VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h@ 88562

Last change on this file since 88562 was 87040, checked in by vboxsync, 4 years ago

VMM: Better fix for r141682 - Fix delivery of external interrupts when executing nested-guests. Fixes nested-guest SMP hangs described in bugref:9562#c18

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 353.2 KB
Line 
1/* $Id: IEMAllCImplVmxInstr.cpp.h 87040 2020-12-04 06:28:01Z vboxsync $ */
2/** @file
3 * IEM - VT-x instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Defined Constants And Macros *
21*********************************************************************************************************************************/
22#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
23/**
24 * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
25 * relative offsets.
26 */
27# ifdef IEM_WITH_CODE_TLB
28# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
29# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
30# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
31# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
32# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
33# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
34# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
35# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
36# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
37# else /* !IEM_WITH_CODE_TLB */
38# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
39 do \
40 { \
41 Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
42 (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
43 } while (0)
44
45# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
46
47# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
48 do \
49 { \
50 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
51 uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
52 uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
53 (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
54 } while (0)
55
56# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
57 do \
58 { \
59 Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
60 (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
61 } while (0)
62
63# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
64 do \
65 { \
66 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
67 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
68 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
69 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
70 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
71 (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
72 } while (0)
73
74# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
75 do \
76 { \
77 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
78 (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
79 } while (0)
80
81# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
82 do \
83 { \
84 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
85 (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
86 } while (0)
87
88# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
89 do \
90 { \
91 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
92 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
93 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
94 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
95 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
96 (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
97 } while (0)
98# endif /* !IEM_WITH_CODE_TLB */
99
100/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
101# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
102
103/** Whether a shadow VMCS is present for the given VCPU. */
104# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
105
106/** Gets the VMXON region pointer. */
107# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
108
109/** Gets the guest-physical address of the current VMCS for the given VCPU. */
110# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
111
112/** Whether a current VMCS is present for the given VCPU. */
113# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
114
115/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
116# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
117 do \
118 { \
119 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
120 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
121 } while (0)
122
123/** Clears any current VMCS for the given VCPU. */
124# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
125 do \
126 { \
127 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
128 } while (0)
129
130/** Check for VMX instructions requiring to be in VMX operation.
131 * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
132# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
133 do \
134 { \
135 if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
136 { /* likely */ } \
137 else \
138 { \
139 Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
140 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
141 return iemRaiseUndefinedOpcode(a_pVCpu); \
142 } \
143 } while (0)
144
145/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
146# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
147 do \
148 { \
149 LogRel(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
150 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
151 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
152 return VERR_VMX_VMENTRY_FAILED; \
153 } while (0)
154
155/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
156# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
157 do \
158 { \
159 LogRel(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
160 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
161 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
162 return VERR_VMX_VMEXIT_FAILED; \
163 } while (0)
164
165
166/*********************************************************************************************************************************
167* Global Variables *
168*********************************************************************************************************************************/
169/** @todo NSTVMX: The following VM-exit intercepts are pending:
170 * VMX_EXIT_IO_SMI
171 * VMX_EXIT_SMI
172 * VMX_EXIT_GETSEC
173 * VMX_EXIT_RSM
174 * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
175 * VMX_EXIT_ERR_MACHINE_CHECK (we never need to raise this?)
176 * VMX_EXIT_EPT_VIOLATION
177 * VMX_EXIT_EPT_MISCONFIG
178 * VMX_EXIT_INVEPT
179 * VMX_EXIT_RDRAND
180 * VMX_EXIT_VMFUNC
181 * VMX_EXIT_ENCLS
182 * VMX_EXIT_RDSEED
183 * VMX_EXIT_PML_FULL
184 * VMX_EXIT_XSAVES
185 * VMX_EXIT_XRSTORS
186 */
187/**
188 * Map of VMCS field encodings to their virtual-VMCS structure offsets.
189 *
190 * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
191 * second dimension is the Index, see VMXVMCSFIELD.
192 */
193uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
194{
195 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
196 {
197 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
198 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
199 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
200 /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
201 /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
202 /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
203 },
204 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
205 {
206 /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
207 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
208 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
209 /* 24-25 */ UINT16_MAX, UINT16_MAX
210 },
211 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
212 {
213 /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
214 /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
215 /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
216 /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
217 /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
218 /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
219 /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
220 /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
221 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
222 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
223 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
224 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
225 },
226 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
227 {
228 /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
229 /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
230 /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
231 /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
232 /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
233 /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
234 /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
235 /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
236 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
237 /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
238 },
239 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
240 {
241 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
242 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
243 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
244 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
245 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
246 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
247 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
248 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
249 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
250 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
251 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
252 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
253 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
254 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptpPtr),
255 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
256 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
257 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
258 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
259 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
260 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
261 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
262 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
263 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssBitmap),
264 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64EnclsBitmap),
265 /* 24 */ RT_UOFFSETOF(VMXVVMCS, u64SpptPtr),
266 /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier)
267 },
268 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
269 {
270 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
271 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
272 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
273 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
274 /* 25 */ UINT16_MAX
275 },
276 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
277 {
278 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
279 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
280 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
281 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
282 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
283 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
284 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
285 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
286 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
287 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
288 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRtitCtlMsr),
289 /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
290 /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
291 },
292 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
293 {
294 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
295 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
296 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
297 /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
298 /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
299 /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
300 },
301 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
302 {
303 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
304 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
305 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
306 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
307 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
308 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
309 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
310 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
311 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
312 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
313 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
314 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
315 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
316 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
317 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
318 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
319 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
320 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
321 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
322 },
323 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
324 {
325 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
326 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
327 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
328 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
329 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
330 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
331 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
332 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
333 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
334 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
335 /* 24-25 */ UINT16_MAX, UINT16_MAX
336 },
337 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
338 {
339 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
340 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
341 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
342 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
343 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
344 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
345 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
346 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
347 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
348 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
349 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
350 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
351 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
352 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
353 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
354 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
355 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
356 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
357 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
358 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
359 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
360 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
361 /* 22 */ UINT16_MAX,
362 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
363 /* 24-25 */ UINT16_MAX, UINT16_MAX
364 },
365 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
366 {
367 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
368 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
369 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
370 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
371 /* 25 */ UINT16_MAX
372 },
373 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_CONTROL: */
374 {
375 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
376 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
377 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
378 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
379 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
380 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
381 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
382 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
383 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
384 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
385 /* 24-25 */ UINT16_MAX, UINT16_MAX
386 },
387 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
388 {
389 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
390 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
391 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
392 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
393 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
394 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
395 /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
396 /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
397 /* 22-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
398 },
399 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
400 {
401 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
402 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
403 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
404 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
405 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
406 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
407 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
408 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
409 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
410 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
411 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
412 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
413 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
414 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
415 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
416 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
417 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
418 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpts),
419 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
420 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
421 /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
422 },
423 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_HOST_STATE: */
424 {
425 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
426 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
427 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
428 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
429 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
430 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
431 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
432 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
433 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
434 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
435 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
436 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
437 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
438 /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
439 }
440};
441
442
443/**
444 * Gets a host selector from the VMCS.
445 *
446 * @param pVmcs Pointer to the virtual VMCS.
447 * @param iSelReg The index of the segment register (X86_SREG_XXX).
448 */
449DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
450{
451 Assert(iSegReg < X86_SREG_COUNT);
452 RTSEL HostSel;
453 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
454 uint8_t const uType = VMX_VMCSFIELD_TYPE_HOST_STATE;
455 uint8_t const uWidthType = (uWidth << 2) | uType;
456 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
457 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
458 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
459 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
460 uint8_t const *pbField = pbVmcs + offField;
461 HostSel = *(uint16_t *)pbField;
462 return HostSel;
463}
464
465
466/**
467 * Sets a guest segment register in the VMCS.
468 *
469 * @param pVmcs Pointer to the virtual VMCS.
470 * @param iSegReg The index of the segment register (X86_SREG_XXX).
471 * @param pSelReg Pointer to the segment register.
472 */
473IEM_STATIC void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg)
474{
475 Assert(pSelReg);
476 Assert(iSegReg < X86_SREG_COUNT);
477
478 /* Selector. */
479 {
480 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
481 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
482 uint8_t const uWidthType = (uWidth << 2) | uType;
483 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
484 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
485 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
486 uint8_t *pbVmcs = (uint8_t *)pVmcs;
487 uint8_t *pbField = pbVmcs + offField;
488 *(uint16_t *)pbField = pSelReg->Sel;
489 }
490
491 /* Limit. */
492 {
493 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
494 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
495 uint8_t const uWidthType = (uWidth << 2) | uType;
496 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
497 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
498 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
499 uint8_t *pbVmcs = (uint8_t *)pVmcs;
500 uint8_t *pbField = pbVmcs + offField;
501 *(uint32_t *)pbField = pSelReg->u32Limit;
502 }
503
504 /* Base. */
505 {
506 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
507 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
508 uint8_t const uWidthType = (uWidth << 2) | uType;
509 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
510 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
511 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
512 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
513 uint8_t const *pbField = pbVmcs + offField;
514 *(uint64_t *)pbField = pSelReg->u64Base;
515 }
516
517 /* Attributes. */
518 {
519 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
520 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
521 | X86DESCATTR_UNUSABLE;
522 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
523 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
524 uint8_t const uWidthType = (uWidth << 2) | uType;
525 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
526 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
527 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
528 uint8_t *pbVmcs = (uint8_t *)pVmcs;
529 uint8_t *pbField = pbVmcs + offField;
530 *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
531 }
532}
533
534
535/**
536 * Gets a guest segment register from the VMCS.
537 *
538 * @returns VBox status code.
539 * @param pVmcs Pointer to the virtual VMCS.
540 * @param iSegReg The index of the segment register (X86_SREG_XXX).
541 * @param pSelReg Where to store the segment register (only updated when
542 * VINF_SUCCESS is returned).
543 *
544 * @remarks Warning! This does not validate the contents of the retrieved segment
545 * register.
546 */
547IEM_STATIC int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg)
548{
549 Assert(pSelReg);
550 Assert(iSegReg < X86_SREG_COUNT);
551
552 /* Selector. */
553 uint16_t u16Sel;
554 {
555 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
556 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
557 uint8_t const uWidthType = (uWidth << 2) | uType;
558 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
559 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
560 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
561 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
562 uint8_t const *pbField = pbVmcs + offField;
563 u16Sel = *(uint16_t *)pbField;
564 }
565
566 /* Limit. */
567 uint32_t u32Limit;
568 {
569 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
570 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
571 uint8_t const uWidthType = (uWidth << 2) | uType;
572 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
573 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
574 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
575 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
576 uint8_t const *pbField = pbVmcs + offField;
577 u32Limit = *(uint32_t *)pbField;
578 }
579
580 /* Base. */
581 uint64_t u64Base;
582 {
583 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
584 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
585 uint8_t const uWidthType = (uWidth << 2) | uType;
586 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
587 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
588 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
589 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
590 uint8_t const *pbField = pbVmcs + offField;
591 u64Base = *(uint64_t *)pbField;
592 /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
593 }
594
595 /* Attributes. */
596 uint32_t u32Attr;
597 {
598 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
599 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
600 uint8_t const uWidthType = (uWidth << 2) | uType;
601 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
602 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
603 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
604 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
605 uint8_t const *pbField = pbVmcs + offField;
606 u32Attr = *(uint32_t *)pbField;
607 }
608
609 pSelReg->Sel = u16Sel;
610 pSelReg->ValidSel = u16Sel;
611 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
612 pSelReg->u32Limit = u32Limit;
613 pSelReg->u64Base = u64Base;
614 pSelReg->Attr.u = u32Attr;
615 return VINF_SUCCESS;
616}
617
618
619/**
620 * Converts an IEM exception event type to a VMX event type.
621 *
622 * @returns The VMX event type.
623 * @param uVector The interrupt / exception vector.
624 * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
625 */
626DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
627{
628 /* Paranoia (callers may use these interchangeably). */
629 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
630 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
631 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
632 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
633 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
634 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
635 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
636 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
637 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
638 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
639 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
640 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
641
642 if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
643 {
644 if (uVector == X86_XCPT_NMI)
645 return VMX_EXIT_INT_INFO_TYPE_NMI;
646 return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
647 }
648
649 if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
650 {
651 if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
652 return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
653 if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
654 return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
655 return VMX_EXIT_INT_INFO_TYPE_SW_INT;
656 }
657
658 Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
659 return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
660}
661
662
663/**
664 * Sets the Exit qualification VMCS field.
665 *
666 * @param pVCpu The cross context virtual CPU structure.
667 * @param u64ExitQual The Exit qualification.
668 */
669DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPUCC pVCpu, uint64_t u64ExitQual)
670{
671 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
672 pVmcs->u64RoExitQual.u = u64ExitQual;
673}
674
675
676/**
677 * Sets the VM-exit interruption information field.
678 *
679 * @param pVCpu The cross context virtual CPU structure.
680 * @param uExitIntInfo The VM-exit interruption information.
681 */
682DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPUCC pVCpu, uint32_t uExitIntInfo)
683{
684 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
685 pVmcs->u32RoExitIntInfo = uExitIntInfo;
686}
687
688
689/**
690 * Sets the VM-exit interruption error code.
691 *
692 * @param pVCpu The cross context virtual CPU structure.
693 * @param uErrCode The error code.
694 */
695DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
696{
697 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
698 pVmcs->u32RoExitIntErrCode = uErrCode;
699}
700
701
702/**
703 * Sets the IDT-vectoring information field.
704 *
705 * @param pVCpu The cross context virtual CPU structure.
706 * @param uIdtVectorInfo The IDT-vectoring information.
707 */
708DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPUCC pVCpu, uint32_t uIdtVectorInfo)
709{
710 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
711 pVmcs->u32RoIdtVectoringInfo = uIdtVectorInfo;
712}
713
714
715/**
716 * Sets the IDT-vectoring error code field.
717 *
718 * @param pVCpu The cross context virtual CPU structure.
719 * @param uErrCode The error code.
720 */
721DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
722{
723 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
724 pVmcs->u32RoIdtVectoringErrCode = uErrCode;
725}
726
727
728/**
729 * Sets the VM-exit guest-linear address VMCS field.
730 *
731 * @param pVCpu The cross context virtual CPU structure.
732 * @param uGuestLinearAddr The VM-exit guest-linear address.
733 */
734DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPUCC pVCpu, uint64_t uGuestLinearAddr)
735{
736 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
737 pVmcs->u64RoGuestLinearAddr.u = uGuestLinearAddr;
738}
739
740
741/**
742 * Sets the VM-exit guest-physical address VMCS field.
743 *
744 * @param pVCpu The cross context virtual CPU structure.
745 * @param uGuestPhysAddr The VM-exit guest-physical address.
746 */
747DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPUCC pVCpu, uint64_t uGuestPhysAddr)
748{
749 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
750 pVmcs->u64RoGuestPhysAddr.u = uGuestPhysAddr;
751}
752
753
754/**
755 * Sets the VM-exit instruction length VMCS field.
756 *
757 * @param pVCpu The cross context virtual CPU structure.
758 * @param cbInstr The VM-exit instruction length in bytes.
759 *
760 * @remarks Callers may clear this field to 0. Hence, this function does not check
761 * the validity of the instruction length.
762 */
763DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPUCC pVCpu, uint32_t cbInstr)
764{
765 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
766 pVmcs->u32RoExitInstrLen = cbInstr;
767}
768
769
770/**
771 * Sets the VM-exit instruction info. VMCS field.
772 *
773 * @param pVCpu The cross context virtual CPU structure.
774 * @param uExitInstrInfo The VM-exit instruction information.
775 */
776DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitInstrInfo)
777{
778 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
779 pVmcs->u32RoExitInstrInfo = uExitInstrInfo;
780}
781
782
783/**
784 * Sets the guest pending-debug exceptions field.
785 *
786 * @param pVCpu The cross context virtual CPU structure.
787 * @param uGuestPendingDbgXcpts The guest pending-debug exceptions.
788 */
789DECL_FORCE_INLINE(void) iemVmxVmcsSetGuestPendingDbgXcpts(PVMCPUCC pVCpu, uint64_t uGuestPendingDbgXcpts)
790{
791 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
792 Assert(!(uGuestPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK));
793 pVmcs->u64GuestPendingDbgXcpts.u = uGuestPendingDbgXcpts;
794}
795
796
797/**
798 * Implements VMSucceed for VMX instruction success.
799 *
800 * @param pVCpu The cross context virtual CPU structure.
801 */
802DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPUCC pVCpu)
803{
804 return CPUMSetGuestVmxVmSucceed(&pVCpu->cpum.GstCtx);
805}
806
807
808/**
809 * Implements VMFailInvalid for VMX instruction failure.
810 *
811 * @param pVCpu The cross context virtual CPU structure.
812 */
813DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPUCC pVCpu)
814{
815 return CPUMSetGuestVmxVmFailInvalid(&pVCpu->cpum.GstCtx);
816}
817
818
819/**
820 * Implements VMFail for VMX instruction failure.
821 *
822 * @param pVCpu The cross context virtual CPU structure.
823 * @param enmInsErr The VM instruction error.
824 */
825DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPUCC pVCpu, VMXINSTRERR enmInsErr)
826{
827 return CPUMSetGuestVmxVmFail(&pVCpu->cpum.GstCtx, enmInsErr);
828}
829
830
831/**
832 * Checks if the given auto-load/store MSR area count is valid for the
833 * implementation.
834 *
835 * @returns @c true if it's within the valid limit, @c false otherwise.
836 * @param pVCpu The cross context virtual CPU structure.
837 * @param uMsrCount The MSR area count to check.
838 */
839DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PCVMCPU pVCpu, uint32_t uMsrCount)
840{
841 uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
842 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
843 Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
844 if (uMsrCount <= cMaxSupportedMsrs)
845 return true;
846 return false;
847}
848
849
850/**
851 * Flushes the current VMCS contents back to guest memory.
852 *
853 * @returns VBox status code.
854 * @param pVCpu The cross context virtual CPU structure.
855 */
856DECL_FORCE_INLINE(int) iemVmxWriteCurrentVmcsToGstMem(PVMCPUCC pVCpu)
857{
858 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
859 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
860 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
861 pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), sizeof(VMXVVMCS));
862 return rc;
863}
864
865
866/**
867 * Populates the current VMCS contents from guest memory.
868 *
869 * @returns VBox status code.
870 * @param pVCpu The cross context virtual CPU structure.
871 */
872DECL_FORCE_INLINE(int) iemVmxReadCurrentVmcsFromGstMem(PVMCPUCC pVCpu)
873{
874 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
875 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
876 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs),
877 IEM_VMX_GET_CURRENT_VMCS(pVCpu), sizeof(VMXVVMCS));
878 return rc;
879}
880
881
882/**
883 * Implements VMSucceed for the VMREAD instruction and increments the guest RIP.
884 *
885 * @param pVCpu The cross context virtual CPU structure.
886 */
887DECL_FORCE_INLINE(void) iemVmxVmreadSuccess(PVMCPUCC pVCpu, uint8_t cbInstr)
888{
889 iemVmxVmSucceed(pVCpu);
890 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
891}
892
893
894/**
895 * Gets the instruction diagnostic for segment base checks during VM-entry of a
896 * nested-guest.
897 *
898 * @param iSegReg The segment index (X86_SREG_XXX).
899 */
900IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg)
901{
902 switch (iSegReg)
903 {
904 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
905 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
906 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
907 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
908 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
909 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
910 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
911 }
912}
913
914
915/**
916 * Gets the instruction diagnostic for segment base checks during VM-entry of a
917 * nested-guest that is in Virtual-8086 mode.
918 *
919 * @param iSegReg The segment index (X86_SREG_XXX).
920 */
921IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg)
922{
923 switch (iSegReg)
924 {
925 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
926 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
927 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
928 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
929 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
930 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
931 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
932 }
933}
934
935
936/**
937 * Gets the instruction diagnostic for segment limit checks during VM-entry of a
938 * nested-guest that is in Virtual-8086 mode.
939 *
940 * @param iSegReg The segment index (X86_SREG_XXX).
941 */
942IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg)
943{
944 switch (iSegReg)
945 {
946 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
947 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
948 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
949 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
950 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
951 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
952 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
953 }
954}
955
956
957/**
958 * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
959 * nested-guest that is in Virtual-8086 mode.
960 *
961 * @param iSegReg The segment index (X86_SREG_XXX).
962 */
963IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg)
964{
965 switch (iSegReg)
966 {
967 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
968 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
969 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
970 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
971 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
972 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
973 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
974 }
975}
976
977
978/**
979 * Gets the instruction diagnostic for segment attributes reserved bits failure
980 * during VM-entry of a nested-guest.
981 *
982 * @param iSegReg The segment index (X86_SREG_XXX).
983 */
984IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg)
985{
986 switch (iSegReg)
987 {
988 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
989 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
990 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
991 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
992 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
993 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
994 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
995 }
996}
997
998
999/**
1000 * Gets the instruction diagnostic for segment attributes descriptor-type
1001 * (code/segment or system) failure during VM-entry of a nested-guest.
1002 *
1003 * @param iSegReg The segment index (X86_SREG_XXX).
1004 */
1005IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg)
1006{
1007 switch (iSegReg)
1008 {
1009 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
1010 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
1011 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
1012 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
1013 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
1014 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
1015 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
1016 }
1017}
1018
1019
1020/**
1021 * Gets the instruction diagnostic for segment attributes descriptor-type
1022 * (code/segment or system) failure during VM-entry of a nested-guest.
1023 *
1024 * @param iSegReg The segment index (X86_SREG_XXX).
1025 */
1026IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg)
1027{
1028 switch (iSegReg)
1029 {
1030 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
1031 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
1032 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
1033 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
1034 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
1035 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
1036 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
1037 }
1038}
1039
1040
1041/**
1042 * Gets the instruction diagnostic for segment attribute granularity failure during
1043 * VM-entry of a nested-guest.
1044 *
1045 * @param iSegReg The segment index (X86_SREG_XXX).
1046 */
1047IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg)
1048{
1049 switch (iSegReg)
1050 {
1051 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
1052 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
1053 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
1054 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
1055 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
1056 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
1057 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
1058 }
1059}
1060
1061/**
1062 * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
1063 * VM-entry of a nested-guest.
1064 *
1065 * @param iSegReg The segment index (X86_SREG_XXX).
1066 */
1067IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg)
1068{
1069 switch (iSegReg)
1070 {
1071 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
1072 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
1073 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
1074 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
1075 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
1076 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
1077 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
1078 }
1079}
1080
1081
1082/**
1083 * Gets the instruction diagnostic for segment attribute type accessed failure
1084 * during VM-entry of a nested-guest.
1085 *
1086 * @param iSegReg The segment index (X86_SREG_XXX).
1087 */
1088IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg)
1089{
1090 switch (iSegReg)
1091 {
1092 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
1093 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
1094 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
1095 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
1096 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
1097 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
1098 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
1099 }
1100}
1101
1102
1103/**
1104 * Gets the instruction diagnostic for guest CR3 referenced PDPTE reserved bits
1105 * failure during VM-entry of a nested-guest.
1106 *
1107 * @param iSegReg The PDPTE entry index.
1108 */
1109IEM_STATIC VMXVDIAG iemVmxGetDiagVmentryPdpteRsvd(unsigned iPdpte)
1110{
1111 Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
1112 switch (iPdpte)
1113 {
1114 case 0: return kVmxVDiag_Vmentry_GuestPdpte0Rsvd;
1115 case 1: return kVmxVDiag_Vmentry_GuestPdpte1Rsvd;
1116 case 2: return kVmxVDiag_Vmentry_GuestPdpte2Rsvd;
1117 case 3: return kVmxVDiag_Vmentry_GuestPdpte3Rsvd;
1118 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_11);
1119 }
1120}
1121
1122
1123/**
1124 * Gets the instruction diagnostic for host CR3 referenced PDPTE reserved bits
1125 * failure during VM-exit of a nested-guest.
1126 *
1127 * @param iSegReg The PDPTE entry index.
1128 */
1129IEM_STATIC VMXVDIAG iemVmxGetDiagVmexitPdpteRsvd(unsigned iPdpte)
1130{
1131 Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
1132 switch (iPdpte)
1133 {
1134 case 0: return kVmxVDiag_Vmexit_HostPdpte0Rsvd;
1135 case 1: return kVmxVDiag_Vmexit_HostPdpte1Rsvd;
1136 case 2: return kVmxVDiag_Vmexit_HostPdpte2Rsvd;
1137 case 3: return kVmxVDiag_Vmexit_HostPdpte3Rsvd;
1138 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_12);
1139 }
1140}
1141
1142
1143/**
1144 * Saves the guest control registers, debug registers and some MSRs are part of
1145 * VM-exit.
1146 *
1147 * @param pVCpu The cross context virtual CPU structure.
1148 */
1149IEM_STATIC void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPUCC pVCpu)
1150{
1151 /*
1152 * Saves the guest control registers, debug registers and some MSRs.
1153 * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
1154 */
1155 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1156
1157 /* Save control registers. */
1158 pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
1159 pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
1160 pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
1161
1162 /* Save SYSENTER CS, ESP, EIP. */
1163 pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1164 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1165 {
1166 pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
1167 pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
1168 }
1169 else
1170 {
1171 pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
1172 pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
1173 }
1174
1175 /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
1176 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
1177 {
1178 pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
1179 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1180 }
1181
1182 /* Save PAT MSR. */
1183 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
1184 pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
1185
1186 /* Save EFER MSR. */
1187 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
1188 pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
1189
1190 /* We don't support clearing IA32_BNDCFGS MSR yet. */
1191 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
1192
1193 /* Nothing to do for SMBASE register - We don't support SMM yet. */
1194}
1195
1196
1197/**
1198 * Saves the guest force-flags in preparation of entering the nested-guest.
1199 *
1200 * @param pVCpu The cross context virtual CPU structure.
1201 */
1202IEM_STATIC void iemVmxVmentrySaveNmiBlockingFF(PVMCPUCC pVCpu)
1203{
1204 /* We shouldn't be called multiple times during VM-entry. */
1205 Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0);
1206
1207 /* MTF should not be set outside VMX non-root mode. */
1208 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
1209
1210 /*
1211 * Preserve the required force-flags.
1212 *
1213 * We cache and clear force-flags that would affect the execution of the
1214 * nested-guest. Cached flags are then restored while returning to the guest
1215 * if necessary.
1216 *
1217 * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
1218 * interrupts until the completion of the current VMLAUNCH/VMRESUME
1219 * instruction. Interrupt inhibition for any nested-guest instruction
1220 * is supplied by the guest-interruptibility state VMCS field and will
1221 * be set up as part of loading the guest state.
1222 *
1223 * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
1224 * successful VM-entry (due to invalid guest-state) need to continue
1225 * blocking NMIs if it was in effect before VM-entry.
1226 *
1227 * - MTF need not be preserved as it's used only in VMX non-root mode and
1228 * is supplied through the VM-execution controls.
1229 *
1230 * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
1231 * we will be able to generate interrupts that may cause VM-exits for
1232 * the nested-guest.
1233 */
1234 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
1235}
1236
1237
1238/**
1239 * Restores the guest force-flags in preparation of exiting the nested-guest.
1240 *
1241 * @param pVCpu The cross context virtual CPU structure.
1242 */
1243IEM_STATIC void iemVmxVmexitRestoreNmiBlockingFF(PVMCPUCC pVCpu)
1244{
1245 if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
1246 {
1247 VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
1248 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
1249 }
1250}
1251
1252
1253/**
1254 * Perform a VMX transition updated PGM, IEM and CPUM.
1255 *
1256 * @param pVCpu The cross context virtual CPU structure.
1257 */
1258IEM_STATIC int iemVmxWorldSwitch(PVMCPUCC pVCpu)
1259{
1260 /*
1261 * Inform PGM about paging mode changes.
1262 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
1263 * see comment in iemMemPageTranslateAndCheckAccess().
1264 */
1265 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
1266# ifdef IN_RING3
1267 Assert(rc != VINF_PGM_CHANGE_MODE);
1268# endif
1269 AssertRCReturn(rc, rc);
1270
1271 /* Inform CPUM (recompiler), can later be removed. */
1272 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
1273
1274 /*
1275 * Flush the TLB with new CR3. This is required in case the PGM mode change
1276 * above doesn't actually change anything.
1277 */
1278 if (rc == VINF_SUCCESS)
1279 {
1280 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true);
1281 AssertRCReturn(rc, rc);
1282 }
1283
1284 /* Re-initialize IEM cache/state after the drastic mode switch. */
1285 iemReInitExec(pVCpu);
1286 return rc;
1287}
1288
1289
1290/**
1291 * Calculates the current VMX-preemption timer value.
1292 *
1293 * @returns The current VMX-preemption timer value.
1294 * @param pVCpu The cross context virtual CPU structure.
1295 */
1296IEM_STATIC uint32_t iemVmxCalcPreemptTimer(PVMCPUCC pVCpu)
1297{
1298 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1299 Assert(pVmcs);
1300
1301 /*
1302 * Assume the following:
1303 * PreemptTimerShift = 5
1304 * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
1305 * EntryTick = 50000 (TSC at time of VM-entry)
1306 *
1307 * CurTick Delta PreemptTimerVal
1308 * ----------------------------------
1309 * 60000 10000 2
1310 * 80000 30000 1
1311 * 90000 40000 0 -> VM-exit.
1312 *
1313 * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
1314 * The saved VMX-preemption timer value is calculated as follows:
1315 * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
1316 * E.g.:
1317 * Delta = 10000
1318 * Tmp = 10000 / (2 * 10000) = 0.5
1319 * NewPt = 2 - 0.5 = 2
1320 * Delta = 30000
1321 * Tmp = 30000 / (2 * 10000) = 1.5
1322 * NewPt = 2 - 1.5 = 1
1323 * Delta = 40000
1324 * Tmp = 40000 / 20000 = 2
1325 * NewPt = 2 - 2 = 0
1326 */
1327 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1328 uint32_t const uVmcsPreemptVal = pVmcs->u32PreemptTimer;
1329 if (uVmcsPreemptVal > 0)
1330 {
1331 uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
1332 uint64_t const uEntryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick;
1333 uint64_t const uDelta = uCurTick - uEntryTick;
1334 uint32_t const uPreemptTimer = uVmcsPreemptVal
1335 - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
1336 return uPreemptTimer;
1337 }
1338 return 0;
1339}
1340
1341
1342/**
1343 * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
1344 *
1345 * @param pVCpu The cross context virtual CPU structure.
1346 */
1347IEM_STATIC void iemVmxVmexitSaveGuestSegRegs(PVMCPUCC pVCpu)
1348{
1349 /*
1350 * Save guest segment registers, GDTR, IDTR, LDTR, TR.
1351 * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
1352 */
1353 /* CS, SS, ES, DS, FS, GS. */
1354 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1355 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1356 {
1357 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1358 if (!pSelReg->Attr.n.u1Unusable)
1359 iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
1360 else
1361 {
1362 /*
1363 * For unusable segments the attributes are undefined except for CS and SS.
1364 * For the rest we don't bother preserving anything but the unusable bit.
1365 */
1366 switch (iSegReg)
1367 {
1368 case X86_SREG_CS:
1369 pVmcs->GuestCs = pSelReg->Sel;
1370 pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
1371 pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
1372 pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1373 | X86DESCATTR_UNUSABLE);
1374 break;
1375
1376 case X86_SREG_SS:
1377 pVmcs->GuestSs = pSelReg->Sel;
1378 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1379 pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
1380 pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
1381 break;
1382
1383 case X86_SREG_DS:
1384 pVmcs->GuestDs = pSelReg->Sel;
1385 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1386 pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
1387 pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
1388 break;
1389
1390 case X86_SREG_ES:
1391 pVmcs->GuestEs = pSelReg->Sel;
1392 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1393 pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
1394 pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
1395 break;
1396
1397 case X86_SREG_FS:
1398 pVmcs->GuestFs = pSelReg->Sel;
1399 pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
1400 pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
1401 break;
1402
1403 case X86_SREG_GS:
1404 pVmcs->GuestGs = pSelReg->Sel;
1405 pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
1406 pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
1407 break;
1408 }
1409 }
1410 }
1411
1412 /* Segment attribute bits 31:17 and 11:8 MBZ. */
1413 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
1414 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1415 | X86DESCATTR_UNUSABLE;
1416 /* LDTR. */
1417 {
1418 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
1419 pVmcs->GuestLdtr = pSelReg->Sel;
1420 pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
1421 Assert(X86_IS_CANONICAL(pSelReg->u64Base));
1422 pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
1423 pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
1424 }
1425
1426 /* TR. */
1427 {
1428 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
1429 pVmcs->GuestTr = pSelReg->Sel;
1430 pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
1431 pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
1432 pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
1433 }
1434
1435 /* GDTR. */
1436 pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
1437 pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
1438
1439 /* IDTR. */
1440 pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
1441 pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
1442}
1443
1444
1445/**
1446 * Saves guest non-register state as part of VM-exit.
1447 *
1448 * @param pVCpu The cross context virtual CPU structure.
1449 * @param uExitReason The VM-exit reason.
1450 */
1451IEM_STATIC void iemVmxVmexitSaveGuestNonRegState(PVMCPUCC pVCpu, uint32_t uExitReason)
1452{
1453 /*
1454 * Save guest non-register state.
1455 * See Intel spec. 27.3.4 "Saving Non-Register State".
1456 */
1457 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1458
1459 /*
1460 * Activity state.
1461 * Most VM-exits will occur in the active state. However, if the first instruction
1462 * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
1463 * the VM-exit will be from the HLT activity state.
1464 *
1465 * See Intel spec. 25.5.2 "Monitor Trap Flag".
1466 */
1467 /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
1468 * not? */
1469 EMSTATE const enmActivityState = EMGetState(pVCpu);
1470 switch (enmActivityState)
1471 {
1472 case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
1473 default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
1474 }
1475
1476 /*
1477 * Interruptibility-state.
1478 */
1479 /* NMI. */
1480 pVmcs->u32GuestIntrState = 0;
1481 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
1482 {
1483 if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
1484 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1485 }
1486 else
1487 {
1488 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1489 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1490 }
1491
1492 /* Blocking-by-STI. */
1493 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
1494 && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
1495 {
1496 /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
1497 * currently. */
1498 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
1499 }
1500 /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
1501
1502 /*
1503 * Pending debug exceptions.
1504 *
1505 * For VM-exits where it is not applicable, we can safely zero out the field.
1506 * For VM-exits where it is applicable, it's expected to be updated by the caller already.
1507 */
1508 if ( uExitReason != VMX_EXIT_INIT_SIGNAL
1509 && uExitReason != VMX_EXIT_SMI
1510 && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
1511 && !VMXIsVmexitTrapLike(uExitReason))
1512 {
1513 /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
1514 * block-by-MovSS is in effect. */
1515 pVmcs->u64GuestPendingDbgXcpts.u = 0;
1516 }
1517
1518 /*
1519 * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
1520 *
1521 * For VMX-preemption timer VM-exits, we should have already written back 0 if the
1522 * feature is supported back into the VMCS, and thus there is nothing further to do here.
1523 */
1524 if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
1525 && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
1526 pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
1527
1528 /* PDPTEs. */
1529 /* We don't support EPT yet. */
1530 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
1531 pVmcs->u64GuestPdpte0.u = 0;
1532 pVmcs->u64GuestPdpte1.u = 0;
1533 pVmcs->u64GuestPdpte2.u = 0;
1534 pVmcs->u64GuestPdpte3.u = 0;
1535}
1536
1537
1538/**
1539 * Saves the guest-state as part of VM-exit.
1540 *
1541 * @returns VBox status code.
1542 * @param pVCpu The cross context virtual CPU structure.
1543 * @param uExitReason The VM-exit reason.
1544 */
1545IEM_STATIC void iemVmxVmexitSaveGuestState(PVMCPUCC pVCpu, uint32_t uExitReason)
1546{
1547 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1548 Assert(pVmcs);
1549
1550 iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
1551 iemVmxVmexitSaveGuestSegRegs(pVCpu);
1552
1553 pVmcs->u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
1554 pVmcs->u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
1555 pVmcs->u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
1556
1557 iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
1558}
1559
1560
1561/**
1562 * Saves the guest MSRs into the VM-exit MSR-store area as part of VM-exit.
1563 *
1564 * @returns VBox status code.
1565 * @param pVCpu The cross context virtual CPU structure.
1566 * @param uExitReason The VM-exit reason (for diagnostic purposes).
1567 */
1568IEM_STATIC int iemVmxVmexitSaveGuestAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason)
1569{
1570 /*
1571 * Save guest MSRs.
1572 * See Intel spec. 27.4 "Saving MSRs".
1573 */
1574 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1575 const char *const pszFailure = "VMX-abort";
1576
1577 /*
1578 * The VM-exit MSR-store area address need not be a valid guest-physical address if the
1579 * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
1580 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1581 */
1582 uint32_t const cMsrs = pVmcs->u32ExitMsrStoreCount;
1583 if (!cMsrs)
1584 return VINF_SUCCESS;
1585
1586 /*
1587 * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
1588 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1589 * implementation causes a VMX-abort followed by a triple-fault.
1590 */
1591 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1592 if (fIsMsrCountValid)
1593 { /* likely */ }
1594 else
1595 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
1596
1597 /*
1598 * Optimization if the nested hypervisor is using the same guest-physical page for both
1599 * the VM-entry MSR-load area as well as the VM-exit MSR store area.
1600 */
1601 PVMXAUTOMSR pMsrArea;
1602 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
1603 RTGCPHYS const GCPhysVmExitMsrStoreArea = pVmcs->u64AddrExitMsrStore.u;
1604 if (GCPhysVmEntryMsrLoadArea == GCPhysVmExitMsrStoreArea)
1605 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea);
1606 else
1607 {
1608 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea),
1609 GCPhysVmExitMsrStoreArea, cMsrs * sizeof(VMXAUTOMSR));
1610 if (RT_SUCCESS(rc))
1611 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea);
1612 else
1613 {
1614 AssertMsgFailed(("VM-exit: Failed to read MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1615 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrReadPhys);
1616 }
1617 }
1618
1619 /*
1620 * Update VM-exit MSR store area.
1621 */
1622 PVMXAUTOMSR pMsr = pMsrArea;
1623 Assert(pMsr);
1624 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1625 {
1626 if ( !pMsr->u32Reserved
1627 && pMsr->u32Msr != MSR_IA32_SMBASE
1628 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1629 {
1630 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
1631 if (rcStrict == VINF_SUCCESS)
1632 continue;
1633
1634 /*
1635 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1636 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1637 * recording the MSR index in the auxiliary info. field and indicated further by our
1638 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1639 * if possible, or come up with a better, generic solution.
1640 */
1641 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1642 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
1643 ? kVmxVDiag_Vmexit_MsrStoreRing3
1644 : kVmxVDiag_Vmexit_MsrStore;
1645 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1646 }
1647 else
1648 {
1649 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1650 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
1651 }
1652 }
1653
1654 /*
1655 * Commit the VM-exit MSR store are to guest memory.
1656 */
1657 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmExitMsrStoreArea, pMsrArea, cMsrs * sizeof(VMXAUTOMSR));
1658 if (RT_SUCCESS(rc))
1659 return VINF_SUCCESS;
1660
1661 NOREF(uExitReason);
1662 NOREF(pszFailure);
1663
1664 AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1665 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
1666}
1667
1668
1669/**
1670 * Performs a VMX abort (due to an fatal error during VM-exit).
1671 *
1672 * @returns Strict VBox status code.
1673 * @param pVCpu The cross context virtual CPU structure.
1674 * @param enmAbort The VMX abort reason.
1675 */
1676IEM_STATIC VBOXSTRICTRC iemVmxAbort(PVMCPUCC pVCpu, VMXABORT enmAbort)
1677{
1678 /*
1679 * Perform the VMX abort.
1680 * See Intel spec. 27.7 "VMX Aborts".
1681 */
1682 LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, VMXGetAbortDesc(enmAbort)));
1683
1684 /* We don't support SMX yet. */
1685 pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
1686 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
1687 {
1688 RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
1689 uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
1690 PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
1691 }
1692
1693 return VINF_EM_TRIPLE_FAULT;
1694}
1695
1696
1697/**
1698 * Loads host control registers, debug registers and MSRs as part of VM-exit.
1699 *
1700 * @param pVCpu The cross context virtual CPU structure.
1701 */
1702IEM_STATIC void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPUCC pVCpu)
1703{
1704 /*
1705 * Load host control registers, debug registers and MSRs.
1706 * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
1707 */
1708 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1709 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1710
1711 /* CR0. */
1712 {
1713 /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 fixed bits are not modified. */
1714 uint64_t const uCr0Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
1715 uint64_t const uCr0Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
1716 uint64_t const fCr0IgnMask = VMX_EXIT_HOST_CR0_IGNORE_MASK | uCr0Mb1 | ~uCr0Mb0;
1717 uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
1718 uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
1719 uint64_t const uValidHostCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
1720
1721 /* Verify we have not modified CR0 fixed bits in VMX non-root operation. */
1722 Assert((uGuestCr0 & uCr0Mb1) == uCr0Mb1);
1723 Assert((uGuestCr0 & ~uCr0Mb0) == 0);
1724 CPUMSetGuestCR0(pVCpu, uValidHostCr0);
1725 }
1726
1727 /* CR4. */
1728 {
1729 /* CR4 fixed bits are not modified. */
1730 uint64_t const uCr4Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
1731 uint64_t const uCr4Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
1732 uint64_t const fCr4IgnMask = uCr4Mb1 | ~uCr4Mb0;
1733 uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
1734 uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4;
1735 uint64_t uValidHostCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask);
1736 if (fHostInLongMode)
1737 uValidHostCr4 |= X86_CR4_PAE;
1738 else
1739 uValidHostCr4 &= ~(uint64_t)X86_CR4_PCIDE;
1740
1741 /* Verify we have not modified CR4 fixed bits in VMX non-root operation. */
1742 Assert((uGuestCr4 & uCr4Mb1) == uCr4Mb1);
1743 Assert((uGuestCr4 & ~uCr4Mb0) == 0);
1744 CPUMSetGuestCR4(pVCpu, uValidHostCr4);
1745 }
1746
1747 /* CR3 (host value validated while checking host-state during VM-entry). */
1748 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
1749
1750 /* DR7. */
1751 pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
1752
1753 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1754
1755 /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
1756 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
1757 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
1758 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
1759
1760 /* FS, GS bases are loaded later while we load host segment registers. */
1761
1762 /* EFER MSR (host value validated while checking host-state during VM-entry). */
1763 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1764 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
1765 else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1766 {
1767 if (fHostInLongMode)
1768 pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1769 else
1770 pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1771 }
1772
1773 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
1774
1775 /* PAT MSR (host value is validated while checking host-state during VM-entry). */
1776 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
1777 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
1778
1779 /* We don't support IA32_BNDCFGS MSR yet. */
1780}
1781
1782
1783/**
1784 * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
1785 *
1786 * @param pVCpu The cross context virtual CPU structure.
1787 */
1788IEM_STATIC void iemVmxVmexitLoadHostSegRegs(PVMCPUCC pVCpu)
1789{
1790 /*
1791 * Load host segment registers, GDTR, IDTR, LDTR and TR.
1792 * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
1793 *
1794 * Warning! Be careful to not touch fields that are reserved by VT-x,
1795 * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
1796 */
1797 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1798 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1799
1800 /* CS, SS, ES, DS, FS, GS. */
1801 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1802 {
1803 RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
1804 bool const fUnusable = RT_BOOL(HostSel == 0);
1805 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1806
1807 /* Selector. */
1808 pSelReg->Sel = HostSel;
1809 pSelReg->ValidSel = HostSel;
1810 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
1811
1812 /* Limit. */
1813 pSelReg->u32Limit = 0xffffffff;
1814
1815 /* Base. */
1816 pSelReg->u64Base = 0;
1817
1818 /* Attributes. */
1819 if (iSegReg == X86_SREG_CS)
1820 {
1821 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
1822 pSelReg->Attr.n.u1DescType = 1;
1823 pSelReg->Attr.n.u2Dpl = 0;
1824 pSelReg->Attr.n.u1Present = 1;
1825 pSelReg->Attr.n.u1Long = fHostInLongMode;
1826 pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
1827 pSelReg->Attr.n.u1Granularity = 1;
1828 Assert(!pSelReg->Attr.n.u1Unusable);
1829 Assert(!fUnusable);
1830 }
1831 else
1832 {
1833 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
1834 pSelReg->Attr.n.u1DescType = 1;
1835 pSelReg->Attr.n.u2Dpl = 0;
1836 pSelReg->Attr.n.u1Present = 1;
1837 pSelReg->Attr.n.u1DefBig = 1;
1838 pSelReg->Attr.n.u1Granularity = 1;
1839 pSelReg->Attr.n.u1Unusable = fUnusable;
1840 }
1841 }
1842
1843 /* FS base. */
1844 if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
1845 || fHostInLongMode)
1846 {
1847 Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
1848 pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
1849 }
1850
1851 /* GS base. */
1852 if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
1853 || fHostInLongMode)
1854 {
1855 Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
1856 pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
1857 }
1858
1859 /* TR. */
1860 Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
1861 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
1862 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
1863 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
1864 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1865 pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
1866 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
1867 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1868 pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
1869 pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
1870 pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
1871 pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
1872 pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
1873
1874 /* LDTR (Warning! do not touch the base and limits here). */
1875 pVCpu->cpum.GstCtx.ldtr.Sel = 0;
1876 pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
1877 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1878 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
1879
1880 /* GDTR. */
1881 Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
1882 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
1883 pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
1884
1885 /* IDTR.*/
1886 Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
1887 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
1888 pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
1889}
1890
1891
1892/**
1893 * Checks host PDPTes as part of VM-exit.
1894 *
1895 * @param pVCpu The cross context virtual CPU structure.
1896 * @param uExitReason The VM-exit reason (for logging purposes).
1897 */
1898IEM_STATIC int iemVmxVmexitCheckHostPdptes(PVMCPUCC pVCpu, uint32_t uExitReason)
1899{
1900 /*
1901 * Check host PDPTEs.
1902 * See Intel spec. 27.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
1903 */
1904 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1905 const char *const pszFailure = "VMX-abort";
1906 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1907
1908 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
1909 && !fHostInLongMode)
1910 {
1911 uint64_t const uHostCr3 = pVCpu->cpum.GstCtx.cr3 & X86_CR3_PAE_PAGE_MASK;
1912 X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
1913 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uHostCr3, sizeof(aPdptes));
1914 if (RT_SUCCESS(rc))
1915 {
1916 for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
1917 {
1918 if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
1919 || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
1920 { /* likely */ }
1921 else
1922 {
1923 VMXVDIAG const enmDiag = iemVmxGetDiagVmexitPdpteRsvd(iPdpte);
1924 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1925 }
1926 }
1927 }
1928 else
1929 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_HostPdpteCr3ReadPhys);
1930 }
1931
1932 NOREF(pszFailure);
1933 NOREF(uExitReason);
1934 return VINF_SUCCESS;
1935}
1936
1937
1938/**
1939 * Loads the host MSRs from the VM-exit MSR-load area as part of VM-exit.
1940 *
1941 * @returns VBox status code.
1942 * @param pVCpu The cross context virtual CPU structure.
1943 * @param pszInstr The VMX instruction name (for logging purposes).
1944 */
1945IEM_STATIC int iemVmxVmexitLoadHostAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason)
1946{
1947 /*
1948 * Load host MSRs.
1949 * See Intel spec. 27.6 "Loading MSRs".
1950 */
1951 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1952 const char *const pszFailure = "VMX-abort";
1953
1954 /*
1955 * The VM-exit MSR-load area address need not be a valid guest-physical address if the
1956 * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
1957 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1958 */
1959 uint32_t const cMsrs = pVmcs->u32ExitMsrLoadCount;
1960 if (!cMsrs)
1961 return VINF_SUCCESS;
1962
1963 /*
1964 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
1965 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1966 * implementation causes a VMX-abort followed by a triple-fault.
1967 */
1968 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1969 if (fIsMsrCountValid)
1970 { /* likely */ }
1971 else
1972 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
1973
1974 RTGCPHYS const GCPhysVmExitMsrLoadArea = pVmcs->u64AddrExitMsrLoad.u;
1975 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea),
1976 GCPhysVmExitMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
1977 if (RT_SUCCESS(rc))
1978 {
1979 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea);
1980 Assert(pMsr);
1981 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1982 {
1983 if ( !pMsr->u32Reserved
1984 && pMsr->u32Msr != MSR_K8_FS_BASE
1985 && pMsr->u32Msr != MSR_K8_GS_BASE
1986 && pMsr->u32Msr != MSR_K6_EFER
1987 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
1988 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1989 {
1990 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
1991 if (rcStrict == VINF_SUCCESS)
1992 continue;
1993
1994 /*
1995 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1996 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1997 * recording the MSR index in the auxiliary info. field and indicated further by our
1998 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1999 * if possible, or come up with a better, generic solution.
2000 */
2001 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
2002 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
2003 ? kVmxVDiag_Vmexit_MsrLoadRing3
2004 : kVmxVDiag_Vmexit_MsrLoad;
2005 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
2006 }
2007 else
2008 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
2009 }
2010 }
2011 else
2012 {
2013 AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrLoadArea, rc));
2014 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
2015 }
2016
2017 NOREF(uExitReason);
2018 NOREF(pszFailure);
2019 return VINF_SUCCESS;
2020}
2021
2022
2023/**
2024 * Loads the host state as part of VM-exit.
2025 *
2026 * @returns Strict VBox status code.
2027 * @param pVCpu The cross context virtual CPU structure.
2028 * @param uExitReason The VM-exit reason (for logging purposes).
2029 */
2030IEM_STATIC VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPUCC pVCpu, uint32_t uExitReason)
2031{
2032 /*
2033 * Load host state.
2034 * See Intel spec. 27.5 "Loading Host State".
2035 */
2036 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2037 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2038
2039 /* We cannot return from a long-mode guest to a host that is not in long mode. */
2040 if ( CPUMIsGuestInLongMode(pVCpu)
2041 && !fHostInLongMode)
2042 {
2043 Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
2044 return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
2045 }
2046
2047 iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
2048 iemVmxVmexitLoadHostSegRegs(pVCpu);
2049
2050 /*
2051 * Load host RIP, RSP and RFLAGS.
2052 * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
2053 */
2054 pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
2055 pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
2056 pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
2057
2058 /* Clear address range monitoring. */
2059 EMMonitorWaitClear(pVCpu);
2060
2061 /* Perform the VMX transition (PGM updates). */
2062 VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
2063 if (rcStrict == VINF_SUCCESS)
2064 {
2065 /* Check host PDPTEs (only when we've fully switched page tables_. */
2066 /** @todo r=ramshankar: I don't know if PGM does this for us already or not... */
2067 int rc = iemVmxVmexitCheckHostPdptes(pVCpu, uExitReason);
2068 if (RT_FAILURE(rc))
2069 {
2070 Log(("VM-exit failed while restoring host PDPTEs -> VMX-Abort\n"));
2071 return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
2072 }
2073 }
2074 else if (RT_SUCCESS(rcStrict))
2075 {
2076 Log3(("VM-exit: iemVmxWorldSwitch returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
2077 uExitReason));
2078 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
2079 }
2080 else
2081 {
2082 Log3(("VM-exit: iemVmxWorldSwitch failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
2083 return VBOXSTRICTRC_VAL(rcStrict);
2084 }
2085
2086 Assert(rcStrict == VINF_SUCCESS);
2087
2088 /* Load MSRs from the VM-exit auto-load MSR area. */
2089 int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
2090 if (RT_FAILURE(rc))
2091 {
2092 Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
2093 return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
2094 }
2095 return VINF_SUCCESS;
2096}
2097
2098
2099/**
2100 * Gets VM-exit instruction information along with any displacement for an
2101 * instruction VM-exit.
2102 *
2103 * @returns The VM-exit instruction information.
2104 * @param pVCpu The cross context virtual CPU structure.
2105 * @param uExitReason The VM-exit reason.
2106 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
2107 * @param pGCPtrDisp Where to store the displacement field. Optional, can be
2108 * NULL.
2109 */
2110IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp)
2111{
2112 RTGCPTR GCPtrDisp;
2113 VMXEXITINSTRINFO ExitInstrInfo;
2114 ExitInstrInfo.u = 0;
2115
2116 /*
2117 * Get and parse the ModR/M byte from our decoded opcodes.
2118 */
2119 uint8_t bRm;
2120 uint8_t const offModRm = pVCpu->iem.s.offModRm;
2121 IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
2122 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2123 {
2124 /*
2125 * ModR/M indicates register addressing.
2126 *
2127 * The primary/secondary register operands are reported in the iReg1 or iReg2
2128 * fields depending on whether it is a read/write form.
2129 */
2130 uint8_t idxReg1;
2131 uint8_t idxReg2;
2132 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2133 {
2134 idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2135 idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2136 }
2137 else
2138 {
2139 idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2140 idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2141 }
2142 ExitInstrInfo.All.u2Scaling = 0;
2143 ExitInstrInfo.All.iReg1 = idxReg1;
2144 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2145 ExitInstrInfo.All.fIsRegOperand = 1;
2146 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2147 ExitInstrInfo.All.iSegReg = 0;
2148 ExitInstrInfo.All.iIdxReg = 0;
2149 ExitInstrInfo.All.fIdxRegInvalid = 1;
2150 ExitInstrInfo.All.iBaseReg = 0;
2151 ExitInstrInfo.All.fBaseRegInvalid = 1;
2152 ExitInstrInfo.All.iReg2 = idxReg2;
2153
2154 /* Displacement not applicable for register addressing. */
2155 GCPtrDisp = 0;
2156 }
2157 else
2158 {
2159 /*
2160 * ModR/M indicates memory addressing.
2161 */
2162 uint8_t uScale = 0;
2163 bool fBaseRegValid = false;
2164 bool fIdxRegValid = false;
2165 uint8_t iBaseReg = 0;
2166 uint8_t iIdxReg = 0;
2167 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
2168 {
2169 /*
2170 * Parse the ModR/M, displacement for 16-bit addressing mode.
2171 * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
2172 */
2173 uint16_t u16Disp = 0;
2174 uint8_t const offDisp = offModRm + sizeof(bRm);
2175 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
2176 {
2177 /* Displacement without any registers. */
2178 IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
2179 }
2180 else
2181 {
2182 /* Register (index and base). */
2183 switch (bRm & X86_MODRM_RM_MASK)
2184 {
2185 case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2186 case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2187 case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2188 case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2189 case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2190 case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2191 case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
2192 case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
2193 }
2194
2195 /* Register + displacement. */
2196 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2197 {
2198 case 0: break;
2199 case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
2200 case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
2201 default:
2202 {
2203 /* Register addressing, handled at the beginning. */
2204 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2205 break;
2206 }
2207 }
2208 }
2209
2210 Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
2211 GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
2212 }
2213 else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
2214 {
2215 /*
2216 * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
2217 * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
2218 */
2219 uint32_t u32Disp = 0;
2220 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
2221 {
2222 /* Displacement without any registers. */
2223 uint8_t const offDisp = offModRm + sizeof(bRm);
2224 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2225 }
2226 else
2227 {
2228 /* Register (and perhaps scale, index and base). */
2229 uint8_t offDisp = offModRm + sizeof(bRm);
2230 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2231 if (iBaseReg == 4)
2232 {
2233 /* An SIB byte follows the ModR/M byte, parse it. */
2234 uint8_t bSib;
2235 uint8_t const offSib = offModRm + sizeof(bRm);
2236 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2237
2238 /* A displacement may follow SIB, update its offset. */
2239 offDisp += sizeof(bSib);
2240
2241 /* Get the scale. */
2242 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2243
2244 /* Get the index register. */
2245 iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
2246 fIdxRegValid = RT_BOOL(iIdxReg != 4);
2247
2248 /* Get the base register. */
2249 iBaseReg = bSib & X86_SIB_BASE_MASK;
2250 fBaseRegValid = true;
2251 if (iBaseReg == 5)
2252 {
2253 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2254 {
2255 /* Mod is 0 implies a 32-bit displacement with no base. */
2256 fBaseRegValid = false;
2257 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2258 }
2259 else
2260 {
2261 /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
2262 iBaseReg = X86_GREG_xBP;
2263 }
2264 }
2265 }
2266
2267 /* Register + displacement. */
2268 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2269 {
2270 case 0: /* Handled above */ break;
2271 case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
2272 case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
2273 default:
2274 {
2275 /* Register addressing, handled at the beginning. */
2276 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2277 break;
2278 }
2279 }
2280 }
2281
2282 GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
2283 }
2284 else
2285 {
2286 Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
2287
2288 /*
2289 * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
2290 * See Intel instruction spec. 2.2 "IA-32e Mode".
2291 */
2292 uint64_t u64Disp = 0;
2293 bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
2294 if (fRipRelativeAddr)
2295 {
2296 /*
2297 * RIP-relative addressing mode.
2298 *
2299 * The displacement is 32-bit signed implying an offset range of +/-2G.
2300 * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
2301 */
2302 uint8_t const offDisp = offModRm + sizeof(bRm);
2303 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2304 }
2305 else
2306 {
2307 uint8_t offDisp = offModRm + sizeof(bRm);
2308
2309 /*
2310 * Register (and perhaps scale, index and base).
2311 *
2312 * REX.B extends the most-significant bit of the base register. However, REX.B
2313 * is ignored while determining whether an SIB follows the opcode. Hence, we
2314 * shall OR any REX.B bit -after- inspecting for an SIB byte below.
2315 *
2316 * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
2317 */
2318 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2319 if (iBaseReg == 4)
2320 {
2321 /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
2322 uint8_t bSib;
2323 uint8_t const offSib = offModRm + sizeof(bRm);
2324 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2325
2326 /* Displacement may follow SIB, update its offset. */
2327 offDisp += sizeof(bSib);
2328
2329 /* Get the scale. */
2330 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2331
2332 /* Get the index. */
2333 iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
2334 fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
2335
2336 /* Get the base. */
2337 iBaseReg = (bSib & X86_SIB_BASE_MASK);
2338 fBaseRegValid = true;
2339 if (iBaseReg == 5)
2340 {
2341 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2342 {
2343 /* Mod is 0 implies a signed 32-bit displacement with no base. */
2344 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2345 }
2346 else
2347 {
2348 /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
2349 iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
2350 }
2351 }
2352 }
2353 iBaseReg |= pVCpu->iem.s.uRexB;
2354
2355 /* Register + displacement. */
2356 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2357 {
2358 case 0: /* Handled above */ break;
2359 case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
2360 case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
2361 default:
2362 {
2363 /* Register addressing, handled at the beginning. */
2364 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2365 break;
2366 }
2367 }
2368 }
2369
2370 GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
2371 }
2372
2373 /*
2374 * The primary or secondary register operand is reported in iReg2 depending
2375 * on whether the primary operand is in read/write form.
2376 */
2377 uint8_t idxReg2;
2378 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2379 {
2380 idxReg2 = bRm & X86_MODRM_RM_MASK;
2381 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2382 idxReg2 |= pVCpu->iem.s.uRexB;
2383 }
2384 else
2385 {
2386 idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
2387 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2388 idxReg2 |= pVCpu->iem.s.uRexReg;
2389 }
2390 ExitInstrInfo.All.u2Scaling = uScale;
2391 ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
2392 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2393 ExitInstrInfo.All.fIsRegOperand = 0;
2394 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2395 ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
2396 ExitInstrInfo.All.iIdxReg = iIdxReg;
2397 ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
2398 ExitInstrInfo.All.iBaseReg = iBaseReg;
2399 ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
2400 ExitInstrInfo.All.iReg2 = idxReg2;
2401 }
2402
2403 /*
2404 * Handle exceptions to the norm for certain instructions.
2405 * (e.g. some instructions convey an instruction identity in place of iReg2).
2406 */
2407 switch (uExitReason)
2408 {
2409 case VMX_EXIT_GDTR_IDTR_ACCESS:
2410 {
2411 Assert(VMXINSTRID_IS_VALID(uInstrId));
2412 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2413 ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2414 ExitInstrInfo.GdtIdt.u2Undef0 = 0;
2415 break;
2416 }
2417
2418 case VMX_EXIT_LDTR_TR_ACCESS:
2419 {
2420 Assert(VMXINSTRID_IS_VALID(uInstrId));
2421 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2422 ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2423 ExitInstrInfo.LdtTr.u2Undef0 = 0;
2424 break;
2425 }
2426
2427 case VMX_EXIT_RDRAND:
2428 case VMX_EXIT_RDSEED:
2429 {
2430 Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
2431 break;
2432 }
2433 }
2434
2435 /* Update displacement and return the constructed VM-exit instruction information field. */
2436 if (pGCPtrDisp)
2437 *pGCPtrDisp = GCPtrDisp;
2438
2439 return ExitInstrInfo.u;
2440}
2441
2442
2443/**
2444 * VMX VM-exit handler.
2445 *
2446 * @returns Strict VBox status code.
2447 * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
2448 * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
2449 * triple-fault.
2450 *
2451 * @param pVCpu The cross context virtual CPU structure.
2452 * @param uExitReason The VM-exit reason.
2453 * @param u64ExitQual The Exit qualification.
2454 */
2455IEM_STATIC VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual)
2456{
2457# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
2458 RT_NOREF3(pVCpu, uExitReason, u64ExitQual);
2459 AssertMsgFailed(("VM-exit should only be invoked from ring-3 when nested-guest executes only in ring-3!\n"));
2460 return VERR_IEM_IPE_7;
2461# else
2462 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2463 Assert(pVmcs);
2464
2465 /*
2466 * Import all the guest-CPU state.
2467 *
2468 * HM on returning to guest execution would have to reset up a whole lot of state
2469 * anyway, (e.g., VM-entry/VM-exit controls) and we do not ever import a part of
2470 * the state and flag reloading the entire state on re-entry. So import the entire
2471 * state here, see HMNotifyVmxNstGstVmexit() for more comments.
2472 */
2473 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL);
2474
2475 /*
2476 * Ensure VM-entry interruption information valid bit is cleared.
2477 *
2478 * We do it here on every VM-exit so that even premature VM-exits (e.g. those caused
2479 * by invalid-guest state or machine-check exceptions) also clear this bit.
2480 *
2481 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry control fields".
2482 */
2483 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
2484 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
2485
2486 /*
2487 * Update the VM-exit reason and Exit qualification.
2488 * Other VMCS read-only data fields are expected to be updated by the caller already.
2489 */
2490 pVmcs->u32RoExitReason = uExitReason;
2491 pVmcs->u64RoExitQual.u = u64ExitQual;
2492
2493 Log3(("vmexit: reason=%#RX32 qual=%#RX64 cs:rip=%04x:%#RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", uExitReason,
2494 pVmcs->u64RoExitQual.u, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
2495 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4));
2496
2497 /*
2498 * Update the IDT-vectoring information fields if the VM-exit is triggered during delivery of an event.
2499 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2500 */
2501 {
2502 uint8_t uVector;
2503 uint32_t fFlags;
2504 uint32_t uErrCode;
2505 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* puCr2 */);
2506 if (fInEventDelivery)
2507 {
2508 /*
2509 * A VM-exit is not considered to occur during event delivery when the VM-exit is
2510 * caused by a triple-fault or the original event results in a double-fault that
2511 * causes the VM exit directly (exception bitmap). Therefore, we must not set the
2512 * original event information into the IDT-vectoring information fields.
2513 *
2514 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2515 */
2516 if ( uExitReason != VMX_EXIT_TRIPLE_FAULT
2517 && ( uExitReason != VMX_EXIT_XCPT_OR_NMI
2518 || !VMX_EXIT_INT_INFO_IS_XCPT_DF(pVmcs->u32RoExitIntInfo)))
2519 {
2520 uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
2521 uint8_t const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
2522 uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
2523 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
2524 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
2525 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
2526 iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
2527 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
2528 LogFlow(("vmexit: idt_info=%#RX32 idt_err_code=%#RX32 cr2=%#RX64\n", uIdtVectoringInfo, uErrCode,
2529 pVCpu->cpum.GstCtx.cr2));
2530 }
2531 }
2532 }
2533
2534 /* The following VMCS fields should always be zero since we don't support injecting SMIs into a guest. */
2535 Assert(pVmcs->u64RoIoRcx.u == 0);
2536 Assert(pVmcs->u64RoIoRsi.u == 0);
2537 Assert(pVmcs->u64RoIoRdi.u == 0);
2538 Assert(pVmcs->u64RoIoRip.u == 0);
2539
2540 /* We should not cause an NMI-window/interrupt-window VM-exit when injecting events as part of VM-entry. */
2541 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
2542 {
2543 Assert(uExitReason != VMX_EXIT_NMI_WINDOW);
2544 Assert(uExitReason != VMX_EXIT_INT_WINDOW);
2545 }
2546
2547 /* For exception or NMI VM-exits the VM-exit interruption info. field must be valid. */
2548 Assert(uExitReason != VMX_EXIT_XCPT_OR_NMI || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2549
2550 /*
2551 * Save the guest state back into the VMCS.
2552 * We only need to save the state when the VM-entry was successful.
2553 */
2554 bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2555 if (!fVmentryFailed)
2556 {
2557 /*
2558 * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
2559 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
2560 *
2561 * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
2562 * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
2563 * as guest-CPU state would not been modified. Hence for now, we do this only when
2564 * the VM-entry succeeded.
2565 */
2566 /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
2567 * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
2568 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
2569 {
2570 if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
2571 pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2572 else
2573 pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2574 }
2575
2576 /*
2577 * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
2578 * occurs in enclave mode/SMM which we don't support yet.
2579 *
2580 * If we ever add support for it, we can pass just the lower bits to the functions
2581 * below, till then an assert should suffice.
2582 */
2583 Assert(!RT_HI_U16(uExitReason));
2584
2585 /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
2586 iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
2587 int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
2588 if (RT_SUCCESS(rc))
2589 { /* likely */ }
2590 else
2591 return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
2592
2593 /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
2594 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions &= ~VMCPU_FF_BLOCK_NMIS;
2595 }
2596 else
2597 {
2598 /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
2599 uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
2600 if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
2601 || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
2602 iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
2603 }
2604
2605 /*
2606 * Stop any running VMX-preemption timer if necessary.
2607 */
2608 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
2609 CPUMStopGuestVmxPremptTimer(pVCpu);
2610
2611 /*
2612 * Clear any pending VMX nested-guest force-flags.
2613 * These force-flags have no effect on (outer) guest execution and will
2614 * be re-evaluated and setup on the next nested-guest VM-entry.
2615 */
2616 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
2617
2618 /* Restore the host (outer guest) state. */
2619 VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
2620 if (RT_SUCCESS(rcStrict))
2621 {
2622 Assert(rcStrict == VINF_SUCCESS);
2623 rcStrict = VINF_VMX_VMEXIT;
2624 }
2625 else
2626 Log3(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
2627
2628 /* We're no longer in nested-guest execution mode. */
2629 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
2630
2631 /* Notify HM that the current VMCS fields have been modified. */
2632 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
2633
2634 /* Notify HM that we've completed the VM-exit. */
2635 HMNotifyVmxNstGstVmexit(pVCpu);
2636
2637# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
2638 /* Revert any IEM-only nested-guest execution policy, otherwise return rcStrict. */
2639 Log(("vmexit: Disabling IEM-only EM execution policy!\n"));
2640 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
2641 if (rcSched != VINF_SUCCESS)
2642 iemSetPassUpStatus(pVCpu, rcSched);
2643# endif
2644 return rcStrict;
2645# endif
2646}
2647
2648
2649/**
2650 * VMX VM-exit handler for VM-exits due to instruction execution.
2651 *
2652 * This is intended for instructions where the caller provides all the relevant
2653 * VM-exit information.
2654 *
2655 * @returns Strict VBox status code.
2656 * @param pVCpu The cross context virtual CPU structure.
2657 * @param pExitInfo Pointer to the VM-exit information.
2658 */
2659IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
2660{
2661 /*
2662 * For instructions where any of the following fields are not applicable:
2663 * - Exit qualification must be cleared.
2664 * - VM-exit instruction info. is undefined.
2665 * - Guest-linear address is undefined.
2666 * - Guest-physical address is undefined.
2667 *
2668 * The VM-exit instruction length is mandatory for all VM-exits that are caused by
2669 * instruction execution. For VM-exits that are not due to instruction execution this
2670 * field is undefined.
2671 *
2672 * In our implementation in IEM, all undefined fields are generally cleared. However,
2673 * if the caller supplies information (from say the physical CPU directly) it is
2674 * then possible that the undefined fields are not cleared.
2675 *
2676 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2677 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
2678 */
2679 Assert(pExitInfo);
2680 AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
2681 AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
2682 ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
2683
2684 /* Update all the relevant fields from the VM-exit instruction information struct. */
2685 iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
2686 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
2687 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
2688 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
2689
2690 /* Perform the VM-exit. */
2691 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
2692}
2693
2694
2695/**
2696 * VMX VM-exit handler for VM-exits due to instruction execution.
2697 *
2698 * This is intended for instructions that only provide the VM-exit instruction
2699 * length.
2700 *
2701 * @param pVCpu The cross context virtual CPU structure.
2702 * @param uExitReason The VM-exit reason.
2703 * @param cbInstr The instruction length in bytes.
2704 */
2705IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr)
2706{
2707 VMXVEXITINFO ExitInfo;
2708 RT_ZERO(ExitInfo);
2709 ExitInfo.uReason = uExitReason;
2710 ExitInfo.cbInstr = cbInstr;
2711
2712#ifdef VBOX_STRICT
2713 /*
2714 * To prevent us from shooting ourselves in the foot.
2715 * The follow instructions should convey more than just the instruction length.
2716 */
2717 switch (uExitReason)
2718 {
2719 case VMX_EXIT_INVEPT:
2720 case VMX_EXIT_INVPCID:
2721 case VMX_EXIT_INVVPID:
2722 case VMX_EXIT_LDTR_TR_ACCESS:
2723 case VMX_EXIT_GDTR_IDTR_ACCESS:
2724 case VMX_EXIT_VMCLEAR:
2725 case VMX_EXIT_VMPTRLD:
2726 case VMX_EXIT_VMPTRST:
2727 case VMX_EXIT_VMREAD:
2728 case VMX_EXIT_VMWRITE:
2729 case VMX_EXIT_VMXON:
2730 case VMX_EXIT_XRSTORS:
2731 case VMX_EXIT_XSAVES:
2732 case VMX_EXIT_RDRAND:
2733 case VMX_EXIT_RDSEED:
2734 case VMX_EXIT_IO_INSTR:
2735 AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
2736 break;
2737 }
2738#endif
2739
2740 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2741}
2742
2743
2744/**
2745 * VMX VM-exit handler for VM-exits due to instruction execution.
2746 *
2747 * This is intended for instructions that have a ModR/M byte and update the VM-exit
2748 * instruction information and Exit qualification fields.
2749 *
2750 * @param pVCpu The cross context virtual CPU structure.
2751 * @param uExitReason The VM-exit reason.
2752 * @param uInstrid The instruction identity (VMXINSTRID_XXX).
2753 * @param cbInstr The instruction length in bytes.
2754 *
2755 * @remarks Do not use this for INS/OUTS instruction.
2756 */
2757IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr)
2758{
2759 VMXVEXITINFO ExitInfo;
2760 RT_ZERO(ExitInfo);
2761 ExitInfo.uReason = uExitReason;
2762 ExitInfo.cbInstr = cbInstr;
2763
2764 /*
2765 * Update the Exit qualification field with displacement bytes.
2766 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2767 */
2768 switch (uExitReason)
2769 {
2770 case VMX_EXIT_INVEPT:
2771 case VMX_EXIT_INVPCID:
2772 case VMX_EXIT_INVVPID:
2773 case VMX_EXIT_LDTR_TR_ACCESS:
2774 case VMX_EXIT_GDTR_IDTR_ACCESS:
2775 case VMX_EXIT_VMCLEAR:
2776 case VMX_EXIT_VMPTRLD:
2777 case VMX_EXIT_VMPTRST:
2778 case VMX_EXIT_VMREAD:
2779 case VMX_EXIT_VMWRITE:
2780 case VMX_EXIT_VMXON:
2781 case VMX_EXIT_XRSTORS:
2782 case VMX_EXIT_XSAVES:
2783 case VMX_EXIT_RDRAND:
2784 case VMX_EXIT_RDSEED:
2785 {
2786 /* Construct the VM-exit instruction information. */
2787 RTGCPTR GCPtrDisp;
2788 uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
2789
2790 /* Update the VM-exit instruction information. */
2791 ExitInfo.InstrInfo.u = uInstrInfo;
2792
2793 /* Update the Exit qualification. */
2794 ExitInfo.u64Qual = GCPtrDisp;
2795 break;
2796 }
2797
2798 default:
2799 AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
2800 break;
2801 }
2802
2803 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2804}
2805
2806
2807/**
2808 * VMX VM-exit handler for VM-exits due to INVLPG.
2809 *
2810 * @returns Strict VBox status code.
2811 * @param pVCpu The cross context virtual CPU structure.
2812 * @param GCPtrPage The guest-linear address of the page being invalidated.
2813 * @param cbInstr The instruction length in bytes.
2814 */
2815IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr)
2816{
2817 VMXVEXITINFO ExitInfo;
2818 RT_ZERO(ExitInfo);
2819 ExitInfo.uReason = VMX_EXIT_INVLPG;
2820 ExitInfo.cbInstr = cbInstr;
2821 ExitInfo.u64Qual = GCPtrPage;
2822 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
2823
2824 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2825}
2826
2827
2828/**
2829 * VMX VM-exit handler for VM-exits due to LMSW.
2830 *
2831 * @returns Strict VBox status code.
2832 * @param pVCpu The cross context virtual CPU structure.
2833 * @param uGuestCr0 The current guest CR0.
2834 * @param pu16NewMsw The machine-status word specified in LMSW's source
2835 * operand. This will be updated depending on the VMX
2836 * guest/host CR0 mask if LMSW is not intercepted.
2837 * @param GCPtrEffDst The guest-linear address of the source operand in case
2838 * of a memory operand. For register operand, pass
2839 * NIL_RTGCPTR.
2840 * @param cbInstr The instruction length in bytes.
2841 */
2842IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw, RTGCPTR GCPtrEffDst,
2843 uint8_t cbInstr)
2844{
2845 Assert(pu16NewMsw);
2846
2847 uint16_t const uNewMsw = *pu16NewMsw;
2848 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
2849 {
2850 Log2(("lmsw: Guest intercept -> VM-exit\n"));
2851
2852 VMXVEXITINFO ExitInfo;
2853 RT_ZERO(ExitInfo);
2854 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2855 ExitInfo.cbInstr = cbInstr;
2856
2857 bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
2858 if (fMemOperand)
2859 {
2860 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
2861 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
2862 }
2863
2864 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2865 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW)
2866 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
2867 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, uNewMsw);
2868
2869 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2870 }
2871
2872 /*
2873 * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
2874 * CR0 guest/host mask must be left unmodified.
2875 *
2876 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
2877 */
2878 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2879 Assert(pVmcs);
2880 uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u;
2881 uint32_t const fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
2882 *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (uNewMsw & ~fGstHostLmswMask);
2883
2884 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2885}
2886
2887
2888/**
2889 * VMX VM-exit handler for VM-exits due to CLTS.
2890 *
2891 * @returns Strict VBox status code.
2892 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
2893 * VM-exit but must not modify the guest CR0.TS bit.
2894 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
2895 * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
2896 * CR0 fixed bits in VMX operation).
2897 * @param pVCpu The cross context virtual CPU structure.
2898 * @param cbInstr The instruction length in bytes.
2899 */
2900IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr)
2901{
2902 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2903 Assert(pVmcs);
2904
2905 uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u;
2906 uint32_t const fReadShadow = pVmcs->u64Cr0ReadShadow.u;
2907
2908 /*
2909 * If CR0.TS is owned by the host:
2910 * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
2911 * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
2912 * CLTS instruction completes without clearing CR0.TS.
2913 *
2914 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
2915 */
2916 if (fGstHostMask & X86_CR0_TS)
2917 {
2918 if (fReadShadow & X86_CR0_TS)
2919 {
2920 Log2(("clts: Guest intercept -> VM-exit\n"));
2921
2922 VMXVEXITINFO ExitInfo;
2923 RT_ZERO(ExitInfo);
2924 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2925 ExitInfo.cbInstr = cbInstr;
2926 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2927 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_CLTS);
2928 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2929 }
2930
2931 return VINF_VMX_MODIFIES_BEHAVIOR;
2932 }
2933
2934 /*
2935 * If CR0.TS is not owned by the host, the CLTS instructions operates normally
2936 * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
2937 */
2938 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2939}
2940
2941
2942/**
2943 * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
2944 * (CR0/CR4 write).
2945 *
2946 * @returns Strict VBox status code.
2947 * @param pVCpu The cross context virtual CPU structure.
2948 * @param iCrReg The control register (either CR0 or CR4).
2949 * @param uGuestCrX The current guest CR0/CR4.
2950 * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated if no
2951 * VM-exit is caused.
2952 * @param iGReg The general register from which the CR0/CR4 value is being
2953 * loaded.
2954 * @param cbInstr The instruction length in bytes.
2955 */
2956IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg,
2957 uint8_t cbInstr)
2958{
2959 Assert(puNewCrX);
2960 Assert(iCrReg == 0 || iCrReg == 4);
2961 Assert(iGReg < X86_GREG_COUNT);
2962
2963 uint64_t const uNewCrX = *puNewCrX;
2964 if (CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX))
2965 {
2966 Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
2967
2968 VMXVEXITINFO ExitInfo;
2969 RT_ZERO(ExitInfo);
2970 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2971 ExitInfo.cbInstr = cbInstr;
2972 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
2973 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
2974 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
2975 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2976 }
2977
2978 /*
2979 * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
2980 * must not be modified the instruction.
2981 *
2982 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
2983 */
2984 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2985 Assert(pVmcs);
2986 uint64_t uGuestCrX;
2987 uint64_t fGstHostMask;
2988 if (iCrReg == 0)
2989 {
2990 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
2991 uGuestCrX = pVCpu->cpum.GstCtx.cr0;
2992 fGstHostMask = pVmcs->u64Cr0Mask.u;
2993 }
2994 else
2995 {
2996 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
2997 uGuestCrX = pVCpu->cpum.GstCtx.cr4;
2998 fGstHostMask = pVmcs->u64Cr4Mask.u;
2999 }
3000
3001 *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
3002 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3003}
3004
3005
3006/**
3007 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
3008 *
3009 * @returns VBox strict status code.
3010 * @param pVCpu The cross context virtual CPU structure.
3011 * @param iGReg The general register to which the CR3 value is being stored.
3012 * @param cbInstr The instruction length in bytes.
3013 */
3014IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
3015{
3016 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3017 Assert(pVmcs);
3018 Assert(iGReg < X86_GREG_COUNT);
3019 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3020
3021 /*
3022 * If the CR3-store exiting control is set, we must cause a VM-exit.
3023 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3024 */
3025 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
3026 {
3027 Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
3028
3029 VMXVEXITINFO ExitInfo;
3030 RT_ZERO(ExitInfo);
3031 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3032 ExitInfo.cbInstr = cbInstr;
3033 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3034 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3035 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3036 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3037 }
3038
3039 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3040}
3041
3042
3043/**
3044 * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
3045 *
3046 * @returns VBox strict status code.
3047 * @param pVCpu The cross context virtual CPU structure.
3048 * @param uNewCr3 The new CR3 value.
3049 * @param iGReg The general register from which the CR3 value is being
3050 * loaded.
3051 * @param cbInstr The instruction length in bytes.
3052 */
3053IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr)
3054{
3055 Assert(iGReg < X86_GREG_COUNT);
3056
3057 /*
3058 * If the CR3-load exiting control is set and the new CR3 value does not
3059 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
3060 *
3061 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3062 */
3063 if (CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCr3))
3064 {
3065 Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
3066
3067 VMXVEXITINFO ExitInfo;
3068 RT_ZERO(ExitInfo);
3069 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3070 ExitInfo.cbInstr = cbInstr;
3071 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3072 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3073 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3074 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3075 }
3076
3077 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3078}
3079
3080
3081/**
3082 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
3083 *
3084 * @returns VBox strict status code.
3085 * @param pVCpu The cross context virtual CPU structure.
3086 * @param iGReg The general register to which the CR8 value is being stored.
3087 * @param cbInstr The instruction length in bytes.
3088 */
3089IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
3090{
3091 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3092 Assert(pVmcs);
3093 Assert(iGReg < X86_GREG_COUNT);
3094
3095 /*
3096 * If the CR8-store exiting control is set, we must cause a VM-exit.
3097 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3098 */
3099 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
3100 {
3101 Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
3102
3103 VMXVEXITINFO ExitInfo;
3104 RT_ZERO(ExitInfo);
3105 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3106 ExitInfo.cbInstr = cbInstr;
3107 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3108 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3109 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3110 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3111 }
3112
3113 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3114}
3115
3116
3117/**
3118 * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
3119 *
3120 * @returns VBox strict status code.
3121 * @param pVCpu The cross context virtual CPU structure.
3122 * @param iGReg The general register from which the CR8 value is being
3123 * loaded.
3124 * @param cbInstr The instruction length in bytes.
3125 */
3126IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
3127{
3128 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3129 Assert(pVmcs);
3130 Assert(iGReg < X86_GREG_COUNT);
3131
3132 /*
3133 * If the CR8-load exiting control is set, we must cause a VM-exit.
3134 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3135 */
3136 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
3137 {
3138 Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
3139
3140 VMXVEXITINFO ExitInfo;
3141 RT_ZERO(ExitInfo);
3142 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3143 ExitInfo.cbInstr = cbInstr;
3144 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3145 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3146 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3147 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3148 }
3149
3150 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3151}
3152
3153
3154/**
3155 * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
3156 * GReg,DRx' (DRx read).
3157 *
3158 * @returns VBox strict status code.
3159 * @param pVCpu The cross context virtual CPU structure.
3160 * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
3161 * VMXINSTRID_MOV_FROM_DRX).
3162 * @param iDrReg The debug register being accessed.
3163 * @param iGReg The general register to/from which the DRx value is being
3164 * store/loaded.
3165 * @param cbInstr The instruction length in bytes.
3166 */
3167IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg,
3168 uint8_t cbInstr)
3169{
3170 Assert(iDrReg <= 7);
3171 Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
3172 Assert(iGReg < X86_GREG_COUNT);
3173
3174 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3175 Assert(pVmcs);
3176
3177 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
3178 {
3179 uint32_t const uDirection = uInstrId == VMXINSTRID_MOV_TO_DRX ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
3180 : VMX_EXIT_QUAL_DRX_DIRECTION_READ;
3181 VMXVEXITINFO ExitInfo;
3182 RT_ZERO(ExitInfo);
3183 ExitInfo.uReason = VMX_EXIT_MOV_DRX;
3184 ExitInfo.cbInstr = cbInstr;
3185 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
3186 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION, uDirection)
3187 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg);
3188 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3189 }
3190
3191 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3192}
3193
3194
3195/**
3196 * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
3197 *
3198 * @returns VBox strict status code.
3199 * @param pVCpu The cross context virtual CPU structure.
3200 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
3201 * VMXINSTRID_IO_OUT).
3202 * @param u16Port The I/O port being accessed.
3203 * @param fImm Whether the I/O port was encoded using an immediate operand
3204 * or the implicit DX register.
3205 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3206 * @param cbInstr The instruction length in bytes.
3207 */
3208IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, bool fImm, uint8_t cbAccess,
3209 uint8_t cbInstr)
3210{
3211 Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
3212 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3213
3214 bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
3215 if (fIntercept)
3216 {
3217 uint32_t const uDirection = uInstrId == VMXINSTRID_IO_IN ? VMX_EXIT_QUAL_IO_DIRECTION_IN
3218 : VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3219 VMXVEXITINFO ExitInfo;
3220 RT_ZERO(ExitInfo);
3221 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3222 ExitInfo.cbInstr = cbInstr;
3223 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3224 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3225 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
3226 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3227 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3228 }
3229
3230 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3231}
3232
3233
3234/**
3235 * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
3236 *
3237 * @returns VBox strict status code.
3238 * @param pVCpu The cross context virtual CPU structure.
3239 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
3240 * VMXINSTRID_IO_OUTS).
3241 * @param u16Port The I/O port being accessed.
3242 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3243 * @param fRep Whether the instruction has a REP prefix or not.
3244 * @param ExitInstrInfo The VM-exit instruction info. field.
3245 * @param cbInstr The instruction length in bytes.
3246 */
3247IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess, bool fRep,
3248 VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr)
3249{
3250 Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
3251 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3252 Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
3253 Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
3254 Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
3255
3256 bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
3257 if (fIntercept)
3258 {
3259 /*
3260 * Figure out the guest-linear address and the direction bit (INS/OUTS).
3261 */
3262 /** @todo r=ramshankar: Is there something in IEM that already does this? */
3263 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
3264 uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
3265 uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
3266 uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
3267
3268 uint32_t uDirection;
3269 uint64_t uGuestLinearAddr;
3270 if (uInstrId == VMXINSTRID_IO_INS)
3271 {
3272 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
3273 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
3274 }
3275 else
3276 {
3277 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3278 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
3279 }
3280
3281 /*
3282 * If the segment is unusable, the guest-linear address in undefined.
3283 * We shall clear it for consistency.
3284 *
3285 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3286 */
3287 if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
3288 uGuestLinearAddr = 0;
3289
3290 VMXVEXITINFO ExitInfo;
3291 RT_ZERO(ExitInfo);
3292 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3293 ExitInfo.cbInstr = cbInstr;
3294 ExitInfo.u64GuestLinearAddr = uGuestLinearAddr;
3295 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3296 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3297 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
3298 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
3299 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, VMX_EXIT_QUAL_IO_ENCODING_DX)
3300 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3301 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxInsOutInfo)
3302 ExitInfo.InstrInfo = ExitInstrInfo;
3303 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3304 }
3305
3306 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3307}
3308
3309
3310/**
3311 * VMX VM-exit handler for VM-exits due to MWAIT.
3312 *
3313 * @returns VBox strict status code.
3314 * @param pVCpu The cross context virtual CPU structure.
3315 * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
3316 * @param cbInstr The instruction length in bytes.
3317 */
3318IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr)
3319{
3320 VMXVEXITINFO ExitInfo;
3321 RT_ZERO(ExitInfo);
3322 ExitInfo.uReason = VMX_EXIT_MWAIT;
3323 ExitInfo.cbInstr = cbInstr;
3324 ExitInfo.u64Qual = fMonitorHwArmed;
3325 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3326}
3327
3328
3329/**
3330 * VMX VM-exit handler for VM-exits due to PAUSE.
3331 *
3332 * @returns VBox strict status code.
3333 * @param pVCpu The cross context virtual CPU structure.
3334 * @param cbInstr The instruction length in bytes.
3335 */
3336IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPUCC pVCpu, uint8_t cbInstr)
3337{
3338 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3339 Assert(pVmcs);
3340
3341 /*
3342 * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
3343 * "PAUSE-loop exiting" control.
3344 *
3345 * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
3346 * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
3347 * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
3348 * a VM-exit.
3349 *
3350 * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
3351 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3352 */
3353 bool fIntercept = false;
3354 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
3355 fIntercept = true;
3356 else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3357 && pVCpu->iem.s.uCpl == 0)
3358 {
3359 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3360
3361 /*
3362 * A previous-PAUSE-tick value of 0 is used to identify the first time
3363 * execution of a PAUSE instruction after VM-entry at CPL 0. We must
3364 * consider this to be the first execution of PAUSE in a loop according
3365 * to the Intel.
3366 *
3367 * All subsequent records for the previous-PAUSE-tick we ensure that it
3368 * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
3369 */
3370 uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
3371 uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
3372 uint64_t const uTick = TMCpuTickGet(pVCpu);
3373 uint32_t const uPleGap = pVmcs->u32PleGap;
3374 uint32_t const uPleWindow = pVmcs->u32PleWindow;
3375 if ( *puPrevPauseTick == 0
3376 || uTick - *puPrevPauseTick > uPleGap)
3377 *puFirstPauseLoopTick = uTick;
3378 else if (uTick - *puFirstPauseLoopTick > uPleWindow)
3379 fIntercept = true;
3380
3381 *puPrevPauseTick = uTick | 1;
3382 }
3383
3384 if (fIntercept)
3385 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_PAUSE, cbInstr);
3386
3387 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3388}
3389
3390
3391/**
3392 * VMX VM-exit handler for VM-exits due to task switches.
3393 *
3394 * @returns VBox strict status code.
3395 * @param pVCpu The cross context virtual CPU structure.
3396 * @param enmTaskSwitch The cause of the task switch.
3397 * @param SelNewTss The selector of the new TSS.
3398 * @param cbInstr The instruction length in bytes.
3399 */
3400IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr)
3401{
3402 /*
3403 * Task-switch VM-exits are unconditional and provide the Exit qualification.
3404 *
3405 * If the cause of the task switch is due to execution of CALL, IRET or the JMP
3406 * instruction or delivery of the exception generated by one of these instructions
3407 * lead to a task switch through a task gate in the IDT, we need to provide the
3408 * VM-exit instruction length. Any other means of invoking a task switch VM-exit
3409 * leaves the VM-exit instruction length field undefined.
3410 *
3411 * See Intel spec. 25.2 "Other Causes Of VM Exits".
3412 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
3413 */
3414 Assert(cbInstr <= 15);
3415
3416 uint8_t uType;
3417 switch (enmTaskSwitch)
3418 {
3419 case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
3420 case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
3421 case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
3422 case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
3423 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3424 }
3425
3426 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
3427 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
3428 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3429 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, u64ExitQual);
3430}
3431
3432
3433/**
3434 * VMX VM-exit handler for trap-like VM-exits.
3435 *
3436 * @returns VBox strict status code.
3437 * @param pVCpu The cross context virtual CPU structure.
3438 * @param pExitInfo Pointer to the VM-exit information.
3439 * @param pExitEventInfo Pointer to the VM-exit event information.
3440 */
3441IEM_STATIC VBOXSTRICTRC iemVmxVmexitTrapLikeWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
3442{
3443 Assert(VMXIsVmexitTrapLike(pExitInfo->uReason));
3444 iemVmxVmcsSetGuestPendingDbgXcpts(pVCpu, pExitInfo->u64GuestPendingDbgXcpts);
3445 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
3446}
3447
3448
3449/**
3450 * VMX VM-exit handler for VM-exits due to task switches.
3451 *
3452 * This is intended for task switches where the caller provides all the relevant
3453 * VM-exit information.
3454 *
3455 * @returns VBox strict status code.
3456 * @param pVCpu The cross context virtual CPU structure.
3457 * @param pExitInfo Pointer to the VM-exit information.
3458 * @param pExitEventInfo Pointer to the VM-exit event information.
3459 */
3460IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitchWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3461 PCVMXVEXITEVENTINFO pExitEventInfo)
3462{
3463 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3464 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3465 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3466 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3467 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, pExitInfo->u64Qual);
3468}
3469
3470
3471/**
3472 * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
3473 *
3474 * @returns VBox strict status code.
3475 * @param pVCpu The cross context virtual CPU structure.
3476 */
3477IEM_STATIC VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu)
3478{
3479 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3480 Assert(pVmcs);
3481 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
3482 Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
3483
3484 /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
3485 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3486
3487 /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
3488 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
3489 pVmcs->u32PreemptTimer = 0;
3490
3491 /* Cause the VMX-preemption timer VM-exit. The Exit qualification MBZ. */
3492 return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER, 0 /* u64ExitQual */);
3493}
3494
3495
3496/**
3497 * VMX VM-exit handler for VM-exits due to external interrupts.
3498 *
3499 * @returns VBox strict status code.
3500 * @param pVCpu The cross context virtual CPU structure.
3501 * @param uVector The external interrupt vector (pass 0 if the interrupt
3502 * is still pending since we typically won't know the
3503 * vector).
3504 * @param fIntPending Whether the external interrupt is pending or
3505 * acknowledged in the interrupt controller.
3506 */
3507IEM_STATIC VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending)
3508{
3509 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3510 Assert(pVmcs);
3511 Assert(!fIntPending || uVector == 0);
3512
3513 /* The VM-exit is subject to "External interrupt exiting" being set. */
3514 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
3515 {
3516 if (fIntPending)
3517 {
3518 /*
3519 * If the interrupt is pending and we don't need to acknowledge the
3520 * interrupt on VM-exit, cause the VM-exit immediately.
3521 *
3522 * See Intel spec 25.2 "Other Causes Of VM Exits".
3523 */
3524 if (!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
3525 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3526
3527 /*
3528 * If the interrupt is pending and we -do- need to acknowledge the interrupt
3529 * on VM-exit, postpone VM-exit till after the interrupt controller has been
3530 * acknowledged that the interrupt has been consumed. Callers would have to call
3531 * us again after getting the vector (and ofc, with fIntPending with false).
3532 */
3533 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3534 }
3535
3536 /*
3537 * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
3538 * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
3539 * all set, we need to record the vector of the external interrupt in the
3540 * VM-exit interruption information field. Otherwise, mark this field as invalid.
3541 *
3542 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3543 */
3544 uint32_t uExitIntInfo;
3545 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
3546 {
3547 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3548 uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3549 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
3550 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3551 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3552 }
3553 else
3554 uExitIntInfo = 0;
3555 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3556
3557 /*
3558 * Cause the VM-exit whether or not the vector has been stored
3559 * in the VM-exit interruption-information field.
3560 */
3561 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3562 }
3563
3564 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3565}
3566
3567
3568/**
3569 * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
3570 * an event.
3571 *
3572 * @returns VBox strict status code.
3573 * @param pVCpu The cross context virtual CPU structure.
3574 */
3575IEM_STATIC VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu)
3576{
3577 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3578 Assert(pVmcs);
3579
3580 uint32_t const fXcptBitmap = pVmcs->u32XcptBitmap;
3581 if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
3582 {
3583 /*
3584 * The NMI-unblocking due to IRET field need not be set for double faults.
3585 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
3586 */
3587 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
3588 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
3589 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
3590 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, 0)
3591 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3592 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3593 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, 0 /* u64ExitQual */);
3594 }
3595
3596 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3597}
3598
3599
3600/**
3601 * VMX VM-exit handler for VM-exit due to delivery of an events.
3602 *
3603 * This is intended for VM-exit due to exceptions or NMIs where the caller provides
3604 * all the relevant VM-exit information.
3605 *
3606 * @returns VBox strict status code.
3607 * @param pVCpu The cross context virtual CPU structure.
3608 * @param pExitInfo Pointer to the VM-exit information.
3609 * @param pExitEventInfo Pointer to the VM-exit event information.
3610 */
3611IEM_STATIC VBOXSTRICTRC iemVmxVmexitEventWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3612{
3613 Assert(pExitInfo);
3614 Assert(pExitEventInfo);
3615 Assert(pExitInfo->uReason == VMX_EXIT_XCPT_OR_NMI);
3616 Assert(VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3617
3618 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3619 iemVmxVmcsSetExitIntInfo(pVCpu, pExitEventInfo->uExitIntInfo);
3620 iemVmxVmcsSetExitIntErrCode(pVCpu, pExitEventInfo->uExitIntErrCode);
3621 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3622 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3623 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, pExitInfo->u64Qual);
3624}
3625
3626
3627/**
3628 * VMX VM-exit handler for VM-exits due to delivery of an event.
3629 *
3630 * @returns VBox strict status code.
3631 * @param pVCpu The cross context virtual CPU structure.
3632 * @param uVector The interrupt / exception vector.
3633 * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
3634 * @param uErrCode The error code associated with the event.
3635 * @param uCr2 The CR2 value in case of a \#PF exception.
3636 * @param cbInstr The instruction length in bytes.
3637 */
3638IEM_STATIC VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2,
3639 uint8_t cbInstr)
3640{
3641 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3642 Assert(pVmcs);
3643
3644 /*
3645 * If the event is being injected as part of VM-entry, it is -not- subject to event
3646 * intercepts in the nested-guest. However, secondary exceptions that occur during
3647 * injection of any event -are- subject to event interception.
3648 *
3649 * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
3650 */
3651 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
3652 {
3653 /*
3654 * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
3655 * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
3656 *
3657 * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
3658 */
3659 if ( uVector == X86_XCPT_NMI
3660 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
3661 && (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3662 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
3663 else
3664 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
3665
3666 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
3667 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3668 }
3669
3670 /*
3671 * We are injecting an external interrupt, check if we need to cause a VM-exit now.
3672 * If not, the caller will continue delivery of the external interrupt as it would
3673 * normally. The interrupt is no longer pending in the interrupt controller at this
3674 * point.
3675 */
3676 if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
3677 {
3678 Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVmcs->u32RoIdtVectoringInfo));
3679 return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
3680 }
3681
3682 /*
3683 * Evaluate intercepts for hardware exceptions, software exceptions (#BP, #OF),
3684 * and privileged software exceptions (#DB generated by INT1/ICEBP) and software
3685 * interrupts.
3686 */
3687 Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
3688 bool fIntercept;
3689 if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3690 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3691 {
3692 fIntercept = CPUMIsGuestVmxXcptInterceptSet(&pVCpu->cpum.GstCtx, uVector, uErrCode);
3693 }
3694 else
3695 {
3696 /* Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
3697 fIntercept = false;
3698 }
3699
3700 /*
3701 * Now that we've determined whether the event causes a VM-exit, we need to construct the
3702 * relevant VM-exit information and cause the VM-exit.
3703 */
3704 if (fIntercept)
3705 {
3706 Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
3707
3708 /* Construct the rest of the event related information fields and cause the VM-exit. */
3709 uint64_t u64ExitQual;
3710 if (uVector == X86_XCPT_PF)
3711 {
3712 Assert(fFlags & IEM_XCPT_FLAGS_CR2);
3713 u64ExitQual = uCr2;
3714 }
3715 else if (uVector == X86_XCPT_DB)
3716 {
3717 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
3718 u64ExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
3719 }
3720 else
3721 u64ExitQual = 0;
3722
3723 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3724 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
3725 uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
3726 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3727 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
3728 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
3729 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3730 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3731 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3732 iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
3733
3734 /*
3735 * For VM-exits due to software exceptions (those generated by INT3 or INTO) or privileged
3736 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
3737 * length.
3738 */
3739 if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3740 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3741 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3742 else
3743 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
3744
3745 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, u64ExitQual);
3746 }
3747
3748 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3749}
3750
3751
3752/**
3753 * VMX VM-exit handler for APIC accesses.
3754 *
3755 * @param pVCpu The cross context virtual CPU structure.
3756 * @param offAccess The offset of the register being accessed.
3757 * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
3758 * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
3759 */
3760IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPUCC pVCpu, uint16_t offAccess, uint32_t fAccess)
3761{
3762 Assert((fAccess & IEM_ACCESS_TYPE_READ) || (fAccess & IEM_ACCESS_TYPE_WRITE) || (fAccess & IEM_ACCESS_INSTRUCTION));
3763
3764 VMXAPICACCESS enmAccess;
3765 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
3766 if (fInEventDelivery)
3767 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
3768 else if (fAccess & IEM_ACCESS_INSTRUCTION)
3769 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
3770 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
3771 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
3772 else
3773 enmAccess = VMXAPICACCESS_LINEAR_READ;
3774
3775 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
3776 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
3777 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, u64ExitQual);
3778}
3779
3780
3781/**
3782 * VMX VM-exit handler for APIC accesses.
3783 *
3784 * This is intended for APIC accesses where the caller provides all the
3785 * relevant VM-exit information.
3786 *
3787 * @returns VBox strict status code.
3788 * @param pVCpu The cross context virtual CPU structure.
3789 * @param pExitInfo Pointer to the VM-exit information.
3790 * @param pExitEventInfo Pointer to the VM-exit event information.
3791 */
3792IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccessWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3793 PCVMXVEXITEVENTINFO pExitEventInfo)
3794{
3795 /* VM-exit interruption information should not be valid for APIC-access VM-exits. */
3796 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3797 Assert(pExitInfo->uReason == VMX_EXIT_APIC_ACCESS);
3798 iemVmxVmcsSetExitIntInfo(pVCpu, 0);
3799 iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
3800 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3801 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3802 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3803 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, pExitInfo->u64Qual);
3804}
3805
3806
3807/**
3808 * VMX VM-exit handler for APIC-write VM-exits.
3809 *
3810 * @param pVCpu The cross context virtual CPU structure.
3811 * @param offApic The write to the virtual-APIC page offset that caused this
3812 * VM-exit.
3813 */
3814IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPUCC pVCpu, uint16_t offApic)
3815{
3816 Assert(offApic < XAPIC_OFF_END + 4);
3817 /* Write only bits 11:0 of the APIC offset into the Exit qualification field. */
3818 offApic &= UINT16_C(0xfff);
3819 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE, offApic);
3820}
3821
3822
3823/**
3824 * Sets virtual-APIC write emulation as pending.
3825 *
3826 * @param pVCpu The cross context virtual CPU structure.
3827 * @param offApic The offset in the virtual-APIC page that was written.
3828 */
3829DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPUCC pVCpu, uint16_t offApic)
3830{
3831 Assert(offApic < XAPIC_OFF_END + 4);
3832
3833 /*
3834 * Record the currently updated APIC offset, as we need this later for figuring
3835 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
3836 * as for supplying the exit qualification when causing an APIC-write VM-exit.
3837 */
3838 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
3839
3840 /*
3841 * Flag that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
3842 * virtualization or APIC-write emulation).
3843 */
3844 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
3845 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
3846}
3847
3848
3849/**
3850 * Clears any pending virtual-APIC write emulation.
3851 *
3852 * @returns The virtual-APIC offset that was written before clearing it.
3853 * @param pVCpu The cross context virtual CPU structure.
3854 */
3855DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPUCC pVCpu)
3856{
3857 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3858 uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
3859 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
3860 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
3861 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
3862 return offVirtApicWrite;
3863}
3864
3865
3866/**
3867 * Reads a 32-bit register from the virtual-APIC page at the given offset.
3868 *
3869 * @returns The register from the virtual-APIC page.
3870 * @param pVCpu The cross context virtual CPU structure.
3871 * @param offReg The offset of the register being read.
3872 */
3873IEM_STATIC uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg)
3874{
3875 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3876 Assert(pVmcs);
3877 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
3878
3879 uint32_t uReg;
3880 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3881 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
3882 if (RT_SUCCESS(rc))
3883 { /* likely */ }
3884 else
3885 {
3886 AssertMsgFailed(("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp\n", sizeof(uReg), offReg,
3887 GCPhysVirtApic));
3888 uReg = 0;
3889 }
3890 return uReg;
3891}
3892
3893
3894/**
3895 * Reads a 64-bit register from the virtual-APIC page at the given offset.
3896 *
3897 * @returns The register from the virtual-APIC page.
3898 * @param pVCpu The cross context virtual CPU structure.
3899 * @param offReg The offset of the register being read.
3900 */
3901IEM_STATIC uint64_t iemVmxVirtApicReadRaw64(PVMCPUCC pVCpu, uint16_t offReg)
3902{
3903 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3904 Assert(pVmcs);
3905 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
3906
3907 uint64_t uReg;
3908 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3909 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
3910 if (RT_SUCCESS(rc))
3911 { /* likely */ }
3912 else
3913 {
3914 AssertMsgFailed(("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp\n", sizeof(uReg), offReg,
3915 GCPhysVirtApic));
3916 uReg = 0;
3917 }
3918 return uReg;
3919}
3920
3921
3922/**
3923 * Writes a 32-bit register to the virtual-APIC page at the given offset.
3924 *
3925 * @param pVCpu The cross context virtual CPU structure.
3926 * @param offReg The offset of the register being written.
3927 * @param uReg The register value to write.
3928 */
3929IEM_STATIC void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg)
3930{
3931 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3932 Assert(pVmcs);
3933 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
3934
3935 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3936 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
3937 if (RT_SUCCESS(rc))
3938 { /* likely */ }
3939 else
3940 {
3941 AssertMsgFailed(("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp\n", sizeof(uReg), offReg,
3942 GCPhysVirtApic));
3943 }
3944}
3945
3946
3947/**
3948 * Writes a 64-bit register to the virtual-APIC page at the given offset.
3949 *
3950 * @param pVCpu The cross context virtual CPU structure.
3951 * @param offReg The offset of the register being written.
3952 * @param uReg The register value to write.
3953 */
3954IEM_STATIC void iemVmxVirtApicWriteRaw64(PVMCPUCC pVCpu, uint16_t offReg, uint64_t uReg)
3955{
3956 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3957 Assert(pVmcs);
3958 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
3959
3960 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3961 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
3962 if (RT_SUCCESS(rc))
3963 { /* likely */ }
3964 else
3965 {
3966 AssertMsgFailed(("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp\n", sizeof(uReg), offReg,
3967 GCPhysVirtApic));
3968 }
3969}
3970
3971
3972/**
3973 * Sets the vector in a virtual-APIC 256-bit sparse register.
3974 *
3975 * @param pVCpu The cross context virtual CPU structure.
3976 * @param offReg The offset of the 256-bit spare register.
3977 * @param uVector The vector to set.
3978 *
3979 * @remarks This is based on our APIC device code.
3980 */
3981IEM_STATIC void iemVmxVirtApicSetVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector)
3982{
3983 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3984 Assert(pVmcs);
3985
3986 /* Determine the vector offset within the chunk. */
3987 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
3988
3989 /* Read the chunk at the offset. */
3990 uint32_t uReg;
3991 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3992 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
3993 if (RT_SUCCESS(rc))
3994 {
3995 /* Modify the chunk. */
3996 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
3997 uReg |= RT_BIT(idxVectorBit);
3998
3999 /* Write the chunk. */
4000 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4001 if (RT_SUCCESS(rc))
4002 { /* likely */ }
4003 else
4004 {
4005 AssertMsgFailed(("Failed to set vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp\n",
4006 uVector, offReg, GCPhysVirtApic));
4007 }
4008 }
4009 else
4010 {
4011 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp\n",
4012 uVector, offReg, GCPhysVirtApic));
4013 }
4014}
4015
4016
4017/**
4018 * Clears the vector in a virtual-APIC 256-bit sparse register.
4019 *
4020 * @param pVCpu The cross context virtual CPU structure.
4021 * @param offReg The offset of the 256-bit spare register.
4022 * @param uVector The vector to clear.
4023 *
4024 * @remarks This is based on our APIC device code.
4025 */
4026IEM_STATIC void iemVmxVirtApicClearVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector)
4027{
4028 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4029 Assert(pVmcs);
4030
4031 /* Determine the vector offset within the chunk. */
4032 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4033
4034 /* Read the chunk at the offset. */
4035 uint32_t uReg;
4036 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
4037 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4038 if (RT_SUCCESS(rc))
4039 {
4040 /* Modify the chunk. */
4041 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4042 uReg &= ~RT_BIT(idxVectorBit);
4043
4044 /* Write the chunk. */
4045 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4046 if (RT_SUCCESS(rc))
4047 { /* likely */ }
4048 else
4049 {
4050 AssertMsgFailed(("Failed to clear vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp\n",
4051 uVector, offReg, GCPhysVirtApic));
4052 }
4053 }
4054 else
4055 {
4056 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp\n",
4057 uVector, offReg, GCPhysVirtApic));
4058 }
4059}
4060
4061
4062/**
4063 * Checks if a memory access to the APIC-access page must causes an APIC-access
4064 * VM-exit.
4065 *
4066 * @param pVCpu The cross context virtual CPU structure.
4067 * @param offAccess The offset of the register being accessed.
4068 * @param cbAccess The size of the access in bytes.
4069 * @param fAccess The type of access (must be IEM_ACCESS_TYPE_READ or
4070 * IEM_ACCESS_TYPE_WRITE).
4071 *
4072 * @remarks This must not be used for MSR-based APIC-access page accesses!
4073 * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
4074 */
4075IEM_STATIC bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess)
4076{
4077 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4078 Assert(pVmcs);
4079 Assert(fAccess == IEM_ACCESS_TYPE_READ || fAccess == IEM_ACCESS_TYPE_WRITE);
4080
4081 /*
4082 * We must cause a VM-exit if any of the following are true:
4083 * - TPR shadowing isn't active.
4084 * - The access size exceeds 32-bits.
4085 * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
4086 *
4087 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4088 * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
4089 */
4090 if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4091 || cbAccess > sizeof(uint32_t)
4092 || ((offAccess + cbAccess - 1) & 0xc)
4093 || offAccess >= XAPIC_OFF_END + 4)
4094 return true;
4095
4096 /*
4097 * If the access is part of an operation where we have already
4098 * virtualized a virtual-APIC write, we must cause a VM-exit.
4099 */
4100 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4101 return true;
4102
4103 /*
4104 * Check write accesses to the APIC-access page that cause VM-exits.
4105 */
4106 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4107 {
4108 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4109 {
4110 /*
4111 * With APIC-register virtualization, a write access to any of the
4112 * following registers are virtualized. Accessing any other register
4113 * causes a VM-exit.
4114 */
4115 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4116 switch (offAlignedAccess)
4117 {
4118 case XAPIC_OFF_ID:
4119 case XAPIC_OFF_TPR:
4120 case XAPIC_OFF_EOI:
4121 case XAPIC_OFF_LDR:
4122 case XAPIC_OFF_DFR:
4123 case XAPIC_OFF_SVR:
4124 case XAPIC_OFF_ESR:
4125 case XAPIC_OFF_ICR_LO:
4126 case XAPIC_OFF_ICR_HI:
4127 case XAPIC_OFF_LVT_TIMER:
4128 case XAPIC_OFF_LVT_THERMAL:
4129 case XAPIC_OFF_LVT_PERF:
4130 case XAPIC_OFF_LVT_LINT0:
4131 case XAPIC_OFF_LVT_LINT1:
4132 case XAPIC_OFF_LVT_ERROR:
4133 case XAPIC_OFF_TIMER_ICR:
4134 case XAPIC_OFF_TIMER_DCR:
4135 break;
4136 default:
4137 return true;
4138 }
4139 }
4140 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4141 {
4142 /*
4143 * With virtual-interrupt delivery, a write access to any of the
4144 * following registers are virtualized. Accessing any other register
4145 * causes a VM-exit.
4146 *
4147 * Note! The specification does not allow writing to offsets in-between
4148 * these registers (e.g. TPR + 1 byte) unlike read accesses.
4149 */
4150 switch (offAccess)
4151 {
4152 case XAPIC_OFF_TPR:
4153 case XAPIC_OFF_EOI:
4154 case XAPIC_OFF_ICR_LO:
4155 break;
4156 default:
4157 return true;
4158 }
4159 }
4160 else
4161 {
4162 /*
4163 * Without APIC-register virtualization or virtual-interrupt delivery,
4164 * only TPR accesses are virtualized.
4165 */
4166 if (offAccess == XAPIC_OFF_TPR)
4167 { /* likely */ }
4168 else
4169 return true;
4170 }
4171 }
4172 else
4173 {
4174 /*
4175 * Check read accesses to the APIC-access page that cause VM-exits.
4176 */
4177 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4178 {
4179 /*
4180 * With APIC-register virtualization, a read access to any of the
4181 * following registers are virtualized. Accessing any other register
4182 * causes a VM-exit.
4183 */
4184 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4185 switch (offAlignedAccess)
4186 {
4187 /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
4188 case XAPIC_OFF_ID:
4189 case XAPIC_OFF_VERSION:
4190 case XAPIC_OFF_TPR:
4191 case XAPIC_OFF_EOI:
4192 case XAPIC_OFF_LDR:
4193 case XAPIC_OFF_DFR:
4194 case XAPIC_OFF_SVR:
4195 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
4196 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
4197 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
4198 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
4199 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
4200 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
4201 case XAPIC_OFF_ESR:
4202 case XAPIC_OFF_ICR_LO:
4203 case XAPIC_OFF_ICR_HI:
4204 case XAPIC_OFF_LVT_TIMER:
4205 case XAPIC_OFF_LVT_THERMAL:
4206 case XAPIC_OFF_LVT_PERF:
4207 case XAPIC_OFF_LVT_LINT0:
4208 case XAPIC_OFF_LVT_LINT1:
4209 case XAPIC_OFF_LVT_ERROR:
4210 case XAPIC_OFF_TIMER_ICR:
4211 case XAPIC_OFF_TIMER_DCR:
4212 break;
4213 default:
4214 return true;
4215 }
4216 }
4217 else
4218 {
4219 /* Without APIC-register virtualization, only TPR accesses are virtualized. */
4220 if (offAccess == XAPIC_OFF_TPR)
4221 { /* likely */ }
4222 else
4223 return true;
4224 }
4225 }
4226
4227 /* The APIC access is virtualized, does not cause a VM-exit. */
4228 return false;
4229}
4230
4231
4232/**
4233 * Virtualizes a memory-based APIC access where the address is not used to access
4234 * memory.
4235 *
4236 * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
4237 * page-faults but do not use the address to access memory.
4238 *
4239 * @param pVCpu The cross context virtual CPU structure.
4240 * @param pGCPhysAccess Pointer to the guest-physical address used.
4241 */
4242IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess)
4243{
4244 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4245 Assert(pVmcs);
4246 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4247 Assert(pGCPhysAccess);
4248
4249 RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)PAGE_OFFSET_MASK;
4250 RTGCPHYS const GCPhysApic = pVmcs->u64AddrApicAccess.u;
4251 Assert(!(GCPhysApic & PAGE_OFFSET_MASK));
4252
4253 if (GCPhysAccess == GCPhysApic)
4254 {
4255 uint16_t const offAccess = *pGCPhysAccess & PAGE_OFFSET_MASK;
4256 uint32_t const fAccess = IEM_ACCESS_TYPE_READ;
4257 uint16_t const cbAccess = 1;
4258 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4259 if (fIntercept)
4260 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4261
4262 *pGCPhysAccess = GCPhysApic | offAccess;
4263 return VINF_VMX_MODIFIES_BEHAVIOR;
4264 }
4265
4266 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4267}
4268
4269
4270/**
4271 * Virtualizes a memory-based APIC access.
4272 *
4273 * @returns VBox strict status code.
4274 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
4275 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4276 *
4277 * @param pVCpu The cross context virtual CPU structure.
4278 * @param offAccess The offset of the register being accessed (within the
4279 * APIC-access page).
4280 * @param cbAccess The size of the access in bytes.
4281 * @param pvData Pointer to the data being written or where to store the data
4282 * being read.
4283 * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
4284 * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
4285 */
4286IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, void *pvData,
4287 uint32_t fAccess)
4288{
4289 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4290 Assert(pVmcs);
4291 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS); NOREF(pVmcs);
4292 Assert(pvData);
4293 Assert( (fAccess & IEM_ACCESS_TYPE_READ)
4294 || (fAccess & IEM_ACCESS_TYPE_WRITE)
4295 || (fAccess & IEM_ACCESS_INSTRUCTION));
4296
4297 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4298 if (fIntercept)
4299 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4300
4301 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4302 {
4303 /*
4304 * A write access to the APIC-access page that is virtualized (rather than
4305 * causing a VM-exit) writes data to the virtual-APIC page.
4306 */
4307 uint32_t const u32Data = *(uint32_t *)pvData;
4308 iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
4309
4310 /*
4311 * Record the currently updated APIC offset, as we need this later for figuring
4312 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4313 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4314 *
4315 * After completion of the current operation, we need to perform TPR virtualization,
4316 * EOI virtualization or APIC-write VM-exit depending on which register was written.
4317 *
4318 * The current operation may be a REP-prefixed string instruction, execution of any
4319 * other instruction, or delivery of an event through the IDT.
4320 *
4321 * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
4322 * performed now but later after completion of the current operation.
4323 *
4324 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4325 */
4326 iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
4327 }
4328 else
4329 {
4330 /*
4331 * A read access from the APIC-access page that is virtualized (rather than
4332 * causing a VM-exit) returns data from the virtual-APIC page.
4333 *
4334 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4335 */
4336 Assert(cbAccess <= 4);
4337 Assert(offAccess < XAPIC_OFF_END + 4);
4338 static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
4339
4340 uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
4341 u32Data &= s_auAccessSizeMasks[cbAccess];
4342 *(uint32_t *)pvData = u32Data;
4343 }
4344
4345 return VINF_VMX_MODIFIES_BEHAVIOR;
4346}
4347
4348
4349/**
4350 * Virtualizes an MSR-based APIC read access.
4351 *
4352 * @returns VBox strict status code.
4353 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
4354 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
4355 * handled by the x2APIC device.
4356 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4357 * not within the range of valid MSRs, caller must raise \#GP(0).
4358 * @param pVCpu The cross context virtual CPU structure.
4359 * @param idMsr The x2APIC MSR being read.
4360 * @param pu64Value Where to store the read x2APIC MSR value (only valid when
4361 * VINF_VMX_MODIFIES_BEHAVIOR is returned).
4362 */
4363IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value)
4364{
4365 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4366 Assert(pVmcs);
4367 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
4368 Assert(pu64Value);
4369
4370 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4371 {
4372 if ( idMsr >= MSR_IA32_X2APIC_START
4373 && idMsr <= MSR_IA32_X2APIC_END)
4374 {
4375 uint16_t const offReg = (idMsr & 0xff) << 4;
4376 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4377 *pu64Value = u64Value;
4378 return VINF_VMX_MODIFIES_BEHAVIOR;
4379 }
4380 return VERR_OUT_OF_RANGE;
4381 }
4382
4383 if (idMsr == MSR_IA32_X2APIC_TPR)
4384 {
4385 uint16_t const offReg = (idMsr & 0xff) << 4;
4386 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4387 *pu64Value = u64Value;
4388 return VINF_VMX_MODIFIES_BEHAVIOR;
4389 }
4390
4391 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4392}
4393
4394
4395/**
4396 * Virtualizes an MSR-based APIC write access.
4397 *
4398 * @returns VBox strict status code.
4399 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
4400 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4401 * not within the range of valid MSRs, caller must raise \#GP(0).
4402 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
4403 *
4404 * @param pVCpu The cross context virtual CPU structure.
4405 * @param idMsr The x2APIC MSR being written.
4406 * @param u64Value The value of the x2APIC MSR being written.
4407 */
4408IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Value)
4409{
4410 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4411 Assert(pVmcs);
4412
4413 /*
4414 * Check if the access is to be virtualized.
4415 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4416 */
4417 if ( idMsr == MSR_IA32_X2APIC_TPR
4418 || ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4419 && ( idMsr == MSR_IA32_X2APIC_EOI
4420 || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
4421 {
4422 /* Validate the MSR write depending on the register. */
4423 switch (idMsr)
4424 {
4425 case MSR_IA32_X2APIC_TPR:
4426 case MSR_IA32_X2APIC_SELF_IPI:
4427 {
4428 if (u64Value & UINT64_C(0xffffffffffffff00))
4429 return VERR_OUT_OF_RANGE;
4430 break;
4431 }
4432 case MSR_IA32_X2APIC_EOI:
4433 {
4434 if (u64Value != 0)
4435 return VERR_OUT_OF_RANGE;
4436 break;
4437 }
4438 }
4439
4440 /* Write the MSR to the virtual-APIC page. */
4441 uint16_t const offReg = (idMsr & 0xff) << 4;
4442 iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
4443
4444 /*
4445 * Record the currently updated APIC offset, as we need this later for figuring
4446 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4447 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4448 */
4449 iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
4450
4451 return VINF_VMX_MODIFIES_BEHAVIOR;
4452 }
4453
4454 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4455}
4456
4457
4458/**
4459 * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
4460 *
4461 * @returns VBox status code.
4462 * @retval VINF_SUCCESS when the highest set bit is found.
4463 * @retval VERR_NOT_FOUND when no bit is set.
4464 *
4465 * @param pVCpu The cross context virtual CPU structure.
4466 * @param offReg The offset of the APIC 256-bit sparse register.
4467 * @param pidxHighestBit Where to store the highest bit (most significant bit)
4468 * set in the register. Only valid when VINF_SUCCESS is
4469 * returned.
4470 *
4471 * @remarks The format of the 256-bit sparse register here mirrors that found in
4472 * real APIC hardware.
4473 */
4474static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
4475{
4476 Assert(offReg < XAPIC_OFF_END + 4);
4477 Assert(pidxHighestBit);
4478 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
4479
4480 /*
4481 * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
4482 * However, in each fragment only the first 4 bytes are used.
4483 */
4484 uint8_t const cFrags = 8;
4485 for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
4486 {
4487 uint16_t const offFrag = iFrag * 16;
4488 uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
4489 if (!u32Frag)
4490 continue;
4491
4492 unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
4493 Assert(idxHighestBit > 0);
4494 --idxHighestBit;
4495 Assert(idxHighestBit <= UINT8_MAX);
4496 *pidxHighestBit = idxHighestBit;
4497 return VINF_SUCCESS;
4498 }
4499 return VERR_NOT_FOUND;
4500}
4501
4502
4503/**
4504 * Evaluates pending virtual interrupts.
4505 *
4506 * @param pVCpu The cross context virtual CPU structure.
4507 */
4508IEM_STATIC void iemVmxEvalPendingVirtIntrs(PVMCPUCC pVCpu)
4509{
4510 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4511 Assert(pVmcs);
4512 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4513
4514 if (!(pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
4515 {
4516 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4517 uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
4518
4519 if ((uRvi >> 4) > (uPpr >> 4))
4520 {
4521 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signalling pending interrupt\n", uRvi, uPpr));
4522 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
4523 }
4524 else
4525 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
4526 }
4527}
4528
4529
4530/**
4531 * Performs PPR virtualization.
4532 *
4533 * @returns VBox strict status code.
4534 * @param pVCpu The cross context virtual CPU structure.
4535 */
4536IEM_STATIC void iemVmxPprVirtualization(PVMCPUCC pVCpu)
4537{
4538 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4539 Assert(pVmcs);
4540 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4541 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4542
4543 /*
4544 * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
4545 * or EOI-virtualization.
4546 *
4547 * See Intel spec. 29.1.3 "PPR Virtualization".
4548 */
4549 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4550 uint32_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4551
4552 uint32_t uPpr;
4553 if (((uTpr >> 4) & 0xf) >= ((uSvi >> 4) & 0xf))
4554 uPpr = uTpr & 0xff;
4555 else
4556 uPpr = uSvi & 0xf0;
4557
4558 Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
4559 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
4560}
4561
4562
4563/**
4564 * Performs VMX TPR virtualization.
4565 *
4566 * @returns VBox strict status code.
4567 * @param pVCpu The cross context virtual CPU structure.
4568 */
4569IEM_STATIC VBOXSTRICTRC iemVmxTprVirtualization(PVMCPUCC pVCpu)
4570{
4571 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4572 Assert(pVmcs);
4573 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4574
4575 /*
4576 * We should have already performed the virtual-APIC write to the TPR offset
4577 * in the virtual-APIC page. We now perform TPR virtualization.
4578 *
4579 * See Intel spec. 29.1.2 "TPR Virtualization".
4580 */
4581 if (!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
4582 {
4583 uint32_t const uTprThreshold = pVmcs->u32TprThreshold;
4584 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4585
4586 /*
4587 * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
4588 * See Intel spec. 29.1.2 "TPR Virtualization".
4589 */
4590 if (((uTpr >> 4) & 0xf) < uTprThreshold)
4591 {
4592 Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
4593 return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD, 0 /* u64ExitQual */);
4594 }
4595 }
4596 else
4597 {
4598 iemVmxPprVirtualization(pVCpu);
4599 iemVmxEvalPendingVirtIntrs(pVCpu);
4600 }
4601
4602 return VINF_SUCCESS;
4603}
4604
4605
4606/**
4607 * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
4608 * not.
4609 *
4610 * @returns @c true if the EOI write is intercepted, @c false otherwise.
4611 * @param pVCpu The cross context virtual CPU structure.
4612 * @param uVector The interrupt that was acknowledged using an EOI.
4613 */
4614IEM_STATIC bool iemVmxIsEoiInterceptSet(PCVMCPU pVCpu, uint8_t uVector)
4615{
4616 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4617 Assert(pVmcs);
4618 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4619
4620 if (uVector < 64)
4621 return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
4622 if (uVector < 128)
4623 return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
4624 if (uVector < 192)
4625 return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
4626 return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
4627}
4628
4629
4630/**
4631 * Performs EOI virtualization.
4632 *
4633 * @returns VBox strict status code.
4634 * @param pVCpu The cross context virtual CPU structure.
4635 */
4636IEM_STATIC VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPUCC pVCpu)
4637{
4638 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4639 Assert(pVmcs);
4640 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4641
4642 /*
4643 * Clear the interrupt guest-interrupt as no longer in-service (ISR)
4644 * and get the next guest-interrupt that's in-service (if any).
4645 *
4646 * See Intel spec. 29.1.4 "EOI Virtualization".
4647 */
4648 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4649 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4650 Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
4651
4652 uint8_t uVector = uSvi;
4653 iemVmxVirtApicClearVectorInReg(pVCpu, XAPIC_OFF_ISR0, uVector);
4654
4655 uVector = 0;
4656 iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
4657
4658 if (uVector)
4659 Log2(("eoi_virt: next interrupt %#x\n", uVector));
4660 else
4661 Log2(("eoi_virt: no interrupt pending in ISR\n"));
4662
4663 /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
4664 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
4665
4666 iemVmxPprVirtualization(pVCpu);
4667 if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
4668 return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI, uVector);
4669 iemVmxEvalPendingVirtIntrs(pVCpu);
4670 return VINF_SUCCESS;
4671}
4672
4673
4674/**
4675 * Performs self-IPI virtualization.
4676 *
4677 * @returns VBox strict status code.
4678 * @param pVCpu The cross context virtual CPU structure.
4679 */
4680IEM_STATIC VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPUCC pVCpu)
4681{
4682 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4683 Assert(pVmcs);
4684 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4685
4686 /*
4687 * We should have already performed the virtual-APIC write to the self-IPI offset
4688 * in the virtual-APIC page. We now perform self-IPI virtualization.
4689 *
4690 * See Intel spec. 29.1.5 "Self-IPI Virtualization".
4691 */
4692 uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
4693 Log2(("self_ipi_virt: uVector=%#x\n", uVector));
4694 iemVmxVirtApicSetVectorInReg(pVCpu, XAPIC_OFF_IRR0, uVector);
4695 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4696 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4697 if (uVector > uRvi)
4698 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
4699 iemVmxEvalPendingVirtIntrs(pVCpu);
4700 return VINF_SUCCESS;
4701}
4702
4703
4704/**
4705 * Performs VMX APIC-write emulation.
4706 *
4707 * @returns VBox strict status code.
4708 * @param pVCpu The cross context virtual CPU structure.
4709 */
4710IEM_STATIC VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu)
4711{
4712 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4713 Assert(pVmcs);
4714
4715 /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
4716 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
4717
4718 /*
4719 * Perform APIC-write emulation based on the virtual-APIC register written.
4720 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4721 */
4722 uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
4723 VBOXSTRICTRC rcStrict;
4724 switch (offApicWrite)
4725 {
4726 case XAPIC_OFF_TPR:
4727 {
4728 /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
4729 uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4730 uTpr &= UINT32_C(0x000000ff);
4731 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
4732 Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
4733 rcStrict = iemVmxTprVirtualization(pVCpu);
4734 break;
4735 }
4736
4737 case XAPIC_OFF_EOI:
4738 {
4739 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4740 {
4741 /* Clear VEOI and perform EOI virtualization. */
4742 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
4743 Log2(("iemVmxApicWriteEmulation: EOI write\n"));
4744 rcStrict = iemVmxEoiVirtualization(pVCpu);
4745 }
4746 else
4747 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4748 break;
4749 }
4750
4751 case XAPIC_OFF_ICR_LO:
4752 {
4753 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4754 {
4755 /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
4756 uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4757 uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
4758 uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
4759 if ( !(uIcrLo & fIcrLoMb0)
4760 && (uIcrLo & fIcrLoMb1))
4761 {
4762 Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
4763 rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
4764 }
4765 else
4766 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4767 }
4768 else
4769 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4770 break;
4771 }
4772
4773 case XAPIC_OFF_ICR_HI:
4774 {
4775 /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
4776 uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
4777 uIcrHi &= UINT32_C(0xff000000);
4778 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
4779 rcStrict = VINF_SUCCESS;
4780 break;
4781 }
4782
4783 default:
4784 {
4785 /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
4786 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4787 break;
4788 }
4789 }
4790
4791 return rcStrict;
4792}
4793
4794
4795/**
4796 * Checks guest control registers, debug registers and MSRs as part of VM-entry.
4797 *
4798 * @param pVCpu The cross context virtual CPU structure.
4799 * @param pszInstr The VMX instruction name (for logging purposes).
4800 */
4801DECLINLINE(int) iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPUCC pVCpu, const char *pszInstr)
4802{
4803 /*
4804 * Guest Control Registers, Debug Registers, and MSRs.
4805 * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
4806 */
4807 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4808 const char *const pszFailure = "VM-exit";
4809 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
4810
4811 /* CR0 reserved bits. */
4812 {
4813 /* CR0 MB1 bits. */
4814 uint64_t u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
4815 Assert(!(u64Cr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
4816 if (fUnrestrictedGuest)
4817 u64Cr0Fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4818 if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
4819 { /* likely */ }
4820 else
4821 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
4822
4823 /* CR0 MBZ bits. */
4824 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
4825 if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
4826 { /* likely */ }
4827 else
4828 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
4829
4830 /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
4831 if ( !fUnrestrictedGuest
4832 && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
4833 && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
4834 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
4835 }
4836
4837 /* CR4 reserved bits. */
4838 {
4839 /* CR4 MB1 bits. */
4840 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
4841 if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
4842 { /* likely */ }
4843 else
4844 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
4845
4846 /* CR4 MBZ bits. */
4847 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
4848 if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
4849 { /* likely */ }
4850 else
4851 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
4852 }
4853
4854 /* DEBUGCTL MSR. */
4855 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4856 || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
4857 { /* likely */ }
4858 else
4859 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
4860
4861 /* 64-bit CPU checks. */
4862 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
4863 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
4864 {
4865 if (fGstInLongMode)
4866 {
4867 /* PAE must be set. */
4868 if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
4869 && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
4870 { /* likely */ }
4871 else
4872 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
4873 }
4874 else
4875 {
4876 /* PCIDE should not be set. */
4877 if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
4878 { /* likely */ }
4879 else
4880 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
4881 }
4882
4883 /* CR3. */
4884 if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
4885 { /* likely */ }
4886 else
4887 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
4888
4889 /* DR7. */
4890 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4891 || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
4892 { /* likely */ }
4893 else
4894 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
4895
4896 /* SYSENTER ESP and SYSENTER EIP. */
4897 if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
4898 && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
4899 { /* likely */ }
4900 else
4901 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
4902 }
4903
4904 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
4905 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
4906
4907 /* PAT MSR. */
4908 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
4909 || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
4910 { /* likely */ }
4911 else
4912 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
4913
4914 /* EFER MSR. */
4915 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
4916 {
4917 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
4918 if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
4919 { /* likely */ }
4920 else
4921 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
4922
4923 bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
4924 bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
4925 if ( fGstLma == fGstInLongMode
4926 && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
4927 || fGstLma == fGstLme))
4928 { /* likely */ }
4929 else
4930 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
4931 }
4932
4933 /* We don't support IA32_BNDCFGS MSR yet. */
4934 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
4935
4936 NOREF(pszInstr);
4937 NOREF(pszFailure);
4938 return VINF_SUCCESS;
4939}
4940
4941
4942/**
4943 * Checks guest segment registers, LDTR and TR as part of VM-entry.
4944 *
4945 * @param pVCpu The cross context virtual CPU structure.
4946 * @param pszInstr The VMX instruction name (for logging purposes).
4947 */
4948DECLINLINE(int) iemVmxVmentryCheckGuestSegRegs(PVMCPUCC pVCpu, const char *pszInstr)
4949{
4950 /*
4951 * Segment registers.
4952 * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4953 */
4954 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4955 const char *const pszFailure = "VM-exit";
4956 bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
4957 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
4958 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
4959
4960 /* Selectors. */
4961 if ( !fGstInV86Mode
4962 && !fUnrestrictedGuest
4963 && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
4964 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
4965
4966 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
4967 {
4968 CPUMSELREG SelReg;
4969 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
4970 if (RT_LIKELY(rc == VINF_SUCCESS))
4971 { /* likely */ }
4972 else
4973 return rc;
4974
4975 /*
4976 * Virtual-8086 mode checks.
4977 */
4978 if (fGstInV86Mode)
4979 {
4980 /* Base address. */
4981 if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
4982 { /* likely */ }
4983 else
4984 {
4985 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
4986 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
4987 }
4988
4989 /* Limit. */
4990 if (SelReg.u32Limit == 0xffff)
4991 { /* likely */ }
4992 else
4993 {
4994 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
4995 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
4996 }
4997
4998 /* Attribute. */
4999 if (SelReg.Attr.u == 0xf3)
5000 { /* likely */ }
5001 else
5002 {
5003 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
5004 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5005 }
5006
5007 /* We're done; move to checking the next segment. */
5008 continue;
5009 }
5010
5011 /* Checks done by 64-bit CPUs. */
5012 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5013 {
5014 /* Base address. */
5015 if ( iSegReg == X86_SREG_FS
5016 || iSegReg == X86_SREG_GS)
5017 {
5018 if (X86_IS_CANONICAL(SelReg.u64Base))
5019 { /* likely */ }
5020 else
5021 {
5022 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5023 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5024 }
5025 }
5026 else if (iSegReg == X86_SREG_CS)
5027 {
5028 if (!RT_HI_U32(SelReg.u64Base))
5029 { /* likely */ }
5030 else
5031 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
5032 }
5033 else
5034 {
5035 if ( SelReg.Attr.n.u1Unusable
5036 || !RT_HI_U32(SelReg.u64Base))
5037 { /* likely */ }
5038 else
5039 {
5040 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5041 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5042 }
5043 }
5044 }
5045
5046 /*
5047 * Checks outside Virtual-8086 mode.
5048 */
5049 uint8_t const uSegType = SelReg.Attr.n.u4Type;
5050 uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
5051 uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
5052 uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
5053 uint8_t const fPresent = SelReg.Attr.n.u1Present;
5054 uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
5055 uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
5056 uint8_t const fSegLong = SelReg.Attr.n.u1Long;
5057
5058 /* Code or usable segment. */
5059 if ( iSegReg == X86_SREG_CS
5060 || fUsable)
5061 {
5062 /* Reserved bits (bits 31:17 and bits 11:8). */
5063 if (!(SelReg.Attr.u & 0xfffe0f00))
5064 { /* likely */ }
5065 else
5066 {
5067 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
5068 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5069 }
5070
5071 /* Descriptor type. */
5072 if (fCodeDataSeg)
5073 { /* likely */ }
5074 else
5075 {
5076 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
5077 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5078 }
5079
5080 /* Present. */
5081 if (fPresent)
5082 { /* likely */ }
5083 else
5084 {
5085 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
5086 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5087 }
5088
5089 /* Granularity. */
5090 if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
5091 && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
5092 { /* likely */ }
5093 else
5094 {
5095 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
5096 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5097 }
5098 }
5099
5100 if (iSegReg == X86_SREG_CS)
5101 {
5102 /* Segment Type and DPL. */
5103 if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5104 && fUnrestrictedGuest)
5105 {
5106 if (uDpl == 0)
5107 { /* likely */ }
5108 else
5109 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
5110 }
5111 else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
5112 || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5113 {
5114 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5115 if (uDpl == AttrSs.n.u2Dpl)
5116 { /* likely */ }
5117 else
5118 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
5119 }
5120 else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5121 == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5122 {
5123 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5124 if (uDpl <= AttrSs.n.u2Dpl)
5125 { /* likely */ }
5126 else
5127 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
5128 }
5129 else
5130 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
5131
5132 /* Def/Big. */
5133 if ( fGstInLongMode
5134 && fSegLong)
5135 {
5136 if (uDefBig == 0)
5137 { /* likely */ }
5138 else
5139 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
5140 }
5141 }
5142 else if (iSegReg == X86_SREG_SS)
5143 {
5144 /* Segment Type. */
5145 if ( !fUsable
5146 || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5147 || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
5148 { /* likely */ }
5149 else
5150 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
5151
5152 /* DPL. */
5153 if (!fUnrestrictedGuest)
5154 {
5155 if (uDpl == (SelReg.Sel & X86_SEL_RPL))
5156 { /* likely */ }
5157 else
5158 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
5159 }
5160 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5161 if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5162 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5163 {
5164 if (uDpl == 0)
5165 { /* likely */ }
5166 else
5167 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
5168 }
5169 }
5170 else
5171 {
5172 /* DS, ES, FS, GS. */
5173 if (fUsable)
5174 {
5175 /* Segment type. */
5176 if (uSegType & X86_SEL_TYPE_ACCESSED)
5177 { /* likely */ }
5178 else
5179 {
5180 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
5181 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5182 }
5183
5184 if ( !(uSegType & X86_SEL_TYPE_CODE)
5185 || (uSegType & X86_SEL_TYPE_READ))
5186 { /* likely */ }
5187 else
5188 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
5189
5190 /* DPL. */
5191 if ( !fUnrestrictedGuest
5192 && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5193 {
5194 if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
5195 { /* likely */ }
5196 else
5197 {
5198 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
5199 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5200 }
5201 }
5202 }
5203 }
5204 }
5205
5206 /*
5207 * LDTR.
5208 */
5209 {
5210 CPUMSELREG Ldtr;
5211 Ldtr.Sel = pVmcs->GuestLdtr;
5212 Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
5213 Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
5214 Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
5215
5216 if (!Ldtr.Attr.n.u1Unusable)
5217 {
5218 /* Selector. */
5219 if (!(Ldtr.Sel & X86_SEL_LDT))
5220 { /* likely */ }
5221 else
5222 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
5223
5224 /* Base. */
5225 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5226 {
5227 if (X86_IS_CANONICAL(Ldtr.u64Base))
5228 { /* likely */ }
5229 else
5230 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
5231 }
5232
5233 /* Attributes. */
5234 /* Reserved bits (bits 31:17 and bits 11:8). */
5235 if (!(Ldtr.Attr.u & 0xfffe0f00))
5236 { /* likely */ }
5237 else
5238 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
5239
5240 if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
5241 { /* likely */ }
5242 else
5243 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
5244
5245 if (!Ldtr.Attr.n.u1DescType)
5246 { /* likely */ }
5247 else
5248 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
5249
5250 if (Ldtr.Attr.n.u1Present)
5251 { /* likely */ }
5252 else
5253 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
5254
5255 if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
5256 && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
5257 { /* likely */ }
5258 else
5259 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
5260 }
5261 }
5262
5263 /*
5264 * TR.
5265 */
5266 {
5267 CPUMSELREG Tr;
5268 Tr.Sel = pVmcs->GuestTr;
5269 Tr.u32Limit = pVmcs->u32GuestTrLimit;
5270 Tr.u64Base = pVmcs->u64GuestTrBase.u;
5271 Tr.Attr.u = pVmcs->u32GuestTrAttr;
5272
5273 /* Selector. */
5274 if (!(Tr.Sel & X86_SEL_LDT))
5275 { /* likely */ }
5276 else
5277 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
5278
5279 /* Base. */
5280 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5281 {
5282 if (X86_IS_CANONICAL(Tr.u64Base))
5283 { /* likely */ }
5284 else
5285 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
5286 }
5287
5288 /* Attributes. */
5289 /* Reserved bits (bits 31:17 and bits 11:8). */
5290 if (!(Tr.Attr.u & 0xfffe0f00))
5291 { /* likely */ }
5292 else
5293 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
5294
5295 if (!Tr.Attr.n.u1Unusable)
5296 { /* likely */ }
5297 else
5298 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
5299
5300 if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
5301 || ( !fGstInLongMode
5302 && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
5303 { /* likely */ }
5304 else
5305 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
5306
5307 if (!Tr.Attr.n.u1DescType)
5308 { /* likely */ }
5309 else
5310 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
5311
5312 if (Tr.Attr.n.u1Present)
5313 { /* likely */ }
5314 else
5315 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
5316
5317 if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
5318 && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
5319 { /* likely */ }
5320 else
5321 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
5322 }
5323
5324 NOREF(pszInstr);
5325 NOREF(pszFailure);
5326 return VINF_SUCCESS;
5327}
5328
5329
5330/**
5331 * Checks guest GDTR and IDTR as part of VM-entry.
5332 *
5333 * @param pVCpu The cross context virtual CPU structure.
5334 * @param pszInstr The VMX instruction name (for logging purposes).
5335 */
5336DECLINLINE(int) iemVmxVmentryCheckGuestGdtrIdtr(PVMCPUCC pVCpu, const char *pszInstr)
5337{
5338 /*
5339 * GDTR and IDTR.
5340 * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
5341 */
5342 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5343 const char *const pszFailure = "VM-exit";
5344
5345 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5346 {
5347 /* Base. */
5348 if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
5349 { /* likely */ }
5350 else
5351 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
5352
5353 if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
5354 { /* likely */ }
5355 else
5356 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
5357 }
5358
5359 /* Limit. */
5360 if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
5361 { /* likely */ }
5362 else
5363 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
5364
5365 if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
5366 { /* likely */ }
5367 else
5368 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
5369
5370 NOREF(pszInstr);
5371 NOREF(pszFailure);
5372 return VINF_SUCCESS;
5373}
5374
5375
5376/**
5377 * Checks guest RIP and RFLAGS as part of VM-entry.
5378 *
5379 * @param pVCpu The cross context virtual CPU structure.
5380 * @param pszInstr The VMX instruction name (for logging purposes).
5381 */
5382DECLINLINE(int) iemVmxVmentryCheckGuestRipRFlags(PVMCPUCC pVCpu, const char *pszInstr)
5383{
5384 /*
5385 * RIP and RFLAGS.
5386 * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
5387 */
5388 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5389 const char *const pszFailure = "VM-exit";
5390 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5391
5392 /* RIP. */
5393 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5394 {
5395 X86DESCATTR AttrCs;
5396 AttrCs.u = pVmcs->u32GuestCsAttr;
5397 if ( !fGstInLongMode
5398 || !AttrCs.n.u1Long)
5399 {
5400 if (!RT_HI_U32(pVmcs->u64GuestRip.u))
5401 { /* likely */ }
5402 else
5403 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
5404 }
5405
5406 if ( fGstInLongMode
5407 && AttrCs.n.u1Long)
5408 {
5409 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
5410 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
5411 && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
5412 { /* likely */ }
5413 else
5414 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
5415 }
5416 }
5417
5418 /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
5419 uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
5420 : pVmcs->u64GuestRFlags.s.Lo;
5421 if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
5422 && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
5423 { /* likely */ }
5424 else
5425 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
5426
5427 if ( fGstInLongMode
5428 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5429 {
5430 if (!(uGuestRFlags & X86_EFL_VM))
5431 { /* likely */ }
5432 else
5433 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
5434 }
5435
5436 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(pVmcs->u32EntryIntInfo))
5437 {
5438 if (uGuestRFlags & X86_EFL_IF)
5439 { /* likely */ }
5440 else
5441 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
5442 }
5443
5444 NOREF(pszInstr);
5445 NOREF(pszFailure);
5446 return VINF_SUCCESS;
5447}
5448
5449
5450/**
5451 * Checks guest non-register state as part of VM-entry.
5452 *
5453 * @param pVCpu The cross context virtual CPU structure.
5454 * @param pszInstr The VMX instruction name (for logging purposes).
5455 */
5456DECLINLINE(int) iemVmxVmentryCheckGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
5457{
5458 /*
5459 * Guest non-register state.
5460 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5461 */
5462 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5463 const char *const pszFailure = "VM-exit";
5464
5465 /*
5466 * Activity state.
5467 */
5468 uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
5469 uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
5470 if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
5471 { /* likely */ }
5472 else
5473 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
5474
5475 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5476 if ( !AttrSs.n.u2Dpl
5477 || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
5478 { /* likely */ }
5479 else
5480 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
5481
5482 if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
5483 || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
5484 {
5485 if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
5486 { /* likely */ }
5487 else
5488 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
5489 }
5490
5491 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5492 {
5493 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5494 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
5495 AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
5496 switch (pVmcs->u32GuestActivityState)
5497 {
5498 case VMX_VMCS_GUEST_ACTIVITY_HLT:
5499 {
5500 if ( uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
5501 || uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5502 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5503 && ( uVector == X86_XCPT_DB
5504 || uVector == X86_XCPT_MC))
5505 || ( uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
5506 && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
5507 { /* likely */ }
5508 else
5509 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
5510 break;
5511 }
5512
5513 case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
5514 {
5515 if ( uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5516 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5517 && uVector == X86_XCPT_MC))
5518 { /* likely */ }
5519 else
5520 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
5521 break;
5522 }
5523
5524 case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
5525 default:
5526 break;
5527 }
5528 }
5529
5530 /*
5531 * Interruptibility state.
5532 */
5533 if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
5534 { /* likely */ }
5535 else
5536 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
5537
5538 if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5539 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5540 { /* likely */ }
5541 else
5542 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
5543
5544 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
5545 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5546 { /* likely */ }
5547 else
5548 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
5549
5550 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5551 {
5552 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5553 if (uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5554 {
5555 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5556 { /* likely */ }
5557 else
5558 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
5559 }
5560 else if (uType == VMX_ENTRY_INT_INFO_TYPE_NMI)
5561 {
5562 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5563 { /* likely */ }
5564 else
5565 {
5566 /*
5567 * We don't support injecting NMIs when blocking-by-STI would be in effect.
5568 * We update the Exit qualification only when blocking-by-STI is set
5569 * without blocking-by-MovSS being set. Although in practise it does not
5570 * make much difference since the order of checks are implementation defined.
5571 */
5572 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5573 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
5574 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
5575 }
5576
5577 if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
5578 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
5579 { /* likely */ }
5580 else
5581 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
5582 }
5583 }
5584
5585 /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
5586 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
5587 { /* likely */ }
5588 else
5589 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
5590
5591 /* We don't support SGX yet. So enclave-interruption must not be set. */
5592 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
5593 { /* likely */ }
5594 else
5595 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
5596
5597 /*
5598 * Pending debug exceptions.
5599 */
5600 uint64_t const uPendingDbgXcpts = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
5601 ? pVmcs->u64GuestPendingDbgXcpts.u
5602 : pVmcs->u64GuestPendingDbgXcpts.s.Lo;
5603 if (!(uPendingDbgXcpts & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
5604 { /* likely */ }
5605 else
5606 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
5607
5608 if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5609 || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
5610 {
5611 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5612 && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
5613 && !(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5614 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
5615
5616 if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5617 || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
5618 && (uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5619 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
5620 }
5621
5622 /* We don't support RTM (Real-time Transactional Memory) yet. */
5623 if (!(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
5624 { /* likely */ }
5625 else
5626 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
5627
5628 /*
5629 * VMCS link pointer.
5630 */
5631 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
5632 {
5633 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
5634 /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
5635 if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
5636 { /* likely */ }
5637 else
5638 {
5639 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5640 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
5641 }
5642
5643 /* Validate the address. */
5644 if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
5645 && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
5646 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
5647 { /* likely */ }
5648 else
5649 {
5650 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5651 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
5652 }
5653 }
5654
5655 NOREF(pszInstr);
5656 NOREF(pszFailure);
5657 return VINF_SUCCESS;
5658}
5659
5660
5661/**
5662 * Checks if the PDPTEs referenced by the nested-guest CR3 are valid as part of
5663 * VM-entry.
5664 *
5665 * @returns @c true if all PDPTEs are valid, @c false otherwise.
5666 * @param pVCpu The cross context virtual CPU structure.
5667 * @param pszInstr The VMX instruction name (for logging purposes).
5668 * @param pVmcs Pointer to the virtual VMCS.
5669 */
5670IEM_STATIC int iemVmxVmentryCheckGuestPdptesForCr3(PVMCPUCC pVCpu, const char *pszInstr, PVMXVVMCS pVmcs)
5671{
5672 /*
5673 * Check PDPTEs.
5674 * See Intel spec. 4.4.1 "PDPTE Registers".
5675 */
5676 uint64_t const uGuestCr3 = pVmcs->u64GuestCr3.u & X86_CR3_PAE_PAGE_MASK;
5677 const char *const pszFailure = "VM-exit";
5678
5679 X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
5680 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uGuestCr3, sizeof(aPdptes));
5681 if (RT_SUCCESS(rc))
5682 {
5683 for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
5684 {
5685 if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
5686 || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
5687 { /* likely */ }
5688 else
5689 {
5690 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
5691 VMXVDIAG const enmDiag = iemVmxGetDiagVmentryPdpteRsvd(iPdpte);
5692 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5693 }
5694 }
5695 }
5696 else
5697 {
5698 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
5699 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpteCr3ReadPhys);
5700 }
5701
5702 NOREF(pszFailure);
5703 NOREF(pszInstr);
5704 return rc;
5705}
5706
5707
5708/**
5709 * Checks guest PDPTEs as part of VM-entry.
5710 *
5711 * @param pVCpu The cross context virtual CPU structure.
5712 * @param pszInstr The VMX instruction name (for logging purposes).
5713 */
5714DECLINLINE(int) iemVmxVmentryCheckGuestPdptes(PVMCPUCC pVCpu, const char *pszInstr)
5715{
5716 /*
5717 * Guest PDPTEs.
5718 * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
5719 */
5720 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5721 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5722
5723 /* Check PDPTes if the VM-entry is to a guest using PAE paging. */
5724 int rc;
5725 if ( !fGstInLongMode
5726 && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
5727 && (pVmcs->u64GuestCr0.u & X86_CR0_PG))
5728 {
5729 /*
5730 * We don't support nested-paging for nested-guests yet.
5731 *
5732 * Without nested-paging for nested-guests, PDPTEs in the VMCS are not used,
5733 * rather we need to check the PDPTEs referenced by the guest CR3.
5734 */
5735 rc = iemVmxVmentryCheckGuestPdptesForCr3(pVCpu, pszInstr, pVmcs);
5736 }
5737 else
5738 rc = VINF_SUCCESS;
5739 return rc;
5740}
5741
5742
5743/**
5744 * Checks guest-state as part of VM-entry.
5745 *
5746 * @returns VBox status code.
5747 * @param pVCpu The cross context virtual CPU structure.
5748 * @param pszInstr The VMX instruction name (for logging purposes).
5749 */
5750IEM_STATIC int iemVmxVmentryCheckGuestState(PVMCPUCC pVCpu, const char *pszInstr)
5751{
5752 int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
5753 if (RT_SUCCESS(rc))
5754 {
5755 rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
5756 if (RT_SUCCESS(rc))
5757 {
5758 rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
5759 if (RT_SUCCESS(rc))
5760 {
5761 rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
5762 if (RT_SUCCESS(rc))
5763 {
5764 rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
5765 if (RT_SUCCESS(rc))
5766 return iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
5767 }
5768 }
5769 }
5770 }
5771 return rc;
5772}
5773
5774
5775/**
5776 * Checks host-state as part of VM-entry.
5777 *
5778 * @returns VBox status code.
5779 * @param pVCpu The cross context virtual CPU structure.
5780 * @param pszInstr The VMX instruction name (for logging purposes).
5781 */
5782IEM_STATIC int iemVmxVmentryCheckHostState(PVMCPUCC pVCpu, const char *pszInstr)
5783{
5784 /*
5785 * Host Control Registers and MSRs.
5786 * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
5787 */
5788 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5789 const char * const pszFailure = "VMFail";
5790
5791 /* CR0 reserved bits. */
5792 {
5793 /* CR0 MB1 bits. */
5794 uint64_t const u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
5795 if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
5796 { /* likely */ }
5797 else
5798 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
5799
5800 /* CR0 MBZ bits. */
5801 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5802 if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
5803 { /* likely */ }
5804 else
5805 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
5806 }
5807
5808 /* CR4 reserved bits. */
5809 {
5810 /* CR4 MB1 bits. */
5811 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5812 if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
5813 { /* likely */ }
5814 else
5815 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
5816
5817 /* CR4 MBZ bits. */
5818 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5819 if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
5820 { /* likely */ }
5821 else
5822 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
5823 }
5824
5825 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5826 {
5827 /* CR3 reserved bits. */
5828 if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
5829 { /* likely */ }
5830 else
5831 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
5832
5833 /* SYSENTER ESP and SYSENTER EIP. */
5834 if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
5835 && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
5836 { /* likely */ }
5837 else
5838 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
5839 }
5840
5841 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
5842 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
5843
5844 /* PAT MSR. */
5845 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
5846 || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
5847 { /* likely */ }
5848 else
5849 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
5850
5851 /* EFER MSR. */
5852 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
5853 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
5854 || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
5855 { /* likely */ }
5856 else
5857 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
5858
5859 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
5860 bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
5861 bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
5862 if ( fHostInLongMode == fHostLma
5863 && fHostInLongMode == fHostLme)
5864 { /* likely */ }
5865 else
5866 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
5867
5868 /*
5869 * Host Segment and Descriptor-Table Registers.
5870 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
5871 */
5872 /* Selector RPL and TI. */
5873 if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
5874 && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
5875 && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
5876 && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
5877 && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
5878 && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
5879 && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
5880 { /* likely */ }
5881 else
5882 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
5883
5884 /* CS and TR selectors cannot be 0. */
5885 if ( pVmcs->HostCs
5886 && pVmcs->HostTr)
5887 { /* likely */ }
5888 else
5889 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
5890
5891 /* SS cannot be 0 if 32-bit host. */
5892 if ( fHostInLongMode
5893 || pVmcs->HostSs)
5894 { /* likely */ }
5895 else
5896 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
5897
5898 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5899 {
5900 /* FS, GS, GDTR, IDTR, TR base address. */
5901 if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
5902 && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
5903 && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
5904 && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
5905 && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
5906 { /* likely */ }
5907 else
5908 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
5909 }
5910
5911 /*
5912 * Host address-space size for 64-bit CPUs.
5913 * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
5914 */
5915 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5916 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5917 {
5918 bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
5919
5920 /* Logical processor in IA-32e mode. */
5921 if (fCpuInLongMode)
5922 {
5923 if (fHostInLongMode)
5924 {
5925 /* PAE must be set. */
5926 if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
5927 { /* likely */ }
5928 else
5929 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
5930
5931 /* RIP must be canonical. */
5932 if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
5933 { /* likely */ }
5934 else
5935 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
5936 }
5937 else
5938 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
5939 }
5940 else
5941 {
5942 /* Logical processor is outside IA-32e mode. */
5943 if ( !fGstInLongMode
5944 && !fHostInLongMode)
5945 {
5946 /* PCIDE should not be set. */
5947 if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
5948 { /* likely */ }
5949 else
5950 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
5951
5952 /* The high 32-bits of RIP MBZ. */
5953 if (!pVmcs->u64HostRip.s.Hi)
5954 { /* likely */ }
5955 else
5956 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
5957 }
5958 else
5959 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
5960 }
5961 }
5962 else
5963 {
5964 /* Host address-space size for 32-bit CPUs. */
5965 if ( !fGstInLongMode
5966 && !fHostInLongMode)
5967 { /* likely */ }
5968 else
5969 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
5970 }
5971
5972 NOREF(pszInstr);
5973 NOREF(pszFailure);
5974 return VINF_SUCCESS;
5975}
5976
5977
5978/**
5979 * Checks VMCS controls fields as part of VM-entry.
5980 *
5981 * @returns VBox status code.
5982 * @param pVCpu The cross context virtual CPU structure.
5983 * @param pszInstr The VMX instruction name (for logging purposes).
5984 *
5985 * @remarks This may update secondary-processor based VM-execution control fields
5986 * in the current VMCS if necessary.
5987 */
5988IEM_STATIC int iemVmxVmentryCheckCtls(PVMCPUCC pVCpu, const char *pszInstr)
5989{
5990 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5991 const char * const pszFailure = "VMFail";
5992
5993 /*
5994 * VM-execution controls.
5995 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
5996 */
5997 {
5998 /* Pin-based VM-execution controls. */
5999 {
6000 VMXCTLSMSR const PinCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
6001 if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
6002 { /* likely */ }
6003 else
6004 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
6005
6006 if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
6007 { /* likely */ }
6008 else
6009 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
6010 }
6011
6012 /* Processor-based VM-execution controls. */
6013 {
6014 VMXCTLSMSR const ProcCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
6015 if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
6016 { /* likely */ }
6017 else
6018 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
6019
6020 if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
6021 { /* likely */ }
6022 else
6023 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
6024 }
6025
6026 /* Secondary processor-based VM-execution controls. */
6027 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6028 {
6029 VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
6030 if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
6031 { /* likely */ }
6032 else
6033 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
6034
6035 if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
6036 { /* likely */ }
6037 else
6038 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
6039 }
6040 else
6041 Assert(!pVmcs->u32ProcCtls2);
6042
6043 /* CR3-target count. */
6044 if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
6045 { /* likely */ }
6046 else
6047 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
6048
6049 /* I/O bitmaps physical addresses. */
6050 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6051 {
6052 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6053 if ( !(GCPhysIoBitmapA & X86_PAGE_4K_OFFSET_MASK)
6054 && !(GCPhysIoBitmapA >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6055 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapA))
6056 { /* likely */ }
6057 else
6058 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
6059
6060 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6061 if ( !(GCPhysIoBitmapB & X86_PAGE_4K_OFFSET_MASK)
6062 && !(GCPhysIoBitmapB >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6063 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapB))
6064 { /* likely */ }
6065 else
6066 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
6067 }
6068
6069 /* MSR bitmap physical address. */
6070 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6071 {
6072 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6073 if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
6074 && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6075 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
6076 { /* likely */ }
6077 else
6078 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
6079 }
6080
6081 /* TPR shadow related controls. */
6082 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6083 {
6084 /* Virtual-APIC page physical address. */
6085 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6086 if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
6087 && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6088 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
6089 { /* likely */ }
6090 else
6091 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
6092
6093 /* TPR threshold bits 31:4 MBZ without virtual-interrupt delivery. */
6094 if ( !(pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)
6095 || (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6096 { /* likely */ }
6097 else
6098 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
6099
6100 /* The rest done XXX document */
6101 }
6102 else
6103 {
6104 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6105 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6106 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6107 { /* likely */ }
6108 else
6109 {
6110 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6111 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
6112 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6113 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
6114 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
6115 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
6116 }
6117 }
6118
6119 /* NMI exiting and virtual-NMIs. */
6120 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
6121 || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6122 { /* likely */ }
6123 else
6124 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
6125
6126 /* Virtual-NMIs and NMI-window exiting. */
6127 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6128 || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
6129 { /* likely */ }
6130 else
6131 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
6132
6133 /* Virtualize APIC accesses. */
6134 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6135 {
6136 /* APIC-access physical address. */
6137 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6138 if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
6139 && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6140 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6141 { /* likely */ }
6142 else
6143 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
6144
6145 /*
6146 * Disallow APIC-access page and virtual-APIC page from being the same address.
6147 * Note! This is not an Intel requirement, but one imposed by our implementation.
6148 */
6149 /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
6150 * redirecting accesses between the APIC-access page and the virtual-APIC
6151 * page. If any nested hypervisor requires this, we can implement it later. */
6152 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6153 {
6154 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6155 if (GCPhysVirtApic != GCPhysApicAccess)
6156 { /* likely */ }
6157 else
6158 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
6159 }
6160 }
6161
6162 /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
6163 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6164 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
6165 { /* likely */ }
6166 else
6167 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6168
6169 /* Virtual-interrupt delivery requires external interrupt exiting. */
6170 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6171 || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
6172 { /* likely */ }
6173 else
6174 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6175
6176 /* VPID. */
6177 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
6178 || pVmcs->u16Vpid != 0)
6179 { /* likely */ }
6180 else
6181 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
6182
6183 Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
6184 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); /* We don't support EPT yet. */
6185 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
6186 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)); /* We don't support Unrestricted-guests yet. */
6187 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
6188 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_VE)); /* We don't support EPT-violation #VE yet. */
6189 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */
6190 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING)); /* We don't support TSC-scaling yet. */
6191
6192 /* VMCS shadowing. */
6193 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6194 {
6195 /* VMREAD-bitmap physical address. */
6196 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6197 if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
6198 && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6199 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
6200 { /* likely */ }
6201 else
6202 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
6203
6204 /* VMWRITE-bitmap physical address. */
6205 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
6206 if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
6207 && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6208 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
6209 { /* likely */ }
6210 else
6211 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
6212 }
6213 }
6214
6215 /*
6216 * VM-exit controls.
6217 * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
6218 */
6219 {
6220 VMXCTLSMSR const ExitCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
6221 if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
6222 { /* likely */ }
6223 else
6224 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
6225
6226 if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
6227 { /* likely */ }
6228 else
6229 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
6230
6231 /* Save preemption timer without activating it. */
6232 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
6233 || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
6234 { /* likely */ }
6235 else
6236 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
6237
6238 /* VM-exit MSR-store count and VM-exit MSR-store area address. */
6239 if (pVmcs->u32ExitMsrStoreCount)
6240 {
6241 if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
6242 && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6243 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
6244 { /* likely */ }
6245 else
6246 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
6247 }
6248
6249 /* VM-exit MSR-load count and VM-exit MSR-load area address. */
6250 if (pVmcs->u32ExitMsrLoadCount)
6251 {
6252 if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6253 && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6254 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
6255 { /* likely */ }
6256 else
6257 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
6258 }
6259 }
6260
6261 /*
6262 * VM-entry controls.
6263 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6264 */
6265 {
6266 VMXCTLSMSR const EntryCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
6267 if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
6268 { /* likely */ }
6269 else
6270 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
6271
6272 if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
6273 { /* likely */ }
6274 else
6275 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
6276
6277 /* Event injection. */
6278 uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
6279 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
6280 {
6281 /* Type and vector. */
6282 uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
6283 uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
6284 uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
6285 if ( !uRsvd
6286 && VMXIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
6287 && VMXIsEntryIntInfoVectorValid(uVector, uType))
6288 { /* likely */ }
6289 else
6290 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
6291
6292 /* Exception error code. */
6293 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
6294 {
6295 /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
6296 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
6297 || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
6298 { /* likely */ }
6299 else
6300 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
6301
6302 /* Exceptions that provide an error code. */
6303 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
6304 && ( uVector == X86_XCPT_DF
6305 || uVector == X86_XCPT_TS
6306 || uVector == X86_XCPT_NP
6307 || uVector == X86_XCPT_SS
6308 || uVector == X86_XCPT_GP
6309 || uVector == X86_XCPT_PF
6310 || uVector == X86_XCPT_AC))
6311 { /* likely */ }
6312 else
6313 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
6314
6315 /* Exception error-code reserved bits. */
6316 if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
6317 { /* likely */ }
6318 else
6319 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
6320
6321 /* Injecting a software interrupt, software exception or privileged software exception. */
6322 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
6323 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
6324 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
6325 {
6326 /* Instruction length must be in the range 0-15. */
6327 if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
6328 { /* likely */ }
6329 else
6330 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
6331
6332 /* However, instruction length of 0 is allowed only when its CPU feature is present. */
6333 if ( pVmcs->u32EntryInstrLen != 0
6334 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
6335 { /* likely */ }
6336 else
6337 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
6338 }
6339 }
6340 }
6341
6342 /* VM-entry MSR-load count and VM-entry MSR-load area address. */
6343 if (pVmcs->u32EntryMsrLoadCount)
6344 {
6345 if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6346 && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6347 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
6348 { /* likely */ }
6349 else
6350 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
6351 }
6352
6353 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
6354 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
6355 }
6356
6357 NOREF(pszInstr);
6358 NOREF(pszFailure);
6359 return VINF_SUCCESS;
6360}
6361
6362
6363/**
6364 * Loads the guest control registers, debug register and some MSRs as part of
6365 * VM-entry.
6366 *
6367 * @param pVCpu The cross context virtual CPU structure.
6368 */
6369IEM_STATIC void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPUCC pVCpu)
6370{
6371 /*
6372 * Load guest control registers, debug registers and MSRs.
6373 * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
6374 */
6375 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6376
6377 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6378 uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_GUEST_CR0_IGNORE_MASK)
6379 | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_GUEST_CR0_IGNORE_MASK);
6380 CPUMSetGuestCR0(pVCpu, uGstCr0);
6381 CPUMSetGuestCR4(pVCpu, pVmcs->u64GuestCr4.u);
6382 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
6383
6384 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6385 pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_GUEST_DR7_MBZ_MASK) | VMX_ENTRY_GUEST_DR7_MB1_MASK;
6386
6387 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
6388 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
6389 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
6390
6391 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6392 {
6393 /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
6394
6395 /* EFER MSR. */
6396 if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
6397 {
6398 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6399 uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
6400 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6401 bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
6402 if (fGstInLongMode)
6403 {
6404 /* If the nested-guest is in long mode, LMA and LME are both set. */
6405 Assert(fGstPaging);
6406 pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
6407 }
6408 else
6409 {
6410 /*
6411 * If the nested-guest is outside long mode:
6412 * - With paging: LMA is cleared, LME is cleared.
6413 * - Without paging: LMA is cleared, LME is left unmodified.
6414 */
6415 uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
6416 pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
6417 }
6418 }
6419 /* else: see below. */
6420 }
6421
6422 /* PAT MSR. */
6423 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
6424 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
6425
6426 /* EFER MSR. */
6427 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
6428 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
6429
6430 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6431 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
6432
6433 /* We don't support IA32_BNDCFGS MSR yet. */
6434 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
6435
6436 /* Nothing to do for SMBASE register - We don't support SMM yet. */
6437}
6438
6439
6440/**
6441 * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
6442 *
6443 * @param pVCpu The cross context virtual CPU structure.
6444 */
6445IEM_STATIC void iemVmxVmentryLoadGuestSegRegs(PVMCPUCC pVCpu)
6446{
6447 /*
6448 * Load guest segment registers, GDTR, IDTR, LDTR and TR.
6449 * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
6450 */
6451 /* CS, SS, ES, DS, FS, GS. */
6452 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6453 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
6454 {
6455 PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6456 CPUMSELREG VmcsSelReg;
6457 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
6458 AssertRC(rc); NOREF(rc);
6459 if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
6460 {
6461 pGstSelReg->Sel = VmcsSelReg.Sel;
6462 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6463 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6464 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6465 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6466 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6467 }
6468 else
6469 {
6470 pGstSelReg->Sel = VmcsSelReg.Sel;
6471 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6472 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6473 switch (iSegReg)
6474 {
6475 case X86_SREG_CS:
6476 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6477 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6478 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6479 break;
6480
6481 case X86_SREG_SS:
6482 pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
6483 pGstSelReg->u32Limit = 0;
6484 pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
6485 break;
6486
6487 case X86_SREG_ES:
6488 case X86_SREG_DS:
6489 pGstSelReg->u64Base = 0;
6490 pGstSelReg->u32Limit = 0;
6491 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6492 break;
6493
6494 case X86_SREG_FS:
6495 case X86_SREG_GS:
6496 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6497 pGstSelReg->u32Limit = 0;
6498 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6499 break;
6500 }
6501 Assert(pGstSelReg->Attr.n.u1Unusable);
6502 }
6503 }
6504
6505 /* LDTR. */
6506 pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
6507 pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
6508 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
6509 if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
6510 {
6511 pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
6512 pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
6513 pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
6514 }
6515 else
6516 {
6517 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
6518 pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
6519 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
6520 }
6521
6522 /* TR. */
6523 Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
6524 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
6525 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
6526 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
6527 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
6528 pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
6529 pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
6530
6531 /* GDTR. */
6532 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
6533 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
6534
6535 /* IDTR. */
6536 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
6537 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
6538}
6539
6540
6541/**
6542 * Loads the guest MSRs from the VM-entry MSR-load area as part of VM-entry.
6543 *
6544 * @returns VBox status code.
6545 * @param pVCpu The cross context virtual CPU structure.
6546 * @param pszInstr The VMX instruction name (for logging purposes).
6547 */
6548IEM_STATIC int iemVmxVmentryLoadGuestAutoMsrs(PVMCPUCC pVCpu, const char *pszInstr)
6549{
6550 /*
6551 * Load guest MSRs.
6552 * See Intel spec. 26.4 "Loading MSRs".
6553 */
6554 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6555 const char *const pszFailure = "VM-exit";
6556
6557 /*
6558 * The VM-entry MSR-load area address need not be a valid guest-physical address if the
6559 * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
6560 * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
6561 */
6562 uint32_t const cMsrs = pVmcs->u32EntryMsrLoadCount;
6563 if (!cMsrs)
6564 return VINF_SUCCESS;
6565
6566 /*
6567 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
6568 * exceeded including possibly raising #MC exceptions during VMX transition. Our
6569 * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
6570 */
6571 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
6572 if (fIsMsrCountValid)
6573 { /* likely */ }
6574 else
6575 {
6576 iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
6577 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
6578 }
6579
6580 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
6581 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea),
6582 GCPhysVmEntryMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
6583 if (RT_SUCCESS(rc))
6584 {
6585 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea);
6586 Assert(pMsr);
6587 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
6588 {
6589 if ( !pMsr->u32Reserved
6590 && pMsr->u32Msr != MSR_K8_FS_BASE
6591 && pMsr->u32Msr != MSR_K8_GS_BASE
6592 && pMsr->u32Msr != MSR_K6_EFER
6593 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
6594 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
6595 {
6596 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
6597 if (rcStrict == VINF_SUCCESS)
6598 continue;
6599
6600 /*
6601 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
6602 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
6603 * recording the MSR index in the Exit qualification (as per the Intel spec.) and indicated
6604 * further by our own, specific diagnostic code. Later, we can try implement handling of the
6605 * MSR in ring-0 if possible, or come up with a better, generic solution.
6606 */
6607 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6608 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
6609 ? kVmxVDiag_Vmentry_MsrLoadRing3
6610 : kVmxVDiag_Vmentry_MsrLoad;
6611 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
6612 }
6613 else
6614 {
6615 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6616 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
6617 }
6618 }
6619 }
6620 else
6621 {
6622 AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmEntryMsrLoadArea, rc));
6623 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
6624 }
6625
6626 NOREF(pszInstr);
6627 NOREF(pszFailure);
6628 return VINF_SUCCESS;
6629}
6630
6631
6632/**
6633 * Loads the guest-state non-register state as part of VM-entry.
6634 *
6635 * @returns VBox status code.
6636 * @param pVCpu The cross context virtual CPU structure.
6637 *
6638 * @remarks This must be called only after loading the nested-guest register state
6639 * (especially nested-guest RIP).
6640 */
6641IEM_STATIC void iemVmxVmentryLoadGuestNonRegState(PVMCPUCC pVCpu)
6642{
6643 /*
6644 * Load guest non-register state.
6645 * See Intel spec. 26.6 "Special Features of VM Entry"
6646 */
6647 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6648
6649 /*
6650 * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
6651 * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
6652 *
6653 * See Intel spec. 26.6.1 "Interruptibility State".
6654 */
6655 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
6656 if ( !fEntryVectoring
6657 && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
6658 EMSetInhibitInterruptsPC(pVCpu, pVmcs->u64GuestRip.u);
6659 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6660 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6661
6662 /* NMI blocking. */
6663 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6664 {
6665 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6666 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
6667 else
6668 {
6669 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
6670 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6671 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6672 }
6673 }
6674 else
6675 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
6676
6677 /* SMI blocking is irrelevant. We don't support SMIs yet. */
6678
6679 /* Loading PDPTEs will be taken care when we switch modes. We don't support EPT yet. */
6680 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
6681
6682 /* VPID is irrelevant. We don't support VPID yet. */
6683
6684 /* Clear address-range monitoring. */
6685 EMMonitorWaitClear(pVCpu);
6686}
6687
6688
6689/**
6690 * Loads the guest VMCS referenced state (such as MSR bitmaps, I/O bitmaps etc).
6691 *
6692 * @param pVCpu The cross context virtual CPU structure.
6693 * @param pszInstr The VMX instruction name (for logging purposes).
6694 *
6695 * @remarks This assumes various VMCS related data structure pointers have already
6696 * been verified prior to calling this function.
6697 */
6698IEM_STATIC int iemVmxVmentryLoadGuestVmcsRefState(PVMCPUCC pVCpu, const char *pszInstr)
6699{
6700 const char *const pszFailure = "VM-exit";
6701 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6702
6703 /*
6704 * Virtualize APIC accesses.
6705 */
6706 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6707 {
6708 /* APIC-access physical address. */
6709 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6710
6711 /*
6712 * Register the handler for the APIC-access page.
6713 *
6714 * We don't deregister the APIC-access page handler during the VM-exit as a different
6715 * nested-VCPU might be using the same guest-physical address for its APIC-access page.
6716 *
6717 * We leave the page registered until the first access that happens outside VMX non-root
6718 * mode. Guest software is allowed to access structures such as the APIC-access page
6719 * only when no logical processor with a current VMCS references it in VMX non-root mode,
6720 * otherwise it can lead to unpredictable behavior including guest triple-faults.
6721 *
6722 * See Intel spec. 24.11.4 "Software Access to Related Structures".
6723 */
6724 if (!PGMHandlerPhysicalIsRegistered(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6725 {
6726 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6727 PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
6728 int rc = PGMHandlerPhysicalRegister(pVM, GCPhysApicAccess, GCPhysApicAccess + X86_PAGE_4K_SIZE - 1,
6729 pVCpu0->iem.s.hVmxApicAccessPage, NIL_RTR3PTR /* pvUserR3 */,
6730 NIL_RTR0PTR /* pvUserR0 */, NIL_RTRCPTR /* pvUserRC */, NULL /* pszDesc */);
6731 if (RT_SUCCESS(rc))
6732 { /* likely */ }
6733 else
6734 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg);
6735 }
6736 }
6737
6738 /*
6739 * VMCS shadowing.
6740 */
6741 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6742 {
6743 /* Read the VMREAD-bitmap. */
6744 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6745 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
6746 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap),
6747 GCPhysVmreadBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
6748 if (RT_SUCCESS(rc))
6749 { /* likely */ }
6750 else
6751 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
6752
6753 /* Read the VMWRITE-bitmap. */
6754 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmwriteBitmap.u;
6755 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap));
6756 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap),
6757 GCPhysVmwriteBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
6758 if (RT_SUCCESS(rc))
6759 { /* likely */ }
6760 else
6761 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
6762 }
6763
6764 /*
6765 * I/O bitmaps.
6766 */
6767 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6768 {
6769 /* Read the IO bitmap A. */
6770 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6771 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap));
6772 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap),
6773 GCPhysIoBitmapA, VMX_V_IO_BITMAP_A_SIZE);
6774 if (RT_SUCCESS(rc))
6775 { /* likely */ }
6776 else
6777 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys);
6778
6779 /* Read the IO bitmap B. */
6780 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6781 uint8_t *pbIoBitmapB = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap) + VMX_V_IO_BITMAP_A_SIZE;
6782 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pbIoBitmapB, GCPhysIoBitmapB, VMX_V_IO_BITMAP_B_SIZE);
6783 if (RT_SUCCESS(rc))
6784 { /* likely */ }
6785 else
6786 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys);
6787 }
6788
6789 /*
6790 * TPR shadow and Virtual-APIC page.
6791 */
6792 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6793 {
6794 /* Verify TPR threshold and VTPR when both virtualize-APIC accesses and virtual-interrupt delivery aren't used. */
6795 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6796 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6797 {
6798 /* Read the VTPR from the virtual-APIC page. */
6799 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6800 uint8_t u8VTpr;
6801 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &u8VTpr, GCPhysVirtApic + XAPIC_OFF_TPR, sizeof(u8VTpr));
6802 if (RT_SUCCESS(rc))
6803 { /* likely */ }
6804 else
6805 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
6806
6807 /* Bits 3:0 of the TPR-threshold must not be greater than bits 7:4 of VTPR. */
6808 if ((uint8_t)RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) <= (u8VTpr & 0xf0))
6809 { /* likely */ }
6810 else
6811 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
6812 }
6813 }
6814
6815 /*
6816 * VMCS link pointer.
6817 */
6818 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
6819 {
6820 /* Read the VMCS-link pointer from guest memory. */
6821 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
6822 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs));
6823 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs),
6824 GCPhysShadowVmcs, VMX_V_SHADOW_VMCS_SIZE);
6825 if (RT_SUCCESS(rc))
6826 { /* likely */ }
6827 else
6828 {
6829 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6830 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
6831 }
6832
6833 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
6834 if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
6835 { /* likely */ }
6836 else
6837 {
6838 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6839 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
6840 }
6841
6842 /* Verify the shadow bit is set if VMCS shadowing is enabled . */
6843 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6844 || pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.fIsShadowVmcs)
6845 { /* likely */ }
6846 else
6847 {
6848 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6849 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
6850 }
6851
6852 /* Update our cache of the guest physical address of the shadow VMCS. */
6853 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
6854 }
6855
6856 /*
6857 * MSR bitmap.
6858 */
6859 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6860 {
6861 /* Read the MSR bitmap. */
6862 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6863 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
6864 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap),
6865 GCPhysMsrBitmap, VMX_V_MSR_BITMAP_SIZE);
6866 if (RT_SUCCESS(rc))
6867 { /* likely */ }
6868 else
6869 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
6870 }
6871
6872 NOREF(pszFailure);
6873 NOREF(pszInstr);
6874 return VINF_SUCCESS;
6875}
6876
6877
6878/**
6879 * Loads the guest-state as part of VM-entry.
6880 *
6881 * @returns VBox status code.
6882 * @param pVCpu The cross context virtual CPU structure.
6883 * @param pszInstr The VMX instruction name (for logging purposes).
6884 *
6885 * @remarks This must be done after all the necessary steps prior to loading of
6886 * guest-state (e.g. checking various VMCS state).
6887 */
6888IEM_STATIC int iemVmxVmentryLoadGuestState(PVMCPUCC pVCpu, const char *pszInstr)
6889{
6890 /* Load guest control registers, MSRs (that are directly part of the VMCS). */
6891 iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
6892
6893 /* Load guest segment registers. */
6894 iemVmxVmentryLoadGuestSegRegs(pVCpu);
6895
6896 /*
6897 * Load guest RIP, RSP and RFLAGS.
6898 * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
6899 */
6900 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6901 pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
6902 pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
6903 pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
6904
6905 /* Initialize the PAUSE-loop controls as part of VM-entry. */
6906 pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
6907 pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
6908
6909 /* Load guest non-register state (such as interrupt shadows, NMI blocking etc). */
6910 iemVmxVmentryLoadGuestNonRegState(pVCpu);
6911
6912 /* Load VMX related structures and state referenced by the VMCS. */
6913 int rc = iemVmxVmentryLoadGuestVmcsRefState(pVCpu, pszInstr);
6914 if (rc == VINF_SUCCESS)
6915 { /* likely */ }
6916 else
6917 return rc;
6918
6919 NOREF(pszInstr);
6920 return VINF_SUCCESS;
6921}
6922
6923
6924/**
6925 * Returns whether there are is a pending debug exception on VM-entry.
6926 *
6927 * @param pVCpu The cross context virtual CPU structure.
6928 * @param pszInstr The VMX instruction name (for logging purposes).
6929 */
6930IEM_STATIC bool iemVmxVmentryIsPendingDebugXcpt(PVMCPUCC pVCpu, const char *pszInstr)
6931{
6932 /*
6933 * Pending debug exceptions.
6934 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
6935 */
6936 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6937 Assert(pVmcs);
6938
6939 bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpts.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
6940 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
6941 if (fPendingDbgXcpt)
6942 {
6943 uint8_t uEntryIntInfoType;
6944 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
6945 if (fEntryVectoring)
6946 {
6947 switch (uEntryIntInfoType)
6948 {
6949 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
6950 case VMX_ENTRY_INT_INFO_TYPE_NMI:
6951 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
6952 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
6953 fPendingDbgXcpt = false;
6954 break;
6955
6956 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
6957 {
6958 /*
6959 * Whether the pending debug exception for software exceptions other than
6960 * #BP and #OF is delivered after injecting the exception or is discard
6961 * is CPU implementation specific. We will discard them (easier).
6962 */
6963 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
6964 if ( uVector != X86_XCPT_BP
6965 && uVector != X86_XCPT_OF)
6966 fPendingDbgXcpt = false;
6967 RT_FALL_THRU();
6968 }
6969 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
6970 {
6971 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
6972 fPendingDbgXcpt = false;
6973 break;
6974 }
6975 }
6976 }
6977 else
6978 {
6979 /*
6980 * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
6981 * pending debug exception is held pending or is discarded is CPU implementation
6982 * specific. We will discard them (easier).
6983 */
6984 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
6985 fPendingDbgXcpt = false;
6986
6987 /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
6988 if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
6989 fPendingDbgXcpt = false;
6990 }
6991 }
6992
6993 NOREF(pszInstr);
6994 return fPendingDbgXcpt;
6995}
6996
6997
6998/**
6999 * Set up the monitor-trap flag (MTF).
7000 *
7001 * @param pVCpu The cross context virtual CPU structure.
7002 * @param pszInstr The VMX instruction name (for logging purposes).
7003 */
7004IEM_STATIC void iemVmxVmentrySetupMtf(PVMCPUCC pVCpu, const char *pszInstr)
7005{
7006 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7007 Assert(pVmcs);
7008 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
7009 {
7010 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7011 Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
7012 }
7013 else
7014 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
7015 NOREF(pszInstr);
7016}
7017
7018
7019/**
7020 * Sets up NMI-window exiting.
7021 *
7022 * @param pVCpu The cross context virtual CPU structure.
7023 * @param pszInstr The VMX instruction name (for logging purposes).
7024 */
7025IEM_STATIC void iemVmxVmentrySetupNmiWindow(PVMCPUCC pVCpu, const char *pszInstr)
7026{
7027 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7028 Assert(pVmcs);
7029 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7030 {
7031 Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI);
7032 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
7033 Log(("%s: NMI-window set on VM-entry\n", pszInstr));
7034 }
7035 else
7036 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
7037 NOREF(pszInstr);
7038}
7039
7040
7041/**
7042 * Sets up interrupt-window exiting.
7043 *
7044 * @param pVCpu The cross context virtual CPU structure.
7045 * @param pszInstr The VMX instruction name (for logging purposes).
7046 */
7047IEM_STATIC void iemVmxVmentrySetupIntWindow(PVMCPUCC pVCpu, const char *pszInstr)
7048{
7049 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7050 Assert(pVmcs);
7051 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7052 {
7053 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW);
7054 Log(("%s: Interrupt-window set on VM-entry\n", pszInstr));
7055 }
7056 else
7057 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
7058 NOREF(pszInstr);
7059}
7060
7061
7062/**
7063 * Set up the VMX-preemption timer.
7064 *
7065 * @param pVCpu The cross context virtual CPU structure.
7066 * @param pszInstr The VMX instruction name (for logging purposes).
7067 */
7068IEM_STATIC void iemVmxVmentrySetupPreemptTimer(PVMCPUCC pVCpu, const char *pszInstr)
7069{
7070 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7071 Assert(pVmcs);
7072 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
7073 {
7074 /*
7075 * If the timer is 0, we must cause a VM-exit before executing the first
7076 * nested-guest instruction. So we can flag as though the timer has already
7077 * expired and we will check and cause a VM-exit at the right priority elsewhere
7078 * in the code.
7079 */
7080 uint64_t uEntryTick;
7081 uint32_t const uPreemptTimer = pVmcs->u32PreemptTimer;
7082 if (uPreemptTimer)
7083 {
7084 int rc = CPUMStartGuestVmxPremptTimer(pVCpu, uPreemptTimer, VMX_V_PREEMPT_TIMER_SHIFT, &uEntryTick);
7085 AssertRC(rc);
7086 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uEntryTick));
7087 }
7088 else
7089 {
7090 uEntryTick = TMCpuTickGetNoCheck(pVCpu);
7091 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
7092 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64 to expire immediately!\n", pszInstr, uEntryTick));
7093 }
7094
7095 pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick = uEntryTick;
7096 }
7097 else
7098 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
7099
7100 NOREF(pszInstr);
7101}
7102
7103
7104/**
7105 * Injects an event using TRPM given a VM-entry interruption info. and related
7106 * fields.
7107 *
7108 * @param pVCpu The cross context virtual CPU structure.
7109 * @param pszInstr The VMX instruction name (for logging purposes).
7110 * @param uEntryIntInfo The VM-entry interruption info.
7111 * @param uErrCode The error code associated with the event if any.
7112 * @param cbInstr The VM-entry instruction length (for software
7113 * interrupts and software exceptions). Pass 0
7114 * otherwise.
7115 * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
7116 */
7117IEM_STATIC void iemVmxVmentryInjectTrpmEvent(PVMCPUCC pVCpu, const char *pszInstr, uint32_t uEntryIntInfo, uint32_t uErrCode,
7118 uint32_t cbInstr, RTGCUINTPTR GCPtrFaultAddress)
7119{
7120 Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
7121
7122 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7123 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
7124 TRPMEVENT const enmTrpmEvent = HMVmxEventTypeToTrpmEventType(uEntryIntInfo);
7125
7126 Assert(uType != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT);
7127
7128 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrpmEvent);
7129 AssertRC(rc);
7130 Log(("%s: Injecting: vector=%#x type=%#x (%s)\n", pszInstr, uVector, uType, VMXGetEntryIntInfoTypeDesc(uType)));
7131
7132 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo))
7133 {
7134 TRPMSetErrorCode(pVCpu, uErrCode);
7135 Log(("%s: Injecting: err_code=%#x\n", pszInstr, uErrCode));
7136 }
7137
7138 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(uEntryIntInfo))
7139 {
7140 TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
7141 Log(("%s: Injecting: fault_addr=%RGp\n", pszInstr, GCPtrFaultAddress));
7142 }
7143 else
7144 {
7145 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
7146 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
7147 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7148 {
7149 TRPMSetInstrLength(pVCpu, cbInstr);
7150 Log(("%s: Injecting: instr_len=%u\n", pszInstr, cbInstr));
7151 }
7152 }
7153
7154 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7155 {
7156 TRPMSetTrapDueToIcebp(pVCpu);
7157 Log(("%s: Injecting: icebp\n", pszInstr));
7158 }
7159
7160 NOREF(pszInstr);
7161}
7162
7163
7164/**
7165 * Performs event injection (if any) as part of VM-entry.
7166 *
7167 * @param pVCpu The cross context virtual CPU structure.
7168 * @param pszInstr The VMX instruction name (for logging purposes).
7169 */
7170IEM_STATIC void iemVmxVmentryInjectEvent(PVMCPUCC pVCpu, const char *pszInstr)
7171{
7172 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7173
7174 /*
7175 * Inject events.
7176 * The event that is going to be made pending for injection is not subject to VMX intercepts,
7177 * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
7178 * of the current event -are- subject to intercepts, hence this flag will be flipped during
7179 * the actually delivery of this event.
7180 *
7181 * See Intel spec. 26.5 "Event Injection".
7182 */
7183 uint32_t const uEntryIntInfo = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u32EntryIntInfo;
7184 bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
7185
7186 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, !fEntryIntInfoValid);
7187 if (fEntryIntInfoValid)
7188 {
7189 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
7190 {
7191 Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
7192 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7193 }
7194 else
7195 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
7196 pVCpu->cpum.GstCtx.cr2);
7197
7198 /*
7199 * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
7200 *
7201 * However, we do it here on VM-entry as well because while it isn't visible to guest
7202 * software until VM-exit, when and if HM looks at the VMCS to continue nested-guest
7203 * execution using hardware-assisted VMX, it will not be try to inject the event again.
7204 *
7205 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7206 */
7207 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
7208 }
7209 else
7210 {
7211 /*
7212 * Inject any pending guest debug exception.
7213 * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
7214 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7215 */
7216 bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
7217 if (fPendingDbgXcpt)
7218 {
7219 uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7220 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
7221 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7222 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
7223 0 /* GCPtrFaultAddress */);
7224 }
7225 }
7226
7227 NOREF(pszInstr);
7228}
7229
7230
7231/**
7232 * Initializes all read-only VMCS fields as part of VM-entry.
7233 *
7234 * @param pVCpu The cross context virtual CPU structure.
7235 */
7236IEM_STATIC void iemVmxVmentryInitReadOnlyFields(PVMCPUCC pVCpu)
7237{
7238 /*
7239 * Any VMCS field which we do not establish on every VM-exit but may potentially
7240 * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
7241 * specified to be undefined, needs to be initialized here.
7242 *
7243 * Thus, it is especially important to clear the Exit qualification field
7244 * since it must be zero for VM-exits where it is not used. Similarly, the
7245 * VM-exit interruption information field's valid bit needs to be cleared for
7246 * the same reasons.
7247 */
7248 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7249 Assert(pVmcs);
7250
7251 /* 16-bit (none currently). */
7252 /* 32-bit. */
7253 pVmcs->u32RoVmInstrError = 0;
7254 pVmcs->u32RoExitReason = 0;
7255 pVmcs->u32RoExitIntInfo = 0;
7256 pVmcs->u32RoExitIntErrCode = 0;
7257 pVmcs->u32RoIdtVectoringInfo = 0;
7258 pVmcs->u32RoIdtVectoringErrCode = 0;
7259 pVmcs->u32RoExitInstrLen = 0;
7260 pVmcs->u32RoExitInstrInfo = 0;
7261
7262 /* 64-bit. */
7263 pVmcs->u64RoGuestPhysAddr.u = 0;
7264
7265 /* Natural-width. */
7266 pVmcs->u64RoExitQual.u = 0;
7267 pVmcs->u64RoIoRcx.u = 0;
7268 pVmcs->u64RoIoRsi.u = 0;
7269 pVmcs->u64RoIoRdi.u = 0;
7270 pVmcs->u64RoIoRip.u = 0;
7271 pVmcs->u64RoGuestLinearAddr.u = 0;
7272}
7273
7274
7275/**
7276 * VMLAUNCH/VMRESUME instruction execution worker.
7277 *
7278 * @returns Strict VBox status code.
7279 * @param pVCpu The cross context virtual CPU structure.
7280 * @param cbInstr The instruction length in bytes.
7281 * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
7282 * VMXINSTRID_VMRESUME).
7283 *
7284 * @remarks Common VMX instruction checks are already expected to by the caller,
7285 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7286 */
7287IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
7288{
7289# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
7290 RT_NOREF3(pVCpu, cbInstr, uInstrId);
7291 return VINF_EM_RAW_EMULATE_INSTR;
7292# else
7293 Assert( uInstrId == VMXINSTRID_VMLAUNCH
7294 || uInstrId == VMXINSTRID_VMRESUME);
7295 const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
7296
7297 /* Nested-guest intercept. */
7298 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7299 return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
7300
7301 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
7302
7303 /*
7304 * Basic VM-entry checks.
7305 * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
7306 * The checks following that do not have to follow a specific order.
7307 *
7308 * See Intel spec. 26.1 "Basic VM-entry Checks".
7309 */
7310
7311 /* CPL. */
7312 if (pVCpu->iem.s.uCpl == 0)
7313 { /* likely */ }
7314 else
7315 {
7316 Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
7317 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
7318 return iemRaiseGeneralProtectionFault0(pVCpu);
7319 }
7320
7321 /* Current VMCS valid. */
7322 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7323 { /* likely */ }
7324 else
7325 {
7326 Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7327 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
7328 iemVmxVmFailInvalid(pVCpu);
7329 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7330 return VINF_SUCCESS;
7331 }
7332
7333 /* Current VMCS is not a shadow VMCS. */
7334 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u32VmcsRevId.n.fIsShadowVmcs)
7335 { /* likely */ }
7336 else
7337 {
7338 Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7339 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
7340 iemVmxVmFailInvalid(pVCpu);
7341 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7342 return VINF_SUCCESS;
7343 }
7344
7345 /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
7346 * use block-by-STI here which is not quite correct. */
7347 if ( !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
7348 || pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
7349 { /* likely */ }
7350 else
7351 {
7352 Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
7353 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
7354 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
7355 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7356 return VINF_SUCCESS;
7357 }
7358
7359 if (uInstrId == VMXINSTRID_VMLAUNCH)
7360 {
7361 /* VMLAUNCH with non-clear VMCS. */
7362 if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR)
7363 { /* likely */ }
7364 else
7365 {
7366 Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
7367 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
7368 iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
7369 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7370 return VINF_SUCCESS;
7371 }
7372 }
7373 else
7374 {
7375 /* VMRESUME with non-launched VMCS. */
7376 if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_LAUNCH_STATE_LAUNCHED)
7377 { /* likely */ }
7378 else
7379 {
7380 Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
7381 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
7382 iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
7383 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7384 return VINF_SUCCESS;
7385 }
7386 }
7387
7388 /*
7389 * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
7390 * while entering VMX non-root mode. We do some of this while checking VM-execution
7391 * controls. The nested hypervisor should not make assumptions and cannot expect
7392 * predictable behavior if changes to these structures are made in guest memory while
7393 * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
7394 * modify them anyway as we cache them in host memory.
7395 *
7396 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7397 */
7398 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7399 Assert(pVmcs);
7400 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
7401
7402 int rc = iemVmxVmentryCheckCtls(pVCpu, pszInstr);
7403 if (RT_SUCCESS(rc))
7404 {
7405 rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
7406 if (RT_SUCCESS(rc))
7407 {
7408 /*
7409 * Initialize read-only VMCS fields before VM-entry since we don't update all of them
7410 * for every VM-exit. This needs to be done before invoking a VM-exit (even those
7411 * ones that may occur during VM-entry below).
7412 */
7413 iemVmxVmentryInitReadOnlyFields(pVCpu);
7414
7415 /*
7416 * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
7417 * So we save the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
7418 * VM-exit when required.
7419 * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
7420 */
7421 iemVmxVmentrySaveNmiBlockingFF(pVCpu);
7422
7423 rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
7424 if (RT_SUCCESS(rc))
7425 {
7426 rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
7427 if (RT_SUCCESS(rc))
7428 {
7429 rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
7430 if (RT_SUCCESS(rc))
7431 {
7432 Assert(rc != VINF_CPUM_R3_MSR_WRITE);
7433
7434 /* VMLAUNCH instruction must update the VMCS launch state. */
7435 if (uInstrId == VMXINSTRID_VMLAUNCH)
7436 pVmcs->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_LAUNCHED;
7437
7438 /* Perform the VMX transition (PGM updates). */
7439 VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
7440 if (rcStrict == VINF_SUCCESS)
7441 { /* likely */ }
7442 else if (RT_SUCCESS(rcStrict))
7443 {
7444 Log3(("%s: iemVmxWorldSwitch returns %Rrc -> Setting passup status\n", pszInstr,
7445 VBOXSTRICTRC_VAL(rcStrict)));
7446 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7447 }
7448 else
7449 {
7450 Log3(("%s: iemVmxWorldSwitch failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7451 return rcStrict;
7452 }
7453
7454 /* Paranoia. */
7455 Assert(rcStrict == VINF_SUCCESS);
7456
7457 /* We've now entered nested-guest execution. */
7458 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
7459
7460 /*
7461 * The priority of potential VM-exits during VM-entry is important.
7462 * The priorities of VM-exits and events are listed from highest
7463 * to lowest as follows:
7464 *
7465 * 1. Event injection.
7466 * 2. Trap on task-switch (T flag set in TSS).
7467 * 3. TPR below threshold / APIC-write.
7468 * 4. SMI, INIT.
7469 * 5. MTF exit.
7470 * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
7471 * 7. VMX-preemption timer.
7472 * 9. NMI-window exit.
7473 * 10. NMI injection.
7474 * 11. Interrupt-window exit.
7475 * 12. Virtual-interrupt injection.
7476 * 13. Interrupt injection.
7477 * 14. Process next instruction (fetch, decode, execute).
7478 */
7479
7480 /* Setup VMX-preemption timer. */
7481 iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
7482
7483 /* Setup monitor-trap flag. */
7484 iemVmxVmentrySetupMtf(pVCpu, pszInstr);
7485
7486 /* Setup NMI-window exiting. */
7487 iemVmxVmentrySetupNmiWindow(pVCpu, pszInstr);
7488
7489 /* Setup interrupt-window exiting. */
7490 iemVmxVmentrySetupIntWindow(pVCpu, pszInstr);
7491
7492 /*
7493 * Inject any event that the nested hypervisor wants to inject.
7494 * Note! We cannot immediately perform the event injection here as we may have
7495 * pending PGM operations to perform due to switching page tables and/or
7496 * mode.
7497 */
7498 iemVmxVmentryInjectEvent(pVCpu, pszInstr);
7499
7500# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
7501 /* Reschedule to IEM-only execution of the nested-guest. */
7502 Log(("%s: Enabling IEM-only EM execution policy!\n", pszInstr));
7503 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
7504 if (rcSched != VINF_SUCCESS)
7505 iemSetPassUpStatus(pVCpu, rcSched);
7506# endif
7507
7508 /* Finally, done. */
7509 Log3(("%s: cs:rip=%#04x:%#RX64 cr0=%#RX64 (%#RX64) cr4=%#RX64 (%#RX64) efer=%#RX64\n",
7510 pszInstr, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
7511 pVmcs->u64Cr0ReadShadow.u, pVCpu->cpum.GstCtx.cr4, pVmcs->u64Cr4ReadShadow.u,
7512 pVCpu->cpum.GstCtx.msrEFER));
7513 return VINF_SUCCESS;
7514 }
7515 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED,
7516 pVmcs->u64RoExitQual.u);
7517 }
7518 }
7519 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED,
7520 pVmcs->u64RoExitQual.u);
7521 }
7522
7523 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
7524 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7525 return VINF_SUCCESS;
7526 }
7527
7528 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
7529 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7530 return VINF_SUCCESS;
7531# endif
7532}
7533
7534
7535/**
7536 * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
7537 * (causes a VM-exit) or not.
7538 *
7539 * @returns @c true if the instruction is intercepted, @c false otherwise.
7540 * @param pVCpu The cross context virtual CPU structure.
7541 * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
7542 * VMX_EXIT_WRMSR).
7543 * @param idMsr The MSR.
7544 */
7545IEM_STATIC bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr)
7546{
7547 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
7548 Assert( uExitReason == VMX_EXIT_RDMSR
7549 || uExitReason == VMX_EXIT_WRMSR);
7550
7551 /* Consult the MSR bitmap if the feature is supported. */
7552 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7553 Assert(pVmcs);
7554 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7555 {
7556 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
7557 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr);
7558 if (uExitReason == VMX_EXIT_RDMSR)
7559 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_RD);
7560 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_WR);
7561 }
7562
7563 /* Without MSR bitmaps, all MSR accesses are intercepted. */
7564 return true;
7565}
7566
7567
7568/**
7569 * VMREAD instruction execution worker that does not perform any validation checks.
7570 *
7571 * Callers are expected to have performed the necessary checks and to ensure the
7572 * VMREAD will succeed.
7573 *
7574 * @param pVmcs Pointer to the virtual VMCS.
7575 * @param pu64Dst Where to write the VMCS value.
7576 * @param u64VmcsField The VMCS field.
7577 *
7578 * @remarks May be called with interrupts disabled.
7579 */
7580IEM_STATIC void iemVmxVmreadNoCheck(PCVMXVVMCS pVmcs, uint64_t *pu64Dst, uint64_t u64VmcsField)
7581{
7582 VMXVMCSFIELD VmcsField;
7583 VmcsField.u = u64VmcsField;
7584 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
7585 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
7586 uint8_t const uWidthType = (uWidth << 2) | uType;
7587 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
7588 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
7589 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
7590 AssertMsg(offField < VMX_V_VMCS_SIZE, ("off=%u field=%#RX64 width=%#x type=%#x index=%#x (%u)\n", offField, u64VmcsField,
7591 uWidth, uType, uIndex, uIndex));
7592 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
7593
7594 /*
7595 * Read the VMCS component based on the field's effective width.
7596 *
7597 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
7598 * indicates high bits (little endian).
7599 *
7600 * Note! The caller is responsible to trim the result and update registers
7601 * or memory locations are required. Here we just zero-extend to the largest
7602 * type (i.e. 64-bits).
7603 */
7604 uint8_t const *pbVmcs = (uint8_t const *)pVmcs;
7605 uint8_t const *pbField = pbVmcs + offField;
7606 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
7607 switch (uEffWidth)
7608 {
7609 case VMX_VMCSFIELD_WIDTH_64BIT:
7610 case VMX_VMCSFIELD_WIDTH_NATURAL: *pu64Dst = *(uint64_t const *)pbField; break;
7611 case VMX_VMCSFIELD_WIDTH_32BIT: *pu64Dst = *(uint32_t const *)pbField; break;
7612 case VMX_VMCSFIELD_WIDTH_16BIT: *pu64Dst = *(uint16_t const *)pbField; break;
7613 }
7614}
7615
7616
7617/**
7618 * VMREAD common (memory/register) instruction execution worker.
7619 *
7620 * @returns Strict VBox status code.
7621 * @param pVCpu The cross context virtual CPU structure.
7622 * @param cbInstr The instruction length in bytes.
7623 * @param pu64Dst Where to write the VMCS value (only updated when
7624 * VINF_SUCCESS is returned).
7625 * @param u64VmcsField The VMCS field.
7626 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7627 * NULL.
7628 */
7629IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64VmcsField,
7630 PCVMXVEXITINFO pExitInfo)
7631{
7632 /* Nested-guest intercept. */
7633 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7634 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64VmcsField))
7635 {
7636 if (pExitInfo)
7637 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
7638 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
7639 }
7640
7641 /* CPL. */
7642 if (pVCpu->iem.s.uCpl == 0)
7643 { /* likely */ }
7644 else
7645 {
7646 Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
7647 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
7648 return iemRaiseGeneralProtectionFault0(pVCpu);
7649 }
7650
7651 /* VMCS pointer in root mode. */
7652 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
7653 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7654 { /* likely */ }
7655 else
7656 {
7657 Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7658 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
7659 iemVmxVmFailInvalid(pVCpu);
7660 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7661 return VINF_SUCCESS;
7662 }
7663
7664 /* VMCS-link pointer in non-root mode. */
7665 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7666 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
7667 { /* likely */ }
7668 else
7669 {
7670 Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
7671 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
7672 iemVmxVmFailInvalid(pVCpu);
7673 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7674 return VINF_SUCCESS;
7675 }
7676
7677 /* Supported VMCS field. */
7678 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
7679 { /* likely */ }
7680 else
7681 {
7682 Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
7683 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
7684 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
7685 iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
7686 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7687 return VINF_SUCCESS;
7688 }
7689
7690 /*
7691 * Reading from the current or shadow VMCS.
7692 */
7693 PCVMXVVMCS pVmcs = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7694 ? pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)
7695 : pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
7696 Assert(pVmcs);
7697 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
7698 return VINF_SUCCESS;
7699}
7700
7701
7702/**
7703 * VMREAD (64-bit register) instruction execution worker.
7704 *
7705 * @returns Strict VBox status code.
7706 * @param pVCpu The cross context virtual CPU structure.
7707 * @param cbInstr The instruction length in bytes.
7708 * @param pu64Dst Where to store the VMCS field's value.
7709 * @param u64VmcsField The VMCS field.
7710 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7711 * NULL.
7712 */
7713IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64VmcsField,
7714 PCVMXVEXITINFO pExitInfo)
7715{
7716 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64VmcsField, pExitInfo);
7717 if (rcStrict == VINF_SUCCESS)
7718 {
7719 iemVmxVmreadSuccess(pVCpu, cbInstr);
7720 return VINF_SUCCESS;
7721 }
7722
7723 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7724 return rcStrict;
7725}
7726
7727
7728/**
7729 * VMREAD (32-bit register) instruction execution worker.
7730 *
7731 * @returns Strict VBox status code.
7732 * @param pVCpu The cross context virtual CPU structure.
7733 * @param cbInstr The instruction length in bytes.
7734 * @param pu32Dst Where to store the VMCS field's value.
7735 * @param u32VmcsField The VMCS field.
7736 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7737 * NULL.
7738 */
7739IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32VmcsField,
7740 PCVMXVEXITINFO pExitInfo)
7741{
7742 uint64_t u64Dst;
7743 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32VmcsField, pExitInfo);
7744 if (rcStrict == VINF_SUCCESS)
7745 {
7746 *pu32Dst = u64Dst;
7747 iemVmxVmreadSuccess(pVCpu, cbInstr);
7748 return VINF_SUCCESS;
7749 }
7750
7751 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7752 return rcStrict;
7753}
7754
7755
7756/**
7757 * VMREAD (memory) instruction execution worker.
7758 *
7759 * @returns Strict VBox status code.
7760 * @param pVCpu The cross context virtual CPU structure.
7761 * @param cbInstr The instruction length in bytes.
7762 * @param iEffSeg The effective segment register to use with @a u64Val.
7763 * Pass UINT8_MAX if it is a register access.
7764 * @param GCPtrDst The guest linear address to store the VMCS field's
7765 * value.
7766 * @param u64VmcsField The VMCS field.
7767 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7768 * NULL.
7769 */
7770IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDst, uint64_t u64VmcsField,
7771 PCVMXVEXITINFO pExitInfo)
7772{
7773 uint64_t u64Dst;
7774 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64VmcsField, pExitInfo);
7775 if (rcStrict == VINF_SUCCESS)
7776 {
7777 /*
7778 * Write the VMCS field's value to the location specified in guest-memory.
7779 */
7780 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
7781 rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
7782 else
7783 rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
7784 if (rcStrict == VINF_SUCCESS)
7785 {
7786 iemVmxVmreadSuccess(pVCpu, cbInstr);
7787 return VINF_SUCCESS;
7788 }
7789
7790 Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
7791 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
7792 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrDst;
7793 return rcStrict;
7794 }
7795
7796 Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7797 return rcStrict;
7798}
7799
7800
7801/**
7802 * VMWRITE instruction execution worker that does not perform any validation
7803 * checks.
7804 *
7805 * Callers are expected to have performed the necessary checks and to ensure the
7806 * VMWRITE will succeed.
7807 *
7808 * @param pVmcs Pointer to the virtual VMCS.
7809 * @param u64Val The value to write.
7810 * @param u64VmcsField The VMCS field.
7811 *
7812 * @remarks May be called with interrupts disabled.
7813 */
7814IEM_STATIC void iemVmxVmwriteNoCheck(PVMXVVMCS pVmcs, uint64_t u64Val, uint64_t u64VmcsField)
7815{
7816 VMXVMCSFIELD VmcsField;
7817 VmcsField.u = u64VmcsField;
7818 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
7819 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
7820 uint8_t const uWidthType = (uWidth << 2) | uType;
7821 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
7822 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
7823 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
7824 Assert(offField < VMX_V_VMCS_SIZE);
7825 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
7826
7827 /*
7828 * Write the VMCS component based on the field's effective width.
7829 *
7830 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
7831 * indicates high bits (little endian).
7832 */
7833 uint8_t *pbVmcs = (uint8_t *)pVmcs;
7834 uint8_t *pbField = pbVmcs + offField;
7835 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
7836 switch (uEffWidth)
7837 {
7838 case VMX_VMCSFIELD_WIDTH_64BIT:
7839 case VMX_VMCSFIELD_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
7840 case VMX_VMCSFIELD_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
7841 case VMX_VMCSFIELD_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
7842 }
7843}
7844
7845
7846/**
7847 * VMWRITE instruction execution worker.
7848 *
7849 * @returns Strict VBox status code.
7850 * @param pVCpu The cross context virtual CPU structure.
7851 * @param cbInstr The instruction length in bytes.
7852 * @param iEffSeg The effective segment register to use with @a u64Val.
7853 * Pass UINT8_MAX if it is a register access.
7854 * @param u64Val The value to write (or guest linear address to the
7855 * value), @a iEffSeg will indicate if it's a memory
7856 * operand.
7857 * @param u64VmcsField The VMCS field.
7858 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7859 * NULL.
7860 */
7861IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, uint64_t u64Val, uint64_t u64VmcsField,
7862 PCVMXVEXITINFO pExitInfo)
7863{
7864 /* Nested-guest intercept. */
7865 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7866 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64VmcsField))
7867 {
7868 if (pExitInfo)
7869 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
7870 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
7871 }
7872
7873 /* CPL. */
7874 if (pVCpu->iem.s.uCpl == 0)
7875 { /* likely */ }
7876 else
7877 {
7878 Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
7879 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
7880 return iemRaiseGeneralProtectionFault0(pVCpu);
7881 }
7882
7883 /* VMCS pointer in root mode. */
7884 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
7885 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7886 { /* likely */ }
7887 else
7888 {
7889 Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7890 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
7891 iemVmxVmFailInvalid(pVCpu);
7892 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7893 return VINF_SUCCESS;
7894 }
7895
7896 /* VMCS-link pointer in non-root mode. */
7897 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7898 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
7899 { /* likely */ }
7900 else
7901 {
7902 Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
7903 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
7904 iemVmxVmFailInvalid(pVCpu);
7905 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7906 return VINF_SUCCESS;
7907 }
7908
7909 /* If the VMWRITE instruction references memory, access the specified memory operand. */
7910 bool const fIsRegOperand = iEffSeg == UINT8_MAX;
7911 if (!fIsRegOperand)
7912 {
7913 /* Read the value from the specified guest memory location. */
7914 VBOXSTRICTRC rcStrict;
7915 RTGCPTR const GCPtrVal = u64Val;
7916 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
7917 rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
7918 else
7919 rcStrict = iemMemFetchDataU32_ZX_U64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
7920 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
7921 {
7922 Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
7923 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
7924 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVal;
7925 return rcStrict;
7926 }
7927 }
7928 else
7929 Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
7930
7931 /* Supported VMCS field. */
7932 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
7933 { /* likely */ }
7934 else
7935 {
7936 Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
7937 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
7938 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
7939 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
7940 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7941 return VINF_SUCCESS;
7942 }
7943
7944 /* Read-only VMCS field. */
7945 bool const fIsFieldReadOnly = VMXIsVmcsFieldReadOnly(u64VmcsField);
7946 if ( !fIsFieldReadOnly
7947 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
7948 { /* likely */ }
7949 else
7950 {
7951 Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64VmcsField));
7952 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
7953 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
7954 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
7955 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7956 return VINF_SUCCESS;
7957 }
7958
7959 /*
7960 * Write to the current or shadow VMCS.
7961 */
7962 bool const fInVmxNonRootMode = IEM_VMX_IS_NON_ROOT_MODE(pVCpu);
7963 PVMXVVMCS pVmcs = !fInVmxNonRootMode
7964 ? pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)
7965 : pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
7966 Assert(pVmcs);
7967 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
7968
7969 /* Notify HM that the VMCS content might have changed. */
7970 if (!fInVmxNonRootMode)
7971 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
7972
7973 iemVmxVmSucceed(pVCpu);
7974 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7975 return VINF_SUCCESS;
7976}
7977
7978
7979/**
7980 * VMCLEAR instruction execution worker.
7981 *
7982 * @returns Strict VBox status code.
7983 * @param pVCpu The cross context virtual CPU structure.
7984 * @param cbInstr The instruction length in bytes.
7985 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
7986 * @param GCPtrVmcs The linear address of the VMCS pointer.
7987 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
7988 *
7989 * @remarks Common VMX instruction checks are already expected to by the caller,
7990 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7991 */
7992IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
7993 PCVMXVEXITINFO pExitInfo)
7994{
7995 /* Nested-guest intercept. */
7996 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7997 {
7998 if (pExitInfo)
7999 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8000 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
8001 }
8002
8003 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8004
8005 /* CPL. */
8006 if (pVCpu->iem.s.uCpl == 0)
8007 { /* likely */ }
8008 else
8009 {
8010 Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8011 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
8012 return iemRaiseGeneralProtectionFault0(pVCpu);
8013 }
8014
8015 /* Get the VMCS pointer from the location specified by the source memory operand. */
8016 RTGCPHYS GCPhysVmcs;
8017 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8018 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8019 { /* likely */ }
8020 else
8021 {
8022 Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8023 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
8024 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8025 return rcStrict;
8026 }
8027
8028 /* VMCS pointer alignment. */
8029 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8030 { /* likely */ }
8031 else
8032 {
8033 Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
8034 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
8035 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8036 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8037 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8038 return VINF_SUCCESS;
8039 }
8040
8041 /* VMCS physical-address width limits. */
8042 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8043 { /* likely */ }
8044 else
8045 {
8046 Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8047 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
8048 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8049 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8050 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8051 return VINF_SUCCESS;
8052 }
8053
8054 /* VMCS is not the VMXON region. */
8055 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8056 { /* likely */ }
8057 else
8058 {
8059 Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8060 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
8061 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8062 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
8063 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8064 return VINF_SUCCESS;
8065 }
8066
8067 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8068 restriction imposed by our implementation. */
8069 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8070 { /* likely */ }
8071 else
8072 {
8073 Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
8074 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
8075 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8076 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8077 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8078 return VINF_SUCCESS;
8079 }
8080
8081 /*
8082 * VMCLEAR allows committing and clearing any valid VMCS pointer.
8083 *
8084 * If the current VMCS is the one being cleared, set its state to 'clear' and commit
8085 * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
8086 * to 'clear'.
8087 */
8088 uint8_t const fVmcsLaunchStateClear = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
8089 if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
8090 && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
8091 {
8092 pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = fVmcsLaunchStateClear;
8093 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8094 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8095 }
8096 else
8097 {
8098 AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsLaunchStateClear));
8099 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
8100 (const void *)&fVmcsLaunchStateClear, sizeof(fVmcsLaunchStateClear));
8101 if (RT_FAILURE(rcStrict))
8102 return rcStrict;
8103 }
8104
8105 iemVmxVmSucceed(pVCpu);
8106 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8107 return VINF_SUCCESS;
8108}
8109
8110
8111/**
8112 * VMPTRST instruction execution worker.
8113 *
8114 * @returns Strict VBox status code.
8115 * @param pVCpu The cross context virtual CPU structure.
8116 * @param cbInstr The instruction length in bytes.
8117 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8118 * @param GCPtrVmcs The linear address of where to store the current VMCS
8119 * pointer.
8120 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8121 *
8122 * @remarks Common VMX instruction checks are already expected to by the caller,
8123 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8124 */
8125IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8126 PCVMXVEXITINFO pExitInfo)
8127{
8128 /* Nested-guest intercept. */
8129 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8130 {
8131 if (pExitInfo)
8132 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8133 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
8134 }
8135
8136 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8137
8138 /* CPL. */
8139 if (pVCpu->iem.s.uCpl == 0)
8140 { /* likely */ }
8141 else
8142 {
8143 Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8144 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
8145 return iemRaiseGeneralProtectionFault0(pVCpu);
8146 }
8147
8148 /* Set the VMCS pointer to the location specified by the destination memory operand. */
8149 AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
8150 VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
8151 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8152 {
8153 iemVmxVmSucceed(pVCpu);
8154 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8155 return rcStrict;
8156 }
8157
8158 Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8159 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
8160 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8161 return rcStrict;
8162}
8163
8164
8165/**
8166 * VMPTRLD instruction execution worker.
8167 *
8168 * @returns Strict VBox status code.
8169 * @param pVCpu The cross context virtual CPU structure.
8170 * @param cbInstr The instruction length in bytes.
8171 * @param GCPtrVmcs The linear address of the current VMCS pointer.
8172 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8173 *
8174 * @remarks Common VMX instruction checks are already expected to by the caller,
8175 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8176 */
8177IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8178 PCVMXVEXITINFO pExitInfo)
8179{
8180 /* Nested-guest intercept. */
8181 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8182 {
8183 if (pExitInfo)
8184 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8185 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
8186 }
8187
8188 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8189
8190 /* CPL. */
8191 if (pVCpu->iem.s.uCpl == 0)
8192 { /* likely */ }
8193 else
8194 {
8195 Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8196 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
8197 return iemRaiseGeneralProtectionFault0(pVCpu);
8198 }
8199
8200 /* Get the VMCS pointer from the location specified by the source memory operand. */
8201 RTGCPHYS GCPhysVmcs;
8202 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8203 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8204 { /* likely */ }
8205 else
8206 {
8207 Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8208 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
8209 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8210 return rcStrict;
8211 }
8212
8213 /* VMCS pointer alignment. */
8214 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8215 { /* likely */ }
8216 else
8217 {
8218 Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
8219 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
8220 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8221 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8222 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8223 return VINF_SUCCESS;
8224 }
8225
8226 /* VMCS physical-address width limits. */
8227 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8228 { /* likely */ }
8229 else
8230 {
8231 Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8232 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
8233 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8234 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8235 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8236 return VINF_SUCCESS;
8237 }
8238
8239 /* VMCS is not the VMXON region. */
8240 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8241 { /* likely */ }
8242 else
8243 {
8244 Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8245 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
8246 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8247 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
8248 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8249 return VINF_SUCCESS;
8250 }
8251
8252 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8253 restriction imposed by our implementation. */
8254 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8255 { /* likely */ }
8256 else
8257 {
8258 Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
8259 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
8260 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8261 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8262 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8263 return VINF_SUCCESS;
8264 }
8265
8266 /* Read just the VMCS revision from the VMCS. */
8267 VMXVMCSREVID VmcsRevId;
8268 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
8269 if (RT_SUCCESS(rc))
8270 { /* likely */ }
8271 else
8272 {
8273 Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8274 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
8275 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8276 return rc;
8277 }
8278
8279 /*
8280 * Verify the VMCS revision specified by the guest matches what we reported to the guest.
8281 * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
8282 */
8283 if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
8284 && ( !VmcsRevId.n.fIsShadowVmcs
8285 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
8286 { /* likely */ }
8287 else
8288 {
8289 if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
8290 {
8291 Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
8292 VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
8293 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
8294 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8295 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8296 return VINF_SUCCESS;
8297 }
8298
8299 Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
8300 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
8301 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8302 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8303 return VINF_SUCCESS;
8304 }
8305
8306 /*
8307 * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
8308 * the cache of an existing, current VMCS back to guest memory before loading a new,
8309 * different current VMCS.
8310 */
8311 if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
8312 {
8313 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8314 {
8315 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8316 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8317 }
8318
8319 /* Set the new VMCS as the current VMCS and read it from guest memory. */
8320 IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
8321 rc = iemVmxReadCurrentVmcsFromGstMem(pVCpu);
8322 if (RT_SUCCESS(rc))
8323 {
8324 /* Notify HM that a new, current VMCS is loaded. */
8325 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8326 }
8327 else
8328 {
8329 Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8330 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
8331 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8332 return rc;
8333 }
8334 }
8335
8336 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
8337 iemVmxVmSucceed(pVCpu);
8338 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8339 return VINF_SUCCESS;
8340}
8341
8342
8343/**
8344 * INVVPID instruction execution worker.
8345 *
8346 * @returns Strict VBox status code.
8347 * @param pVCpu The cross context virtual CPU structure.
8348 * @param cbInstr The instruction length in bytes.
8349 * @param iEffSeg The segment of the invvpid descriptor.
8350 * @param GCPtrInvvpidDesc The address of invvpid descriptor.
8351 * @param u64InvvpidType The invalidation type.
8352 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8353 * NULL.
8354 *
8355 * @remarks Common VMX instruction checks are already expected to by the caller,
8356 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8357 */
8358IEM_STATIC VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
8359 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo)
8360{
8361 /* Check if INVVPID instruction is supported, otherwise raise #UD. */
8362 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVpid)
8363 return iemRaiseUndefinedOpcode(pVCpu);
8364
8365 /* Nested-guest intercept. */
8366 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8367 {
8368 if (pExitInfo)
8369 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8370 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVVPID, VMXINSTRID_NONE, cbInstr);
8371 }
8372
8373 /* CPL. */
8374 if (pVCpu->iem.s.uCpl != 0)
8375 {
8376 Log(("invvpid: CPL != 0 -> #GP(0)\n"));
8377 return iemRaiseGeneralProtectionFault0(pVCpu);
8378 }
8379
8380 /*
8381 * Validate INVVPID invalidation type.
8382 *
8383 * The instruction specifies exactly ONE of the supported invalidation types.
8384 *
8385 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
8386 * supported. In theory, it's possible for a CPU to not support flushing individual
8387 * addresses but all the other types or any other combination. We do not take any
8388 * shortcuts here by assuming the types we currently expose to the guest.
8389 */
8390 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
8391 uint8_t const fTypeIndivAddr = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
8392 uint8_t const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
8393 uint8_t const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
8394 uint8_t const fTypeSingleCtxRetainGlobals = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
8395 if ( (fTypeIndivAddr && u64InvvpidType == VMXTLBFLUSHVPID_INDIV_ADDR)
8396 || (fTypeSingleCtx && u64InvvpidType == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
8397 || (fTypeAllCtx && u64InvvpidType == VMXTLBFLUSHVPID_ALL_CONTEXTS)
8398 || (fTypeSingleCtxRetainGlobals && u64InvvpidType == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS))
8399 { /* likely */ }
8400 else
8401 {
8402 Log(("invvpid: invalid/unsupported invvpid type %#x -> VMFail\n", u64InvvpidType));
8403 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_TypeInvalid;
8404 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
8405 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8406 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8407 return VINF_SUCCESS;
8408 }
8409
8410 /*
8411 * Fetch the invvpid descriptor from guest memory.
8412 */
8413 RTUINT128U uDesc;
8414 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvvpidDesc);
8415 if (rcStrict == VINF_SUCCESS)
8416 {
8417 /*
8418 * Validate the descriptor.
8419 */
8420 if (uDesc.s.Lo > 0xfff)
8421 {
8422 Log(("invvpid: reserved bits set in invvpid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
8423 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_DescRsvd;
8424 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Lo;
8425 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8426 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8427 return VINF_SUCCESS;
8428 }
8429
8430 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
8431 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
8432 uint8_t const uVpid = uDesc.s.Lo & UINT64_C(0xfff);
8433 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
8434 switch (u64InvvpidType)
8435 {
8436 case VMXTLBFLUSHVPID_INDIV_ADDR:
8437 {
8438 if (uVpid != 0)
8439 {
8440 if (IEM_IS_CANONICAL(GCPtrInvAddr))
8441 {
8442 /* Invalidate mappings for the linear address tagged with VPID. */
8443 /** @todo PGM support for VPID? Currently just flush everything. */
8444 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8445 iemVmxVmSucceed(pVCpu);
8446 }
8447 else
8448 {
8449 Log(("invvpid: invalidation address %#RGP is not canonical -> VMFail\n", GCPtrInvAddr));
8450 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidAddr;
8451 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrInvAddr;
8452 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8453 }
8454 }
8455 else
8456 {
8457 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
8458 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidVpid;
8459 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
8460 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8461 }
8462 break;
8463 }
8464
8465 case VMXTLBFLUSHVPID_SINGLE_CONTEXT:
8466 {
8467 if (uVpid != 0)
8468 {
8469 /* Invalidate all mappings with VPID. */
8470 /** @todo PGM support for VPID? Currently just flush everything. */
8471 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8472 iemVmxVmSucceed(pVCpu);
8473 }
8474 else
8475 {
8476 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
8477 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type1InvalidVpid;
8478 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
8479 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8480 }
8481 break;
8482 }
8483
8484 case VMXTLBFLUSHVPID_ALL_CONTEXTS:
8485 {
8486 /* Invalidate all mappings with non-zero VPIDs. */
8487 /** @todo PGM support for VPID? Currently just flush everything. */
8488 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8489 iemVmxVmSucceed(pVCpu);
8490 break;
8491 }
8492
8493 case VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS:
8494 {
8495 if (uVpid != 0)
8496 {
8497 /* Invalidate all mappings with VPID except global translations. */
8498 /** @todo PGM support for VPID? Currently just flush everything. */
8499 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8500 iemVmxVmSucceed(pVCpu);
8501 }
8502 else
8503 {
8504 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
8505 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type3InvalidVpid;
8506 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uVpid;
8507 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8508 }
8509 break;
8510 }
8511 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8512 }
8513 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8514 }
8515 return rcStrict;
8516}
8517
8518
8519/**
8520 * VMXON instruction execution worker.
8521 *
8522 * @returns Strict VBox status code.
8523 * @param pVCpu The cross context virtual CPU structure.
8524 * @param cbInstr The instruction length in bytes.
8525 * @param iEffSeg The effective segment register to use with @a
8526 * GCPtrVmxon.
8527 * @param GCPtrVmxon The linear address of the VMXON pointer.
8528 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8529 *
8530 * @remarks Common VMX instruction checks are already expected to by the caller,
8531 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8532 */
8533IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon,
8534 PCVMXVEXITINFO pExitInfo)
8535{
8536 if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
8537 {
8538 /* CPL. */
8539 if (pVCpu->iem.s.uCpl == 0)
8540 { /* likely */ }
8541 else
8542 {
8543 Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8544 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
8545 return iemRaiseGeneralProtectionFault0(pVCpu);
8546 }
8547
8548 /* A20M (A20 Masked) mode. */
8549 if (PGMPhysIsA20Enabled(pVCpu))
8550 { /* likely */ }
8551 else
8552 {
8553 Log(("vmxon: A20M mode -> #GP(0)\n"));
8554 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
8555 return iemRaiseGeneralProtectionFault0(pVCpu);
8556 }
8557
8558 /* CR0. */
8559 {
8560 /* CR0 MB1 bits. */
8561 uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
8562 if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
8563 { /* likely */ }
8564 else
8565 {
8566 Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
8567 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
8568 return iemRaiseGeneralProtectionFault0(pVCpu);
8569 }
8570
8571 /* CR0 MBZ bits. */
8572 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
8573 if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
8574 { /* likely */ }
8575 else
8576 {
8577 Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
8578 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
8579 return iemRaiseGeneralProtectionFault0(pVCpu);
8580 }
8581 }
8582
8583 /* CR4. */
8584 {
8585 /* CR4 MB1 bits. */
8586 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
8587 if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
8588 { /* likely */ }
8589 else
8590 {
8591 Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
8592 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
8593 return iemRaiseGeneralProtectionFault0(pVCpu);
8594 }
8595
8596 /* CR4 MBZ bits. */
8597 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
8598 if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
8599 { /* likely */ }
8600 else
8601 {
8602 Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
8603 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
8604 return iemRaiseGeneralProtectionFault0(pVCpu);
8605 }
8606 }
8607
8608 /* Feature control MSR's LOCK and VMXON bits. */
8609 uint64_t const uMsrFeatCtl = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64FeatCtrl;
8610 if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
8611 == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
8612 { /* likely */ }
8613 else
8614 {
8615 Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
8616 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
8617 return iemRaiseGeneralProtectionFault0(pVCpu);
8618 }
8619
8620 /* Get the VMXON pointer from the location specified by the source memory operand. */
8621 RTGCPHYS GCPhysVmxon;
8622 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
8623 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8624 { /* likely */ }
8625 else
8626 {
8627 Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
8628 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
8629 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmxon;
8630 return rcStrict;
8631 }
8632
8633 /* VMXON region pointer alignment. */
8634 if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
8635 { /* likely */ }
8636 else
8637 {
8638 Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
8639 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
8640 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
8641 iemVmxVmFailInvalid(pVCpu);
8642 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8643 return VINF_SUCCESS;
8644 }
8645
8646 /* VMXON physical-address width limits. */
8647 if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8648 { /* likely */ }
8649 else
8650 {
8651 Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
8652 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
8653 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
8654 iemVmxVmFailInvalid(pVCpu);
8655 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8656 return VINF_SUCCESS;
8657 }
8658
8659 /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
8660 restriction imposed by our implementation. */
8661 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
8662 { /* likely */ }
8663 else
8664 {
8665 Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
8666 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
8667 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
8668 iemVmxVmFailInvalid(pVCpu);
8669 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8670 return VINF_SUCCESS;
8671 }
8672
8673 /* Read the VMCS revision ID from the VMXON region. */
8674 VMXVMCSREVID VmcsRevId;
8675 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
8676 if (RT_SUCCESS(rc))
8677 { /* likely */ }
8678 else
8679 {
8680 Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
8681 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
8682 return rc;
8683 }
8684
8685 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
8686 if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
8687 { /* likely */ }
8688 else
8689 {
8690 /* Revision ID mismatch. */
8691 if (!VmcsRevId.n.fIsShadowVmcs)
8692 {
8693 Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
8694 VmcsRevId.n.u31RevisionId));
8695 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
8696 iemVmxVmFailInvalid(pVCpu);
8697 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8698 return VINF_SUCCESS;
8699 }
8700
8701 /* Shadow VMCS disallowed. */
8702 Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
8703 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
8704 iemVmxVmFailInvalid(pVCpu);
8705 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8706 return VINF_SUCCESS;
8707 }
8708
8709 /*
8710 * Record that we're in VMX operation, block INIT, block and disable A20M.
8711 */
8712 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
8713 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8714 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
8715
8716 /* Clear address-range monitoring. */
8717 EMMonitorWaitClear(pVCpu);
8718 /** @todo NSTVMX: Intel PT. */
8719
8720 iemVmxVmSucceed(pVCpu);
8721 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8722 return VINF_SUCCESS;
8723 }
8724 else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8725 {
8726 /* Nested-guest intercept. */
8727 if (pExitInfo)
8728 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8729 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
8730 }
8731
8732 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8733
8734 /* CPL. */
8735 if (pVCpu->iem.s.uCpl > 0)
8736 {
8737 Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8738 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
8739 return iemRaiseGeneralProtectionFault0(pVCpu);
8740 }
8741
8742 /* VMXON when already in VMX root mode. */
8743 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
8744 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
8745 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8746 return VINF_SUCCESS;
8747}
8748
8749
8750/**
8751 * Implements 'VMXOFF'.
8752 *
8753 * @remarks Common VMX instruction checks are already expected to by the caller,
8754 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8755 */
8756IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
8757{
8758 /* Nested-guest intercept. */
8759 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8760 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
8761
8762 /* CPL. */
8763 if (pVCpu->iem.s.uCpl == 0)
8764 { /* likely */ }
8765 else
8766 {
8767 Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8768 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
8769 return iemRaiseGeneralProtectionFault0(pVCpu);
8770 }
8771
8772 /* Dual monitor treatment of SMIs and SMM. */
8773 uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
8774 if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
8775 { /* likely */ }
8776 else
8777 {
8778 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
8779 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8780 return VINF_SUCCESS;
8781 }
8782
8783 /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
8784 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
8785 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
8786
8787 if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
8788 { /** @todo NSTVMX: Unblock SMI. */ }
8789
8790 EMMonitorWaitClear(pVCpu);
8791 /** @todo NSTVMX: Unblock and enable A20M. */
8792
8793 iemVmxVmSucceed(pVCpu);
8794 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8795 return VINF_SUCCESS;
8796}
8797
8798
8799/**
8800 * Implements 'VMXON'.
8801 */
8802IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
8803{
8804 return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
8805}
8806
8807
8808/**
8809 * Implements 'VMLAUNCH'.
8810 */
8811IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
8812{
8813 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
8814}
8815
8816
8817/**
8818 * Implements 'VMRESUME'.
8819 */
8820IEM_CIMPL_DEF_0(iemCImpl_vmresume)
8821{
8822 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
8823}
8824
8825
8826/**
8827 * Implements 'VMPTRLD'.
8828 */
8829IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
8830{
8831 return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
8832}
8833
8834
8835/**
8836 * Implements 'VMPTRST'.
8837 */
8838IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
8839{
8840 return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
8841}
8842
8843
8844/**
8845 * Implements 'VMCLEAR'.
8846 */
8847IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
8848{
8849 return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
8850}
8851
8852
8853/**
8854 * Implements 'VMWRITE' register.
8855 */
8856IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField)
8857{
8858 return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, u64Val, u64VmcsField, NULL /* pExitInfo */);
8859}
8860
8861
8862/**
8863 * Implements 'VMWRITE' memory.
8864 */
8865IEM_CIMPL_DEF_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField)
8866{
8867 return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, GCPtrVal, u64VmcsField, NULL /* pExitInfo */);
8868}
8869
8870
8871/**
8872 * Implements 'VMREAD' register (64-bit).
8873 */
8874IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField)
8875{
8876 return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64VmcsField, NULL /* pExitInfo */);
8877}
8878
8879
8880/**
8881 * Implements 'VMREAD' register (32-bit).
8882 */
8883IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32VmcsField)
8884{
8885 return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32VmcsField, NULL /* pExitInfo */);
8886}
8887
8888
8889/**
8890 * Implements 'VMREAD' memory, 64-bit register.
8891 */
8892IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField)
8893{
8894 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64VmcsField, NULL /* pExitInfo */);
8895}
8896
8897
8898/**
8899 * Implements 'VMREAD' memory, 32-bit register.
8900 */
8901IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField)
8902{
8903 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u32VmcsField, NULL /* pExitInfo */);
8904}
8905
8906
8907/**
8908 * Implements 'INVVPID'.
8909 */
8910IEM_CIMPL_DEF_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType)
8911{
8912 return iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, uInvvpidType, NULL /* pExitInfo */);
8913}
8914
8915
8916/**
8917 * Implements VMX's implementation of PAUSE.
8918 */
8919IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
8920{
8921 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8922 {
8923 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
8924 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8925 return rcStrict;
8926 }
8927
8928 /*
8929 * Outside VMX non-root operation or if the PAUSE instruction does not cause
8930 * a VM-exit, the instruction operates normally.
8931 */
8932 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8933 return VINF_SUCCESS;
8934}
8935
8936#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
8937
8938
8939/**
8940 * Implements 'VMCALL'.
8941 */
8942IEM_CIMPL_DEF_0(iemCImpl_vmcall)
8943{
8944#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8945 /* Nested-guest intercept. */
8946 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8947 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
8948#endif
8949
8950 /* Join forces with vmmcall. */
8951 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
8952}
8953
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette