1 | /* $Id: IEMAllCImplStrInstr.cpp.h 97642 2022-11-21 23:03:36Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - String Instruction Implementation Code Template.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2022 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*******************************************************************************
|
---|
30 | * Defined Constants And Macros *
|
---|
31 | *******************************************************************************/
|
---|
32 | #if OP_SIZE == 8
|
---|
33 | # define OP_rAX al
|
---|
34 | #elif OP_SIZE == 16
|
---|
35 | # define OP_rAX ax
|
---|
36 | #elif OP_SIZE == 32
|
---|
37 | # define OP_rAX eax
|
---|
38 | #elif OP_SIZE == 64
|
---|
39 | # define OP_rAX rax
|
---|
40 | #else
|
---|
41 | # error "Bad OP_SIZE."
|
---|
42 | #endif
|
---|
43 | #define OP_TYPE RT_CONCAT3(uint,OP_SIZE,_t)
|
---|
44 |
|
---|
45 | #if ADDR_SIZE == 16
|
---|
46 | # define ADDR_rDI di
|
---|
47 | # define ADDR_rSI si
|
---|
48 | # define ADDR_rCX cx
|
---|
49 | # define ADDR2_TYPE uint32_t
|
---|
50 | # define ADDR_VMXSTRIO 0
|
---|
51 | #elif ADDR_SIZE == 32
|
---|
52 | # define ADDR_rDI edi
|
---|
53 | # define ADDR_rSI esi
|
---|
54 | # define ADDR_rCX ecx
|
---|
55 | # define ADDR2_TYPE uint32_t
|
---|
56 | # define ADDR_VMXSTRIO 1
|
---|
57 | #elif ADDR_SIZE == 64
|
---|
58 | # define ADDR_rDI rdi
|
---|
59 | # define ADDR_rSI rsi
|
---|
60 | # define ADDR_rCX rcx
|
---|
61 | # define ADDR2_TYPE uint64_t
|
---|
62 | # define ADDR_VMXSTRIO 2
|
---|
63 | # define IS_64_BIT_CODE(a_pVCpu) (true)
|
---|
64 | #else
|
---|
65 | # error "Bad ADDR_SIZE."
|
---|
66 | #endif
|
---|
67 | #define ADDR_TYPE RT_CONCAT3(uint,ADDR_SIZE,_t)
|
---|
68 |
|
---|
69 | #if ADDR_SIZE == 64 || OP_SIZE == 64
|
---|
70 | # define IS_64_BIT_CODE(a_pVCpu) (true)
|
---|
71 | #elif ADDR_SIZE == 32
|
---|
72 | # define IS_64_BIT_CODE(a_pVCpu) ((a_pVCpu)->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
73 | #else
|
---|
74 | # define IS_64_BIT_CODE(a_pVCpu) (false)
|
---|
75 | #endif
|
---|
76 |
|
---|
77 | /** @def IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
|
---|
78 | * Used in the outer (page-by-page) loop to check for reasons for returnning
|
---|
79 | * before completing the instruction. In raw-mode we temporarily enable
|
---|
80 | * interrupts to let the host interrupt us. We cannot let big string operations
|
---|
81 | * hog the CPU, especially not in raw-mode.
|
---|
82 | */
|
---|
83 | #define IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fEflags) \
|
---|
84 | do { \
|
---|
85 | if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, (a_fEflags) & X86_EFL_IF ? VMCPU_FF_YIELD_REPSTR_MASK \
|
---|
86 | : VMCPU_FF_YIELD_REPSTR_NOINT_MASK) \
|
---|
87 | && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_YIELD_REPSTR_MASK) \
|
---|
88 | )) \
|
---|
89 | { /* probable */ } \
|
---|
90 | else \
|
---|
91 | { \
|
---|
92 | LogFlow(("%s: Leaving early (outer)! ffcpu=%#RX64 ffvm=%#x\n", \
|
---|
93 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
94 | return VINF_SUCCESS; \
|
---|
95 | } \
|
---|
96 | } while (0)
|
---|
97 |
|
---|
98 | /** @def IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
99 | * This is used in some of the inner loops to make sure we respond immediately
|
---|
100 | * to VMCPU_FF_IOM as well as outside requests. Use this for expensive
|
---|
101 | * instructions. Use IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN for
|
---|
102 | * ones that are typically cheap. */
|
---|
103 | #define IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
|
---|
104 | do { \
|
---|
105 | if (RT_LIKELY( ( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
|
---|
106 | && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_HIGH_PRIORITY_POST_REPSTR_MASK)) \
|
---|
107 | || (a_fExitExpr) )) \
|
---|
108 | { /* very likely */ } \
|
---|
109 | else \
|
---|
110 | { \
|
---|
111 | LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 ffvm=%#x\n", \
|
---|
112 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
113 | return VINF_SUCCESS; \
|
---|
114 | } \
|
---|
115 | } while (0)
|
---|
116 |
|
---|
117 |
|
---|
118 | /** @def IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
119 | * This is used in the inner loops where
|
---|
120 | * IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN isn't used. It only
|
---|
121 | * checks the CPU FFs so that we respond immediately to the pending IOM FF
|
---|
122 | * (status code is hidden in IEMCPU::rcPassUp by IEM memory commit code).
|
---|
123 | */
|
---|
124 | #define IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
|
---|
125 | do { \
|
---|
126 | if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
|
---|
127 | || (a_fExitExpr) )) \
|
---|
128 | { /* very likely */ } \
|
---|
129 | else \
|
---|
130 | { \
|
---|
131 | LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 (ffvm=%#x)\n", \
|
---|
132 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
133 | return VINF_SUCCESS; \
|
---|
134 | } \
|
---|
135 | } while (0)
|
---|
136 |
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * Implements 'REPE CMPS'.
|
---|
140 | */
|
---|
141 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repe_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
142 | {
|
---|
143 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
144 |
|
---|
145 | /*
|
---|
146 | * Setup.
|
---|
147 | */
|
---|
148 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
149 | if (uCounterReg == 0)
|
---|
150 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
151 |
|
---|
152 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
153 |
|
---|
154 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
155 | uint64_t uSrc1Base = 0; /* gcc may not be used uninitialized */
|
---|
156 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
157 | if (rcStrict != VINF_SUCCESS)
|
---|
158 | return rcStrict;
|
---|
159 |
|
---|
160 | uint64_t uSrc2Base = 0; /* gcc may not be used uninitialized */
|
---|
161 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
|
---|
162 | if (rcStrict != VINF_SUCCESS)
|
---|
163 | return rcStrict;
|
---|
164 |
|
---|
165 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
166 | ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
167 | ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
168 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * The loop.
|
---|
172 | */
|
---|
173 | for (;;)
|
---|
174 | {
|
---|
175 | /*
|
---|
176 | * Do segmentation and virtual page stuff.
|
---|
177 | */
|
---|
178 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
179 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
180 | uint32_t cLeftSrc1Page = (GUEST_PAGE_SIZE - (uVirtSrc1Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
181 | if (cLeftSrc1Page > uCounterReg)
|
---|
182 | cLeftSrc1Page = uCounterReg;
|
---|
183 | uint32_t cLeftSrc2Page = (GUEST_PAGE_SIZE - (uVirtSrc2Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
184 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
185 |
|
---|
186 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
187 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
188 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
189 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
190 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
191 | && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
192 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
193 | )
|
---|
194 | )
|
---|
195 | {
|
---|
196 | RTGCPHYS GCPhysSrc1Mem;
|
---|
197 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
198 | if (rcStrict != VINF_SUCCESS)
|
---|
199 | return rcStrict;
|
---|
200 |
|
---|
201 | RTGCPHYS GCPhysSrc2Mem;
|
---|
202 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
203 | if (rcStrict != VINF_SUCCESS)
|
---|
204 | return rcStrict;
|
---|
205 |
|
---|
206 | /*
|
---|
207 | * If we can map the page without trouble, do a block processing
|
---|
208 | * until the end of the current page.
|
---|
209 | */
|
---|
210 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
211 | OP_TYPE const *puSrc2Mem;
|
---|
212 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
213 | if (rcStrict == VINF_SUCCESS)
|
---|
214 | {
|
---|
215 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
216 | OP_TYPE const *puSrc1Mem;
|
---|
217 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
218 | if (rcStrict == VINF_SUCCESS)
|
---|
219 | {
|
---|
220 | if (!memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
221 | {
|
---|
222 | /* All matches, only compare the last itme to get the right eflags. */
|
---|
223 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
224 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
225 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
226 | uCounterReg -= cLeftPage;
|
---|
227 | }
|
---|
228 | else
|
---|
229 | {
|
---|
230 | /* Some mismatch, compare each item (and keep volatile
|
---|
231 | memory in mind). */
|
---|
232 | uint32_t off = 0;
|
---|
233 | do
|
---|
234 | {
|
---|
235 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
236 | off++;
|
---|
237 | } while ( off < cLeftPage
|
---|
238 | && (uEFlags & X86_EFL_ZF));
|
---|
239 | uSrc1AddrReg += cbIncr * off;
|
---|
240 | uSrc2AddrReg += cbIncr * off;
|
---|
241 | uCounterReg -= off;
|
---|
242 | }
|
---|
243 |
|
---|
244 | /* Update the registers before looping. */
|
---|
245 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
|
---|
246 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
|
---|
247 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
|
---|
248 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
249 |
|
---|
250 | iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
251 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
252 | if ( uCounterReg == 0
|
---|
253 | || !(uEFlags & X86_EFL_ZF))
|
---|
254 | break;
|
---|
255 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
256 | continue;
|
---|
257 | }
|
---|
258 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
259 | }
|
---|
260 | }
|
---|
261 |
|
---|
262 | /*
|
---|
263 | * Fallback - slow processing till the end of the current page.
|
---|
264 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
265 | * as 0, we execute one loop then.
|
---|
266 | */
|
---|
267 | do
|
---|
268 | {
|
---|
269 | OP_TYPE uValue1;
|
---|
270 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
271 | if (rcStrict != VINF_SUCCESS)
|
---|
272 | return rcStrict;
|
---|
273 | OP_TYPE uValue2;
|
---|
274 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
275 | if (rcStrict != VINF_SUCCESS)
|
---|
276 | return rcStrict;
|
---|
277 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
278 |
|
---|
279 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
280 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
281 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
282 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
283 | cLeftPage--;
|
---|
284 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
|
---|
285 | } while ( (int32_t)cLeftPage > 0
|
---|
286 | && (uEFlags & X86_EFL_ZF));
|
---|
287 |
|
---|
288 | /*
|
---|
289 | * Next page? Must check for interrupts and stuff here.
|
---|
290 | */
|
---|
291 | if ( uCounterReg == 0
|
---|
292 | || !(uEFlags & X86_EFL_ZF))
|
---|
293 | break;
|
---|
294 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
295 | }
|
---|
296 |
|
---|
297 | /*
|
---|
298 | * Done.
|
---|
299 | */
|
---|
300 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
301 | }
|
---|
302 |
|
---|
303 |
|
---|
304 | /**
|
---|
305 | * Implements 'REPNE CMPS'.
|
---|
306 | */
|
---|
307 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repne_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
308 | {
|
---|
309 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
310 |
|
---|
311 | /*
|
---|
312 | * Setup.
|
---|
313 | */
|
---|
314 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
315 | if (uCounterReg == 0)
|
---|
316 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
317 |
|
---|
318 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
319 |
|
---|
320 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
321 | uint64_t uSrc1Base = 0; /* gcc may not be used uninitialized */;
|
---|
322 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
323 | if (rcStrict != VINF_SUCCESS)
|
---|
324 | return rcStrict;
|
---|
325 |
|
---|
326 | uint64_t uSrc2Base = 0; /* gcc may not be used uninitialized */
|
---|
327 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
|
---|
328 | if (rcStrict != VINF_SUCCESS)
|
---|
329 | return rcStrict;
|
---|
330 |
|
---|
331 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
332 | ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
333 | ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
334 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
335 |
|
---|
336 | /*
|
---|
337 | * The loop.
|
---|
338 | */
|
---|
339 | for (;;)
|
---|
340 | {
|
---|
341 | /*
|
---|
342 | * Do segmentation and virtual page stuff.
|
---|
343 | */
|
---|
344 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
345 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
346 | uint32_t cLeftSrc1Page = (GUEST_PAGE_SIZE - (uVirtSrc1Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
347 | if (cLeftSrc1Page > uCounterReg)
|
---|
348 | cLeftSrc1Page = uCounterReg;
|
---|
349 | uint32_t cLeftSrc2Page = (GUEST_PAGE_SIZE - (uVirtSrc2Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
350 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
351 |
|
---|
352 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
353 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
354 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
355 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
356 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
357 | && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
358 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
359 | )
|
---|
360 | )
|
---|
361 | {
|
---|
362 | RTGCPHYS GCPhysSrc1Mem;
|
---|
363 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
364 | if (rcStrict != VINF_SUCCESS)
|
---|
365 | return rcStrict;
|
---|
366 |
|
---|
367 | RTGCPHYS GCPhysSrc2Mem;
|
---|
368 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
369 | if (rcStrict != VINF_SUCCESS)
|
---|
370 | return rcStrict;
|
---|
371 |
|
---|
372 | /*
|
---|
373 | * If we can map the page without trouble, do a block processing
|
---|
374 | * until the end of the current page.
|
---|
375 | */
|
---|
376 | OP_TYPE const *puSrc2Mem;
|
---|
377 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
378 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
379 | if (rcStrict == VINF_SUCCESS)
|
---|
380 | {
|
---|
381 | OP_TYPE const *puSrc1Mem;
|
---|
382 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
383 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
384 | if (rcStrict == VINF_SUCCESS)
|
---|
385 | {
|
---|
386 | if (memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
387 | {
|
---|
388 | /* All matches, only compare the last item to get the right eflags. */
|
---|
389 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
390 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
391 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
392 | uCounterReg -= cLeftPage;
|
---|
393 | }
|
---|
394 | else
|
---|
395 | {
|
---|
396 | /* Some mismatch, compare each item (and keep volatile
|
---|
397 | memory in mind). */
|
---|
398 | uint32_t off = 0;
|
---|
399 | do
|
---|
400 | {
|
---|
401 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
402 | off++;
|
---|
403 | } while ( off < cLeftPage
|
---|
404 | && !(uEFlags & X86_EFL_ZF));
|
---|
405 | uSrc1AddrReg += cbIncr * off;
|
---|
406 | uSrc2AddrReg += cbIncr * off;
|
---|
407 | uCounterReg -= off;
|
---|
408 | }
|
---|
409 |
|
---|
410 | /* Update the registers before looping. */
|
---|
411 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
|
---|
412 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
|
---|
413 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
|
---|
414 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
415 |
|
---|
416 | iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
417 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
418 | if ( uCounterReg == 0
|
---|
419 | || (uEFlags & X86_EFL_ZF))
|
---|
420 | break;
|
---|
421 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
422 | continue;
|
---|
423 | }
|
---|
424 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
425 | }
|
---|
426 | }
|
---|
427 |
|
---|
428 | /*
|
---|
429 | * Fallback - slow processing till the end of the current page.
|
---|
430 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
431 | * as 0, we execute one loop then.
|
---|
432 | */
|
---|
433 | do
|
---|
434 | {
|
---|
435 | OP_TYPE uValue1;
|
---|
436 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
437 | if (rcStrict != VINF_SUCCESS)
|
---|
438 | return rcStrict;
|
---|
439 | OP_TYPE uValue2;
|
---|
440 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
441 | if (rcStrict != VINF_SUCCESS)
|
---|
442 | return rcStrict;
|
---|
443 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
444 |
|
---|
445 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
446 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
447 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
448 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
449 | cLeftPage--;
|
---|
450 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
|
---|
451 | } while ( (int32_t)cLeftPage > 0
|
---|
452 | && !(uEFlags & X86_EFL_ZF));
|
---|
453 |
|
---|
454 | /*
|
---|
455 | * Next page? Must check for interrupts and stuff here.
|
---|
456 | */
|
---|
457 | if ( uCounterReg == 0
|
---|
458 | || (uEFlags & X86_EFL_ZF))
|
---|
459 | break;
|
---|
460 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
461 | }
|
---|
462 |
|
---|
463 | /*
|
---|
464 | * Done.
|
---|
465 | */
|
---|
466 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
467 | }
|
---|
468 |
|
---|
469 |
|
---|
470 | /**
|
---|
471 | * Implements 'REPE SCAS'.
|
---|
472 | */
|
---|
473 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repe_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
474 | {
|
---|
475 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
476 |
|
---|
477 | /*
|
---|
478 | * Setup.
|
---|
479 | */
|
---|
480 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
481 | if (uCounterReg == 0)
|
---|
482 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
483 |
|
---|
484 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
485 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
486 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
487 | if (rcStrict != VINF_SUCCESS)
|
---|
488 | return rcStrict;
|
---|
489 |
|
---|
490 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
491 | OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
492 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
493 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
494 |
|
---|
495 | /*
|
---|
496 | * The loop.
|
---|
497 | */
|
---|
498 | for (;;)
|
---|
499 | {
|
---|
500 | /*
|
---|
501 | * Do segmentation and virtual page stuff.
|
---|
502 | */
|
---|
503 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
504 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
505 | if (cLeftPage > uCounterReg)
|
---|
506 | cLeftPage = uCounterReg;
|
---|
507 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
508 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
509 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
510 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
511 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
512 | )
|
---|
513 | )
|
---|
514 | {
|
---|
515 | RTGCPHYS GCPhysMem;
|
---|
516 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
517 | if (rcStrict != VINF_SUCCESS)
|
---|
518 | return rcStrict;
|
---|
519 |
|
---|
520 | /*
|
---|
521 | * If we can map the page without trouble, do a block processing
|
---|
522 | * until the end of the current page.
|
---|
523 | */
|
---|
524 | PGMPAGEMAPLOCK PgLockMem;
|
---|
525 | OP_TYPE const *puMem;
|
---|
526 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
527 | if (rcStrict == VINF_SUCCESS)
|
---|
528 | {
|
---|
529 | /* Search till we find a mismatching item. */
|
---|
530 | OP_TYPE uTmpValue;
|
---|
531 | bool fQuit;
|
---|
532 | uint32_t i = 0;
|
---|
533 | do
|
---|
534 | {
|
---|
535 | uTmpValue = puMem[i++];
|
---|
536 | fQuit = uTmpValue != uValueReg;
|
---|
537 | } while (i < cLeftPage && !fQuit);
|
---|
538 |
|
---|
539 | /* Update the regs. */
|
---|
540 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
541 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
|
---|
542 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
543 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
544 | Assert(!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
545 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
546 | if ( fQuit
|
---|
547 | || uCounterReg == 0)
|
---|
548 | break;
|
---|
549 |
|
---|
550 | /* If unaligned, we drop thru and do the page crossing access
|
---|
551 | below. Otherwise, do the next page. */
|
---|
552 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
553 | {
|
---|
554 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
555 | continue;
|
---|
556 | }
|
---|
557 | cLeftPage = 0;
|
---|
558 | }
|
---|
559 | }
|
---|
560 |
|
---|
561 | /*
|
---|
562 | * Fallback - slow processing till the end of the current page.
|
---|
563 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
564 | * as 0, we execute one loop then.
|
---|
565 | */
|
---|
566 | do
|
---|
567 | {
|
---|
568 | OP_TYPE uTmpValue;
|
---|
569 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
570 | if (rcStrict != VINF_SUCCESS)
|
---|
571 | return rcStrict;
|
---|
572 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
573 |
|
---|
574 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
575 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
576 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
577 | cLeftPage--;
|
---|
578 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
|
---|
579 | } while ( (int32_t)cLeftPage > 0
|
---|
580 | && (uEFlags & X86_EFL_ZF));
|
---|
581 |
|
---|
582 | /*
|
---|
583 | * Next page? Must check for interrupts and stuff here.
|
---|
584 | */
|
---|
585 | if ( uCounterReg == 0
|
---|
586 | || !(uEFlags & X86_EFL_ZF))
|
---|
587 | break;
|
---|
588 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
589 | }
|
---|
590 |
|
---|
591 | /*
|
---|
592 | * Done.
|
---|
593 | */
|
---|
594 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
595 | }
|
---|
596 |
|
---|
597 |
|
---|
598 | /**
|
---|
599 | * Implements 'REPNE SCAS'.
|
---|
600 | */
|
---|
601 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repne_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
602 | {
|
---|
603 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
604 |
|
---|
605 | /*
|
---|
606 | * Setup.
|
---|
607 | */
|
---|
608 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
609 | if (uCounterReg == 0)
|
---|
610 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
611 |
|
---|
612 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
613 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
614 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
615 | if (rcStrict != VINF_SUCCESS)
|
---|
616 | return rcStrict;
|
---|
617 |
|
---|
618 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
619 | OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
620 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
621 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
622 |
|
---|
623 | /*
|
---|
624 | * The loop.
|
---|
625 | */
|
---|
626 | for (;;)
|
---|
627 | {
|
---|
628 | /*
|
---|
629 | * Do segmentation and virtual page stuff.
|
---|
630 | */
|
---|
631 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
632 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
633 | if (cLeftPage > uCounterReg)
|
---|
634 | cLeftPage = uCounterReg;
|
---|
635 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
636 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
637 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
638 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
639 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
640 | )
|
---|
641 | )
|
---|
642 | {
|
---|
643 | RTGCPHYS GCPhysMem;
|
---|
644 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
645 | if (rcStrict != VINF_SUCCESS)
|
---|
646 | return rcStrict;
|
---|
647 |
|
---|
648 | /*
|
---|
649 | * If we can map the page without trouble, do a block processing
|
---|
650 | * until the end of the current page.
|
---|
651 | */
|
---|
652 | PGMPAGEMAPLOCK PgLockMem;
|
---|
653 | OP_TYPE const *puMem;
|
---|
654 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
655 | if (rcStrict == VINF_SUCCESS)
|
---|
656 | {
|
---|
657 | /* Search till we find a mismatching item. */
|
---|
658 | OP_TYPE uTmpValue;
|
---|
659 | bool fQuit;
|
---|
660 | uint32_t i = 0;
|
---|
661 | do
|
---|
662 | {
|
---|
663 | uTmpValue = puMem[i++];
|
---|
664 | fQuit = uTmpValue == uValueReg;
|
---|
665 | } while (i < cLeftPage && !fQuit);
|
---|
666 |
|
---|
667 | /* Update the regs. */
|
---|
668 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
669 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
|
---|
670 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
671 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
672 | Assert(!!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
673 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
674 | if ( fQuit
|
---|
675 | || uCounterReg == 0)
|
---|
676 | break;
|
---|
677 |
|
---|
678 | /* If unaligned, we drop thru and do the page crossing access
|
---|
679 | below. Otherwise, do the next page. */
|
---|
680 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
681 | {
|
---|
682 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
683 | continue;
|
---|
684 | }
|
---|
685 | cLeftPage = 0;
|
---|
686 | }
|
---|
687 | }
|
---|
688 |
|
---|
689 | /*
|
---|
690 | * Fallback - slow processing till the end of the current page.
|
---|
691 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
692 | * as 0, we execute one loop then.
|
---|
693 | */
|
---|
694 | do
|
---|
695 | {
|
---|
696 | OP_TYPE uTmpValue;
|
---|
697 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
698 | if (rcStrict != VINF_SUCCESS)
|
---|
699 | return rcStrict;
|
---|
700 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
701 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
702 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
703 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
704 | cLeftPage--;
|
---|
705 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
|
---|
706 | } while ( (int32_t)cLeftPage > 0
|
---|
707 | && !(uEFlags & X86_EFL_ZF));
|
---|
708 |
|
---|
709 | /*
|
---|
710 | * Next page? Must check for interrupts and stuff here.
|
---|
711 | */
|
---|
712 | if ( uCounterReg == 0
|
---|
713 | || (uEFlags & X86_EFL_ZF))
|
---|
714 | break;
|
---|
715 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
716 | }
|
---|
717 |
|
---|
718 | /*
|
---|
719 | * Done.
|
---|
720 | */
|
---|
721 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
722 | }
|
---|
723 |
|
---|
724 |
|
---|
725 |
|
---|
726 |
|
---|
727 | /**
|
---|
728 | * Implements 'REP MOVS'.
|
---|
729 | */
|
---|
730 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_movs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
731 | {
|
---|
732 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
733 |
|
---|
734 | /*
|
---|
735 | * Setup.
|
---|
736 | */
|
---|
737 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
738 | if (uCounterReg == 0)
|
---|
739 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
740 |
|
---|
741 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
742 |
|
---|
743 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
744 | uint64_t uSrcBase = 0; /* gcc may not be used uninitialized */
|
---|
745 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uSrcBase);
|
---|
746 | if (rcStrict != VINF_SUCCESS)
|
---|
747 | return rcStrict;
|
---|
748 |
|
---|
749 | uint64_t uDstBase = 0; /* gcc may not be used uninitialized */
|
---|
750 | rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uDstBase);
|
---|
751 | if (rcStrict != VINF_SUCCESS)
|
---|
752 | return rcStrict;
|
---|
753 |
|
---|
754 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
755 | ADDR_TYPE uSrcAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
756 | ADDR_TYPE uDstAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
757 |
|
---|
758 | /*
|
---|
759 | * Be careful with handle bypassing.
|
---|
760 | */
|
---|
761 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
762 | {
|
---|
763 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
764 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
765 | }
|
---|
766 |
|
---|
767 | /*
|
---|
768 | * The loop.
|
---|
769 | */
|
---|
770 | for (;;)
|
---|
771 | {
|
---|
772 | /*
|
---|
773 | * Do segmentation and virtual page stuff.
|
---|
774 | */
|
---|
775 | ADDR2_TYPE uVirtSrcAddr = uSrcAddrReg + (ADDR2_TYPE)uSrcBase;
|
---|
776 | ADDR2_TYPE uVirtDstAddr = uDstAddrReg + (ADDR2_TYPE)uDstBase;
|
---|
777 | uint32_t cLeftSrcPage = (GUEST_PAGE_SIZE - (uVirtSrcAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
778 | if (cLeftSrcPage > uCounterReg)
|
---|
779 | cLeftSrcPage = uCounterReg;
|
---|
780 | uint32_t cLeftDstPage = (GUEST_PAGE_SIZE - (uVirtDstAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
781 | uint32_t cLeftPage = RT_MIN(cLeftSrcPage, cLeftDstPage);
|
---|
782 |
|
---|
783 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
784 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
785 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
786 | || ( uSrcAddrReg < pSrcHid->u32Limit
|
---|
787 | && uSrcAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit
|
---|
788 | && uDstAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
789 | && uDstAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
790 | )
|
---|
791 | )
|
---|
792 | {
|
---|
793 | RTGCPHYS GCPhysSrcMem;
|
---|
794 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrcAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrcMem);
|
---|
795 | if (rcStrict != VINF_SUCCESS)
|
---|
796 | return rcStrict;
|
---|
797 |
|
---|
798 | RTGCPHYS GCPhysDstMem;
|
---|
799 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtDstAddr, OP_SIZE / 8, IEM_ACCESS_DATA_W, &GCPhysDstMem);
|
---|
800 | if (rcStrict != VINF_SUCCESS)
|
---|
801 | return rcStrict;
|
---|
802 |
|
---|
803 | /*
|
---|
804 | * If we can map the page without trouble, do a block processing
|
---|
805 | * until the end of the current page.
|
---|
806 | */
|
---|
807 | PGMPAGEMAPLOCK PgLockDstMem;
|
---|
808 | OP_TYPE *puDstMem;
|
---|
809 | rcStrict = iemMemPageMap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, (void **)&puDstMem, &PgLockDstMem);
|
---|
810 | if (rcStrict == VINF_SUCCESS)
|
---|
811 | {
|
---|
812 | PGMPAGEMAPLOCK PgLockSrcMem;
|
---|
813 | OP_TYPE const *puSrcMem;
|
---|
814 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, (void **)&puSrcMem, &PgLockSrcMem);
|
---|
815 | if (rcStrict == VINF_SUCCESS)
|
---|
816 | {
|
---|
817 | Assert( (GCPhysSrcMem >> GUEST_PAGE_SHIFT) != (GCPhysDstMem >> GUEST_PAGE_SHIFT)
|
---|
818 | || ((uintptr_t)puSrcMem >> GUEST_PAGE_SHIFT) == ((uintptr_t)puDstMem >> GUEST_PAGE_SHIFT));
|
---|
819 |
|
---|
820 | /* Perform the operation exactly (don't use memcpy to avoid
|
---|
821 | having to consider how its implementation would affect
|
---|
822 | any overlapping source and destination area). */
|
---|
823 | OP_TYPE const *puSrcCur = puSrcMem;
|
---|
824 | OP_TYPE *puDstCur = puDstMem;
|
---|
825 | uint32_t cTodo = cLeftPage;
|
---|
826 | while (cTodo-- > 0)
|
---|
827 | *puDstCur++ = *puSrcCur++;
|
---|
828 |
|
---|
829 | /* Update the registers. */
|
---|
830 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cLeftPage * cbIncr;
|
---|
831 | pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cLeftPage * cbIncr;
|
---|
832 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
833 |
|
---|
834 | iemMemPageUnmap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, puSrcMem, &PgLockSrcMem);
|
---|
835 | iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
836 |
|
---|
837 | if (uCounterReg == 0)
|
---|
838 | break;
|
---|
839 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
840 | continue;
|
---|
841 | }
|
---|
842 | iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
843 | }
|
---|
844 | }
|
---|
845 |
|
---|
846 | /*
|
---|
847 | * Fallback - slow processing till the end of the current page.
|
---|
848 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
849 | * as 0, we execute one loop then.
|
---|
850 | */
|
---|
851 | do
|
---|
852 | {
|
---|
853 | OP_TYPE uValue;
|
---|
854 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uSrcAddrReg);
|
---|
855 | if (rcStrict != VINF_SUCCESS)
|
---|
856 | return rcStrict;
|
---|
857 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uDstAddrReg, uValue);
|
---|
858 | if (rcStrict != VINF_SUCCESS)
|
---|
859 | return rcStrict;
|
---|
860 |
|
---|
861 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cbIncr;
|
---|
862 | pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cbIncr;
|
---|
863 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
864 | cLeftPage--;
|
---|
865 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
866 | } while ((int32_t)cLeftPage > 0);
|
---|
867 |
|
---|
868 | /*
|
---|
869 | * Next page. Must check for interrupts and stuff here.
|
---|
870 | */
|
---|
871 | if (uCounterReg == 0)
|
---|
872 | break;
|
---|
873 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
874 | }
|
---|
875 |
|
---|
876 | /*
|
---|
877 | * Done.
|
---|
878 | */
|
---|
879 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
880 | }
|
---|
881 |
|
---|
882 |
|
---|
883 | /**
|
---|
884 | * Implements 'REP STOS'.
|
---|
885 | */
|
---|
886 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_stos_,OP_rAX,_m,ADDR_SIZE))
|
---|
887 | {
|
---|
888 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
889 |
|
---|
890 | /*
|
---|
891 | * Setup.
|
---|
892 | */
|
---|
893 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
894 | if (uCounterReg == 0)
|
---|
895 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
896 |
|
---|
897 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
898 |
|
---|
899 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
900 | VBOXSTRICTRC rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
901 | if (rcStrict != VINF_SUCCESS)
|
---|
902 | return rcStrict;
|
---|
903 |
|
---|
904 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
905 | OP_TYPE const uValue = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
906 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
907 |
|
---|
908 | /*
|
---|
909 | * Be careful with handle bypassing.
|
---|
910 | */
|
---|
911 | /** @todo Permit doing a page if correctly aligned. */
|
---|
912 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
913 | {
|
---|
914 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
915 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
916 | }
|
---|
917 |
|
---|
918 | /*
|
---|
919 | * The loop.
|
---|
920 | */
|
---|
921 | for (;;)
|
---|
922 | {
|
---|
923 | /*
|
---|
924 | * Do segmentation and virtual page stuff.
|
---|
925 | */
|
---|
926 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
927 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
928 | if (cLeftPage > uCounterReg)
|
---|
929 | cLeftPage = uCounterReg;
|
---|
930 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
931 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
932 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
933 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
934 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
935 | )
|
---|
936 | )
|
---|
937 | {
|
---|
938 | RTGCPHYS GCPhysMem;
|
---|
939 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
940 | if (rcStrict != VINF_SUCCESS)
|
---|
941 | return rcStrict;
|
---|
942 |
|
---|
943 | /*
|
---|
944 | * If we can map the page without trouble, do a block processing
|
---|
945 | * until the end of the current page.
|
---|
946 | */
|
---|
947 | PGMPAGEMAPLOCK PgLockMem;
|
---|
948 | OP_TYPE *puMem;
|
---|
949 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
950 | if (rcStrict == VINF_SUCCESS)
|
---|
951 | {
|
---|
952 | /* Update the regs first so we can loop on cLeftPage. */
|
---|
953 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
954 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
|
---|
955 |
|
---|
956 | /* Do the memsetting. */
|
---|
957 | #if OP_SIZE == 8
|
---|
958 | memset(puMem, uValue, cLeftPage);
|
---|
959 | /*#elif OP_SIZE == 32
|
---|
960 | ASMMemFill32(puMem, cLeftPage * (OP_SIZE / 8), uValue);*/
|
---|
961 | #else
|
---|
962 | while (cLeftPage-- > 0)
|
---|
963 | *puMem++ = uValue;
|
---|
964 | #endif
|
---|
965 |
|
---|
966 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
967 |
|
---|
968 | if (uCounterReg == 0)
|
---|
969 | break;
|
---|
970 |
|
---|
971 | /* If unaligned, we drop thru and do the page crossing access
|
---|
972 | below. Otherwise, do the next page. */
|
---|
973 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
974 | {
|
---|
975 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
976 | continue;
|
---|
977 | }
|
---|
978 | cLeftPage = 0;
|
---|
979 | }
|
---|
980 | /* If we got an invalid physical address in the page table, just skip
|
---|
981 | ahead to the next page or the counter reaches zero. This crazy
|
---|
982 | optimization is for a buggy EFI firmware that's driving me nuts. */
|
---|
983 | else if (rcStrict == VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
984 | {
|
---|
985 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
986 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
|
---|
987 | if (uCounterReg == 0)
|
---|
988 | break;
|
---|
989 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
990 | {
|
---|
991 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
992 | continue;
|
---|
993 | }
|
---|
994 | }
|
---|
995 | }
|
---|
996 |
|
---|
997 | /*
|
---|
998 | * Fallback - slow processing till the end of the current page.
|
---|
999 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1000 | * as 0, we execute one loop then.
|
---|
1001 | */
|
---|
1002 | do
|
---|
1003 | {
|
---|
1004 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uAddrReg, uValue);
|
---|
1005 | if (rcStrict != VINF_SUCCESS)
|
---|
1006 | return rcStrict;
|
---|
1007 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
1008 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1009 | cLeftPage--;
|
---|
1010 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1011 | } while ((int32_t)cLeftPage > 0);
|
---|
1012 |
|
---|
1013 | /*
|
---|
1014 | * Next page. Must check for interrupts and stuff here.
|
---|
1015 | */
|
---|
1016 | if (uCounterReg == 0)
|
---|
1017 | break;
|
---|
1018 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 | /*
|
---|
1022 | * Done.
|
---|
1023 | */
|
---|
1024 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1025 | }
|
---|
1026 |
|
---|
1027 |
|
---|
1028 | /**
|
---|
1029 | * Implements 'REP LODS'.
|
---|
1030 | */
|
---|
1031 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_lods_,OP_rAX,_m,ADDR_SIZE), int8_t, iEffSeg)
|
---|
1032 | {
|
---|
1033 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1034 |
|
---|
1035 | /*
|
---|
1036 | * Setup.
|
---|
1037 | */
|
---|
1038 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1039 | if (uCounterReg == 0)
|
---|
1040 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1041 |
|
---|
1042 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg));
|
---|
1043 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
1044 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
1045 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uBaseAddr);
|
---|
1046 | if (rcStrict != VINF_SUCCESS)
|
---|
1047 | return rcStrict;
|
---|
1048 |
|
---|
1049 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1050 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
1051 |
|
---|
1052 | /*
|
---|
1053 | * The loop.
|
---|
1054 | */
|
---|
1055 | for (;;)
|
---|
1056 | {
|
---|
1057 | /*
|
---|
1058 | * Do segmentation and virtual page stuff.
|
---|
1059 | */
|
---|
1060 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1061 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1062 | if (cLeftPage > uCounterReg)
|
---|
1063 | cLeftPage = uCounterReg;
|
---|
1064 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1065 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1066 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1067 | || ( uAddrReg < pSrcHid->u32Limit
|
---|
1068 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit)
|
---|
1069 | )
|
---|
1070 | )
|
---|
1071 | {
|
---|
1072 | RTGCPHYS GCPhysMem;
|
---|
1073 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
1074 | if (rcStrict != VINF_SUCCESS)
|
---|
1075 | return rcStrict;
|
---|
1076 |
|
---|
1077 | /*
|
---|
1078 | * If we can map the page without trouble, we can get away with
|
---|
1079 | * just reading the last value on the page.
|
---|
1080 | */
|
---|
1081 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1082 | OP_TYPE const *puMem;
|
---|
1083 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
1084 | if (rcStrict == VINF_SUCCESS)
|
---|
1085 | {
|
---|
1086 | /* Only get the last byte, the rest doesn't matter in direct access mode. */
|
---|
1087 | #if OP_SIZE == 32
|
---|
1088 | pVCpu->cpum.GstCtx.rax = puMem[cLeftPage - 1];
|
---|
1089 | #else
|
---|
1090 | pVCpu->cpum.GstCtx.OP_rAX = puMem[cLeftPage - 1];
|
---|
1091 | #endif
|
---|
1092 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
1093 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cLeftPage * cbIncr;
|
---|
1094 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1095 |
|
---|
1096 | if (uCounterReg == 0)
|
---|
1097 | break;
|
---|
1098 |
|
---|
1099 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1100 | below. Otherwise, do the next page. */
|
---|
1101 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
1102 | {
|
---|
1103 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1104 | continue;
|
---|
1105 | }
|
---|
1106 | cLeftPage = 0;
|
---|
1107 | }
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | /*
|
---|
1111 | * Fallback - slow processing till the end of the current page.
|
---|
1112 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1113 | * as 0, we execute one loop then.
|
---|
1114 | */
|
---|
1115 | do
|
---|
1116 | {
|
---|
1117 | OP_TYPE uTmpValue;
|
---|
1118 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, iEffSeg, uAddrReg);
|
---|
1119 | if (rcStrict != VINF_SUCCESS)
|
---|
1120 | return rcStrict;
|
---|
1121 | #if OP_SIZE == 32
|
---|
1122 | pVCpu->cpum.GstCtx.rax = uTmpValue;
|
---|
1123 | #else
|
---|
1124 | pVCpu->cpum.GstCtx.OP_rAX = uTmpValue;
|
---|
1125 | #endif
|
---|
1126 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
|
---|
1127 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1128 | cLeftPage--;
|
---|
1129 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1130 | } while ((int32_t)cLeftPage > 0);
|
---|
1131 |
|
---|
1132 | if (rcStrict != VINF_SUCCESS)
|
---|
1133 | break;
|
---|
1134 |
|
---|
1135 | /*
|
---|
1136 | * Next page. Must check for interrupts and stuff here.
|
---|
1137 | */
|
---|
1138 | if (uCounterReg == 0)
|
---|
1139 | break;
|
---|
1140 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | /*
|
---|
1144 | * Done.
|
---|
1145 | */
|
---|
1146 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 |
|
---|
1150 | #if OP_SIZE != 64
|
---|
1151 |
|
---|
1152 | /**
|
---|
1153 | * Implements 'INS' (no rep)
|
---|
1154 | */
|
---|
1155 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1156 | {
|
---|
1157 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1158 | VBOXSTRICTRC rcStrict;
|
---|
1159 |
|
---|
1160 | /*
|
---|
1161 | * Be careful with handle bypassing.
|
---|
1162 | */
|
---|
1163 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
1164 | {
|
---|
1165 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1166 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1167 | }
|
---|
1168 |
|
---|
1169 | /*
|
---|
1170 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1171 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1172 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1173 | */
|
---|
1174 | if (!fIoChecked)
|
---|
1175 | {
|
---|
1176 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
|
---|
1177 | if (rcStrict != VINF_SUCCESS)
|
---|
1178 | return rcStrict;
|
---|
1179 | }
|
---|
1180 |
|
---|
1181 | /*
|
---|
1182 | * Check nested-guest I/O intercepts.
|
---|
1183 | */
|
---|
1184 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1185 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1186 | {
|
---|
1187 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1188 | ExitInstrInfo.u = 0;
|
---|
1189 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1190 | ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
|
---|
1191 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, false /* fRep */,
|
---|
1192 | ExitInstrInfo, cbInstr);
|
---|
1193 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1194 | return rcStrict;
|
---|
1195 | }
|
---|
1196 | #endif
|
---|
1197 |
|
---|
1198 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1199 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1200 | {
|
---|
1201 | rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES,
|
---|
1202 | false /* fRep */, true /* fStrIo */, cbInstr);
|
---|
1203 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1204 | return VINF_SUCCESS;
|
---|
1205 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1206 | {
|
---|
1207 | Log(("iemCImpl_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
|
---|
1208 | OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1209 | return rcStrict;
|
---|
1210 | }
|
---|
1211 | }
|
---|
1212 | #endif
|
---|
1213 |
|
---|
1214 | OP_TYPE *puMem;
|
---|
1215 | rcStrict = iemMemMap(pVCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, pVCpu->cpum.GstCtx.ADDR_rDI,
|
---|
1216 | IEM_ACCESS_DATA_W, OP_SIZE / 8 - 1);
|
---|
1217 | if (rcStrict != VINF_SUCCESS)
|
---|
1218 | return rcStrict;
|
---|
1219 |
|
---|
1220 | uint32_t u32Value = 0;
|
---|
1221 | rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, &u32Value, OP_SIZE / 8);
|
---|
1222 | if (IOM_SUCCESS(rcStrict))
|
---|
1223 | {
|
---|
1224 | /**
|
---|
1225 | * @todo I/O breakpoint support for INS
|
---|
1226 | */
|
---|
1227 | *puMem = (OP_TYPE)u32Value;
|
---|
1228 | # ifdef IN_RING3
|
---|
1229 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1230 | # else
|
---|
1231 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1232 | # endif
|
---|
1233 | if (RT_LIKELY(rcStrict2 == VINF_SUCCESS))
|
---|
1234 | {
|
---|
1235 | if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
|
---|
1236 | pVCpu->cpum.GstCtx.ADDR_rDI += OP_SIZE / 8;
|
---|
1237 | else
|
---|
1238 | pVCpu->cpum.GstCtx.ADDR_rDI -= OP_SIZE / 8;
|
---|
1239 |
|
---|
1240 | /** @todo finish: work out how this should work wrt status codes. Not sure we
|
---|
1241 | * can use iemSetPassUpStatus here, but it depends on what
|
---|
1242 | * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
|
---|
1243 | rcStrict2 = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1244 | if (rcStrict2 != VINF_SUCCESS)
|
---|
1245 | {
|
---|
1246 | iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1247 | rcStrict = rcStrict2;
|
---|
1248 | }
|
---|
1249 | pVCpu->iem.s.cPotentialExits++;
|
---|
1250 | }
|
---|
1251 | else
|
---|
1252 | AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), RT_FAILURE_NP(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
|
---|
1253 | }
|
---|
1254 | return rcStrict;
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 |
|
---|
1258 | /**
|
---|
1259 | * Implements 'REP INS'.
|
---|
1260 | */
|
---|
1261 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1262 | {
|
---|
1263 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1264 |
|
---|
1265 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES | CPUMCTX_EXTRN_TR);
|
---|
1266 |
|
---|
1267 | /*
|
---|
1268 | * Setup.
|
---|
1269 | */
|
---|
1270 | uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
|
---|
1271 | VBOXSTRICTRC rcStrict;
|
---|
1272 | if (!fIoChecked)
|
---|
1273 | {
|
---|
1274 | /** @todo check if this is too early for ecx=0. */
|
---|
1275 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
|
---|
1276 | if (rcStrict != VINF_SUCCESS)
|
---|
1277 | return rcStrict;
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 | /*
|
---|
1281 | * Check nested-guest I/O intercepts.
|
---|
1282 | */
|
---|
1283 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1284 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1285 | {
|
---|
1286 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1287 | ExitInstrInfo.u = 0;
|
---|
1288 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1289 | ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
|
---|
1290 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, true /* fRep */,
|
---|
1291 | ExitInstrInfo, cbInstr);
|
---|
1292 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1293 | return rcStrict;
|
---|
1294 | }
|
---|
1295 | #endif
|
---|
1296 |
|
---|
1297 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1298 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1299 | {
|
---|
1300 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES, true /* fRep */,
|
---|
1301 | true /* fStrIo */, cbInstr);
|
---|
1302 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1303 | return VINF_SUCCESS;
|
---|
1304 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1305 | {
|
---|
1306 | Log(("iemCImpl_rep_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
|
---|
1307 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1308 | return rcStrict;
|
---|
1309 | }
|
---|
1310 | }
|
---|
1311 | #endif
|
---|
1312 |
|
---|
1313 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1314 | if (uCounterReg == 0)
|
---|
1315 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1316 |
|
---|
1317 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
1318 | rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
1319 | if (rcStrict != VINF_SUCCESS)
|
---|
1320 | return rcStrict;
|
---|
1321 |
|
---|
1322 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1323 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
1324 |
|
---|
1325 | /*
|
---|
1326 | * Be careful with handle bypassing.
|
---|
1327 | */
|
---|
1328 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
1329 | {
|
---|
1330 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1331 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | /*
|
---|
1335 | * The loop.
|
---|
1336 | */
|
---|
1337 | for (;;)
|
---|
1338 | {
|
---|
1339 | /*
|
---|
1340 | * Do segmentation and virtual page stuff.
|
---|
1341 | */
|
---|
1342 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1343 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1344 | if (cLeftPage > uCounterReg)
|
---|
1345 | cLeftPage = uCounterReg;
|
---|
1346 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1347 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1348 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1349 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
1350 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
1351 | )
|
---|
1352 | )
|
---|
1353 | {
|
---|
1354 | RTGCPHYS GCPhysMem;
|
---|
1355 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
1356 | if (rcStrict != VINF_SUCCESS)
|
---|
1357 | return rcStrict;
|
---|
1358 |
|
---|
1359 | /*
|
---|
1360 | * If we can map the page without trouble, use the IOM
|
---|
1361 | * string I/O interface to do the work.
|
---|
1362 | */
|
---|
1363 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1364 | OP_TYPE *puMem;
|
---|
1365 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
1366 | if (rcStrict == VINF_SUCCESS)
|
---|
1367 | {
|
---|
1368 | uint32_t cTransfers = cLeftPage;
|
---|
1369 | rcStrict = IOMIOPortReadString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
|
---|
1370 |
|
---|
1371 | uint32_t cActualTransfers = cLeftPage - cTransfers;
|
---|
1372 | Assert(cActualTransfers <= cLeftPage);
|
---|
1373 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr * cActualTransfers;
|
---|
1374 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
|
---|
1375 | puMem += cActualTransfers;
|
---|
1376 |
|
---|
1377 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
1378 |
|
---|
1379 | if (rcStrict != VINF_SUCCESS)
|
---|
1380 | {
|
---|
1381 | if (IOM_SUCCESS(rcStrict))
|
---|
1382 | {
|
---|
1383 | /** @todo finish: work out how this should work wrt status codes. Not sure we
|
---|
1384 | * can use iemSetPassUpStatus here, but it depends on what
|
---|
1385 | * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
|
---|
1386 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1387 | if (uCounterReg == 0)
|
---|
1388 | rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1389 | pVCpu->iem.s.cPotentialExits++;
|
---|
1390 | }
|
---|
1391 | return rcStrict;
|
---|
1392 | }
|
---|
1393 |
|
---|
1394 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1395 | below. Otherwise, do the next page. */
|
---|
1396 | if (uCounterReg == 0)
|
---|
1397 | break;
|
---|
1398 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
1399 | {
|
---|
1400 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1401 | continue;
|
---|
1402 | }
|
---|
1403 | cLeftPage = 0;
|
---|
1404 | }
|
---|
1405 | }
|
---|
1406 |
|
---|
1407 | /*
|
---|
1408 | * Fallback - slow processing till the end of the current page.
|
---|
1409 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1410 | * as 0, we execute one loop then.
|
---|
1411 | *
|
---|
1412 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1413 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1414 | */
|
---|
1415 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1416 | * during INS. */
|
---|
1417 | do
|
---|
1418 | {
|
---|
1419 | OP_TYPE *puMem;
|
---|
1420 | rcStrict = iemMemMap(pVCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, uAddrReg,
|
---|
1421 | IEM_ACCESS_DATA_W, OP_SIZE / 8 - 1);
|
---|
1422 | if (rcStrict != VINF_SUCCESS)
|
---|
1423 | return rcStrict;
|
---|
1424 |
|
---|
1425 | uint32_t u32Value = 0;
|
---|
1426 | rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, OP_SIZE / 8);
|
---|
1427 | if (!IOM_SUCCESS(rcStrict))
|
---|
1428 | {
|
---|
1429 | iemMemRollback(pVCpu);
|
---|
1430 | return rcStrict;
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 | *puMem = (OP_TYPE)u32Value;
|
---|
1434 | # ifdef IN_RING3
|
---|
1435 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1436 | # else
|
---|
1437 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1438 | # endif
|
---|
1439 | if (rcStrict2 == VINF_SUCCESS)
|
---|
1440 | { /* likely */ }
|
---|
1441 | else
|
---|
1442 | AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
|
---|
1443 | RT_FAILURE(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
|
---|
1444 |
|
---|
1445 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
1446 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1447 |
|
---|
1448 | cLeftPage--;
|
---|
1449 | if (rcStrict != VINF_SUCCESS)
|
---|
1450 | {
|
---|
1451 | /** @todo finish: work out how this should work wrt status codes. Not sure we
|
---|
1452 | * can use iemSetPassUpStatus here, but it depends on what
|
---|
1453 | * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
|
---|
1454 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1455 | if (uCounterReg == 0)
|
---|
1456 | rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1457 | pVCpu->iem.s.cPotentialExits++;
|
---|
1458 | return rcStrict;
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1462 | } while ((int32_t)cLeftPage > 0);
|
---|
1463 |
|
---|
1464 |
|
---|
1465 | /*
|
---|
1466 | * Next page. Must check for interrupts and stuff here.
|
---|
1467 | */
|
---|
1468 | if (uCounterReg == 0)
|
---|
1469 | break;
|
---|
1470 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1471 | }
|
---|
1472 |
|
---|
1473 | /*
|
---|
1474 | * Done.
|
---|
1475 | */
|
---|
1476 | pVCpu->iem.s.cPotentialExits++;
|
---|
1477 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 |
|
---|
1481 | /**
|
---|
1482 | * Implements 'OUTS' (no rep)
|
---|
1483 | */
|
---|
1484 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1485 | {
|
---|
1486 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1487 | VBOXSTRICTRC rcStrict;
|
---|
1488 |
|
---|
1489 | /*
|
---|
1490 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1491 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1492 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1493 | */
|
---|
1494 | if (!fIoChecked)
|
---|
1495 | {
|
---|
1496 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
|
---|
1497 | if (rcStrict != VINF_SUCCESS)
|
---|
1498 | return rcStrict;
|
---|
1499 | }
|
---|
1500 |
|
---|
1501 | /*
|
---|
1502 | * Check nested-guest I/O intercepts.
|
---|
1503 | */
|
---|
1504 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1505 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1506 | {
|
---|
1507 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1508 | ExitInstrInfo.u = 0;
|
---|
1509 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1510 | ExitInstrInfo.StrIo.iSegReg = iEffSeg;
|
---|
1511 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, false /* fRep */,
|
---|
1512 | ExitInstrInfo, cbInstr);
|
---|
1513 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1514 | return rcStrict;
|
---|
1515 | }
|
---|
1516 | #endif
|
---|
1517 |
|
---|
1518 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1519 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1520 | {
|
---|
1521 | rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg,
|
---|
1522 | false /* fRep */, true /* fStrIo */, cbInstr);
|
---|
1523 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1524 | return VINF_SUCCESS;
|
---|
1525 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1526 | {
|
---|
1527 | Log(("iemCImpl_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
|
---|
1528 | OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1529 | return rcStrict;
|
---|
1530 | }
|
---|
1531 | }
|
---|
1532 | #endif
|
---|
1533 |
|
---|
1534 | OP_TYPE uValue;
|
---|
1535 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, pVCpu->cpum.GstCtx.ADDR_rSI);
|
---|
1536 | if (rcStrict == VINF_SUCCESS)
|
---|
1537 | {
|
---|
1538 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, uValue, OP_SIZE / 8);
|
---|
1539 | if (IOM_SUCCESS(rcStrict))
|
---|
1540 | {
|
---|
1541 | if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
|
---|
1542 | pVCpu->cpum.GstCtx.ADDR_rSI += OP_SIZE / 8;
|
---|
1543 | else
|
---|
1544 | pVCpu->cpum.GstCtx.ADDR_rSI -= OP_SIZE / 8;
|
---|
1545 | /** @todo finish: work out how this should work wrt status codes. Not sure we
|
---|
1546 | * can use iemSetPassUpStatus here, but it depends on what
|
---|
1547 | * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
|
---|
1548 | if (rcStrict != VINF_SUCCESS)
|
---|
1549 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1550 | rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1551 | pVCpu->iem.s.cPotentialExits++;
|
---|
1552 | }
|
---|
1553 | }
|
---|
1554 | return rcStrict;
|
---|
1555 | }
|
---|
1556 |
|
---|
1557 |
|
---|
1558 | /**
|
---|
1559 | * Implements 'REP OUTS'.
|
---|
1560 | */
|
---|
1561 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_rep_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1562 | {
|
---|
1563 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1564 |
|
---|
1565 | /*
|
---|
1566 | * Setup.
|
---|
1567 | */
|
---|
1568 | uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
|
---|
1569 | VBOXSTRICTRC rcStrict;
|
---|
1570 | if (!fIoChecked)
|
---|
1571 | {
|
---|
1572 | /** @todo check if this is too early for ecx=0. */
|
---|
1573 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
|
---|
1574 | if (rcStrict != VINF_SUCCESS)
|
---|
1575 | return rcStrict;
|
---|
1576 | }
|
---|
1577 |
|
---|
1578 | /*
|
---|
1579 | * Check nested-guest I/O intercepts.
|
---|
1580 | */
|
---|
1581 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1582 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1583 | {
|
---|
1584 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1585 | ExitInstrInfo.u = 0;
|
---|
1586 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1587 | ExitInstrInfo.StrIo.iSegReg = iEffSeg;
|
---|
1588 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, true /* fRep */,
|
---|
1589 | ExitInstrInfo, cbInstr);
|
---|
1590 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1591 | return rcStrict;
|
---|
1592 | }
|
---|
1593 | #endif
|
---|
1594 |
|
---|
1595 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1596 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1597 | {
|
---|
1598 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg, true /* fRep */,
|
---|
1599 | true /* fStrIo */, cbInstr);
|
---|
1600 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1601 | return VINF_SUCCESS;
|
---|
1602 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1603 | {
|
---|
1604 | Log(("iemCImpl_rep_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
|
---|
1605 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1606 | return rcStrict;
|
---|
1607 | }
|
---|
1608 | }
|
---|
1609 | #endif
|
---|
1610 |
|
---|
1611 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1612 | if (uCounterReg == 0)
|
---|
1613 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1614 |
|
---|
1615 | PCCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
1616 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
1617 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pHid, iEffSeg, &uBaseAddr);
|
---|
1618 | if (rcStrict != VINF_SUCCESS)
|
---|
1619 | return rcStrict;
|
---|
1620 |
|
---|
1621 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1622 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
1623 |
|
---|
1624 | /*
|
---|
1625 | * The loop.
|
---|
1626 | */
|
---|
1627 | for (;;)
|
---|
1628 | {
|
---|
1629 | /*
|
---|
1630 | * Do segmentation and virtual page stuff.
|
---|
1631 | */
|
---|
1632 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1633 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1634 | if (cLeftPage > uCounterReg)
|
---|
1635 | cLeftPage = uCounterReg;
|
---|
1636 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1637 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1638 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1639 | || ( uAddrReg < pHid->u32Limit
|
---|
1640 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pHid->u32Limit)
|
---|
1641 | )
|
---|
1642 | )
|
---|
1643 | {
|
---|
1644 | RTGCPHYS GCPhysMem;
|
---|
1645 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
1646 | if (rcStrict != VINF_SUCCESS)
|
---|
1647 | return rcStrict;
|
---|
1648 |
|
---|
1649 | /*
|
---|
1650 | * If we can map the page without trouble, we use the IOM
|
---|
1651 | * string I/O interface to do the job.
|
---|
1652 | */
|
---|
1653 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1654 | OP_TYPE const *puMem;
|
---|
1655 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
1656 | if (rcStrict == VINF_SUCCESS)
|
---|
1657 | {
|
---|
1658 | uint32_t cTransfers = cLeftPage;
|
---|
1659 | rcStrict = IOMIOPortWriteString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
|
---|
1660 |
|
---|
1661 | uint32_t cActualTransfers = cLeftPage - cTransfers;
|
---|
1662 | Assert(cActualTransfers <= cLeftPage);
|
---|
1663 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr * cActualTransfers;
|
---|
1664 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
|
---|
1665 | puMem += cActualTransfers;
|
---|
1666 |
|
---|
1667 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1668 |
|
---|
1669 | if (rcStrict != VINF_SUCCESS)
|
---|
1670 | {
|
---|
1671 | if (IOM_SUCCESS(rcStrict))
|
---|
1672 | {
|
---|
1673 | /** @todo finish: work out how this should work wrt status codes. Not sure we
|
---|
1674 | * can use iemSetPassUpStatus here, but it depends on what
|
---|
1675 | * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
|
---|
1676 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1677 | if (uCounterReg == 0)
|
---|
1678 | rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1679 | pVCpu->iem.s.cPotentialExits++;
|
---|
1680 | }
|
---|
1681 | return rcStrict;
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | if (uCounterReg == 0)
|
---|
1685 | break;
|
---|
1686 |
|
---|
1687 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1688 | below. Otherwise, do the next page. */
|
---|
1689 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
1690 | {
|
---|
1691 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1692 | continue;
|
---|
1693 | }
|
---|
1694 | cLeftPage = 0;
|
---|
1695 | }
|
---|
1696 | }
|
---|
1697 |
|
---|
1698 | /*
|
---|
1699 | * Fallback - slow processing till the end of the current page.
|
---|
1700 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1701 | * as 0, we execute one loop then.
|
---|
1702 | *
|
---|
1703 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1704 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1705 | */
|
---|
1706 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1707 | * during INS. */
|
---|
1708 | do
|
---|
1709 | {
|
---|
1710 | OP_TYPE uValue;
|
---|
1711 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uAddrReg);
|
---|
1712 | if (rcStrict != VINF_SUCCESS)
|
---|
1713 | return rcStrict;
|
---|
1714 |
|
---|
1715 | rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, uValue, OP_SIZE / 8);
|
---|
1716 | if (IOM_SUCCESS(rcStrict))
|
---|
1717 | {
|
---|
1718 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
|
---|
1719 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1720 | cLeftPage--;
|
---|
1721 | }
|
---|
1722 | if (rcStrict != VINF_SUCCESS)
|
---|
1723 | {
|
---|
1724 | if (IOM_SUCCESS(rcStrict))
|
---|
1725 | {
|
---|
1726 | /** @todo finish: work out how this should work wrt status codes. Not sure we
|
---|
1727 | * can use iemSetPassUpStatus here, but it depends on what
|
---|
1728 | * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
|
---|
1729 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1730 | if (uCounterReg == 0)
|
---|
1731 | iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1732 | pVCpu->iem.s.cPotentialExits++;
|
---|
1733 | }
|
---|
1734 | return rcStrict;
|
---|
1735 | }
|
---|
1736 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1737 | } while ((int32_t)cLeftPage > 0);
|
---|
1738 |
|
---|
1739 |
|
---|
1740 | /*
|
---|
1741 | * Next page. Must check for interrupts and stuff here.
|
---|
1742 | */
|
---|
1743 | if (uCounterReg == 0)
|
---|
1744 | break;
|
---|
1745 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1746 | }
|
---|
1747 |
|
---|
1748 | /*
|
---|
1749 | * Done.
|
---|
1750 | */
|
---|
1751 | pVCpu->iem.s.cPotentialExits++;
|
---|
1752 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | #endif /* OP_SIZE != 64-bit */
|
---|
1756 |
|
---|
1757 |
|
---|
1758 | #undef OP_rAX
|
---|
1759 | #undef OP_SIZE
|
---|
1760 | #undef ADDR_SIZE
|
---|
1761 | #undef ADDR_rDI
|
---|
1762 | #undef ADDR_rSI
|
---|
1763 | #undef ADDR_rCX
|
---|
1764 | #undef ADDR_rIP
|
---|
1765 | #undef ADDR2_TYPE
|
---|
1766 | #undef ADDR_TYPE
|
---|
1767 | #undef ADDR2_TYPE
|
---|
1768 | #undef ADDR_VMXSTRIO
|
---|
1769 | #undef IS_64_BIT_CODE
|
---|
1770 | #undef IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
|
---|
1771 | #undef IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
1772 | #undef IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
1773 |
|
---|