VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp@ 97370

Last change on this file since 97370 was 97370, checked in by vboxsync, 2 years ago

VMM/IEM: iemRegAddToRipAndClearRF -> iemRegUpdateRipAndFinishClearingRF and made callers use the return code. bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 68.0 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp 97370 2022-11-02 00:53:30Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_IEM_SVM
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/iem.h>
35#include <VBox/vmm/cpum.h>
36#include <VBox/vmm/apic.h>
37#include <VBox/vmm/pgm.h>
38#include <VBox/vmm/em.h>
39#include <VBox/vmm/hm.h>
40#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
41# include <VBox/vmm/hm_svm.h>
42#endif
43#include <VBox/vmm/gim.h>
44#include <VBox/vmm/tm.h>
45#include "IEMInternal.h"
46#include <VBox/vmm/vmcc.h>
47#include <VBox/log.h>
48#include <VBox/disopcode.h> /* for OP_VMMCALL */
49#include <VBox/err.h>
50#include <VBox/param.h>
51#include <iprt/assert.h>
52#include <iprt/string.h>
53#include <iprt/x86.h>
54
55#include "IEMInline.h"
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62/**
63 * Check the common SVM instruction preconditions.
64 */
65# define IEM_SVM_INSTR_COMMON_CHECKS(a_pVCpu, a_Instr) \
66 do { \
67 if (!CPUMIsGuestSvmEnabled(IEM_GET_CTX(a_pVCpu))) \
68 { \
69 Log((RT_STR(a_Instr) ": EFER.SVME not enabled -> #UD\n")); \
70 return iemRaiseUndefinedOpcode(a_pVCpu); \
71 } \
72 if (IEM_IS_REAL_OR_V86_MODE(a_pVCpu)) \
73 { \
74 Log((RT_STR(a_Instr) ": Real or v8086 mode -> #UD\n")); \
75 return iemRaiseUndefinedOpcode(a_pVCpu); \
76 } \
77 if ((a_pVCpu)->iem.s.uCpl != 0) \
78 { \
79 Log((RT_STR(a_Instr) ": CPL != 0 -> #GP(0)\n")); \
80 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
81 } \
82 } while (0)
83
84
85/**
86 * Converts an IEM exception event type to an SVM event type.
87 *
88 * @returns The SVM event type.
89 * @retval UINT8_MAX if the specified type of event isn't among the set
90 * of recognized IEM event types.
91 *
92 * @param uVector The vector of the event.
93 * @param fIemXcptFlags The IEM exception / interrupt flags.
94 */
95IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
96{
97 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
98 {
99 if (uVector != X86_XCPT_NMI)
100 return SVM_EVENT_EXCEPTION;
101 return SVM_EVENT_NMI;
102 }
103
104 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
105 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
106 return SVM_EVENT_EXCEPTION;
107
108 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
109 return SVM_EVENT_EXTERNAL_IRQ;
110
111 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
112 return SVM_EVENT_SOFTWARE_INT;
113
114 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
115 return UINT8_MAX;
116}
117
118
119/**
120 * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
121 *
122 * @returns Strict VBox status code from PGMChangeMode.
123 * @param pVCpu The cross context virtual CPU structure.
124 */
125DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPUCC pVCpu)
126{
127 /*
128 * Inform PGM about paging mode changes.
129 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
130 * see comment in iemMemPageTranslateAndCheckAccess().
131 */
132 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
133 true /* fForce */);
134 AssertRCReturn(rc, rc);
135
136 /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
137 IEMTlbInvalidateAll(pVCpu);
138
139 /* Inform CPUM (recompiler), can later be removed. */
140 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
141
142 /* Re-initialize IEM cache/state after the drastic mode switch. */
143 iemReInitExec(pVCpu);
144 return rc;
145}
146
147
148/**
149 * SVM \#VMEXIT handler.
150 *
151 * @returns Strict VBox status code.
152 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
153 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
154 * "host state" and a shutdown is required.
155 *
156 * @param pVCpu The cross context virtual CPU structure.
157 * @param uExitCode The exit code.
158 * @param uExitInfo1 The exit info. 1 field.
159 * @param uExitInfo2 The exit info. 2 field.
160 */
161VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT
162{
163 VBOXSTRICTRC rcStrict;
164 if ( CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))
165 || uExitCode == SVM_EXIT_INVALID)
166 {
167 Log2(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n",
168 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uExitCode, uExitInfo1, uExitInfo2));
169
170 /*
171 * Disable the global-interrupt flag to prevent interrupts during the 'atomic' world switch.
172 */
173 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false);
174
175 /*
176 * Map the nested-guest VMCB from its location in guest memory.
177 * Write exactly what the CPU does on #VMEXIT thereby preserving most other bits in the
178 * guest's VMCB in memory, see @bugref{7243#c113} and related comment on iemSvmVmrun().
179 */
180 PSVMVMCB pVmcbMem;
181 PGMPAGEMAPLOCK PgLockMem;
182 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
183 rcStrict = iemMemPageMap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, (void **)&pVmcbMem,
184 &PgLockMem);
185 if (rcStrict == VINF_SUCCESS)
186 {
187 /*
188 * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
189 * would have modified some VMCB state) that might need to be restored on #VMEXIT before
190 * writing the VMCB back to guest memory.
191 */
192 HMNotifySvmNstGstVmexit(pVCpu, IEM_GET_CTX(pVCpu));
193
194 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
195 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
196 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
197 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
198
199 /*
200 * Save the nested-guest state into the VMCB state-save area.
201 */
202 PSVMVMCBSTATESAVE pVmcbMemState = &pVmcbMem->guest;
203 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, ES, es);
204 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, CS, cs);
205 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, SS, ss);
206 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, DS, ds);
207 pVmcbMemState->GDTR.u32Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
208 pVmcbMemState->GDTR.u64Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
209 pVmcbMemState->IDTR.u32Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
210 pVmcbMemState->IDTR.u64Base = pVCpu->cpum.GstCtx.idtr.pIdt;
211 pVmcbMemState->u64EFER = pVCpu->cpum.GstCtx.msrEFER;
212 pVmcbMemState->u64CR4 = pVCpu->cpum.GstCtx.cr4;
213 pVmcbMemState->u64CR3 = pVCpu->cpum.GstCtx.cr3;
214 pVmcbMemState->u64CR2 = pVCpu->cpum.GstCtx.cr2;
215 pVmcbMemState->u64CR0 = pVCpu->cpum.GstCtx.cr0;
216 /** @todo Nested paging. */
217 pVmcbMemState->u64RFlags = pVCpu->cpum.GstCtx.rflags.u;
218 pVmcbMemState->u64RIP = pVCpu->cpum.GstCtx.rip;
219 pVmcbMemState->u64RSP = pVCpu->cpum.GstCtx.rsp;
220 pVmcbMemState->u64RAX = pVCpu->cpum.GstCtx.rax;
221 pVmcbMemState->u64DR7 = pVCpu->cpum.GstCtx.dr[7];
222 pVmcbMemState->u64DR6 = pVCpu->cpum.GstCtx.dr[6];
223 pVmcbMemState->u8CPL = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
224 Assert(CPUMGetGuestCPL(pVCpu) == pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl);
225 if (CPUMIsGuestSvmNestedPagingEnabled(pVCpu, IEM_GET_CTX(pVCpu)))
226 pVmcbMemState->u64PAT = pVCpu->cpum.GstCtx.msrPAT;
227
228 /*
229 * Save additional state and intercept information.
230 *
231 * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below.
232 * - V_TPR: Updated by iemCImpl_load_CrX or by the physical CPU for hardware-assisted
233 * SVM execution.
234 * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP.
235 */
236 PSVMVMCBCTRL pVmcbMemCtrl = &pVmcbMem->ctrl;
237 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) /* V_IRQ. */
238 pVmcbMemCtrl->IntCtrl.n.u1VIrqPending = 0;
239 else
240 {
241 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
242 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
243 }
244
245 pVmcbMemCtrl->IntCtrl.n.u8VTPR = pVmcbCtrl->IntCtrl.n.u8VTPR; /* V_TPR. */
246
247 if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx)) /* Interrupt shadow. */
248 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 0;
249 else
250 {
251 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 1;
252 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pVCpu->cpum.GstCtx.rip));
253 CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);
254 }
255
256 /*
257 * Save nRIP, instruction length and byte fields.
258 */
259 pVmcbMemCtrl->u64NextRIP = pVmcbCtrl->u64NextRIP;
260 pVmcbMemCtrl->cbInstrFetched = pVmcbCtrl->cbInstrFetched;
261 memcpy(&pVmcbMemCtrl->abInstr[0], &pVmcbCtrl->abInstr[0], sizeof(pVmcbMemCtrl->abInstr));
262
263 /*
264 * Save exit information.
265 */
266 pVmcbMemCtrl->u64ExitCode = uExitCode;
267 pVmcbMemCtrl->u64ExitInfo1 = uExitInfo1;
268 pVmcbMemCtrl->u64ExitInfo2 = uExitInfo2;
269
270 /*
271 * Update the exit interrupt-information field if this #VMEXIT happened as a result
272 * of delivering an event through IEM.
273 *
274 * Don't update the exit interrupt-information field if the event wasn't being injected
275 * through IEM, as it would have been updated by real hardware if the nested-guest was
276 * executed using hardware-assisted SVM.
277 */
278 {
279 uint8_t uExitIntVector;
280 uint32_t uExitIntErr;
281 uint32_t fExitIntFlags;
282 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
283 NULL /* uExitIntCr2 */);
284 if (fRaisingEvent)
285 {
286 pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
287 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
288 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
289 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
290 {
291 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
292 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
293 }
294 }
295 }
296
297 /*
298 * Save the exit interrupt-information field.
299 *
300 * We write the whole field including overwriting reserved bits as it was observed on an
301 * AMD Ryzen 5 Pro 1500 that the CPU does not preserve reserved bits in EXITINTINFO.
302 */
303 pVmcbMemCtrl->ExitIntInfo = pVmcbCtrl->ExitIntInfo;
304
305 /*
306 * Clear event injection.
307 */
308 pVmcbMemCtrl->EventInject.n.u1Valid = 0;
309
310 iemMemPageUnmap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, pVmcbMem, &PgLockMem);
311 }
312
313 /*
314 * Prepare for guest's "host mode" by clearing internal processor state bits.
315 *
316 * We don't need to zero out the state-save area, just the controls should be
317 * sufficient because it has the critical bit of indicating whether we're inside
318 * the nested-guest or not.
319 */
320 memset(pVmcbCtrl, 0, sizeof(*pVmcbCtrl));
321 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
322
323 /*
324 * Restore the subset of the inhibit flags that were preserved.
325 */
326 pVCpu->cpum.GstCtx.eflags.uBoth |= pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit;
327
328 if (rcStrict == VINF_SUCCESS)
329 {
330 /** @todo Nested paging. */
331 /** @todo ASID. */
332
333 /*
334 * If we are switching to PAE mode host, validate the PDPEs first.
335 * Any invalid PDPEs here causes a VCPU shutdown.
336 */
337 PCSVMHOSTSTATE pHostState = &pVCpu->cpum.GstCtx.hwvirt.svm.HostState;
338 bool const fHostInPaeMode = CPUMIsPaePagingEnabled(pHostState->uCr0, pHostState->uCr4, pHostState->uEferMsr);
339 if (fHostInPaeMode)
340 rcStrict = PGMGstMapPaePdpesAtCr3(pVCpu, pHostState->uCr3);
341 if (RT_SUCCESS(rcStrict))
342 {
343 /*
344 * Reload the host state.
345 */
346 CPUMSvmVmExitRestoreHostState(pVCpu, IEM_GET_CTX(pVCpu));
347
348 /*
349 * Update PGM, IEM and others of a world-switch.
350 */
351 rcStrict = iemSvmWorldSwitch(pVCpu);
352 if (rcStrict == VINF_SUCCESS)
353 rcStrict = VINF_SVM_VMEXIT;
354 else if (RT_SUCCESS(rcStrict))
355 {
356 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
357 iemSetPassUpStatus(pVCpu, rcStrict);
358 rcStrict = VINF_SVM_VMEXIT;
359 }
360 else
361 LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
362 }
363 else
364 {
365 Log(("iemSvmVmexit: PAE PDPEs invalid while restoring host state. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
366 rcStrict = VINF_EM_TRIPLE_FAULT;
367 }
368 }
369 else
370 {
371 AssertMsgFailed(("iemSvmVmexit: Mapping VMCB at %#RGp failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict)));
372 rcStrict = VINF_EM_TRIPLE_FAULT;
373 }
374 }
375 else
376 {
377 AssertMsgFailed(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode, uExitInfo1, uExitInfo2));
378 rcStrict = VERR_SVM_IPE_3;
379 }
380
381# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
382 /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
383 if ( HMIsEnabled(pVCpu->CTX_SUFF(pVM))
384 && HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM)))
385 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
386# endif
387 return rcStrict;
388}
389
390
391/**
392 * Interface for HM and EM to emulate \#VMEXIT.
393 *
394 * @returns Strict VBox status code.
395 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
396 * @param uExitCode The exit code.
397 * @param uExitInfo1 The exit info. 1 field.
398 * @param uExitInfo2 The exit info. 2 field.
399 * @thread EMT(pVCpu)
400 */
401VMM_INT_DECL(VBOXSTRICTRC) IEMExecSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
402{
403 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK);
404 VBOXSTRICTRC rcStrict = iemSvmVmexit(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
405 if (pVCpu->iem.s.cActiveMappings)
406 iemMemRollback(pVCpu);
407 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
408}
409
410
411/**
412 * Performs the operations necessary that are part of the vmrun instruction
413 * execution in the guest.
414 *
415 * @returns Strict VBox status code (i.e. informational status codes too).
416 * @retval VINF_SUCCESS successfully executed VMRUN and entered nested-guest
417 * code execution.
418 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
419 * (SVM_EXIT_INVALID most likely).
420 *
421 * @param pVCpu The cross context virtual CPU structure.
422 * @param cbInstr The length of the VMRUN instruction.
423 * @param GCPhysVmcb Guest physical address of the VMCB to run.
424 */
425static VBOXSTRICTRC iemSvmVmrun(PVMCPUCC pVCpu, uint8_t cbInstr, RTGCPHYS GCPhysVmcb) RT_NOEXCEPT
426{
427 LogFlow(("iemSvmVmrun\n"));
428
429 /*
430 * Cache the physical address of the VMCB for #VMEXIT exceptions.
431 */
432 pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
433
434 /*
435 * Save the host state.
436 */
437 CPUMSvmVmRunSaveHostState(IEM_GET_CTX(pVCpu), cbInstr);
438
439 /*
440 * Read the guest VMCB.
441 */
442 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
443 int rc = PGMPhysSimpleReadGCPhys(pVM, &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb, GCPhysVmcb, sizeof(SVMVMCB));
444 if (RT_SUCCESS(rc))
445 {
446 /*
447 * AMD-V seems to preserve reserved fields and only writes back selected, recognized
448 * fields on #VMEXIT. However, not all reserved bits are preserved (e.g, EXITINTINFO)
449 * but in our implementation we try to preserve as much as we possibly can.
450 *
451 * We could read the entire page here and only write back the relevant fields on
452 * #VMEXIT but since our internal VMCB is also being used by HM during hardware-assisted
453 * SVM execution, it creates a potential for a nested-hypervisor to set bits that are
454 * currently reserved but may be recognized as features bits in future CPUs causing
455 * unexpected & undesired results. Hence, we zero out unrecognized fields here as we
456 * typically enter hardware-assisted SVM soon anyway, see @bugref{7243#c113}.
457 */
458 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
459 PSVMVMCBSTATESAVE pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.guest;
460
461 RT_ZERO(pVmcbCtrl->u8Reserved0);
462 RT_ZERO(pVmcbCtrl->u8Reserved1);
463 RT_ZERO(pVmcbCtrl->u8Reserved2);
464 RT_ZERO(pVmcbNstGst->u8Reserved0);
465 RT_ZERO(pVmcbNstGst->u8Reserved1);
466 RT_ZERO(pVmcbNstGst->u8Reserved2);
467 RT_ZERO(pVmcbNstGst->u8Reserved3);
468 RT_ZERO(pVmcbNstGst->u8Reserved4);
469 RT_ZERO(pVmcbNstGst->u8Reserved5);
470 pVmcbCtrl->u32Reserved0 = 0;
471 pVmcbCtrl->TLBCtrl.n.u24Reserved = 0;
472 pVmcbCtrl->IntCtrl.n.u6Reserved = 0;
473 pVmcbCtrl->IntCtrl.n.u3Reserved = 0;
474 pVmcbCtrl->IntCtrl.n.u5Reserved = 0;
475 pVmcbCtrl->IntCtrl.n.u24Reserved = 0;
476 pVmcbCtrl->IntShadow.n.u30Reserved = 0;
477 pVmcbCtrl->ExitIntInfo.n.u19Reserved = 0;
478 pVmcbCtrl->NestedPagingCtrl.n.u29Reserved = 0;
479 pVmcbCtrl->EventInject.n.u19Reserved = 0;
480 pVmcbCtrl->LbrVirt.n.u30Reserved = 0;
481
482 /*
483 * Validate guest-state and controls.
484 */
485 /* VMRUN must always be intercepted. */
486 if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_VMRUN))
487 {
488 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
489 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
490 }
491
492 /* Nested paging. */
493 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
494 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
495 {
496 Log(("iemSvmVmrun: Nested paging not supported -> Disabling\n"));
497 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = 0;
498 }
499
500 /* AVIC. */
501 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
502 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
503 {
504 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
505 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
506 }
507
508 /* Last branch record (LBR) virtualization. */
509 if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
510 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
511 {
512 Log(("iemSvmVmrun: LBR virtualization not supported -> Disabling\n"));
513 pVmcbCtrl->LbrVirt.n.u1LbrVirt = 0;
514 }
515
516 /* Virtualized VMSAVE/VMLOAD. */
517 if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
518 && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
519 {
520 Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> Disabling\n"));
521 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = 0;
522 }
523
524 /* Virtual GIF. */
525 if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
526 && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
527 {
528 Log(("iemSvmVmrun: Virtual GIF not supported -> Disabling\n"));
529 pVmcbCtrl->IntCtrl.n.u1VGifEnable = 0;
530 }
531
532 /* Guest ASID. */
533 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
534 {
535 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
536 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
537 }
538
539 /* Guest AVIC. */
540 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
541 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
542 {
543 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
544 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
545 }
546
547 /* Guest Secure Encrypted Virtualization. */
548 if ( ( pVmcbCtrl->NestedPagingCtrl.n.u1Sev
549 || pVmcbCtrl->NestedPagingCtrl.n.u1SevEs)
550 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
551 {
552 Log(("iemSvmVmrun: SEV not supported -> Disabling\n"));
553 pVmcbCtrl->NestedPagingCtrl.n.u1Sev = 0;
554 pVmcbCtrl->NestedPagingCtrl.n.u1SevEs = 0;
555 }
556
557 /* Flush by ASID. */
558 if ( !pVM->cpum.ro.GuestFeatures.fSvmFlusbByAsid
559 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING
560 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_ENTIRE)
561 {
562 Log(("iemSvmVmrun: Flush-by-ASID not supported -> #VMEXIT\n"));
563 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
564 }
565
566 /* IO permission bitmap. */
567 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
568 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
569 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
570 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
571 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
572 {
573 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
574 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
575 }
576
577 /* MSR permission bitmap. */
578 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
579 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
580 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
581 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
582 {
583 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
584 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
585 }
586
587 /* CR0. */
588 if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
589 && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
590 {
591 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
592 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
593 }
594 if (pVmcbNstGst->u64CR0 >> 32)
595 {
596 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
597 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
598 }
599 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
600
601 /* DR6 and DR7. */
602 if ( pVmcbNstGst->u64DR6 >> 32
603 || pVmcbNstGst->u64DR7 >> 32)
604 {
605 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
606 pVmcbNstGst->u64DR6));
607 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
608 }
609
610 /*
611 * PAT (Page Attribute Table) MSR.
612 *
613 * The CPU only validates and loads it when nested-paging is enabled.
614 * See AMD spec. "15.25.4 Nested Paging and VMRUN/#VMEXIT".
615 */
616 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
617 && !CPUMIsPatMsrValid(pVmcbNstGst->u64PAT))
618 {
619 Log(("iemSvmVmrun: PAT invalid. u64PAT=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64PAT));
620 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
621 }
622
623 /*
624 * Copy the IO permission bitmap into the cache.
625 */
626 AssertCompile(sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap) == SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
627 rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, GCPhysIOBitmap,
628 sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap));
629 if (RT_FAILURE(rc))
630 {
631 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
632 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
633 }
634
635 /*
636 * Copy the MSR permission bitmap into the cache.
637 */
638 AssertCompile(sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap) == SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
639 rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap, GCPhysMsrBitmap,
640 sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap));
641 if (RT_FAILURE(rc))
642 {
643 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
644 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
645 }
646
647 /*
648 * Copy segments from nested-guest VMCB state to the guest-CPU state.
649 *
650 * We do this here as we need to use the CS attributes and it's easier this way
651 * then using the VMCB format selectors. It doesn't really matter where we copy
652 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
653 */
654 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, ES, es);
655 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, CS, cs);
656 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, SS, ss);
657 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, DS, ds);
658
659 /** @todo Segment attribute overrides by VMRUN. */
660
661 /*
662 * CPL adjustments and overrides.
663 *
664 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
665 * We shall thus adjust both CS.DPL and SS.DPL here.
666 */
667 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
668 if (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(pVCpu)))
669 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 3;
670 if (CPUMIsGuestInRealModeEx(IEM_GET_CTX(pVCpu)))
671 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 0;
672 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
673
674 /*
675 * Continue validating guest-state and controls.
676 *
677 * We pass CR0 as 0 to CPUMIsGuestEferMsrWriteValid() below to skip the illegal
678 * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
679 * old and new EFER value to not have any guest EFER bits influence the new
680 * nested-guest EFER.
681 */
682 uint64_t uValidEfer;
683 rc = CPUMIsGuestEferMsrWriteValid(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
684 if (RT_FAILURE(rc))
685 {
686 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
687 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
688 }
689
690 /* Validate paging and CPU mode bits. */
691 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
692 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
693 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
694 bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
695 bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
696 bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
697 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
698 bool const fLongModeConformCS = pVCpu->cpum.GstCtx.cs.Attr.n.u1Long && pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig;
699 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
700 if (fLongModeWithPaging)
701 uValidEfer |= MSR_K6_EFER_LMA;
702 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
703 if ( !fSvm
704 || (!fLongModeSupported && fLongModeActiveOrEnabled)
705 || (fLongModeWithPaging && !fPae)
706 || (fLongModeWithPaging && !fProtMode)
707 || ( fLongModeEnabled
708 && fPaging
709 && fPae
710 && fLongModeConformCS))
711 {
712 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
713 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
714 }
715
716 /*
717 * Preserve the required force-flags.
718 *
719 * We only preserve the force-flags that would affect the execution of the
720 * nested-guest (or the guest).
721 *
722 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
723 * execution of a subsequent IRET instruction in the guest.
724 *
725 * The remaining FFs (e.g. timers) can stay in place so that we will be able to
726 * generate interrupts that should cause #VMEXITs for the nested-guest.
727 *
728 * VMRUN has implicit GIF (Global Interrupt Flag) handling, we don't need to
729 * preserve VMCPU_FF_INHIBIT_INTERRUPTS.
730 */
731 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_INHIBIT_NMI;
732 pVCpu->cpum.GstCtx.eflags.uBoth &= ~CPUMCTX_INHIBIT_NMI;
733
734 /*
735 * Pause filter.
736 */
737 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilter)
738 {
739 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = pVmcbCtrl->u16PauseFilterCount;
740 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilterThreshold)
741 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold = pVmcbCtrl->u16PauseFilterCount;
742 }
743
744 /*
745 * Interrupt shadow.
746 */
747 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
748 {
749 LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
750 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
751 CPUMSetInInterruptShadowEx(&pVCpu->cpum.GstCtx, pVmcbNstGst->u64RIP);
752 }
753
754 /*
755 * TLB flush control.
756 * Currently disabled since it's redundant as we unconditionally flush the TLB
757 * in iemSvmWorldSwitch() below.
758 */
759# if 0
760 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
761 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
762 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
763 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
764 PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
765# endif
766
767 /*
768 * Validate and map PAE PDPEs if the guest will be using PAE paging.
769 * Invalid PAE PDPEs here causes a #VMEXIT.
770 */
771 if ( !pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
772 && CPUMIsPaePagingEnabled(pVmcbNstGst->u64CR0, pVmcbNstGst->u64CR4, uValidEfer))
773 {
774 rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcbNstGst->u64CR3);
775 if (RT_SUCCESS(rc))
776 { /* likely */ }
777 else
778 {
779 Log(("iemSvmVmrun: PAE PDPEs invalid -> #VMEXIT\n"));
780 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
781 }
782 }
783
784 /*
785 * Copy the remaining guest state from the VMCB to the guest-CPU context.
786 */
787 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
788 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
789 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
790 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
791 CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
792 CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
793 pVCpu->cpum.GstCtx.cr3 = pVmcbNstGst->u64CR3;
794 pVCpu->cpum.GstCtx.cr2 = pVmcbNstGst->u64CR2;
795 pVCpu->cpum.GstCtx.dr[6] = pVmcbNstGst->u64DR6;
796 pVCpu->cpum.GstCtx.dr[7] = pVmcbNstGst->u64DR7;
797 pVCpu->cpum.GstCtx.rflags.u = pVmcbNstGst->u64RFlags;
798 pVCpu->cpum.GstCtx.rax = pVmcbNstGst->u64RAX;
799 pVCpu->cpum.GstCtx.rsp = pVmcbNstGst->u64RSP;
800 pVCpu->cpum.GstCtx.rip = pVmcbNstGst->u64RIP;
801 CPUMSetGuestEferMsrNoChecks(pVCpu, pVCpu->cpum.GstCtx.msrEFER, uValidEfer);
802 if (pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging)
803 pVCpu->cpum.GstCtx.msrPAT = pVmcbNstGst->u64PAT;
804
805 /* Mask DR6, DR7 bits mandatory set/clear bits. */
806 pVCpu->cpum.GstCtx.dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
807 pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_RA1_MASK;
808 pVCpu->cpum.GstCtx.dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
809 pVCpu->cpum.GstCtx.dr[7] |= X86_DR7_RA1_MASK;
810
811 /*
812 * Check for pending virtual interrupts.
813 */
814 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
815 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
816 else
817 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
818
819 /*
820 * Update PGM, IEM and others of a world-switch.
821 */
822 VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu);
823 if (rcStrict == VINF_SUCCESS)
824 { /* likely */ }
825 else if (RT_SUCCESS(rcStrict))
826 {
827 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
828 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
829 }
830 else
831 {
832 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
833 return rcStrict;
834 }
835
836 /*
837 * Set the global-interrupt flag to allow interrupts in the guest.
838 */
839 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true);
840
841 /*
842 * Event injection.
843 */
844 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
845 pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
846 if (pEventInject->n.u1Valid)
847 {
848 uint8_t const uVector = pEventInject->n.u8Vector;
849 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject, uVector);
850 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
851
852 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
853 if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
854 {
855 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
856 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
857 }
858 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
859 {
860 if ( uVector == X86_XCPT_NMI
861 || uVector > X86_XCPT_LAST)
862 {
863 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
864 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
865 }
866 if ( uVector == X86_XCPT_BR
867 && CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
868 {
869 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
870 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
871 }
872 /** @todo any others? */
873 }
874
875 /*
876 * Invalidate the exit interrupt-information field here. This field is fully updated
877 * on #VMEXIT as events other than the one below can also cause intercepts during
878 * their injection (e.g. exceptions).
879 */
880 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
881
882 /*
883 * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
884 * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
885 * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
886 * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
887 * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
888 * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
889 * injecting the event through IEM here.
890 */
891 pVmcbCtrl->EventInject.n.u1Valid = 0;
892
893 /** @todo NRIP: Software interrupts can only be pushed properly if we support
894 * NRIP for the nested-guest to calculate the instruction length
895 * below. */
896 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
897 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uVector, enmType, uErrorCode, pVCpu->cpum.GstCtx.cr2,
898 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.msrEFER));
899
900 /*
901 * We shall not inject the event here right away. There may be paging mode related updates
902 * as a result of the world-switch above that are yet to be honored. Instead flag the event
903 * as pending for injection.
904 */
905 TRPMAssertTrap(pVCpu, uVector, enmType);
906 if (pEventInject->n.u1ErrorCodeValid)
907 TRPMSetErrorCode(pVCpu, uErrorCode);
908 if ( enmType == TRPM_TRAP
909 && uVector == X86_XCPT_PF)
910 TRPMSetFaultAddress(pVCpu, pVCpu->cpum.GstCtx.cr2);
911 }
912 else
913 LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
914 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3,
915 pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, pVCpu->cpum.GstCtx.eflags.u));
916
917 LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
918
919# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
920 /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
921 if ( HMIsEnabled(pVM)
922 && HMIsSvmVGifActive(pVM))
923 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
924# endif
925
926 return rcStrict;
927 }
928
929 /* Shouldn't really happen as the caller should've validated the physical address already. */
930 Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
931 return rc;
932}
933
934
935/**
936 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
937 * intercept is active.
938 *
939 * @returns Strict VBox status code.
940 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
941 * we're not executing a nested-guest.
942 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
943 * successfully.
944 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
945 * failed and a shutdown needs to be initiated for the guest.
946 *
947 * @returns VBox strict status code.
948 * @param pVCpu The cross context virtual CPU structure of the calling thread.
949 * @param u8Vector The interrupt or exception vector.
950 * @param fFlags The exception flags (see IEM_XCPT_FLAGS_XXX).
951 * @param uErr The error-code associated with the exception.
952 * @param uCr2 The CR2 value in case of a \#PF exception.
953 */
954VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT
955{
956 Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
957
958 /*
959 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
960 *
961 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_XCPT_2 #VMEXITs.
962 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
963 * even when they use a vector in the range 0 to 31.
964 * - ICEBP should not trigger #DB intercept, but its own intercept.
965 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
966 */
967 /* Check NMI intercept */
968 if ( u8Vector == X86_XCPT_NMI
969 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
970 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
971 {
972 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
973 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
974 }
975
976 /* Check ICEBP intercept. */
977 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
978 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
979 {
980 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
981 IEM_SVM_UPDATE_NRIP(pVCpu);
982 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
983 }
984
985 /* Check CPU exception intercepts. */
986 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
987 && IEM_SVM_IS_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
988 {
989 Assert(u8Vector <= X86_XCPT_LAST);
990 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
991 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
992 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
993 && u8Vector == X86_XCPT_PF
994 && !(uErr & X86_TRAP_PF_ID))
995 {
996 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
997# ifdef IEM_WITH_CODE_TLB
998 uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
999 uint8_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
1000 pVmcbCtrl->cbInstrFetched = RT_MIN(cbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
1001 if ( pbInstrBuf
1002 && cbInstrBuf > 0)
1003 memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, pVmcbCtrl->cbInstrFetched);
1004# else
1005 uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
1006 pVmcbCtrl->cbInstrFetched = RT_MIN(cbOpcode, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
1007 if (cbOpcode > 0)
1008 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[0], pVmcbCtrl->cbInstrFetched);
1009# endif
1010 }
1011 if (u8Vector == X86_XCPT_BR)
1012 IEM_SVM_UPDATE_NRIP(pVCpu);
1013 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
1014 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.u32InterceptXcpt,
1015 u8Vector, uExitInfo1, uExitInfo2));
1016 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XCPT_0 + u8Vector, uExitInfo1, uExitInfo2);
1017 }
1018
1019 /* Check software interrupt (INTn) intercepts. */
1020 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
1021 | IEM_XCPT_FLAGS_BP_INSTR
1022 | IEM_XCPT_FLAGS_ICEBP_INSTR
1023 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
1024 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
1025 {
1026 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
1027 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
1028 IEM_SVM_UPDATE_NRIP(pVCpu);
1029 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
1030 }
1031
1032 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1033}
1034
1035
1036/**
1037 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
1038 * corresponding intercept is active.
1039 *
1040 * @returns Strict VBox status code.
1041 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
1042 * we're not executing a nested-guest.
1043 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1044 * successfully.
1045 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1046 * failed and a shutdown needs to be initiated for the guest.
1047 *
1048 * @returns VBox strict status code.
1049 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1050 * @param u16Port The IO port being accessed.
1051 * @param enmIoType The type of IO access.
1052 * @param cbReg The IO operand size in bytes.
1053 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
1054 * @param iEffSeg The effective segment number.
1055 * @param fRep Whether this is a repeating IO instruction (REP prefix).
1056 * @param fStrIo Whether this is a string IO instruction.
1057 * @param cbInstr The length of the IO instruction in bytes.
1058 */
1059VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
1060 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT
1061{
1062 Assert(IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
1063 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
1064 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
1065
1066 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
1067
1068 SVMIOIOEXITINFO IoExitInfo;
1069 bool const fIntercept = CPUMIsSvmIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap, u16Port, enmIoType, cbReg,
1070 cAddrSizeBits, iEffSeg, fRep, fStrIo, &IoExitInfo);
1071 if (fIntercept)
1072 {
1073 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
1074 IEM_SVM_UPDATE_NRIP(pVCpu);
1075 return iemSvmVmexit(pVCpu, SVM_EXIT_IOIO, IoExitInfo.u, pVCpu->cpum.GstCtx.rip + cbInstr);
1076 }
1077
1078 /** @todo remove later (for debugging as VirtualBox always traps all IO
1079 * intercepts). */
1080 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
1081 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1082}
1083
1084
1085/**
1086 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
1087 * corresponding intercept is active.
1088 *
1089 * @returns Strict VBox status code.
1090 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
1091 * specify interception of the accessed MSR @a idMsr.
1092 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1093 * successfully.
1094 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1095 * failed and a shutdown needs to be initiated for the guest.
1096 *
1097 * @param pVCpu The cross context virtual CPU structure.
1098 * @param idMsr The MSR being accessed in the nested-guest.
1099 * @param fWrite Whether this is an MSR write access, @c false implies an
1100 * MSR read.
1101 * @param cbInstr The length of the MSR read/write instruction in bytes.
1102 */
1103VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite) RT_NOEXCEPT
1104{
1105 /*
1106 * Check if any MSRs are being intercepted.
1107 */
1108 Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_MSR_PROT));
1109 Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
1110
1111 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1112
1113 /*
1114 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1115 */
1116 uint16_t offMsrpm;
1117 uint8_t uMsrpmBit;
1118 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1119 if (RT_SUCCESS(rc))
1120 {
1121 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
1122 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1123 if (fWrite)
1124 ++uMsrpmBit;
1125
1126 /*
1127 * Check if the bit is set, if so, trigger a #VMEXIT.
1128 */
1129 if (pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit))
1130 {
1131 IEM_SVM_UPDATE_NRIP(pVCpu);
1132 return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1133 }
1134 }
1135 else
1136 {
1137 /*
1138 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (nested hypervisor) deal with it.
1139 */
1140 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1141 return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1142 }
1143 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1144}
1145
1146
1147
1148/**
1149 * Implements 'VMRUN'.
1150 */
1151IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1152{
1153# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1154 RT_NOREF2(pVCpu, cbInstr);
1155 return VINF_EM_RAW_EMULATE_INSTR;
1156# else
1157 LogFlow(("iemCImpl_vmrun\n"));
1158 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1159
1160 /** @todo Check effective address size using address size prefix. */
1161 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1162 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1163 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1164 {
1165 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1166 return iemRaiseGeneralProtectionFault0(pVCpu);
1167 }
1168
1169 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1170 {
1171 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1172 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1173 }
1174
1175 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, cbInstr, GCPhysVmcb);
1176 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1177 {
1178 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
1179 rcStrict = VINF_EM_TRIPLE_FAULT;
1180 }
1181 return rcStrict;
1182# endif
1183}
1184
1185
1186/**
1187 * Interface for HM and EM to emulate the VMRUN instruction.
1188 *
1189 * @returns Strict VBox status code.
1190 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1191 * @param cbInstr The instruction length in bytes.
1192 * @thread EMT(pVCpu)
1193 */
1194VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmrun(PVMCPUCC pVCpu, uint8_t cbInstr)
1195{
1196 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1197 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMRUN_MASK);
1198
1199 iemInitExec(pVCpu, false /*fBypassHandlers*/);
1200 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmrun);
1201 Assert(!pVCpu->iem.s.cActiveMappings);
1202 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1203}
1204
1205
1206/**
1207 * Implements 'VMLOAD'.
1208 */
1209IEM_CIMPL_DEF_0(iemCImpl_vmload)
1210{
1211# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1212 RT_NOREF2(pVCpu, cbInstr);
1213 return VINF_EM_RAW_EMULATE_INSTR;
1214# else
1215 LogFlow(("iemCImpl_vmload\n"));
1216 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1217
1218 /** @todo Check effective address size using address size prefix. */
1219 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1220 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1221 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1222 {
1223 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1224 return iemRaiseGeneralProtectionFault0(pVCpu);
1225 }
1226
1227 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1228 {
1229 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1230 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1231 }
1232
1233 SVMVMCBSTATESAVE VmcbNstGst;
1234 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
1235 sizeof(SVMVMCBSTATESAVE));
1236 if (rcStrict == VINF_SUCCESS)
1237 {
1238 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1239 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
1240 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
1241 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
1242 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
1243
1244 pVCpu->cpum.GstCtx.msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1245 pVCpu->cpum.GstCtx.msrSTAR = VmcbNstGst.u64STAR;
1246 pVCpu->cpum.GstCtx.msrLSTAR = VmcbNstGst.u64LSTAR;
1247 pVCpu->cpum.GstCtx.msrCSTAR = VmcbNstGst.u64CSTAR;
1248 pVCpu->cpum.GstCtx.msrSFMASK = VmcbNstGst.u64SFMASK;
1249
1250 pVCpu->cpum.GstCtx.SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1251 pVCpu->cpum.GstCtx.SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1252 pVCpu->cpum.GstCtx.SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1253
1254 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1255 }
1256 return rcStrict;
1257# endif
1258}
1259
1260
1261/**
1262 * Interface for HM and EM to emulate the VMLOAD instruction.
1263 *
1264 * @returns Strict VBox status code.
1265 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1266 * @param cbInstr The instruction length in bytes.
1267 * @thread EMT(pVCpu)
1268 */
1269VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmload(PVMCPUCC pVCpu, uint8_t cbInstr)
1270{
1271 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1272
1273 iemInitExec(pVCpu, false /*fBypassHandlers*/);
1274 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmload);
1275 Assert(!pVCpu->iem.s.cActiveMappings);
1276 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1277}
1278
1279
1280/**
1281 * Implements 'VMSAVE'.
1282 */
1283IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1284{
1285# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1286 RT_NOREF2(pVCpu, cbInstr);
1287 return VINF_EM_RAW_EMULATE_INSTR;
1288# else
1289 LogFlow(("iemCImpl_vmsave\n"));
1290 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1291
1292 /** @todo Check effective address size using address size prefix. */
1293 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1294 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1295 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1296 {
1297 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1298 return iemRaiseGeneralProtectionFault0(pVCpu);
1299 }
1300
1301 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1302 {
1303 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1304 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1305 }
1306
1307 SVMVMCBSTATESAVE VmcbNstGst;
1308 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
1309 sizeof(SVMVMCBSTATESAVE));
1310 if (rcStrict == VINF_SUCCESS)
1311 {
1312 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1313 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR
1314 | CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS);
1315
1316 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
1317 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
1318 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
1319 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
1320
1321 VmcbNstGst.u64KernelGSBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
1322 VmcbNstGst.u64STAR = pVCpu->cpum.GstCtx.msrSTAR;
1323 VmcbNstGst.u64LSTAR = pVCpu->cpum.GstCtx.msrLSTAR;
1324 VmcbNstGst.u64CSTAR = pVCpu->cpum.GstCtx.msrCSTAR;
1325 VmcbNstGst.u64SFMASK = pVCpu->cpum.GstCtx.msrSFMASK;
1326
1327 VmcbNstGst.u64SysEnterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1328 VmcbNstGst.u64SysEnterESP = pVCpu->cpum.GstCtx.SysEnter.esp;
1329 VmcbNstGst.u64SysEnterEIP = pVCpu->cpum.GstCtx.SysEnter.eip;
1330
1331 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1332 sizeof(SVMVMCBSTATESAVE));
1333 if (rcStrict == VINF_SUCCESS)
1334 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1335 }
1336 return rcStrict;
1337# endif
1338}
1339
1340
1341/**
1342 * Interface for HM and EM to emulate the VMSAVE instruction.
1343 *
1344 * @returns Strict VBox status code.
1345 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1346 * @param cbInstr The instruction length in bytes.
1347 * @thread EMT(pVCpu)
1348 */
1349VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmsave(PVMCPUCC pVCpu, uint8_t cbInstr)
1350{
1351 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1352
1353 iemInitExec(pVCpu, false /*fBypassHandlers*/);
1354 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmsave);
1355 Assert(!pVCpu->iem.s.cActiveMappings);
1356 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1357}
1358
1359
1360/**
1361 * Implements 'CLGI'.
1362 */
1363IEM_CIMPL_DEF_0(iemCImpl_clgi)
1364{
1365# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1366 RT_NOREF2(pVCpu, cbInstr);
1367 return VINF_EM_RAW_EMULATE_INSTR;
1368# else
1369 LogFlow(("iemCImpl_clgi\n"));
1370 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1371 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1372 {
1373 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1374 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1375 }
1376
1377 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false);
1378
1379# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1380 iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1381 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1382# else
1383 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1384# endif
1385# endif
1386}
1387
1388
1389/**
1390 * Interface for HM and EM to emulate the CLGI instruction.
1391 *
1392 * @returns Strict VBox status code.
1393 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1394 * @param cbInstr The instruction length in bytes.
1395 * @thread EMT(pVCpu)
1396 */
1397VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedClgi(PVMCPUCC pVCpu, uint8_t cbInstr)
1398{
1399 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1400
1401 iemInitExec(pVCpu, false /*fBypassHandlers*/);
1402 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_clgi);
1403 Assert(!pVCpu->iem.s.cActiveMappings);
1404 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1405}
1406
1407
1408/**
1409 * Implements 'STGI'.
1410 */
1411IEM_CIMPL_DEF_0(iemCImpl_stgi)
1412{
1413# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1414 RT_NOREF2(pVCpu, cbInstr);
1415 return VINF_EM_RAW_EMULATE_INSTR;
1416# else
1417 LogFlow(("iemCImpl_stgi\n"));
1418 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1419 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1420 {
1421 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1422 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1423 }
1424
1425 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true);
1426
1427# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1428 iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1429 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1430# else
1431 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1432# endif
1433# endif
1434}
1435
1436
1437/**
1438 * Interface for HM and EM to emulate the STGI instruction.
1439 *
1440 * @returns Strict VBox status code.
1441 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1442 * @param cbInstr The instruction length in bytes.
1443 * @thread EMT(pVCpu)
1444 */
1445VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedStgi(PVMCPUCC pVCpu, uint8_t cbInstr)
1446{
1447 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1448
1449 iemInitExec(pVCpu, false /*fBypassHandlers*/);
1450 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_stgi);
1451 Assert(!pVCpu->iem.s.cActiveMappings);
1452 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1453}
1454
1455
1456/**
1457 * Implements 'INVLPGA'.
1458 */
1459IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1460{
1461 /** @todo Check effective address size using address size prefix. */
1462 RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1463 /** @todo PGM needs virtual ASID support. */
1464# if 0
1465 uint32_t const uAsid = pVCpu->cpum.GstCtx.ecx;
1466# endif
1467
1468 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1469 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1470 {
1471 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1472 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1473 }
1474
1475 PGMInvalidatePage(pVCpu, GCPtrPage);
1476 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1477}
1478
1479
1480/**
1481 * Interface for HM and EM to emulate the INVLPGA instruction.
1482 *
1483 * @returns Strict VBox status code.
1484 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1485 * @param cbInstr The instruction length in bytes.
1486 * @thread EMT(pVCpu)
1487 */
1488VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvlpga(PVMCPUCC pVCpu, uint8_t cbInstr)
1489{
1490 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1491
1492 iemInitExec(pVCpu, false /*fBypassHandlers*/);
1493 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_invlpga);
1494 Assert(!pVCpu->iem.s.cActiveMappings);
1495 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1496}
1497
1498
1499/**
1500 * Implements 'SKINIT'.
1501 */
1502IEM_CIMPL_DEF_0(iemCImpl_skinit)
1503{
1504 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1505
1506 uint32_t uIgnore;
1507 uint32_t fFeaturesECX;
1508 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, -1 /*f64BitMode*/, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1509 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1510 return iemRaiseUndefinedOpcode(pVCpu);
1511
1512 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1513 {
1514 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1515 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1516 }
1517
1518 RT_NOREF(cbInstr);
1519 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1520}
1521
1522
1523/**
1524 * Implements SVM's implementation of PAUSE.
1525 */
1526IEM_CIMPL_DEF_0(iemCImpl_svm_pause)
1527{
1528 bool fCheckIntercept = true;
1529 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilter)
1530 {
1531 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1532
1533 /* TSC based pause-filter thresholding. */
1534 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilterThreshold
1535 && pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold > 0)
1536 {
1537 uint64_t const uTick = TMCpuTickGet(pVCpu);
1538 if (uTick - pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick > pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold)
1539 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = CPUMGetGuestSvmPauseFilterCount(pVCpu, IEM_GET_CTX(pVCpu));
1540 pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick = uTick;
1541 }
1542
1543 /* Simple pause-filter counter. */
1544 if (pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter > 0)
1545 {
1546 --pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter;
1547 fCheckIntercept = false;
1548 }
1549 }
1550
1551 if (fCheckIntercept)
1552 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_PAUSE, SVM_EXIT_PAUSE, 0, 0);
1553
1554 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1555}
1556
1557#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
1558
1559/**
1560 * Common code for iemCImpl_vmmcall and iemCImpl_vmcall (latter in IEMAllCImplVmxInstr.cpp.h).
1561 */
1562IEM_CIMPL_DEF_1(iemCImpl_Hypercall, uint16_t, uDisOpcode)
1563{
1564 if (EMAreHypercallInstructionsEnabled(pVCpu))
1565 {
1566 NOREF(uDisOpcode);
1567 VBOXSTRICTRC rcStrict = GIMHypercallEx(pVCpu, IEM_GET_CTX(pVCpu), uDisOpcode, cbInstr);
1568 if (RT_SUCCESS(rcStrict))
1569 {
1570 /** @todo finish: Sort out assertion here when iemRegAddToRipAndFinishingClearingRF
1571 * starts returning non-VINF_SUCCESS statuses. */
1572 if (rcStrict == VINF_SUCCESS)
1573 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1574 if ( rcStrict == VINF_SUCCESS
1575 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
1576 return VINF_SUCCESS;
1577 AssertMsgReturn(rcStrict == VINF_GIM_R3_HYPERCALL, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
1578 return rcStrict;
1579 }
1580 AssertMsgReturn( rcStrict == VERR_GIM_HYPERCALL_ACCESS_DENIED
1581 || rcStrict == VERR_GIM_HYPERCALLS_NOT_AVAILABLE
1582 || rcStrict == VERR_GIM_NOT_ENABLED
1583 || rcStrict == VERR_GIM_HYPERCALL_MEMORY_READ_FAILED
1584 || rcStrict == VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED,
1585 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
1586
1587 /* Raise #UD on all failures. */
1588 }
1589 return iemRaiseUndefinedOpcode(pVCpu);
1590}
1591
1592
1593/**
1594 * Implements 'VMMCALL'.
1595 */
1596IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1597{
1598 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1599 {
1600 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1601 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1602 }
1603
1604 /* This is a little bit more complicated than the VT-x version because HM/SVM may
1605 patch MOV CR8 instructions to speed up APIC.TPR access for 32-bit windows guests. */
1606 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1607 if (VM_IS_HM_ENABLED(pVM))
1608 {
1609 int rc = HMHCMaybeMovTprSvmHypercall(pVM, pVCpu);
1610 if (RT_SUCCESS(rc))
1611 {
1612 Log(("vmmcall: MovTpr\n"));
1613 return VINF_SUCCESS;
1614 }
1615 }
1616
1617 /* Join forces with vmcall. */
1618 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMMCALL);
1619}
1620
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette