VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp@ 107044

Last change on this file since 107044 was 106061, checked in by vboxsync, 2 months ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 68.3 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_IEM_SVM
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/iem.h>
35#include <VBox/vmm/apic.h>
36#include <VBox/vmm/cpum.h>
37#include <VBox/vmm/dbgf.h>
38#include <VBox/vmm/em.h>
39#include <VBox/vmm/hm.h>
40#include <VBox/vmm/pgm.h>
41#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
42# include <VBox/vmm/hm_svm.h>
43#endif
44#include <VBox/vmm/gim.h>
45#include <VBox/vmm/tm.h>
46#include "IEMInternal.h"
47#include <VBox/vmm/vmcc.h>
48#include <VBox/log.h>
49#include <VBox/disopcode-x86-amd64.h> /* for OP_VMMCALL */
50#include <VBox/err.h>
51#include <VBox/param.h>
52#include <iprt/assert.h>
53#include <iprt/string.h>
54#include <iprt/x86.h>
55
56#include "IEMInline.h"
57
58#ifdef VBOX_WITH_NESTED_HWVIRT_SVM /* Almost the whole file. */
59
60
61/*********************************************************************************************************************************
62* Defined Constants And Macros *
63*********************************************************************************************************************************/
64/**
65 * Check the common SVM instruction preconditions.
66 */
67# define IEM_SVM_INSTR_COMMON_CHECKS(a_pVCpu, a_Instr) \
68 do { \
69 if (!CPUMIsGuestSvmEnabled(IEM_GET_CTX(a_pVCpu))) \
70 { \
71 Log((RT_STR(a_Instr) ": EFER.SVME not enabled -> #UD\n")); \
72 return iemRaiseUndefinedOpcode(a_pVCpu); \
73 } \
74 if (IEM_IS_REAL_OR_V86_MODE(a_pVCpu)) \
75 { \
76 Log((RT_STR(a_Instr) ": Real or v8086 mode -> #UD\n")); \
77 return iemRaiseUndefinedOpcode(a_pVCpu); \
78 } \
79 if (IEM_GET_CPL(a_pVCpu) != 0) \
80 { \
81 Log((RT_STR(a_Instr) ": CPL != 0 -> #GP(0)\n")); \
82 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
83 } \
84 } while (0)
85
86
87/**
88 * Converts an IEM exception event type to an SVM event type.
89 *
90 * @returns The SVM event type.
91 * @retval UINT8_MAX if the specified type of event isn't among the set
92 * of recognized IEM event types.
93 *
94 * @param uVector The vector of the event.
95 * @param fIemXcptFlags The IEM exception / interrupt flags.
96 */
97IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
98{
99 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
100 {
101 if (uVector != X86_XCPT_NMI)
102 return SVM_EVENT_EXCEPTION;
103 return SVM_EVENT_NMI;
104 }
105
106 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
107 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
108 return SVM_EVENT_EXCEPTION;
109
110 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
111 return SVM_EVENT_EXTERNAL_IRQ;
112
113 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
114 return SVM_EVENT_SOFTWARE_INT;
115
116 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
117 return UINT8_MAX;
118}
119
120
121/**
122 * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
123 *
124 * @returns Strict VBox status code from PGMChangeMode.
125 * @param pVCpu The cross context virtual CPU structure.
126 * @param cbInstr The length of the current instruction.
127 */
128DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPUCC pVCpu, uint8_t cbInstr)
129{
130 /*
131 * Inform PGM about paging mode changes.
132 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
133 * see comment in iemMemPageTranslateAndCheckAccess().
134 */
135 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
136 true /* fForce */);
137 AssertRCReturn(rc, rc);
138
139 /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
140 IEMTlbInvalidateAllGlobal(pVCpu);
141
142 /* Inform CPUM (recompiler), can later be removed. */
143 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
144
145 /* Re-initialize IEM cache/state after the drastic mode switch. */
146 iemReInitExec(pVCpu, cbInstr);
147 return rc;
148}
149
150
151/**
152 * SVM \#VMEXIT handler.
153 *
154 * @returns Strict VBox status code.
155 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
156 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
157 * "host state" and a shutdown is required.
158 *
159 * @param pVCpu The cross context virtual CPU structure.
160 * @param uExitCode The exit code.
161 * @param uExitInfo1 The exit info. 1 field.
162 * @param uExitInfo2 The exit info. 2 field.
163 */
164VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT
165{
166 VBOXSTRICTRC rcStrict;
167 if ( CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))
168 || uExitCode == SVM_EXIT_INVALID)
169 {
170 Log2(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n",
171 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uExitCode, uExitInfo1, uExitInfo2));
172
173 /*
174 * Disable the global-interrupt flag to prevent interrupts during the 'atomic' world switch.
175 */
176 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false);
177
178 /*
179 * Map the nested-guest VMCB from its location in guest memory.
180 * Write exactly what the CPU does on #VMEXIT thereby preserving most other bits in the
181 * guest's VMCB in memory, see @bugref{7243#c113} and related comment on iemSvmVmrun().
182 */
183 PSVMVMCB pVmcbMem;
184 PGMPAGEMAPLOCK PgLockMem;
185 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
186 rcStrict = iemMemPageMap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, (void **)&pVmcbMem,
187 &PgLockMem);
188 if (rcStrict == VINF_SUCCESS)
189 {
190 /*
191 * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
192 * would have modified some VMCB state) that might need to be restored on #VMEXIT before
193 * writing the VMCB back to guest memory.
194 */
195 HMNotifySvmNstGstVmexit(pVCpu, IEM_GET_CTX(pVCpu));
196
197 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
198 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
199 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
200 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
201
202 /*
203 * Save the nested-guest state into the VMCB state-save area.
204 */
205 PSVMVMCBSTATESAVE pVmcbMemState = &pVmcbMem->guest;
206 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, ES, es);
207 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, CS, cs);
208 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, SS, ss);
209 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, DS, ds);
210 pVmcbMemState->GDTR.u32Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
211 pVmcbMemState->GDTR.u64Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
212 pVmcbMemState->IDTR.u32Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
213 pVmcbMemState->IDTR.u64Base = pVCpu->cpum.GstCtx.idtr.pIdt;
214 pVmcbMemState->u64EFER = pVCpu->cpum.GstCtx.msrEFER;
215 pVmcbMemState->u64CR4 = pVCpu->cpum.GstCtx.cr4;
216 pVmcbMemState->u64CR3 = pVCpu->cpum.GstCtx.cr3;
217 pVmcbMemState->u64CR2 = pVCpu->cpum.GstCtx.cr2;
218 pVmcbMemState->u64CR0 = pVCpu->cpum.GstCtx.cr0;
219 /** @todo Nested paging. */
220 pVmcbMemState->u64RFlags = pVCpu->cpum.GstCtx.rflags.u;
221 pVmcbMemState->u64RIP = pVCpu->cpum.GstCtx.rip;
222 pVmcbMemState->u64RSP = pVCpu->cpum.GstCtx.rsp;
223 pVmcbMemState->u64RAX = pVCpu->cpum.GstCtx.rax;
224 pVmcbMemState->u64DR7 = pVCpu->cpum.GstCtx.dr[7];
225 pVmcbMemState->u64DR6 = pVCpu->cpum.GstCtx.dr[6];
226 pVmcbMemState->u8CPL = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
227 Assert(CPUMGetGuestCPL(pVCpu) == pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl);
228 if (CPUMIsGuestSvmNestedPagingEnabled(pVCpu, IEM_GET_CTX(pVCpu)))
229 pVmcbMemState->u64PAT = pVCpu->cpum.GstCtx.msrPAT;
230
231 /*
232 * Save additional state and intercept information.
233 *
234 * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below.
235 * - V_TPR: Updated by iemCImpl_load_CrX or by the physical CPU for hardware-assisted
236 * SVM execution.
237 * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP.
238 */
239 PSVMVMCBCTRL pVmcbMemCtrl = &pVmcbMem->ctrl;
240 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) /* V_IRQ. */
241 pVmcbMemCtrl->IntCtrl.n.u1VIrqPending = 0;
242 else
243 {
244 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
245 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
246 }
247
248 pVmcbMemCtrl->IntCtrl.n.u8VTPR = pVmcbCtrl->IntCtrl.n.u8VTPR; /* V_TPR. */
249
250 if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx)) /* Interrupt shadow. */
251 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 0;
252 else
253 {
254 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 1;
255 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pVCpu->cpum.GstCtx.rip));
256 CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);
257 }
258
259 /*
260 * Save nRIP, instruction length and byte fields.
261 */
262 pVmcbMemCtrl->u64NextRIP = pVmcbCtrl->u64NextRIP;
263 pVmcbMemCtrl->cbInstrFetched = pVmcbCtrl->cbInstrFetched;
264 memcpy(&pVmcbMemCtrl->abInstr[0], &pVmcbCtrl->abInstr[0], sizeof(pVmcbMemCtrl->abInstr));
265
266 /*
267 * Save exit information.
268 */
269 pVmcbMemCtrl->u64ExitCode = uExitCode;
270 pVmcbMemCtrl->u64ExitInfo1 = uExitInfo1;
271 pVmcbMemCtrl->u64ExitInfo2 = uExitInfo2;
272
273 /*
274 * Update the exit interrupt-information field if this #VMEXIT happened as a result
275 * of delivering an event through IEM.
276 *
277 * Don't update the exit interrupt-information field if the event wasn't being injected
278 * through IEM, as it would have been updated by real hardware if the nested-guest was
279 * executed using hardware-assisted SVM.
280 */
281 {
282 uint8_t uExitIntVector;
283 uint32_t uExitIntErr;
284 uint32_t fExitIntFlags;
285 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
286 NULL /* uExitIntCr2 */);
287 if (fRaisingEvent)
288 {
289 pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
290 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
291 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
292 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
293 {
294 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
295 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
296 }
297 }
298 }
299
300 /*
301 * Save the exit interrupt-information field.
302 *
303 * We write the whole field including overwriting reserved bits as it was observed on an
304 * AMD Ryzen 5 Pro 1500 that the CPU does not preserve reserved bits in EXITINTINFO.
305 */
306 pVmcbMemCtrl->ExitIntInfo = pVmcbCtrl->ExitIntInfo;
307
308 /*
309 * Clear event injection.
310 */
311 pVmcbMemCtrl->EventInject.n.u1Valid = 0;
312
313 iemMemPageUnmap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, pVmcbMem, &PgLockMem);
314 }
315
316 /*
317 * Prepare for guest's "host mode" by clearing internal processor state bits.
318 *
319 * We don't need to zero out the state-save area, just the controls should be
320 * sufficient because it has the critical bit of indicating whether we're inside
321 * the nested-guest or not.
322 */
323 memset(pVmcbCtrl, 0, sizeof(*pVmcbCtrl));
324 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
325
326 /*
327 * Restore the subset of the inhibit flags that were preserved.
328 */
329 pVCpu->cpum.GstCtx.eflags.uBoth |= pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit;
330
331 if (rcStrict == VINF_SUCCESS)
332 {
333 /** @todo Nested paging. */
334 /** @todo ASID. */
335
336 /*
337 * If we are switching to PAE mode host, validate the PDPEs first.
338 * Any invalid PDPEs here causes a VCPU shutdown.
339 */
340 PCSVMHOSTSTATE pHostState = &pVCpu->cpum.GstCtx.hwvirt.svm.HostState;
341 bool const fHostInPaeMode = CPUMIsPaePagingEnabled(pHostState->uCr0, pHostState->uCr4, pHostState->uEferMsr);
342 if (fHostInPaeMode)
343 rcStrict = PGMGstMapPaePdpesAtCr3(pVCpu, pHostState->uCr3);
344 if (RT_SUCCESS(rcStrict))
345 {
346 /*
347 * Reload the host state.
348 */
349 CPUMSvmVmExitRestoreHostState(pVCpu, IEM_GET_CTX(pVCpu));
350
351 /*
352 * Update PGM, IEM and others of a world-switch.
353 */
354 rcStrict = iemSvmWorldSwitch(pVCpu, 0 /*cbInstr - whatever*/);
355 if (rcStrict == VINF_SUCCESS)
356 rcStrict = VINF_SVM_VMEXIT;
357 else if (RT_SUCCESS(rcStrict))
358 {
359 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
360 iemSetPassUpStatus(pVCpu, rcStrict);
361 rcStrict = VINF_SVM_VMEXIT;
362 }
363 else
364 LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
365 }
366 else
367 {
368 Log(("iemSvmVmexit: PAE PDPEs invalid while restoring host state. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
369 rcStrict = VINF_EM_TRIPLE_FAULT;
370 }
371 }
372 else
373 {
374 AssertMsgFailed(("iemSvmVmexit: Mapping VMCB at %#RGp failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict)));
375 rcStrict = VINF_EM_TRIPLE_FAULT;
376 }
377 }
378 else
379 {
380 AssertMsgFailed(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode, uExitInfo1, uExitInfo2));
381 rcStrict = VERR_SVM_IPE_3;
382 }
383
384# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
385 /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
386 if ( HMIsEnabled(pVCpu->CTX_SUFF(pVM))
387 && HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM)))
388 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
389# endif
390 return rcStrict;
391}
392
393
394/**
395 * Interface for HM and EM to emulate \#VMEXIT.
396 *
397 * @returns Strict VBox status code.
398 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
399 * @param uExitCode The exit code.
400 * @param uExitInfo1 The exit info. 1 field.
401 * @param uExitInfo2 The exit info. 2 field.
402 * @thread EMT(pVCpu)
403 */
404VMM_INT_DECL(VBOXSTRICTRC) IEMExecSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
405{
406 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK);
407 VBOXSTRICTRC rcStrict = iemSvmVmexit(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
408 if (pVCpu->iem.s.cActiveMappings)
409 iemMemRollback(pVCpu);
410 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
411}
412
413
414/**
415 * Performs the operations necessary that are part of the vmrun instruction
416 * execution in the guest.
417 *
418 * @returns Strict VBox status code (i.e. informational status codes too).
419 * @retval VINF_SUCCESS successfully executed VMRUN and entered nested-guest
420 * code execution.
421 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
422 * (SVM_EXIT_INVALID most likely).
423 *
424 * @param pVCpu The cross context virtual CPU structure.
425 * @param cbInstr The length of the VMRUN instruction.
426 * @param GCPhysVmcb Guest physical address of the VMCB to run.
427 */
428static VBOXSTRICTRC iemSvmVmrun(PVMCPUCC pVCpu, uint8_t cbInstr, RTGCPHYS GCPhysVmcb) RT_NOEXCEPT
429{
430 LogFlow(("iemSvmVmrun\n"));
431
432 /*
433 * Cache the physical address of the VMCB for #VMEXIT exceptions.
434 */
435 pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
436
437 /*
438 * Save the host state.
439 */
440 CPUMSvmVmRunSaveHostState(IEM_GET_CTX(pVCpu), cbInstr);
441
442 /*
443 * Read the guest VMCB.
444 */
445 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
446 int rc = PGMPhysSimpleReadGCPhys(pVM, &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb, GCPhysVmcb, sizeof(SVMVMCB));
447 if (RT_SUCCESS(rc))
448 {
449 /*
450 * AMD-V seems to preserve reserved fields and only writes back selected, recognized
451 * fields on #VMEXIT. However, not all reserved bits are preserved (e.g, EXITINTINFO)
452 * but in our implementation we try to preserve as much as we possibly can.
453 *
454 * We could read the entire page here and only write back the relevant fields on
455 * #VMEXIT but since our internal VMCB is also being used by HM during hardware-assisted
456 * SVM execution, it creates a potential for a nested-hypervisor to set bits that are
457 * currently reserved but may be recognized as features bits in future CPUs causing
458 * unexpected & undesired results. Hence, we zero out unrecognized fields here as we
459 * typically enter hardware-assisted SVM soon anyway, see @bugref{7243#c113}.
460 */
461 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
462 PSVMVMCBSTATESAVE pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.guest;
463
464 RT_ZERO(pVmcbCtrl->u8Reserved0);
465 RT_ZERO(pVmcbCtrl->u8Reserved1);
466 RT_ZERO(pVmcbCtrl->u8Reserved2);
467 RT_ZERO(pVmcbNstGst->u8Reserved0);
468 RT_ZERO(pVmcbNstGst->u8Reserved1);
469 RT_ZERO(pVmcbNstGst->u8Reserved2);
470 RT_ZERO(pVmcbNstGst->u8Reserved3);
471 RT_ZERO(pVmcbNstGst->u8Reserved4);
472 RT_ZERO(pVmcbNstGst->u8Reserved5);
473 pVmcbCtrl->u32Reserved0 = 0;
474 pVmcbCtrl->TLBCtrl.n.u24Reserved = 0;
475 pVmcbCtrl->IntCtrl.n.u6Reserved = 0;
476 pVmcbCtrl->IntCtrl.n.u3Reserved = 0;
477 pVmcbCtrl->IntCtrl.n.u5Reserved = 0;
478 pVmcbCtrl->IntCtrl.n.u24Reserved = 0;
479 pVmcbCtrl->IntShadow.n.u30Reserved = 0;
480 pVmcbCtrl->ExitIntInfo.n.u19Reserved = 0;
481 pVmcbCtrl->NestedPagingCtrl.n.u29Reserved = 0;
482 pVmcbCtrl->EventInject.n.u19Reserved = 0;
483 pVmcbCtrl->LbrVirt.n.u30Reserved = 0;
484
485 /*
486 * Validate guest-state and controls.
487 */
488 /* VMRUN must always be intercepted. */
489 if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_VMRUN))
490 {
491 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
492 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
493 }
494
495 /* Nested paging. */
496 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
497 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
498 {
499 Log(("iemSvmVmrun: Nested paging not supported -> Disabling\n"));
500 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = 0;
501 }
502
503 /* AVIC. */
504 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
505 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
506 {
507 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
508 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
509 }
510
511 /* Last branch record (LBR) virtualization. */
512 if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
513 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
514 {
515 Log(("iemSvmVmrun: LBR virtualization not supported -> Disabling\n"));
516 pVmcbCtrl->LbrVirt.n.u1LbrVirt = 0;
517 }
518
519 /* Virtualized VMSAVE/VMLOAD. */
520 if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
521 && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
522 {
523 Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> Disabling\n"));
524 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = 0;
525 }
526
527 /* Virtual GIF. */
528 if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
529 && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
530 {
531 Log(("iemSvmVmrun: Virtual GIF not supported -> Disabling\n"));
532 pVmcbCtrl->IntCtrl.n.u1VGifEnable = 0;
533 }
534
535 /* Guest ASID. */
536 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
537 {
538 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
539 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
540 }
541
542 /* Guest AVIC. */
543 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
544 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
545 {
546 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
547 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
548 }
549
550 /* Guest Secure Encrypted Virtualization. */
551 if ( ( pVmcbCtrl->NestedPagingCtrl.n.u1Sev
552 || pVmcbCtrl->NestedPagingCtrl.n.u1SevEs)
553 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
554 {
555 Log(("iemSvmVmrun: SEV not supported -> Disabling\n"));
556 pVmcbCtrl->NestedPagingCtrl.n.u1Sev = 0;
557 pVmcbCtrl->NestedPagingCtrl.n.u1SevEs = 0;
558 }
559
560 /* Flush by ASID. */
561 if ( !pVM->cpum.ro.GuestFeatures.fSvmFlusbByAsid
562 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING
563 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_ENTIRE)
564 {
565 Log(("iemSvmVmrun: Flush-by-ASID not supported -> #VMEXIT\n"));
566 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
567 }
568
569 /* IO permission bitmap. */
570 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
571 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
572 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
573 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
574 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
575 {
576 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
577 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
578 }
579
580 /* MSR permission bitmap. */
581 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
582 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
583 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
584 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
585 {
586 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
587 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
588 }
589
590 /* CR0. */
591 if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
592 && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
593 {
594 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
595 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
596 }
597 if (pVmcbNstGst->u64CR0 >> 32)
598 {
599 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
600 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
601 }
602 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
603
604 /* DR6 and DR7. */
605 if ( pVmcbNstGst->u64DR6 >> 32
606 || pVmcbNstGst->u64DR7 >> 32)
607 {
608 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
609 pVmcbNstGst->u64DR6));
610 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
611 }
612
613 /*
614 * PAT (Page Attribute Table) MSR.
615 *
616 * The CPU only validates and loads it when nested-paging is enabled.
617 * See AMD spec. "15.25.4 Nested Paging and VMRUN/#VMEXIT".
618 */
619 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
620 && !CPUMIsPatMsrValid(pVmcbNstGst->u64PAT))
621 {
622 Log(("iemSvmVmrun: PAT invalid. u64PAT=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64PAT));
623 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
624 }
625
626 /*
627 * Copy the IO permission bitmap into the cache.
628 */
629 AssertCompile(sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap) == SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
630 rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, GCPhysIOBitmap,
631 sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap));
632 if (RT_FAILURE(rc))
633 {
634 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
635 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
636 }
637
638 /*
639 * Copy the MSR permission bitmap into the cache.
640 */
641 AssertCompile(sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap) == SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
642 rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap, GCPhysMsrBitmap,
643 sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap));
644 if (RT_FAILURE(rc))
645 {
646 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
647 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
648 }
649
650 /*
651 * Copy segments from nested-guest VMCB state to the guest-CPU state.
652 *
653 * We do this here as we need to use the CS attributes and it's easier this way
654 * then using the VMCB format selectors. It doesn't really matter where we copy
655 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
656 */
657 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, ES, es);
658 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, CS, cs);
659 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, SS, ss);
660 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, DS, ds);
661
662 /** @todo Segment attribute overrides by VMRUN. */
663
664 /*
665 * CPL adjustments and overrides.
666 *
667 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
668 * We shall thus adjust both CS.DPL and SS.DPL here.
669 */
670 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
671 if (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(pVCpu)))
672 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 3;
673 if (CPUMIsGuestInRealModeEx(IEM_GET_CTX(pVCpu)))
674 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 0;
675 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
676
677 /*
678 * Continue validating guest-state and controls.
679 *
680 * We pass CR0 as 0 to CPUMIsGuestEferMsrWriteValid() below to skip the illegal
681 * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
682 * old and new EFER value to not have any guest EFER bits influence the new
683 * nested-guest EFER.
684 */
685 uint64_t uValidEfer;
686 rc = CPUMIsGuestEferMsrWriteValid(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
687 if (RT_FAILURE(rc))
688 {
689 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
690 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
691 }
692
693 /* Validate paging and CPU mode bits. */
694 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
695 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
696 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
697 bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
698 bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
699 bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
700 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
701 bool const fLongModeConformCS = pVCpu->cpum.GstCtx.cs.Attr.n.u1Long && pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig;
702 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
703 if (fLongModeWithPaging)
704 uValidEfer |= MSR_K6_EFER_LMA;
705 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
706 if ( !fSvm
707 || (!fLongModeSupported && fLongModeActiveOrEnabled)
708 || (fLongModeWithPaging && !fPae)
709 || (fLongModeWithPaging && !fProtMode)
710 || ( fLongModeEnabled
711 && fPaging
712 && fPae
713 && fLongModeConformCS))
714 {
715 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
716 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
717 }
718
719 /*
720 * Preserve the required force-flags.
721 *
722 * We only preserve the force-flags that would affect the execution of the
723 * nested-guest (or the guest).
724 *
725 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
726 * execution of a subsequent IRET instruction in the guest.
727 *
728 * The remaining FFs (e.g. timers) can stay in place so that we will be able to
729 * generate interrupts that should cause #VMEXITs for the nested-guest.
730 *
731 * VMRUN has implicit GIF (Global Interrupt Flag) handling, we don't need to
732 * preserve VMCPU_FF_INHIBIT_INTERRUPTS.
733 */
734 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_INHIBIT_NMI;
735 pVCpu->cpum.GstCtx.eflags.uBoth &= ~CPUMCTX_INHIBIT_NMI;
736
737 /*
738 * Pause filter.
739 */
740 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilter)
741 {
742 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = pVmcbCtrl->u16PauseFilterCount;
743 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilterThreshold)
744 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold = pVmcbCtrl->u16PauseFilterCount;
745 }
746
747 /*
748 * Interrupt shadow.
749 */
750 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
751 {
752 LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
753 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
754 CPUMSetInInterruptShadowEx(&pVCpu->cpum.GstCtx, pVmcbNstGst->u64RIP);
755 }
756
757 /*
758 * TLB flush control.
759 * Currently disabled since it's redundant as we unconditionally flush the TLB
760 * in iemSvmWorldSwitch() below.
761 */
762# if 0
763 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
764 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
765 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
766 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
767 PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
768# endif
769
770 /*
771 * Validate and map PAE PDPEs if the guest will be using PAE paging.
772 * Invalid PAE PDPEs here causes a #VMEXIT.
773 */
774 if ( !pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
775 && CPUMIsPaePagingEnabled(pVmcbNstGst->u64CR0, pVmcbNstGst->u64CR4, uValidEfer))
776 {
777 rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcbNstGst->u64CR3);
778 if (RT_SUCCESS(rc))
779 { /* likely */ }
780 else
781 {
782 Log(("iemSvmVmrun: PAE PDPEs invalid -> #VMEXIT\n"));
783 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
784 }
785 }
786
787 /*
788 * Copy the remaining guest state from the VMCB to the guest-CPU context.
789 */
790 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
791 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
792 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
793 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
794 CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
795 CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
796 pVCpu->cpum.GstCtx.cr3 = pVmcbNstGst->u64CR3;
797 pVCpu->cpum.GstCtx.cr2 = pVmcbNstGst->u64CR2;
798 pVCpu->cpum.GstCtx.dr[6] = pVmcbNstGst->u64DR6;
799 pVCpu->cpum.GstCtx.dr[7] = pVmcbNstGst->u64DR7;
800 pVCpu->cpum.GstCtx.rflags.u = pVmcbNstGst->u64RFlags;
801 pVCpu->cpum.GstCtx.rax = pVmcbNstGst->u64RAX;
802 pVCpu->cpum.GstCtx.rsp = pVmcbNstGst->u64RSP;
803 pVCpu->cpum.GstCtx.rip = pVmcbNstGst->u64RIP;
804 CPUMSetGuestEferMsrNoChecks(pVCpu, pVCpu->cpum.GstCtx.msrEFER, uValidEfer);
805 if (pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging)
806 pVCpu->cpum.GstCtx.msrPAT = pVmcbNstGst->u64PAT;
807
808 /* Mask DR6, DR7 bits mandatory set/clear bits. */
809 pVCpu->cpum.GstCtx.dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
810 pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_RA1_MASK;
811 pVCpu->cpum.GstCtx.dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
812 pVCpu->cpum.GstCtx.dr[7] |= X86_DR7_RA1_MASK;
813
814 /*
815 * Check for pending virtual interrupts.
816 */
817 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
818 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
819 else
820 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
821
822 /*
823 * Update PGM, IEM and others of a world-switch.
824 */
825 VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu, cbInstr);
826 if (rcStrict == VINF_SUCCESS)
827 { /* likely */ }
828 else if (RT_SUCCESS(rcStrict))
829 {
830 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
831 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
832 }
833 else
834 {
835 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
836 return rcStrict;
837 }
838
839 /*
840 * Set the global-interrupt flag to allow interrupts in the guest.
841 */
842 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true);
843
844 /*
845 * Event injection.
846 */
847 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
848 pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
849 if (pEventInject->n.u1Valid)
850 {
851 uint8_t const uVector = pEventInject->n.u8Vector;
852 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject, uVector);
853 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
854
855 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
856 if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
857 {
858 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
859 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
860 }
861 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
862 {
863 if ( uVector == X86_XCPT_NMI
864 || uVector > X86_XCPT_LAST)
865 {
866 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
867 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
868 }
869 if ( uVector == X86_XCPT_BR
870 && CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
871 {
872 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
873 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
874 }
875 /** @todo any others? */
876 }
877
878 /*
879 * Invalidate the exit interrupt-information field here. This field is fully updated
880 * on #VMEXIT as events other than the one below can also cause intercepts during
881 * their injection (e.g. exceptions).
882 */
883 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
884
885 /*
886 * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
887 * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
888 * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
889 * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
890 * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
891 * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
892 * injecting the event through IEM here.
893 */
894 pVmcbCtrl->EventInject.n.u1Valid = 0;
895
896 /** @todo NRIP: Software interrupts can only be pushed properly if we support
897 * NRIP for the nested-guest to calculate the instruction length
898 * below. */
899 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
900 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uVector, enmType, uErrorCode, pVCpu->cpum.GstCtx.cr2,
901 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.msrEFER));
902
903 /*
904 * We shall not inject the event here right away. There may be paging mode related updates
905 * as a result of the world-switch above that are yet to be honored. Instead flag the event
906 * as pending for injection.
907 */
908 TRPMAssertTrap(pVCpu, uVector, enmType);
909 if (pEventInject->n.u1ErrorCodeValid)
910 TRPMSetErrorCode(pVCpu, uErrorCode);
911 if ( enmType == TRPM_TRAP
912 && uVector == X86_XCPT_PF)
913 TRPMSetFaultAddress(pVCpu, pVCpu->cpum.GstCtx.cr2);
914 }
915 else
916 LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
917 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3,
918 pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, pVCpu->cpum.GstCtx.eflags.u));
919
920 LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
921
922# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
923 /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
924 if ( HMIsEnabled(pVM)
925 && HMIsSvmVGifActive(pVM))
926 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
927# endif
928
929 return rcStrict;
930 }
931
932 /* Shouldn't really happen as the caller should've validated the physical address already. */
933 Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
934 return rc;
935}
936
937
938/**
939 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
940 * intercept is active.
941 *
942 * @returns Strict VBox status code.
943 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
944 * we're not executing a nested-guest.
945 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
946 * successfully.
947 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
948 * failed and a shutdown needs to be initiated for the guest.
949 *
950 * @returns VBox strict status code.
951 * @param pVCpu The cross context virtual CPU structure of the calling thread.
952 * @param cbInstr The length of the instruction in bytes triggering the
953 * event.
954 * @param u8Vector The interrupt or exception vector.
955 * @param fFlags The exception flags (see IEM_XCPT_FLAGS_XXX).
956 * @param uErr The error-code associated with the exception.
957 * @param uCr2 The CR2 value in case of a \#PF exception.
958 */
959VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
960 uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT
961{
962 Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
963
964 /*
965 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
966 *
967 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_XCPT_2 #VMEXITs.
968 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
969 * even when they use a vector in the range 0 to 31.
970 * - ICEBP should not trigger #DB intercept, but its own intercept.
971 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
972 */
973 /* Check NMI intercept */
974 if ( u8Vector == X86_XCPT_NMI
975 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
976 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
977 {
978 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
979 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
980 }
981
982 /* Check ICEBP intercept. */
983 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
984 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
985 {
986 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
987 IEM_SVM_UPDATE_NRIP(pVCpu, cbInstr);
988 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
989 }
990
991 /* Check CPU exception intercepts. */
992 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
993 && IEM_SVM_IS_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
994 {
995 Assert(u8Vector <= X86_XCPT_LAST);
996 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
997 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
998 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
999 && u8Vector == X86_XCPT_PF
1000 && !(uErr & X86_TRAP_PF_ID))
1001 {
1002 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
1003# ifdef IEM_WITH_CODE_TLB
1004 uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
1005 uint8_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
1006 pVmcbCtrl->cbInstrFetched = RT_MIN(cbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
1007 if ( pbInstrBuf
1008 && cbInstrBuf > 0)
1009 memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, pVmcbCtrl->cbInstrFetched);
1010# else
1011 uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
1012 pVmcbCtrl->cbInstrFetched = RT_MIN(cbOpcode, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
1013 if (cbOpcode > 0)
1014 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[0], pVmcbCtrl->cbInstrFetched);
1015# endif
1016 }
1017 if (u8Vector == X86_XCPT_BR)
1018 IEM_SVM_UPDATE_NRIP(pVCpu, cbInstr);
1019 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
1020 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.u32InterceptXcpt,
1021 u8Vector, uExitInfo1, uExitInfo2));
1022 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XCPT_0 + u8Vector, uExitInfo1, uExitInfo2);
1023 }
1024
1025 /* Check software interrupt (INTn) intercepts. */
1026 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
1027 | IEM_XCPT_FLAGS_BP_INSTR
1028 | IEM_XCPT_FLAGS_ICEBP_INSTR
1029 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
1030 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
1031 {
1032 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
1033 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
1034 IEM_SVM_UPDATE_NRIP(pVCpu, cbInstr);
1035 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
1036 }
1037
1038 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1039}
1040
1041
1042/**
1043 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
1044 * corresponding intercept is active.
1045 *
1046 * @returns Strict VBox status code.
1047 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
1048 * we're not executing a nested-guest.
1049 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1050 * successfully.
1051 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1052 * failed and a shutdown needs to be initiated for the guest.
1053 *
1054 * @returns VBox strict status code.
1055 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1056 * @param u16Port The IO port being accessed.
1057 * @param enmIoType The type of IO access.
1058 * @param cbReg The IO operand size in bytes.
1059 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
1060 * @param iEffSeg The effective segment number.
1061 * @param fRep Whether this is a repeating IO instruction (REP prefix).
1062 * @param fStrIo Whether this is a string IO instruction.
1063 * @param cbInstr The length of the IO instruction in bytes.
1064 */
1065VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
1066 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT
1067{
1068 Assert(IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
1069 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
1070 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
1071
1072 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
1073
1074 SVMIOIOEXITINFO IoExitInfo;
1075 bool const fIntercept = CPUMIsSvmIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap, u16Port, enmIoType, cbReg,
1076 cAddrSizeBits, iEffSeg, fRep, fStrIo, &IoExitInfo);
1077 if (fIntercept)
1078 {
1079 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
1080 IEM_SVM_UPDATE_NRIP(pVCpu, cbInstr);
1081 return iemSvmVmexit(pVCpu, SVM_EXIT_IOIO, IoExitInfo.u, pVCpu->cpum.GstCtx.rip + cbInstr);
1082 }
1083
1084 /** @todo remove later (for debugging as VirtualBox always traps all IO
1085 * intercepts). */
1086 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
1087 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1088}
1089
1090
1091/**
1092 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
1093 * corresponding intercept is active.
1094 *
1095 * @returns Strict VBox status code.
1096 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
1097 * specify interception of the accessed MSR @a idMsr.
1098 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1099 * successfully.
1100 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1101 * failed and a shutdown needs to be initiated for the guest.
1102 *
1103 * @param pVCpu The cross context virtual CPU structure.
1104 * @param idMsr The MSR being accessed in the nested-guest.
1105 * @param fWrite Whether this is an MSR write access, @c false implies an
1106 * MSR read.
1107 * @param cbInstr The length of the MSR read/write instruction in bytes.
1108 */
1109VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT
1110{
1111 /*
1112 * Check if any MSRs are being intercepted.
1113 */
1114 Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_MSR_PROT));
1115 Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
1116
1117 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1118
1119 /*
1120 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1121 */
1122 uint16_t offMsrpm;
1123 uint8_t uMsrpmBit;
1124 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1125 if (RT_SUCCESS(rc))
1126 {
1127 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
1128 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1129 if (fWrite)
1130 ++uMsrpmBit;
1131
1132 /*
1133 * Check if the bit is set, if so, trigger a #VMEXIT.
1134 */
1135 if (pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit))
1136 {
1137 IEM_SVM_UPDATE_NRIP(pVCpu, cbInstr);
1138 return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1139 }
1140 }
1141 else
1142 {
1143 /*
1144 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (nested hypervisor) deal with it.
1145 */
1146 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1147 return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1148 }
1149 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1150}
1151
1152
1153
1154/**
1155 * Implements 'VMRUN'.
1156 */
1157IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1158{
1159# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1160 RT_NOREF2(pVCpu, cbInstr);
1161 return VINF_EM_RAW_EMULATE_INSTR;
1162# else
1163 LogFlow(("iemCImpl_vmrun\n"));
1164 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1165
1166 /** @todo Check effective address size using address size prefix. */
1167 RTGCPHYS const GCPhysVmcb = IEM_IS_64BIT_CODE(pVCpu) ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1168 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1169 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1170 {
1171 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1172 return iemRaiseGeneralProtectionFault0(pVCpu);
1173 }
1174
1175 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1176 {
1177 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1178 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1179 }
1180
1181 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, cbInstr, GCPhysVmcb);
1182 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1183 {
1184 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
1185 rcStrict = VINF_EM_TRIPLE_FAULT;
1186 }
1187 return rcStrict;
1188# endif
1189}
1190
1191
1192/**
1193 * Interface for HM and EM to emulate the VMRUN instruction.
1194 *
1195 * @returns Strict VBox status code.
1196 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1197 * @param cbInstr The instruction length in bytes.
1198 * @thread EMT(pVCpu)
1199 */
1200VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmrun(PVMCPUCC pVCpu, uint8_t cbInstr)
1201{
1202 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1203 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMRUN_MASK);
1204
1205 iemInitExec(pVCpu, 0 /*fExecOpts*/);
1206 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmrun);
1207 Assert(!pVCpu->iem.s.cActiveMappings);
1208 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1209}
1210
1211
1212/**
1213 * Implements 'VMLOAD'.
1214 */
1215IEM_CIMPL_DEF_0(iemCImpl_vmload)
1216{
1217# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1218 RT_NOREF2(pVCpu, cbInstr);
1219 return VINF_EM_RAW_EMULATE_INSTR;
1220# else
1221 LogFlow(("iemCImpl_vmload\n"));
1222 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1223
1224 /** @todo Check effective address size using address size prefix. */
1225 RTGCPHYS const GCPhysVmcb = IEM_IS_64BIT_CODE(pVCpu) ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1226 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1227 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1228 {
1229 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1230 return iemRaiseGeneralProtectionFault0(pVCpu);
1231 }
1232
1233 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1234 {
1235 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1236 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1237 }
1238
1239 SVMVMCBSTATESAVE VmcbNstGst;
1240 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
1241 sizeof(SVMVMCBSTATESAVE));
1242 if (rcStrict == VINF_SUCCESS)
1243 {
1244 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1245 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
1246 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
1247 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
1248 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
1249
1250 pVCpu->cpum.GstCtx.msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1251 pVCpu->cpum.GstCtx.msrSTAR = VmcbNstGst.u64STAR;
1252 pVCpu->cpum.GstCtx.msrLSTAR = VmcbNstGst.u64LSTAR;
1253 pVCpu->cpum.GstCtx.msrCSTAR = VmcbNstGst.u64CSTAR;
1254 pVCpu->cpum.GstCtx.msrSFMASK = VmcbNstGst.u64SFMASK;
1255
1256 pVCpu->cpum.GstCtx.SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1257 pVCpu->cpum.GstCtx.SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1258 pVCpu->cpum.GstCtx.SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1259
1260 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1261 }
1262 return rcStrict;
1263# endif
1264}
1265
1266
1267/**
1268 * Interface for HM and EM to emulate the VMLOAD instruction.
1269 *
1270 * @returns Strict VBox status code.
1271 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1272 * @param cbInstr The instruction length in bytes.
1273 * @thread EMT(pVCpu)
1274 */
1275VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmload(PVMCPUCC pVCpu, uint8_t cbInstr)
1276{
1277 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1278
1279 iemInitExec(pVCpu, 0 /*fExecOpts*/);
1280 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmload);
1281 Assert(!pVCpu->iem.s.cActiveMappings);
1282 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1283}
1284
1285
1286/**
1287 * Implements 'VMSAVE'.
1288 */
1289IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1290{
1291# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1292 RT_NOREF2(pVCpu, cbInstr);
1293 return VINF_EM_RAW_EMULATE_INSTR;
1294# else
1295 LogFlow(("iemCImpl_vmsave\n"));
1296 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1297
1298 /** @todo Check effective address size using address size prefix. */
1299 RTGCPHYS const GCPhysVmcb = IEM_IS_64BIT_CODE(pVCpu) ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1300 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1301 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1302 {
1303 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1304 return iemRaiseGeneralProtectionFault0(pVCpu);
1305 }
1306
1307 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1308 {
1309 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1310 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1311 }
1312
1313 SVMVMCBSTATESAVE VmcbNstGst;
1314 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
1315 sizeof(SVMVMCBSTATESAVE));
1316 if (rcStrict == VINF_SUCCESS)
1317 {
1318 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1319 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR
1320 | CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS);
1321
1322 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
1323 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
1324 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
1325 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
1326
1327 VmcbNstGst.u64KernelGSBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
1328 VmcbNstGst.u64STAR = pVCpu->cpum.GstCtx.msrSTAR;
1329 VmcbNstGst.u64LSTAR = pVCpu->cpum.GstCtx.msrLSTAR;
1330 VmcbNstGst.u64CSTAR = pVCpu->cpum.GstCtx.msrCSTAR;
1331 VmcbNstGst.u64SFMASK = pVCpu->cpum.GstCtx.msrSFMASK;
1332
1333 VmcbNstGst.u64SysEnterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1334 VmcbNstGst.u64SysEnterESP = pVCpu->cpum.GstCtx.SysEnter.esp;
1335 VmcbNstGst.u64SysEnterEIP = pVCpu->cpum.GstCtx.SysEnter.eip;
1336
1337 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1338 sizeof(SVMVMCBSTATESAVE));
1339 if (rcStrict == VINF_SUCCESS)
1340 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1341 }
1342 return rcStrict;
1343# endif
1344}
1345
1346
1347/**
1348 * Interface for HM and EM to emulate the VMSAVE instruction.
1349 *
1350 * @returns Strict VBox status code.
1351 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1352 * @param cbInstr The instruction length in bytes.
1353 * @thread EMT(pVCpu)
1354 */
1355VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmsave(PVMCPUCC pVCpu, uint8_t cbInstr)
1356{
1357 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1358
1359 iemInitExec(pVCpu, 0 /*fExecOpts*/);
1360 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmsave);
1361 Assert(!pVCpu->iem.s.cActiveMappings);
1362 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1363}
1364
1365
1366/**
1367 * Implements 'CLGI'.
1368 */
1369IEM_CIMPL_DEF_0(iemCImpl_clgi)
1370{
1371# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1372 RT_NOREF2(pVCpu, cbInstr);
1373 return VINF_EM_RAW_EMULATE_INSTR;
1374# else
1375 LogFlow(("iemCImpl_clgi\n"));
1376 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1377 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1378 {
1379 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1380 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1381 }
1382
1383 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false);
1384
1385# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1386 iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1387 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1388# else
1389 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1390# endif
1391# endif
1392}
1393
1394
1395/**
1396 * Interface for HM and EM to emulate the CLGI instruction.
1397 *
1398 * @returns Strict VBox status code.
1399 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1400 * @param cbInstr The instruction length in bytes.
1401 * @thread EMT(pVCpu)
1402 */
1403VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedClgi(PVMCPUCC pVCpu, uint8_t cbInstr)
1404{
1405 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1406
1407 iemInitExec(pVCpu, 0 /*fExecOpts*/);
1408 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_clgi);
1409 Assert(!pVCpu->iem.s.cActiveMappings);
1410 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1411}
1412
1413
1414/**
1415 * Implements 'STGI'.
1416 */
1417IEM_CIMPL_DEF_0(iemCImpl_stgi)
1418{
1419# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1420 RT_NOREF2(pVCpu, cbInstr);
1421 return VINF_EM_RAW_EMULATE_INSTR;
1422# else
1423 LogFlow(("iemCImpl_stgi\n"));
1424 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1425 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1426 {
1427 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1428 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1429 }
1430
1431 CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true);
1432
1433# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1434 iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1435 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1436# else
1437 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1438# endif
1439# endif
1440}
1441
1442
1443/**
1444 * Interface for HM and EM to emulate the STGI instruction.
1445 *
1446 * @returns Strict VBox status code.
1447 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1448 * @param cbInstr The instruction length in bytes.
1449 * @thread EMT(pVCpu)
1450 */
1451VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedStgi(PVMCPUCC pVCpu, uint8_t cbInstr)
1452{
1453 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1454
1455 iemInitExec(pVCpu, 0 /*fExecOpts*/);
1456 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_stgi);
1457 Assert(!pVCpu->iem.s.cActiveMappings);
1458 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1459}
1460
1461
1462/**
1463 * Implements 'INVLPGA'.
1464 */
1465IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1466{
1467 /** @todo Check effective address size using address size prefix. */
1468 RTGCPTR const GCPtrPage = IEM_IS_64BIT_CODE(pVCpu) ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1469 /** @todo PGM needs virtual ASID support. */
1470# if 0
1471 uint32_t const uAsid = pVCpu->cpum.GstCtx.ecx;
1472# endif
1473
1474 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1475 if (!IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1476 { /* probable */ }
1477 else
1478 {
1479 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1480 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1481 }
1482
1483 PGMInvalidatePage(pVCpu, GCPtrPage);
1484 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1485}
1486
1487
1488/**
1489 * Interface for HM and EM to emulate the INVLPGA instruction.
1490 *
1491 * @returns Strict VBox status code.
1492 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1493 * @param cbInstr The instruction length in bytes.
1494 * @thread EMT(pVCpu)
1495 */
1496VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvlpga(PVMCPUCC pVCpu, uint8_t cbInstr)
1497{
1498 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
1499
1500 iemInitExec(pVCpu, 0 /*fExecOpts*/);
1501 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_invlpga);
1502 Assert(!pVCpu->iem.s.cActiveMappings);
1503 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
1504}
1505
1506
1507/**
1508 * Implements 'SKINIT'.
1509 */
1510IEM_CIMPL_DEF_0(iemCImpl_skinit)
1511{
1512 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1513
1514 uint32_t uIgnore;
1515 uint32_t fFeaturesECX;
1516 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, -1 /*f64BitMode*/, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1517 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1518 return iemRaiseUndefinedOpcode(pVCpu);
1519
1520 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1521 {
1522 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1523 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1524 }
1525
1526 RT_NOREF(cbInstr);
1527 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1528}
1529
1530
1531/**
1532 * Implements SVM's implementation of PAUSE.
1533 */
1534IEM_CIMPL_DEF_0(iemCImpl_svm_pause)
1535{
1536 bool fCheckIntercept = true;
1537 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilter)
1538 {
1539 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1540
1541 /* TSC based pause-filter thresholding. */
1542 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilterThreshold
1543 && pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold > 0)
1544 {
1545 uint64_t const uTick = TMCpuTickGet(pVCpu);
1546 if (uTick - pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick > pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold)
1547 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = CPUMGetGuestSvmPauseFilterCount(pVCpu, IEM_GET_CTX(pVCpu));
1548 pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick = uTick;
1549 }
1550
1551 /* Simple pause-filter counter. */
1552 if (pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter > 0)
1553 {
1554 --pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter;
1555 fCheckIntercept = false;
1556 }
1557 }
1558
1559 if (fCheckIntercept)
1560 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_PAUSE, SVM_EXIT_PAUSE, 0, 0, cbInstr);
1561
1562 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1563}
1564
1565#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
1566
1567/**
1568 * Common code for iemCImpl_vmmcall and iemCImpl_vmcall (latter in IEMAllCImplVmxInstr.cpp.h).
1569 */
1570IEM_CIMPL_DEF_1(iemCImpl_Hypercall, uint16_t, uDisOpcode)
1571{
1572 if (EMAreHypercallInstructionsEnabled(pVCpu))
1573 {
1574 NOREF(uDisOpcode);
1575 VBOXSTRICTRC rcStrict = GIMHypercallEx(pVCpu, IEM_GET_CTX(pVCpu), uDisOpcode, cbInstr);
1576 if (RT_SUCCESS(rcStrict))
1577 {
1578 /** @todo finish: Sort out assertion here when iemRegAddToRipAndFinishingClearingRF
1579 * starts returning non-VINF_SUCCESS statuses. */
1580 if (rcStrict == VINF_SUCCESS)
1581 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1582 if ( rcStrict == VINF_SUCCESS
1583 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
1584 return VINF_SUCCESS;
1585 AssertMsgReturn(rcStrict == VINF_GIM_R3_HYPERCALL, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
1586 return rcStrict;
1587 }
1588 AssertMsgReturn( rcStrict == VERR_GIM_HYPERCALL_ACCESS_DENIED
1589 || rcStrict == VERR_GIM_HYPERCALLS_NOT_AVAILABLE
1590 || rcStrict == VERR_GIM_NOT_ENABLED
1591 || rcStrict == VERR_GIM_HYPERCALL_MEMORY_READ_FAILED
1592 || rcStrict == VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED,
1593 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
1594
1595 /* Raise #UD on all failures. */
1596 }
1597 return iemRaiseUndefinedOpcode(pVCpu);
1598}
1599
1600
1601/**
1602 * Implements 'VMMCALL'.
1603 */
1604IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1605{
1606 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1607 {
1608 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1609 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1610 }
1611
1612 /* This is a little bit more complicated than the VT-x version because HM/SVM may
1613 patch MOV CR8 instructions to speed up APIC.TPR access for 32-bit windows guests. */
1614 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1615 if (VM_IS_HM_ENABLED(pVM))
1616 {
1617 int rc = HMHCMaybeMovTprSvmHypercall(pVM, pVCpu);
1618 if (RT_SUCCESS(rc))
1619 {
1620 Log(("vmmcall: MovTpr\n"));
1621 return VINF_SUCCESS;
1622 }
1623 }
1624
1625 /* Join forces with vmcall. */
1626 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMMCALL);
1627}
1628
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette