else
2548 {
2549 /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
2550 uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
2551 if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
2552 || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
2553 iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
2554 }
2555
2556 /*
2557 * Stop any running VMX-preemption timer if necessary.
2558 */
2559 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
2560 CPUMStopGuestVmxPremptTimer(pVCpu);
2561
2562 /*
2563 * Clear any pending VMX nested-guest force-flags.
2564 * These force-flags have no effect on (outer) guest execution and will
2565 * be re-evaluated and setup on the next nested-guest VM-entry.
2566 */
2567 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
2568
2569 /*
2570 * We're no longer in nested-guest execution mode.
2571 *
2572 * It is important to do this prior to loading the host state because
2573 * PGM looks at fInVmxNonRootMode to determine if it needs to perform
2574 * second-level address translation while switching to host CR3.
2575 */
2576 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
2577
2578 /* Restore the host (outer guest) state. */
2579 VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
2580 if (RT_SUCCESS(rcStrict))
2581 {
2582 Assert(rcStrict == VINF_SUCCESS);
2583 rcStrict = VINF_VMX_VMEXIT;
2584 }
2585 else
2586 Log3(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
2587
2588 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
2589 {
2590 /* Notify HM that the current VMCS fields have been modified. */
2591 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
2592
2593 /* Notify HM that we've completed the VM-exit. */
2594 HMNotifyVmxNstGstVmexit(pVCpu);
2595 }
2596
2597# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
2598 /* Revert any IEM-only nested-guest execution policy, otherwise return rcStrict. */
2599 Log(("vmexit: Disabling IEM-only EM execution policy!\n"));
2600 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
2601 if (rcSched != VINF_SUCCESS)
2602 iemSetPassUpStatus(pVCpu, rcSched);
2603# endif
2604 return rcStrict;
2605# endif
2606}
2607
2608
2609/**
2610 * VMX VM-exit handler for VM-exits due to instruction execution.
2611 *
2612 * This is intended for instructions where the caller provides all the relevant
2613 * VM-exit information.
2614 *
2615 * @returns Strict VBox status code.
2616 * @param pVCpu The cross context virtual CPU structure.
2617 * @param pExitInfo Pointer to the VM-exit information.
2618 */
2619static VBOXSTRICTRC iemVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
2620{
2621 /*
2622 * For instructions where any of the following fields are not applicable:
2623 * - Exit qualification must be cleared.
2624 * - VM-exit instruction info. is undefined.
2625 * - Guest-linear address is undefined.
2626 * - Guest-physical address is undefined.
2627 *
2628 * The VM-exit instruction length is mandatory for all VM-exits that are caused by
2629 * instruction execution. For VM-exits that are not due to instruction execution this
2630 * field is undefined.
2631 *
2632 * In our implementation in IEM, all undefined fields are generally cleared. However,
2633 * if the caller supplies information (from say the physical CPU directly) it is
2634 * then possible that the undefined fields are not cleared.
2635 *
2636 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2637 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
2638 */
2639 Assert(pExitInfo);
2640 AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
2641 AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
2642 ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
2643
2644 /* Update all the relevant fields from the VM-exit instruction information struct. */
2645 iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
2646 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
2647 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
2648 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
2649
2650 /* Perform the VM-exit. */
2651 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
2652}
2653
2654
2655/**
2656 * VMX VM-exit handler for VM-exits due to instruction execution.
2657 *
2658 * This is intended for instructions that only provide the VM-exit instruction
2659 * length.
2660 *
2661 * @param pVCpu The cross context virtual CPU structure.
2662 * @param uExitReason The VM-exit reason.
2663 * @param cbInstr The instruction length in bytes.
2664 */
2665VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT
2666{
2667 VMXVEXITINFO ExitInfo;
2668 RT_ZERO(ExitInfo);
2669 ExitInfo.uReason = uExitReason;
2670 ExitInfo.cbInstr = cbInstr;
2671
2672#ifdef VBOX_STRICT
2673 /*
2674 * To prevent us from shooting ourselves in the foot.
2675 * The follow instructions should convey more than just the instruction length.
2676 */
2677 switch (uExitReason)
2678 {
2679 case VMX_EXIT_INVEPT:
2680 case VMX_EXIT_INVPCID:
2681 case VMX_EXIT_INVVPID:
2682 case VMX_EXIT_LDTR_TR_ACCESS:
2683 case VMX_EXIT_GDTR_IDTR_ACCESS:
2684 case VMX_EXIT_VMCLEAR:
2685 case VMX_EXIT_VMPTRLD:
2686 case VMX_EXIT_VMPTRST:
2687 case VMX_EXIT_VMREAD:
2688 case VMX_EXIT_VMWRITE:
2689 case VMX_EXIT_VMXON:
2690 case VMX_EXIT_XRSTORS:
2691 case VMX_EXIT_XSAVES:
2692 case VMX_EXIT_RDRAND:
2693 case VMX_EXIT_RDSEED:
2694 case VMX_EXIT_IO_INSTR:
2695 AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
2696 break;
2697 }
2698#endif
2699
2700 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2701}
2702
2703
2704/**
2705 * Interface for HM and EM to emulate VM-exit due to a triple-fault.
2706 *
2707 * @returns Strict VBox status code.
2708 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2709 * @thread EMT(pVCpu)
2710 */
2711VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTripleFault(PVMCPUCC pVCpu)
2712{
2713 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_TRIPLE_FAULT, 0 /* u64ExitQual */);
2714 Assert(!pVCpu->iem.s.cActiveMappings);
2715 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2716}
2717
2718
2719/**
2720 * Interface for HM and EM to emulate VM-exit due to startup-IPI (SIPI).
2721 *
2722 * @returns Strict VBox status code.
2723 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2724 * @param uVector The SIPI vector.
2725 * @thread EMT(pVCpu)
2726 */
2727VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitStartupIpi(PVMCPUCC pVCpu, uint8_t uVector)
2728{
2729 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_SIPI, uVector);
2730 Assert(!pVCpu->iem.s.cActiveMappings);
2731 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2732}
2733
2734
2735/**
2736 * Interface for HM and EM to emulate a VM-exit.
2737 *
2738 * If a specialized version of a VM-exit handler exists, that must be used instead.
2739 *
2740 * @returns Strict VBox status code.
2741 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2742 * @param uExitReason The VM-exit reason.
2743 * @param u64ExitQual The Exit qualification.
2744 * @thread EMT(pVCpu)
2745 */
2746VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual)
2747{
2748 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, uExitReason, u64ExitQual);
2749 Assert(!pVCpu->iem.s.cActiveMappings);
2750 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2751}
2752
2753
2754/**
2755 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2756 *
2757 * This is meant to be used for those instructions that VMX provides additional
2758 * decoding information beyond just the instruction length!
2759 *
2760 * @returns Strict VBox status code.
2761 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2762 * @param pExitInfo Pointer to the VM-exit information.
2763 * @thread EMT(pVCpu)
2764 */
2765VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
2766{
2767 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
2768 Assert(!pVCpu->iem.s.cActiveMappings);
2769 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2770}
2771
2772
2773/**
2774 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2775 *
2776 * This is meant to be used for those instructions that VMX provides only the
2777 * instruction length.
2778 *
2779 * @returns Strict VBox status code.
2780 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2781 * @param pExitInfo Pointer to the VM-exit information.
2782 * @param cbInstr The instruction length in bytes.
2783 * @thread EMT(pVCpu)
2784 */
2785VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr)
2786{
2787 VBOXSTRICTRC rcStrict = iemVmxVmexitInstr(pVCpu, uExitReason, cbInstr);
2788 Assert(!pVCpu->iem.s.cActiveMappings);
2789 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2790}
2791
2792
2793/**
2794 * VMX VM-exit handler for VM-exits due to instruction execution.
2795 *
2796 * This is intended for instructions that have a ModR/M byte and update the VM-exit
2797 * instruction information and Exit qualification fields.
2798 *
2799 * @param pVCpu The cross context virtual CPU structure.
2800 * @param uExitReason The VM-exit reason.
2801 * @param uInstrid The instruction identity (VMXINSTRID_XXX).
2802 * @param cbInstr The instruction length in bytes.
2803 *
2804 * @remarks Do not use this for INS/OUTS instruction.
2805 */
2806VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT
2807{
2808 VMXVEXITINFO ExitInfo;
2809 RT_ZERO(ExitInfo);
2810 ExitInfo.uReason = uExitReason;
2811 ExitInfo.cbInstr = cbInstr;
2812
2813 /*
2814 * Update the Exit qualification field with displacement bytes.
2815 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2816 */
2817 switch (uExitReason)
2818 {
2819 case VMX_EXIT_INVEPT:
2820 case VMX_EXIT_INVPCID:
2821 case VMX_EXIT_INVVPID:
2822 case VMX_EXIT_LDTR_TR_ACCESS:
2823 case VMX_EXIT_GDTR_IDTR_ACCESS:
2824 case VMX_EXIT_VMCLEAR:
2825 case VMX_EXIT_VMPTRLD:
2826 case VMX_EXIT_VMPTRST:
2827 case VMX_EXIT_VMREAD:
2828 case VMX_EXIT_VMWRITE:
2829 case VMX_EXIT_VMXON:
2830 case VMX_EXIT_XRSTORS:
2831 case VMX_EXIT_XSAVES:
2832 case VMX_EXIT_RDRAND:
2833 case VMX_EXIT_RDSEED:
2834 {
2835 /* Construct the VM-exit instruction information. */
2836 RTGCPTR GCPtrDisp;
2837 uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
2838
2839 /* Update the VM-exit instruction information. */
2840 ExitInfo.InstrInfo.u = uInstrInfo;
2841
2842 /* Update the Exit qualification. */
2843 ExitInfo.u64Qual = GCPtrDisp;
2844 break;
2845 }
2846
2847 default:
2848 AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
2849 break;
2850 }
2851
2852 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2853}
2854
2855
2856/**
2857 * VMX VM-exit handler for VM-exits due to INVLPG.
2858 *
2859 * @returns Strict VBox status code.
2860 * @param pVCpu The cross context virtual CPU structure.
2861 * @param GCPtrPage The guest-linear address of the page being invalidated.
2862 * @param cbInstr The instruction length in bytes.
2863 */
2864VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT
2865{
2866 VMXVEXITINFO ExitInfo;
2867 RT_ZERO(ExitInfo);
2868 ExitInfo.uReason = VMX_EXIT_INVLPG;
2869 ExitInfo.cbInstr = cbInstr;
2870 ExitInfo.u64Qual = GCPtrPage;
2871 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
2872
2873 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2874}
2875
2876
2877/**
2878 * VMX VM-exit handler for VM-exits due to LMSW.
2879 *
2880 * @returns Strict VBox status code.
2881 * @param pVCpu The cross context virtual CPU structure.
2882 * @param uGuestCr0 The current guest CR0.
2883 * @param pu16NewMsw The machine-status word specified in LMSW's source
2884 * operand. This will be updated depending on the VMX
2885 * guest/host CR0 mask if LMSW is not intercepted.
2886 * @param GCPtrEffDst The guest-linear address of the source operand in case
2887 * of a memory operand. For register operand, pass
2888 * NIL_RTGCPTR.
2889 * @param cbInstr The instruction length in bytes.
2890 */
2891VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
2892 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT
2893{
2894 Assert(pu16NewMsw);
2895
2896 uint16_t const uNewMsw = *pu16NewMsw;
2897 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
2898 {
2899 Log2(("lmsw: Guest intercept -> VM-exit\n"));
2900
2901 VMXVEXITINFO ExitInfo;
2902 RT_ZERO(ExitInfo);
2903 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2904 ExitInfo.cbInstr = cbInstr;
2905
2906 bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
2907 if (fMemOperand)
2908 {
2909 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
2910 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
2911 }
2912
2913 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2914 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW)
2915 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
2916 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, uNewMsw);
2917
2918 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2919 }
2920
2921 /*
2922 * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
2923 * CR0 guest/host mask must be left unmodified.
2924 *
2925 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
2926 */
2927 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
2928 uint32_t const fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
2929 *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (uNewMsw & ~fGstHostLmswMask);
2930
2931 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2932}
2933
2934
2935/**
2936 * VMX VM-exit handler for VM-exits due to CLTS.
2937 *
2938 * @returns Strict VBox status code.
2939 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
2940 * VM-exit but must not modify the guest CR0.TS bit.
2941 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
2942 * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
2943 * CR0 fixed bits in VMX operation).
2944 * @param pVCpu The cross context virtual CPU structure.
2945 * @param cbInstr The instruction length in bytes.
2946 */
2947VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
2948{
2949 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
2950 uint32_t const fReadShadow = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0ReadShadow.u;
2951
2952 /*
2953 * If CR0.TS is owned by the host:
2954 * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
2955 * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
2956 * CLTS instruction completes without clearing CR0.TS.
2957 *
2958 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
2959 */
2960 if (fGstHostMask & X86_CR0_TS)
2961 {
2962 if (fReadShadow & X86_CR0_TS)
2963 {
2964 Log2(("clts: Guest intercept -> VM-exit\n"));
2965
2966 VMXVEXITINFO ExitInfo;
2967 RT_ZERO(ExitInfo);
2968 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2969 ExitInfo.cbInstr = cbInstr;
2970 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2971 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_CLTS);
2972 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2973 }
2974
2975 return VINF_VMX_MODIFIES_BEHAVIOR;
2976 }
2977
2978 /*
2979 * If CR0.TS is not owned by the host, the CLTS instructions operates normally
2980 * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
2981 */
2982 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2983}
2984
2985
2986/**
2987 * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
2988 * (CR0/CR4 write).
2989 *
2990 * @returns Strict VBox status code.
2991 * @param pVCpu The cross context virtual CPU structure.
2992 * @param iCrReg The control register (either CR0 or CR4).
2993 * @param uGuestCrX The current guest CR0/CR4.
2994 * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated if no
2995 * VM-exit is caused.
2996 * @param iGReg The general register from which the CR0/CR4 value is being
2997 * loaded.
2998 * @param cbInstr The instruction length in bytes.
2999 */
3000VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX,
3001 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3002{
3003 Assert(puNewCrX);
3004 Assert(iCrReg == 0 || iCrReg == 4);
3005 Assert(iGReg < X86_GREG_COUNT);
3006
3007 uint64_t const uNewCrX = *puNewCrX;
3008 if (CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX))
3009 {
3010 Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
3011
3012 VMXVEXITINFO ExitInfo;
3013 RT_ZERO(ExitInfo);
3014 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3015 ExitInfo.cbInstr = cbInstr;
3016 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
3017 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3018 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3019 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3020 }
3021
3022 /*
3023 * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
3024 * must not be modified the instruction.
3025 *
3026 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3027 */
3028 uint64_t uGuestCrX;
3029 uint64_t fGstHostMask;
3030 if (iCrReg == 0)
3031 {
3032 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3033 uGuestCrX = pVCpu->cpum.GstCtx.cr0;
3034 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3035 }
3036 else
3037 {
3038 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3039 uGuestCrX = pVCpu->cpum.GstCtx.cr4;
3040 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u;
3041 }
3042
3043 *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
3044 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3045}
3046
3047
3048/**
3049 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
3050 *
3051 * @returns VBox strict status code.
3052 * @param pVCpu The cross context virtual CPU structure.
3053 * @param iGReg The general register to which the CR3 value is being stored.
3054 * @param cbInstr The instruction length in bytes.
3055 */
3056VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3057{
3058 Assert(iGReg < X86_GREG_COUNT);
3059 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3060
3061 /*
3062 * If the CR3-store exiting control is set, we must cause a VM-exit.
3063 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3064 */
3065 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
3066 {
3067 Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
3068
3069 VMXVEXITINFO ExitInfo;
3070 RT_ZERO(ExitInfo);
3071 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3072 ExitInfo.cbInstr = cbInstr;
3073 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3074 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3075 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3076 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3077 }
3078
3079 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3080}
3081
3082
3083/**
3084 * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
3085 *
3086 * @returns VBox strict status code.
3087 * @param pVCpu The cross context virtual CPU structure.
3088 * @param uNewCr3 The new CR3 value.
3089 * @param iGReg The general register from which the CR3 value is being
3090 * loaded.
3091 * @param cbInstr The instruction length in bytes.
3092 */
3093VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3094{
3095 Assert(iGReg < X86_GREG_COUNT);
3096
3097 /*
3098 * If the CR3-load exiting control is set and the new CR3 value does not
3099 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
3100 *
3101 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3102 */
3103 if (CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCr3))
3104 {
3105 Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
3106
3107 VMXVEXITINFO ExitInfo;
3108 RT_ZERO(ExitInfo);
3109 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3110 ExitInfo.cbInstr = cbInstr;
3111 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3112 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3113 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3114 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3115 }
3116
3117 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3118}
3119
3120
3121/**
3122 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
3123 *
3124 * @returns VBox strict status code.
3125 * @param pVCpu The cross context virtual CPU structure.
3126 * @param iGReg The general register to which the CR8 value is being stored.
3127 * @param cbInstr The instruction length in bytes.
3128 */
3129VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3130{
3131 Assert(iGReg < X86_GREG_COUNT);
3132
3133 /*
3134 * If the CR8-store exiting control is set, we must cause a VM-exit.
3135 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3136 */
3137 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
3138 {
3139 Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
3140
3141 VMXVEXITINFO ExitInfo;
3142 RT_ZERO(ExitInfo);
3143 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3144 ExitInfo.cbInstr = cbInstr;
3145 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3146 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3147 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3148 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3149 }
3150
3151 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3152}
3153
3154
3155/**
3156 * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
3157 *
3158 * @returns VBox strict status code.
3159 * @param pVCpu The cross context virtual CPU structure.
3160 * @param iGReg The general register from which the CR8 value is being
3161 * loaded.
3162 * @param cbInstr The instruction length in bytes.
3163 */
3164VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3165{
3166 Assert(iGReg < X86_GREG_COUNT);
3167
3168 /*
3169 * If the CR8-load exiting control is set, we must cause a VM-exit.
3170 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3171 */
3172 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
3173 {
3174 Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
3175
3176 VMXVEXITINFO ExitInfo;
3177 RT_ZERO(ExitInfo);
3178 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3179 ExitInfo.cbInstr = cbInstr;
3180 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3181 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3182 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3183 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3184 }
3185
3186 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3187}
3188
3189
3190/**
3191 * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
3192 * GReg,DRx' (DRx read).
3193 *
3194 * @returns VBox strict status code.
3195 * @param pVCpu The cross context virtual CPU structure.
3196 * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
3197 * VMXINSTRID_MOV_FROM_DRX).
3198 * @param iDrReg The debug register being accessed.
3199 * @param iGReg The general register to/from which the DRx value is being
3200 * store/loaded.
3201 * @param cbInstr The instruction length in bytes.
3202 */
3203VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg,
3204 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3205{
3206 Assert(iDrReg <= 7);
3207 Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
3208 Assert(iGReg < X86_GREG_COUNT);
3209
3210 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
3211 {
3212 uint32_t const uDirection = uInstrId == VMXINSTRID_MOV_TO_DRX ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
3213 : VMX_EXIT_QUAL_DRX_DIRECTION_READ;
3214 VMXVEXITINFO ExitInfo;
3215 RT_ZERO(ExitInfo);
3216 ExitInfo.uReason = VMX_EXIT_MOV_DRX;
3217 ExitInfo.cbInstr = cbInstr;
3218 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
3219 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION, uDirection)
3220 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg);
3221 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3222 }
3223
3224 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3225}
3226
3227
3228/**
3229 * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
3230 *
3231 * @returns VBox strict status code.
3232 * @param pVCpu The cross context virtual CPU structure.
3233 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
3234 * VMXINSTRID_IO_OUT).
3235 * @param u16Port The I/O port being accessed.
3236 * @param fImm Whether the I/O port was encoded using an immediate operand
3237 * or the implicit DX register.
3238 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3239 * @param cbInstr The instruction length in bytes.
3240 */
3241VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
3242 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT
3243{
3244 Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
3245 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3246
3247 bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
3248 if (fIntercept)
3249 {
3250 uint32_t const uDirection = uInstrId == VMXINSTRID_IO_IN ? VMX_EXIT_QUAL_IO_DIRECTION_IN
3251 : VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3252 VMXVEXITINFO ExitInfo;
3253 RT_ZERO(ExitInfo);
3254 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3255 ExitInfo.cbInstr = cbInstr;
3256 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3257 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3258 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
3259 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3260 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3261 }
3262
3263 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3264}
3265
3266
3267/**
3268 * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
3269 *
3270 * @returns VBox strict status code.
3271 * @param pVCpu The cross context virtual CPU structure.
3272 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
3273 * VMXINSTRID_IO_OUTS).
3274 * @param u16Port The I/O port being accessed.
3275 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3276 * @param fRep Whether the instruction has a REP prefix or not.
3277 * @param ExitInstrInfo The VM-exit instruction info. field.
3278 * @param cbInstr The instruction length in bytes.
3279 */
3280VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
3281 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT
3282{
3283 Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
3284 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3285 Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
3286 Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
3287 Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
3288
3289 bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
3290 if (fIntercept)
3291 {
3292 /*
3293 * Figure out the guest-linear address and the direction bit (INS/OUTS).
3294 */
3295 /** @todo r=ramshankar: Is there something in IEM that already does this? */
3296 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
3297 uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
3298 uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
3299 uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
3300
3301 uint32_t uDirection;
3302 uint64_t uGuestLinearAddr;
3303 if (uInstrId == VMXINSTRID_IO_INS)
3304 {
3305 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
3306 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
3307 }
3308 else
3309 {
3310 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3311 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
3312 }
3313
3314 /*
3315 * If the segment is unusable, the guest-linear address in undefined.
3316 * We shall clear it for consistency.
3317 *
3318 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3319 */
3320 if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
3321 uGuestLinearAddr = 0;
3322
3323 VMXVEXITINFO ExitInfo;
3324 RT_ZERO(ExitInfo);
3325 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3326 ExitInfo.cbInstr = cbInstr;
3327 ExitInfo.u64GuestLinearAddr = uGuestLinearAddr;
3328 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3329 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3330 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
3331 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
3332 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, VMX_EXIT_QUAL_IO_ENCODING_DX)
3333 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3334 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxInsOutInfo)
3335 ExitInfo.InstrInfo = ExitInstrInfo;
3336 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3337 }
3338
3339 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3340}
3341
3342
3343/**
3344 * VMX VM-exit handler for VM-exits due to MWAIT.
3345 *
3346 * @returns VBox strict status code.
3347 * @param pVCpu The cross context virtual CPU structure.
3348 * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
3349 * @param cbInstr The instruction length in bytes.
3350 */
3351VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT
3352{
3353 VMXVEXITINFO ExitInfo;
3354 RT_ZERO(ExitInfo);
3355 ExitInfo.uReason = VMX_EXIT_MWAIT;
3356 ExitInfo.cbInstr = cbInstr;
3357 ExitInfo.u64Qual = fMonitorHwArmed;
3358 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3359}
3360
3361
3362/**
3363 * VMX VM-exit handler for VM-exits due to PAUSE.
3364 *
3365 * @returns VBox strict status code.
3366 * @param pVCpu The cross context virtual CPU structure.
3367 * @param cbInstr The instruction length in bytes.
3368 */
3369static VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
3370{
3371 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
3372
3373 /*
3374 * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
3375 * "PAUSE-loop exiting" control.
3376 *
3377 * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
3378 * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
3379 * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
3380 * a VM-exit.
3381 *
3382 * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
3383 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3384 */
3385 bool fIntercept = false;
3386 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
3387 fIntercept = true;
3388 else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3389 && pVCpu->iem.s.uCpl == 0)
3390 {
3391 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3392
3393 /*
3394 * A previous-PAUSE-tick value of 0 is used to identify the first time
3395 * execution of a PAUSE instruction after VM-entry at CPL 0. We must
3396 * consider this to be the first execution of PAUSE in a loop according
3397 * to the Intel.
3398 *
3399 * All subsequent records for the previous-PAUSE-tick we ensure that it
3400 * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
3401 */
3402 uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
3403 uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
3404 uint64_t const uTick = TMCpuTickGet(pVCpu);
3405 uint32_t const uPleGap = pVmcs->u32PleGap;
3406 uint32_t const uPleWindow = pVmcs->u32PleWindow;
3407 if ( *puPrevPauseTick == 0
3408 || uTick - *puPrevPauseTick > uPleGap)
3409 *puFirstPauseLoopTick = uTick;
3410 else if (uTick - *puFirstPauseLoopTick > uPleWindow)
3411 fIntercept = true;
3412
3413 *puPrevPauseTick = uTick | 1;
3414 }
3415
3416 if (fIntercept)
3417 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_PAUSE, cbInstr);
3418
3419 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3420}
3421
3422
3423/**
3424 * VMX VM-exit handler for VM-exits due to task switches.
3425 *
3426 * @returns VBox strict status code.
3427 * @param pVCpu The cross context virtual CPU structure.
3428 * @param enmTaskSwitch The cause of the task switch.
3429 * @param SelNewTss The selector of the new TSS.
3430 * @param cbInstr The instruction length in bytes.
3431 */
3432VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT
3433{
3434 /*
3435 * Task-switch VM-exits are unconditional and provide the Exit qualification.
3436 *
3437 * If the cause of the task switch is due to execution of CALL, IRET or the JMP
3438 * instruction or delivery of the exception generated by one of these instructions
3439 * lead to a task switch through a task gate in the IDT, we need to provide the
3440 * VM-exit instruction length. Any other means of invoking a task switch VM-exit
3441 * leaves the VM-exit instruction length field undefined.
3442 *
3443 * See Intel spec. 25.2 "Other Causes Of VM Exits".
3444 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
3445 */
3446 Assert(cbInstr <= 15);
3447
3448 uint8_t uType;
3449 switch (enmTaskSwitch)
3450 {
3451 case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
3452 case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
3453 case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
3454 case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
3455 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3456 }
3457
3458 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
3459 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
3460 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3461 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, u64ExitQual);
3462}
3463
3464
3465/**
3466 * VMX VM-exit handler for trap-like VM-exits.
3467 *
3468 * @returns VBox strict status code.
3469 * @param pVCpu The cross context virtual CPU structure.
3470 * @param pExitInfo Pointer to the VM-exit information.
3471 * @param pExitEventInfo Pointer to the VM-exit event information.
3472 */
3473static VBOXSTRICTRC iemVmxVmexitTrapLikeWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
3474{
3475 Assert(VMXIsVmexitTrapLike(pExitInfo->uReason));
3476 iemVmxVmcsSetGuestPendingDbgXcpts(pVCpu, pExitInfo->u64GuestPendingDbgXcpts);
3477 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
3478}
3479
3480
3481/**
3482 * Interface for HM and EM to emulate a trap-like VM-exit (MTF, APIC-write,
3483 * Virtualized-EOI, TPR-below threshold).
3484 *
3485 * @returns Strict VBox status code.
3486 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3487 * @param pExitInfo Pointer to the VM-exit information.
3488 * @thread EMT(pVCpu)
3489 */
3490VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTrapLike(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
3491{
3492 Assert(pExitInfo);
3493 VBOXSTRICTRC rcStrict = iemVmxVmexitTrapLikeWithInfo(pVCpu, pExitInfo);
3494 Assert(!pVCpu->iem.s.cActiveMappings);
3495 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3496}
3497
3498
3499/**
3500 * VMX VM-exit handler for VM-exits due to task switches.
3501 *
3502 * This is intended for task switches where the caller provides all the relevant
3503 * VM-exit information.
3504 *
3505 * @returns VBox strict status code.
3506 * @param pVCpu The cross context virtual CPU structure.
3507 * @param pExitInfo Pointer to the VM-exit information.
3508 * @param pExitEventInfo Pointer to the VM-exit event information.
3509 */
3510static VBOXSTRICTRC iemVmxVmexitTaskSwitchWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3511 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3512{
3513 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3514 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3515 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3516 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3517 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, pExitInfo->u64Qual);
3518}
3519
3520
3521/**
3522 * Interface for HM and EM to emulate a VM-exit due to a task switch.
3523 *
3524 * @returns Strict VBox status code.
3525 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3526 * @param pExitInfo Pointer to the VM-exit information.
3527 * @param pExitEventInfo Pointer to the VM-exit event information.
3528 * @thread EMT(pVCpu)
3529 */
3530VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTaskSwitch(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3531{
3532 Assert(pExitInfo);
3533 Assert(pExitEventInfo);
3534 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3535 VBOXSTRICTRC rcStrict = iemVmxVmexitTaskSwitchWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3536 Assert(!pVCpu->iem.s.cActiveMappings);
3537 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3538}
3539
3540
3541/**
3542 * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
3543 *
3544 * @returns VBox strict status code.
3545 * @param pVCpu The cross context virtual CPU structure.
3546 */
3547VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
3548{
3549 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
3550 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
3551
3552 /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
3553 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3554
3555 /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
3556 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
3557 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer = 0;
3558
3559 /* Cause the VMX-preemption timer VM-exit. The Exit qualification MBZ. */
3560 return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER, 0 /* u64ExitQual */);
3561}
3562
3563
3564/**
3565 * Interface for HM and EM to emulate VM-exit due to expiry of the preemption timer.
3566 *
3567 * @returns Strict VBox status code.
3568 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3569 * @thread EMT(pVCpu)
3570 */
3571VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitPreemptTimer(PVMCPUCC pVCpu)
3572{
3573 VBOXSTRICTRC rcStrict = iemVmxVmexitPreemptTimer(pVCpu);
3574 Assert(!pVCpu->iem.s.cActiveMappings);
3575 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3576}
3577
3578
3579/**
3580 * VMX VM-exit handler for VM-exits due to external interrupts.
3581 *
3582 * @returns VBox strict status code.
3583 * @param pVCpu The cross context virtual CPU structure.
3584 * @param uVector The external interrupt vector (pass 0 if the interrupt
3585 * is still pending since we typically won't know the
3586 * vector).
3587 * @param fIntPending Whether the external interrupt is pending or
3588 * acknowledged in the interrupt controller.
3589 */
3590static VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending) RT_NOEXCEPT
3591{
3592 Assert(!fIntPending || uVector == 0);
3593
3594 /* The VM-exit is subject to "External interrupt exiting" being set. */
3595 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
3596 {
3597 if (fIntPending)
3598 {
3599 /*
3600 * If the interrupt is pending and we don't need to acknowledge the
3601 * interrupt on VM-exit, cause the VM-exit immediately.
3602 *
3603 * See Intel spec 25.2 "Other Causes Of VM Exits".
3604 */
3605 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
3606 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3607
3608 /*
3609 * If the interrupt is pending and we -do- need to acknowledge the interrupt
3610 * on VM-exit, postpone VM-exit till after the interrupt controller has been
3611 * acknowledged that the interrupt has been consumed. Callers would have to call
3612 * us again after getting the vector (and ofc, with fIntPending with false).
3613 */
3614 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3615 }
3616
3617 /*
3618 * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
3619 * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
3620 * all set, we need to record the vector of the external interrupt in the
3621 * VM-exit interruption information field. Otherwise, mark this field as invalid.
3622 *
3623 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3624 */
3625 uint32_t uExitIntInfo;
3626 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
3627 {
3628 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3629 uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3630 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
3631 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3632 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3633 }
3634 else
3635 uExitIntInfo = 0;
3636 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3637
3638 /*
3639 * Cause the VM-exit whether or not the vector has been stored
3640 * in the VM-exit interruption-information field.
3641 */
3642 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3643 }
3644
3645 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3646}
3647
3648
3649/**
3650 * Interface for HM and EM to emulate VM-exit due to external interrupts.
3651 *
3652 * @returns Strict VBox status code.
3653 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3654 * @param uVector The external interrupt vector (pass 0 if the external
3655 * interrupt is still pending).
3656 * @param fIntPending Whether the external interrupt is pending or
3657 * acknowdledged in the interrupt controller.
3658 * @thread EMT(pVCpu)
3659 */
3660VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending)
3661{
3662 VBOXSTRICTRC rcStrict = iemVmxVmexitExtInt(pVCpu, uVector, fIntPending);
3663 Assert(!pVCpu->iem.s.cActiveMappings);
3664 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3665}
3666
3667
3668/**
3669 * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
3670 * an event.
3671 *
3672 * @returns VBox strict status code.
3673 * @param pVCpu The cross context virtual CPU structure.
3674 */
3675VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT
3676{
3677 uint32_t const fXcptBitmap = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
3678 if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
3679 {
3680 /*
3681 * The NMI-unblocking due to IRET field need not be set for double faults.
3682 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
3683 */
3684 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
3685 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
3686 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
3687 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, 0)
3688 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3689 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3690 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, 0 /* u64ExitQual */);
3691 }
3692
3693 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3694}
3695
3696
3697/**
3698 * VMX VM-exit handler for VM-exit due to delivery of an events.
3699 *
3700 * This is intended for VM-exit due to exceptions or NMIs where the caller provides
3701 * all the relevant VM-exit information.
3702 *
3703 * @returns VBox strict status code.
3704 * @param pVCpu The cross context virtual CPU structure.
3705 * @param pExitInfo Pointer to the VM-exit information.
3706 * @param pExitEventInfo Pointer to the VM-exit event information.
3707 */
3708static VBOXSTRICTRC iemVmxVmexitEventWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3709{
3710 Assert(pExitInfo);
3711 Assert(pExitEventInfo);
3712 Assert(pExitInfo->uReason == VMX_EXIT_XCPT_OR_NMI);
3713 Assert(VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3714
3715 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3716 iemVmxVmcsSetExitIntInfo(pVCpu, pExitEventInfo->uExitIntInfo);
3717 iemVmxVmcsSetExitIntErrCode(pVCpu, pExitEventInfo->uExitIntErrCode);
3718 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3719 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3720 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, pExitInfo->u64Qual);
3721}
3722
3723
3724/**
3725 * Interface for HM and EM to emulate VM-exit due to NMIs.
3726 *
3727 * @returns Strict VBox status code.
3728 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3729 * @thread EMT(pVCpu)
3730 */
3731VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcptNmi(PVMCPUCC pVCpu)
3732{
3733 VMXVEXITINFO ExitInfo;
3734 RT_ZERO(ExitInfo);
3735 ExitInfo.uReason = VMX_EXIT_XCPT_OR_NMI;
3736
3737 VMXVEXITEVENTINFO ExitEventInfo;
3738 RT_ZERO(ExitEventInfo);
3739 ExitEventInfo.uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1)
3740 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_NMI)
3741 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_NMI);
3742
3743 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
3744 Assert(!pVCpu->iem.s.cActiveMappings);
3745 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3746}
3747
3748
3749/**
3750 * Interface for HM and EM to emulate VM-exit due to exceptions.
3751 *
3752 * Exception includes NMIs, software exceptions (those generated by INT3 or
3753 * INTO) and privileged software exceptions (those generated by INT1/ICEBP).
3754 *
3755 * @returns Strict VBox status code.
3756 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3757 * @param pExitInfo Pointer to the VM-exit information.
3758 * @param pExitEventInfo Pointer to the VM-exit event information.
3759 * @thread EMT(pVCpu)
3760 */
3761VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcpt(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3762{
3763 Assert(pExitInfo);
3764 Assert(pExitEventInfo);
3765 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3766 Assert(!pVCpu->iem.s.cActiveMappings);
3767 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3768}
3769
3770
3771/**
3772 * VMX VM-exit handler for VM-exits due to delivery of an event.
3773 *
3774 * @returns VBox strict status code.
3775 * @param pVCpu The cross context virtual CPU structure.
3776 * @param uVector The interrupt / exception vector.
3777 * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
3778 * @param uErrCode The error code associated with the event.
3779 * @param uCr2 The CR2 value in case of a \#PF exception.
3780 * @param cbInstr The instruction length in bytes.
3781 */
3782VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode,
3783 uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT
3784{
3785 /*
3786 * If the event is being injected as part of VM-entry, it is -not- subject to event
3787 * intercepts in the nested-guest. However, secondary exceptions that occur during
3788 * injection of any event -are- subject to event interception.
3789 *
3790 * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
3791 */
3792 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
3793 {
3794 /*
3795 * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
3796 * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
3797 *
3798 * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
3799 */
3800 if ( uVector == X86_XCPT_NMI
3801 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
3802 && (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3803 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
3804 else
3805 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
3806
3807 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
3808 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3809 }
3810
3811 /*
3812 * We are injecting an external interrupt, check if we need to cause a VM-exit now.
3813 * If not, the caller will continue delivery of the external interrupt as it would
3814 * normally. The interrupt is no longer pending in the interrupt controller at this
3815 * point.
3816 */
3817 if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
3818 {
3819 Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo));
3820 return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
3821 }
3822
3823 /*
3824 * Evaluate intercepts for hardware exceptions, software exceptions (#BP, #OF),
3825 * and privileged software exceptions (#DB generated by INT1/ICEBP) and software
3826 * interrupts.
3827 */
3828 Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
3829 bool fIntercept;
3830 if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3831 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3832 fIntercept = CPUMIsGuestVmxXcptInterceptSet(&pVCpu->cpum.GstCtx, uVector, uErrCode);
3833 else
3834 {
3835 /* Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
3836 fIntercept = false;
3837 }
3838
3839 /*
3840 * Now that we've determined whether the event causes a VM-exit, we need to construct the
3841 * relevant VM-exit information and cause the VM-exit.
3842 */
3843 if (fIntercept)
3844 {
3845 Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
3846
3847 /* Construct the rest of the event related information fields and cause the VM-exit. */
3848 uint64_t u64ExitQual;
3849 if (uVector == X86_XCPT_PF)
3850 {
3851 Assert(fFlags & IEM_XCPT_FLAGS_CR2);
3852 u64ExitQual = uCr2;
3853 }
3854 else if (uVector == X86_XCPT_DB)
3855 {
3856 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
3857 u64ExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
3858 }
3859 else
3860 u64ExitQual = 0;
3861
3862 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3863 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
3864 uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
3865 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3866 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
3867 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
3868 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3869 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3870 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3871 iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
3872
3873 /*
3874 * For VM-exits due to software exceptions (those generated by INT3 or INTO) or privileged
3875 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
3876 * length.
3877 */
3878 if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3879 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3880 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3881 else
3882 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
3883
3884 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, u64ExitQual);
3885 }
3886
3887 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3888}
3889
3890
3891/**
3892 * VMX VM-exit handler for EPT misconfiguration.
3893 *
3894 * @param pVCpu The cross context virtual CPU structure.
3895 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3896 * This need not be page aligned (e.g. nested-guest in real
3897 * mode).
3898 */
3899static VBOXSTRICTRC iemVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr) RT_NOEXCEPT
3900{
3901 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3902 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3903}
3904
3905
3906/**
3907 * VMX VM-exit handler for EPT misconfiguration.
3908 *
3909 * This is intended for EPT misconfigurations where the caller provides all the
3910 * relevant VM-exit information.
3911 *
3912 * @param pVCpu The cross context virtual CPU structure.
3913 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3914 * This need not be page aligned (e.g. nested-guest in real
3915 * mode).
3916 * @param pExitEventInfo Pointer to the VM-exit event information.
3917 */
3918static VBOXSTRICTRC iemVmxVmexitEptMisconfigWithInfo(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3919{
3920 Assert(pExitEventInfo);
3921 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3922 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3923 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3924 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3925 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3926}
3927
3928
3929/**
3930 * Interface for HM and EM to emulate a VM-exit due to an EPT misconfiguration.
3931 *
3932 * @returns Strict VBox status code.
3933 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3934 * @param GCPhysAddr The nested-guest physical address causing the EPT
3935 * misconfiguration.
3936 * @param pExitEventInfo Pointer to the VM-exit event information.
3937 * @thread EMT(pVCpu)
3938 */
3939VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo)
3940{
3941 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
3942
3943 iemInitExec(pVCpu, false /*fBypassHandlers*/);
3944 VBOXSTRICTRC rcStrict = iemVmxVmexitEptMisconfigWithInfo(pVCpu, GCPhysAddr, pExitEventInfo);
3945 Assert(!pVCpu->iem.s.cActiveMappings);
3946 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
3947}
3948
3949
3950/**
3951 * VMX VM-exit handler for EPT violation.
3952 *
3953 * @param pVCpu The cross context virtual CPU structure.
3954 * @param fAccess The access causing the EPT violation, IEM_ACCESS_XXX.
3955 * @param fSlatFail The SLAT failure info, IEM_SLAT_FAIL_XXX.
3956 * @param fEptAccess The EPT paging structure bits.
3957 * @param GCPhysAddr The physical address causing the EPT violation. This
3958 * need not be page aligned (e.g. nested-guest in real
3959 * mode).
3960 * @param fIsLinearAddrValid Whether translation of a linear address caused this
3961 * EPT violation. If @c false, GCPtrAddr must be 0.
3962 * @param GCPtrAddr The linear address causing the EPT violation.
3963 * @param cbInstr The VM-exit instruction length.
3964 */
3965static VBOXSTRICTRC iemVmxVmexitEptViolation(PVMCPUCC pVCpu, uint32_t fAccess, uint32_t fSlatFail,
3966 uint64_t fEptAccess, RTGCPHYS GCPhysAddr, bool fIsLinearAddrValid,
3967 uint64_t GCPtrAddr, uint8_t cbInstr) RT_NOEXCEPT
3968{
3969 /*
3970 * If the linear address isn't valid (can happen when loading PDPTEs
3971 * as part of MOV CR execution) the linear address field is undefined.
3972 * While we can leave it this way, it's preferrable to zero it for consistency.
3973 */
3974 Assert(fIsLinearAddrValid || GCPtrAddr == 0);
3975
3976 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
3977 bool const fSupportsAccessDirty = RT_BOOL(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
3978
3979 uint32_t const fDataRdMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_READ;
3980 uint32_t const fDataWrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE;
3981 uint32_t const fInstrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_EXEC;
3982 bool const fDataRead = ((fAccess & fDataRdMask) == IEM_ACCESS_DATA_R) | fSupportsAccessDirty;
3983 bool const fDataWrite = ((fAccess & fDataWrMask) == IEM_ACCESS_DATA_W) | fSupportsAccessDirty;
3984 bool const fInstrFetch = ((fAccess & fInstrMask) == IEM_ACCESS_INSTRUCTION);
3985 bool const fEptRead = RT_BOOL(fEptAccess & EPT_E_READ);
3986 bool const fEptWrite = RT_BOOL(fEptAccess & EPT_E_WRITE);
3987 bool const fEptExec = RT_BOOL(fEptAccess & EPT_E_EXECUTE);
3988 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3989 bool const fIsLinearToPhysAddr = fIsLinearAddrValid & RT_BOOL(fSlatFail & IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR);
3990
3991 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_READ, fDataRead)
3992 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_WRITE, fDataWrite)
3993 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH, fInstrFetch)
3994 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_READ, fEptRead)
3995 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_WRITE, fEptWrite)
3996 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_EXECUTE, fEptExec)
3997 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID, fIsLinearAddrValid)
3998 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_TO_PHYS_ADDR, fIsLinearToPhysAddr)
3999 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_NMI_UNBLOCK_IRET, fNmiUnblocking);
4000
4001#ifdef VBOX_STRICT
4002 uint64_t const fMiscCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
4003 uint32_t const fProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2;
4004 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION)); /* Advanced VM-exit info. not supported */
4005 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK)); /* Supervisor shadow stack control not supported. */
4006 Assert(!(RT_BF_GET(fMiscCaps, VMX_BF_MISC_INTEL_PT))); /* Intel PT not supported. */
4007 Assert(!(fProcCtls2 & VMX_PROC_CTLS2_MODE_BASED_EPT_PERM)); /* Mode-based execute control not supported. */
4008#endif
4009
4010 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
4011 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, GCPtrAddr);
4012 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
4013
4014 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, u64ExitQual);
4015}
4016
4017
4018/**
4019 * VMX VM-exit handler for EPT violation.
4020 *
4021 * This is intended for EPT violations where the caller provides all the
4022 * relevant VM-exit information.
4023 *
4024 * @returns VBox strict status code.
4025 * @param pVCpu The cross context virtual CPU structure.
4026 * @param pExitInfo Pointer to the VM-exit information.
4027 * @param pExitEventInfo Pointer to the VM-exit event information.
4028 */
4029static VBOXSTRICTRC iemVmxVmexitEptViolationWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4030 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4031{
4032 Assert(pExitInfo);
4033 Assert(pExitEventInfo);
4034 Assert(pExitInfo->uReason == VMX_EXIT_EPT_VIOLATION);
4035 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4036
4037 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4038 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4039
4040 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
4041 if (pExitInfo->u64Qual & VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID_MASK)
4042 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
4043 else
4044 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, 0);
4045 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4046 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, pExitInfo->u64Qual);
4047}
4048
4049
4050/**
4051 * Interface for HM and EM to emulate a VM-exit due to an EPT violation.
4052 *
4053 * @returns Strict VBox status code.
4054 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4055 * @param pExitInfo Pointer to the VM-exit information.
4056 * @param pExitEventInfo Pointer to the VM-exit event information.
4057 * @thread EMT(pVCpu)
4058 */
4059VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptViolation(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4060 PCVMXVEXITEVENTINFO pExitEventInfo)
4061{
4062 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
4063
4064 iemInitExec(pVCpu, false /*fBypassHandlers*/);
4065 VBOXSTRICTRC rcStrict = iemVmxVmexitEptViolationWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4066 Assert(!pVCpu->iem.s.cActiveMappings);
4067 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
4068}
4069
4070
4071/**
4072 * VMX VM-exit handler for EPT-induced VM-exits.
4073 *
4074 * @param pVCpu The cross context virtual CPU structure.
4075 * @param pWalk The page walk info.
4076 * @param fAccess The access causing the EPT event, IEM_ACCESS_XXX.
4077 * @param fSlatFail Additional SLAT info, IEM_SLAT_FAIL_XXX.
4078 * @param cbInstr The VM-exit instruction length if applicable. Pass 0 if not
4079 * applicable.
4080 */
4081VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT
4082{
4083 Assert(pWalk->fIsSlat);
4084 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT);
4085 Assert(!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEptXcptVe); /* #VE exceptions not supported. */
4086 Assert(!(pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE)); /* Without #VE, convertible violations not possible. */
4087
4088 if (pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION)
4089 {
4090 Log(("EptViolation: cs:rip=%x:%#RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4091 uint64_t const fEptAccess = (pWalk->fEffective & PGM_PTATTRS_EPT_MASK) >> PGM_PTATTRS_EPT_SHIFT;
4092 return iemVmxVmexitEptViolation(pVCpu, fAccess, fSlatFail, fEptAccess, pWalk->GCPhysNested, pWalk->fIsLinearAddrValid,
4093 pWalk->GCPtr, cbInstr);
4094 }
4095
4096 Log(("EptMisconfig: cs:rip=%x:%#RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4097 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT_MISCONFIG);
4098 return iemVmxVmexitEptMisconfig(pVCpu, pWalk->GCPhysNested);
4099}
4100
4101
4102/**
4103 * VMX VM-exit handler for APIC accesses.
4104 *
4105 * @param pVCpu The cross context virtual CPU structure.
4106 * @param offAccess The offset of the register being accessed.
4107 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4108 */
4109static VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPUCC pVCpu, uint16_t offAccess, uint32_t fAccess) RT_NOEXCEPT
4110{
4111 VMXAPICACCESS enmAccess;
4112 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
4113 if (fInEventDelivery)
4114 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
4115 else if ((fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == IEM_ACCESS_INSTRUCTION)
4116 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
4117 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
4118 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
4119 else
4120 enmAccess = VMXAPICACCESS_LINEAR_READ;
4121
4122 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
4123 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
4124 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, u64ExitQual);
4125}
4126
4127
4128/**
4129 * VMX VM-exit handler for APIC accesses.
4130 *
4131 * This is intended for APIC accesses where the caller provides all the
4132 * relevant VM-exit information.
4133 *
4134 * @returns VBox strict status code.
4135 * @param pVCpu The cross context virtual CPU structure.
4136 * @param pExitInfo Pointer to the VM-exit information.
4137 * @param pExitEventInfo Pointer to the VM-exit event information.
4138 */
4139static VBOXSTRICTRC iemVmxVmexitApicAccessWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4140 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4141{
4142 /* VM-exit interruption information should not be valid for APIC-access VM-exits. */
4143 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4144 Assert(pExitInfo->uReason == VMX_EXIT_APIC_ACCESS);
4145 iemVmxVmcsSetExitIntInfo(pVCpu, 0);
4146 iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
4147 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4148 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4149 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4150 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, pExitInfo->u64Qual);
4151}
4152
4153
4154/**
4155 * Interface for HM and EM to virtualize memory-mapped APIC accesses.
4156 *
4157 * @returns Strict VBox status code.
4158 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the memory access was virtualized.
4159 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4160 *
4161 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4162 * @param pExitInfo Pointer to the VM-exit information.
4163 * @param pExitEventInfo Pointer to the VM-exit event information.
4164 * @thread EMT(pVCpu)
4165 */
4166VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicAccess(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
4167{
4168 Assert(pExitInfo);
4169 Assert(pExitEventInfo);
4170 VBOXSTRICTRC rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4171 Assert(!pVCpu->iem.s.cActiveMappings);
4172 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4173
4174}
4175
4176
4177/**
4178 * VMX VM-exit handler for APIC-write VM-exits.
4179 *
4180 * @param pVCpu The cross context virtual CPU structure.
4181 * @param offApic The write to the virtual-APIC page offset that caused this
4182 * VM-exit.
4183 */
4184static VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPUCC pVCpu, uint16_t offApic) RT_NOEXCEPT
4185{
4186 Assert(offApic < XAPIC_OFF_END + 4);
4187 /* Write only bits 11:0 of the APIC offset into the Exit qualification field. */
4188 offApic &= UINT16_C(0xfff);
4189 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE, offApic);
4190}
4191
4192
4193/**
4194 * Clears any pending virtual-APIC write emulation.
4195 *
4196 * @returns The virtual-APIC offset that was written before clearing it.
4197 * @param pVCpu The cross context virtual CPU structure.
4198 */
4199DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPUCC pVCpu)
4200{
4201 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
4202 uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
4203 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
4204 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
4205 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
4206 return offVirtApicWrite;
4207}
4208
4209
4210/**
4211 * Reads a 32-bit register from the virtual-APIC page at the given offset.
4212 *
4213 * @returns The register from the virtual-APIC page.
4214 * @param pVCpu The cross context virtual CPU structure.
4215 * @param offReg The offset of the register being read.
4216 */
4217uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4218{
4219 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4220
4221 uint32_t uReg = 0;
4222 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4223 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4224 AssertMsgStmt(RT_SUCCESS(rc),
4225 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4226 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4227 uReg = 0);
4228 return uReg;
4229}
4230
4231
4232/**
4233 * Reads a 64-bit register from the virtual-APIC page at the given offset.
4234 *
4235 * @returns The register from the virtual-APIC page.
4236 * @param pVCpu The cross context virtual CPU structure.
4237 * @param offReg The offset of the register being read.
4238 */
4239static uint64_t iemVmxVirtApicReadRaw64(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4240{
4241 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4242
4243 uint64_t uReg = 0;
4244 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4245 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4246 AssertMsgStmt(RT_SUCCESS(rc),
4247 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4248 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4249 uReg = 0);
4250 return uReg;
4251}
4252
4253
4254/**
4255 * Writes a 32-bit register to the virtual-APIC page at the given offset.
4256 *
4257 * @param pVCpu The cross context virtual CPU structure.
4258 * @param offReg The offset of the register being written.
4259 * @param uReg The register value to write.
4260 */
4261void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT
4262{
4263 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4264
4265 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4266 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4267 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4268 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4269}
4270
4271
4272/**
4273 * Writes a 64-bit register to the virtual-APIC page at the given offset.
4274 *
4275 * @param pVCpu The cross context virtual CPU structure.
4276 * @param offReg The offset of the register being written.
4277 * @param uReg The register value to write.
4278 */
4279static void iemVmxVirtApicWriteRaw64(PVMCPUCC pVCpu, uint16_t offReg, uint64_t uReg) RT_NOEXCEPT
4280{
4281 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4282
4283 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4284 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4285 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4286 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4287}
4288
4289
4290/**
4291 * Sets the vector in a virtual-APIC 256-bit sparse register.
4292 *
4293 * @param pVCpu The cross context virtual CPU structure.
4294 * @param offReg The offset of the 256-bit spare register.
4295 * @param uVector The vector to set.
4296 *
4297 * @remarks This is based on our APIC device code.
4298 */
4299static void iemVmxVirtApicSetVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4300{
4301 /* Determine the vector offset within the chunk. */
4302 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4303
4304 /* Read the chunk at the offset. */
4305 uint32_t uReg;
4306 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4307 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4308 if (RT_SUCCESS(rc))
4309 {
4310 /* Modify the chunk. */
4311 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4312 uReg |= RT_BIT(idxVectorBit);
4313
4314 /* Write the chunk. */
4315 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4316 AssertMsgRC(rc, ("Failed to set vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4317 uVector, offReg, GCPhysVirtApic, rc));
4318 }
4319 else
4320 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4321 uVector, offReg, GCPhysVirtApic, rc));
4322}
4323
4324
4325/**
4326 * Clears the vector in a virtual-APIC 256-bit sparse register.
4327 *
4328 * @param pVCpu The cross context virtual CPU structure.
4329 * @param offReg The offset of the 256-bit spare register.
4330 * @param uVector The vector to clear.
4331 *
4332 * @remarks This is based on our APIC device code.
4333 */
4334static void iemVmxVirtApicClearVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4335{
4336 /* Determine the vector offset within the chunk. */
4337 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4338
4339 /* Read the chunk at the offset. */
4340 uint32_t uReg;
4341 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4342 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4343 if (RT_SUCCESS(rc))
4344 {
4345 /* Modify the chunk. */
4346 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4347 uReg &= ~RT_BIT(idxVectorBit);
4348
4349 /* Write the chunk. */
4350 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4351 AssertMsgRC(rc, ("Failed to clear vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4352 uVector, offReg, GCPhysVirtApic, rc));
4353 }
4354 else
4355 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4356 uVector, offReg, GCPhysVirtApic, rc));
4357}
4358
4359
4360/**
4361 * Checks if a memory access to the APIC-access page must causes an APIC-access
4362 * VM-exit.
4363 *
4364 * @param pVCpu The cross context virtual CPU structure.
4365 * @param offAccess The offset of the register being accessed.
4366 * @param cbAccess The size of the access in bytes.
4367 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4368 *
4369 * @remarks This must not be used for MSR-based APIC-access page accesses!
4370 * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
4371 */
4372static bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4373{
4374 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4375
4376 /*
4377 * We must cause a VM-exit if any of the following are true:
4378 * - TPR shadowing isn't active.
4379 * - The access size exceeds 32-bits.
4380 * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
4381 *
4382 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4383 * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
4384 */
4385 if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4386 || cbAccess > sizeof(uint32_t)
4387 || ((offAccess + cbAccess - 1) & 0xc)
4388 || offAccess >= XAPIC_OFF_END + 4)
4389 return true;
4390
4391 /*
4392 * If the access is part of an operation where we have already
4393 * virtualized a virtual-APIC write, we must cause a VM-exit.
4394 */
4395 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4396 return true;
4397
4398 /*
4399 * Check write accesses to the APIC-access page that cause VM-exits.
4400 */
4401 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4402 {
4403 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4404 {
4405 /*
4406 * With APIC-register virtualization, a write access to any of the
4407 * following registers are virtualized. Accessing any other register
4408 * causes a VM-exit.
4409 */
4410 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4411 switch (offAlignedAccess)
4412 {
4413 case XAPIC_OFF_ID:
4414 case XAPIC_OFF_TPR:
4415 case XAPIC_OFF_EOI:
4416 case XAPIC_OFF_LDR:
4417 case XAPIC_OFF_DFR:
4418 case XAPIC_OFF_SVR:
4419 case XAPIC_OFF_ESR:
4420 case XAPIC_OFF_ICR_LO:
4421 case XAPIC_OFF_ICR_HI:
4422 case XAPIC_OFF_LVT_TIMER:
4423 case XAPIC_OFF_LVT_THERMAL:
4424 case XAPIC_OFF_LVT_PERF:
4425 case XAPIC_OFF_LVT_LINT0:
4426 case XAPIC_OFF_LVT_LINT1:
4427 case XAPIC_OFF_LVT_ERROR:
4428 case XAPIC_OFF_TIMER_ICR:
4429 case XAPIC_OFF_TIMER_DCR:
4430 break;
4431 default:
4432 return true;
4433 }
4434 }
4435 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4436 {
4437 /*
4438 * With virtual-interrupt delivery, a write access to any of the
4439 * following registers are virtualized. Accessing any other register
4440 * causes a VM-exit.
4441 *
4442 * Note! The specification does not allow writing to offsets in-between
4443 * these registers (e.g. TPR + 1 byte) unlike read accesses.
4444 */
4445 switch (offAccess)
4446 {
4447 case XAPIC_OFF_TPR:
4448 case XAPIC_OFF_EOI:
4449 case XAPIC_OFF_ICR_LO:
4450 break;
4451 default:
4452 return true;
4453 }
4454 }
4455 else
4456 {
4457 /*
4458 * Without APIC-register virtualization or virtual-interrupt delivery,
4459 * only TPR accesses are virtualized.
4460 */
4461 if (offAccess == XAPIC_OFF_TPR)
4462 { /* likely */ }
4463 else
4464 return true;
4465 }
4466 }
4467 else
4468 {
4469 /*
4470 * Check read accesses to the APIC-access page that cause VM-exits.
4471 */
4472 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4473 {
4474 /*
4475 * With APIC-register virtualization, a read access to any of the
4476 * following registers are virtualized. Accessing any other register
4477 * causes a VM-exit.
4478 */
4479 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4480 switch (offAlignedAccess)
4481 {
4482 /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
4483 case XAPIC_OFF_ID:
4484 case XAPIC_OFF_VERSION:
4485 case XAPIC_OFF_TPR:
4486 case XAPIC_OFF_EOI:
4487 case XAPIC_OFF_LDR:
4488 case XAPIC_OFF_DFR:
4489 case XAPIC_OFF_SVR:
4490 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
4491 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
4492 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
4493 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
4494 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
4495 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
4496 case XAPIC_OFF_ESR:
4497 case XAPIC_OFF_ICR_LO:
4498 case XAPIC_OFF_ICR_HI:
4499 case XAPIC_OFF_LVT_TIMER:
4500 case XAPIC_OFF_LVT_THERMAL:
4501 case XAPIC_OFF_LVT_PERF:
4502 case XAPIC_OFF_LVT_LINT0:
4503 case XAPIC_OFF_LVT_LINT1:
4504 case XAPIC_OFF_LVT_ERROR:
4505 case XAPIC_OFF_TIMER_ICR:
4506 case XAPIC_OFF_TIMER_DCR:
4507 break;
4508 default:
4509 return true;
4510 }
4511 }
4512 else
4513 {
4514 /* Without APIC-register virtualization, only TPR accesses are virtualized. */
4515 if (offAccess == XAPIC_OFF_TPR)
4516 { /* likely */ }
4517 else
4518 return true;
4519 }
4520 }
4521
4522 /* The APIC access is virtualized, does not cause a VM-exit. */
4523 return false;
4524}
4525
4526
4527/**
4528 * Virtualizes a memory-based APIC access by certain instructions even though they
4529 * do not use the address to access memory.
4530 *
4531 * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
4532 * page-faults but do not use the address to access memory.
4533 *
4534 * @param pVCpu The cross context virtual CPU structure.
4535 * @param pGCPhysAccess Pointer to the guest-physical address accessed.
4536 * @param cbAccess The size of the access in bytes.
4537 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4538 */
4539VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4540{
4541 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4542 Assert(pGCPhysAccess);
4543
4544 RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
4545 RTGCPHYS const GCPhysApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrApicAccess.u;
4546 Assert(!(GCPhysApic & GUEST_PAGE_OFFSET_MASK));
4547
4548 if (GCPhysAccess == GCPhysApic)
4549 {
4550 uint16_t const offAccess = *pGCPhysAccess & GUEST_PAGE_OFFSET_MASK;
4551 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4552 if (fIntercept)
4553 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4554
4555 *pGCPhysAccess = GCPhysApic | offAccess;
4556 return VINF_VMX_MODIFIES_BEHAVIOR;
4557 }
4558
4559 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4560}
4561
4562
4563/**
4564 * Virtualizes a memory-based APIC access.
4565 *
4566 * @returns VBox strict status code.
4567 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
4568 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4569 *
4570 * @param pVCpu The cross context virtual CPU structure.
4571 * @param offAccess The offset of the register being accessed (within the
4572 * APIC-access page).
4573 * @param cbAccess The size of the access in bytes.
4574 * @param pvData Pointer to the data being written or where to store the data
4575 * being read.
4576 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4577 */
4578static VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess,
4579 void *pvData, uint32_t fAccess) RT_NOEXCEPT
4580{
4581 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4582 Assert(pvData);
4583
4584 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4585 if (fIntercept)
4586 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4587
4588 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4589 {
4590 /*
4591 * A write access to the APIC-access page that is virtualized (rather than
4592 * causing a VM-exit) writes data to the virtual-APIC page.
4593 */
4594 uint32_t const u32Data = *(uint32_t *)pvData;
4595 iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
4596
4597 /*
4598 * Record the currently updated APIC offset, as we need this later for figuring
4599 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4600 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4601 *
4602 * After completion of the current operation, we need to perform TPR virtualization,
4603 * EOI virtualization or APIC-write VM-exit depending on which register was written.
4604 *
4605 * The current operation may be a REP-prefixed string instruction, execution of any
4606 * other instruction, or delivery of an event through the IDT.
4607 *
4608 * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
4609 * performed now but later after completion of the current operation.
4610 *
4611 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4612 */
4613 iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
4614 }
4615 else
4616 {
4617 /*
4618 * A read access from the APIC-access page that is virtualized (rather than
4619 * causing a VM-exit) returns data from the virtual-APIC page.
4620 *
4621 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4622 */
4623 Assert(fAccess & IEM_ACCESS_TYPE_READ);
4624
4625 Assert(cbAccess <= 4);
4626 Assert(offAccess < XAPIC_OFF_END + 4);
4627 static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
4628
4629 uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
4630 u32Data &= s_auAccessSizeMasks[cbAccess];
4631 *(uint32_t *)pvData = u32Data;
4632 }
4633
4634 return VINF_VMX_MODIFIES_BEHAVIOR;
4635}
4636
4637
4638/**
4639 * Virtualizes an MSR-based APIC read access.
4640 *
4641 * @returns VBox strict status code.
4642 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
4643 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
4644 * handled by the x2APIC device.
4645 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4646 * not within the range of valid MSRs, caller must raise \#GP(0).
4647 * @param pVCpu The cross context virtual CPU structure.
4648 * @param idMsr The x2APIC MSR being read.
4649 * @param pu64Value Where to store the read x2APIC MSR value (only valid when
4650 * VINF_VMX_MODIFIES_BEHAVIOR is returned).
4651 */
4652static VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value) RT_NOEXCEPT
4653{
4654 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
4655 Assert(pu64Value);
4656
4657 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4658 {
4659 if ( idMsr >= MSR_IA32_X2APIC_START
4660 && idMsr <= MSR_IA32_X2APIC_END)
4661 {
4662 uint16_t const offReg = (idMsr & 0xff) << 4;
4663 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4664 *pu64Value = u64Value;
4665 return VINF_VMX_MODIFIES_BEHAVIOR;
4666 }
4667 return VERR_OUT_OF_RANGE;
4668 }
4669
4670 if (idMsr == MSR_IA32_X2APIC_TPR)
4671 {
4672 uint16_t const offReg = (idMsr & 0xff) << 4;
4673 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4674 *pu64Value = u64Value;
4675 return VINF_VMX_MODIFIES_BEHAVIOR;
4676 }
4677
4678 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4679}
4680
4681
4682/**
4683 * Virtualizes an MSR-based APIC write access.
4684 *
4685 * @returns VBox strict status code.
4686 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
4687 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4688 * not within the range of valid MSRs, caller must raise \#GP(0).
4689 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
4690 *
4691 * @param pVCpu The cross context virtual CPU structure.
4692 * @param idMsr The x2APIC MSR being written.
4693 * @param u64Value The value of the x2APIC MSR being written.
4694 */
4695static VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Value) RT_NOEXCEPT
4696{
4697 /*
4698 * Check if the access is to be virtualized.
4699 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4700 */
4701 if ( idMsr == MSR_IA32_X2APIC_TPR
4702 || ( (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4703 && ( idMsr == MSR_IA32_X2APIC_EOI
4704 || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
4705 {
4706 /* Validate the MSR write depending on the register. */
4707 switch (idMsr)
4708 {
4709 case MSR_IA32_X2APIC_TPR:
4710 case MSR_IA32_X2APIC_SELF_IPI:
4711 {
4712 if (u64Value & UINT64_C(0xffffffffffffff00))
4713 return VERR_OUT_OF_RANGE;
4714 break;
4715 }
4716 case MSR_IA32_X2APIC_EOI:
4717 {
4718 if (u64Value != 0)
4719 return VERR_OUT_OF_RANGE;
4720 break;
4721 }
4722 }
4723
4724 /* Write the MSR to the virtual-APIC page. */
4725 uint16_t const offReg = (idMsr & 0xff) << 4;
4726 iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
4727
4728 /*
4729 * Record the currently updated APIC offset, as we need this later for figuring
4730 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4731 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4732 */
4733 iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
4734
4735 return VINF_VMX_MODIFIES_BEHAVIOR;
4736 }
4737
4738 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4739}
4740
4741
4742/**
4743 * Interface for HM and EM to virtualize x2APIC MSR accesses.
4744 *
4745 * @returns Strict VBox status code.
4746 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR access was virtualized.
4747 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR access must be handled by
4748 * the x2APIC device.
4749 * @retval VERR_OUT_RANGE if the caller must raise \#GP(0).
4750 *
4751 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4752 * @param idMsr The MSR being read.
4753 * @param pu64Value Pointer to the value being written or where to store the
4754 * value being read.
4755 * @param fWrite Whether this is an MSR write or read access.
4756 * @thread EMT(pVCpu)
4757 */
4758VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVirtApicAccessMsr(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value, bool fWrite)
4759{
4760 Assert(pu64Value);
4761
4762 VBOXSTRICTRC rcStrict;
4763 if (fWrite)
4764 rcStrict = iemVmxVirtApicAccessMsrWrite(pVCpu, idMsr, *pu64Value);
4765 else
4766 rcStrict = iemVmxVirtApicAccessMsrRead(pVCpu, idMsr, pu64Value);
4767 Assert(!pVCpu->iem.s.cActiveMappings);
4768 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4769
4770}
4771
4772
4773/**
4774 * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
4775 *
4776 * @returns VBox status code.
4777 * @retval VINF_SUCCESS when the highest set bit is found.
4778 * @retval VERR_NOT_FOUND when no bit is set.
4779 *
4780 * @param pVCpu The cross context virtual CPU structure.
4781 * @param offReg The offset of the APIC 256-bit sparse register.
4782 * @param pidxHighestBit Where to store the highest bit (most significant bit)
4783 * set in the register. Only valid when VINF_SUCCESS is
4784 * returned.
4785 *
4786 * @remarks The format of the 256-bit sparse register here mirrors that found in
4787 * real APIC hardware.
4788 */
4789static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
4790{
4791 Assert(offReg < XAPIC_OFF_END + 4);
4792 Assert(pidxHighestBit);
4793
4794 /*
4795 * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
4796 * However, in each fragment only the first 4 bytes are used.
4797 */
4798 uint8_t const cFrags = 8;
4799 for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
4800 {
4801 uint16_t const offFrag = iFrag * 16;
4802 uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
4803 if (!u32Frag)
4804 continue;
4805
4806 unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
4807 Assert(idxHighestBit > 0);
4808 --idxHighestBit;
4809 Assert(idxHighestBit <= UINT8_MAX);
4810 *pidxHighestBit = idxHighestBit;
4811 return VINF_SUCCESS;
4812 }
4813 return VERR_NOT_FOUND;
4814}
4815
4816
4817/**
4818 * Evaluates pending virtual interrupts.
4819 *
4820 * @param pVCpu The cross context virtual CPU structure.
4821 */
4822static void iemVmxEvalPendingVirtIntrs(PVMCPUCC pVCpu) RT_NOEXCEPT
4823{
4824 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4825
4826 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
4827 {
4828 uint8_t const uRvi = RT_LO_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
4829 uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
4830
4831 if ((uRvi >> 4) > (uPpr >> 4))
4832 {
4833 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signalling pending interrupt\n", uRvi, uPpr));
4834 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
4835 }
4836 else
4837 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
4838 }
4839}
4840
4841
4842/**
4843 * Performs PPR virtualization.
4844 *
4845 * @returns VBox strict status code.
4846 * @param pVCpu The cross context virtual CPU structure.
4847 */
4848static void iemVmxPprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4849{
4850 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4851 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4852
4853 /*
4854 * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
4855 * or EOI-virtualization.
4856 *
4857 * See Intel spec. 29.1.3 "PPR Virtualization".
4858 */
4859 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4860 uint32_t const uSvi = RT_HI_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
4861
4862 uint32_t uPpr;
4863 if (((uTpr >> 4) & 0xf) >= ((uSvi >> 4) & 0xf))
4864 uPpr = uTpr & 0xff;
4865 else
4866 uPpr = uSvi & 0xf0;
4867
4868 Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
4869 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
4870}
4871
4872
4873/**
4874 * Performs VMX TPR virtualization.
4875 *
4876 * @returns VBox strict status code.
4877 * @param pVCpu The cross context virtual CPU structure.
4878 */
4879static VBOXSTRICTRC iemVmxTprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4880{
4881 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4882
4883 /*
4884 * We should have already performed the virtual-APIC write to the TPR offset
4885 * in the virtual-APIC page. We now perform TPR virtualization.
4886 *
4887 * See Intel spec. 29.1.2 "TPR Virtualization".
4888 */
4889 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
4890 {
4891 uint32_t const uTprThreshold = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32TprThreshold;
4892 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4893
4894 /*
4895 * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
4896 * See Intel spec. 29.1.2 "TPR Virtualization".
4897 */
4898 if (((uTpr >> 4) & 0xf) < uTprThreshold)
4899 {
4900 Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
4901 return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD, 0 /* u64ExitQual */);
4902 }
4903 }
4904 else
4905 {
4906 iemVmxPprVirtualization(pVCpu);
4907 iemVmxEvalPendingVirtIntrs(pVCpu);
4908 }
4909
4910 return VINF_SUCCESS;
4911}
4912
4913
4914/**
4915 * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
4916 * not.
4917 *
4918 * @returns @c true if the EOI write is intercepted, @c false otherwise.
4919 * @param pVCpu The cross context virtual CPU structure.
4920 * @param uVector The interrupt that was acknowledged using an EOI.
4921 */
4922static bool iemVmxIsEoiInterceptSet(PCVMCPU pVCpu, uint8_t uVector) RT_NOEXCEPT
4923{
4924 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4925 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4926
4927 if (uVector < 64)
4928 return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
4929 if (uVector < 128)
4930 return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
4931 if (uVector < 192)
4932 return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
4933 return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
4934}
4935
4936
4937/**
4938 * Performs EOI virtualization.
4939 *
4940 * @returns VBox strict status code.
4941 * @param pVCpu The cross context virtual CPU structure.
4942 */
4943static VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4944{
4945 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4946 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4947
4948 /*
4949 * Clear the interrupt guest-interrupt as no longer in-service (ISR)
4950 * and get the next guest-interrupt that's in-service (if any).
4951 *
4952 * See Intel spec. 29.1.4 "EOI Virtualization".
4953 */
4954 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4955 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4956 Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
4957
4958 uint8_t uVector = uSvi;
4959 iemVmxVirtApicClearVectorInReg(pVCpu, XAPIC_OFF_ISR0, uVector);
4960
4961 uVector = 0;
4962 iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
4963
4964 if (uVector)
4965 Log2(("eoi_virt: next interrupt %#x\n", uVector));
4966 else
4967 Log2(("eoi_virt: no interrupt pending in ISR\n"));
4968
4969 /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
4970 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
4971
4972 iemVmxPprVirtualization(pVCpu);
4973 if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
4974 return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI, uVector);
4975 iemVmxEvalPendingVirtIntrs(pVCpu);
4976 return VINF_SUCCESS;
4977}
4978
4979
4980/**
4981 * Performs self-IPI virtualization.
4982 *
4983 * @returns VBox strict status code.
4984 * @param pVCpu The cross context virtual CPU structure.
4985 */
4986static VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4987{
4988 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4989 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4990
4991 /*
4992 * We should have already performed the virtual-APIC write to the self-IPI offset
4993 * in the virtual-APIC page. We now perform self-IPI virtualization.
4994 *
4995 * See Intel spec. 29.1.5 "Self-IPI Virtualization".
4996 */
4997 uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
4998 Log2(("self_ipi_virt: uVector=%#x\n", uVector));
4999 iemVmxVirtApicSetVectorInReg(pVCpu, XAPIC_OFF_IRR0, uVector);
5000 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
5001 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
5002 if (uVector > uRvi)
5003 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
5004 iemVmxEvalPendingVirtIntrs(pVCpu);
5005 return VINF_SUCCESS;
5006}
5007
5008
5009/**
5010 * Performs VMX APIC-write emulation.
5011 *
5012 * @returns VBox strict status code.
5013 * @param pVCpu The cross context virtual CPU structure.
5014 */
5015VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT
5016{
5017 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5018
5019 /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
5020 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
5021
5022 /*
5023 * Perform APIC-write emulation based on the virtual-APIC register written.
5024 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
5025 */
5026 uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
5027 VBOXSTRICTRC rcStrict;
5028 switch (offApicWrite)
5029 {
5030 case XAPIC_OFF_TPR:
5031 {
5032 /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
5033 uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5034 uTpr &= UINT32_C(0x000000ff);
5035 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5036 Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
5037 rcStrict = iemVmxTprVirtualization(pVCpu);
5038 break;
5039 }
5040
5041 case XAPIC_OFF_EOI:
5042 {
5043 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5044 {
5045 /* Clear VEOI and perform EOI virtualization. */
5046 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
5047 Log2(("iemVmxApicWriteEmulation: EOI write\n"));
5048 rcStrict = iemVmxEoiVirtualization(pVCpu);
5049 }
5050 else
5051 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5052 break;
5053 }
5054
5055 case XAPIC_OFF_ICR_LO:
5056 {
5057 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5058 {
5059 /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
5060 uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5061 uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
5062 uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
5063 if ( !(uIcrLo & fIcrLoMb0)
5064 && (uIcrLo & fIcrLoMb1))
5065 {
5066 Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
5067 rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
5068 }
5069 else
5070 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5071 }
5072 else
5073 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5074 break;
5075 }
5076
5077 case XAPIC_OFF_ICR_HI:
5078 {
5079 /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
5080 uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
5081 uIcrHi &= UINT32_C(0xff000000);
5082 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
5083 rcStrict = VINF_SUCCESS;
5084 break;
5085 }
5086
5087 default:
5088 {
5089 /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
5090 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5091 break;
5092 }
5093 }
5094
5095 return rcStrict;
5096}
5097
5098
5099/**
5100 * Interface for HM and EM to perform an APIC-write emulation which may cause a
5101 * VM-exit.
5102 *
5103 * @returns Strict VBox status code.
5104 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
5105 * @thread EMT(pVCpu)
5106 */
5107VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicWrite(PVMCPUCC pVCpu)
5108{
5109 VBOXSTRICTRC rcStrict = iemVmxApicWriteEmulation(pVCpu);
5110 Assert(!pVCpu->iem.s.cActiveMappings);
5111 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
5112}
5113
5114
5115/**
5116 * Checks guest control registers, debug registers and MSRs as part of VM-entry.
5117 *
5118 * @param pVCpu The cross context virtual CPU structure.
5119 * @param pszInstr The VMX instruction name (for logging purposes).
5120 */
5121DECLINLINE(int) iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPUCC pVCpu, const char *pszInstr)
5122{
5123 /*
5124 * Guest Control Registers, Debug Registers, and MSRs.
5125 * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
5126 */
5127 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5128 const char * const pszFailure = "VM-exit";
5129 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5130
5131 /* CR0 reserved bits. */
5132 {
5133 /* CR0 MB1 bits. */
5134 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu);
5135 if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
5136 { /* likely */ }
5137 else
5138 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
5139
5140 /* CR0 MBZ bits. */
5141 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5142 if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
5143 { /* likely */ }
5144 else
5145 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
5146
5147 /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
5148 if ( !fUnrestrictedGuest
5149 && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5150 && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5151 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
5152 }
5153
5154 /* CR4 reserved bits. */
5155 {
5156 /* CR4 MB1 bits. */
5157 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5158 if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
5159 { /* likely */ }
5160 else
5161 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
5162
5163 /* CR4 MBZ bits. */
5164 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5165 if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
5166 { /* likely */ }
5167 else
5168 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
5169 }
5170
5171 /* DEBUGCTL MSR. */
5172 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5173 || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
5174 { /* likely */ }
5175 else
5176 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
5177
5178 /* 64-bit CPU checks. */
5179 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5180 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5181 {
5182 if (fGstInLongMode)
5183 {
5184 /* PAE must be set. */
5185 if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5186 && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
5187 { /* likely */ }
5188 else
5189 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
5190 }
5191 else
5192 {
5193 /* PCIDE should not be set. */
5194 if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
5195 { /* likely */ }
5196 else
5197 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
5198 }
5199
5200 /* CR3. */
5201 if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
5202 { /* likely */ }
5203 else
5204 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
5205
5206 /* DR7. */
5207 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5208 || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
5209 { /* likely */ }
5210 else
5211 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
5212
5213 /* SYSENTER ESP and SYSENTER EIP. */
5214 if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
5215 && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
5216 { /* likely */ }
5217 else
5218 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
5219 }
5220
5221 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
5222 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
5223
5224 /* PAT MSR. */
5225 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
5226 || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
5227 { /* likely */ }
5228 else
5229 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
5230
5231 /* EFER MSR. */
5232 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
5233 {
5234 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
5235 if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
5236 { /* likely */ }
5237 else
5238 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
5239
5240 bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
5241 bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
5242 if ( fGstLma == fGstInLongMode
5243 && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
5244 || fGstLma == fGstLme))
5245 { /* likely */ }
5246 else
5247 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
5248 }
5249
5250 /* We don't support IA32_BNDCFGS MSR yet. */
5251 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
5252
5253 NOREF(pszInstr);
5254 NOREF(pszFailure);
5255 return VINF_SUCCESS;
5256}
5257
5258
5259/**
5260 * Checks guest segment registers, LDTR and TR as part of VM-entry.
5261 *
5262 * @param pVCpu The cross context virtual CPU structure.
5263 * @param pszInstr The VMX instruction name (for logging purposes).
5264 */
5265DECLINLINE(int) iemVmxVmentryCheckGuestSegRegs(PVMCPUCC pVCpu, const char *pszInstr)
5266{
5267 /*
5268 * Segment registers.
5269 * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5270 */
5271 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5272 const char * const pszFailure = "VM-exit";
5273 bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
5274 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5275 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5276
5277 /* Selectors. */
5278 if ( !fGstInV86Mode
5279 && !fUnrestrictedGuest
5280 && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
5281 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
5282
5283 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
5284 {
5285 CPUMSELREG SelReg;
5286 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
5287 if (RT_LIKELY(rc == VINF_SUCCESS))
5288 { /* likely */ }
5289 else
5290 return rc;
5291
5292 /*
5293 * Virtual-8086 mode checks.
5294 */
5295 if (fGstInV86Mode)
5296 {
5297 /* Base address. */
5298 if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
5299 { /* likely */ }
5300 else
5301 {
5302 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
5303 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5304 }
5305
5306 /* Limit. */
5307 if (SelReg.u32Limit == 0xffff)
5308 { /* likely */ }
5309 else
5310 {
5311 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
5312 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5313 }
5314
5315 /* Attribute. */
5316 if (SelReg.Attr.u == 0xf3)
5317 { /* likely */ }
5318 else
5319 {
5320 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
5321 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5322 }
5323
5324 /* We're done; move to checking the next segment. */
5325 continue;
5326 }
5327
5328 /* Checks done by 64-bit CPUs. */
5329 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5330 {
5331 /* Base address. */
5332 if ( iSegReg == X86_SREG_FS
5333 || iSegReg == X86_SREG_GS)
5334 {
5335 if (X86_IS_CANONICAL(SelReg.u64Base))
5336 { /* likely */ }
5337 else
5338 {
5339 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5340 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5341 }
5342 }
5343 else if (iSegReg == X86_SREG_CS)
5344 {
5345 if (!RT_HI_U32(SelReg.u64Base))
5346 { /* likely */ }
5347 else
5348 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
5349 }
5350 else
5351 {
5352 if ( SelReg.Attr.n.u1Unusable
5353 || !RT_HI_U32(SelReg.u64Base))
5354 { /* likely */ }
5355 else
5356 {
5357 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5358 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5359 }
5360 }
5361 }
5362
5363 /*
5364 * Checks outside Virtual-8086 mode.
5365 */
5366 uint8_t const uSegType = SelReg.Attr.n.u4Type;
5367 uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
5368 uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
5369 uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
5370 uint8_t const fPresent = SelReg.Attr.n.u1Present;
5371 uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
5372 uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
5373 uint8_t const fSegLong = SelReg.Attr.n.u1Long;
5374
5375 /* Code or usable segment. */
5376 if ( iSegReg == X86_SREG_CS
5377 || fUsable)
5378 {
5379 /* Reserved bits (bits 31:17 and bits 11:8). */
5380 if (!(SelReg.Attr.u & 0xfffe0f00))
5381 { /* likely */ }
5382 else
5383 {
5384 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
5385 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5386 }
5387
5388 /* Descriptor type. */
5389 if (fCodeDataSeg)
5390 { /* likely */ }
5391 else
5392 {
5393 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
5394 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5395 }
5396
5397 /* Present. */
5398 if (fPresent)
5399 { /* likely */ }
5400 else
5401 {
5402 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
5403 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5404 }
5405
5406 /* Granularity. */
5407 if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
5408 && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
5409 { /* likely */ }
5410 else
5411 {
5412 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
5413 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5414 }
5415 }
5416
5417 if (iSegReg == X86_SREG_CS)
5418 {
5419 /* Segment Type and DPL. */
5420 if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5421 && fUnrestrictedGuest)
5422 {
5423 if (uDpl == 0)
5424 { /* likely */ }
5425 else
5426 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
5427 }
5428 else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
5429 || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5430 {
5431 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5432 if (uDpl == AttrSs.n.u2Dpl)
5433 { /* likely */ }
5434 else
5435 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
5436 }
5437 else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5438 == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5439 {
5440 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5441 if (uDpl <= AttrSs.n.u2Dpl)
5442 { /* likely */ }
5443 else
5444 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
5445 }
5446 else
5447 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
5448
5449 /* Def/Big. */
5450 if ( fGstInLongMode
5451 && fSegLong)
5452 {
5453 if (uDefBig == 0)
5454 { /* likely */ }
5455 else
5456 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
5457 }
5458 }
5459 else if (iSegReg == X86_SREG_SS)
5460 {
5461 /* Segment Type. */
5462 if ( !fUsable
5463 || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5464 || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
5465 { /* likely */ }
5466 else
5467 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
5468
5469 /* DPL. */
5470 if (!fUnrestrictedGuest)
5471 {
5472 if (uDpl == (SelReg.Sel & X86_SEL_RPL))
5473 { /* likely */ }
5474 else
5475 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
5476 }
5477 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5478 if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5479 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5480 {
5481 if (uDpl == 0)
5482 { /* likely */ }
5483 else
5484 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
5485 }
5486 }
5487 else
5488 {
5489 /* DS, ES, FS, GS. */
5490 if (fUsable)
5491 {
5492 /* Segment type. */
5493 if (uSegType & X86_SEL_TYPE_ACCESSED)
5494 { /* likely */ }
5495 else
5496 {
5497 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
5498 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5499 }
5500
5501 if ( !(uSegType & X86_SEL_TYPE_CODE)
5502 || (uSegType & X86_SEL_TYPE_READ))
5503 { /* likely */ }
5504 else
5505 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
5506
5507 /* DPL. */
5508 if ( !fUnrestrictedGuest
5509 && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5510 {
5511 if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
5512 { /* likely */ }
5513 else
5514 {
5515 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
5516 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5517 }
5518 }
5519 }
5520 }
5521 }
5522
5523 /*
5524 * LDTR.
5525 */
5526 {
5527 CPUMSELREG Ldtr;
5528 Ldtr.Sel = pVmcs->GuestLdtr;
5529 Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
5530 Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
5531 Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
5532
5533 if (!Ldtr.Attr.n.u1Unusable)
5534 {
5535 /* Selector. */
5536 if (!(Ldtr.Sel & X86_SEL_LDT))
5537 { /* likely */ }
5538 else
5539 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
5540
5541 /* Base. */
5542 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5543 {
5544 if (X86_IS_CANONICAL(Ldtr.u64Base))
5545 { /* likely */ }
5546 else
5547 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
5548 }
5549
5550 /* Attributes. */
5551 /* Reserved bits (bits 31:17 and bits 11:8). */
5552 if (!(Ldtr.Attr.u & 0xfffe0f00))
5553 { /* likely */ }
5554 else
5555 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
5556
5557 if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
5558 { /* likely */ }
5559 else
5560 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
5561
5562 if (!Ldtr.Attr.n.u1DescType)
5563 { /* likely */ }
5564 else
5565 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
5566
5567 if (Ldtr.Attr.n.u1Present)
5568 { /* likely */ }
5569 else
5570 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
5571
5572 if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
5573 && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
5574 { /* likely */ }
5575 else
5576 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
5577 }
5578 }
5579
5580 /*
5581 * TR.
5582 */
5583 {
5584 CPUMSELREG Tr;
5585 Tr.Sel = pVmcs->GuestTr;
5586 Tr.u32Limit = pVmcs->u32GuestTrLimit;
5587 Tr.u64Base = pVmcs->u64GuestTrBase.u;
5588 Tr.Attr.u = pVmcs->u32GuestTrAttr;
5589
5590 /* Selector. */
5591 if (!(Tr.Sel & X86_SEL_LDT))
5592 { /* likely */ }
5593 else
5594 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
5595
5596 /* Base. */
5597 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5598 {
5599 if (X86_IS_CANONICAL(Tr.u64Base))
5600 { /* likely */ }
5601 else
5602 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
5603 }
5604
5605 /* Attributes. */
5606 /* Reserved bits (bits 31:17 and bits 11:8). */
5607 if (!(Tr.Attr.u & 0xfffe0f00))
5608 { /* likely */ }
5609 else
5610 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
5611
5612 if (!Tr.Attr.n.u1Unusable)
5613 { /* likely */ }
5614 else
5615 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
5616
5617 if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
5618 || ( !fGstInLongMode
5619 && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
5620 { /* likely */ }
5621 else
5622 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
5623
5624 if (!Tr.Attr.n.u1DescType)
5625 { /* likely */ }
5626 else
5627 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
5628
5629 if (Tr.Attr.n.u1Present)
5630 { /* likely */ }
5631 else
5632 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
5633
5634 if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
5635 && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
5636 { /* likely */ }
5637 else
5638 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
5639 }
5640
5641 NOREF(pszInstr);
5642 NOREF(pszFailure);
5643 return VINF_SUCCESS;
5644}
5645
5646
5647/**
5648 * Checks guest GDTR and IDTR as part of VM-entry.
5649 *
5650 * @param pVCpu The cross context virtual CPU structure.
5651 * @param pszInstr The VMX instruction name (for logging purposes).
5652 */
5653DECLINLINE(int) iemVmxVmentryCheckGuestGdtrIdtr(PVMCPUCC pVCpu, const char *pszInstr)
5654{
5655 /*
5656 * GDTR and IDTR.
5657 * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
5658 */
5659 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5660 const char *const pszFailure = "VM-exit";
5661
5662 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5663 {
5664 /* Base. */
5665 if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
5666 { /* likely */ }
5667 else
5668 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
5669
5670 if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
5671 { /* likely */ }
5672 else
5673 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
5674 }
5675
5676 /* Limit. */
5677 if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
5678 { /* likely */ }
5679 else
5680 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
5681
5682 if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
5683 { /* likely */ }
5684 else
5685 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
5686
5687 NOREF(pszInstr);
5688 NOREF(pszFailure);
5689 return VINF_SUCCESS;
5690}
5691
5692
5693/**
5694 * Checks guest RIP and RFLAGS as part of VM-entry.
5695 *
5696 * @param pVCpu The cross context virtual CPU structure.
5697 * @param pszInstr The VMX instruction name (for logging purposes).
5698 */
5699DECLINLINE(int) iemVmxVmentryCheckGuestRipRFlags(PVMCPUCC pVCpu, const char *pszInstr)
5700{
5701 /*
5702 * RIP and RFLAGS.
5703 * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
5704 */
5705 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5706 const char *const pszFailure = "VM-exit";
5707 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5708
5709 /* RIP. */
5710 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5711 {
5712 X86DESCATTR AttrCs;
5713 AttrCs.u = pVmcs->u32GuestCsAttr;
5714 if ( !fGstInLongMode
5715 || !AttrCs.n.u1Long)
5716 {
5717 if (!RT_HI_U32(pVmcs->u64GuestRip.u))
5718 { /* likely */ }
5719 else
5720 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
5721 }
5722
5723 if ( fGstInLongMode
5724 && AttrCs.n.u1Long)
5725 {
5726 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
5727 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
5728 && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
5729 { /* likely */ }
5730 else
5731 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
5732 }
5733 }
5734
5735 /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
5736 uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
5737 : pVmcs->u64GuestRFlags.s.Lo;
5738 if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
5739 && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
5740 { /* likely */ }
5741 else
5742 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
5743
5744 if (!(uGuestRFlags & X86_EFL_VM))
5745 { /* likely */ }
5746 else
5747 {
5748 if ( fGstInLongMode
5749 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5750 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
5751 }
5752
5753 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(pVmcs->u32EntryIntInfo))
5754 {
5755 if (uGuestRFlags & X86_EFL_IF)
5756 { /* likely */ }
5757 else
5758 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
5759 }
5760
5761 NOREF(pszInstr);
5762 NOREF(pszFailure);
5763 return VINF_SUCCESS;
5764}
5765
5766
5767/**
5768 * Checks guest non-register state as part of VM-entry.
5769 *
5770 * @param pVCpu The cross context virtual CPU structure.
5771 * @param pszInstr The VMX instruction name (for logging purposes).
5772 */
5773DECLINLINE(int) iemVmxVmentryCheckGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
5774{
5775 /*
5776 * Guest non-register state.
5777 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5778 */
5779 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5780 const char *const pszFailure = "VM-exit";
5781
5782 /*
5783 * Activity state.
5784 */
5785 uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
5786 uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
5787 if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
5788 { /* likely */ }
5789 else
5790 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
5791
5792 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5793 if ( !AttrSs.n.u2Dpl
5794 || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
5795 { /* likely */ }
5796 else
5797 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
5798
5799 if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
5800 || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
5801 {
5802 if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
5803 { /* likely */ }
5804 else
5805 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
5806 }
5807
5808 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5809 {
5810 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5811 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
5812 AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
5813 switch (pVmcs->u32GuestActivityState)
5814 {
5815 case VMX_VMCS_GUEST_ACTIVITY_HLT:
5816 {
5817 if ( uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
5818 || uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5819 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5820 && ( uVector == X86_XCPT_DB
5821 || uVector == X86_XCPT_MC))
5822 || ( uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
5823 && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
5824 { /* likely */ }
5825 else
5826 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
5827 break;
5828 }
5829
5830 case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
5831 {
5832 if ( uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5833 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5834 && uVector == X86_XCPT_MC))
5835 { /* likely */ }
5836 else
5837 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
5838 break;
5839 }
5840
5841 case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
5842 default:
5843 break;
5844 }
5845 }
5846
5847 /*
5848 * Interruptibility state.
5849 */
5850 if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
5851 { /* likely */ }
5852 else
5853 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
5854
5855 if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5856 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5857 { /* likely */ }
5858 else
5859 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
5860
5861 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
5862 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5863 { /* likely */ }
5864 else
5865 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
5866
5867 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5868 {
5869 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5870 if (uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5871 {
5872 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5873 { /* likely */ }
5874 else
5875 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
5876 }
5877 else if (uType == VMX_ENTRY_INT_INFO_TYPE_NMI)
5878 {
5879 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5880 { /* likely */ }
5881 else
5882 {
5883 /*
5884 * We don't support injecting NMIs when blocking-by-STI would be in effect.
5885 * We update the Exit qualification only when blocking-by-STI is set
5886 * without blocking-by-MovSS being set. Although in practise it does not
5887 * make much difference since the order of checks are implementation defined.
5888 */
5889 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5890 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
5891 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
5892 }
5893
5894 if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
5895 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
5896 { /* likely */ }
5897 else
5898 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
5899 }
5900 }
5901
5902 /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
5903 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
5904 { /* likely */ }
5905 else
5906 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
5907
5908 /* We don't support SGX yet. So enclave-interruption must not be set. */
5909 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
5910 { /* likely */ }
5911 else
5912 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
5913
5914 /*
5915 * Pending debug exceptions.
5916 */
5917 uint64_t const uPendingDbgXcpts = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
5918 ? pVmcs->u64GuestPendingDbgXcpts.u
5919 : pVmcs->u64GuestPendingDbgXcpts.s.Lo;
5920 if (!(uPendingDbgXcpts & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
5921 { /* likely */ }
5922 else
5923 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
5924
5925 if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5926 || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
5927 {
5928 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5929 && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
5930 && !(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5931 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
5932
5933 if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5934 || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
5935 && (uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5936 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
5937 }
5938
5939 /* We don't support RTM (Real-time Transactional Memory) yet. */
5940 if (!(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
5941 { /* likely */ }
5942 else
5943 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
5944
5945 /*
5946 * VMCS link pointer.
5947 */
5948 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
5949 {
5950 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
5951 /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
5952 if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
5953 { /* likely */ }
5954 else
5955 {
5956 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5957 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
5958 }
5959
5960 /* Validate the address. */
5961 if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
5962 && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
5963 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
5964 { /* likely */ }
5965 else
5966 {
5967 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5968 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
5969 }
5970 }
5971
5972 NOREF(pszInstr);
5973 NOREF(pszFailure);
5974 return VINF_SUCCESS;
5975}
5976
5977
5978#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5979/**
5980 * Checks guest PDPTEs as part of VM-entry.
5981 *
5982 * @param pVCpu The cross context virtual CPU structure.
5983 * @param pszInstr The VMX instruction name (for logging purposes).
5984 */
5985static int iemVmxVmentryCheckGuestPdptes(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
5986{
5987 /*
5988 * Guest PDPTEs.
5989 * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
5990 */
5991 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5992 const char * const pszFailure = "VM-exit";
5993
5994 /*
5995 * When EPT is used, we only validate the PAE PDPTEs provided in the VMCS.
5996 * Otherwise, we load any PAE PDPTEs referenced by CR3 at a later point.
5997 */
5998 if ( iemVmxVmcsIsGuestPaePagingEnabled(pVmcs)
5999 && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
6000 {
6001 /* Get PDPTEs from the VMCS. */
6002 X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
6003 aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
6004 aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
6005 aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
6006 aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
6007
6008 /* Check validity of the PDPTEs. */
6009 bool const fValid = PGMGstArePaePdpesValid(pVCpu, &aPaePdptes[0]);
6010 if (fValid)
6011 { /* likely */ }
6012 else
6013 {
6014 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
6015 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
6016 }
6017 }
6018
6019 NOREF(pszFailure);
6020 NOREF(pszInstr);
6021 return VINF_SUCCESS;
6022}
6023#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
6024
6025
6026/**
6027 * Checks guest-state as part of VM-entry.
6028 *
6029 * @returns VBox status code.
6030 * @param pVCpu The cross context virtual CPU structure.
6031 * @param pszInstr The VMX instruction name (for logging purposes).
6032 */
6033static int iemVmxVmentryCheckGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6034{
6035 int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
6036 if (RT_SUCCESS(rc))
6037 {
6038 rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
6039 if (RT_SUCCESS(rc))
6040 {
6041 rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
6042 if (RT_SUCCESS(rc))
6043 {
6044 rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
6045 if (RT_SUCCESS(rc))
6046 {
6047 rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
6048#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6049 if (RT_SUCCESS(rc))
6050 rc = iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
6051#endif
6052 }
6053 }
6054 }
6055 }
6056 return rc;
6057}
6058
6059
6060/**
6061 * Checks host-state as part of VM-entry.
6062 *
6063 * @returns VBox status code.
6064 * @param pVCpu The cross context virtual CPU structure.
6065 * @param pszInstr The VMX instruction name (for logging purposes).
6066 */
6067static int iemVmxVmentryCheckHostState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6068{
6069 /*
6070 * Host Control Registers and MSRs.
6071 * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
6072 */
6073 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6074 const char * const pszFailure = "VMFail";
6075
6076 /* CR0 reserved bits. */
6077 {
6078 /* CR0 MB1 bits. */
6079 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu);
6080 if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
6081 { /* likely */ }
6082 else
6083 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
6084
6085 /* CR0 MBZ bits. */
6086 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
6087 if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
6088 { /* likely */ }
6089 else
6090 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
6091 }
6092
6093 /* CR4 reserved bits. */
6094 {
6095 /* CR4 MB1 bits. */
6096 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6097 if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
6098 { /* likely */ }
6099 else
6100 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
6101
6102 /* CR4 MBZ bits. */
6103 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6104 if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
6105 { /* likely */ }
6106 else
6107 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
6108 }
6109
6110 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6111 {
6112 /* CR3 reserved bits. */
6113 if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
6114 { /* likely */ }
6115 else
6116 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
6117
6118 /* SYSENTER ESP and SYSENTER EIP. */
6119 if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
6120 && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
6121 { /* likely */ }
6122 else
6123 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
6124 }
6125
6126 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6127 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
6128
6129 /* PAT MSR. */
6130 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
6131 || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
6132 { /* likely */ }
6133 else
6134 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
6135
6136 /* EFER MSR. */
6137 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
6138 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
6139 || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
6140 { /* likely */ }
6141 else
6142 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
6143
6144 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
6145 bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
6146 bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
6147 if ( fHostInLongMode == fHostLma
6148 && fHostInLongMode == fHostLme)
6149 { /* likely */ }
6150 else
6151 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
6152
6153 /*
6154 * Host Segment and Descriptor-Table Registers.
6155 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
6156 */
6157 /* Selector RPL and TI. */
6158 if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
6159 && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
6160 && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
6161 && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
6162 && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
6163 && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
6164 && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
6165 { /* likely */ }
6166 else
6167 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
6168
6169 /* CS and TR selectors cannot be 0. */
6170 if ( pVmcs->HostCs
6171 && pVmcs->HostTr)
6172 { /* likely */ }
6173 else
6174 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
6175
6176 /* SS cannot be 0 if 32-bit host. */
6177 if ( fHostInLongMode
6178 || pVmcs->HostSs)
6179 { /* likely */ }
6180 else
6181 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
6182
6183 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6184 {
6185 /* FS, GS, GDTR, IDTR, TR base address. */
6186 if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6187 && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6188 && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
6189 && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
6190 && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
6191 { /* likely */ }
6192 else
6193 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
6194 }
6195
6196 /*
6197 * Host address-space size for 64-bit CPUs.
6198 * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
6199 */
6200 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6201 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6202 {
6203 bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
6204
6205 /* Logical processor in IA-32e mode. */
6206 if (fCpuInLongMode)
6207 {
6208 if (fHostInLongMode)
6209 {
6210 /* PAE must be set. */
6211 if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
6212 { /* likely */ }
6213 else
6214 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
6215
6216 /* RIP must be canonical. */
6217 if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
6218 { /* likely */ }
6219 else
6220 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
6221 }
6222 else
6223 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
6224 }
6225 else
6226 {
6227 /* Logical processor is outside IA-32e mode. */
6228 if ( !fGstInLongMode
6229 && !fHostInLongMode)
6230 {
6231 /* PCIDE should not be set. */
6232 if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
6233 { /* likely */ }
6234 else
6235 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
6236
6237 /* The high 32-bits of RIP MBZ. */
6238 if (!pVmcs->u64HostRip.s.Hi)
6239 { /* likely */ }
6240 else
6241 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
6242 }
6243 else
6244 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
6245 }
6246 }
6247 else
6248 {
6249 /* Host address-space size for 32-bit CPUs. */
6250 if ( !fGstInLongMode
6251 && !fHostInLongMode)
6252 { /* likely */ }
6253 else
6254 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
6255 }
6256
6257 NOREF(pszInstr);
6258 NOREF(pszFailure);
6259 return VINF_SUCCESS;
6260}
6261
6262
6263#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6264/**
6265 * Checks the EPT pointer VMCS field as part of VM-entry.
6266 *
6267 * @returns VBox status code.
6268 * @param pVCpu The cross context virtual CPU structure.
6269 * @param uEptPtr The EPT pointer to check.
6270 * @param penmVmxDiag Where to store the diagnostic reason on failure (not
6271 * updated on success). Optional, can be NULL.
6272 */
6273static int iemVmxVmentryCheckEptPtr(PVMCPUCC pVCpu, uint64_t uEptPtr, VMXVDIAG *penmVmxDiag) RT_NOEXCEPT
6274{
6275 VMXVDIAG enmVmxDiag;
6276
6277 /* Reserved bits. */
6278 uint8_t const cMaxPhysAddrWidth = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth;
6279 uint64_t const fValidMask = VMX_EPTP_VALID_MASK & ~(UINT64_MAX << cMaxPhysAddrWidth);
6280 if (uEptPtr & fValidMask)
6281 {
6282 /* Memory Type. */
6283 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
6284 uint8_t const fMemType = RT_BF_GET(uEptPtr, VMX_BF_EPTP_MEMTYPE);
6285 if ( ( fMemType == VMX_EPTP_MEMTYPE_WB
6286 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB))
6287 || ( fMemType == VMX_EPTP_MEMTYPE_UC
6288 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC)))
6289 {
6290 /*
6291 * Page walk length (PML4).
6292 * Intel used to specify bit 7 of IA32_VMX_EPT_VPID_CAP as page walk length
6293 * of 5 but that seems to be removed from the latest specs. leaving only PML4
6294 * as the maximum supported page-walk level hence we hardcode it as 3 (1 less than 4)
6295 */
6296 Assert(RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4));
6297 if (RT_BF_GET(uEptPtr, VMX_BF_EPTP_PAGE_WALK_LENGTH) == 3)
6298 {
6299 /* Access and dirty bits support in EPT structures. */
6300 if ( !RT_BF_GET(uEptPtr, VMX_BF_EPTP_ACCESS_DIRTY)
6301 || RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY))
6302 return VINF_SUCCESS;
6303
6304 enmVmxDiag = kVmxVDiag_Vmentry_EptpAccessDirty;
6305 }
6306 else
6307 enmVmxDiag = kVmxVDiag_Vmentry_EptpPageWalkLength;
6308 }
6309 else
6310 enmVmxDiag = kVmxVDiag_Vmentry_EptpMemType;
6311 }
6312 else
6313 enmVmxDiag = kVmxVDiag_Vmentry_EptpRsvd;
6314
6315 if (penmVmxDiag)
6316 *penmVmxDiag = enmVmxDiag;
6317 return VERR_VMX_VMENTRY_FAILED;
6318}
6319#endif
6320
6321
6322/**
6323 * Checks VMCS controls fields as part of VM-entry.
6324 *
6325 * @returns VBox status code.
6326 * @param pVCpu The cross context virtual CPU structure.
6327 * @param pszInstr The VMX instruction name (for logging purposes).
6328 *
6329 * @remarks This may update secondary-processor based VM-execution control fields
6330 * in the current VMCS if necessary.
6331 */
6332static int iemVmxVmentryCheckCtls(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6333{
6334 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6335 const char * const pszFailure = "VMFail";
6336 bool const fVmxTrueMsrs = RT_BOOL(pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Basic & VMX_BF_BASIC_TRUE_CTLS_MASK);
6337
6338 /*
6339 * VM-execution controls.
6340 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6341 */
6342 {
6343 /* Pin-based VM-execution controls. */
6344 {
6345 VMXCTLSMSR const PinCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TruePinCtls
6346 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
6347 if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
6348 { /* likely */ }
6349 else
6350 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
6351
6352 if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
6353 { /* likely */ }
6354 else
6355 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
6356 }
6357
6358 /* Processor-based VM-execution controls. */
6359 {
6360 VMXCTLSMSR const ProcCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueProcCtls
6361 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
6362 if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
6363 { /* likely */ }
6364 else
6365 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
6366
6367 if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
6368 { /* likely */ }
6369 else
6370 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
6371 }
6372
6373 /* Secondary processor-based VM-execution controls. */
6374 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6375 {
6376 VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
6377 if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
6378 { /* likely */ }
6379 else
6380 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
6381
6382 if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
6383 { /* likely */ }
6384 else
6385 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
6386 }
6387 else
6388 Assert(!pVmcs->u32ProcCtls2);
6389
6390 /* CR3-target count. */
6391 if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
6392 { /* likely */ }
6393 else
6394 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
6395
6396 /* I/O bitmaps physical addresses. */
6397 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6398 {
6399 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6400 if ( !(GCPhysIoBitmapA & X86_PAGE_4K_OFFSET_MASK)
6401 && !(GCPhysIoBitmapA >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6402 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapA))
6403 { /* likely */ }
6404 else
6405 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
6406
6407 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6408 if ( !(GCPhysIoBitmapB & X86_PAGE_4K_OFFSET_MASK)
6409 && !(GCPhysIoBitmapB >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6410 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapB))
6411 { /* likely */ }
6412 else
6413 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
6414 }
6415
6416 /* MSR bitmap physical address. */
6417 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6418 {
6419 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6420 if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
6421 && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6422 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
6423 { /* likely */ }
6424 else
6425 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
6426 }
6427
6428 /* TPR shadow related controls. */
6429 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6430 {
6431 /* Virtual-APIC page physical address. */
6432 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6433 if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
6434 && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6435 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
6436 { /* likely */ }
6437 else
6438 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
6439
6440 /* TPR threshold bits 31:4 MBZ without virtual-interrupt delivery. */
6441 if ( !(pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)
6442 || (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6443 { /* likely */ }
6444 else
6445 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
6446
6447 /* The rest done XXX document */
6448 }
6449 else
6450 {
6451 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6452 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6453 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6454 { /* likely */ }
6455 else
6456 {
6457 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6458 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
6459 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6460 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
6461 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
6462 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
6463 }
6464 }
6465
6466 /* NMI exiting and virtual-NMIs. */
6467 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
6468 || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6469 { /* likely */ }
6470 else
6471 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
6472
6473 /* Virtual-NMIs and NMI-window exiting. */
6474 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6475 || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
6476 { /* likely */ }
6477 else
6478 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
6479
6480 /* Virtualize APIC accesses. */
6481 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6482 {
6483 /* APIC-access physical address. */
6484 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6485 if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
6486 && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6487 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6488 { /* likely */ }
6489 else
6490 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
6491
6492 /*
6493 * Disallow APIC-access page and virtual-APIC page from being the same address.
6494 * Note! This is not an Intel requirement, but one imposed by our implementation.
6495 */
6496 /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
6497 * redirecting accesses between the APIC-access page and the virtual-APIC
6498 * page. If any nested hypervisor requires this, we can implement it later. */
6499 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6500 {
6501 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6502 if (GCPhysVirtApic != GCPhysApicAccess)
6503 { /* likely */ }
6504 else
6505 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
6506 }
6507 }
6508
6509 /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
6510 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6511 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
6512 { /* likely */ }
6513 else
6514 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6515
6516 /* Virtual-interrupt delivery requires external interrupt exiting. */
6517 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6518 || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
6519 { /* likely */ }
6520 else
6521 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6522
6523 /* VPID. */
6524 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
6525 || pVmcs->u16Vpid != 0)
6526 { /* likely */ }
6527 else
6528 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
6529
6530#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6531 /* Extended-Page-Table Pointer (EPTP). */
6532 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
6533 {
6534 VMXVDIAG enmVmxDiag;
6535 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, pVmcs->u64EptPtr.u, &enmVmxDiag);
6536 if (RT_SUCCESS(rc))
6537 { /* likely */ }
6538 else
6539 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmVmxDiag);
6540 }
6541#else
6542 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
6543 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST));
6544#endif
6545 Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
6546 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
6547 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
6548 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_XCPT_VE)); /* We don't support EPT-violation #VE yet. */
6549 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */
6550 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING)); /* We don't support TSC-scaling yet. */
6551
6552 /* VMCS shadowing. */
6553 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6554 {
6555 /* VMREAD-bitmap physical address. */
6556 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6557 if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
6558 && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6559 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
6560 { /* likely */ }
6561 else
6562 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
6563
6564 /* VMWRITE-bitmap physical address. */
6565 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
6566 if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
6567 && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6568 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
6569 { /* likely */ }
6570 else
6571 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
6572 }
6573 }
6574
6575 /*
6576 * VM-exit controls.
6577 * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
6578 */
6579 {
6580 VMXCTLSMSR const ExitCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueExitCtls
6581 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
6582 if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
6583 { /* likely */ }
6584 else
6585 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
6586
6587 if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
6588 { /* likely */ }
6589 else
6590 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
6591
6592 /* Save preemption timer without activating it. */
6593 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
6594 || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
6595 { /* likely */ }
6596 else
6597 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
6598
6599 /* VM-exit MSR-store count and VM-exit MSR-store area address. */
6600 if (pVmcs->u32ExitMsrStoreCount)
6601 {
6602 if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
6603 && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6604 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
6605 { /* likely */ }
6606 else
6607 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
6608 }
6609
6610 /* VM-exit MSR-load count and VM-exit MSR-load area address. */
6611 if (pVmcs->u32ExitMsrLoadCount)
6612 {
6613 if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6614 && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6615 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
6616 { /* likely */ }
6617 else
6618 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
6619 }
6620 }
6621
6622 /*
6623 * VM-entry controls.
6624 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6625 */
6626 {
6627 VMXCTLSMSR const EntryCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueEntryCtls
6628 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
6629 if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
6630 { /* likely */ }
6631 else
6632 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
6633
6634 if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
6635 { /* likely */ }
6636 else
6637 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
6638
6639 /* Event injection. */
6640 uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
6641 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
6642 {
6643 /* Type and vector. */
6644 uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
6645 uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
6646 uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
6647 if ( !uRsvd
6648 && VMXIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
6649 && VMXIsEntryIntInfoVectorValid(uVector, uType))
6650 { /* likely */ }
6651 else
6652 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
6653
6654 /* Exception error code. */
6655 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
6656 {
6657 /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
6658 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
6659 || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
6660 { /* likely */ }
6661 else
6662 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
6663
6664 /* Exceptions that provide an error code. */
6665 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
6666 && ( uVector == X86_XCPT_DF
6667 || uVector == X86_XCPT_TS
6668 || uVector == X86_XCPT_NP
6669 || uVector == X86_XCPT_SS
6670 || uVector == X86_XCPT_GP
6671 || uVector == X86_XCPT_PF
6672 || uVector == X86_XCPT_AC))
6673 { /* likely */ }
6674 else
6675 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
6676
6677 /* Exception error-code reserved bits. */
6678 if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
6679 { /* likely */ }
6680 else
6681 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
6682
6683 /* Injecting a software interrupt, software exception or privileged software exception. */
6684 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
6685 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
6686 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
6687 {
6688 /* Instruction length must be in the range 0-15. */
6689 if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
6690 { /* likely */ }
6691 else
6692 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
6693
6694 /* However, instruction length of 0 is allowed only when its CPU feature is present. */
6695 if ( pVmcs->u32EntryInstrLen != 0
6696 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
6697 { /* likely */ }
6698 else
6699 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
6700 }
6701 }
6702 }
6703
6704 /* VM-entry MSR-load count and VM-entry MSR-load area address. */
6705 if (pVmcs->u32EntryMsrLoadCount)
6706 {
6707 if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6708 && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6709 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
6710 { /* likely */ }
6711 else
6712 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
6713 }
6714
6715 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
6716 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
6717 }
6718
6719 NOREF(pszInstr);
6720 NOREF(pszFailure);
6721 return VINF_SUCCESS;
6722}
6723
6724
6725/**
6726 * Loads the guest control registers, debug register and some MSRs as part of
6727 * VM-entry.
6728 *
6729 * @param pVCpu The cross context virtual CPU structure.
6730 */
6731static void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
6732{
6733 /*
6734 * Load guest control registers, debug registers and MSRs.
6735 * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
6736 */
6737 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6738
6739 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6740 uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_GUEST_CR0_IGNORE_MASK)
6741 | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_GUEST_CR0_IGNORE_MASK);
6742 pVCpu->cpum.GstCtx.cr0 = uGstCr0;
6743 pVCpu->cpum.GstCtx.cr4 = pVmcs->u64GuestCr4.u;
6744 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
6745
6746 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6747 pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_GUEST_DR7_MBZ_MASK) | VMX_ENTRY_GUEST_DR7_MB1_MASK;
6748
6749 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
6750 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
6751 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
6752
6753 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6754 {
6755 /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
6756
6757 /* EFER MSR. */
6758 if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
6759 {
6760 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6761 uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
6762 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6763 bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
6764 if (fGstInLongMode)
6765 {
6766 /* If the nested-guest is in long mode, LMA and LME are both set. */
6767 Assert(fGstPaging);
6768 pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
6769 }
6770 else
6771 {
6772 /*
6773 * If the nested-guest is outside long mode:
6774 * - With paging: LMA is cleared, LME is cleared.
6775 * - Without paging: LMA is cleared, LME is left unmodified.
6776 */
6777 uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
6778 pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
6779 }
6780 }
6781 /* else: see below. */
6782 }
6783
6784 /* PAT MSR. */
6785 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
6786 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
6787
6788 /* EFER MSR. */
6789 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
6790 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
6791
6792 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6793 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
6794
6795 /* We don't support IA32_BNDCFGS MSR yet. */
6796 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
6797
6798 /* Nothing to do for SMBASE register - We don't support SMM yet. */
6799}
6800
6801
6802/**
6803 * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
6804 *
6805 * @param pVCpu The cross context virtual CPU structure.
6806 */
6807static void iemVmxVmentryLoadGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
6808{
6809 /*
6810 * Load guest segment registers, GDTR, IDTR, LDTR and TR.
6811 * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
6812 */
6813 /* CS, SS, ES, DS, FS, GS. */
6814 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6815 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
6816 {
6817 PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6818 CPUMSELREG VmcsSelReg;
6819 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
6820 AssertRC(rc); NOREF(rc);
6821 if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
6822 {
6823 pGstSelReg->Sel = VmcsSelReg.Sel;
6824 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6825 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6826 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6827 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6828 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6829 }
6830 else
6831 {
6832 pGstSelReg->Sel = VmcsSelReg.Sel;
6833 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6834 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6835 switch (iSegReg)
6836 {
6837 case X86_SREG_CS:
6838 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6839 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6840 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6841 break;
6842
6843 case X86_SREG_SS:
6844 pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
6845 pGstSelReg->u32Limit = 0;
6846 pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
6847 break;
6848
6849 case X86_SREG_ES:
6850 case X86_SREG_DS:
6851 pGstSelReg->u64Base = 0;
6852 pGstSelReg->u32Limit = 0;
6853 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6854 break;
6855
6856 case X86_SREG_FS:
6857 case X86_SREG_GS:
6858 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6859 pGstSelReg->u32Limit = 0;
6860 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6861 break;
6862 }
6863 Assert(pGstSelReg->Attr.n.u1Unusable);
6864 }
6865 }
6866
6867 /* LDTR. */
6868 pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
6869 pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
6870 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
6871 if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
6872 {
6873 pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
6874 pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
6875 pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
6876 }
6877 else
6878 {
6879 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
6880 pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
6881 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
6882 }
6883
6884 /* TR. */
6885 Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
6886 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
6887 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
6888 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
6889 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
6890 pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
6891 pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
6892
6893 /* GDTR. */
6894 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
6895 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
6896
6897 /* IDTR. */
6898 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
6899 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
6900}
6901
6902
6903/**
6904 * Loads the guest MSRs from the VM-entry MSR-load area as part of VM-entry.
6905 *
6906 * @returns VBox status code.
6907 * @param pVCpu The cross context virtual CPU structure.
6908 * @param pszInstr The VMX instruction name (for logging purposes).
6909 */
6910static int iemVmxVmentryLoadGuestAutoMsrs(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6911{
6912 /*
6913 * Load guest MSRs.
6914 * See Intel spec. 26.4 "Loading MSRs".
6915 */
6916 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6917 const char *const pszFailure = "VM-exit";
6918
6919 /*
6920 * The VM-entry MSR-load area address need not be a valid guest-physical address if the
6921 * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
6922 * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
6923 */
6924 uint32_t const cMsrs = RT_MIN(pVmcs->u32EntryMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea));
6925 if (!cMsrs)
6926 return VINF_SUCCESS;
6927
6928 /*
6929 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
6930 * exceeded including possibly raising #MC exceptions during VMX transition. Our
6931 * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
6932 */
6933 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
6934 if (fIsMsrCountValid)
6935 { /* likely */ }
6936 else
6937 {
6938 iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
6939 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
6940 }
6941
6942 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
6943 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0],
6944 GCPhysVmEntryMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
6945 if (RT_SUCCESS(rc))
6946 {
6947 PCVMXAUTOMSR pMsr = &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0];
6948 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
6949 {
6950 if ( !pMsr->u32Reserved
6951 && pMsr->u32Msr != MSR_K8_FS_BASE
6952 && pMsr->u32Msr != MSR_K8_GS_BASE
6953 && pMsr->u32Msr != MSR_K6_EFER
6954 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
6955 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
6956 {
6957 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
6958 if (rcStrict == VINF_SUCCESS)
6959 continue;
6960
6961 /*
6962 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
6963 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
6964 * recording the MSR index in the Exit qualification (as per the Intel spec.) and indicated
6965 * further by our own, specific diagnostic code. Later, we can try implement handling of the
6966 * MSR in ring-0 if possible, or come up with a better, generic solution.
6967 */
6968 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6969 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
6970 ? kVmxVDiag_Vmentry_MsrLoadRing3
6971 : kVmxVDiag_Vmentry_MsrLoad;
6972 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
6973 }
6974 else
6975 {
6976 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6977 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
6978 }
6979 }
6980 }
6981 else
6982 {
6983 AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmEntryMsrLoadArea, rc));
6984 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
6985 }
6986
6987 NOREF(pszInstr);
6988 NOREF(pszFailure);
6989 return VINF_SUCCESS;
6990}
6991
6992
6993/**
6994 * Loads the guest-state non-register state as part of VM-entry.
6995 *
6996 * @returns VBox status code.
6997 * @param pVCpu The cross context virtual CPU structure.
6998 * @param pszInstr The VMX instruction name (for logging purposes).
6999 *
7000 * @remarks This must be called only after loading the nested-guest register state
7001 * (especially nested-guest RIP).
7002 */
7003static int iemVmxVmentryLoadGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7004{
7005 /*
7006 * Load guest non-register state.
7007 * See Intel spec. 26.6 "Special Features of VM Entry"
7008 */
7009 const char *const pszFailure = "VM-exit";
7010 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7011
7012 /*
7013 * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
7014 * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
7015 *
7016 * See Intel spec. 26.6.1 "Interruptibility State".
7017 */
7018 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
7019 if ( !fEntryVectoring
7020 && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
7021 EMSetInhibitInterruptsPC(pVCpu, pVmcs->u64GuestRip.u);
7022 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7023 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7024
7025 /* NMI blocking. */
7026 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7027 {
7028 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
7029 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
7030 else
7031 {
7032 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7033 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7034 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
7035 }
7036 }
7037 else
7038 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7039
7040 /* SMI blocking is irrelevant. We don't support SMIs yet. */
7041
7042 /*
7043 * Set PGM's copy of the EPT pointer.
7044 * The EPTP has already been validated while checking guest state.
7045 *
7046 * It is important to do this prior to mapping PAE PDPTEs (below).
7047 */
7048 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7049 PGMSetGuestEptPtr(pVCpu, pVmcs->u64EptPtr.u);
7050
7051 /*
7052 * Load the guest's PAE PDPTEs.
7053 */
7054 if (iemVmxVmcsIsGuestPaePagingEnabled(pVmcs))
7055 {
7056 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7057 {
7058 /*
7059 * With EPT, we've already validated these while checking the guest state.
7060 * Just load them directly from the VMCS here.
7061 */
7062 X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
7063 aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
7064 aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
7065 aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
7066 aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
7067 AssertCompile(RT_ELEMENTS(aPaePdptes) == RT_ELEMENTS(pVCpu->cpum.GstCtx.aPaePdpes));
7068 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.GstCtx.aPaePdpes); i++)
7069 pVCpu->cpum.GstCtx.aPaePdpes[i].u = aPaePdptes[i].u;
7070 }
7071 else
7072 {
7073 /*
7074 * Without EPT, we must load the PAE PDPTEs referenced by CR3.
7075 * This involves loading (and mapping) CR3 and validating them now.
7076 */
7077 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64GuestCr3.u);
7078 if (RT_SUCCESS(rc))
7079 { /* likely */ }
7080 else
7081 {
7082 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
7083 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
7084 }
7085 }
7086 }
7087
7088 /* VPID is irrelevant. We don't support VPID yet. */
7089
7090 /* Clear address-range monitoring. */
7091 EMMonitorWaitClear(pVCpu);
7092
7093 return VINF_SUCCESS;
7094}
7095
7096
7097/**
7098 * Loads the guest VMCS referenced state (such as MSR bitmaps, I/O bitmaps etc).
7099 *
7100 * @param pVCpu The cross context virtual CPU structure.
7101 * @param pszInstr The VMX instruction name (for logging purposes).
7102 *
7103 * @remarks This assumes various VMCS related data structure pointers have already
7104 * been verified prior to calling this function.
7105 */
7106static int iemVmxVmentryLoadGuestVmcsRefState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7107{
7108 const char *const pszFailure = "VM-exit";
7109 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7110
7111 /*
7112 * Virtualize APIC accesses.
7113 */
7114 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7115 {
7116 /* APIC-access physical address. */
7117 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
7118
7119 /*
7120 * Register the handler for the APIC-access page.
7121 *
7122 * We don't deregister the APIC-access page handler during the VM-exit as a different
7123 * nested-VCPU might be using the same guest-physical address for its APIC-access page.
7124 *
7125 * We leave the page registered until the first access that happens outside VMX non-root
7126 * mode. Guest software is allowed to access structures such as the APIC-access page
7127 * only when no logical processor with a current VMCS references it in VMX non-root mode,
7128 * otherwise it can lead to unpredictable behavior including guest triple-faults.
7129 *
7130 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7131 */
7132 if (!PGMHandlerPhysicalIsRegistered(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
7133 {
7134 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7135 int rc = PGMHandlerPhysicalRegister(pVM, GCPhysApicAccess, GCPhysApicAccess + X86_PAGE_4K_SIZE - 1,
7136 pVM->iem.s.hVmxApicAccessPage, 0 /*uUser*/, NULL /*pszDesc*/);
7137 if (RT_SUCCESS(rc))
7138 { /* likely */ }
7139 else
7140 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg);
7141 }
7142 }
7143
7144 /*
7145 * VMCS shadowing.
7146 */
7147 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7148 {
7149 /* Read the VMREAD-bitmap. */
7150 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
7151 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap[0],
7152 GCPhysVmreadBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap));
7153 if (RT_SUCCESS(rc))
7154 { /* likely */ }
7155 else
7156 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
7157
7158 /* Read the VMWRITE-bitmap. */
7159 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmwriteBitmap.u;
7160 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap[0],
7161 GCPhysVmwriteBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap));
7162 if (RT_SUCCESS(rc))
7163 { /* likely */ }
7164 else
7165 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
7166 }
7167
7168 /*
7169 * I/O bitmaps.
7170 */
7171 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
7172 {
7173 /* Read the IO bitmap A. */
7174 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
7175 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[0],
7176 GCPhysIoBitmapA, VMX_V_IO_BITMAP_A_SIZE);
7177 if (RT_SUCCESS(rc))
7178 { /* likely */ }
7179 else
7180 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys);
7181
7182 /* Read the IO bitmap B. */
7183 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
7184 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[VMX_V_IO_BITMAP_A_SIZE],
7185 GCPhysIoBitmapB, VMX_V_IO_BITMAP_B_SIZE);
7186 if (RT_SUCCESS(rc))
7187 { /* likely */ }
7188 else
7189 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys);
7190 }
7191
7192 /*
7193 * TPR shadow and Virtual-APIC page.
7194 */
7195 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7196 {
7197 /* Verify TPR threshold and VTPR when both virtualize-APIC accesses and virtual-interrupt delivery aren't used. */
7198 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7199 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
7200 {
7201 /* Read the VTPR from the virtual-APIC page. */
7202 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
7203 uint8_t u8VTpr;
7204 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &u8VTpr, GCPhysVirtApic + XAPIC_OFF_TPR, sizeof(u8VTpr));
7205 if (RT_SUCCESS(rc))
7206 { /* likely */ }
7207 else
7208 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
7209
7210 /* Bits 3:0 of the TPR-threshold must not be greater than bits 7:4 of VTPR. */
7211 if ((uint8_t)RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) <= (u8VTpr & 0xf0))
7212 { /* likely */ }
7213 else
7214 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
7215 }
7216 }
7217
7218 /*
7219 * VMCS link pointer.
7220 */
7221 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
7222 {
7223 /* Read the VMCS-link pointer from guest memory. */
7224 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
7225 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs,
7226 GCPhysShadowVmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs));
7227 if (RT_SUCCESS(rc))
7228 { /* likely */ }
7229 else
7230 {
7231 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7232 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
7233 }
7234
7235 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
7236 if (pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
7237 { /* likely */ }
7238 else
7239 {
7240 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7241 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
7242 }
7243
7244 /* Verify the shadow bit is set if VMCS shadowing is enabled . */
7245 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7246 || pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.fIsShadowVmcs)
7247 { /* likely */ }
7248 else
7249 {
7250 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7251 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
7252 }
7253
7254 /* Update our cache of the guest physical address of the shadow VMCS. */
7255 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
7256 }
7257
7258 /*
7259 * MSR bitmap.
7260 */
7261 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7262 {
7263 /* Read the MSR bitmap. */
7264 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
7265 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0],
7266 GCPhysMsrBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap));
7267 if (RT_SUCCESS(rc))
7268 { /* likely */ }
7269 else
7270 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
7271 }
7272
7273 NOREF(pszFailure);
7274 NOREF(pszInstr);
7275 return VINF_SUCCESS;
7276}
7277
7278
7279/**
7280 * Loads the guest-state as part of VM-entry.
7281 *
7282 * @returns VBox status code.
7283 * @param pVCpu The cross context virtual CPU structure.
7284 * @param pszInstr The VMX instruction name (for logging purposes).
7285 *
7286 * @remarks This must be done after all the necessary steps prior to loading of
7287 * guest-state (e.g. checking various VMCS state).
7288 */
7289static int iemVmxVmentryLoadGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7290{
7291 /* Load guest control registers, MSRs (that are directly part of the VMCS). */
7292 iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
7293
7294 /* Load guest segment registers. */
7295 iemVmxVmentryLoadGuestSegRegs(pVCpu);
7296
7297 /*
7298 * Load guest RIP, RSP and RFLAGS.
7299 * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
7300 */
7301 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7302 pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
7303 pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
7304 pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
7305
7306 /* Initialize the PAUSE-loop controls as part of VM-entry. */
7307 pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
7308 pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
7309
7310 /* Load guest non-register state (such as interrupt shadows, NMI blocking etc). */
7311 int rc = iemVmxVmentryLoadGuestNonRegState(pVCpu, pszInstr);
7312 if (rc == VINF_SUCCESS)
7313 { /* likely */ }
7314 else
7315 return rc;
7316
7317 /* Load VMX related structures and state referenced by the VMCS. */
7318 rc = iemVmxVmentryLoadGuestVmcsRefState(pVCpu, pszInstr);
7319 if (rc == VINF_SUCCESS)
7320 { /* likely */ }
7321 else
7322 return rc;
7323
7324 NOREF(pszInstr);
7325 return VINF_SUCCESS;
7326}
7327
7328
7329/**
7330 * Returns whether there are is a pending debug exception on VM-entry.
7331 *
7332 * @param pVCpu The cross context virtual CPU structure.
7333 * @param pszInstr The VMX instruction name (for logging purposes).
7334 */
7335static bool iemVmxVmentryIsPendingDebugXcpt(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7336{
7337 /*
7338 * Pending debug exceptions.
7339 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7340 */
7341 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7342 Assert(pVmcs);
7343
7344 bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpts.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
7345 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
7346 if (fPendingDbgXcpt)
7347 {
7348 uint8_t uEntryIntInfoType;
7349 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
7350 if (fEntryVectoring)
7351 {
7352 switch (uEntryIntInfoType)
7353 {
7354 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
7355 case VMX_ENTRY_INT_INFO_TYPE_NMI:
7356 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
7357 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7358 fPendingDbgXcpt = false;
7359 break;
7360
7361 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7362 {
7363 /*
7364 * Whether the pending debug exception for software exceptions other than
7365 * #BP and #OF is delivered after injecting the exception or is discard
7366 * is CPU implementation specific. We will discard them (easier).
7367 */
7368 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
7369 if ( uVector != X86_XCPT_BP
7370 && uVector != X86_XCPT_OF)
7371 fPendingDbgXcpt = false;
7372 RT_FALL_THRU();
7373 }
7374 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7375 {
7376 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
7377 fPendingDbgXcpt = false;
7378 break;
7379 }
7380 }
7381 }
7382 else
7383 {
7384 /*
7385 * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
7386 * pending debug exception is held pending or is discarded is CPU implementation
7387 * specific. We will discard them (easier).
7388 */
7389 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
7390 fPendingDbgXcpt = false;
7391
7392 /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
7393 if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
7394 fPendingDbgXcpt = false;
7395 }
7396 }
7397
7398 NOREF(pszInstr);
7399 return fPendingDbgXcpt;
7400}
7401
7402
7403/**
7404 * Set up the monitor-trap flag (MTF).
7405 *
7406 * @param pVCpu The cross context virtual CPU structure.
7407 * @param pszInstr The VMX instruction name (for logging purposes).
7408 */
7409static void iemVmxVmentrySetupMtf(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7410{
7411 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7412 Assert(pVmcs);
7413 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
7414 {
7415 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7416 Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
7417 }
7418 else
7419 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
7420 NOREF(pszInstr);
7421}
7422
7423
7424/**
7425 * Sets up NMI-window exiting.
7426 *
7427 * @param pVCpu The cross context virtual CPU structure.
7428 * @param pszInstr The VMX instruction name (for logging purposes).
7429 */
7430static void iemVmxVmentrySetupNmiWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7431{
7432 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7433 Assert(pVmcs);
7434 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7435 {
7436 Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI);
7437 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
7438 Log(("%s: NMI-window set on VM-entry\n", pszInstr));
7439 }
7440 else
7441 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
7442 NOREF(pszInstr);
7443}
7444
7445
7446/**
7447 * Sets up interrupt-window exiting.
7448 *
7449 * @param pVCpu The cross context virtual CPU structure.
7450 * @param pszInstr The VMX instruction name (for logging purposes).
7451 */
7452static void iemVmxVmentrySetupIntWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7453{
7454 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7455 Assert(pVmcs);
7456 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7457 {
7458 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW);
7459 Log(("%s: Interrupt-window set on VM-entry\n", pszInstr));
7460 }
7461 else
7462 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
7463 NOREF(pszInstr);
7464}
7465
7466
7467/**
7468 * Set up the VMX-preemption timer.
7469 *
7470 * @param pVCpu The cross context virtual CPU structure.
7471 * @param pszInstr The VMX instruction name (for logging purposes).
7472 */
7473static void iemVmxVmentrySetupPreemptTimer(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7474{
7475 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7476 Assert(pVmcs);
7477 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
7478 {
7479 /*
7480 * If the timer is 0, we must cause a VM-exit before executing the first
7481 * nested-guest instruction. So we can flag as though the timer has already
7482 * expired and we will check and cause a VM-exit at the right priority elsewhere
7483 * in the code.
7484 */
7485 uint64_t uEntryTick;
7486 uint32_t const uPreemptTimer = pVmcs->u32PreemptTimer;
7487 if (uPreemptTimer)
7488 {
7489 int rc = CPUMStartGuestVmxPremptTimer(pVCpu, uPreemptTimer, VMX_V_PREEMPT_TIMER_SHIFT, &uEntryTick);
7490 AssertRC(rc);
7491 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uEntryTick));
7492 }
7493 else
7494 {
7495 uEntryTick = TMCpuTickGetNoCheck(pVCpu);
7496 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
7497 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64 to expire immediately!\n", pszInstr, uEntryTick));
7498 }
7499
7500 pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick = uEntryTick;
7501 }
7502 else
7503 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
7504
7505 NOREF(pszInstr);
7506}
7507
7508
7509/**
7510 * Injects an event using TRPM given a VM-entry interruption info. and related
7511 * fields.
7512 *
7513 * @param pVCpu The cross context virtual CPU structure.
7514 * @param pszInstr The VMX instruction name (for logging purposes).
7515 * @param uEntryIntInfo The VM-entry interruption info.
7516 * @param uErrCode The error code associated with the event if any.
7517 * @param cbInstr The VM-entry instruction length (for software
7518 * interrupts and software exceptions). Pass 0
7519 * otherwise.
7520 * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
7521 */
7522static void iemVmxVmentryInjectTrpmEvent(PVMCPUCC pVCpu, const char *pszInstr, uint32_t uEntryIntInfo, uint32_t uErrCode,
7523 uint32_t cbInstr, RTGCUINTPTR GCPtrFaultAddress) RT_NOEXCEPT
7524{
7525 Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
7526
7527 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7528 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
7529 TRPMEVENT const enmTrpmEvent = HMVmxEventTypeToTrpmEventType(uEntryIntInfo);
7530
7531 Assert(uType != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT);
7532
7533 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrpmEvent);
7534 AssertRC(rc);
7535 Log(("%s: Injecting: vector=%#x type=%#x (%s)\n", pszInstr, uVector, uType, VMXGetEntryIntInfoTypeDesc(uType)));
7536
7537 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo))
7538 {
7539 TRPMSetErrorCode(pVCpu, uErrCode);
7540 Log(("%s: Injecting: err_code=%#x\n", pszInstr, uErrCode));
7541 }
7542
7543 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(uEntryIntInfo))
7544 {
7545 TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
7546 Log(("%s: Injecting: fault_addr=%RGp\n", pszInstr, GCPtrFaultAddress));
7547 }
7548 else
7549 {
7550 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
7551 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
7552 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7553 {
7554 TRPMSetInstrLength(pVCpu, cbInstr);
7555 Log(("%s: Injecting: instr_len=%u\n", pszInstr, cbInstr));
7556 }
7557 }
7558
7559 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7560 {
7561 TRPMSetTrapDueToIcebp(pVCpu);
7562 Log(("%s: Injecting: icebp\n", pszInstr));
7563 }
7564
7565 NOREF(pszInstr);
7566}
7567
7568
7569/**
7570 * Performs event injection (if any) as part of VM-entry.
7571 *
7572 * @param pVCpu The cross context virtual CPU structure.
7573 * @param pszInstr The VMX instruction name (for logging purposes).
7574 */
7575static void iemVmxVmentryInjectEvent(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7576{
7577 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7578
7579 /*
7580 * Inject events.
7581 * The event that is going to be made pending for injection is not subject to VMX intercepts,
7582 * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
7583 * of the current event -are- subject to intercepts, hence this flag will be flipped during
7584 * the actually delivery of this event.
7585 *
7586 * See Intel spec. 26.5 "Event Injection".
7587 */
7588 uint32_t const uEntryIntInfo = pVmcs->u32EntryIntInfo;
7589 bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
7590
7591 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, !fEntryIntInfoValid);
7592 if (fEntryIntInfoValid)
7593 {
7594 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
7595 {
7596 Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
7597 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7598 }
7599 else
7600 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
7601 pVCpu->cpum.GstCtx.cr2);
7602
7603 /*
7604 * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
7605 *
7606 * However, we do it here on VM-entry as well because while it isn't visible to guest
7607 * software until VM-exit, when and if HM looks at the VMCS to continue nested-guest
7608 * execution using hardware-assisted VMX, it will not be try to inject the event again.
7609 *
7610 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7611 */
7612 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
7613 }
7614 else
7615 {
7616 /*
7617 * Inject any pending guest debug exception.
7618 * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
7619 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7620 */
7621 bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
7622 if (fPendingDbgXcpt)
7623 {
7624 uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7625 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
7626 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7627 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
7628 0 /* GCPtrFaultAddress */);
7629 }
7630 }
7631
7632 NOREF(pszInstr);
7633}
7634
7635
7636/**
7637 * Initializes all read-only VMCS fields as part of VM-entry.
7638 *
7639 * @param pVCpu The cross context virtual CPU structure.
7640 */
7641static void iemVmxVmentryInitReadOnlyFields(PVMCPUCC pVCpu) RT_NOEXCEPT
7642{
7643 /*
7644 * Any VMCS field which we do not establish on every VM-exit but may potentially
7645 * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
7646 * specified to be undefined, needs to be initialized here.
7647 *
7648 * Thus, it is especially important to clear the Exit qualification field
7649 * since it must be zero for VM-exits where it is not used. Similarly, the
7650 * VM-exit interruption information field's valid bit needs to be cleared for
7651 * the same reasons.
7652 */
7653 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7654 Assert(pVmcs);
7655
7656 /* 16-bit (none currently). */
7657 /* 32-bit. */
7658 pVmcs->u32RoVmInstrError = 0;
7659 pVmcs->u32RoExitReason = 0;
7660 pVmcs->u32RoExitIntInfo = 0;
7661 pVmcs->u32RoExitIntErrCode = 0;
7662 pVmcs->u32RoIdtVectoringInfo = 0;
7663 pVmcs->u32RoIdtVectoringErrCode = 0;
7664 pVmcs->u32RoExitInstrLen = 0;
7665 pVmcs->u32RoExitInstrInfo = 0;
7666
7667 /* 64-bit. */
7668 pVmcs->u64RoGuestPhysAddr.u = 0;
7669
7670 /* Natural-width. */
7671 pVmcs->u64RoExitQual.u = 0;
7672 pVmcs->u64RoIoRcx.u = 0;
7673 pVmcs->u64RoIoRsi.u = 0;
7674 pVmcs->u64RoIoRdi.u = 0;
7675 pVmcs->u64RoIoRip.u = 0;
7676 pVmcs->u64RoGuestLinearAddr.u = 0;
7677}
7678
7679
7680/**
7681 * VMLAUNCH/VMRESUME instruction execution worker.
7682 *
7683 * @returns Strict VBox status code.
7684 * @param pVCpu The cross context virtual CPU structure.
7685 * @param cbInstr The instruction length in bytes.
7686 * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
7687 * VMXINSTRID_VMRESUME).
7688 *
7689 * @remarks Common VMX instruction checks are already expected to by the caller,
7690 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7691 */
7692static VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId) RT_NOEXCEPT
7693{
7694# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
7695 RT_NOREF3(pVCpu, cbInstr, uInstrId);
7696 return VINF_EM_RAW_EMULATE_INSTR;
7697# else
7698 Assert( uInstrId == VMXINSTRID_VMLAUNCH
7699 || uInstrId == VMXINSTRID_VMRESUME);
7700 const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
7701
7702 /* Nested-guest intercept. */
7703 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7704 return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
7705
7706 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
7707
7708 /*
7709 * Basic VM-entry checks.
7710 * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
7711 * The checks following that do not have to follow a specific order.
7712 *
7713 * See Intel spec. 26.1 "Basic VM-entry Checks".
7714 */
7715
7716 /* CPL. */
7717 if (pVCpu->iem.s.uCpl == 0)
7718 { /* likely */ }
7719 else
7720 {
7721 Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
7722 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
7723 return iemRaiseGeneralProtectionFault0(pVCpu);
7724 }
7725
7726 /* Current VMCS valid. */
7727 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7728 { /* likely */ }
7729 else
7730 {
7731 Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7732 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
7733 iemVmxVmFailInvalid(pVCpu);
7734 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7735 return VINF_SUCCESS;
7736 }
7737
7738 /* Current VMCS is not a shadow VMCS. */
7739 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32VmcsRevId.n.fIsShadowVmcs)
7740 { /* likely */ }
7741 else
7742 {
7743 Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7744 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
7745 iemVmxVmFailInvalid(pVCpu);
7746 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7747 return VINF_SUCCESS;
7748 }
7749
7750 /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
7751 * use block-by-STI here which is not quite correct. */
7752 if ( !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
7753 || pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
7754 { /* likely */ }
7755 else
7756 {
7757 Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
7758 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
7759 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
7760 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7761 return VINF_SUCCESS;
7762 }
7763
7764 if (uInstrId == VMXINSTRID_VMLAUNCH)
7765 {
7766 /* VMLAUNCH with non-clear VMCS. */
7767 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR)
7768 { /* likely */ }
7769 else
7770 {
7771 Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
7772 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
7773 iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
7774 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7775 return VINF_SUCCESS;
7776 }
7777 }
7778 else
7779 {
7780 /* VMRESUME with non-launched VMCS. */
7781 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_LAUNCHED)
7782 { /* likely */ }
7783 else
7784 {
7785 Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
7786 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
7787 iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
7788 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7789 return VINF_SUCCESS;
7790 }
7791 }
7792
7793 /*
7794 * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
7795 * while entering VMX non-root mode. We do some of this while checking VM-execution
7796 * controls. The nested hypervisor should not make assumptions and cannot expect
7797 * predictable behavior if changes to these structures are made in guest memory while
7798 * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
7799 * modify them anyway as we cache them in host memory.
7800 *
7801 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7802 */
7803 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7804 Assert(pVmcs);
7805 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
7806
7807 int rc = iemVmxVmentryCheckCtls(pVCpu, pszInstr);
7808 if (RT_SUCCESS(rc))
7809 {
7810 rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
7811 if (RT_SUCCESS(rc))
7812 {
7813 /*
7814 * Initialize read-only VMCS fields before VM-entry since we don't update all of them
7815 * for every VM-exit. This needs to be done before invoking a VM-exit (even those
7816 * ones that may occur during VM-entry below).
7817 */
7818 iemVmxVmentryInitReadOnlyFields(pVCpu);
7819
7820 /*
7821 * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
7822 * So we save the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
7823 * VM-exit when required.
7824 * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
7825 */
7826 iemVmxVmentrySaveNmiBlockingFF(pVCpu);
7827
7828 rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
7829 if (RT_SUCCESS(rc))
7830 {
7831 /*
7832 * We've now entered nested-guest execution.
7833 *
7834 * It is important do this prior to loading the guest state because
7835 * as part of loading the guest state, PGM (and perhaps other components
7836 * in the future) relies on detecting whether VMX non-root mode has been
7837 * entered.
7838 */
7839 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
7840
7841 rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
7842 if (RT_SUCCESS(rc))
7843 {
7844 rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
7845 if (RT_SUCCESS(rc))
7846 {
7847 Assert(rc != VINF_CPUM_R3_MSR_WRITE);
7848
7849 /* VMLAUNCH instruction must update the VMCS launch state. */
7850 if (uInstrId == VMXINSTRID_VMLAUNCH)
7851 pVmcs->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_LAUNCHED;
7852
7853 /* Perform the VMX transition (PGM updates). */
7854 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
7855 if (rcStrict == VINF_SUCCESS)
7856 { /* likely */ }
7857 else if (RT_SUCCESS(rcStrict))
7858 {
7859 Log3(("%s: iemVmxTransition returns %Rrc -> Setting passup status\n", pszInstr,
7860 VBOXSTRICTRC_VAL(rcStrict)));
7861 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7862 }
7863 else
7864 {
7865 Log3(("%s: iemVmxTransition failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7866 return rcStrict;
7867 }
7868
7869 /* Paranoia. */
7870 Assert(rcStrict == VINF_SUCCESS);
7871
7872 /*
7873 * The priority of potential VM-exits during VM-entry is important.
7874 * The priorities of VM-exits and events are listed from highest
7875 * to lowest as follows:
7876 *
7877 * 1. Event injection.
7878 * 2. Trap on task-switch (T flag set in TSS).
7879 * 3. TPR below threshold / APIC-write.
7880 * 4. SMI, INIT.
7881 * 5. MTF exit.
7882 * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
7883 * 7. VMX-preemption timer.
7884 * 9. NMI-window exit.
7885 * 10. NMI injection.
7886 * 11. Interrupt-window exit.
7887 * 12. Virtual-interrupt injection.
7888 * 13. Interrupt injection.
7889 * 14. Process next instruction (fetch, decode, execute).
7890 */
7891
7892 /* Setup VMX-preemption timer. */
7893 iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
7894
7895 /* Setup monitor-trap flag. */
7896 iemVmxVmentrySetupMtf(pVCpu, pszInstr);
7897
7898 /* Setup NMI-window exiting. */
7899 iemVmxVmentrySetupNmiWindow(pVCpu, pszInstr);
7900
7901 /* Setup interrupt-window exiting. */
7902 iemVmxVmentrySetupIntWindow(pVCpu, pszInstr);
7903
7904 /*
7905 * Inject any event that the nested hypervisor wants to inject.
7906 * Note! We cannot immediately perform the event injection here as we may have
7907 * pending PGM operations to perform due to switching page tables and/or
7908 * mode.
7909 */
7910 iemVmxVmentryInjectEvent(pVCpu, pszInstr);
7911
7912# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
7913 /* Reschedule to IEM-only execution of the nested-guest. */
7914 LogFlow(("%s: Enabling IEM-only EM execution policy!\n", pszInstr));
7915 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
7916 if (rcSched != VINF_SUCCESS)
7917 iemSetPassUpStatus(pVCpu, rcSched);
7918# endif
7919
7920 /* Finally, done. */
7921 LogFlow(("%s: cs:rip=%#04x:%#RX64 cr0=%#RX64 (%#RX64) cr4=%#RX64 (%#RX64) efer=%#RX64 (%#RX64)\n",
7922 pszInstr, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
7923 pVmcs->u64Cr0ReadShadow.u, pVCpu->cpum.GstCtx.cr4, pVmcs->u64Cr4ReadShadow.u,
7924 pVCpu->cpum.GstCtx.msrEFER, pVmcs->u64GuestEferMsr.u));
7925 return VINF_SUCCESS;
7926 }
7927 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
7928 }
7929 }
7930 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
7931 }
7932
7933 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
7934 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7935 return VINF_SUCCESS;
7936 }
7937
7938 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
7939 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7940 return VINF_SUCCESS;
7941# endif
7942}
7943
7944
7945/**
7946 * Interface for HM and EM to emulate the VMLAUNCH/VMRESUME instruction.
7947 *
7948 * @returns Strict VBox status code.
7949 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7950 * @param cbInstr The instruction length in bytes.
7951 * @param uInstrId The instruction ID (VMXINSTRID_VMLAUNCH or
7952 * VMXINSTRID_VMRESUME).
7953 * @thread EMT(pVCpu)
7954 */
7955VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
7956{
7957 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
7958 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
7959
7960 iemInitExec(pVCpu, false /*fBypassHandlers*/);
7961 VBOXSTRICTRC rcStrict = iemVmxVmlaunchVmresume(pVCpu, cbInstr, uInstrId);
7962 Assert(!pVCpu->iem.s.cActiveMappings);
7963 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
7964}
7965
7966
7967/**
7968 * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
7969 * (causes a VM-exit) or not.
7970 *
7971 * @returns @c true if the instruction is intercepted, @c false otherwise.
7972 * @param pVCpu The cross context virtual CPU structure.
7973 * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
7974 * VMX_EXIT_WRMSR).
7975 * @param idMsr The MSR.
7976 */
7977bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT
7978{
7979 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
7980 Assert( uExitReason == VMX_EXIT_RDMSR
7981 || uExitReason == VMX_EXIT_WRMSR);
7982
7983 /* Consult the MSR bitmap if the feature is supported. */
7984 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7985 Assert(pVmcs);
7986 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7987 {
7988 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, idMsr);
7989 if (uExitReason == VMX_EXIT_RDMSR)
7990 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_RD);
7991 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_WR);
7992 }
7993
7994 /* Without MSR bitmaps, all MSR accesses are intercepted. */
7995 return true;
7996}
7997
7998
7999/**
8000 * VMREAD instruction execution worker that does not perform any validation checks.
8001 *
8002 * Callers are expected to have performed the necessary checks and to ensure the
8003 * VMREAD will succeed.
8004 *
8005 * @param pVmcs Pointer to the virtual VMCS.
8006 * @param pu64Dst Where to write the VMCS value.
8007 * @param u64VmcsField The VMCS field.
8008 *
8009 * @remarks May be called with interrupts disabled.
8010 */
8011static void iemVmxVmreadNoCheck(PCVMXVVMCS pVmcs, uint64_t *pu64Dst, uint64_t u64VmcsField) RT_NOEXCEPT
8012{
8013 VMXVMCSFIELD VmcsField;
8014 VmcsField.u = u64VmcsField;
8015 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8016 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8017 uint8_t const uWidthType = (uWidth << 2) | uType;
8018 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8019 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8020 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8021 AssertMsg(offField < VMX_V_VMCS_SIZE, ("off=%u field=%#RX64 width=%#x type=%#x index=%#x (%u)\n", offField, u64VmcsField,
8022 uWidth, uType, uIndex, uIndex));
8023 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8024
8025 /*
8026 * Read the VMCS component based on the field's effective width.
8027 *
8028 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8029 * indicates high bits (little endian).
8030 *
8031 * Note! The caller is responsible to trim the result and update registers
8032 * or memory locations are required. Here we just zero-extend to the largest
8033 * type (i.e. 64-bits).
8034 */
8035 uint8_t const *pbVmcs = (uint8_t const *)pVmcs;
8036 uint8_t const *pbField = pbVmcs + offField;
8037 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8038 switch (uEffWidth)
8039 {
8040 case VMX_VMCSFIELD_WIDTH_64BIT:
8041 case VMX_VMCSFIELD_WIDTH_NATURAL: *pu64Dst = *(uint64_t const *)pbField; break;
8042 case VMX_VMCSFIELD_WIDTH_32BIT: *pu64Dst = *(uint32_t const *)pbField; break;
8043 case VMX_VMCSFIELD_WIDTH_16BIT: *pu64Dst = *(uint16_t const *)pbField; break;
8044 }
8045}
8046
8047/**
8048 * Interface for HM and EM to read a VMCS field from the nested-guest VMCS.
8049 *
8050 * It is ASSUMED the caller knows what they're doing. No VMREAD instruction checks
8051 * are performed. Bounds checks are strict builds only.
8052 *
8053 * @param pVmcs Pointer to the virtual VMCS.
8054 * @param u64VmcsField The VMCS field.
8055 * @param pu64Dst Where to store the VMCS value.
8056 *
8057 * @remarks May be called with interrupts disabled.
8058 * @todo This should probably be moved to CPUM someday.
8059 */
8060VMM_INT_DECL(void) IEMReadVmxVmcsField(PCVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t *pu64Dst)
8061{
8062 AssertPtr(pVmcs);
8063 AssertPtr(pu64Dst);
8064 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8065}
8066
8067
8068/**
8069 * VMREAD common (memory/register) instruction execution worker.
8070 *
8071 * @returns Strict VBox status code.
8072 * @param pVCpu The cross context virtual CPU structure.
8073 * @param cbInstr The instruction length in bytes.
8074 * @param pu64Dst Where to write the VMCS value (only updated when
8075 * VINF_SUCCESS is returned).
8076 * @param u64VmcsField The VMCS field.
8077 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8078 * NULL.
8079 */
8080static VBOXSTRICTRC iemVmxVmreadCommon(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8081 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8082{
8083 /* Nested-guest intercept. */
8084 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8085 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64VmcsField))
8086 {
8087 if (pExitInfo)
8088 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8089 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
8090 }
8091
8092 /* CPL. */
8093 if (pVCpu->iem.s.uCpl == 0)
8094 { /* likely */ }
8095 else
8096 {
8097 Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8098 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
8099 return iemRaiseGeneralProtectionFault0(pVCpu);
8100 }
8101
8102 /* VMCS pointer in root mode. */
8103 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8104 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8105 { /* likely */ }
8106 else
8107 {
8108 Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8109 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
8110 iemVmxVmFailInvalid(pVCpu);
8111 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8112 return VINF_SUCCESS;
8113 }
8114
8115 /* VMCS-link pointer in non-root mode. */
8116 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8117 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8118 { /* likely */ }
8119 else
8120 {
8121 Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8122 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
8123 iemVmxVmFailInvalid(pVCpu);
8124 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8125 return VINF_SUCCESS;
8126 }
8127
8128 /* Supported VMCS field. */
8129 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8130 { /* likely */ }
8131 else
8132 {
8133 Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8134 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
8135 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8136 iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
8137 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8138 return VINF_SUCCESS;
8139 }
8140
8141 /*
8142 * Reading from the current or shadow VMCS.
8143 */
8144 PCVMXVVMCS pVmcs = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8145 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8146 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8147 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8148 return VINF_SUCCESS;
8149}
8150
8151
8152/**
8153 * VMREAD (64-bit register) instruction execution worker.
8154 *
8155 * @returns Strict VBox status code.
8156 * @param pVCpu The cross context virtual CPU structure.
8157 * @param cbInstr The instruction length in bytes.
8158 * @param pu64Dst Where to store the VMCS field's value.
8159 * @param u64VmcsField The VMCS field.
8160 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8161 * NULL.
8162 */
8163static VBOXSTRICTRC iemVmxVmreadReg64(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8164 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8165{
8166 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64VmcsField, pExitInfo);
8167 if (rcStrict == VINF_SUCCESS)
8168 {
8169 iemVmxVmSucceed(pVCpu);
8170 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8171 return VINF_SUCCESS;
8172 }
8173
8174 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8175 return rcStrict;
8176}
8177
8178
8179/**
8180 * VMREAD (32-bit register) instruction execution worker.
8181 *
8182 * @returns Strict VBox status code.
8183 * @param pVCpu The cross context virtual CPU structure.
8184 * @param cbInstr The instruction length in bytes.
8185 * @param pu32Dst Where to store the VMCS field's value.
8186 * @param u32VmcsField The VMCS field.
8187 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8188 * NULL.
8189 */
8190static VBOXSTRICTRC iemVmxVmreadReg32(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t *pu32Dst,
8191 uint64_t u32VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8192{
8193 uint64_t u64Dst;
8194 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32VmcsField, pExitInfo);
8195 if (rcStrict == VINF_SUCCESS)
8196 {
8197 *pu32Dst = u64Dst;
8198 iemVmxVmSucceed(pVCpu);
8199 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8200 return VINF_SUCCESS;
8201 }
8202
8203 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8204 return rcStrict;
8205}
8206
8207
8208/**
8209 * VMREAD (memory) instruction execution worker.
8210 *
8211 * @returns Strict VBox status code.
8212 * @param pVCpu The cross context virtual CPU structure.
8213 * @param cbInstr The instruction length in bytes.
8214 * @param iEffSeg The effective segment register to use with @a u64Val.
8215 * Pass UINT8_MAX if it is a register access.
8216 * @param GCPtrDst The guest linear address to store the VMCS field's
8217 * value.
8218 * @param u64VmcsField The VMCS field.
8219 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8220 * NULL.
8221 */
8222static VBOXSTRICTRC iemVmxVmreadMem(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDst,
8223 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8224{
8225 uint64_t u64Dst;
8226 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64VmcsField, pExitInfo);
8227 if (rcStrict == VINF_SUCCESS)
8228 {
8229 /*
8230 * Write the VMCS field's value to the location specified in guest-memory.
8231 */
8232 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8233 rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8234 else
8235 rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8236 if (rcStrict == VINF_SUCCESS)
8237 {
8238 iemVmxVmSucceed(pVCpu);
8239 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8240 return VINF_SUCCESS;
8241 }
8242
8243 Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
8244 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
8245 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrDst;
8246 return rcStrict;
8247 }
8248
8249 Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8250 return rcStrict;
8251}
8252
8253
8254/**
8255 * Interface for HM and EM to emulate the VMREAD instruction.
8256 *
8257 * @returns Strict VBox status code.
8258 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8259 * @param pExitInfo Pointer to the VM-exit information.
8260 * @thread EMT(pVCpu)
8261 */
8262VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmread(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8263{
8264 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8265 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8266 Assert(pExitInfo);
8267
8268 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8269
8270 VBOXSTRICTRC rcStrict;
8271 uint8_t const cbInstr = pExitInfo->cbInstr;
8272 bool const fIs64BitMode = RT_BOOL(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
8273 uint64_t const u64FieldEnc = fIs64BitMode
8274 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8275 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8276 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8277 {
8278 if (fIs64BitMode)
8279 {
8280 uint64_t *pu64Dst = iemGRegRefU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8281 rcStrict = iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
8282 }
8283 else
8284 {
8285 uint32_t *pu32Dst = iemGRegRefU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8286 rcStrict = iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u64FieldEnc, pExitInfo);
8287 }
8288 }
8289 else
8290 {
8291 RTGCPTR const GCPtrDst = pExitInfo->GCPtrEffAddr;
8292 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8293 rcStrict = iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64FieldEnc, pExitInfo);
8294 }
8295 Assert(!pVCpu->iem.s.cActiveMappings);
8296 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8297}
8298
8299
8300/**
8301 * VMWRITE instruction execution worker that does not perform any validation
8302 * checks.
8303 *
8304 * Callers are expected to have performed the necessary checks and to ensure the
8305 * VMWRITE will succeed.
8306 *
8307 * @param pVmcs Pointer to the virtual VMCS.
8308 * @param u64Val The value to write.
8309 * @param u64VmcsField The VMCS field.
8310 *
8311 * @remarks May be called with interrupts disabled.
8312 */
8313static void iemVmxVmwriteNoCheck(PVMXVVMCS pVmcs, uint64_t u64Val, uint64_t u64VmcsField) RT_NOEXCEPT
8314{
8315 VMXVMCSFIELD VmcsField;
8316 VmcsField.u = u64VmcsField;
8317 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8318 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8319 uint8_t const uWidthType = (uWidth << 2) | uType;
8320 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8321 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8322 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8323 Assert(offField < VMX_V_VMCS_SIZE);
8324 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8325
8326 /*
8327 * Write the VMCS component based on the field's effective width.
8328 *
8329 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8330 * indicates high bits (little endian).
8331 */
8332 uint8_t *pbVmcs = (uint8_t *)pVmcs;
8333 uint8_t *pbField = pbVmcs + offField;
8334 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8335 switch (uEffWidth)
8336 {
8337 case VMX_VMCSFIELD_WIDTH_64BIT:
8338 case VMX_VMCSFIELD_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
8339 case VMX_VMCSFIELD_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
8340 case VMX_VMCSFIELD_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
8341 }
8342}
8343
8344
8345/**
8346 * Interface for HM and EM to write a VMCS field in the nested-guest VMCS.
8347 *
8348 * It is ASSUMED the caller knows what they're doing. No VMWRITE instruction checks
8349 * are performed. Bounds checks are strict builds only.
8350 *
8351 * @param pVmcs Pointer to the virtual VMCS.
8352 * @param u64VmcsField The VMCS field.
8353 * @param u64Val The value to write.
8354 *
8355 * @remarks May be called with interrupts disabled.
8356 * @todo This should probably be moved to CPUM someday.
8357 */
8358VMM_INT_DECL(void) IEMWriteVmxVmcsField(PVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t u64Val)
8359{
8360 AssertPtr(pVmcs);
8361 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8362}
8363
8364
8365/**
8366 * VMWRITE instruction execution worker.
8367 *
8368 * @returns Strict VBox status code.
8369 * @param pVCpu The cross context virtual CPU structure.
8370 * @param cbInstr The instruction length in bytes.
8371 * @param iEffSeg The effective segment register to use with @a u64Val.
8372 * Pass UINT8_MAX if it is a register access.
8373 * @param u64Val The value to write (or guest linear address to the
8374 * value), @a iEffSeg will indicate if it's a memory
8375 * operand.
8376 * @param u64VmcsField The VMCS field.
8377 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8378 * NULL.
8379 */
8380static VBOXSTRICTRC iemVmxVmwrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, uint64_t u64Val,
8381 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8382{
8383 /* Nested-guest intercept. */
8384 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8385 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64VmcsField))
8386 {
8387 if (pExitInfo)
8388 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8389 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
8390 }
8391
8392 /* CPL. */
8393 if (pVCpu->iem.s.uCpl == 0)
8394 { /* likely */ }
8395 else
8396 {
8397 Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8398 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
8399 return iemRaiseGeneralProtectionFault0(pVCpu);
8400 }
8401
8402 /* VMCS pointer in root mode. */
8403 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8404 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8405 { /* likely */ }
8406 else
8407 {
8408 Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8409 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
8410 iemVmxVmFailInvalid(pVCpu);
8411 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8412 return VINF_SUCCESS;
8413 }
8414
8415 /* VMCS-link pointer in non-root mode. */
8416 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8417 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8418 { /* likely */ }
8419 else
8420 {
8421 Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8422 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
8423 iemVmxVmFailInvalid(pVCpu);
8424 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8425 return VINF_SUCCESS;
8426 }
8427
8428 /* If the VMWRITE instruction references memory, access the specified memory operand. */
8429 bool const fIsRegOperand = iEffSeg == UINT8_MAX;
8430 if (!fIsRegOperand)
8431 {
8432 /* Read the value from the specified guest memory location. */
8433 VBOXSTRICTRC rcStrict;
8434 RTGCPTR const GCPtrVal = u64Val;
8435 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8436 rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8437 else
8438 rcStrict = iemMemFetchDataU32_ZX_U64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8439 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
8440 {
8441 Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
8442 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
8443 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVal;
8444 return rcStrict;
8445 }
8446 }
8447 else
8448 Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
8449
8450 /* Supported VMCS field. */
8451 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8452 { /* likely */ }
8453 else
8454 {
8455 Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8456 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
8457 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8458 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
8459 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8460 return VINF_SUCCESS;
8461 }
8462
8463 /* Read-only VMCS field. */
8464 bool const fIsFieldReadOnly = VMXIsVmcsFieldReadOnly(u64VmcsField);
8465 if ( !fIsFieldReadOnly
8466 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
8467 { /* likely */ }
8468 else
8469 {
8470 Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64VmcsField));
8471 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
8472 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8473 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
8474 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8475 return VINF_SUCCESS;
8476 }
8477
8478 /*
8479 * Write to the current or shadow VMCS.
8480 */
8481 bool const fInVmxNonRootMode = IEM_VMX_IS_NON_ROOT_MODE(pVCpu);
8482 PVMXVVMCS pVmcs = !fInVmxNonRootMode
8483 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8484 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8485 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8486
8487 if ( !fInVmxNonRootMode
8488 && VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8489 {
8490 /* Notify HM that the VMCS content might have changed. */
8491 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8492 }
8493
8494 iemVmxVmSucceed(pVCpu);
8495 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8496 return VINF_SUCCESS;
8497}
8498
8499
8500/**
8501 * Interface for HM and EM to emulate the VMWRITE instruction.
8502 *
8503 * @returns Strict VBox status code.
8504 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8505 * @param pExitInfo Pointer to the VM-exit information.
8506 * @thread EMT(pVCpu)
8507 */
8508VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmwrite(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8509{
8510 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8511 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8512 Assert(pExitInfo);
8513
8514 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8515
8516 uint64_t u64Val;
8517 uint8_t iEffSeg;
8518 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8519 {
8520 u64Val = iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8521 iEffSeg = UINT8_MAX;
8522 }
8523 else
8524 {
8525 u64Val = pExitInfo->GCPtrEffAddr;
8526 iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8527 }
8528 uint8_t const cbInstr = pExitInfo->cbInstr;
8529 uint64_t const u64FieldEnc = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
8530 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8531 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8532 VBOXSTRICTRC rcStrict = iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, u64Val, u64FieldEnc, pExitInfo);
8533 Assert(!pVCpu->iem.s.cActiveMappings);
8534 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8535}
8536
8537
8538/**
8539 * VMCLEAR instruction execution worker.
8540 *
8541 * @returns Strict VBox status code.
8542 * @param pVCpu The cross context virtual CPU structure.
8543 * @param cbInstr The instruction length in bytes.
8544 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8545 * @param GCPtrVmcs The linear address of the VMCS pointer.
8546 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8547 *
8548 * @remarks Common VMX instruction checks are already expected to by the caller,
8549 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8550 */
8551static VBOXSTRICTRC iemVmxVmclear(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8552 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8553{
8554 /* Nested-guest intercept. */
8555 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8556 {
8557 if (pExitInfo)
8558 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8559 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
8560 }
8561
8562 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8563
8564 /* CPL. */
8565 if (pVCpu->iem.s.uCpl == 0)
8566 { /* likely */ }
8567 else
8568 {
8569 Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8570 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
8571 return iemRaiseGeneralProtectionFault0(pVCpu);
8572 }
8573
8574 /* Get the VMCS pointer from the location specified by the source memory operand. */
8575 RTGCPHYS GCPhysVmcs;
8576 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8577 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8578 { /* likely */ }
8579 else
8580 {
8581 Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8582 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
8583 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8584 return rcStrict;
8585 }
8586
8587 /* VMCS pointer alignment. */
8588 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8589 { /* likely */ }
8590 else
8591 {
8592 Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
8593 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
8594 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8595 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8596 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8597 return VINF_SUCCESS;
8598 }
8599
8600 /* VMCS physical-address width limits. */
8601 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8602 { /* likely */ }
8603 else
8604 {
8605 Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8606 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
8607 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8608 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8609 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8610 return VINF_SUCCESS;
8611 }
8612
8613 /* VMCS is not the VMXON region. */
8614 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8615 { /* likely */ }
8616 else
8617 {
8618 Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8619 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
8620 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8621 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
8622 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8623 return VINF_SUCCESS;
8624 }
8625
8626 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8627 restriction imposed by our implementation. */
8628 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8629 { /* likely */ }
8630 else
8631 {
8632 Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
8633 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
8634 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8635 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8636 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8637 return VINF_SUCCESS;
8638 }
8639
8640 /*
8641 * VMCLEAR allows committing and clearing any valid VMCS pointer.
8642 *
8643 * If the current VMCS is the one being cleared, set its state to 'clear' and commit
8644 * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
8645 * to 'clear'.
8646 */
8647 uint8_t const fVmcsLaunchStateClear = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
8648 if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
8649 && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
8650 {
8651 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState = fVmcsLaunchStateClear;
8652 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8653 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8654 }
8655 else
8656 {
8657 AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsLaunchStateClear));
8658 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
8659 (const void *)&fVmcsLaunchStateClear, sizeof(fVmcsLaunchStateClear));
8660 if (RT_FAILURE(rcStrict))
8661 return rcStrict;
8662 }
8663
8664 iemVmxVmSucceed(pVCpu);
8665 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8666 return VINF_SUCCESS;
8667}
8668
8669
8670/**
8671 * Interface for HM and EM to emulate the VMCLEAR instruction.
8672 *
8673 * @returns Strict VBox status code.
8674 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8675 * @param pExitInfo Pointer to the VM-exit information.
8676 * @thread EMT(pVCpu)
8677 */
8678VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmclear(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8679{
8680 Assert(pExitInfo);
8681 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8682 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8683
8684 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8685
8686 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8687 uint8_t const cbInstr = pExitInfo->cbInstr;
8688 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8689 VBOXSTRICTRC rcStrict = iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8690 Assert(!pVCpu->iem.s.cActiveMappings);
8691 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8692}
8693
8694
8695/**
8696 * VMPTRST instruction execution worker.
8697 *
8698 * @returns Strict VBox status code.
8699 * @param pVCpu The cross context virtual CPU structure.
8700 * @param cbInstr The instruction length in bytes.
8701 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8702 * @param GCPtrVmcs The linear address of where to store the current VMCS
8703 * pointer.
8704 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8705 *
8706 * @remarks Common VMX instruction checks are already expected to by the caller,
8707 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8708 */
8709static VBOXSTRICTRC iemVmxVmptrst(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8710 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8711{
8712 /* Nested-guest intercept. */
8713 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8714 {
8715 if (pExitInfo)
8716 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8717 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
8718 }
8719
8720 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8721
8722 /* CPL. */
8723 if (pVCpu->iem.s.uCpl == 0)
8724 { /* likely */ }
8725 else
8726 {
8727 Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8728 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
8729 return iemRaiseGeneralProtectionFault0(pVCpu);
8730 }
8731
8732 /* Set the VMCS pointer to the location specified by the destination memory operand. */
8733 AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
8734 VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
8735 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8736 {
8737 iemVmxVmSucceed(pVCpu);
8738 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8739 return rcStrict;
8740 }
8741
8742 Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8743 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
8744 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8745 return rcStrict;
8746}
8747
8748
8749/**
8750 * Interface for HM and EM to emulate the VMPTRST instruction.
8751 *
8752 * @returns Strict VBox status code.
8753 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8754 * @param pExitInfo Pointer to the VM-exit information.
8755 * @thread EMT(pVCpu)
8756 */
8757VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrst(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8758{
8759 Assert(pExitInfo);
8760 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8761 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8762
8763 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8764
8765 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8766 uint8_t const cbInstr = pExitInfo->cbInstr;
8767 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8768 VBOXSTRICTRC rcStrict = iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8769 Assert(!pVCpu->iem.s.cActiveMappings);
8770 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8771}
8772
8773
8774/**
8775 * VMPTRLD instruction execution worker.
8776 *
8777 * @returns Strict VBox status code.
8778 * @param pVCpu The cross context virtual CPU structure.
8779 * @param cbInstr The instruction length in bytes.
8780 * @param GCPtrVmcs The linear address of the current VMCS pointer.
8781 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8782 *
8783 * @remarks Common VMX instruction checks are already expected to by the caller,
8784 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8785 */
8786static VBOXSTRICTRC iemVmxVmptrld(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8787 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8788{
8789 /* Nested-guest intercept. */
8790 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8791 {
8792 if (pExitInfo)
8793 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8794 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
8795 }
8796
8797 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8798
8799 /* CPL. */
8800 if (pVCpu->iem.s.uCpl == 0)
8801 { /* likely */ }
8802 else
8803 {
8804 Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8805 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
8806 return iemRaiseGeneralProtectionFault0(pVCpu);
8807 }
8808
8809 /* Get the VMCS pointer from the location specified by the source memory operand. */
8810 RTGCPHYS GCPhysVmcs;
8811 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8812 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8813 { /* likely */ }
8814 else
8815 {
8816 Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8817 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
8818 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8819 return rcStrict;
8820 }
8821
8822 /* VMCS pointer alignment. */
8823 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8824 { /* likely */ }
8825 else
8826 {
8827 Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
8828 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
8829 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8830 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8831 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8832 return VINF_SUCCESS;
8833 }
8834
8835 /* VMCS physical-address width limits. */
8836 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8837 { /* likely */ }
8838 else
8839 {
8840 Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8841 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
8842 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8843 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8844 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8845 return VINF_SUCCESS;
8846 }
8847
8848 /* VMCS is not the VMXON region. */
8849 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8850 { /* likely */ }
8851 else
8852 {
8853 Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8854 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
8855 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8856 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
8857 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8858 return VINF_SUCCESS;
8859 }
8860
8861 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8862 restriction imposed by our implementation. */
8863 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8864 { /* likely */ }
8865 else
8866 {
8867 Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
8868 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
8869 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8870 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8871 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8872 return VINF_SUCCESS;
8873 }
8874
8875 /* Read just the VMCS revision from the VMCS. */
8876 VMXVMCSREVID VmcsRevId;
8877 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
8878 if (RT_SUCCESS(rc))
8879 { /* likely */ }
8880 else
8881 {
8882 Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8883 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
8884 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8885 return rc;
8886 }
8887
8888 /*
8889 * Verify the VMCS revision specified by the guest matches what we reported to the guest.
8890 * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
8891 */
8892 if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
8893 && ( !VmcsRevId.n.fIsShadowVmcs
8894 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
8895 { /* likely */ }
8896 else
8897 {
8898 if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
8899 {
8900 Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
8901 VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
8902 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
8903 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8904 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8905 return VINF_SUCCESS;
8906 }
8907
8908 Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
8909 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
8910 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8911 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8912 return VINF_SUCCESS;
8913 }
8914
8915 /*
8916 * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
8917 * the cache of an existing, current VMCS back to guest memory before loading a new,
8918 * different current VMCS.
8919 */
8920 if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
8921 {
8922 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8923 {
8924 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8925 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8926 }
8927
8928 /* Set the new VMCS as the current VMCS and read it from guest memory. */
8929 IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
8930 rc = iemVmxReadCurrentVmcsFromGstMem(pVCpu);
8931 if (RT_SUCCESS(rc))
8932 {
8933 /* Notify HM that a new, current VMCS is loaded. */
8934 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8935 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8936 }
8937 else
8938 {
8939 Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8940 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
8941 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8942 return rc;
8943 }
8944 }
8945
8946 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
8947 iemVmxVmSucceed(pVCpu);
8948 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8949 return VINF_SUCCESS;
8950}
8951
8952
8953/**
8954 * Interface for HM and EM to emulate the VMPTRLD instruction.
8955 *
8956 * @returns Strict VBox status code.
8957 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8958 * @param pExitInfo Pointer to the VM-exit information.
8959 * @thread EMT(pVCpu)
8960 */
8961VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrld(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8962{
8963 Assert(pExitInfo);
8964 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8965 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8966
8967 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8968
8969 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8970 uint8_t const cbInstr = pExitInfo->cbInstr;
8971 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8972 VBOXSTRICTRC rcStrict = iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8973 Assert(!pVCpu->iem.s.cActiveMappings);
8974 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8975}
8976
8977
8978/**
8979 * INVVPID instruction execution worker.
8980 *
8981 * @returns Strict VBox status code.
8982 * @param pVCpu The cross context virtual CPU structure.
8983 * @param cbInstr The instruction length in bytes.
8984 * @param iEffSeg The segment of the invvpid descriptor.
8985 * @param GCPtrInvvpidDesc The address of invvpid descriptor.
8986 * @param u64InvvpidType The invalidation type.
8987 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8988 * NULL.
8989 *
8990 * @remarks Common VMX instruction checks are already expected to by the caller,
8991 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8992 */
8993VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
8994 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8995{
8996 /* Check if INVVPID instruction is supported, otherwise raise #UD. */
8997 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVpid)
8998 return iemRaiseUndefinedOpcode(pVCpu);
8999
9000 /* Nested-guest intercept. */
9001 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9002 {
9003 if (pExitInfo)
9004 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9005 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVVPID, VMXINSTRID_NONE, cbInstr);
9006 }
9007
9008 /* CPL. */
9009 if (pVCpu->iem.s.uCpl != 0)
9010 {
9011 Log(("invvpid: CPL != 0 -> #GP(0)\n"));
9012 return iemRaiseGeneralProtectionFault0(pVCpu);
9013 }
9014
9015 /*
9016 * Validate INVVPID invalidation type.
9017 *
9018 * The instruction specifies exactly ONE of the supported invalidation types.
9019 *
9020 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9021 * supported. In theory, it's possible for a CPU to not support flushing individual
9022 * addresses but all the other types or any other combination. We do not take any
9023 * shortcuts here by assuming the types we currently expose to the guest.
9024 */
9025 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9026 bool const fInvvpidSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID);
9027 bool const fTypeIndivAddr = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
9028 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
9029 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
9030 bool const fTypeSingleCtxRetainGlobals = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
9031
9032 bool afSupportedTypes[4];
9033 afSupportedTypes[0] = fTypeIndivAddr;
9034 afSupportedTypes[1] = fTypeSingleCtx;
9035 afSupportedTypes[2] = fTypeAllCtx;
9036 afSupportedTypes[3] = fTypeSingleCtxRetainGlobals;
9037
9038 if ( fInvvpidSupported
9039 && !(u64InvvpidType & ~(uint64_t)VMX_INVVPID_VALID_MASK)
9040 && afSupportedTypes[u64InvvpidType & 3])
9041 { /* likely */ }
9042 else
9043 {
9044 Log(("invvpid: invalid/unsupported invvpid type %#x -> VMFail\n", u64InvvpidType));
9045 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_TypeInvalid;
9046 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9047 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9048 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9049 return VINF_SUCCESS;
9050 }
9051
9052 /*
9053 * Fetch the invvpid descriptor from guest memory.
9054 */
9055 RTUINT128U uDesc;
9056 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvvpidDesc);
9057 if (rcStrict == VINF_SUCCESS)
9058 {
9059 /*
9060 * Validate the descriptor.
9061 */
9062 if (uDesc.s.Lo <= 0xffff)
9063 { /* likely */ }
9064 else
9065 {
9066 Log(("invvpid: reserved bits set in invvpid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
9067 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_DescRsvd;
9068 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Lo;
9069 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9070 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9071 return VINF_SUCCESS;
9072 }
9073
9074 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9075 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
9076 uint8_t const uVpid = uDesc.s.Lo & UINT64_C(0xfff);
9077 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9078 switch (u64InvvpidType)
9079 {
9080 case VMXTLBFLUSHVPID_INDIV_ADDR:
9081 {
9082 if (uVpid != 0)
9083 {
9084 if (IEM_IS_CANONICAL(GCPtrInvAddr))
9085 {
9086 /* Invalidate mappings for the linear address tagged with VPID. */
9087 /** @todo PGM support for VPID? Currently just flush everything. */
9088 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9089 iemVmxVmSucceed(pVCpu);
9090 }
9091 else
9092 {
9093 Log(("invvpid: invalidation address %#RGP is not canonical -> VMFail\n", GCPtrInvAddr));
9094 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidAddr;
9095 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrInvAddr;
9096 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9097 }
9098 }
9099 else
9100 {
9101 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9102 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidVpid;
9103 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9104 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9105 }
9106 break;
9107 }
9108
9109 case VMXTLBFLUSHVPID_SINGLE_CONTEXT:
9110 {
9111 if (uVpid != 0)
9112 {
9113 /* Invalidate all mappings with VPID. */
9114 /** @todo PGM support for VPID? Currently just flush everything. */
9115 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9116 iemVmxVmSucceed(pVCpu);
9117 }
9118 else
9119 {
9120 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9121 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type1InvalidVpid;
9122 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9123 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9124 }
9125 break;
9126 }
9127
9128 case VMXTLBFLUSHVPID_ALL_CONTEXTS:
9129 {
9130 /* Invalidate all mappings with non-zero VPIDs. */
9131 /** @todo PGM support for VPID? Currently just flush everything. */
9132 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9133 iemVmxVmSucceed(pVCpu);
9134 break;
9135 }
9136
9137 case VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS:
9138 {
9139 if (uVpid != 0)
9140 {
9141 /* Invalidate all mappings with VPID except global translations. */
9142 /** @todo PGM support for VPID? Currently just flush everything. */
9143 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9144 iemVmxVmSucceed(pVCpu);
9145 }
9146 else
9147 {
9148 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9149 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type3InvalidVpid;
9150 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uVpid;
9151 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9152 }
9153 break;
9154 }
9155 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9156 }
9157 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9158 }
9159 return rcStrict;
9160}
9161
9162
9163/**
9164 * Interface for HM and EM to emulate the INVVPID instruction.
9165 *
9166 * @returns Strict VBox status code.
9167 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9168 * @param pExitInfo Pointer to the VM-exit information.
9169 * @thread EMT(pVCpu)
9170 */
9171VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvvpid(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9172{
9173 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9174 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9175 Assert(pExitInfo);
9176
9177 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9178
9179 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9180 uint8_t const cbInstr = pExitInfo->cbInstr;
9181 RTGCPTR const GCPtrInvvpidDesc = pExitInfo->GCPtrEffAddr;
9182 uint64_t const u64InvvpidType = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
9183 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9184 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9185 VBOXSTRICTRC rcStrict = iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, u64InvvpidType, pExitInfo);
9186 Assert(!pVCpu->iem.s.cActiveMappings);
9187 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9188}
9189
9190#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9191
9192/**
9193 * INVEPT instruction execution worker.
9194 *
9195 * @returns Strict VBox status code.
9196 * @param pVCpu The cross context virtual CPU structure.
9197 * @param cbInstr The instruction length in bytes.
9198 * @param iEffSeg The segment of the invept descriptor.
9199 * @param GCPtrInveptDesc The address of invept descriptor.
9200 * @param u64InveptType The invalidation type.
9201 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
9202 * NULL.
9203 *
9204 * @remarks Common VMX instruction checks are already expected to by the caller,
9205 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9206 */
9207static VBOXSTRICTRC iemVmxInvept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInveptDesc,
9208 uint64_t u64InveptType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9209{
9210 /* Check if EPT is supported, otherwise raise #UD. */
9211 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEpt)
9212 return iemRaiseUndefinedOpcode(pVCpu);
9213
9214 /* Nested-guest intercept. */
9215 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9216 {
9217 if (pExitInfo)
9218 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9219 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVEPT, VMXINSTRID_NONE, cbInstr);
9220 }
9221
9222 /* CPL. */
9223 if (pVCpu->iem.s.uCpl != 0)
9224 {
9225 Log(("invept: CPL != 0 -> #GP(0)\n"));
9226 return iemRaiseGeneralProtectionFault0(pVCpu);
9227 }
9228
9229 /*
9230 * Validate INVEPT invalidation type.
9231 *
9232 * The instruction specifies exactly ONE of the supported invalidation types.
9233 *
9234 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9235 * supported. In theory, it's possible for a CPU to not support flushing individual
9236 * addresses but all the other types or any other combination. We do not take any
9237 * shortcuts here by assuming the types we currently expose to the guest.
9238 */
9239 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9240 bool const fInveptSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT);
9241 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
9242 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
9243
9244 bool afSupportedTypes[4];
9245 afSupportedTypes[0] = false;
9246 afSupportedTypes[1] = fTypeSingleCtx;
9247 afSupportedTypes[2] = fTypeAllCtx;
9248 afSupportedTypes[3] = false;
9249
9250 if ( fInveptSupported
9251 && !(u64InveptType & ~(uint64_t)VMX_INVEPT_VALID_MASK)
9252 && afSupportedTypes[u64InveptType & 3])
9253 { /* likely */ }
9254 else
9255 {
9256 Log(("invept: invalid/unsupported invvpid type %#x -> VMFail\n", u64InveptType));
9257 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_TypeInvalid;
9258 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InveptType;
9259 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9260 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9261 return VINF_SUCCESS;
9262 }
9263
9264 /*
9265 * Fetch the invept descriptor from guest memory.
9266 */
9267 RTUINT128U uDesc;
9268 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInveptDesc);
9269 if (rcStrict == VINF_SUCCESS)
9270 {
9271 /*
9272 * Validate the descriptor.
9273 *
9274 * The Intel spec. does not explicit say the INVEPT instruction fails when reserved
9275 * bits in the descriptor are set, but it -does- for INVVPID. Until we test on real
9276 * hardware, it's assumed INVEPT behaves the same as INVVPID in this regard. It's
9277 * better to be strict in our emulation until proven otherwise.
9278 */
9279 if (uDesc.s.Hi)
9280 {
9281 Log(("invept: reserved bits set in invept descriptor %#RX64 -> VMFail\n", uDesc.s.Hi));
9282 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_DescRsvd;
9283 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Hi;
9284 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9285 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9286 return VINF_SUCCESS;
9287 }
9288
9289 /*
9290 * Flush TLB mappings based on the EPT type.
9291 */
9292 if (u64InveptType == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
9293 {
9294 uint64_t const GCPhysEptPtr = uDesc.s.Lo;
9295 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, GCPhysEptPtr, NULL /* enmDiag */);
9296 if (RT_SUCCESS(rc))
9297 { /* likely */ }
9298 else
9299 {
9300 Log(("invept: EPTP invalid %#RX64 -> VMFail\n", GCPhysEptPtr));
9301 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_EptpInvalid;
9302 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysEptPtr;
9303 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9304 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9305 return VINF_SUCCESS;
9306 }
9307 }
9308
9309 /** @todo PGM support for EPT tags? Currently just flush everything. */
9310 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9311 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9312 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9313
9314 iemVmxVmSucceed(pVCpu);
9315 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9316 }
9317
9318 return rcStrict;
9319}
9320
9321
9322/**
9323 * Interface for HM and EM to emulate the INVEPT instruction.
9324 *
9325 * @returns Strict VBox status code.
9326 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9327 * @param pExitInfo Pointer to the VM-exit information.
9328 * @thread EMT(pVCpu)
9329 */
9330VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvept(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9331{
9332 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9333 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9334 Assert(pExitInfo);
9335
9336 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9337
9338 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9339 uint8_t const cbInstr = pExitInfo->cbInstr;
9340 RTGCPTR const GCPtrInveptDesc = pExitInfo->GCPtrEffAddr;
9341 uint64_t const u64InveptType = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
9342 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9343 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9344 VBOXSTRICTRC rcStrict = iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, u64InveptType, pExitInfo);
9345 Assert(!pVCpu->iem.s.cActiveMappings);
9346 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9347}
9348
9349#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
9350
9351/**
9352 * VMXON instruction execution worker.
9353 *
9354 * @returns Strict VBox status code.
9355 * @param pVCpu The cross context virtual CPU structure.
9356 * @param cbInstr The instruction length in bytes.
9357 * @param iEffSeg The effective segment register to use with @a
9358 * GCPtrVmxon.
9359 * @param GCPtrVmxon The linear address of the VMXON pointer.
9360 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
9361 *
9362 * @remarks Common VMX instruction checks are already expected to by the caller,
9363 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9364 */
9365static VBOXSTRICTRC iemVmxVmxon(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
9366 RTGCPHYS GCPtrVmxon, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9367{
9368 if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
9369 {
9370 /* CPL. */
9371 if (pVCpu->iem.s.uCpl == 0)
9372 { /* likely */ }
9373 else
9374 {
9375 Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9376 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
9377 return iemRaiseGeneralProtectionFault0(pVCpu);
9378 }
9379
9380 /* A20M (A20 Masked) mode. */
9381 if (PGMPhysIsA20Enabled(pVCpu))
9382 { /* likely */ }
9383 else
9384 {
9385 Log(("vmxon: A20M mode -> #GP(0)\n"));
9386 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
9387 return iemRaiseGeneralProtectionFault0(pVCpu);
9388 }
9389
9390 /* CR0. */
9391 {
9392 /*
9393 * CR0 MB1 bits.
9394 *
9395 * We use VMX_V_CR0_FIXED0 below to ensure CR0.PE and CR0.PG are always set
9396 * while executing VMXON. CR0.PE and CR0.PG are only allowed to be clear
9397 * when the guest running in VMX non-root mode with unrestricted-guest control
9398 * enabled in the VMCS.
9399 */
9400 uint64_t const uCr0Fixed0 = VMX_V_CR0_FIXED0;
9401 if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
9402 { /* likely */ }
9403 else
9404 {
9405 Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
9406 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
9407 return iemRaiseGeneralProtectionFault0(pVCpu);
9408 }
9409
9410 /* CR0 MBZ bits. */
9411 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
9412 if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
9413 { /* likely */ }
9414 else
9415 {
9416 Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
9417 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
9418 return iemRaiseGeneralProtectionFault0(pVCpu);
9419 }
9420 }
9421
9422 /* CR4. */
9423 {
9424 /* CR4 MB1 bits. */
9425 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
9426 if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
9427 { /* likely */ }
9428 else
9429 {
9430 Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
9431 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
9432 return iemRaiseGeneralProtectionFault0(pVCpu);
9433 }
9434
9435 /* CR4 MBZ bits. */
9436 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
9437 if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
9438 { /* likely */ }
9439 else
9440 {
9441 Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
9442 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
9443 return iemRaiseGeneralProtectionFault0(pVCpu);
9444 }
9445 }
9446
9447 /* Feature control MSR's LOCK and VMXON bits. */
9448 uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatCtrl(pVCpu);
9449 if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9450 == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9451 { /* likely */ }
9452 else
9453 {
9454 Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
9455 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
9456 return iemRaiseGeneralProtectionFault0(pVCpu);
9457 }
9458
9459 /* Get the VMXON pointer from the location specified by the source memory operand. */
9460 RTGCPHYS GCPhysVmxon;
9461 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
9462 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9463 { /* likely */ }
9464 else
9465 {
9466 Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
9467 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
9468 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmxon;
9469 return rcStrict;
9470 }
9471
9472 /* VMXON region pointer alignment. */
9473 if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
9474 { /* likely */ }
9475 else
9476 {
9477 Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
9478 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
9479 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9480 iemVmxVmFailInvalid(pVCpu);
9481 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9482 return VINF_SUCCESS;
9483 }
9484
9485 /* VMXON physical-address width limits. */
9486 if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
9487 { /* likely */ }
9488 else
9489 {
9490 Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
9491 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
9492 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9493 iemVmxVmFailInvalid(pVCpu);
9494 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9495 return VINF_SUCCESS;
9496 }
9497
9498 /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
9499 restriction imposed by our implementation. */
9500 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
9501 { /* likely */ }
9502 else
9503 {
9504 Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
9505 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
9506 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9507 iemVmxVmFailInvalid(pVCpu);
9508 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9509 return VINF_SUCCESS;
9510 }
9511
9512 /* Read the VMCS revision ID from the VMXON region. */
9513 VMXVMCSREVID VmcsRevId;
9514 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
9515 if (RT_SUCCESS(rc))
9516 { /* likely */ }
9517 else
9518 {
9519 Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
9520 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
9521 return rc;
9522 }
9523
9524 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
9525 if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
9526 { /* likely */ }
9527 else
9528 {
9529 /* Revision ID mismatch. */
9530 if (!VmcsRevId.n.fIsShadowVmcs)
9531 {
9532 Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
9533 VmcsRevId.n.u31RevisionId));
9534 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
9535 iemVmxVmFailInvalid(pVCpu);
9536 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9537 return VINF_SUCCESS;
9538 }
9539
9540 /* Shadow VMCS disallowed. */
9541 Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
9542 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
9543 iemVmxVmFailInvalid(pVCpu);
9544 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9545 return VINF_SUCCESS;
9546 }
9547
9548 /*
9549 * Record that we're in VMX operation, block INIT, block and disable A20M.
9550 */
9551 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
9552 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
9553 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
9554
9555 /* Clear address-range monitoring. */
9556 EMMonitorWaitClear(pVCpu);
9557 /** @todo NSTVMX: Intel PT. */
9558
9559 iemVmxVmSucceed(pVCpu);
9560 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9561 return VINF_SUCCESS;
9562 }
9563 else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9564 {
9565 /* Nested-guest intercept. */
9566 if (pExitInfo)
9567 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9568 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
9569 }
9570
9571 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
9572
9573 /* CPL. */
9574 if (pVCpu->iem.s.uCpl > 0)
9575 {
9576 Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9577 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
9578 return iemRaiseGeneralProtectionFault0(pVCpu);
9579 }
9580
9581 /* VMXON when already in VMX root mode. */
9582 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
9583 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
9584 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9585 return VINF_SUCCESS;
9586}
9587
9588
9589/**
9590 * Interface for HM and EM to emulate the VMXON instruction.
9591 *
9592 * @returns Strict VBox status code.
9593 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9594 * @param pExitInfo Pointer to the VM-exit information.
9595 * @thread EMT(pVCpu)
9596 */
9597VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxon(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9598{
9599 Assert(pExitInfo);
9600 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
9601 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9602
9603 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9604
9605 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
9606 uint8_t const cbInstr = pExitInfo->cbInstr;
9607 RTGCPTR const GCPtrVmxon = pExitInfo->GCPtrEffAddr;
9608 VBOXSTRICTRC rcStrict = iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, pExitInfo);
9609 Assert(!pVCpu->iem.s.cActiveMappings);
9610 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9611}
9612
9613
9614/**
9615 * Implements 'VMXOFF'.
9616 *
9617 * @remarks Common VMX instruction checks are already expected to by the caller,
9618 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9619 */
9620IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
9621{
9622 /* Nested-guest intercept. */
9623 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9624 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
9625
9626 /* CPL. */
9627 if (pVCpu->iem.s.uCpl == 0)
9628 { /* likely */ }
9629 else
9630 {
9631 Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9632 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
9633 return iemRaiseGeneralProtectionFault0(pVCpu);
9634 }
9635
9636 /* Dual monitor treatment of SMIs and SMM. */
9637 uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
9638 if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
9639 { /* likely */ }
9640 else
9641 {
9642 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
9643 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9644 return VINF_SUCCESS;
9645 }
9646
9647 /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
9648 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
9649 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
9650
9651 if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
9652 { /** @todo NSTVMX: Unblock SMI. */ }
9653
9654 EMMonitorWaitClear(pVCpu);
9655 /** @todo NSTVMX: Unblock and enable A20M. */
9656
9657 iemVmxVmSucceed(pVCpu);
9658 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9659 return VINF_SUCCESS;
9660}
9661
9662
9663/**
9664 * Interface for HM and EM to emulate the VMXOFF instruction.
9665 *
9666 * @returns Strict VBox status code.
9667 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9668 * @param cbInstr The instruction length in bytes.
9669 * @thread EMT(pVCpu)
9670 */
9671VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxoff(PVMCPUCC pVCpu, uint8_t cbInstr)
9672{
9673 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
9674 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9675
9676 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9677 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmxoff);
9678 Assert(!pVCpu->iem.s.cActiveMappings);
9679 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9680}
9681
9682
9683/**
9684 * Implements 'VMXON'.
9685 */
9686IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
9687{
9688 return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
9689}
9690
9691
9692/**
9693 * Implements 'VMLAUNCH'.
9694 */
9695IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
9696{
9697 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
9698}
9699
9700
9701/**
9702 * Implements 'VMRESUME'.
9703 */
9704IEM_CIMPL_DEF_0(iemCImpl_vmresume)
9705{
9706 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
9707}
9708
9709
9710/**
9711 * Implements 'VMPTRLD'.
9712 */
9713IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9714{
9715 return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9716}
9717
9718
9719/**
9720 * Implements 'VMPTRST'.
9721 */
9722IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9723{
9724 return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9725}
9726
9727
9728/**
9729 * Implements 'VMCLEAR'.
9730 */
9731IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9732{
9733 return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9734}
9735
9736
9737/**
9738 * Implements 'VMWRITE' register.
9739 */
9740IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField)
9741{
9742 return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, u64Val, u64VmcsField, NULL /* pExitInfo */);
9743}
9744
9745
9746/**
9747 * Implements 'VMWRITE' memory.
9748 */
9749IEM_CIMPL_DEF_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField)
9750{
9751 return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, GCPtrVal, u64VmcsField, NULL /* pExitInfo */);
9752}
9753
9754
9755/**
9756 * Implements 'VMREAD' register (64-bit).
9757 */
9758IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField)
9759{
9760 return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64VmcsField, NULL /* pExitInfo */);
9761}
9762
9763
9764/**
9765 * Implements 'VMREAD' register (32-bit).
9766 */
9767IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32VmcsField)
9768{
9769 return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32VmcsField, NULL /* pExitInfo */);
9770}
9771
9772
9773/**
9774 * Implements 'VMREAD' memory, 64-bit register.
9775 */
9776IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField)
9777{
9778 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64VmcsField, NULL /* pExitInfo */);
9779}
9780
9781
9782/**
9783 * Implements 'VMREAD' memory, 32-bit register.
9784 */
9785IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField)
9786{
9787 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u32VmcsField, NULL /* pExitInfo */);
9788}
9789
9790
9791/**
9792 * Implements 'INVVPID'.
9793 */
9794IEM_CIMPL_DEF_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType)
9795{
9796 return iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, uInvvpidType, NULL /* pExitInfo */);
9797}
9798
9799
9800#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9801/**
9802 * Implements 'INVEPT'.
9803 */
9804IEM_CIMPL_DEF_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType)
9805{
9806 return iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, uInveptType, NULL /* pExitInfo */);
9807}
9808#endif
9809
9810
9811/**
9812 * Implements VMX's implementation of PAUSE.
9813 */
9814IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
9815{
9816 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9817 {
9818 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
9819 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
9820 return rcStrict;
9821 }
9822
9823 /*
9824 * Outside VMX non-root operation or if the PAUSE instruction does not cause
9825 * a VM-exit, the instruction operates normally.
9826 */
9827 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9828 return VINF_SUCCESS;
9829}
9830
9831#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
9832
9833
9834/**
9835 * Implements 'VMCALL'.
9836 */
9837IEM_CIMPL_DEF_0(iemCImpl_vmcall)
9838{
9839#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9840 /* Nested-guest intercept. */
9841 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9842 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
9843#endif
9844
9845 /* Join forces with vmmcall. */
9846 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
9847}
9848
9849
9850#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9851
9852/**
9853 * @callback_method_impl{FNPGMPHYSHANDLER, VMX APIC-access page accesses}
9854 *
9855 * @remarks The @a uUser argument is currently unused.
9856 */
9857DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPageHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysFault, void *pvPhys,
9858 void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType,
9859 PGMACCESSORIGIN enmOrigin, uint64_t uUser)
9860{
9861 RT_NOREF3(pvPhys, enmOrigin, uUser);
9862
9863 RTGCPHYS const GCPhysAccessBase = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9864 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9865 {
9866 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9867 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysAccessBase);
9868
9869 uint32_t const fAccess = enmAccessType == PGMACCESSTYPE_WRITE ? IEM_ACCESS_DATA_W : IEM_ACCESS_DATA_R;
9870 uint16_t const offAccess = GCPhysFault & GUEST_PAGE_OFFSET_MASK;
9871 VBOXSTRICTRC rcStrict = iemVmxVirtApicAccessMem(pVCpu, offAccess, cbBuf, pvBuf, fAccess);
9872 if (RT_FAILURE(rcStrict))
9873 return rcStrict;
9874
9875 /* Any access on this APIC-access page has been handled, caller should not carry out the access. */
9876 return VINF_SUCCESS;
9877 }
9878
9879 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysAccessBase));
9880 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhysAccessBase);
9881 if (RT_FAILURE(rc))
9882 return rc;
9883
9884 /* Instruct the caller of this handler to perform the read/write as normal memory. */
9885 return VINF_PGM_HANDLER_DO_DEFAULT;
9886}
9887
9888
9889# ifndef IN_RING3
9890/**
9891 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
9892 * \#PF access handler callback for guest VMX APIC-access page.}
9893 */
9894DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPagePfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
9895 RTGCPTR pvFault, RTGCPHYS GCPhysFault, uint64_t uUser)
9896
9897{
9898 RT_NOREF4(pVM, pRegFrame, pvFault, uUser);
9899
9900 /*
9901 * Handle the VMX APIC-access page only when the guest is in VMX non-root mode.
9902 * Otherwise we must deregister the page and allow regular RAM access.
9903 * Failing to do so lands us with endless EPT misconfiguration VM-exits.
9904 */
9905 RTGCPHYS const GCPhysAccessBase = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9906 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9907 {
9908 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9909 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysAccessBase);
9910
9911 /*
9912 * Check if the access causes an APIC-access VM-exit.
9913 */
9914 uint32_t fAccess;
9915 if (uErr & X86_TRAP_PF_ID)
9916 fAccess = IEM_ACCESS_INSTRUCTION;
9917 else if (uErr & X86_TRAP_PF_RW)
9918 fAccess = IEM_ACCESS_DATA_W;
9919 else
9920 fAccess = IEM_ACCESS_DATA_R;
9921
9922 uint16_t const offAccess = GCPhysFault & GUEST_PAGE_OFFSET_MASK;
9923 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, 0 /* cbAccess */, fAccess);
9924 if (fIntercept)
9925 {
9926 /*
9927 * Query the source VM-exit (from the execution engine) that caused this access
9928 * within the APIC-access page. Currently only HM is supported.
9929 */
9930 AssertMsgReturn(VM_IS_HM_ENABLED(pVM),
9931 ("VM-exit auxiliary info. fetching not supported for execution engine %d\n",
9932 pVM->bMainExecutionEngine), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
9933 HMEXITAUX HmExitAux;
9934 RT_ZERO(HmExitAux);
9935 int const rc = HMR0GetExitAuxInfo(pVCpu, &HmExitAux, HMVMX_READ_EXIT_INSTR_LEN
9936 | HMVMX_READ_EXIT_QUALIFICATION
9937 | HMVMX_READ_IDT_VECTORING_INFO
9938 | HMVMX_READ_IDT_VECTORING_ERROR_CODE);
9939 AssertRCReturn(rc, rc);
9940
9941 /*
9942 * Verify the VM-exit reason must be an EPT violation.
9943 * Other accesses should go through the other handler (iemVmxApicAccessPageHandler).
9944 */
9945 AssertLogRelMsgReturn(HmExitAux.Vmx.uReason == VMX_EXIT_EPT_VIOLATION,
9946 ("Unexpected call to the VMX APIC-access page #PF handler for %#RGp (off=%u) uReason=%#RX32\n",
9947 GCPhysAccessBase, offAccess, HmExitAux.Vmx.uReason), VERR_IEM_IPE_9);
9948
9949 /*
9950 * Construct the virtual APIC-access VM-exit.
9951 */
9952 VMXAPICACCESS enmAccess;
9953 if (HmExitAux.Vmx.u64Qual & VMX_EXIT_QUAL_EPT_LINEAR_ADDR_VALID)
9954 {
9955 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
9956 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
9957 else if (fAccess == IEM_ACCESS_INSTRUCTION)
9958 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
9959 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
9960 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
9961 else
9962 enmAccess = VMXAPICACCESS_LINEAR_READ;
9963 }
9964 else
9965 {
9966 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
9967 enmAccess = VMXAPICACCESS_PHYSICAL_EVENT_DELIVERY;
9968 else
9969 {
9970 /** @todo How to distinguish between monitoring/trace vs other instructions
9971 * here? */
9972 enmAccess = VMXAPICACCESS_PHYSICAL_INSTR;
9973 }
9974 }
9975
9976 VMXVEXITINFO ExitInfo;
9977 RT_ZERO(ExitInfo);
9978 ExitInfo.uReason = VMX_EXIT_APIC_ACCESS;
9979 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
9980 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
9981 ExitInfo.cbInstr = HmExitAux.Vmx.cbInstr;
9982
9983 VMXVEXITEVENTINFO ExitEventInfo;
9984 RT_ZERO(ExitEventInfo);
9985 ExitEventInfo.uIdtVectoringInfo = HmExitAux.Vmx.uIdtVectoringInfo;
9986 ExitEventInfo.uIdtVectoringErrCode = HmExitAux.Vmx.uIdtVectoringErrCode;
9987
9988 /*
9989 * Raise the APIC-access VM-exit.
9990 */
9991 VBOXSTRICTRC rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
9992 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
9993 }
9994
9995 /*
9996 * The access isn't intercepted, which means it needs to be virtualized.
9997 *
9998 * This requires emulating the instruction because we need the bytes being
9999 * read/written by the instruction not just the offset being accessed within
10000 * the APIC-access (which we derive from the faulting address).
10001 */
10002 return VINF_EM_RAW_EMULATE_INSTR;
10003 }
10004
10005 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysAccessBase));
10006 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhysAccessBase);
10007 if (RT_FAILURE(rc))
10008 return rc;
10009
10010 return VINF_SUCCESS;
10011}
10012# endif /* !IN_RING3 */
10013
10014#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10015
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette