VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp@ 98103

Last change on this file since 98103 was 98103, checked in by vboxsync, 2 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 353.0 KB
Line 
1/* $Id: IEMAllCImpl.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_IEM
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/iem.h>
35#include <VBox/vmm/cpum.h>
36#include <VBox/vmm/apic.h>
37#include <VBox/vmm/pdm.h>
38#include <VBox/vmm/pgm.h>
39#include <VBox/vmm/iom.h>
40#include <VBox/vmm/em.h>
41#include <VBox/vmm/hm.h>
42#include <VBox/vmm/nem.h>
43#include <VBox/vmm/gim.h>
44#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
45# include <VBox/vmm/em.h>
46# include <VBox/vmm/hm_svm.h>
47#endif
48#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
49# include <VBox/vmm/hmvmxinline.h>
50#endif
51#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
52# include <VBox/vmm/cpuidcall.h>
53#endif
54#include <VBox/vmm/tm.h>
55#include <VBox/vmm/dbgf.h>
56#include <VBox/vmm/dbgftrace.h>
57#include "IEMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62#include <VBox/dis.h>
63#include <VBox/disopcode.h>
64#include <iprt/asm-math.h>
65#include <iprt/assert.h>
66#include <iprt/string.h>
67#include <iprt/x86.h>
68
69#include "IEMInline.h"
70
71
72/*********************************************************************************************************************************
73* Defined Constants And Macros *
74*********************************************************************************************************************************/
75/**
76 * Flushes the prefetch buffer, light version.
77 */
78#ifndef IEM_WITH_CODE_TLB
79# define IEM_FLUSH_PREFETCH_LIGHT(a_pVCpu, a_cbInstr) do { (a_pVCpu)->iem.s.cbOpcode = (a_cbInstr); } while (0)
80#else
81# define IEM_FLUSH_PREFETCH_LIGHT(a_pVCpu, a_cbInstr) do { } while (0)
82#endif
83
84/**
85 * Flushes the prefetch buffer, heavy version.
86 */
87#ifndef IEM_WITH_CODE_TLB
88# define IEM_FLUSH_PREFETCH_HEAVY(a_pVCpu, a_cbInstr) do { (a_pVCpu)->iem.s.cbOpcode = (a_cbInstr); } while (0)
89#else
90# if 1
91# define IEM_FLUSH_PREFETCH_HEAVY(a_pVCpu, a_cbInstr) do { (a_pVCpu)->iem.s.pbInstrBuf = NULL; } while (0)
92# else
93# define IEM_FLUSH_PREFETCH_HEAVY(a_pVCpu, a_cbInstr) do { } while (0)
94# endif
95#endif
96
97
98
99/** @name Misc Helpers
100 * @{
101 */
102
103
104/**
105 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
106 *
107 * @returns Strict VBox status code.
108 *
109 * @param pVCpu The cross context virtual CPU structure of the calling thread.
110 * @param u16Port The port number.
111 * @param cbOperand The operand size.
112 */
113static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
114{
115 /* The TSS bits we're interested in are the same on 386 and AMD64. */
116 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
117 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
118 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
119 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
120
121 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
122
123 /*
124 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
125 */
126 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
127 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
128 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
129 {
130 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
131 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
132 return iemRaiseGeneralProtectionFault0(pVCpu);
133 }
134
135 /*
136 * Read the bitmap offset (may #PF).
137 */
138 uint16_t offBitmap;
139 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
140 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
141 if (rcStrict != VINF_SUCCESS)
142 {
143 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
144 return rcStrict;
145 }
146
147 /*
148 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
149 * describes the CPU actually reading two bytes regardless of whether the
150 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
151 */
152 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
153 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
154 * for instance sizeof(X86TSS32). */
155 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
156 {
157 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
158 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
159 return iemRaiseGeneralProtectionFault0(pVCpu);
160 }
161
162 /*
163 * Read the necessary bits.
164 */
165 /** @todo Test the assertion in the intel manual that the CPU reads two
166 * bytes. The question is how this works wrt to \#PF and \#GP on the
167 * 2nd byte when it's not required. */
168 uint16_t bmBytes = UINT16_MAX;
169 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
170 if (rcStrict != VINF_SUCCESS)
171 {
172 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
173 return rcStrict;
174 }
175
176 /*
177 * Perform the check.
178 */
179 uint16_t fPortMask = (1 << cbOperand) - 1;
180 bmBytes >>= (u16Port & 7);
181 if (bmBytes & fPortMask)
182 {
183 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
184 u16Port, cbOperand, bmBytes, fPortMask));
185 return iemRaiseGeneralProtectionFault0(pVCpu);
186 }
187
188 return VINF_SUCCESS;
189}
190
191
192/**
193 * Checks if we are allowed to access the given I/O port, raising the
194 * appropriate exceptions if we aren't (or if the I/O bitmap is not
195 * accessible).
196 *
197 * @returns Strict VBox status code.
198 *
199 * @param pVCpu The cross context virtual CPU structure of the calling thread.
200 * @param u16Port The port number.
201 * @param cbOperand The operand size.
202 */
203DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
204{
205 X86EFLAGS Efl;
206 Efl.u = IEMMISC_GET_EFL(pVCpu);
207 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
208 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
209 || Efl.Bits.u1VM) )
210 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
211 return VINF_SUCCESS;
212}
213
214
215#if 0
216/**
217 * Calculates the parity bit.
218 *
219 * @returns true if the bit is set, false if not.
220 * @param u8Result The least significant byte of the result.
221 */
222static bool iemHlpCalcParityFlag(uint8_t u8Result)
223{
224 /*
225 * Parity is set if the number of bits in the least significant byte of
226 * the result is even.
227 */
228 uint8_t cBits;
229 cBits = u8Result & 1; /* 0 */
230 u8Result >>= 1;
231 cBits += u8Result & 1;
232 u8Result >>= 1;
233 cBits += u8Result & 1;
234 u8Result >>= 1;
235 cBits += u8Result & 1;
236 u8Result >>= 1;
237 cBits += u8Result & 1; /* 4 */
238 u8Result >>= 1;
239 cBits += u8Result & 1;
240 u8Result >>= 1;
241 cBits += u8Result & 1;
242 u8Result >>= 1;
243 cBits += u8Result & 1;
244 return !(cBits & 1);
245}
246#endif /* not used */
247
248
249/**
250 * Updates the specified flags according to a 8-bit result.
251 *
252 * @param pVCpu The cross context virtual CPU structure of the calling thread.
253 * @param u8Result The result to set the flags according to.
254 * @param fToUpdate The flags to update.
255 * @param fUndefined The flags that are specified as undefined.
256 */
257static void iemHlpUpdateArithEFlagsU8(PVMCPUCC pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
258{
259 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
260 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
261 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
262 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
263}
264
265
266/**
267 * Updates the specified flags according to a 16-bit result.
268 *
269 * @param pVCpu The cross context virtual CPU structure of the calling thread.
270 * @param u16Result The result to set the flags according to.
271 * @param fToUpdate The flags to update.
272 * @param fUndefined The flags that are specified as undefined.
273 */
274static void iemHlpUpdateArithEFlagsU16(PVMCPUCC pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
275{
276 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
277 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
278 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
279 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
280}
281
282
283/**
284 * Helper used by iret.
285 *
286 * @param pVCpu The cross context virtual CPU structure of the calling thread.
287 * @param uCpl The new CPL.
288 * @param pSReg Pointer to the segment register.
289 */
290static void iemHlpAdjustSelectorForNewCpl(PVMCPUCC pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
291{
292 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
293 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
294
295 if ( uCpl > pSReg->Attr.n.u2Dpl
296 && pSReg->Attr.n.u1DescType /* code or data, not system */
297 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
298 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
299 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
300}
301
302
303/**
304 * Indicates that we have modified the FPU state.
305 *
306 * @param pVCpu The cross context virtual CPU structure of the calling thread.
307 */
308DECLINLINE(void) iemHlpUsedFpu(PVMCPUCC pVCpu)
309{
310 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
311}
312
313/** @} */
314
315/** @name C Implementations
316 * @{
317 */
318
319/**
320 * Implements a 16-bit popa.
321 */
322IEM_CIMPL_DEF_0(iemCImpl_popa_16)
323{
324 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
325 RTGCPTR GCPtrLast = GCPtrStart + 15;
326 VBOXSTRICTRC rcStrict;
327
328 /*
329 * The docs are a bit hard to comprehend here, but it looks like we wrap
330 * around in real mode as long as none of the individual "popa" crosses the
331 * end of the stack segment. In protected mode we check the whole access
332 * in one go. For efficiency, only do the word-by-word thing if we're in
333 * danger of wrapping around.
334 */
335 /** @todo do popa boundary / wrap-around checks. */
336 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
337 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
338 {
339 /* word-by-word */
340 RTUINT64U TmpRsp;
341 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
342 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
343 if (rcStrict == VINF_SUCCESS)
344 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
345 if (rcStrict == VINF_SUCCESS)
346 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
347 if (rcStrict == VINF_SUCCESS)
348 {
349 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
350 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
351 }
352 if (rcStrict == VINF_SUCCESS)
353 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
354 if (rcStrict == VINF_SUCCESS)
355 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
356 if (rcStrict == VINF_SUCCESS)
357 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
358 if (rcStrict == VINF_SUCCESS)
359 {
360 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
361 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
362 }
363 }
364 else
365 {
366 uint16_t const *pa16Mem = NULL;
367 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R, sizeof(*pa16Mem) - 1);
368 if (rcStrict == VINF_SUCCESS)
369 {
370 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
371 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
372 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
373 /* skip sp */
374 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
375 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
376 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
377 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
378 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
379 if (rcStrict == VINF_SUCCESS)
380 {
381 iemRegAddToRsp(pVCpu, 16);
382 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
383 }
384 }
385 }
386 return rcStrict;
387}
388
389
390/**
391 * Implements a 32-bit popa.
392 */
393IEM_CIMPL_DEF_0(iemCImpl_popa_32)
394{
395 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
396 RTGCPTR GCPtrLast = GCPtrStart + 31;
397 VBOXSTRICTRC rcStrict;
398
399 /*
400 * The docs are a bit hard to comprehend here, but it looks like we wrap
401 * around in real mode as long as none of the individual "popa" crosses the
402 * end of the stack segment. In protected mode we check the whole access
403 * in one go. For efficiency, only do the word-by-word thing if we're in
404 * danger of wrapping around.
405 */
406 /** @todo do popa boundary / wrap-around checks. */
407 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
408 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
409 {
410 /* word-by-word */
411 RTUINT64U TmpRsp;
412 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
413 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
414 if (rcStrict == VINF_SUCCESS)
415 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
416 if (rcStrict == VINF_SUCCESS)
417 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
418 if (rcStrict == VINF_SUCCESS)
419 {
420 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
421 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
422 }
423 if (rcStrict == VINF_SUCCESS)
424 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
425 if (rcStrict == VINF_SUCCESS)
426 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
427 if (rcStrict == VINF_SUCCESS)
428 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
429 if (rcStrict == VINF_SUCCESS)
430 {
431#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
432 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
433 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
434 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
435 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
436 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
437 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
438 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
439#endif
440 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
441 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
442 }
443 }
444 else
445 {
446 uint32_t const *pa32Mem;
447 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R, sizeof(*pa32Mem) - 1);
448 if (rcStrict == VINF_SUCCESS)
449 {
450 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
451 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
452 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
453 /* skip esp */
454 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
455 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
456 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
457 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
458 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
459 if (rcStrict == VINF_SUCCESS)
460 {
461 iemRegAddToRsp(pVCpu, 32);
462 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
463 }
464 }
465 }
466 return rcStrict;
467}
468
469
470/**
471 * Implements a 16-bit pusha.
472 */
473IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
474{
475 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
476 RTGCPTR GCPtrBottom = GCPtrTop - 15;
477 VBOXSTRICTRC rcStrict;
478
479 /*
480 * The docs are a bit hard to comprehend here, but it looks like we wrap
481 * around in real mode as long as none of the individual "pushd" crosses the
482 * end of the stack segment. In protected mode we check the whole access
483 * in one go. For efficiency, only do the word-by-word thing if we're in
484 * danger of wrapping around.
485 */
486 /** @todo do pusha boundary / wrap-around checks. */
487 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
488 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
489 {
490 /* word-by-word */
491 RTUINT64U TmpRsp;
492 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
493 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
494 if (rcStrict == VINF_SUCCESS)
495 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
496 if (rcStrict == VINF_SUCCESS)
497 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
498 if (rcStrict == VINF_SUCCESS)
499 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
500 if (rcStrict == VINF_SUCCESS)
501 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
502 if (rcStrict == VINF_SUCCESS)
503 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
504 if (rcStrict == VINF_SUCCESS)
505 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
506 if (rcStrict == VINF_SUCCESS)
507 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
508 if (rcStrict == VINF_SUCCESS)
509 {
510 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
511 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
512 }
513 }
514 else
515 {
516 GCPtrBottom--;
517 uint16_t *pa16Mem = NULL;
518 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W, sizeof(*pa16Mem) - 1);
519 if (rcStrict == VINF_SUCCESS)
520 {
521 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
522 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
523 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
524 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
525 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
526 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
527 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
528 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
529 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
530 if (rcStrict == VINF_SUCCESS)
531 {
532 iemRegSubFromRsp(pVCpu, 16);
533 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
534 }
535 }
536 }
537 return rcStrict;
538}
539
540
541/**
542 * Implements a 32-bit pusha.
543 */
544IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
545{
546 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
547 RTGCPTR GCPtrBottom = GCPtrTop - 31;
548 VBOXSTRICTRC rcStrict;
549
550 /*
551 * The docs are a bit hard to comprehend here, but it looks like we wrap
552 * around in real mode as long as none of the individual "pusha" crosses the
553 * end of the stack segment. In protected mode we check the whole access
554 * in one go. For efficiency, only do the word-by-word thing if we're in
555 * danger of wrapping around.
556 */
557 /** @todo do pusha boundary / wrap-around checks. */
558 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
559 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
560 {
561 /* word-by-word */
562 RTUINT64U TmpRsp;
563 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
564 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
565 if (rcStrict == VINF_SUCCESS)
566 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
567 if (rcStrict == VINF_SUCCESS)
568 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
569 if (rcStrict == VINF_SUCCESS)
570 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
571 if (rcStrict == VINF_SUCCESS)
572 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
573 if (rcStrict == VINF_SUCCESS)
574 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
575 if (rcStrict == VINF_SUCCESS)
576 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
577 if (rcStrict == VINF_SUCCESS)
578 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
579 if (rcStrict == VINF_SUCCESS)
580 {
581 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
582 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
583 }
584 }
585 else
586 {
587 GCPtrBottom--;
588 uint32_t *pa32Mem;
589 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W, sizeof(*pa32Mem) - 1);
590 if (rcStrict == VINF_SUCCESS)
591 {
592 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
593 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
594 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
595 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
596 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
597 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
598 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
599 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
600 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
601 if (rcStrict == VINF_SUCCESS)
602 {
603 iemRegSubFromRsp(pVCpu, 32);
604 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
605 }
606 }
607 }
608 return rcStrict;
609}
610
611
612/**
613 * Implements pushf.
614 *
615 *
616 * @param enmEffOpSize The effective operand size.
617 */
618IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
619{
620 VBOXSTRICTRC rcStrict;
621
622 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
623 {
624 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
625 IEM_SVM_UPDATE_NRIP(pVCpu);
626 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
627 }
628
629 /*
630 * If we're in V8086 mode some care is required (which is why we're in
631 * doing this in a C implementation).
632 */
633 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
634 if ( (fEfl & X86_EFL_VM)
635 && X86_EFL_GET_IOPL(fEfl) != 3 )
636 {
637 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
638 if ( enmEffOpSize != IEMMODE_16BIT
639 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
640 return iemRaiseGeneralProtectionFault0(pVCpu);
641 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
642 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
643 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
644 }
645 else
646 {
647
648 /*
649 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
650 */
651 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
652
653 switch (enmEffOpSize)
654 {
655 case IEMMODE_16BIT:
656 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
657 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
658 fEfl |= UINT16_C(0xf000);
659 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
660 break;
661 case IEMMODE_32BIT:
662 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
663 break;
664 case IEMMODE_64BIT:
665 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
666 break;
667 IEM_NOT_REACHED_DEFAULT_CASE_RET();
668 }
669 }
670
671 if (rcStrict == VINF_SUCCESS)
672 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
673 return rcStrict;
674}
675
676
677/**
678 * Implements popf.
679 *
680 * @param enmEffOpSize The effective operand size.
681 */
682IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
683{
684 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
685 VBOXSTRICTRC rcStrict;
686 uint32_t fEflNew;
687
688 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
689 {
690 Log2(("popf: Guest intercept -> #VMEXIT\n"));
691 IEM_SVM_UPDATE_NRIP(pVCpu);
692 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
693 }
694
695 /*
696 * V8086 is special as usual.
697 */
698 if (fEflOld & X86_EFL_VM)
699 {
700 /*
701 * Almost anything goes if IOPL is 3.
702 */
703 if (X86_EFL_GET_IOPL(fEflOld) == 3)
704 {
705 switch (enmEffOpSize)
706 {
707 case IEMMODE_16BIT:
708 {
709 uint16_t u16Value;
710 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
711 if (rcStrict != VINF_SUCCESS)
712 return rcStrict;
713 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
714 break;
715 }
716 case IEMMODE_32BIT:
717 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
718 if (rcStrict != VINF_SUCCESS)
719 return rcStrict;
720 break;
721 IEM_NOT_REACHED_DEFAULT_CASE_RET();
722 }
723
724 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
725 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
726 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
727 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
728 }
729 /*
730 * Interrupt flag virtualization with CR4.VME=1.
731 */
732 else if ( enmEffOpSize == IEMMODE_16BIT
733 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
734 {
735 uint16_t u16Value;
736 RTUINT64U TmpRsp;
737 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
738 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
739 if (rcStrict != VINF_SUCCESS)
740 return rcStrict;
741
742 /** @todo Is the popf VME \#GP(0) delivered after updating RSP+RIP
743 * or before? */
744 if ( ( (u16Value & X86_EFL_IF)
745 && (fEflOld & X86_EFL_VIP))
746 || (u16Value & X86_EFL_TF) )
747 return iemRaiseGeneralProtectionFault0(pVCpu);
748
749 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
750 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
751 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
752 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
753
754 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
755 }
756 else
757 return iemRaiseGeneralProtectionFault0(pVCpu);
758
759 }
760 /*
761 * Not in V8086 mode.
762 */
763 else
764 {
765 /* Pop the flags. */
766 switch (enmEffOpSize)
767 {
768 case IEMMODE_16BIT:
769 {
770 uint16_t u16Value;
771 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
772 if (rcStrict != VINF_SUCCESS)
773 return rcStrict;
774 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
775
776 /*
777 * Ancient CPU adjustments:
778 * - 8086, 80186, V20/30:
779 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
780 * practical reasons (masking below). We add them when pushing flags.
781 * - 80286:
782 * The NT and IOPL flags cannot be popped from real mode and are
783 * therefore always zero (since a 286 can never exit from PM and
784 * their initial value is zero). This changed on a 386 and can
785 * therefore be used to detect 286 or 386 CPU in real mode.
786 */
787 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
788 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
789 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
790 break;
791 }
792 case IEMMODE_32BIT:
793 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
794 if (rcStrict != VINF_SUCCESS)
795 return rcStrict;
796 break;
797 case IEMMODE_64BIT:
798 {
799 uint64_t u64Value;
800 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
801 if (rcStrict != VINF_SUCCESS)
802 return rcStrict;
803 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
804 break;
805 }
806 IEM_NOT_REACHED_DEFAULT_CASE_RET();
807 }
808
809 /* Merge them with the current flags. */
810 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
811 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
812 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
813 || pVCpu->iem.s.uCpl == 0)
814 {
815 fEflNew &= fPopfBits;
816 fEflNew |= ~fPopfBits & fEflOld;
817 }
818 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
819 {
820 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
821 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
822 }
823 else
824 {
825 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
826 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
827 }
828 }
829
830 /*
831 * Commit the flags.
832 */
833 Assert(fEflNew & RT_BIT_32(1));
834 IEMMISC_SET_EFL(pVCpu, fEflNew);
835 return iemRegAddToRipAndFinishingClearingRfEx(pVCpu, cbInstr, fEflOld);
836}
837
838
839/**
840 * Implements an indirect call.
841 *
842 * @param uNewPC The new program counter (RIP) value (loaded from the
843 * operand).
844 */
845IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
846{
847 uint16_t const uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
848 if (uNewPC <= pVCpu->cpum.GstCtx.cs.u32Limit)
849 {
850 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
851 if (rcStrict == VINF_SUCCESS)
852 {
853 pVCpu->cpum.GstCtx.rip = uNewPC;
854 IEM_FLUSH_PREFETCH_LIGHT(pVCpu, cbInstr);
855 return iemRegFinishClearingRF(pVCpu);
856 }
857 return rcStrict;
858 }
859 return iemRaiseGeneralProtectionFault0(pVCpu);
860}
861
862
863/**
864 * Implements a 16-bit relative call.
865 *
866 * @param offDisp The displacment offset.
867 */
868IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
869{
870 uint16_t const uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
871 uint16_t const uNewPC = uOldPC + offDisp;
872 if (uNewPC <= pVCpu->cpum.GstCtx.cs.u32Limit)
873 {
874 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
875 if (rcStrict == VINF_SUCCESS)
876 {
877 pVCpu->cpum.GstCtx.rip = uNewPC;
878 IEM_FLUSH_PREFETCH_LIGHT(pVCpu, cbInstr);
879 return iemRegFinishClearingRF(pVCpu);
880 }
881 return rcStrict;
882 }
883 return iemRaiseGeneralProtectionFault0(pVCpu);
884}
885
886
887/**
888 * Implements a 32-bit indirect call.
889 *
890 * @param uNewPC The new program counter (RIP) value (loaded from the
891 * operand).
892 */
893IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
894{
895 uint32_t const uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
896 if (uNewPC <= pVCpu->cpum.GstCtx.cs.u32Limit)
897 {
898 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
899 if (rcStrict == VINF_SUCCESS)
900 {
901 pVCpu->cpum.GstCtx.rip = uNewPC;
902 IEM_FLUSH_PREFETCH_LIGHT(pVCpu, cbInstr);
903 return iemRegFinishClearingRF(pVCpu);
904 }
905 return rcStrict;
906 }
907 return iemRaiseGeneralProtectionFault0(pVCpu);
908}
909
910
911/**
912 * Implements a 32-bit relative call.
913 *
914 * @param offDisp The displacment offset.
915 */
916IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
917{
918 uint32_t const uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
919 uint32_t const uNewPC = uOldPC + offDisp;
920 if (uNewPC <= pVCpu->cpum.GstCtx.cs.u32Limit)
921 {
922 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
923 if (rcStrict == VINF_SUCCESS)
924 {
925 pVCpu->cpum.GstCtx.rip = uNewPC;
926 IEM_FLUSH_PREFETCH_LIGHT(pVCpu, cbInstr);
927 return iemRegFinishClearingRF(pVCpu);
928 }
929 return rcStrict;
930 }
931 return iemRaiseGeneralProtectionFault0(pVCpu);
932}
933
934
935/**
936 * Implements a 64-bit indirect call.
937 *
938 * @param uNewPC The new program counter (RIP) value (loaded from the
939 * operand).
940 */
941IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
942{
943 uint64_t const uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
944 if (IEM_IS_CANONICAL(uNewPC))
945 {
946 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
947 if (rcStrict == VINF_SUCCESS)
948 {
949 pVCpu->cpum.GstCtx.rip = uNewPC;
950 IEM_FLUSH_PREFETCH_LIGHT(pVCpu, cbInstr);
951 return iemRegFinishClearingRF(pVCpu);
952 }
953 return rcStrict;
954 }
955 return iemRaiseGeneralProtectionFault0(pVCpu);
956}
957
958
959/**
960 * Implements a 64-bit relative call.
961 *
962 * @param offDisp The displacment offset.
963 */
964IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
965{
966 uint64_t const uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
967 uint64_t const uNewPC = uOldPC + offDisp;
968 if (IEM_IS_CANONICAL(uNewPC))
969 {
970 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
971 if (rcStrict == VINF_SUCCESS)
972 {
973 pVCpu->cpum.GstCtx.rip = uNewPC;
974 IEM_FLUSH_PREFETCH_LIGHT(pVCpu, cbInstr);
975 return iemRegFinishClearingRF(pVCpu);
976 }
977 return rcStrict;
978 }
979 return iemRaiseNotCanonical(pVCpu);
980}
981
982
983/**
984 * Implements far jumps and calls thru task segments (TSS).
985 *
986 * @returns VBox strict status code.
987 * @param pVCpu The cross context virtual CPU structure of the
988 * calling thread.
989 * @param cbInstr The current instruction length.
990 * @param uSel The selector.
991 * @param enmBranch The kind of branching we're performing.
992 * @param enmEffOpSize The effective operand size.
993 * @param pDesc The descriptor corresponding to @a uSel. The type is
994 * task gate.
995 */
996static VBOXSTRICTRC iemCImpl_BranchTaskSegment(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t uSel, IEMBRANCH enmBranch,
997 IEMMODE enmEffOpSize, PIEMSELDESC pDesc)
998{
999#ifndef IEM_IMPLEMENTS_TASKSWITCH
1000 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1001#else
1002 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1003 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
1004 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
1005 RT_NOREF_PV(enmEffOpSize);
1006 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1007
1008 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1009 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1010 {
1011 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1012 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1013 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1014 }
1015
1016 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1017 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1018 * checked here, need testcases. */
1019 if (!pDesc->Legacy.Gen.u1Present)
1020 {
1021 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
1022 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1023 }
1024
1025 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1026 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1027 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
1028#endif
1029}
1030
1031
1032/**
1033 * Implements far jumps and calls thru task gates.
1034 *
1035 * @returns VBox strict status code.
1036 * @param pVCpu The cross context virtual CPU structure of the
1037 * calling thread.
1038 * @param cbInstr The current instruction length.
1039 * @param uSel The selector.
1040 * @param enmBranch The kind of branching we're performing.
1041 * @param enmEffOpSize The effective operand size.
1042 * @param pDesc The descriptor corresponding to @a uSel. The type is
1043 * task gate.
1044 */
1045static VBOXSTRICTRC iemCImpl_BranchTaskGate(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t uSel, IEMBRANCH enmBranch,
1046 IEMMODE enmEffOpSize, PIEMSELDESC pDesc)
1047{
1048#ifndef IEM_IMPLEMENTS_TASKSWITCH
1049 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1050#else
1051 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1052 RT_NOREF_PV(enmEffOpSize);
1053 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1054
1055 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1056 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1057 {
1058 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1059 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1060 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1061 }
1062
1063 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1064 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1065 * checked here, need testcases. */
1066 if (!pDesc->Legacy.Gen.u1Present)
1067 {
1068 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1069 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1070 }
1071
1072 /*
1073 * Fetch the new TSS descriptor from the GDT.
1074 */
1075 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1076 if (uSelTss & X86_SEL_LDT)
1077 {
1078 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1079 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1080 }
1081
1082 IEMSELDESC TssDesc;
1083 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1084 if (rcStrict != VINF_SUCCESS)
1085 return rcStrict;
1086
1087 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1088 {
1089 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1090 TssDesc.Legacy.Gate.u4Type));
1091 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1092 }
1093
1094 if (!TssDesc.Legacy.Gate.u1Present)
1095 {
1096 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1097 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1098 }
1099
1100 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1101 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1102 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1103#endif
1104}
1105
1106
1107/**
1108 * Implements far jumps and calls thru call gates.
1109 *
1110 * @returns VBox strict status code.
1111 * @param pVCpu The cross context virtual CPU structure of the
1112 * calling thread.
1113 * @param cbInstr The current instruction length.
1114 * @param uSel The selector.
1115 * @param enmBranch The kind of branching we're performing.
1116 * @param enmEffOpSize The effective operand size.
1117 * @param pDesc The descriptor corresponding to @a uSel. The type is
1118 * call gate.
1119 */
1120static VBOXSTRICTRC iemCImpl_BranchCallGate(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t uSel, IEMBRANCH enmBranch,
1121 IEMMODE enmEffOpSize, PIEMSELDESC pDesc)
1122{
1123#define IEM_IMPLEMENTS_CALLGATE
1124#ifndef IEM_IMPLEMENTS_CALLGATE
1125 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1126#else
1127 RT_NOREF_PV(enmEffOpSize);
1128 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1129
1130 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1131 * inter-privilege calls and are much more complex.
1132 *
1133 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1134 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1135 * must be 16-bit or 32-bit.
1136 */
1137 /** @todo effective operand size is probably irrelevant here, only the
1138 * call gate bitness matters??
1139 */
1140 VBOXSTRICTRC rcStrict;
1141 RTPTRUNION uPtrRet;
1142 uint64_t uNewRsp;
1143 uint64_t uNewRip;
1144 uint64_t u64Base;
1145 uint32_t cbLimit;
1146 RTSEL uNewCS;
1147 IEMSELDESC DescCS;
1148
1149 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1150 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1151 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1152 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1153
1154 /* Determine the new instruction pointer from the gate descriptor. */
1155 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1156 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1157 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1158
1159 /* Perform DPL checks on the gate descriptor. */
1160 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1161 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1162 {
1163 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1164 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1165 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1166 }
1167
1168 /** @todo does this catch NULL selectors, too? */
1169 if (!pDesc->Legacy.Gen.u1Present)
1170 {
1171 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1172 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1173 }
1174
1175 /*
1176 * Fetch the target CS descriptor from the GDT or LDT.
1177 */
1178 uNewCS = pDesc->Legacy.Gate.u16Sel;
1179 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1180 if (rcStrict != VINF_SUCCESS)
1181 return rcStrict;
1182
1183 /* Target CS must be a code selector. */
1184 if ( !DescCS.Legacy.Gen.u1DescType
1185 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1186 {
1187 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1188 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1189 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1190 }
1191
1192 /* Privilege checks on target CS. */
1193 if (enmBranch == IEMBRANCH_JUMP)
1194 {
1195 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1196 {
1197 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1198 {
1199 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1200 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1201 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1202 }
1203 }
1204 else
1205 {
1206 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1207 {
1208 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1209 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1210 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1211 }
1212 }
1213 }
1214 else
1215 {
1216 Assert(enmBranch == IEMBRANCH_CALL);
1217 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1218 {
1219 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1220 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1221 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1222 }
1223 }
1224
1225 /* Additional long mode checks. */
1226 if (IEM_IS_LONG_MODE(pVCpu))
1227 {
1228 if (!DescCS.Legacy.Gen.u1Long)
1229 {
1230 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1231 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1232 }
1233
1234 /* L vs D. */
1235 if ( DescCS.Legacy.Gen.u1Long
1236 && DescCS.Legacy.Gen.u1DefBig)
1237 {
1238 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1239 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1240 }
1241 }
1242
1243 if (!DescCS.Legacy.Gate.u1Present)
1244 {
1245 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1246 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1247 }
1248
1249 if (enmBranch == IEMBRANCH_JUMP)
1250 {
1251 /** @todo This is very similar to regular far jumps; merge! */
1252 /* Jumps are fairly simple... */
1253
1254 /* Chop the high bits off if 16-bit gate (Intel says so). */
1255 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1256 uNewRip = (uint16_t)uNewRip;
1257
1258 /* Limit check for non-long segments. */
1259 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1260 if (DescCS.Legacy.Gen.u1Long)
1261 u64Base = 0;
1262 else
1263 {
1264 if (uNewRip > cbLimit)
1265 {
1266 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1267 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1268 }
1269 u64Base = X86DESC_BASE(&DescCS.Legacy);
1270 }
1271
1272 /* Canonical address check. */
1273 if (!IEM_IS_CANONICAL(uNewRip))
1274 {
1275 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1276 return iemRaiseNotCanonical(pVCpu);
1277 }
1278
1279 /*
1280 * Ok, everything checked out fine. Now set the accessed bit before
1281 * committing the result into CS, CSHID and RIP.
1282 */
1283 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1284 {
1285 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1286 if (rcStrict != VINF_SUCCESS)
1287 return rcStrict;
1288 /** @todo check what VT-x and AMD-V does. */
1289 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1290 }
1291
1292 /* commit */
1293 pVCpu->cpum.GstCtx.rip = uNewRip;
1294 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1295 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1296 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1297 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1298 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1299 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1300 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1301 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1302 }
1303 else
1304 {
1305 Assert(enmBranch == IEMBRANCH_CALL);
1306 /* Calls are much more complicated. */
1307
1308 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1309 {
1310 uint16_t offNewStack; /* Offset of new stack in TSS. */
1311 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1312 uint8_t uNewCSDpl;
1313 uint8_t cbWords;
1314 RTSEL uNewSS;
1315 RTSEL uOldSS;
1316 uint64_t uOldRsp;
1317 IEMSELDESC DescSS;
1318 RTPTRUNION uPtrTSS;
1319 RTGCPTR GCPtrTSS;
1320 RTPTRUNION uPtrParmWds;
1321 RTGCPTR GCPtrParmWds;
1322
1323 /* More privilege. This is the fun part. */
1324 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1325
1326 /*
1327 * Determine new SS:rSP from the TSS.
1328 */
1329 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1330
1331 /* Figure out where the new stack pointer is stored in the TSS. */
1332 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1333 if (!IEM_IS_LONG_MODE(pVCpu))
1334 {
1335 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1336 {
1337 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1338 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1339 }
1340 else
1341 {
1342 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1343 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1344 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1345 }
1346 }
1347 else
1348 {
1349 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1350 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1351 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1352 }
1353
1354 /* Check against TSS limit. */
1355 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1356 {
1357 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1358 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1359 }
1360
1361 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1362 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R, 0);
1363 if (rcStrict != VINF_SUCCESS)
1364 {
1365 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1366 return rcStrict;
1367 }
1368
1369 if (!IEM_IS_LONG_MODE(pVCpu))
1370 {
1371 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1372 {
1373 uNewRsp = uPtrTSS.pu32[0];
1374 uNewSS = uPtrTSS.pu16[2];
1375 }
1376 else
1377 {
1378 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1379 uNewRsp = uPtrTSS.pu16[0];
1380 uNewSS = uPtrTSS.pu16[1];
1381 }
1382 }
1383 else
1384 {
1385 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1386 /* SS will be a NULL selector, but that's valid. */
1387 uNewRsp = uPtrTSS.pu64[0];
1388 uNewSS = uNewCSDpl;
1389 }
1390
1391 /* Done with the TSS now. */
1392 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1393 if (rcStrict != VINF_SUCCESS)
1394 {
1395 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1396 return rcStrict;
1397 }
1398
1399 /* Only used outside of long mode. */
1400 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1401
1402 /* If EFER.LMA is 0, there's extra work to do. */
1403 if (!IEM_IS_LONG_MODE(pVCpu))
1404 {
1405 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1406 {
1407 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1408 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1409 }
1410
1411 /* Grab the new SS descriptor. */
1412 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1413 if (rcStrict != VINF_SUCCESS)
1414 return rcStrict;
1415
1416 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1417 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1418 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1419 {
1420 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1421 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1422 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1423 }
1424
1425 /* Ensure new SS is a writable data segment. */
1426 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1427 {
1428 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1429 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1430 }
1431
1432 if (!DescSS.Legacy.Gen.u1Present)
1433 {
1434 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1435 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1436 }
1437 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1438 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1439 else
1440 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1441 }
1442 else
1443 {
1444 /* Just grab the new (NULL) SS descriptor. */
1445 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1446 * like we do... */
1447 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1448 if (rcStrict != VINF_SUCCESS)
1449 return rcStrict;
1450
1451 cbNewStack = sizeof(uint64_t) * 4;
1452 }
1453
1454 /** @todo According to Intel, new stack is checked for enough space first,
1455 * then switched. According to AMD, the stack is switched first and
1456 * then pushes might fault!
1457 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1458 * incoming stack \#PF happens before actual stack switch. AMD is
1459 * either lying or implicitly assumes that new state is committed
1460 * only if and when an instruction doesn't fault.
1461 */
1462
1463 /** @todo According to AMD, CS is loaded first, then SS.
1464 * According to Intel, it's the other way around!?
1465 */
1466
1467 /** @todo Intel and AMD disagree on when exactly the CPL changes! */
1468
1469 /* Set the accessed bit before committing new SS. */
1470 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1471 {
1472 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1473 if (rcStrict != VINF_SUCCESS)
1474 return rcStrict;
1475 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1476 }
1477
1478 /* Remember the old SS:rSP and their linear address. */
1479 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1480 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1481
1482 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1483
1484 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1485 or #PF, the former is not implemented in this workaround. */
1486 /** @todo Proper fix callgate target stack exceptions. */
1487 /** @todo testcase: Cover callgates with partially or fully inaccessible
1488 * target stacks. */
1489 void *pvNewFrame;
1490 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1491 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW, 0);
1492 if (rcStrict != VINF_SUCCESS)
1493 {
1494 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1495 return rcStrict;
1496 }
1497 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1498 if (rcStrict != VINF_SUCCESS)
1499 {
1500 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1501 return rcStrict;
1502 }
1503
1504 /* Commit new SS:rSP. */
1505 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1506 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1507 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1508 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1509 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1510 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1511 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1512 pVCpu->iem.s.uCpl = uNewCSDpl; /** @todo is the parameter words accessed using the new CPL or the old CPL? */
1513 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1514 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1515
1516 /* At this point the stack access must not fail because new state was already committed. */
1517 /** @todo this can still fail due to SS.LIMIT not check. */
1518 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1519 IEM_IS_LONG_MODE(pVCpu) ? 7
1520 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 3 : 1,
1521 &uPtrRet.pv, &uNewRsp);
1522 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1523 VERR_INTERNAL_ERROR_5);
1524
1525 if (!IEM_IS_LONG_MODE(pVCpu))
1526 {
1527 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1528 {
1529 if (cbWords)
1530 {
1531 /* Map the relevant chunk of the old stack. */
1532 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds,
1533 IEM_ACCESS_DATA_R, 0 /** @todo Can uNewCSDpl == 3? Then we need alignment mask here! */);
1534 if (rcStrict != VINF_SUCCESS)
1535 {
1536 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1537 return rcStrict;
1538 }
1539
1540 /* Copy the parameter (d)words. */
1541 for (int i = 0; i < cbWords; ++i)
1542 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1543
1544 /* Unmap the old stack. */
1545 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1546 if (rcStrict != VINF_SUCCESS)
1547 {
1548 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1549 return rcStrict;
1550 }
1551 }
1552
1553 /* Push the old CS:rIP. */
1554 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1555 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1556
1557 /* Push the old SS:rSP. */
1558 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1559 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1560 }
1561 else
1562 {
1563 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1564
1565 if (cbWords)
1566 {
1567 /* Map the relevant chunk of the old stack. */
1568 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds,
1569 IEM_ACCESS_DATA_R, 0 /** @todo Can uNewCSDpl == 3? Then we need alignment mask here! */);
1570 if (rcStrict != VINF_SUCCESS)
1571 {
1572 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1573 return rcStrict;
1574 }
1575
1576 /* Copy the parameter words. */
1577 for (int i = 0; i < cbWords; ++i)
1578 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1579
1580 /* Unmap the old stack. */
1581 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1582 if (rcStrict != VINF_SUCCESS)
1583 {
1584 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1585 return rcStrict;
1586 }
1587 }
1588
1589 /* Push the old CS:rIP. */
1590 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1591 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1592
1593 /* Push the old SS:rSP. */
1594 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1595 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1596 }
1597 }
1598 else
1599 {
1600 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1601
1602 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1603 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1604 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1605 uPtrRet.pu64[2] = uOldRsp;
1606 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1607 }
1608
1609 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1610 if (rcStrict != VINF_SUCCESS)
1611 {
1612 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1613 return rcStrict;
1614 }
1615
1616 /* Chop the high bits off if 16-bit gate (Intel says so). */
1617 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1618 uNewRip = (uint16_t)uNewRip;
1619
1620 /* Limit / canonical check. */
1621 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1622 if (!IEM_IS_LONG_MODE(pVCpu))
1623 {
1624 if (uNewRip > cbLimit)
1625 {
1626 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1627 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1628 }
1629 u64Base = X86DESC_BASE(&DescCS.Legacy);
1630 }
1631 else
1632 {
1633 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1634 if (!IEM_IS_CANONICAL(uNewRip))
1635 {
1636 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1637 return iemRaiseNotCanonical(pVCpu);
1638 }
1639 u64Base = 0;
1640 }
1641
1642 /*
1643 * Now set the accessed bit before
1644 * writing the return address to the stack and committing the result into
1645 * CS, CSHID and RIP.
1646 */
1647 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1648 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1649 {
1650 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1651 if (rcStrict != VINF_SUCCESS)
1652 return rcStrict;
1653 /** @todo check what VT-x and AMD-V does. */
1654 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1655 }
1656
1657 /* Commit new CS:rIP. */
1658 pVCpu->cpum.GstCtx.rip = uNewRip;
1659 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1660 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1661 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1662 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1663 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1664 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1665 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1666 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1667 }
1668 else
1669 {
1670 /* Same privilege. */
1671 /** @todo This is very similar to regular far calls; merge! */
1672
1673 /* Check stack first - may #SS(0). */
1674 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1675 * 16-bit code cause a two or four byte CS to be pushed? */
1676 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1677 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1678 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1679 IEM_IS_LONG_MODE(pVCpu) ? 7
1680 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 3 : 2,
1681 &uPtrRet.pv, &uNewRsp);
1682 if (rcStrict != VINF_SUCCESS)
1683 return rcStrict;
1684
1685 /* Chop the high bits off if 16-bit gate (Intel says so). */
1686 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1687 uNewRip = (uint16_t)uNewRip;
1688
1689 /* Limit / canonical check. */
1690 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1691 if (!IEM_IS_LONG_MODE(pVCpu))
1692 {
1693 if (uNewRip > cbLimit)
1694 {
1695 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1696 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1697 }
1698 u64Base = X86DESC_BASE(&DescCS.Legacy);
1699 }
1700 else
1701 {
1702 if (!IEM_IS_CANONICAL(uNewRip))
1703 {
1704 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1705 return iemRaiseNotCanonical(pVCpu);
1706 }
1707 u64Base = 0;
1708 }
1709
1710 /*
1711 * Now set the accessed bit before
1712 * writing the return address to the stack and committing the result into
1713 * CS, CSHID and RIP.
1714 */
1715 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1716 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1717 {
1718 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1719 if (rcStrict != VINF_SUCCESS)
1720 return rcStrict;
1721 /** @todo check what VT-x and AMD-V does. */
1722 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1723 }
1724
1725 /* stack */
1726 if (!IEM_IS_LONG_MODE(pVCpu))
1727 {
1728 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1729 {
1730 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1731 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1732 }
1733 else
1734 {
1735 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1736 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1737 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1738 }
1739 }
1740 else
1741 {
1742 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1743 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1744 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1745 }
1746
1747 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1748 if (rcStrict != VINF_SUCCESS)
1749 return rcStrict;
1750
1751 /* commit */
1752 pVCpu->cpum.GstCtx.rip = uNewRip;
1753 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1754 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1755 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1756 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1757 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1758 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1759 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1760 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1761 }
1762 }
1763 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1764/** @todo single stepping */
1765
1766 /* Flush the prefetch buffer. */
1767 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
1768 return VINF_SUCCESS;
1769#endif /* IEM_IMPLEMENTS_CALLGATE */
1770}
1771
1772
1773/**
1774 * Implements far jumps and calls thru system selectors.
1775 *
1776 * @returns VBox strict status code.
1777 * @param pVCpu The cross context virtual CPU structure of the
1778 * calling thread.
1779 * @param cbInstr The current instruction length.
1780 * @param uSel The selector.
1781 * @param enmBranch The kind of branching we're performing.
1782 * @param enmEffOpSize The effective operand size.
1783 * @param pDesc The descriptor corresponding to @a uSel.
1784 */
1785static VBOXSTRICTRC iemCImpl_BranchSysSel(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t uSel, IEMBRANCH enmBranch,
1786 IEMMODE enmEffOpSize, PIEMSELDESC pDesc)
1787{
1788 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1789 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1790 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1791
1792 if (IEM_IS_LONG_MODE(pVCpu))
1793 switch (pDesc->Legacy.Gen.u4Type)
1794 {
1795 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1796 return iemCImpl_BranchCallGate(pVCpu, cbInstr, uSel, enmBranch, enmEffOpSize, pDesc);
1797
1798 default:
1799 case AMD64_SEL_TYPE_SYS_LDT:
1800 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1801 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1802 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1803 case AMD64_SEL_TYPE_SYS_INT_GATE:
1804 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1805 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1806 }
1807
1808 switch (pDesc->Legacy.Gen.u4Type)
1809 {
1810 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1811 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1812 return iemCImpl_BranchCallGate(pVCpu, cbInstr, uSel, enmBranch, enmEffOpSize, pDesc);
1813
1814 case X86_SEL_TYPE_SYS_TASK_GATE:
1815 return iemCImpl_BranchTaskGate(pVCpu, cbInstr, uSel, enmBranch, enmEffOpSize, pDesc);
1816
1817 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1818 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1819 return iemCImpl_BranchTaskSegment(pVCpu, cbInstr, uSel, enmBranch, enmEffOpSize, pDesc);
1820
1821 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1822 Log(("branch %04x -> busy 286 TSS\n", uSel));
1823 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1824
1825 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1826 Log(("branch %04x -> busy 386 TSS\n", uSel));
1827 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1828
1829 default:
1830 case X86_SEL_TYPE_SYS_LDT:
1831 case X86_SEL_TYPE_SYS_286_INT_GATE:
1832 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1833 case X86_SEL_TYPE_SYS_386_INT_GATE:
1834 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1835 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1836 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1837 }
1838}
1839
1840
1841/**
1842 * Implements far jumps.
1843 *
1844 * @param uSel The selector.
1845 * @param offSeg The segment offset.
1846 * @param enmEffOpSize The effective operand size.
1847 */
1848IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1849{
1850 NOREF(cbInstr);
1851 Assert(offSeg <= UINT32_MAX || (!IEM_IS_GUEST_CPU_AMD(pVCpu) && pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT));
1852
1853 /*
1854 * Real mode and V8086 mode are easy. The only snag seems to be that
1855 * CS.limit doesn't change and the limit check is done against the current
1856 * limit.
1857 */
1858 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1859 * 1998) that up to and including the Intel 486, far control
1860 * transfers in real mode set default CS attributes (0x93) and also
1861 * set a 64K segment limit. Starting with the Pentium, the
1862 * attributes and limit are left alone but the access rights are
1863 * ignored. We only implement the Pentium+ behavior.
1864 * */
1865 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1866 {
1867 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1868 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1869 {
1870 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1871 return iemRaiseGeneralProtectionFault0(pVCpu);
1872 }
1873
1874 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1875 pVCpu->cpum.GstCtx.rip = offSeg;
1876 else
1877 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1878 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1879 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1880 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1881 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1882
1883 return iemRegFinishClearingRF(pVCpu);
1884 }
1885
1886 /*
1887 * Protected mode. Need to parse the specified descriptor...
1888 */
1889 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1890 {
1891 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1892 return iemRaiseGeneralProtectionFault0(pVCpu);
1893 }
1894
1895 /* Fetch the descriptor. */
1896 IEMSELDESC Desc;
1897 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1898 if (rcStrict != VINF_SUCCESS)
1899 return rcStrict;
1900
1901 /* Is it there? */
1902 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1903 {
1904 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1905 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1906 }
1907
1908 /*
1909 * Deal with it according to its type. We do the standard code selectors
1910 * here and dispatch the system selectors to worker functions.
1911 */
1912 if (!Desc.Legacy.Gen.u1DescType)
1913 return iemCImpl_BranchSysSel(pVCpu, cbInstr, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1914
1915 /* Only code segments. */
1916 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1917 {
1918 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1919 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1920 }
1921
1922 /* L vs D. */
1923 if ( Desc.Legacy.Gen.u1Long
1924 && Desc.Legacy.Gen.u1DefBig
1925 && IEM_IS_LONG_MODE(pVCpu))
1926 {
1927 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1928 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1929 }
1930
1931 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1932 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1933 {
1934 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1935 {
1936 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1937 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1938 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1939 }
1940 }
1941 else
1942 {
1943 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1944 {
1945 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1946 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1947 }
1948 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1949 {
1950 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1951 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1952 }
1953 }
1954
1955 /* Chop the high bits if 16-bit (Intel says so). */
1956 if (enmEffOpSize == IEMMODE_16BIT)
1957 offSeg &= UINT16_MAX;
1958
1959 /* Limit check and get the base. */
1960 uint64_t u64Base;
1961 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1962 if ( !Desc.Legacy.Gen.u1Long
1963 || !IEM_IS_LONG_MODE(pVCpu))
1964 {
1965 if (RT_LIKELY(offSeg <= cbLimit))
1966 u64Base = X86DESC_BASE(&Desc.Legacy);
1967 else
1968 {
1969 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1970 /** @todo Intel says this is \#GP(0)! */
1971 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1972 }
1973 }
1974 else
1975 u64Base = 0;
1976
1977 /*
1978 * Ok, everything checked out fine. Now set the accessed bit before
1979 * committing the result into CS, CSHID and RIP.
1980 */
1981 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1982 {
1983 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1984 if (rcStrict != VINF_SUCCESS)
1985 return rcStrict;
1986 /** @todo check what VT-x and AMD-V does. */
1987 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1988 }
1989
1990 /* commit */
1991 pVCpu->cpum.GstCtx.rip = offSeg;
1992 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1993 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1994 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1995 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1996 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1997 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1998 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1999 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2000 /** @todo check if the hidden bits are loaded correctly for 64-bit
2001 * mode. */
2002
2003 /* Flush the prefetch buffer. */
2004 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
2005
2006 return iemRegFinishClearingRF(pVCpu);
2007}
2008
2009
2010/**
2011 * Implements far calls.
2012 *
2013 * This very similar to iemCImpl_FarJmp.
2014 *
2015 * @param uSel The selector.
2016 * @param offSeg The segment offset.
2017 * @param enmEffOpSize The operand size (in case we need it).
2018 */
2019IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
2020{
2021 VBOXSTRICTRC rcStrict;
2022 uint64_t uNewRsp;
2023 RTPTRUNION uPtrRet;
2024
2025 /*
2026 * Real mode and V8086 mode are easy. The only snag seems to be that
2027 * CS.limit doesn't change and the limit check is done against the current
2028 * limit.
2029 */
2030 /** @todo See comment for similar code in iemCImpl_FarJmp */
2031 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2032 {
2033 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
2034
2035 /* Check stack first - may #SS(0). */
2036 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2037 enmEffOpSize == IEMMODE_32BIT ? 3 : 1,
2038 &uPtrRet.pv, &uNewRsp);
2039 if (rcStrict != VINF_SUCCESS)
2040 return rcStrict;
2041
2042 /* Check the target address range. */
2043/** @todo this must be wrong! Write unreal mode tests! */
2044 if (offSeg > UINT32_MAX)
2045 return iemRaiseGeneralProtectionFault0(pVCpu);
2046
2047 /* Everything is fine, push the return address. */
2048 if (enmEffOpSize == IEMMODE_16BIT)
2049 {
2050 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2051 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2052 }
2053 else
2054 {
2055 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2056 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
2057 }
2058 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2059 if (rcStrict != VINF_SUCCESS)
2060 return rcStrict;
2061
2062 /* Branch. */
2063 pVCpu->cpum.GstCtx.rip = offSeg;
2064 pVCpu->cpum.GstCtx.cs.Sel = uSel;
2065 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
2066 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2067 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
2068
2069 return iemRegFinishClearingRF(pVCpu);
2070 }
2071
2072 /*
2073 * Protected mode. Need to parse the specified descriptor...
2074 */
2075 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2076 {
2077 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2078 return iemRaiseGeneralProtectionFault0(pVCpu);
2079 }
2080
2081 /* Fetch the descriptor. */
2082 IEMSELDESC Desc;
2083 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2084 if (rcStrict != VINF_SUCCESS)
2085 return rcStrict;
2086
2087 /*
2088 * Deal with it according to its type. We do the standard code selectors
2089 * here and dispatch the system selectors to worker functions.
2090 */
2091 if (!Desc.Legacy.Gen.u1DescType)
2092 return iemCImpl_BranchSysSel(pVCpu, cbInstr, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2093
2094 /* Only code segments. */
2095 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2096 {
2097 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2098 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2099 }
2100
2101 /* L vs D. */
2102 if ( Desc.Legacy.Gen.u1Long
2103 && Desc.Legacy.Gen.u1DefBig
2104 && IEM_IS_LONG_MODE(pVCpu))
2105 {
2106 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2107 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2108 }
2109
2110 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2111 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2112 {
2113 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2114 {
2115 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2116 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2117 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2118 }
2119 }
2120 else
2121 {
2122 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2123 {
2124 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2125 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2126 }
2127 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2128 {
2129 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2130 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2131 }
2132 }
2133
2134 /* Is it there? */
2135 if (!Desc.Legacy.Gen.u1Present)
2136 {
2137 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2138 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2139 }
2140
2141 /* Check stack first - may #SS(0). */
2142 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2143 * 16-bit code cause a two or four byte CS to be pushed? */
2144 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2145 enmEffOpSize == IEMMODE_64BIT ? 8+8 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2146 enmEffOpSize == IEMMODE_64BIT ? 7 : enmEffOpSize == IEMMODE_32BIT ? 3 : 1,
2147 &uPtrRet.pv, &uNewRsp);
2148 if (rcStrict != VINF_SUCCESS)
2149 return rcStrict;
2150
2151 /* Chop the high bits if 16-bit (Intel says so). */
2152 if (enmEffOpSize == IEMMODE_16BIT)
2153 offSeg &= UINT16_MAX;
2154
2155 /* Limit / canonical check. */
2156 uint64_t u64Base;
2157 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2158 if ( !Desc.Legacy.Gen.u1Long
2159 || !IEM_IS_LONG_MODE(pVCpu))
2160 {
2161 if (RT_LIKELY(offSeg <= cbLimit))
2162 u64Base = X86DESC_BASE(&Desc.Legacy);
2163 else
2164 {
2165 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2166 /** @todo Intel says this is \#GP(0)! */
2167 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2168 }
2169 }
2170 else if (IEM_IS_CANONICAL(offSeg))
2171 u64Base = 0;
2172 else
2173 {
2174 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2175 return iemRaiseNotCanonical(pVCpu);
2176 }
2177
2178 /*
2179 * Now set the accessed bit before
2180 * writing the return address to the stack and committing the result into
2181 * CS, CSHID and RIP.
2182 */
2183 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2184 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2185 {
2186 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2187 if (rcStrict != VINF_SUCCESS)
2188 return rcStrict;
2189 /** @todo check what VT-x and AMD-V does. */
2190 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2191 }
2192
2193 /* stack */
2194 if (enmEffOpSize == IEMMODE_16BIT)
2195 {
2196 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2197 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2198 }
2199 else if (enmEffOpSize == IEMMODE_32BIT)
2200 {
2201 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2202 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2203 }
2204 else
2205 {
2206 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2207 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2208 }
2209 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2210 if (rcStrict != VINF_SUCCESS)
2211 return rcStrict;
2212
2213 /* commit */
2214 pVCpu->cpum.GstCtx.rip = offSeg;
2215 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2216 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2217 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2218 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2219 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2220 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2221 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2222 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2223 /** @todo check if the hidden bits are loaded correctly for 64-bit
2224 * mode. */
2225
2226 /* Flush the prefetch buffer. */
2227 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
2228
2229 return iemRegFinishClearingRF(pVCpu);
2230}
2231
2232
2233/**
2234 * Implements retf.
2235 *
2236 * @param enmEffOpSize The effective operand size.
2237 * @param cbPop The amount of arguments to pop from the stack
2238 * (bytes).
2239 */
2240IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2241{
2242 VBOXSTRICTRC rcStrict;
2243 RTCPTRUNION uPtrFrame;
2244 RTUINT64U NewRsp;
2245 uint64_t uNewRip;
2246 uint16_t uNewCs;
2247 NOREF(cbInstr);
2248
2249 /*
2250 * Read the stack values first.
2251 */
2252 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2253 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2254 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr,
2255 enmEffOpSize == IEMMODE_16BIT ? 1 : enmEffOpSize == IEMMODE_32BIT ? 3 : 7,
2256 &uPtrFrame.pv, &NewRsp.u);
2257 if (rcStrict != VINF_SUCCESS)
2258 return rcStrict;
2259 if (enmEffOpSize == IEMMODE_16BIT)
2260 {
2261 uNewRip = uPtrFrame.pu16[0];
2262 uNewCs = uPtrFrame.pu16[1];
2263 }
2264 else if (enmEffOpSize == IEMMODE_32BIT)
2265 {
2266 uNewRip = uPtrFrame.pu32[0];
2267 uNewCs = uPtrFrame.pu16[2];
2268 }
2269 else
2270 {
2271 uNewRip = uPtrFrame.pu64[0];
2272 uNewCs = uPtrFrame.pu16[4];
2273 }
2274 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2275 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2276 { /* extremely likely */ }
2277 else
2278 return rcStrict;
2279
2280 /*
2281 * Real mode and V8086 mode are easy.
2282 */
2283 /** @todo See comment for similar code in iemCImpl_FarJmp */
2284 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2285 {
2286 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2287 /** @todo check how this is supposed to work if sp=0xfffe. */
2288
2289 /* Check the limit of the new EIP. */
2290 /** @todo Intel pseudo code only does the limit check for 16-bit
2291 * operands, AMD does not make any distinction. What is right? */
2292 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2293 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2294
2295 /* commit the operation. */
2296 if (cbPop)
2297 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2298 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2299 pVCpu->cpum.GstCtx.rip = uNewRip;
2300 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2301 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2302 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2303 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2304 return iemRegFinishClearingRF(pVCpu);
2305 }
2306
2307 /*
2308 * Protected mode is complicated, of course.
2309 */
2310 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2311 {
2312 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2313 return iemRaiseGeneralProtectionFault0(pVCpu);
2314 }
2315
2316 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2317
2318 /* Fetch the descriptor. */
2319 IEMSELDESC DescCs;
2320 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2321 if (rcStrict != VINF_SUCCESS)
2322 return rcStrict;
2323
2324 /* Can only return to a code selector. */
2325 if ( !DescCs.Legacy.Gen.u1DescType
2326 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2327 {
2328 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2329 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2330 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2331 }
2332
2333 /* L vs D. */
2334 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2335 && DescCs.Legacy.Gen.u1DefBig
2336 && IEM_IS_LONG_MODE(pVCpu))
2337 {
2338 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2339 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2340 }
2341
2342 /* DPL/RPL/CPL checks. */
2343 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2344 {
2345 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2346 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2347 }
2348
2349 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2350 {
2351 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2352 {
2353 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2354 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2355 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2356 }
2357 }
2358 else
2359 {
2360 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2361 {
2362 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2363 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2364 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2365 }
2366 }
2367
2368 /* Is it there? */
2369 if (!DescCs.Legacy.Gen.u1Present)
2370 {
2371 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2372 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2373 }
2374
2375 /*
2376 * Return to outer privilege? (We'll typically have entered via a call gate.)
2377 */
2378 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2379 {
2380 /* Read the outer stack pointer stored *after* the parameters. */
2381 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop /*off*/, cbRetPtr, &uPtrFrame.pv, NewRsp.u);
2382 if (rcStrict != VINF_SUCCESS)
2383 return rcStrict;
2384
2385 uint16_t uNewOuterSs;
2386 RTUINT64U NewOuterRsp;
2387 if (enmEffOpSize == IEMMODE_16BIT)
2388 {
2389 NewOuterRsp.u = uPtrFrame.pu16[0];
2390 uNewOuterSs = uPtrFrame.pu16[1];
2391 }
2392 else if (enmEffOpSize == IEMMODE_32BIT)
2393 {
2394 NewOuterRsp.u = uPtrFrame.pu32[0];
2395 uNewOuterSs = uPtrFrame.pu16[2];
2396 }
2397 else
2398 {
2399 NewOuterRsp.u = uPtrFrame.pu64[0];
2400 uNewOuterSs = uPtrFrame.pu16[4];
2401 }
2402 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2403 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2404 { /* extremely likely */ }
2405 else
2406 return rcStrict;
2407
2408 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2409 and read the selector. */
2410 IEMSELDESC DescSs;
2411 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2412 {
2413 if ( !DescCs.Legacy.Gen.u1Long
2414 || (uNewOuterSs & X86_SEL_RPL) == 3)
2415 {
2416 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2417 uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u));
2418 return iemRaiseGeneralProtectionFault0(pVCpu);
2419 }
2420 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2421 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2422 }
2423 else
2424 {
2425 /* Fetch the descriptor for the new stack segment. */
2426 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2427 if (rcStrict != VINF_SUCCESS)
2428 return rcStrict;
2429 }
2430
2431 /* Check that RPL of stack and code selectors match. */
2432 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2433 {
2434 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u));
2435 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2436 }
2437
2438 /* Must be a writable data segment. */
2439 if ( !DescSs.Legacy.Gen.u1DescType
2440 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2441 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2442 {
2443 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2444 uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2445 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2446 }
2447
2448 /* L vs D. (Not mentioned by intel.) */
2449 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2450 && DescSs.Legacy.Gen.u1DefBig
2451 && IEM_IS_LONG_MODE(pVCpu))
2452 {
2453 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2454 uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u));
2455 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2456 }
2457
2458 /* DPL/RPL/CPL checks. */
2459 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2460 {
2461 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2462 uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2463 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2464 }
2465
2466 /* Is it there? */
2467 if (!DescSs.Legacy.Gen.u1Present)
2468 {
2469 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u));
2470 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2471 }
2472
2473 /* Calc SS limit.*/
2474 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2475
2476 /* Is RIP canonical or within CS.limit? */
2477 uint64_t u64Base;
2478 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2479
2480 /** @todo Testcase: Is this correct? */
2481 if ( DescCs.Legacy.Gen.u1Long
2482 && IEM_IS_LONG_MODE(pVCpu) )
2483 {
2484 if (!IEM_IS_CANONICAL(uNewRip))
2485 {
2486 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u));
2487 return iemRaiseNotCanonical(pVCpu);
2488 }
2489 u64Base = 0;
2490 }
2491 else
2492 {
2493 if (uNewRip > cbLimitCs)
2494 {
2495 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2496 uNewCs, uNewRip, uNewOuterSs, NewOuterRsp.u, cbLimitCs));
2497 /** @todo Intel says this is \#GP(0)! */
2498 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2499 }
2500 u64Base = X86DESC_BASE(&DescCs.Legacy);
2501 }
2502
2503 /*
2504 * Now set the accessed bit before
2505 * writing the return address to the stack and committing the result into
2506 * CS, CSHID and RIP.
2507 */
2508 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2509 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2510 {
2511 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2512 if (rcStrict != VINF_SUCCESS)
2513 return rcStrict;
2514 /** @todo check what VT-x and AMD-V does. */
2515 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2516 }
2517 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2518 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2519 {
2520 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2521 if (rcStrict != VINF_SUCCESS)
2522 return rcStrict;
2523 /** @todo check what VT-x and AMD-V does. */
2524 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2525 }
2526
2527 /* commit */
2528 if (enmEffOpSize == IEMMODE_16BIT)
2529 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2530 else
2531 pVCpu->cpum.GstCtx.rip = uNewRip;
2532 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2533 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2534 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2535 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2536 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2537 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2538 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2539 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2540 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2541 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2542 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2543 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2544 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2545 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2546 else
2547 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2548 if (cbPop)
2549 iemRegAddToRspEx(pVCpu, &NewOuterRsp, cbPop);
2550 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2551 pVCpu->cpum.GstCtx.rsp = NewOuterRsp.u;
2552 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2553 pVCpu->cpum.GstCtx.rsp = (uint32_t)NewOuterRsp.u;
2554 else
2555 pVCpu->cpum.GstCtx.sp = (uint16_t)NewOuterRsp.u;
2556
2557 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2558 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2559 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2560 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2561 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2562
2563 /** @todo check if the hidden bits are loaded correctly for 64-bit
2564 * mode. */
2565 }
2566 /*
2567 * Return to the same privilege level
2568 */
2569 else
2570 {
2571 /* Limit / canonical check. */
2572 uint64_t u64Base;
2573 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2574
2575 /** @todo Testcase: Is this correct? */
2576 if ( DescCs.Legacy.Gen.u1Long
2577 && IEM_IS_LONG_MODE(pVCpu) )
2578 {
2579 if (!IEM_IS_CANONICAL(uNewRip))
2580 {
2581 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2582 return iemRaiseNotCanonical(pVCpu);
2583 }
2584 u64Base = 0;
2585 }
2586 else
2587 {
2588 if (uNewRip > cbLimitCs)
2589 {
2590 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2591 /** @todo Intel says this is \#GP(0)! */
2592 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2593 }
2594 u64Base = X86DESC_BASE(&DescCs.Legacy);
2595 }
2596
2597 /*
2598 * Now set the accessed bit before
2599 * writing the return address to the stack and committing the result into
2600 * CS, CSHID and RIP.
2601 */
2602 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2603 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2604 {
2605 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2606 if (rcStrict != VINF_SUCCESS)
2607 return rcStrict;
2608 /** @todo check what VT-x and AMD-V does. */
2609 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2610 }
2611
2612 /* commit */
2613 if (cbPop)
2614 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2615 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2616 pVCpu->cpum.GstCtx.sp = (uint16_t)NewRsp.u;
2617 else
2618 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2619 if (enmEffOpSize == IEMMODE_16BIT)
2620 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2621 else
2622 pVCpu->cpum.GstCtx.rip = uNewRip;
2623 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2624 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2625 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2626 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2627 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2628 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2629 /** @todo check if the hidden bits are loaded correctly for 64-bit
2630 * mode. */
2631 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2632 }
2633
2634 /* Flush the prefetch buffer. */
2635 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr); /** @todo use light flush for same privlege? */
2636
2637 return iemRegFinishClearingRF(pVCpu);
2638}
2639
2640
2641/**
2642 * Implements retn and retn imm16.
2643 *
2644 * We're doing this in C because of the \#GP that might be raised if the popped
2645 * program counter is out of bounds.
2646 *
2647 * The hope with this forced inline worker function, is that the compiler will
2648 * be clever enough to eliminate unused code for the constant enmEffOpSize and
2649 * maybe cbPop parameters.
2650 *
2651 * @param pVCpu The cross context virtual CPU structure of the
2652 * calling thread.
2653 * @param cbInstr The current instruction length.
2654 * @param enmEffOpSize The effective operand size. This is constant.
2655 * @param cbPop The amount of arguments to pop from the stack
2656 * (bytes). This can be constant (zero).
2657 */
2658DECL_FORCE_INLINE(VBOXSTRICTRC) iemCImpl_ReturnNearCommon(PVMCPUCC pVCpu, uint8_t cbInstr, IEMMODE enmEffOpSize, uint16_t cbPop)
2659{
2660 /* Fetch the RSP from the stack. */
2661 VBOXSTRICTRC rcStrict;
2662 RTUINT64U NewRip;
2663 RTUINT64U NewRsp;
2664 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2665
2666 switch (enmEffOpSize)
2667 {
2668 case IEMMODE_16BIT:
2669 NewRip.u = 0;
2670 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2671 break;
2672 case IEMMODE_32BIT:
2673 NewRip.u = 0;
2674 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2675 break;
2676 case IEMMODE_64BIT:
2677 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2678 break;
2679 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2680 }
2681 if (rcStrict != VINF_SUCCESS)
2682 return rcStrict;
2683
2684 /* Check the new RSP before loading it. */
2685 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2686 * of it. The canonical test is performed here and for call. */
2687 if (enmEffOpSize != IEMMODE_64BIT)
2688 {
2689 if (RT_LIKELY(NewRip.DWords.dw0 <= pVCpu->cpum.GstCtx.cs.u32Limit))
2690 { /* likely */ }
2691 else
2692 {
2693 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2694 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2695 }
2696 }
2697 else
2698 {
2699 if (RT_LIKELY(IEM_IS_CANONICAL(NewRip.u)))
2700 { /* likely */ }
2701 else
2702 {
2703 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2704 return iemRaiseNotCanonical(pVCpu);
2705 }
2706 }
2707
2708 /* Apply cbPop */
2709 if (cbPop)
2710 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2711
2712 /* Commit it. */
2713 pVCpu->cpum.GstCtx.rip = NewRip.u;
2714 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2715
2716 /* Flush the prefetch buffer. */
2717 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr); /** @todo only need a light flush here, don't we? We don't really need any flushing... */
2718 RT_NOREF(cbInstr);
2719
2720 return iemRegFinishClearingRF(pVCpu);
2721}
2722
2723
2724/**
2725 * Implements retn imm16 with 16-bit effective operand size.
2726 *
2727 * @param cbPop The amount of arguments to pop from the stack (bytes).
2728 */
2729IEM_CIMPL_DEF_1(iemCImpl_retn_iw_16, uint16_t, cbPop)
2730{
2731 return iemCImpl_ReturnNearCommon(pVCpu, cbInstr, IEMMODE_16BIT, cbPop);
2732}
2733
2734
2735/**
2736 * Implements retn imm16 with 32-bit effective operand size.
2737 *
2738 * @param cbPop The amount of arguments to pop from the stack (bytes).
2739 */
2740IEM_CIMPL_DEF_1(iemCImpl_retn_iw_32, uint16_t, cbPop)
2741{
2742 return iemCImpl_ReturnNearCommon(pVCpu, cbInstr, IEMMODE_32BIT, cbPop);
2743}
2744
2745
2746/**
2747 * Implements retn imm16 with 64-bit effective operand size.
2748 *
2749 * @param cbPop The amount of arguments to pop from the stack (bytes).
2750 */
2751IEM_CIMPL_DEF_1(iemCImpl_retn_iw_64, uint16_t, cbPop)
2752{
2753 return iemCImpl_ReturnNearCommon(pVCpu, cbInstr, IEMMODE_64BIT, cbPop);
2754}
2755
2756
2757/**
2758 * Implements retn with 16-bit effective operand size.
2759 */
2760IEM_CIMPL_DEF_0(iemCImpl_retn_16)
2761{
2762 return iemCImpl_ReturnNearCommon(pVCpu, cbInstr, IEMMODE_16BIT, 0);
2763}
2764
2765
2766/**
2767 * Implements retn with 32-bit effective operand size.
2768 */
2769IEM_CIMPL_DEF_0(iemCImpl_retn_32)
2770{
2771 return iemCImpl_ReturnNearCommon(pVCpu, cbInstr, IEMMODE_32BIT, 0);
2772}
2773
2774
2775/**
2776 * Implements retn with 64-bit effective operand size.
2777 */
2778IEM_CIMPL_DEF_0(iemCImpl_retn_64)
2779{
2780 return iemCImpl_ReturnNearCommon(pVCpu, cbInstr, IEMMODE_64BIT, 0);
2781}
2782
2783
2784/**
2785 * Implements enter.
2786 *
2787 * We're doing this in C because the instruction is insane, even for the
2788 * u8NestingLevel=0 case dealing with the stack is tedious.
2789 *
2790 * @param enmEffOpSize The effective operand size.
2791 * @param cbFrame Frame size.
2792 * @param cParameters Frame parameter count.
2793 */
2794IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2795{
2796 /* Push RBP, saving the old value in TmpRbp. */
2797 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2798 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2799 RTUINT64U NewRbp;
2800 VBOXSTRICTRC rcStrict;
2801 if (enmEffOpSize == IEMMODE_64BIT)
2802 {
2803 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2804 NewRbp = NewRsp;
2805 }
2806 else if (enmEffOpSize == IEMMODE_32BIT)
2807 {
2808 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2809 NewRbp = NewRsp;
2810 }
2811 else
2812 {
2813 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2814 NewRbp = TmpRbp;
2815 NewRbp.Words.w0 = NewRsp.Words.w0;
2816 }
2817 if (rcStrict != VINF_SUCCESS)
2818 return rcStrict;
2819
2820 /* Copy the parameters (aka nesting levels by Intel). */
2821 cParameters &= 0x1f;
2822 if (cParameters > 0)
2823 {
2824 switch (enmEffOpSize)
2825 {
2826 case IEMMODE_16BIT:
2827 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2828 TmpRbp.DWords.dw0 -= 2;
2829 else
2830 TmpRbp.Words.w0 -= 2;
2831 do
2832 {
2833 uint16_t u16Tmp;
2834 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2835 if (rcStrict != VINF_SUCCESS)
2836 break;
2837 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2838 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2839 break;
2840
2841 case IEMMODE_32BIT:
2842 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2843 TmpRbp.DWords.dw0 -= 4;
2844 else
2845 TmpRbp.Words.w0 -= 4;
2846 do
2847 {
2848 uint32_t u32Tmp;
2849 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2850 if (rcStrict != VINF_SUCCESS)
2851 break;
2852 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2853 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2854 break;
2855
2856 case IEMMODE_64BIT:
2857 TmpRbp.u -= 8;
2858 do
2859 {
2860 uint64_t u64Tmp;
2861 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2862 if (rcStrict != VINF_SUCCESS)
2863 break;
2864 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2865 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2866 break;
2867
2868 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2869 }
2870 if (rcStrict != VINF_SUCCESS)
2871 return VINF_SUCCESS;
2872
2873 /* Push the new RBP */
2874 if (enmEffOpSize == IEMMODE_64BIT)
2875 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2876 else if (enmEffOpSize == IEMMODE_32BIT)
2877 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2878 else
2879 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2880 if (rcStrict != VINF_SUCCESS)
2881 return rcStrict;
2882
2883 }
2884
2885 /* Recalc RSP. */
2886 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2887
2888 /** @todo Should probe write access at the new RSP according to AMD. */
2889 /** @todo Should handle accesses to the VMX APIC-access page. */
2890
2891 /* Commit it. */
2892 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2893 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2894 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
2895}
2896
2897
2898
2899/**
2900 * Implements leave.
2901 *
2902 * We're doing this in C because messing with the stack registers is annoying
2903 * since they depends on SS attributes.
2904 *
2905 * @param enmEffOpSize The effective operand size.
2906 */
2907IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2908{
2909 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2910 RTUINT64U NewRsp;
2911 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2912 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2913 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2914 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2915 else
2916 {
2917 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2918 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2919 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2920 }
2921
2922 /* Pop RBP according to the operand size. */
2923 VBOXSTRICTRC rcStrict;
2924 RTUINT64U NewRbp;
2925 switch (enmEffOpSize)
2926 {
2927 case IEMMODE_16BIT:
2928 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2929 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2930 break;
2931 case IEMMODE_32BIT:
2932 NewRbp.u = 0;
2933 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2934 break;
2935 case IEMMODE_64BIT:
2936 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2937 break;
2938 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2939 }
2940 if (rcStrict != VINF_SUCCESS)
2941 return rcStrict;
2942
2943
2944 /* Commit it. */
2945 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2946 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2947 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
2948}
2949
2950
2951/**
2952 * Implements int3 and int XX.
2953 *
2954 * @param u8Int The interrupt vector number.
2955 * @param enmInt The int instruction type.
2956 */
2957IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2958{
2959 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2960
2961 /*
2962 * We must check if this INT3 might belong to DBGF before raising a #BP.
2963 */
2964 if (u8Int == 3)
2965 {
2966 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2967 if (pVM->dbgf.ro.cEnabledInt3Breakpoints == 0)
2968 { /* likely: No vbox debugger breakpoints */ }
2969 else
2970 {
2971 VBOXSTRICTRC rcStrict = DBGFTrap03Handler(pVM, pVCpu, &pVCpu->cpum.GstCtx);
2972 Log(("iemCImpl_int: DBGFTrap03Handler -> %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
2973 if (rcStrict != VINF_EM_RAW_GUEST_TRAP)
2974 return iemSetPassUpStatus(pVCpu, rcStrict);
2975 }
2976 }
2977/** @todo single stepping */
2978 return iemRaiseXcptOrInt(pVCpu,
2979 cbInstr,
2980 u8Int,
2981 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2982 0,
2983 0);
2984}
2985
2986
2987/**
2988 * Implements iret for real mode and V8086 mode.
2989 *
2990 * @param enmEffOpSize The effective operand size.
2991 */
2992IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2993{
2994 X86EFLAGS Efl;
2995 Efl.u = IEMMISC_GET_EFL(pVCpu);
2996 NOREF(cbInstr);
2997
2998 /*
2999 * iret throws an exception if VME isn't enabled.
3000 */
3001 if ( Efl.Bits.u1VM
3002 && Efl.Bits.u2IOPL != 3
3003 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
3004 return iemRaiseGeneralProtectionFault0(pVCpu);
3005
3006 /*
3007 * Do the stack bits, but don't commit RSP before everything checks
3008 * out right.
3009 */
3010 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3011 VBOXSTRICTRC rcStrict;
3012 RTCPTRUNION uFrame;
3013 uint16_t uNewCs;
3014 uint32_t uNewEip;
3015 uint32_t uNewFlags;
3016 uint64_t uNewRsp;
3017 if (enmEffOpSize == IEMMODE_32BIT)
3018 {
3019 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, 1, &uFrame.pv, &uNewRsp);
3020 if (rcStrict != VINF_SUCCESS)
3021 return rcStrict;
3022 uNewEip = uFrame.pu32[0];
3023 if (uNewEip > UINT16_MAX)
3024 return iemRaiseGeneralProtectionFault0(pVCpu);
3025
3026 uNewCs = (uint16_t)uFrame.pu32[1];
3027 uNewFlags = uFrame.pu32[2];
3028 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3029 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
3030 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
3031 | X86_EFL_ID;
3032 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3033 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3034 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
3035 }
3036 else
3037 {
3038 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, 1, &uFrame.pv, &uNewRsp);
3039 if (rcStrict != VINF_SUCCESS)
3040 return rcStrict;
3041 uNewEip = uFrame.pu16[0];
3042 uNewCs = uFrame.pu16[1];
3043 uNewFlags = uFrame.pu16[2];
3044 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3045 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
3046 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
3047 /** @todo The intel pseudo code does not indicate what happens to
3048 * reserved flags. We just ignore them. */
3049 /* Ancient CPU adjustments: See iemCImpl_popf. */
3050 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
3051 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
3052 }
3053 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
3054 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3055 { /* extremely likely */ }
3056 else
3057 return rcStrict;
3058
3059 /** @todo Check how this is supposed to work if sp=0xfffe. */
3060 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
3061 uNewCs, uNewEip, uNewFlags, uNewRsp));
3062
3063 /*
3064 * Check the limit of the new EIP.
3065 */
3066 /** @todo Only the AMD pseudo code check the limit here, what's
3067 * right? */
3068 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
3069 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
3070
3071 /*
3072 * V8086 checks and flag adjustments
3073 */
3074 if (Efl.Bits.u1VM)
3075 {
3076 if (Efl.Bits.u2IOPL == 3)
3077 {
3078 /* Preserve IOPL and clear RF. */
3079 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
3080 uNewFlags |= Efl.u & (X86_EFL_IOPL);
3081 }
3082 else if ( enmEffOpSize == IEMMODE_16BIT
3083 && ( !(uNewFlags & X86_EFL_IF)
3084 || !Efl.Bits.u1VIP )
3085 && !(uNewFlags & X86_EFL_TF) )
3086 {
3087 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
3088 uNewFlags &= ~X86_EFL_VIF;
3089 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
3090 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
3091 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
3092 }
3093 else
3094 return iemRaiseGeneralProtectionFault0(pVCpu);
3095 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
3096 }
3097
3098 /*
3099 * Commit the operation.
3100 */
3101#ifdef DBGFTRACE_ENABLED
3102 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
3103 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
3104#endif
3105 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3106 pVCpu->cpum.GstCtx.rip = uNewEip;
3107 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3108 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3109 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3110 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
3111 /** @todo do we load attribs and limit as well? */
3112 Assert(uNewFlags & X86_EFL_1);
3113 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3114
3115 /* Flush the prefetch buffer. */
3116 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr); /** @todo can do light flush in real mode at least */
3117
3118/** @todo single stepping */
3119 return VINF_SUCCESS;
3120}
3121
3122
3123/**
3124 * Loads a segment register when entering V8086 mode.
3125 *
3126 * @param pSReg The segment register.
3127 * @param uSeg The segment to load.
3128 */
3129static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
3130{
3131 pSReg->Sel = uSeg;
3132 pSReg->ValidSel = uSeg;
3133 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
3134 pSReg->u64Base = (uint32_t)uSeg << 4;
3135 pSReg->u32Limit = 0xffff;
3136 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
3137 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
3138 * IRET'ing to V8086. */
3139}
3140
3141
3142/**
3143 * Implements iret for protected mode returning to V8086 mode.
3144 *
3145 * @param uNewEip The new EIP.
3146 * @param uNewCs The new CS.
3147 * @param uNewFlags The new EFLAGS.
3148 * @param uNewRsp The RSP after the initial IRET frame.
3149 *
3150 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3151 */
3152IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3153{
3154 RT_NOREF_PV(cbInstr);
3155 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3156
3157 /*
3158 * Pop the V8086 specific frame bits off the stack.
3159 */
3160 VBOXSTRICTRC rcStrict;
3161 RTCPTRUNION uFrame;
3162 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 0 /*off*/, 24 /*cbMem*/, &uFrame.pv, uNewRsp);
3163 if (rcStrict != VINF_SUCCESS)
3164 return rcStrict;
3165 uint32_t uNewEsp = uFrame.pu32[0];
3166 uint16_t uNewSs = uFrame.pu32[1];
3167 uint16_t uNewEs = uFrame.pu32[2];
3168 uint16_t uNewDs = uFrame.pu32[3];
3169 uint16_t uNewFs = uFrame.pu32[4];
3170 uint16_t uNewGs = uFrame.pu32[5];
3171 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3172 if (rcStrict != VINF_SUCCESS)
3173 return rcStrict;
3174
3175 /*
3176 * Commit the operation.
3177 */
3178 uNewFlags &= X86_EFL_LIVE_MASK;
3179 uNewFlags |= X86_EFL_RA1_MASK;
3180#ifdef DBGFTRACE_ENABLED
3181 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3182 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3183#endif
3184 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3185
3186 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3187 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3188 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3189 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3190 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3191 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3192 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3193 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3194 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3195 pVCpu->iem.s.uCpl = 3;
3196
3197 /* Flush the prefetch buffer. */
3198 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
3199
3200/** @todo single stepping */
3201 return VINF_SUCCESS;
3202}
3203
3204
3205/**
3206 * Implements iret for protected mode returning via a nested task.
3207 *
3208 * @param enmEffOpSize The effective operand size.
3209 */
3210IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3211{
3212 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3213#ifndef IEM_IMPLEMENTS_TASKSWITCH
3214 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3215#else
3216 RT_NOREF_PV(enmEffOpSize);
3217
3218 /*
3219 * Read the segment selector in the link-field of the current TSS.
3220 */
3221 RTSEL uSelRet;
3222 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3223 if (rcStrict != VINF_SUCCESS)
3224 return rcStrict;
3225
3226 /*
3227 * Fetch the returning task's TSS descriptor from the GDT.
3228 */
3229 if (uSelRet & X86_SEL_LDT)
3230 {
3231 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3232 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3233 }
3234
3235 IEMSELDESC TssDesc;
3236 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3237 if (rcStrict != VINF_SUCCESS)
3238 return rcStrict;
3239
3240 if (TssDesc.Legacy.Gate.u1DescType)
3241 {
3242 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3243 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3244 }
3245
3246 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3247 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3248 {
3249 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3250 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3251 }
3252
3253 if (!TssDesc.Legacy.Gate.u1Present)
3254 {
3255 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3256 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3257 }
3258
3259 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3260 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3261 0 /* uCr2 */, uSelRet, &TssDesc);
3262#endif
3263}
3264
3265
3266/**
3267 * Implements iret for protected mode
3268 *
3269 * @param enmEffOpSize The effective operand size.
3270 */
3271IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3272{
3273 NOREF(cbInstr);
3274 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3275
3276 /*
3277 * Nested task return.
3278 */
3279 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3280 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3281
3282 /*
3283 * Normal return.
3284 *
3285 * Do the stack bits, but don't commit RSP before everything checks
3286 * out right.
3287 */
3288 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3289 VBOXSTRICTRC rcStrict;
3290 RTCPTRUNION uFrame;
3291 uint16_t uNewCs;
3292 uint32_t uNewEip;
3293 uint32_t uNewFlags;
3294 uint64_t uNewRsp;
3295 if (enmEffOpSize == IEMMODE_32BIT)
3296 {
3297 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, 3, &uFrame.pv, &uNewRsp);
3298 if (rcStrict != VINF_SUCCESS)
3299 return rcStrict;
3300 uNewEip = uFrame.pu32[0];
3301 uNewCs = (uint16_t)uFrame.pu32[1];
3302 uNewFlags = uFrame.pu32[2];
3303 }
3304 else
3305 {
3306 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, 1, &uFrame.pv, &uNewRsp);
3307 if (rcStrict != VINF_SUCCESS)
3308 return rcStrict;
3309 uNewEip = uFrame.pu16[0];
3310 uNewCs = uFrame.pu16[1];
3311 uNewFlags = uFrame.pu16[2];
3312 }
3313 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3314 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3315 { /* extremely likely */ }
3316 else
3317 return rcStrict;
3318 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3319
3320 /*
3321 * We're hopefully not returning to V8086 mode...
3322 */
3323 if ( (uNewFlags & X86_EFL_VM)
3324 && pVCpu->iem.s.uCpl == 0)
3325 {
3326 Assert(enmEffOpSize == IEMMODE_32BIT);
3327 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3328 }
3329
3330 /*
3331 * Protected mode.
3332 */
3333 /* Read the CS descriptor. */
3334 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3335 {
3336 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3337 return iemRaiseGeneralProtectionFault0(pVCpu);
3338 }
3339
3340 IEMSELDESC DescCS;
3341 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3342 if (rcStrict != VINF_SUCCESS)
3343 {
3344 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3345 return rcStrict;
3346 }
3347
3348 /* Must be a code descriptor. */
3349 if (!DescCS.Legacy.Gen.u1DescType)
3350 {
3351 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3352 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3353 }
3354 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3355 {
3356 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3357 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3358 }
3359
3360 /* Privilege checks. */
3361 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3362 {
3363 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3364 {
3365 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3366 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3367 }
3368 }
3369 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3370 {
3371 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3372 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3373 }
3374 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3375 {
3376 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3377 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3378 }
3379
3380 /* Present? */
3381 if (!DescCS.Legacy.Gen.u1Present)
3382 {
3383 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3384 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3385 }
3386
3387 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3388
3389 /*
3390 * Return to outer level?
3391 */
3392 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3393 {
3394 uint16_t uNewSS;
3395 uint32_t uNewESP;
3396 if (enmEffOpSize == IEMMODE_32BIT)
3397 {
3398 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 0/*off*/, 8 /*cbMem*/, &uFrame.pv, uNewRsp);
3399 if (rcStrict != VINF_SUCCESS)
3400 return rcStrict;
3401/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3402 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3403 * bit of the popped SS selector it turns out. */
3404 uNewESP = uFrame.pu32[0];
3405 uNewSS = (uint16_t)uFrame.pu32[1];
3406 }
3407 else
3408 {
3409 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 0 /*off*/, 4 /*cbMem*/, &uFrame.pv, uNewRsp);
3410 if (rcStrict != VINF_SUCCESS)
3411 return rcStrict;
3412 uNewESP = uFrame.pu16[0];
3413 uNewSS = uFrame.pu16[1];
3414 }
3415 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3416 if (rcStrict != VINF_SUCCESS)
3417 return rcStrict;
3418 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3419
3420 /* Read the SS descriptor. */
3421 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3422 {
3423 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3424 return iemRaiseGeneralProtectionFault0(pVCpu);
3425 }
3426
3427 IEMSELDESC DescSS;
3428 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3429 if (rcStrict != VINF_SUCCESS)
3430 {
3431 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3432 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3433 return rcStrict;
3434 }
3435
3436 /* Privilege checks. */
3437 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3438 {
3439 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3440 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3441 }
3442 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3443 {
3444 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3445 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3446 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3447 }
3448
3449 /* Must be a writeable data segment descriptor. */
3450 if (!DescSS.Legacy.Gen.u1DescType)
3451 {
3452 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3453 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3454 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3455 }
3456 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3457 {
3458 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3459 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3460 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3461 }
3462
3463 /* Present? */
3464 if (!DescSS.Legacy.Gen.u1Present)
3465 {
3466 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3467 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3468 }
3469
3470 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3471
3472 /* Check EIP. */
3473 if (uNewEip > cbLimitCS)
3474 {
3475 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3476 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3477 /** @todo Which is it, \#GP(0) or \#GP(sel)? */
3478 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3479 }
3480
3481 /*
3482 * Commit the changes, marking CS and SS accessed first since
3483 * that may fail.
3484 */
3485 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3486 {
3487 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3488 if (rcStrict != VINF_SUCCESS)
3489 return rcStrict;
3490 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3491 }
3492 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3493 {
3494 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3495 if (rcStrict != VINF_SUCCESS)
3496 return rcStrict;
3497 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3498 }
3499
3500 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3501 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3502 if (enmEffOpSize != IEMMODE_16BIT)
3503 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3504 if (pVCpu->iem.s.uCpl == 0)
3505 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3506 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3507 fEFlagsMask |= X86_EFL_IF;
3508 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3509 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3510 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3511 fEFlagsNew &= ~fEFlagsMask;
3512 fEFlagsNew |= uNewFlags & fEFlagsMask;
3513#ifdef DBGFTRACE_ENABLED
3514 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3515 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3516 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3517#endif
3518
3519 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3520 pVCpu->cpum.GstCtx.rip = uNewEip;
3521 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3522 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3523 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3524 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3525 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3526 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3527 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3528
3529 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3530 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3531 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3532 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3533 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3534 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3535 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3536 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3537 else
3538 pVCpu->cpum.GstCtx.rsp = uNewESP;
3539
3540 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3541 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3542 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3543 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3544 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3545
3546 /* Done! */
3547
3548 }
3549 /*
3550 * Return to the same level.
3551 */
3552 else
3553 {
3554 /* Check EIP. */
3555 if (uNewEip > cbLimitCS)
3556 {
3557 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3558 /** @todo Which is it, \#GP(0) or \#GP(sel)? */
3559 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3560 }
3561
3562 /*
3563 * Commit the changes, marking CS first since it may fail.
3564 */
3565 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3566 {
3567 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3568 if (rcStrict != VINF_SUCCESS)
3569 return rcStrict;
3570 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3571 }
3572
3573 X86EFLAGS NewEfl;
3574 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3575 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3576 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3577 if (enmEffOpSize != IEMMODE_16BIT)
3578 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3579 if (pVCpu->iem.s.uCpl == 0)
3580 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3581 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3582 fEFlagsMask |= X86_EFL_IF;
3583 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3584 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3585 NewEfl.u &= ~fEFlagsMask;
3586 NewEfl.u |= fEFlagsMask & uNewFlags;
3587#ifdef DBGFTRACE_ENABLED
3588 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3589 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3590 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3591#endif
3592
3593 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3594 pVCpu->cpum.GstCtx.rip = uNewEip;
3595 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3596 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3597 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3598 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3599 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3600 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3601 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3602 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3603 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3604 else
3605 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3606 /* Done! */
3607 }
3608
3609 /* Flush the prefetch buffer. */
3610 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr); /** @todo may light flush if same ring? */
3611
3612/** @todo single stepping */
3613 return VINF_SUCCESS;
3614}
3615
3616
3617/**
3618 * Implements iret for long mode
3619 *
3620 * @param enmEffOpSize The effective operand size.
3621 */
3622IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3623{
3624 NOREF(cbInstr);
3625
3626 /*
3627 * Nested task return is not supported in long mode.
3628 */
3629 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3630 {
3631 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3632 return iemRaiseGeneralProtectionFault0(pVCpu);
3633 }
3634
3635 /*
3636 * Normal return.
3637 *
3638 * Do the stack bits, but don't commit RSP before everything checks
3639 * out right.
3640 */
3641 VBOXSTRICTRC rcStrict;
3642 RTCPTRUNION uFrame;
3643 uint64_t uNewRip;
3644 uint16_t uNewCs;
3645 uint16_t uNewSs;
3646 uint32_t uNewFlags;
3647 uint64_t uNewRsp;
3648 if (enmEffOpSize == IEMMODE_64BIT)
3649 {
3650 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, 7, &uFrame.pv, &uNewRsp);
3651 if (rcStrict != VINF_SUCCESS)
3652 return rcStrict;
3653 uNewRip = uFrame.pu64[0];
3654 uNewCs = (uint16_t)uFrame.pu64[1];
3655 uNewFlags = (uint32_t)uFrame.pu64[2];
3656 uNewRsp = uFrame.pu64[3];
3657 uNewSs = (uint16_t)uFrame.pu64[4];
3658 }
3659 else if (enmEffOpSize == IEMMODE_32BIT)
3660 {
3661 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, 3, &uFrame.pv, &uNewRsp);
3662 if (rcStrict != VINF_SUCCESS)
3663 return rcStrict;
3664 uNewRip = uFrame.pu32[0];
3665 uNewCs = (uint16_t)uFrame.pu32[1];
3666 uNewFlags = uFrame.pu32[2];
3667 uNewRsp = uFrame.pu32[3];
3668 uNewSs = (uint16_t)uFrame.pu32[4];
3669 }
3670 else
3671 {
3672 Assert(enmEffOpSize == IEMMODE_16BIT);
3673 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, 1, &uFrame.pv, &uNewRsp);
3674 if (rcStrict != VINF_SUCCESS)
3675 return rcStrict;
3676 uNewRip = uFrame.pu16[0];
3677 uNewCs = uFrame.pu16[1];
3678 uNewFlags = uFrame.pu16[2];
3679 uNewRsp = uFrame.pu16[3];
3680 uNewSs = uFrame.pu16[4];
3681 }
3682 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3683 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3684 { /* extremely like */ }
3685 else
3686 return rcStrict;
3687 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3688
3689 /*
3690 * Check stuff.
3691 */
3692 /* Read the CS descriptor. */
3693 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3694 {
3695 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3696 return iemRaiseGeneralProtectionFault0(pVCpu);
3697 }
3698
3699 IEMSELDESC DescCS;
3700 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3701 if (rcStrict != VINF_SUCCESS)
3702 {
3703 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3704 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3705 return rcStrict;
3706 }
3707
3708 /* Must be a code descriptor. */
3709 if ( !DescCS.Legacy.Gen.u1DescType
3710 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3711 {
3712 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3713 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3714 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3715 }
3716
3717 /* Privilege checks. */
3718 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3719 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3720 {
3721 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3722 {
3723 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3724 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3725 }
3726 }
3727 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3728 {
3729 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3730 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3731 }
3732 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3733 {
3734 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3735 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3736 }
3737
3738 /* Present? */
3739 if (!DescCS.Legacy.Gen.u1Present)
3740 {
3741 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3742 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3743 }
3744
3745 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3746
3747 /* Read the SS descriptor. */
3748 IEMSELDESC DescSS;
3749 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3750 {
3751 if ( !DescCS.Legacy.Gen.u1Long
3752 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3753 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3754 {
3755 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3756 return iemRaiseGeneralProtectionFault0(pVCpu);
3757 }
3758 /* Make sure SS is sensible, marked as accessed etc. */
3759 iemMemFakeStackSelDesc(&DescSS, (uNewSs & X86_SEL_RPL));
3760 }
3761 else
3762 {
3763 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3764 if (rcStrict != VINF_SUCCESS)
3765 {
3766 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3767 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3768 return rcStrict;
3769 }
3770 }
3771
3772 /* Privilege checks. */
3773 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3774 {
3775 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3776 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3777 }
3778
3779 uint32_t cbLimitSs;
3780 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3781 cbLimitSs = UINT32_MAX;
3782 else
3783 {
3784 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3785 {
3786 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3787 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3788 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3789 }
3790
3791 /* Must be a writeable data segment descriptor. */
3792 if (!DescSS.Legacy.Gen.u1DescType)
3793 {
3794 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3795 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3796 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3797 }
3798 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3799 {
3800 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3801 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3802 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3803 }
3804
3805 /* Present? */
3806 if (!DescSS.Legacy.Gen.u1Present)
3807 {
3808 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3809 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3810 }
3811 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3812 }
3813
3814 /* Check EIP. */
3815 if (DescCS.Legacy.Gen.u1Long)
3816 {
3817 if (!IEM_IS_CANONICAL(uNewRip))
3818 {
3819 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3820 uNewCs, uNewRip, uNewSs, uNewRsp));
3821 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3822 }
3823 }
3824 else
3825 {
3826 if (uNewRip > cbLimitCS)
3827 {
3828 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3829 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3830 /** @todo Which is it, \#GP(0) or \#GP(sel)? */
3831 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3832 }
3833 }
3834
3835 /*
3836 * Commit the changes, marking CS and SS accessed first since
3837 * that may fail.
3838 */
3839 /** @todo where exactly are these actually marked accessed by a real CPU? */
3840 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3841 {
3842 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3843 if (rcStrict != VINF_SUCCESS)
3844 return rcStrict;
3845 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3846 }
3847 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3848 {
3849 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3850 if (rcStrict != VINF_SUCCESS)
3851 return rcStrict;
3852 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3853 }
3854
3855 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3856 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3857 if (enmEffOpSize != IEMMODE_16BIT)
3858 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3859 if (pVCpu->iem.s.uCpl == 0)
3860 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3861 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3862 fEFlagsMask |= X86_EFL_IF;
3863 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3864 fEFlagsNew &= ~fEFlagsMask;
3865 fEFlagsNew |= uNewFlags & fEFlagsMask;
3866#ifdef DBGFTRACE_ENABLED
3867 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3868 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3869#endif
3870
3871 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3872 pVCpu->cpum.GstCtx.rip = uNewRip;
3873 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3874 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3875 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3876 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3877 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3878 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3879 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3880 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3881 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3882 else
3883 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3884 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3885 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3886 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3887 {
3888 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3889 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3890 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3891 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3892 Log2(("iretq new SS: NULL\n"));
3893 }
3894 else
3895 {
3896 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3897 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3898 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3899 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3900 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3901 }
3902
3903 if (pVCpu->iem.s.uCpl != uNewCpl)
3904 {
3905 pVCpu->iem.s.uCpl = uNewCpl;
3906 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3907 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3908 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3909 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3910 }
3911
3912 /* Flush the prefetch buffer. */
3913 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr); /** @todo may light flush if the ring + mode doesn't change */
3914
3915/** @todo single stepping */
3916 return VINF_SUCCESS;
3917}
3918
3919
3920/**
3921 * Implements iret.
3922 *
3923 * @param enmEffOpSize The effective operand size.
3924 */
3925IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3926{
3927 bool fBlockingNmi = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
3928
3929#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3930 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3931 {
3932 /*
3933 * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
3934 * of this IRET instruction. We need to provide this information as part of some
3935 * VM-exits.
3936 *
3937 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3938 */
3939 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
3940 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
3941 else
3942 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3943
3944 /*
3945 * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
3946 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3947 */
3948 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
3949 fBlockingNmi = false;
3950
3951 /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
3952 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
3953 }
3954#endif
3955
3956 /*
3957 * The SVM nested-guest intercept for IRET takes priority over all exceptions,
3958 * The NMI is still held pending (which I assume means blocking of further NMIs
3959 * is in effect).
3960 *
3961 * See AMD spec. 15.9 "Instruction Intercepts".
3962 * See AMD spec. 15.21.9 "NMI Support".
3963 */
3964 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3965 {
3966 Log(("iret: Guest intercept -> #VMEXIT\n"));
3967 IEM_SVM_UPDATE_NRIP(pVCpu);
3968 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3969 }
3970
3971 /*
3972 * Clear NMI blocking, if any, before causing any further exceptions.
3973 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3974 */
3975 if (fBlockingNmi)
3976 CPUMClearInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
3977
3978 /*
3979 * Call a mode specific worker.
3980 */
3981 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3982 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3983 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3984 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3985 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3986 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3987}
3988
3989
3990static void iemLoadallSetSelector(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
3991{
3992 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3993
3994 pHid->Sel = uSel;
3995 pHid->ValidSel = uSel;
3996 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3997}
3998
3999
4000static void iemLoadall286SetDescCache(PVMCPUCC pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
4001{
4002 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4003
4004 /* The base is in the first three bytes. */
4005 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
4006 /* The attributes are in the fourth byte. */
4007 pHid->Attr.u = pbMem[3];
4008 /* The limit is in the last two bytes. */
4009 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
4010}
4011
4012
4013/**
4014 * Implements 286 LOADALL (286 CPUs only).
4015 */
4016IEM_CIMPL_DEF_0(iemCImpl_loadall286)
4017{
4018 NOREF(cbInstr);
4019
4020 /* Data is loaded from a buffer at 800h. No checks are done on the
4021 * validity of loaded state.
4022 *
4023 * LOADALL only loads the internal CPU state, it does not access any
4024 * GDT, LDT, or similar tables.
4025 */
4026
4027 if (pVCpu->iem.s.uCpl != 0)
4028 {
4029 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4030 return iemRaiseGeneralProtectionFault0(pVCpu);
4031 }
4032
4033 uint8_t const *pbMem = NULL;
4034 uint16_t const *pa16Mem;
4035 uint8_t const *pa8Mem;
4036 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
4037 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R, 0);
4038 if (rcStrict != VINF_SUCCESS)
4039 return rcStrict;
4040
4041 /* The MSW is at offset 0x06. */
4042 pa16Mem = (uint16_t const *)(pbMem + 0x06);
4043 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
4044 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
4045 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
4046 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
4047
4048 CPUMSetGuestCR0(pVCpu, uNewCr0);
4049 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
4050
4051 /* Inform PGM if mode changed. */
4052 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
4053 {
4054 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
4055 AssertRCReturn(rc, rc);
4056 /* ignore informational status codes */
4057 }
4058 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
4059 false /* fForce */);
4060
4061 /* TR selector is at offset 0x16. */
4062 pa16Mem = (uint16_t const *)(pbMem + 0x16);
4063 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
4064 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
4065 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
4066
4067 /* Followed by FLAGS... */
4068 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
4069 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
4070
4071 /* LDT is at offset 0x1C. */
4072 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
4073 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
4074 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
4075 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
4076
4077 /* Segment registers are at offset 0x1E. */
4078 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
4079 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
4080 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
4081 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
4082 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
4083
4084 /* GPRs are at offset 0x26. */
4085 pa16Mem = (uint16_t const *)(pbMem + 0x26);
4086 pVCpu->cpum.GstCtx.di = pa16Mem[0];
4087 pVCpu->cpum.GstCtx.si = pa16Mem[1];
4088 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
4089 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
4090 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
4091 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
4092 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
4093 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
4094
4095 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
4096 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
4097 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
4098 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
4099 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
4100
4101 /* GDTR contents are at offset 0x4E, 6 bytes. */
4102 RTGCPHYS GCPtrBase;
4103 uint16_t cbLimit;
4104 pa8Mem = pbMem + 0x4E;
4105 /* NB: Fourth byte "should be zero"; we are ignoring it. */
4106 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4107 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4108 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4109
4110 /* IDTR contents are at offset 0x5A, 6 bytes. */
4111 pa8Mem = pbMem + 0x5A;
4112 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4113 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4114 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4115
4116 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
4117 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
4118 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
4119 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
4120 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
4121 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
4122
4123 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
4124 if (rcStrict != VINF_SUCCESS)
4125 return rcStrict;
4126
4127 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
4128 * descriptor caches" but there is no word as to what happens if those are
4129 * not identical (probably bad things).
4130 */
4131 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
4132
4133 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4134
4135 /* Flush the prefetch buffer. */
4136 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
4137
4138/** @todo single stepping */
4139 return rcStrict;
4140}
4141
4142
4143/**
4144 * Implements SYSCALL (AMD and Intel64).
4145 */
4146IEM_CIMPL_DEF_0(iemCImpl_syscall)
4147{
4148 /** @todo hack, LOADALL should be decoded as such on a 286. */
4149 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4150 return iemCImpl_loadall286(pVCpu, cbInstr);
4151
4152 /*
4153 * Check preconditions.
4154 *
4155 * Note that CPUs described in the documentation may load a few odd values
4156 * into CS and SS than we allow here. This has yet to be checked on real
4157 * hardware.
4158 */
4159 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4160 {
4161 Log(("syscall: Not enabled in EFER -> #UD\n"));
4162 return iemRaiseUndefinedOpcode(pVCpu);
4163 }
4164 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4165 {
4166 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4167 return iemRaiseGeneralProtectionFault0(pVCpu);
4168 }
4169 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4170 {
4171 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4172 return iemRaiseUndefinedOpcode(pVCpu);
4173 }
4174
4175 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4176
4177 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4178 /** @todo what about LDT selectors? Shouldn't matter, really. */
4179 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4180 uint16_t uNewSs = uNewCs + 8;
4181 if (uNewCs == 0 || uNewSs == 0)
4182 {
4183 /** @todo Neither Intel nor AMD document this check. */
4184 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4185 return iemRaiseGeneralProtectionFault0(pVCpu);
4186 }
4187
4188 /* Long mode and legacy mode differs. */
4189 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4190 {
4191 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4192
4193 /* This test isn't in the docs, but I'm not trusting the guys writing
4194 the MSRs to have validated the values as canonical like they should. */
4195 if (!IEM_IS_CANONICAL(uNewRip))
4196 {
4197 /** @todo Intel claims this can't happen because IA32_LSTAR MSR can't be written with non-canonical address. */
4198 Log(("syscall: New RIP not canonical -> #UD\n"));
4199 return iemRaiseUndefinedOpcode(pVCpu);
4200 }
4201
4202 /*
4203 * Commit it.
4204 */
4205 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4206 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4207 pVCpu->cpum.GstCtx.rip = uNewRip;
4208
4209 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4210 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4211 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4212 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4213
4214 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4215 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4216 }
4217 else
4218 {
4219 /*
4220 * Commit it.
4221 */
4222 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4223 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4224 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4225 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4226
4227 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4228 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4229 }
4230 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4231 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4232 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4233 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4234 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4235
4236 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4237 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4238 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4239 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4240 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4241
4242 pVCpu->iem.s.uCpl = 0;
4243 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
4244
4245 /* Flush the prefetch buffer. */
4246 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
4247
4248/** @todo single step */
4249 return VINF_SUCCESS;
4250}
4251
4252
4253/**
4254 * Implements SYSRET (AMD and Intel64).
4255 */
4256IEM_CIMPL_DEF_0(iemCImpl_sysret)
4257
4258{
4259 RT_NOREF_PV(cbInstr);
4260
4261 /*
4262 * Check preconditions.
4263 *
4264 * Note that CPUs described in the documentation may load a few odd values
4265 * into CS and SS than we allow here. This has yet to be checked on real
4266 * hardware.
4267 */
4268 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4269 {
4270 Log(("sysret: Not enabled in EFER -> #UD\n"));
4271 return iemRaiseUndefinedOpcode(pVCpu);
4272 }
4273 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4274 {
4275 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4276 return iemRaiseUndefinedOpcode(pVCpu);
4277 }
4278 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4279 {
4280 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4281 return iemRaiseGeneralProtectionFault0(pVCpu);
4282 }
4283 if (pVCpu->iem.s.uCpl != 0)
4284 {
4285 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4286 return iemRaiseGeneralProtectionFault0(pVCpu);
4287 }
4288
4289 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4290
4291 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4292 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4293 uint16_t uNewSs = uNewCs + 8;
4294 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4295 uNewCs += 16;
4296 if (uNewCs == 0 || uNewSs == 0)
4297 {
4298 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4299 return iemRaiseGeneralProtectionFault0(pVCpu);
4300 }
4301
4302 /*
4303 * Commit it.
4304 */
4305 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4306 {
4307 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4308 {
4309 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4310 /* Note! We disregard intel manual regarding the RCX canonical
4311 check, ask intel+xen why AMD doesn't do it. */
4312 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4313 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4314 | (3 << X86DESCATTR_DPL_SHIFT);
4315 }
4316 else
4317 {
4318 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4319 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4320 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4321 | (3 << X86DESCATTR_DPL_SHIFT);
4322 }
4323 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4324 * what it really ignores. RF and VM are hinted at being zero, by AMD.
4325 * Intel says: RFLAGS := (R11 & 3C7FD7H) | 2; */
4326 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4327 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4328 }
4329 else
4330 {
4331 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4332 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4333 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4334 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4335 | (3 << X86DESCATTR_DPL_SHIFT);
4336 }
4337 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4338 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4339 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4340 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4341 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4342
4343 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4344 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4345 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4346 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4347 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4348 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4349 * on sysret. */
4350
4351 pVCpu->iem.s.uCpl = 3;
4352 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
4353
4354 /* Flush the prefetch buffer. */
4355 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
4356
4357/** @todo single step */
4358 return VINF_SUCCESS;
4359}
4360
4361
4362/**
4363 * Implements SYSENTER (Intel, 32-bit AMD).
4364 */
4365IEM_CIMPL_DEF_0(iemCImpl_sysenter)
4366{
4367 RT_NOREF(cbInstr);
4368
4369 /*
4370 * Check preconditions.
4371 *
4372 * Note that CPUs described in the documentation may load a few odd values
4373 * into CS and SS than we allow here. This has yet to be checked on real
4374 * hardware.
4375 */
4376 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4377 {
4378 Log(("sysenter: not supported -=> #UD\n"));
4379 return iemRaiseUndefinedOpcode(pVCpu);
4380 }
4381 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4382 {
4383 Log(("sysenter: Protected or long mode is required -> #GP(0)\n"));
4384 return iemRaiseGeneralProtectionFault0(pVCpu);
4385 }
4386 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4387 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && fIsLongMode)
4388 {
4389 Log(("sysenter: Only available in protected mode on AMD -> #UD\n"));
4390 return iemRaiseUndefinedOpcode(pVCpu);
4391 }
4392 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4393 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4394 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4395 {
4396 Log(("sysenter: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4397 return iemRaiseGeneralProtectionFault0(pVCpu);
4398 }
4399
4400 /* This test isn't in the docs, it's just a safeguard against missing
4401 canonical checks when writing the registers. */
4402 if (RT_LIKELY( !fIsLongMode
4403 || ( IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.eip)
4404 && IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.esp))))
4405 { /* likely */ }
4406 else
4407 {
4408 Log(("sysenter: SYSENTER_EIP = %#RX64 or/and SYSENTER_ESP = %#RX64 not canonical -> #GP(0)\n",
4409 pVCpu->cpum.GstCtx.SysEnter.eip, pVCpu->cpum.GstCtx.SysEnter.esp));
4410 return iemRaiseUndefinedOpcode(pVCpu);
4411 }
4412
4413/** @todo Test: Sysenter from ring-0, ring-1 and ring-2. */
4414
4415 /*
4416 * Update registers and commit.
4417 */
4418 if (fIsLongMode)
4419 {
4420 Log(("sysenter: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4421 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, pVCpu->cpum.GstCtx.SysEnter.eip));
4422 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.SysEnter.eip;
4423 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.SysEnter.esp;
4424 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4425 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4426 }
4427 else
4428 {
4429 Log(("sysenter: %04x:%08RX32 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, (uint32_t)pVCpu->cpum.GstCtx.rip,
4430 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip));
4431 pVCpu->cpum.GstCtx.rip = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip;
4432 pVCpu->cpum.GstCtx.rsp = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.esp;
4433 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4434 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4435 }
4436 pVCpu->cpum.GstCtx.cs.Sel = uNewCs & X86_SEL_MASK_OFF_RPL;
4437 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs & X86_SEL_MASK_OFF_RPL;
4438 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4439 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4440 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4441
4442 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4443 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4444 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4445 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4446 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4447 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC;
4448 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4449
4450 pVCpu->cpum.GstCtx.rflags.Bits.u1IF = 0;
4451 pVCpu->cpum.GstCtx.rflags.Bits.u1VM = 0;
4452 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4453
4454 pVCpu->iem.s.uCpl = 0;
4455
4456 /* Flush the prefetch buffer. */
4457 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
4458
4459/** @todo single stepping */
4460 return VINF_SUCCESS;
4461}
4462
4463
4464/**
4465 * Implements SYSEXIT (Intel, 32-bit AMD).
4466 *
4467 * @param enmEffOpSize The effective operand size.
4468 */
4469IEM_CIMPL_DEF_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize)
4470{
4471 RT_NOREF(cbInstr);
4472
4473 /*
4474 * Check preconditions.
4475 *
4476 * Note that CPUs described in the documentation may load a few odd values
4477 * into CS and SS than we allow here. This has yet to be checked on real
4478 * hardware.
4479 */
4480 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4481 {
4482 Log(("sysexit: not supported -=> #UD\n"));
4483 return iemRaiseUndefinedOpcode(pVCpu);
4484 }
4485 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4486 {
4487 Log(("sysexit: Protected or long mode is required -> #GP(0)\n"));
4488 return iemRaiseGeneralProtectionFault0(pVCpu);
4489 }
4490 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4491 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && fIsLongMode)
4492 {
4493 Log(("sysexit: Only available in protected mode on AMD -> #UD\n"));
4494 return iemRaiseUndefinedOpcode(pVCpu);
4495 }
4496 if (pVCpu->iem.s.uCpl != 0)
4497 {
4498 Log(("sysexit: CPL(=%u) != 0 -> #GP(0)\n", pVCpu->iem.s.uCpl));
4499 return iemRaiseGeneralProtectionFault0(pVCpu);
4500 }
4501 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4502 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4503 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4504 {
4505 Log(("sysexit: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4506 return iemRaiseGeneralProtectionFault0(pVCpu);
4507 }
4508
4509 /*
4510 * Update registers and commit.
4511 */
4512 if (enmEffOpSize == IEMMODE_64BIT)
4513 {
4514 Log(("sysexit: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4515 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 32, pVCpu->cpum.GstCtx.rcx));
4516 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rdx;
4517 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.rcx;
4518 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4519 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4520 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 32;
4521 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 32;
4522 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 40;
4523 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 40;
4524 }
4525 else
4526 {
4527 Log(("sysexit: %04x:%08RX64 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4528 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 16, (uint32_t)pVCpu->cpum.GstCtx.edx));
4529 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.edx;
4530 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.ecx;
4531 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4532 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4533 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 16;
4534 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 16;
4535 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 24;
4536 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 24;
4537 }
4538 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4539 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4540 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4541
4542 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4543 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4544 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4545 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4546 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4547 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4548
4549 pVCpu->iem.s.uCpl = 3;
4550/** @todo single stepping */
4551
4552 /* Flush the prefetch buffer. */
4553 IEM_FLUSH_PREFETCH_HEAVY(pVCpu, cbInstr);
4554
4555 return VINF_SUCCESS;
4556}
4557
4558
4559/**
4560 * Completes a MOV SReg,XXX or POP SReg instruction.
4561 *
4562 * When not modifying SS or when we're already in an interrupt shadow we
4563 * can update RIP and finish the instruction the normal way.
4564 *
4565 * Otherwise, the MOV/POP SS interrupt shadow that we now enable will block
4566 * both TF and DBx events. The TF will be ignored while the DBx ones will
4567 * be delayed till the next instruction boundrary. For more details see
4568 * @sdmv3{077,200,6.8.3,Masking Exceptions and Interrupts When Switching Stacks}.
4569 */
4570DECLINLINE(VBOXSTRICTRC) iemCImpl_LoadSRegFinish(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iSegReg)
4571{
4572 if (iSegReg != X86_SREG_SS || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
4573 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
4574
4575 iemRegAddToRip(pVCpu, cbInstr);
4576 pVCpu->cpum.GstCtx.eflags.uBoth &= ~X86_EFL_RF; /* Shadow int isn't set and DRx is delayed, so only clear RF. */
4577 CPUMSetInInterruptShadowSs(&pVCpu->cpum.GstCtx);
4578
4579 return VINF_SUCCESS;
4580}
4581
4582
4583/**
4584 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4585 *
4586 * @param pVCpu The cross context virtual CPU structure of the calling
4587 * thread.
4588 * @param iSegReg The segment register number (valid).
4589 * @param uSel The new selector value.
4590 */
4591static VBOXSTRICTRC iemCImpl_LoadSRegWorker(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
4592{
4593 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4594 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4595 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4596
4597 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4598
4599 /*
4600 * Real mode and V8086 mode are easy.
4601 */
4602 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4603 {
4604 *pSel = uSel;
4605 pHid->u64Base = (uint32_t)uSel << 4;
4606 pHid->ValidSel = uSel;
4607 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4608#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4609 /** @todo Does the CPU actually load limits and attributes in the
4610 * real/V8086 mode segment load case? It doesn't for CS in far
4611 * jumps... Affects unreal mode. */
4612 pHid->u32Limit = 0xffff;
4613 pHid->Attr.u = 0;
4614 pHid->Attr.n.u1Present = 1;
4615 pHid->Attr.n.u1DescType = 1;
4616 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4617 ? X86_SEL_TYPE_RW
4618 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4619#endif
4620 }
4621 /*
4622 * Protected mode.
4623 *
4624 * Check if it's a null segment selector value first, that's OK for DS, ES,
4625 * FS and GS. If not null, then we have to load and parse the descriptor.
4626 */
4627 else if (!(uSel & X86_SEL_MASK_OFF_RPL))
4628 {
4629 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4630 if (iSegReg == X86_SREG_SS)
4631 {
4632 /* In 64-bit kernel mode, the stack can be 0 because of the way
4633 interrupts are dispatched. AMD seems to have a slighly more
4634 relaxed relationship to SS.RPL than intel does. */
4635 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4636 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4637 || pVCpu->iem.s.uCpl > 2
4638 || ( uSel != pVCpu->iem.s.uCpl
4639 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4640 {
4641 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4642 return iemRaiseGeneralProtectionFault0(pVCpu);
4643 }
4644 }
4645
4646 *pSel = uSel; /* Not RPL, remember :-) */
4647 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4648 if (iSegReg == X86_SREG_SS)
4649 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4650 }
4651 else
4652 {
4653
4654 /* Fetch the descriptor. */
4655 IEMSELDESC Desc;
4656 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4657 if (rcStrict != VINF_SUCCESS)
4658 return rcStrict;
4659
4660 /* Check GPs first. */
4661 if (!Desc.Legacy.Gen.u1DescType)
4662 {
4663 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4664 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4665 }
4666 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4667 {
4668 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4669 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4670 {
4671 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4672 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4673 }
4674 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4675 {
4676 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4677 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4678 }
4679 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4680 {
4681 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4682 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4683 }
4684 }
4685 else
4686 {
4687 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4688 {
4689 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4690 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4691 }
4692 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4693 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4694 {
4695#if 0 /* this is what intel says. */
4696 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4697 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4698 {
4699 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4700 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4701 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4702 }
4703#else /* this is what makes more sense. */
4704 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4705 {
4706 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4707 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4708 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4709 }
4710 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4711 {
4712 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4713 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4714 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4715 }
4716#endif
4717 }
4718 }
4719
4720 /* Is it there? */
4721 if (!Desc.Legacy.Gen.u1Present)
4722 {
4723 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4724 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4725 }
4726
4727 /* The base and limit. */
4728 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4729 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4730
4731 /*
4732 * Ok, everything checked out fine. Now set the accessed bit before
4733 * committing the result into the registers.
4734 */
4735 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4736 {
4737 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4738 if (rcStrict != VINF_SUCCESS)
4739 return rcStrict;
4740 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4741 }
4742
4743 /* commit */
4744 *pSel = uSel;
4745 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4746 pHid->u32Limit = cbLimit;
4747 pHid->u64Base = u64Base;
4748 pHid->ValidSel = uSel;
4749 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4750
4751 /** @todo check if the hidden bits are loaded correctly for 64-bit
4752 * mode. */
4753 }
4754
4755 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4756 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4757 return VINF_SUCCESS;
4758}
4759
4760
4761/**
4762 * Implements 'mov SReg, r/m'.
4763 *
4764 * @param iSegReg The segment register number (valid).
4765 * @param uSel The new selector value.
4766 */
4767IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4768{
4769 VBOXSTRICTRC rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, uSel);
4770 if (rcStrict == VINF_SUCCESS)
4771 rcStrict = iemCImpl_LoadSRegFinish(pVCpu, cbInstr, iSegReg);
4772 return rcStrict;
4773}
4774
4775
4776/**
4777 * Implements 'pop SReg'.
4778 *
4779 * @param iSegReg The segment register number (valid).
4780 * @param enmEffOpSize The efficient operand size (valid).
4781 */
4782IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4783{
4784 VBOXSTRICTRC rcStrict;
4785
4786 /*
4787 * Read the selector off the stack and join paths with mov ss, reg.
4788 */
4789 RTUINT64U TmpRsp;
4790 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4791 switch (enmEffOpSize)
4792 {
4793 case IEMMODE_16BIT:
4794 {
4795 uint16_t uSel;
4796 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4797 if (rcStrict == VINF_SUCCESS)
4798 rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, uSel);
4799 break;
4800 }
4801
4802 case IEMMODE_32BIT:
4803 {
4804 uint32_t u32Value;
4805 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4806 if (rcStrict == VINF_SUCCESS)
4807 rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, (uint16_t)u32Value);
4808 break;
4809 }
4810
4811 case IEMMODE_64BIT:
4812 {
4813 uint64_t u64Value;
4814 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4815 if (rcStrict == VINF_SUCCESS)
4816 rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, (uint16_t)u64Value);
4817 break;
4818 }
4819 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4820 }
4821
4822 /*
4823 * If the load succeeded, commit the stack change and finish the instruction.
4824 */
4825 if (rcStrict == VINF_SUCCESS)
4826 {
4827 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4828 rcStrict = iemCImpl_LoadSRegFinish(pVCpu, cbInstr, iSegReg);
4829 }
4830
4831 return rcStrict;
4832}
4833
4834
4835/**
4836 * Implements lgs, lfs, les, lds & lss.
4837 */
4838IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize)
4839{
4840 /*
4841 * Use iemCImpl_LoadSRegWorker to do the tricky segment register loading.
4842 */
4843 /** @todo verify and test that mov, pop and lXs works the segment
4844 * register loading in the exact same way. */
4845 VBOXSTRICTRC rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, uSel);
4846 if (rcStrict == VINF_SUCCESS)
4847 {
4848 switch (enmEffOpSize)
4849 {
4850 case IEMMODE_16BIT:
4851 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4852 break;
4853 case IEMMODE_32BIT:
4854 case IEMMODE_64BIT:
4855 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4856 break;
4857 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4858 }
4859 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
4860 }
4861 return rcStrict;
4862}
4863
4864
4865/**
4866 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4867 *
4868 * @retval VINF_SUCCESS on success.
4869 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4870 * @retval iemMemFetchSysU64 return value.
4871 *
4872 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4873 * @param uSel The selector value.
4874 * @param fAllowSysDesc Whether system descriptors are OK or not.
4875 * @param pDesc Where to return the descriptor on success.
4876 */
4877static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPUCC pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4878{
4879 pDesc->Long.au64[0] = 0;
4880 pDesc->Long.au64[1] = 0;
4881
4882 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4883 return VINF_IEM_SELECTOR_NOT_OK;
4884
4885 /* Within the table limits? */
4886 RTGCPTR GCPtrBase;
4887 if (uSel & X86_SEL_LDT)
4888 {
4889 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4890 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4891 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4892 return VINF_IEM_SELECTOR_NOT_OK;
4893 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4894 }
4895 else
4896 {
4897 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4898 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4899 return VINF_IEM_SELECTOR_NOT_OK;
4900 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4901 }
4902
4903 /* Fetch the descriptor. */
4904 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4905 if (rcStrict != VINF_SUCCESS)
4906 return rcStrict;
4907 if (!pDesc->Legacy.Gen.u1DescType)
4908 {
4909 if (!fAllowSysDesc)
4910 return VINF_IEM_SELECTOR_NOT_OK;
4911 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4912 {
4913 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4914 if (rcStrict != VINF_SUCCESS)
4915 return rcStrict;
4916 }
4917
4918 }
4919
4920 return VINF_SUCCESS;
4921}
4922
4923
4924/**
4925 * Implements verr (fWrite = false) and verw (fWrite = true).
4926 */
4927IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4928{
4929 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4930
4931 /** @todo figure whether the accessed bit is set or not. */
4932
4933 bool fAccessible = true;
4934 IEMSELDESC Desc;
4935 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4936 if (rcStrict == VINF_SUCCESS)
4937 {
4938 /* Check the descriptor, order doesn't matter much here. */
4939 if ( !Desc.Legacy.Gen.u1DescType
4940 || !Desc.Legacy.Gen.u1Present)
4941 fAccessible = false;
4942 else
4943 {
4944 if ( fWrite
4945 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4946 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4947 fAccessible = false;
4948
4949 /** @todo testcase for the conforming behavior. */
4950 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4951 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4952 {
4953 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4954 fAccessible = false;
4955 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4956 fAccessible = false;
4957 }
4958 }
4959
4960 }
4961 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4962 fAccessible = false;
4963 else
4964 return rcStrict;
4965
4966 /* commit */
4967 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4968
4969 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
4970}
4971
4972
4973/**
4974 * Implements LAR and LSL with 64-bit operand size.
4975 *
4976 * @returns VINF_SUCCESS.
4977 * @param pu64Dst Pointer to the destination register.
4978 * @param uSel The selector to load details for.
4979 * @param fIsLar true = LAR, false = LSL.
4980 */
4981IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4982{
4983 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4984
4985 /** @todo figure whether the accessed bit is set or not. */
4986
4987 bool fDescOk = true;
4988 IEMSELDESC Desc;
4989 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4990 if (rcStrict == VINF_SUCCESS)
4991 {
4992 /*
4993 * Check the descriptor type.
4994 */
4995 if (!Desc.Legacy.Gen.u1DescType)
4996 {
4997 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4998 {
4999 if (Desc.Long.Gen.u5Zeros)
5000 fDescOk = false;
5001 else
5002 switch (Desc.Long.Gen.u4Type)
5003 {
5004 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
5005 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
5006 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
5007 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
5008 break;
5009 case AMD64_SEL_TYPE_SYS_CALL_GATE:
5010 fDescOk = fIsLar;
5011 break;
5012 default:
5013 fDescOk = false;
5014 break;
5015 }
5016 }
5017 else
5018 {
5019 switch (Desc.Long.Gen.u4Type)
5020 {
5021 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
5022 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
5023 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
5024 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
5025 case X86_SEL_TYPE_SYS_LDT:
5026 break;
5027 case X86_SEL_TYPE_SYS_286_CALL_GATE:
5028 case X86_SEL_TYPE_SYS_TASK_GATE:
5029 case X86_SEL_TYPE_SYS_386_CALL_GATE:
5030 fDescOk = fIsLar;
5031 break;
5032 default:
5033 fDescOk = false;
5034 break;
5035 }
5036 }
5037 }
5038 if (fDescOk)
5039 {
5040 /*
5041 * Check the RPL/DPL/CPL interaction..
5042 */
5043 /** @todo testcase for the conforming behavior. */
5044 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
5045 || !Desc.Legacy.Gen.u1DescType)
5046 {
5047 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
5048 fDescOk = false;
5049 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
5050 fDescOk = false;
5051 }
5052 }
5053
5054 if (fDescOk)
5055 {
5056 /*
5057 * All fine, start committing the result.
5058 */
5059 if (fIsLar)
5060 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
5061 else
5062 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
5063 }
5064
5065 }
5066 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
5067 fDescOk = false;
5068 else
5069 return rcStrict;
5070
5071 /* commit flags value and advance rip. */
5072 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
5073 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5074}
5075
5076
5077/**
5078 * Implements LAR and LSL with 16-bit operand size.
5079 *
5080 * @returns VINF_SUCCESS.
5081 * @param pu16Dst Pointer to the destination register.
5082 * @param uSel The selector to load details for.
5083 * @param fIsLar true = LAR, false = LSL.
5084 */
5085IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
5086{
5087 uint64_t u64TmpDst = *pu16Dst;
5088 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
5089 *pu16Dst = u64TmpDst;
5090 return VINF_SUCCESS;
5091}
5092
5093
5094/**
5095 * Implements lgdt.
5096 *
5097 * @param iEffSeg The segment of the new gdtr contents
5098 * @param GCPtrEffSrc The address of the new gdtr contents.
5099 * @param enmEffOpSize The effective operand size.
5100 */
5101IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
5102{
5103 if (pVCpu->iem.s.uCpl != 0)
5104 return iemRaiseGeneralProtectionFault0(pVCpu);
5105 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5106
5107 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5108 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5109 {
5110 Log(("lgdt: Guest intercept -> VM-exit\n"));
5111 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
5112 }
5113
5114 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
5115 {
5116 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
5117 IEM_SVM_UPDATE_NRIP(pVCpu);
5118 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5119 }
5120
5121 /*
5122 * Fetch the limit and base address.
5123 */
5124 uint16_t cbLimit;
5125 RTGCPTR GCPtrBase;
5126 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
5127 if (rcStrict == VINF_SUCCESS)
5128 {
5129 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5130 || X86_IS_CANONICAL(GCPtrBase))
5131 {
5132 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
5133 if (rcStrict == VINF_SUCCESS)
5134 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5135 }
5136 else
5137 {
5138 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5139 return iemRaiseGeneralProtectionFault0(pVCpu);
5140 }
5141 }
5142 return rcStrict;
5143}
5144
5145
5146/**
5147 * Implements sgdt.
5148 *
5149 * @param iEffSeg The segment where to store the gdtr content.
5150 * @param GCPtrEffDst The address where to store the gdtr content.
5151 */
5152IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5153{
5154 /*
5155 * Join paths with sidt.
5156 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5157 * you really must know.
5158 */
5159 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5160 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5161 {
5162 Log(("sgdt: Guest intercept -> VM-exit\n"));
5163 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
5164 }
5165
5166 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
5167 {
5168 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
5169 IEM_SVM_UPDATE_NRIP(pVCpu);
5170 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5171 }
5172
5173 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
5174 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
5175 if (rcStrict == VINF_SUCCESS)
5176 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5177 return rcStrict;
5178}
5179
5180
5181/**
5182 * Implements lidt.
5183 *
5184 * @param iEffSeg The segment of the new idtr contents
5185 * @param GCPtrEffSrc The address of the new idtr contents.
5186 * @param enmEffOpSize The effective operand size.
5187 */
5188IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
5189{
5190 if (pVCpu->iem.s.uCpl != 0)
5191 return iemRaiseGeneralProtectionFault0(pVCpu);
5192 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5193
5194 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
5195 {
5196 Log(("lidt: Guest intercept -> #VMEXIT\n"));
5197 IEM_SVM_UPDATE_NRIP(pVCpu);
5198 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5199 }
5200
5201 /*
5202 * Fetch the limit and base address.
5203 */
5204 uint16_t cbLimit;
5205 RTGCPTR GCPtrBase;
5206 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
5207 if (rcStrict == VINF_SUCCESS)
5208 {
5209 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5210 || X86_IS_CANONICAL(GCPtrBase))
5211 {
5212 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
5213 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5214 }
5215 else
5216 {
5217 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5218 return iemRaiseGeneralProtectionFault0(pVCpu);
5219 }
5220 }
5221 return rcStrict;
5222}
5223
5224
5225/**
5226 * Implements sidt.
5227 *
5228 * @param iEffSeg The segment where to store the idtr content.
5229 * @param GCPtrEffDst The address where to store the idtr content.
5230 */
5231IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5232{
5233 /*
5234 * Join paths with sgdt.
5235 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5236 * you really must know.
5237 */
5238 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
5239 {
5240 Log(("sidt: Guest intercept -> #VMEXIT\n"));
5241 IEM_SVM_UPDATE_NRIP(pVCpu);
5242 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5243 }
5244
5245 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
5246 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
5247 if (rcStrict == VINF_SUCCESS)
5248 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5249 return rcStrict;
5250}
5251
5252
5253/**
5254 * Implements lldt.
5255 *
5256 * @param uNewLdt The new LDT selector value.
5257 */
5258IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
5259{
5260 /*
5261 * Check preconditions.
5262 */
5263 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5264 {
5265 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
5266 return iemRaiseUndefinedOpcode(pVCpu);
5267 }
5268 if (pVCpu->iem.s.uCpl != 0)
5269 {
5270 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
5271 return iemRaiseGeneralProtectionFault0(pVCpu);
5272 }
5273 /* Nested-guest VMX intercept. */
5274 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5275 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5276 {
5277 Log(("lldt: Guest intercept -> VM-exit\n"));
5278 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
5279 }
5280 if (uNewLdt & X86_SEL_LDT)
5281 {
5282 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
5283 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
5284 }
5285
5286 /*
5287 * Now, loading a NULL selector is easy.
5288 */
5289 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
5290 {
5291 /* Nested-guest SVM intercept. */
5292 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5293 {
5294 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5295 IEM_SVM_UPDATE_NRIP(pVCpu);
5296 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5297 }
5298
5299 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
5300 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5301 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5302 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5303 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5304 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5305 {
5306 /* AMD-V seems to leave the base and limit alone. */
5307 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5308 }
5309 else
5310 {
5311 /* VT-x (Intel 3960x) seems to be doing the following. */
5312 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5313 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5314 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5315 }
5316
5317 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5318 }
5319
5320 /*
5321 * Read the descriptor.
5322 */
5323 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5324 IEMSELDESC Desc;
5325 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5326 if (rcStrict != VINF_SUCCESS)
5327 return rcStrict;
5328
5329 /* Check GPs first. */
5330 if (Desc.Legacy.Gen.u1DescType)
5331 {
5332 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5333 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5334 }
5335 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5336 {
5337 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5338 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5339 }
5340 uint64_t u64Base;
5341 if (!IEM_IS_LONG_MODE(pVCpu))
5342 u64Base = X86DESC_BASE(&Desc.Legacy);
5343 else
5344 {
5345 if (Desc.Long.Gen.u5Zeros)
5346 {
5347 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5348 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5349 }
5350
5351 u64Base = X86DESC64_BASE(&Desc.Long);
5352 if (!IEM_IS_CANONICAL(u64Base))
5353 {
5354 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5355 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5356 }
5357 }
5358
5359 /* NP */
5360 if (!Desc.Legacy.Gen.u1Present)
5361 {
5362 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5363 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5364 }
5365
5366 /* Nested-guest SVM intercept. */
5367 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5368 {
5369 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5370 IEM_SVM_UPDATE_NRIP(pVCpu);
5371 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5372 }
5373
5374 /*
5375 * It checks out alright, update the registers.
5376 */
5377/** @todo check if the actual value is loaded or if the RPL is dropped */
5378 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5379 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5380 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5381 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5382 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5383 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5384
5385 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5386}
5387
5388
5389/**
5390 * Implements sldt GReg
5391 *
5392 * @param iGReg The general register to store the CRx value in.
5393 * @param enmEffOpSize The operand size.
5394 */
5395IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5396{
5397 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5398 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5399 {
5400 Log(("sldt: Guest intercept -> VM-exit\n"));
5401 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5402 }
5403
5404 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5405
5406 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5407 switch (enmEffOpSize)
5408 {
5409 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5410 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5411 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5412 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5413 }
5414 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5415}
5416
5417
5418/**
5419 * Implements sldt mem.
5420 *
5421 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5422 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5423 */
5424IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5425{
5426 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5427
5428 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5429 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5430 if (rcStrict == VINF_SUCCESS)
5431 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5432 return rcStrict;
5433}
5434
5435
5436/**
5437 * Implements ltr.
5438 *
5439 * @param uNewTr The new TSS selector value.
5440 */
5441IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5442{
5443 /*
5444 * Check preconditions.
5445 */
5446 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5447 {
5448 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5449 return iemRaiseUndefinedOpcode(pVCpu);
5450 }
5451 if (pVCpu->iem.s.uCpl != 0)
5452 {
5453 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5454 return iemRaiseGeneralProtectionFault0(pVCpu);
5455 }
5456 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5457 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5458 {
5459 Log(("ltr: Guest intercept -> VM-exit\n"));
5460 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5461 }
5462 if (uNewTr & X86_SEL_LDT)
5463 {
5464 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5465 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5466 }
5467 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5468 {
5469 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5470 return iemRaiseGeneralProtectionFault0(pVCpu);
5471 }
5472 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5473 {
5474 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5475 IEM_SVM_UPDATE_NRIP(pVCpu);
5476 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5477 }
5478
5479 /*
5480 * Read the descriptor.
5481 */
5482 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5483 IEMSELDESC Desc;
5484 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5485 if (rcStrict != VINF_SUCCESS)
5486 return rcStrict;
5487
5488 /* Check GPs first. */
5489 if (Desc.Legacy.Gen.u1DescType)
5490 {
5491 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5492 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5493 }
5494 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5495 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5496 || IEM_IS_LONG_MODE(pVCpu)) )
5497 {
5498 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5499 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5500 }
5501 uint64_t u64Base;
5502 if (!IEM_IS_LONG_MODE(pVCpu))
5503 u64Base = X86DESC_BASE(&Desc.Legacy);
5504 else
5505 {
5506 if (Desc.Long.Gen.u5Zeros)
5507 {
5508 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5509 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5510 }
5511
5512 u64Base = X86DESC64_BASE(&Desc.Long);
5513 if (!IEM_IS_CANONICAL(u64Base))
5514 {
5515 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5516 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5517 }
5518 }
5519
5520 /* NP */
5521 if (!Desc.Legacy.Gen.u1Present)
5522 {
5523 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5524 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5525 }
5526
5527 /*
5528 * Set it busy.
5529 * Note! Intel says this should lock down the whole descriptor, but we'll
5530 * restrict our selves to 32-bit for now due to lack of inline
5531 * assembly and such.
5532 */
5533 void *pvDesc;
5534 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL),
5535 IEM_ACCESS_DATA_RW, 0);
5536 if (rcStrict != VINF_SUCCESS)
5537 return rcStrict;
5538 switch ((uintptr_t)pvDesc & 3)
5539 {
5540 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5541 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5542 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5543 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5544 }
5545 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5546 if (rcStrict != VINF_SUCCESS)
5547 return rcStrict;
5548 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5549
5550 /*
5551 * It checks out alright, update the registers.
5552 */
5553/** @todo check if the actual value is loaded or if the RPL is dropped */
5554 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5555 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5556 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5557 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5558 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5559 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5560
5561 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5562}
5563
5564
5565/**
5566 * Implements str GReg
5567 *
5568 * @param iGReg The general register to store the CRx value in.
5569 * @param enmEffOpSize The operand size.
5570 */
5571IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5572{
5573 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5574 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5575 {
5576 Log(("str_reg: Guest intercept -> VM-exit\n"));
5577 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5578 }
5579
5580 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5581
5582 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5583 switch (enmEffOpSize)
5584 {
5585 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5586 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5587 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5588 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5589 }
5590 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5591}
5592
5593
5594/**
5595 * Implements str mem.
5596 *
5597 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5598 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5599 */
5600IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5601{
5602 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5603 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5604 {
5605 Log(("str_mem: Guest intercept -> VM-exit\n"));
5606 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5607 }
5608
5609 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5610
5611 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5612 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5613 if (rcStrict == VINF_SUCCESS)
5614 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5615 return rcStrict;
5616}
5617
5618
5619/**
5620 * Implements mov GReg,CRx.
5621 *
5622 * @param iGReg The general register to store the CRx value in.
5623 * @param iCrReg The CRx register to read (valid).
5624 */
5625IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5626{
5627 if (pVCpu->iem.s.uCpl != 0)
5628 return iemRaiseGeneralProtectionFault0(pVCpu);
5629 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5630
5631 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5632 {
5633 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5634 IEM_SVM_UPDATE_NRIP(pVCpu);
5635 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5636 }
5637
5638 /* Read it. */
5639 uint64_t crX;
5640 switch (iCrReg)
5641 {
5642 case 0:
5643 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5644 crX = pVCpu->cpum.GstCtx.cr0;
5645 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5646 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5647 break;
5648 case 2:
5649 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5650 crX = pVCpu->cpum.GstCtx.cr2;
5651 break;
5652 case 3:
5653 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5654 crX = pVCpu->cpum.GstCtx.cr3;
5655 break;
5656 case 4:
5657 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5658 crX = pVCpu->cpum.GstCtx.cr4;
5659 break;
5660 case 8:
5661 {
5662 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5663#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5664 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5665 {
5666 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5667 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5668 return rcStrict;
5669
5670 /*
5671 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5672 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5673 * are cleared.
5674 *
5675 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5676 */
5677 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5678 {
5679 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5680 crX = (uTpr >> 4) & 0xf;
5681 break;
5682 }
5683 }
5684#endif
5685#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5686 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5687 {
5688 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
5689 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5690 {
5691 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5692 break;
5693 }
5694 }
5695#endif
5696 uint8_t uTpr;
5697 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5698 if (RT_SUCCESS(rc))
5699 crX = uTpr >> 4;
5700 else
5701 crX = 0;
5702 break;
5703 }
5704 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5705 }
5706
5707#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5708 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5709 {
5710 switch (iCrReg)
5711 {
5712 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5713 case 0: crX = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u); break;
5714 case 4: crX = CPUMGetGuestVmxMaskedCr4(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u); break;
5715
5716 case 3:
5717 {
5718 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5719 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5720 return rcStrict;
5721 break;
5722 }
5723 }
5724 }
5725#endif
5726
5727 /* Store it. */
5728 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5729 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5730 else
5731 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5732
5733 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5734}
5735
5736
5737/**
5738 * Implements smsw GReg.
5739 *
5740 * @param iGReg The general register to store the CRx value in.
5741 * @param enmEffOpSize The operand size.
5742 */
5743IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5744{
5745 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5746
5747#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5748 uint64_t u64MaskedCr0;
5749 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5750 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5751 else
5752 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5753 uint64_t const u64GuestCr0 = u64MaskedCr0;
5754#else
5755 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5756#endif
5757
5758 switch (enmEffOpSize)
5759 {
5760 case IEMMODE_16BIT:
5761 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5762 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5763 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5764 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5765 else
5766 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5767 break;
5768
5769 case IEMMODE_32BIT:
5770 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5771 break;
5772
5773 case IEMMODE_64BIT:
5774 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5775 break;
5776
5777 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5778 }
5779
5780 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5781}
5782
5783
5784/**
5785 * Implements smsw mem.
5786 *
5787 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5788 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5789 */
5790IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5791{
5792 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5793
5794#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5795 uint64_t u64MaskedCr0;
5796 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5797 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5798 else
5799 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5800 uint64_t const u64GuestCr0 = u64MaskedCr0;
5801#else
5802 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5803#endif
5804
5805 uint16_t u16Value;
5806 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5807 u16Value = (uint16_t)u64GuestCr0;
5808 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5809 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5810 else
5811 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5812
5813 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5814 if (rcStrict == VINF_SUCCESS)
5815 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5816 return rcStrict;
5817}
5818
5819
5820/**
5821 * Helper for mapping CR3 and PAE PDPEs for 'mov CRx,GReg'.
5822 */
5823#define IEM_MAP_PAE_PDPES_AT_CR3_RET(a_pVCpu, a_iCrReg, a_uCr3) \
5824 do \
5825 { \
5826 int const rcX = PGMGstMapPaePdpesAtCr3(a_pVCpu, a_uCr3); \
5827 if (RT_SUCCESS(rcX)) \
5828 { /* likely */ } \
5829 else \
5830 { \
5831 /* Either invalid PDPTEs or CR3 second-level translation failed. Raise #GP(0) either way. */ \
5832 Log(("iemCImpl_load_Cr%#x: Trying to load invalid PAE PDPEs\n", a_iCrReg)); \
5833 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
5834 } \
5835 } while (0)
5836
5837
5838/**
5839 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5840 *
5841 * @param iCrReg The CRx register to write (valid).
5842 * @param uNewCrX The new value.
5843 * @param enmAccessCrX The instruction that caused the CrX load.
5844 * @param iGReg The general register in case of a 'mov CRx,GReg'
5845 * instruction.
5846 */
5847IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5848{
5849 VBOXSTRICTRC rcStrict;
5850 int rc;
5851#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5852 RT_NOREF2(iGReg, enmAccessCrX);
5853#endif
5854
5855 /*
5856 * Try store it.
5857 * Unfortunately, CPUM only does a tiny bit of the work.
5858 */
5859 switch (iCrReg)
5860 {
5861 case 0:
5862 {
5863 /*
5864 * Perform checks.
5865 */
5866 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5867
5868 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5869 uint32_t const fValid = CPUMGetGuestCR0ValidMask();
5870
5871 /* ET is hardcoded on 486 and later. */
5872 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5873 uNewCrX |= X86_CR0_ET;
5874 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5875 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5876 {
5877 uNewCrX &= fValid;
5878 uNewCrX |= X86_CR0_ET;
5879 }
5880 else
5881 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5882
5883 /* Check for reserved bits. */
5884 if (uNewCrX & ~(uint64_t)fValid)
5885 {
5886 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5887 return iemRaiseGeneralProtectionFault0(pVCpu);
5888 }
5889
5890 /* Check for invalid combinations. */
5891 if ( (uNewCrX & X86_CR0_PG)
5892 && !(uNewCrX & X86_CR0_PE) )
5893 {
5894 Log(("Trying to set CR0.PG without CR0.PE\n"));
5895 return iemRaiseGeneralProtectionFault0(pVCpu);
5896 }
5897
5898 if ( !(uNewCrX & X86_CR0_CD)
5899 && (uNewCrX & X86_CR0_NW) )
5900 {
5901 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5902 return iemRaiseGeneralProtectionFault0(pVCpu);
5903 }
5904
5905 if ( !(uNewCrX & X86_CR0_PG)
5906 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5907 {
5908 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5909 return iemRaiseGeneralProtectionFault0(pVCpu);
5910 }
5911
5912 /* Long mode consistency checks. */
5913 if ( (uNewCrX & X86_CR0_PG)
5914 && !(uOldCrX & X86_CR0_PG)
5915 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5916 {
5917 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5918 {
5919 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5920 return iemRaiseGeneralProtectionFault0(pVCpu);
5921 }
5922 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5923 {
5924 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5925 return iemRaiseGeneralProtectionFault0(pVCpu);
5926 }
5927 }
5928
5929 /* Check for bits that must remain set or cleared in VMX operation,
5930 see Intel spec. 23.8 "Restrictions on VMX operation". */
5931 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5932 {
5933#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5934 uint64_t const uCr0Fixed0 = IEM_VMX_IS_NON_ROOT_MODE(pVCpu) ? iemVmxGetCr0Fixed0(pVCpu) : VMX_V_CR0_FIXED0;
5935#else
5936 uint64_t const uCr0Fixed0 = VMX_V_CR0_FIXED0;
5937#endif
5938 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5939 {
5940 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5941 return iemRaiseGeneralProtectionFault0(pVCpu);
5942 }
5943
5944 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5945 if (uNewCrX & ~uCr0Fixed1)
5946 {
5947 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5948 return iemRaiseGeneralProtectionFault0(pVCpu);
5949 }
5950 }
5951
5952 /*
5953 * SVM nested-guest CR0 write intercepts.
5954 */
5955 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5956 {
5957 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5958 IEM_SVM_UPDATE_NRIP(pVCpu);
5959 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5960 }
5961 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5962 {
5963 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5964 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5965 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5966 {
5967 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5968 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5969 IEM_SVM_UPDATE_NRIP(pVCpu);
5970 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5971 }
5972 }
5973
5974 /*
5975 * Change EFER.LMA if entering or leaving long mode.
5976 */
5977 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5978 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5979 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5980 {
5981 if (uNewCrX & X86_CR0_PG)
5982 NewEFER |= MSR_K6_EFER_LMA;
5983 else
5984 NewEFER &= ~MSR_K6_EFER_LMA;
5985
5986 CPUMSetGuestEFER(pVCpu, NewEFER);
5987 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5988 }
5989
5990 /*
5991 * Inform PGM.
5992 */
5993 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW))
5994 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW)) )
5995 {
5996 if ( enmAccessCrX != IEMACCESSCRX_MOV_CRX
5997 || !CPUMIsPaePagingEnabled(uNewCrX, pVCpu->cpum.GstCtx.cr4, NewEFER)
5998 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5999 { /* likely */ }
6000 else
6001 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
6002 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
6003 AssertRCReturn(rc, rc);
6004 /* ignore informational status codes */
6005 }
6006
6007 /*
6008 * Change CR0.
6009 */
6010 CPUMSetGuestCR0(pVCpu, uNewCrX);
6011 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
6012
6013 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
6014 false /* fForce */);
6015 break;
6016 }
6017
6018 /*
6019 * CR2 can be changed without any restrictions.
6020 */
6021 case 2:
6022 {
6023 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
6024 {
6025 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6026 IEM_SVM_UPDATE_NRIP(pVCpu);
6027 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
6028 }
6029 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
6030 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
6031 rcStrict = VINF_SUCCESS;
6032 break;
6033 }
6034
6035 /*
6036 * CR3 is relatively simple, although AMD and Intel have different
6037 * accounts of how setting reserved bits are handled. We take intel's
6038 * word for the lower bits and AMD's for the high bits (63:52). The
6039 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
6040 * on this.
6041 */
6042 /** @todo Testcase: Setting reserved bits in CR3, especially before
6043 * enabling paging. */
6044 case 3:
6045 {
6046 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
6047
6048 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
6049 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
6050 && (uNewCrX & RT_BIT_64(63)))
6051 {
6052 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
6053 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
6054 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
6055 * Paging-Structure Caches". */
6056 uNewCrX &= ~RT_BIT_64(63);
6057 }
6058
6059 /* Check / mask the value. */
6060#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6061 /* See Intel spec. 27.2.2 "EPT Translation Mechanism" footnote. */
6062 uint64_t const fInvPhysMask = !CPUMIsGuestVmxEptPagingEnabledEx(IEM_GET_CTX(pVCpu))
6063 ? (UINT64_MAX << IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
6064 : (~X86_CR3_EPT_PAGE_MASK & X86_PAGE_4K_BASE_MASK);
6065#else
6066 uint64_t const fInvPhysMask = UINT64_C(0xfff0000000000000);
6067#endif
6068 if (uNewCrX & fInvPhysMask)
6069 {
6070 /** @todo Should we raise this only for 64-bit mode like Intel claims? AMD is
6071 * very vague in this area. As mentioned above, need testcase on real
6072 * hardware... Sigh. */
6073 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
6074 return iemRaiseGeneralProtectionFault0(pVCpu);
6075 }
6076
6077 uint64_t fValid;
6078 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
6079 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
6080 {
6081 /** @todo Redundant? This value has already been validated above. */
6082 fValid = UINT64_C(0x000fffffffffffff);
6083 }
6084 else
6085 fValid = UINT64_C(0xffffffff);
6086 if (uNewCrX & ~fValid)
6087 {
6088 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
6089 uNewCrX, uNewCrX & ~fValid));
6090 uNewCrX &= fValid;
6091 }
6092
6093 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
6094 {
6095 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6096 IEM_SVM_UPDATE_NRIP(pVCpu);
6097 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
6098 }
6099
6100 /* Inform PGM. */
6101 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
6102 {
6103 if ( !CPUMIsGuestInPAEModeEx(IEM_GET_CTX(pVCpu))
6104 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6105 { /* likely */ }
6106 else
6107 {
6108 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
6109 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, uNewCrX);
6110 }
6111 rc = PGMFlushTLB(pVCpu, uNewCrX, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
6112 AssertRCReturn(rc, rc);
6113 /* ignore informational status codes */
6114 }
6115
6116 /* Make the change. */
6117 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
6118 AssertRCSuccessReturn(rc, rc);
6119
6120 rcStrict = VINF_SUCCESS;
6121 break;
6122 }
6123
6124 /*
6125 * CR4 is a bit more tedious as there are bits which cannot be cleared
6126 * under some circumstances and such.
6127 */
6128 case 4:
6129 {
6130 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6131 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
6132
6133 /* Reserved bits. */
6134 uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
6135 if (uNewCrX & ~(uint64_t)fValid)
6136 {
6137 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
6138 return iemRaiseGeneralProtectionFault0(pVCpu);
6139 }
6140
6141 bool const fPcide = !(uOldCrX & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
6142 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
6143
6144 /* PCIDE check. */
6145 if ( fPcide
6146 && ( !fLongMode
6147 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
6148 {
6149 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
6150 return iemRaiseGeneralProtectionFault0(pVCpu);
6151 }
6152
6153 /* PAE check. */
6154 if ( fLongMode
6155 && (uOldCrX & X86_CR4_PAE)
6156 && !(uNewCrX & X86_CR4_PAE))
6157 {
6158 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
6159 return iemRaiseGeneralProtectionFault0(pVCpu);
6160 }
6161
6162 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
6163 {
6164 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6165 IEM_SVM_UPDATE_NRIP(pVCpu);
6166 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
6167 }
6168
6169 /* Check for bits that must remain set or cleared in VMX operation,
6170 see Intel spec. 23.8 "Restrictions on VMX operation". */
6171 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
6172 {
6173 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6174 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
6175 {
6176 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
6177 return iemRaiseGeneralProtectionFault0(pVCpu);
6178 }
6179
6180 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6181 if (uNewCrX & ~uCr4Fixed1)
6182 {
6183 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
6184 return iemRaiseGeneralProtectionFault0(pVCpu);
6185 }
6186 }
6187
6188 /*
6189 * Notify PGM.
6190 */
6191 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
6192 {
6193 if ( !CPUMIsPaePagingEnabled(pVCpu->cpum.GstCtx.cr0, uNewCrX, pVCpu->cpum.GstCtx.msrEFER)
6194 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6195 { /* likely */ }
6196 else
6197 {
6198 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
6199 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
6200 }
6201 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
6202 AssertRCReturn(rc, rc);
6203 /* ignore informational status codes */
6204 }
6205
6206 /*
6207 * Change it.
6208 */
6209 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
6210 AssertRCSuccessReturn(rc, rc);
6211 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
6212
6213 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
6214 false /* fForce */);
6215 break;
6216 }
6217
6218 /*
6219 * CR8 maps to the APIC TPR.
6220 */
6221 case 8:
6222 {
6223 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
6224 if (uNewCrX & ~(uint64_t)0xf)
6225 {
6226 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
6227 return iemRaiseGeneralProtectionFault0(pVCpu);
6228 }
6229
6230#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6231 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6232 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
6233 {
6234 /*
6235 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
6236 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
6237 * cleared. Following this the processor performs TPR virtualization.
6238 *
6239 * However, we should not perform TPR virtualization immediately here but
6240 * after this instruction has completed.
6241 *
6242 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
6243 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
6244 */
6245 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
6246 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
6247 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
6248 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
6249 rcStrict = VINF_SUCCESS;
6250 break;
6251 }
6252#endif
6253
6254#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6255 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6256 {
6257 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
6258 {
6259 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6260 IEM_SVM_UPDATE_NRIP(pVCpu);
6261 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
6262 }
6263
6264 pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VTPR = uNewCrX;
6265 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
6266 {
6267 rcStrict = VINF_SUCCESS;
6268 break;
6269 }
6270 }
6271#endif
6272 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
6273 APICSetTpr(pVCpu, u8Tpr);
6274 rcStrict = VINF_SUCCESS;
6275 break;
6276 }
6277
6278 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6279 }
6280
6281 /*
6282 * Advance the RIP on success.
6283 */
6284 if (RT_SUCCESS(rcStrict))
6285 {
6286 if (rcStrict != VINF_SUCCESS)
6287 iemSetPassUpStatus(pVCpu, rcStrict);
6288 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6289 }
6290
6291 return rcStrict;
6292}
6293
6294
6295/**
6296 * Implements mov CRx,GReg.
6297 *
6298 * @param iCrReg The CRx register to write (valid).
6299 * @param iGReg The general register to load the CRx value from.
6300 */
6301IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
6302{
6303 if (pVCpu->iem.s.uCpl != 0)
6304 return iemRaiseGeneralProtectionFault0(pVCpu);
6305 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6306
6307 /*
6308 * Read the new value from the source register and call common worker.
6309 */
6310 uint64_t uNewCrX;
6311 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6312 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
6313 else
6314 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
6315
6316#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6317 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6318 {
6319 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6320 switch (iCrReg)
6321 {
6322 case 0:
6323 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6324 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6325 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6326 }
6327 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6328 return rcStrict;
6329 }
6330#endif
6331
6332 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6333}
6334
6335
6336/**
6337 * Implements 'LMSW r/m16'
6338 *
6339 * @param u16NewMsw The new value.
6340 * @param GCPtrEffDst The guest-linear address of the source operand in case
6341 * of a memory operand. For register operand, pass
6342 * NIL_RTGCPTR.
6343 */
6344IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6345{
6346 if (pVCpu->iem.s.uCpl != 0)
6347 return iemRaiseGeneralProtectionFault0(pVCpu);
6348 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6349 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6350
6351#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6352 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6353 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6354 {
6355 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6356 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6357 return rcStrict;
6358 }
6359#else
6360 RT_NOREF_PV(GCPtrEffDst);
6361#endif
6362
6363 /*
6364 * Compose the new CR0 value and call common worker.
6365 */
6366 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6367 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6368 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6369}
6370
6371
6372/**
6373 * Implements 'CLTS'.
6374 */
6375IEM_CIMPL_DEF_0(iemCImpl_clts)
6376{
6377 if (pVCpu->iem.s.uCpl != 0)
6378 return iemRaiseGeneralProtectionFault0(pVCpu);
6379
6380 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6381 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6382 uNewCr0 &= ~X86_CR0_TS;
6383
6384#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6385 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6386 {
6387 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6388 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6389 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6390 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6391 return rcStrict;
6392 }
6393#endif
6394
6395 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6396}
6397
6398
6399/**
6400 * Implements mov GReg,DRx.
6401 *
6402 * @param iGReg The general register to store the DRx value in.
6403 * @param iDrReg The DRx register to read (0-7).
6404 */
6405IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6406{
6407#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6408 /*
6409 * Check nested-guest VMX intercept.
6410 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6411 * over CPL and CR4.DE and even DR4/DR5 checks.
6412 *
6413 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6414 */
6415 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6416 {
6417 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6418 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6419 return rcStrict;
6420 }
6421#endif
6422
6423 /*
6424 * Check preconditions.
6425 */
6426 /* Raise GPs. */
6427 if (pVCpu->iem.s.uCpl != 0)
6428 return iemRaiseGeneralProtectionFault0(pVCpu);
6429 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6430 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6431
6432 /** @todo \#UD in outside ring-0 too? */
6433 if (iDrReg == 4 || iDrReg == 5)
6434 {
6435 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR4);
6436 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6437 {
6438 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6439 return iemRaiseGeneralProtectionFault0(pVCpu);
6440 }
6441 iDrReg += 2;
6442 }
6443
6444 /* Raise #DB if general access detect is enabled. */
6445 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6446 {
6447 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6448 return iemRaiseDebugException(pVCpu);
6449 }
6450
6451 /*
6452 * Read the debug register and store it in the specified general register.
6453 */
6454 uint64_t drX;
6455 switch (iDrReg)
6456 {
6457 case 0:
6458 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6459 drX = pVCpu->cpum.GstCtx.dr[0];
6460 break;
6461 case 1:
6462 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6463 drX = pVCpu->cpum.GstCtx.dr[1];
6464 break;
6465 case 2:
6466 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6467 drX = pVCpu->cpum.GstCtx.dr[2];
6468 break;
6469 case 3:
6470 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6471 drX = pVCpu->cpum.GstCtx.dr[3];
6472 break;
6473 case 6:
6474 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6475 drX = pVCpu->cpum.GstCtx.dr[6];
6476 drX |= X86_DR6_RA1_MASK;
6477 drX &= ~X86_DR6_RAZ_MASK;
6478 break;
6479 case 7:
6480 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6481 drX = pVCpu->cpum.GstCtx.dr[7];
6482 drX |=X86_DR7_RA1_MASK;
6483 drX &= ~X86_DR7_RAZ_MASK;
6484 break;
6485 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* caller checks */
6486 }
6487
6488 /** @todo SVM nested-guest intercept for DR8-DR15? */
6489 /*
6490 * Check for any SVM nested-guest intercepts for the DRx read.
6491 */
6492 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6493 {
6494 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6495 IEM_SVM_UPDATE_NRIP(pVCpu);
6496 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6497 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6498 }
6499
6500 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6501 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6502 else
6503 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6504
6505 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6506}
6507
6508
6509/**
6510 * Implements mov DRx,GReg.
6511 *
6512 * @param iDrReg The DRx register to write (valid).
6513 * @param iGReg The general register to load the DRx value from.
6514 */
6515IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6516{
6517#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6518 /*
6519 * Check nested-guest VMX intercept.
6520 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6521 * over CPL and CR4.DE and even DR4/DR5 checks.
6522 *
6523 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6524 */
6525 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6526 {
6527 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6528 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6529 return rcStrict;
6530 }
6531#endif
6532
6533 /*
6534 * Check preconditions.
6535 */
6536 if (pVCpu->iem.s.uCpl != 0)
6537 return iemRaiseGeneralProtectionFault0(pVCpu);
6538 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6539 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6540
6541 if (iDrReg == 4 || iDrReg == 5)
6542 {
6543 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR4);
6544 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6545 {
6546 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6547 return iemRaiseGeneralProtectionFault0(pVCpu);
6548 }
6549 iDrReg += 2;
6550 }
6551
6552 /* Raise #DB if general access detect is enabled. */
6553 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6554 * \#GP? */
6555 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6556 {
6557 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6558 return iemRaiseDebugException(pVCpu);
6559 }
6560
6561 /*
6562 * Read the new value from the source register.
6563 */
6564 uint64_t uNewDrX;
6565 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6566 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6567 else
6568 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6569
6570 /*
6571 * Adjust it.
6572 */
6573 switch (iDrReg)
6574 {
6575 case 0:
6576 case 1:
6577 case 2:
6578 case 3:
6579 /* nothing to adjust */
6580 break;
6581
6582 case 6:
6583 if (uNewDrX & X86_DR6_MBZ_MASK)
6584 {
6585 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6586 return iemRaiseGeneralProtectionFault0(pVCpu);
6587 }
6588 uNewDrX |= X86_DR6_RA1_MASK;
6589 uNewDrX &= ~X86_DR6_RAZ_MASK;
6590 break;
6591
6592 case 7:
6593 if (uNewDrX & X86_DR7_MBZ_MASK)
6594 {
6595 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6596 return iemRaiseGeneralProtectionFault0(pVCpu);
6597 }
6598 uNewDrX |= X86_DR7_RA1_MASK;
6599 uNewDrX &= ~X86_DR7_RAZ_MASK;
6600 break;
6601
6602 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6603 }
6604
6605 /** @todo SVM nested-guest intercept for DR8-DR15? */
6606 /*
6607 * Check for any SVM nested-guest intercepts for the DRx write.
6608 */
6609 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6610 {
6611 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6612 IEM_SVM_UPDATE_NRIP(pVCpu);
6613 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6614 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6615 }
6616
6617 /*
6618 * Do the actual setting.
6619 */
6620 if (iDrReg < 4)
6621 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6622 else if (iDrReg == 6)
6623 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6624
6625 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6626 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6627
6628 /*
6629 * Re-init hardware breakpoint summary if it was DR7 that got changed.
6630 */
6631 if (iDrReg == 7)
6632 {
6633 pVCpu->iem.s.fPendingInstructionBreakpoints = false;
6634 pVCpu->iem.s.fPendingDataBreakpoints = false;
6635 pVCpu->iem.s.fPendingIoBreakpoints = false;
6636 iemInitPendingBreakpointsSlow(pVCpu);
6637 }
6638
6639 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6640}
6641
6642
6643/**
6644 * Implements mov GReg,TRx.
6645 *
6646 * @param iGReg The general register to store the
6647 * TRx value in.
6648 * @param iTrReg The TRx register to read (6/7).
6649 */
6650IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg)
6651{
6652 /*
6653 * Check preconditions. NB: This instruction is 386/486 only.
6654 */
6655
6656 /* Raise GPs. */
6657 if (pVCpu->iem.s.uCpl != 0)
6658 return iemRaiseGeneralProtectionFault0(pVCpu);
6659 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6660
6661 if (iTrReg < 6 || iTrReg > 7)
6662 {
6663 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6664 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6665 return iemRaiseGeneralProtectionFault0(pVCpu);
6666 }
6667
6668 /*
6669 * Read the test register and store it in the specified general register.
6670 * This is currently a dummy implementation that only exists to satisfy
6671 * old debuggers like WDEB386 or OS/2 KDB which unconditionally read the
6672 * TR6/TR7 registers. Software which actually depends on the TR values
6673 * (different on 386/486) is exceedingly rare.
6674 */
6675 uint64_t trX;
6676 switch (iTrReg)
6677 {
6678 case 6:
6679 trX = 0; /* Currently a dummy. */
6680 break;
6681 case 7:
6682 trX = 0; /* Currently a dummy. */
6683 break;
6684 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6685 }
6686
6687 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)trX;
6688
6689 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6690}
6691
6692
6693/**
6694 * Implements mov TRx,GReg.
6695 *
6696 * @param iTrReg The TRx register to write (valid).
6697 * @param iGReg The general register to load the TRx
6698 * value from.
6699 */
6700IEM_CIMPL_DEF_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg)
6701{
6702 /*
6703 * Check preconditions. NB: This instruction is 386/486 only.
6704 */
6705
6706 /* Raise GPs. */
6707 if (pVCpu->iem.s.uCpl != 0)
6708 return iemRaiseGeneralProtectionFault0(pVCpu);
6709 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6710
6711 if (iTrReg < 6 || iTrReg > 7)
6712 {
6713 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6714 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6715 return iemRaiseGeneralProtectionFault0(pVCpu);
6716 }
6717
6718 /*
6719 * Read the new value from the source register.
6720 */
6721 uint64_t uNewTrX;
6722 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6723 uNewTrX = iemGRegFetchU64(pVCpu, iGReg);
6724 else
6725 uNewTrX = iemGRegFetchU32(pVCpu, iGReg);
6726
6727 /*
6728 * Here we would do the actual setting if this weren't a dummy implementation.
6729 * This is currently a dummy implementation that only exists to prevent
6730 * old debuggers like WDEB386 or OS/2 KDB from crashing.
6731 */
6732 RT_NOREF(uNewTrX);
6733
6734 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6735}
6736
6737
6738/**
6739 * Implements 'INVLPG m'.
6740 *
6741 * @param GCPtrPage The effective address of the page to invalidate.
6742 * @remarks Updates the RIP.
6743 */
6744IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6745{
6746 /* ring-0 only. */
6747 if (pVCpu->iem.s.uCpl != 0)
6748 return iemRaiseGeneralProtectionFault0(pVCpu);
6749 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6750 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6751
6752#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6753 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6754 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6755 {
6756 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6757 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6758 }
6759#endif
6760
6761 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6762 {
6763 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6764 IEM_SVM_UPDATE_NRIP(pVCpu);
6765 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6766 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6767 }
6768
6769 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6770 if (rc == VINF_SUCCESS)
6771 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6772 if (rc == VINF_PGM_SYNC_CR3)
6773 {
6774 iemSetPassUpStatus(pVCpu, rc);
6775 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6776 }
6777
6778 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6779 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6780 return rc;
6781}
6782
6783
6784/**
6785 * Implements INVPCID.
6786 *
6787 * @param iEffSeg The segment of the invpcid descriptor.
6788 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6789 * @param uInvpcidType The invalidation type.
6790 * @remarks Updates the RIP.
6791 */
6792IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType)
6793{
6794 /*
6795 * Check preconditions.
6796 */
6797 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6798 return iemRaiseUndefinedOpcode(pVCpu);
6799
6800 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6801 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6802 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6803 {
6804 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6805 return iemRaiseUndefinedOpcode(pVCpu);
6806 }
6807
6808 if (pVCpu->iem.s.uCpl != 0)
6809 {
6810 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6811 return iemRaiseGeneralProtectionFault0(pVCpu);
6812 }
6813
6814 if (IEM_IS_V86_MODE(pVCpu))
6815 {
6816 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6817 return iemRaiseGeneralProtectionFault0(pVCpu);
6818 }
6819
6820 /*
6821 * Check nested-guest intercept.
6822 *
6823 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6824 * both set. We have already checked the former earlier in this function.
6825 *
6826 * CPL and virtual-8086 mode checks take priority over this VM-exit.
6827 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6828 */
6829 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6830 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6831 {
6832 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6833 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6834 }
6835
6836 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6837 {
6838 Log(("invpcid: invalid/unrecognized invpcid type %#RX64 -> #GP(0)\n", uInvpcidType));
6839 return iemRaiseGeneralProtectionFault0(pVCpu);
6840 }
6841 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6842
6843 /*
6844 * Fetch the invpcid descriptor from guest memory.
6845 */
6846 RTUINT128U uDesc;
6847 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6848 if (rcStrict == VINF_SUCCESS)
6849 {
6850 /*
6851 * Validate the descriptor.
6852 */
6853 if (uDesc.s.Lo > 0xfff)
6854 {
6855 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6856 return iemRaiseGeneralProtectionFault0(pVCpu);
6857 }
6858
6859 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6860 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6861 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6862 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6863 switch (uInvpcidType)
6864 {
6865 case X86_INVPCID_TYPE_INDV_ADDR:
6866 {
6867 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6868 {
6869 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6870 return iemRaiseGeneralProtectionFault0(pVCpu);
6871 }
6872 if ( !(uCr4 & X86_CR4_PCIDE)
6873 && uPcid != 0)
6874 {
6875 Log(("invpcid: invalid pcid %#x\n", uPcid));
6876 return iemRaiseGeneralProtectionFault0(pVCpu);
6877 }
6878
6879 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6880 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6881 break;
6882 }
6883
6884 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6885 {
6886 if ( !(uCr4 & X86_CR4_PCIDE)
6887 && uPcid != 0)
6888 {
6889 Log(("invpcid: invalid pcid %#x\n", uPcid));
6890 return iemRaiseGeneralProtectionFault0(pVCpu);
6891 }
6892 /* Invalidate all mappings associated with PCID except global translations. */
6893 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6894 break;
6895 }
6896
6897 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6898 {
6899 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
6900 break;
6901 }
6902
6903 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6904 {
6905 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6906 break;
6907 }
6908 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6909 }
6910 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6911 }
6912 return rcStrict;
6913}
6914
6915
6916/**
6917 * Implements INVD.
6918 */
6919IEM_CIMPL_DEF_0(iemCImpl_invd)
6920{
6921 if (pVCpu->iem.s.uCpl != 0)
6922 {
6923 Log(("invd: CPL != 0 -> #GP(0)\n"));
6924 return iemRaiseGeneralProtectionFault0(pVCpu);
6925 }
6926
6927 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6928 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6929
6930 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6931
6932 /* We currently take no action here. */
6933 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6934}
6935
6936
6937/**
6938 * Implements WBINVD.
6939 */
6940IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6941{
6942 if (pVCpu->iem.s.uCpl != 0)
6943 {
6944 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6945 return iemRaiseGeneralProtectionFault0(pVCpu);
6946 }
6947
6948 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6949 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6950
6951 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6952
6953 /* We currently take no action here. */
6954 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6955}
6956
6957
6958/** Opcode 0x0f 0xaa. */
6959IEM_CIMPL_DEF_0(iemCImpl_rsm)
6960{
6961 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6962 NOREF(cbInstr);
6963 return iemRaiseUndefinedOpcode(pVCpu);
6964}
6965
6966
6967/**
6968 * Implements RDTSC.
6969 */
6970IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6971{
6972 /*
6973 * Check preconditions.
6974 */
6975 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6976 return iemRaiseUndefinedOpcode(pVCpu);
6977
6978 if (pVCpu->iem.s.uCpl != 0)
6979 {
6980 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6981 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6982 {
6983 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6984 return iemRaiseGeneralProtectionFault0(pVCpu);
6985 }
6986 }
6987
6988 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6989 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6990 {
6991 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6992 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6993 }
6994
6995 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6996 {
6997 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6998 IEM_SVM_UPDATE_NRIP(pVCpu);
6999 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7000 }
7001
7002 /*
7003 * Do the job.
7004 */
7005 uint64_t uTicks = TMCpuTickGet(pVCpu);
7006#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
7007 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
7008#endif
7009 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
7010 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
7011 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
7012 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7013}
7014
7015
7016/**
7017 * Implements RDTSC.
7018 */
7019IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
7020{
7021 /*
7022 * Check preconditions.
7023 */
7024 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
7025 return iemRaiseUndefinedOpcode(pVCpu);
7026
7027 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7028 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
7029 {
7030 Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n"));
7031 return iemRaiseUndefinedOpcode(pVCpu);
7032 }
7033
7034 if (pVCpu->iem.s.uCpl != 0)
7035 {
7036 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
7037 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
7038 {
7039 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
7040 return iemRaiseGeneralProtectionFault0(pVCpu);
7041 }
7042 }
7043
7044 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7045 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
7046 {
7047 Log(("rdtscp: Guest intercept -> VM-exit\n"));
7048 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
7049 }
7050 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
7051 {
7052 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
7053 IEM_SVM_UPDATE_NRIP(pVCpu);
7054 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7055 }
7056
7057 /*
7058 * Do the job.
7059 * Query the MSR first in case of trips to ring-3.
7060 */
7061 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
7062 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
7063 if (rcStrict == VINF_SUCCESS)
7064 {
7065 /* Low dword of the TSC_AUX msr only. */
7066 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7067
7068 uint64_t uTicks = TMCpuTickGet(pVCpu);
7069#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
7070 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
7071#endif
7072 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
7073 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
7074 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
7075 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7076 }
7077 return rcStrict;
7078}
7079
7080
7081/**
7082 * Implements RDPMC.
7083 */
7084IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
7085{
7086 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
7087
7088 if ( pVCpu->iem.s.uCpl != 0
7089 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
7090 return iemRaiseGeneralProtectionFault0(pVCpu);
7091
7092 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7093 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
7094 {
7095 Log(("rdpmc: Guest intercept -> VM-exit\n"));
7096 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
7097 }
7098
7099 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
7100 {
7101 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
7102 IEM_SVM_UPDATE_NRIP(pVCpu);
7103 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7104 }
7105
7106 /** @todo Emulate performance counters, for now just return 0. */
7107 pVCpu->cpum.GstCtx.rax = 0;
7108 pVCpu->cpum.GstCtx.rdx = 0;
7109 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
7110 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
7111 * ecx but see @bugref{3472}! */
7112
7113 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7114}
7115
7116
7117/**
7118 * Implements RDMSR.
7119 */
7120IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
7121{
7122 /*
7123 * Check preconditions.
7124 */
7125 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7126 return iemRaiseUndefinedOpcode(pVCpu);
7127 if (pVCpu->iem.s.uCpl != 0)
7128 return iemRaiseGeneralProtectionFault0(pVCpu);
7129
7130 /*
7131 * Check nested-guest intercepts.
7132 */
7133#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7134 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7135 {
7136 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
7137 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
7138 }
7139#endif
7140
7141#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7142 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7143 {
7144 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
7145 if (rcStrict == VINF_SVM_VMEXIT)
7146 return VINF_SUCCESS;
7147 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7148 {
7149 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
7150 return rcStrict;
7151 }
7152 }
7153#endif
7154
7155 /*
7156 * Do the job.
7157 */
7158 RTUINT64U uValue;
7159 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7160 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7161
7162 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
7163 if (rcStrict == VINF_SUCCESS)
7164 {
7165 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
7166 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
7167 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
7168
7169 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7170 }
7171
7172#ifndef IN_RING3
7173 /* Deferred to ring-3. */
7174 if (rcStrict == VINF_CPUM_R3_MSR_READ)
7175 {
7176 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
7177 return rcStrict;
7178 }
7179#endif
7180
7181 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7182 if (pVCpu->iem.s.cLogRelRdMsr < 32)
7183 {
7184 pVCpu->iem.s.cLogRelRdMsr++;
7185 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7186 }
7187 else
7188 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7189 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7190 return iemRaiseGeneralProtectionFault0(pVCpu);
7191}
7192
7193
7194/**
7195 * Implements WRMSR.
7196 */
7197IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
7198{
7199 /*
7200 * Check preconditions.
7201 */
7202 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7203 return iemRaiseUndefinedOpcode(pVCpu);
7204 if (pVCpu->iem.s.uCpl != 0)
7205 return iemRaiseGeneralProtectionFault0(pVCpu);
7206
7207 RTUINT64U uValue;
7208 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
7209 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
7210
7211 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
7212
7213 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7214 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7215
7216 /*
7217 * Check nested-guest intercepts.
7218 */
7219#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7220 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7221 {
7222 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
7223 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
7224 }
7225#endif
7226
7227#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7228 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7229 {
7230 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
7231 if (rcStrict == VINF_SVM_VMEXIT)
7232 return VINF_SUCCESS;
7233 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7234 {
7235 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
7236 return rcStrict;
7237 }
7238 }
7239#endif
7240
7241 /*
7242 * Do the job.
7243 */
7244 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
7245 if (rcStrict == VINF_SUCCESS)
7246 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7247
7248#ifndef IN_RING3
7249 /* Deferred to ring-3. */
7250 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
7251 {
7252 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
7253 return rcStrict;
7254 }
7255#endif
7256
7257 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7258 if (pVCpu->iem.s.cLogRelWrMsr < 32)
7259 {
7260 pVCpu->iem.s.cLogRelWrMsr++;
7261 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7262 }
7263 else
7264 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7265 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7266 return iemRaiseGeneralProtectionFault0(pVCpu);
7267}
7268
7269
7270/**
7271 * Implements 'IN eAX, port'.
7272 *
7273 * @param u16Port The source port.
7274 * @param fImm Whether the port was specified through an immediate operand
7275 * or the implicit DX register.
7276 * @param cbReg The register size.
7277 */
7278IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7279{
7280 /*
7281 * CPL check
7282 */
7283 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7284 if (rcStrict != VINF_SUCCESS)
7285 return rcStrict;
7286
7287 /*
7288 * Check VMX nested-guest IO intercept.
7289 */
7290#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7291 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7292 {
7293 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
7294 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7295 return rcStrict;
7296 }
7297#else
7298 RT_NOREF(fImm);
7299#endif
7300
7301 /*
7302 * Check SVM nested-guest IO intercept.
7303 */
7304#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7305 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7306 {
7307 uint8_t cAddrSizeBits;
7308 switch (pVCpu->iem.s.enmEffAddrMode)
7309 {
7310 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7311 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7312 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7313 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7314 }
7315 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7316 false /* fRep */, false /* fStrIo */, cbInstr);
7317 if (rcStrict == VINF_SVM_VMEXIT)
7318 return VINF_SUCCESS;
7319 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7320 {
7321 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7322 VBOXSTRICTRC_VAL(rcStrict)));
7323 return rcStrict;
7324 }
7325 }
7326#endif
7327
7328 /*
7329 * Perform the I/O.
7330 */
7331 PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
7332 uint32_t u32Value = 0;
7333 rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, cbReg);
7334 if (IOM_SUCCESS(rcStrict))
7335 {
7336 switch (cbReg)
7337 {
7338 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
7339 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
7340 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
7341 default: AssertFailedReturn(VERR_IEM_IPE_3);
7342 }
7343
7344 pVCpu->iem.s.cPotentialExits++;
7345 if (rcStrict != VINF_SUCCESS)
7346 iemSetPassUpStatus(pVCpu, rcStrict);
7347
7348 /*
7349 * Check for I/O breakpoints before we complete the instruction.
7350 */
7351 uint32_t const fDr7 = pVCpu->cpum.GstCtx.dr[7];
7352 if (RT_UNLIKELY( ( ( (fDr7 & X86_DR7_ENABLED_MASK)
7353 && X86_DR7_ANY_RW_IO(fDr7)
7354 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7355 || pVM->dbgf.ro.cEnabledHwIoBreakpoints > 0)
7356 && rcStrict == VINF_SUCCESS))
7357 {
7358 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7359 pVCpu->cpum.GstCtx.eflags.uBoth |= DBGFBpCheckIo2(pVM, pVCpu, u16Port, cbReg);
7360 }
7361
7362 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7363 }
7364
7365 return rcStrict;
7366}
7367
7368
7369/**
7370 * Implements 'IN eAX, DX'.
7371 *
7372 * @param cbReg The register size.
7373 */
7374IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
7375{
7376 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7377}
7378
7379
7380/**
7381 * Implements 'OUT port, eAX'.
7382 *
7383 * @param u16Port The destination port.
7384 * @param fImm Whether the port was specified through an immediate operand
7385 * or the implicit DX register.
7386 * @param cbReg The register size.
7387 */
7388IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7389{
7390 /*
7391 * CPL check
7392 */
7393 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7394 if (rcStrict != VINF_SUCCESS)
7395 return rcStrict;
7396
7397 /*
7398 * Check VMX nested-guest I/O intercept.
7399 */
7400#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7401 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7402 {
7403 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
7404 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7405 return rcStrict;
7406 }
7407#else
7408 RT_NOREF(fImm);
7409#endif
7410
7411 /*
7412 * Check SVM nested-guest I/O intercept.
7413 */
7414#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7415 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7416 {
7417 uint8_t cAddrSizeBits;
7418 switch (pVCpu->iem.s.enmEffAddrMode)
7419 {
7420 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7421 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7422 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7423 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7424 }
7425 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7426 false /* fRep */, false /* fStrIo */, cbInstr);
7427 if (rcStrict == VINF_SVM_VMEXIT)
7428 return VINF_SUCCESS;
7429 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7430 {
7431 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7432 VBOXSTRICTRC_VAL(rcStrict)));
7433 return rcStrict;
7434 }
7435 }
7436#endif
7437
7438 /*
7439 * Perform the I/O.
7440 */
7441 PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
7442 uint32_t u32Value;
7443 switch (cbReg)
7444 {
7445 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7446 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7447 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7448 default: AssertFailedReturn(VERR_IEM_IPE_4);
7449 }
7450 rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, u32Value, cbReg);
7451 if (IOM_SUCCESS(rcStrict))
7452 {
7453 pVCpu->iem.s.cPotentialExits++;
7454 if (rcStrict != VINF_SUCCESS)
7455 iemSetPassUpStatus(pVCpu, rcStrict);
7456
7457 /*
7458 * Check for I/O breakpoints before we complete the instruction.
7459 */
7460 uint32_t const fDr7 = pVCpu->cpum.GstCtx.dr[7];
7461 if (RT_UNLIKELY( ( ( (fDr7 & X86_DR7_ENABLED_MASK)
7462 && X86_DR7_ANY_RW_IO(fDr7)
7463 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7464 || pVM->dbgf.ro.cEnabledHwIoBreakpoints > 0)
7465 && rcStrict == VINF_SUCCESS))
7466 {
7467 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7468 pVCpu->cpum.GstCtx.eflags.uBoth |= DBGFBpCheckIo2(pVM, pVCpu, u16Port, cbReg);
7469 }
7470
7471 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7472 }
7473 return rcStrict;
7474}
7475
7476
7477/**
7478 * Implements 'OUT DX, eAX'.
7479 *
7480 * @param cbReg The register size.
7481 */
7482IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7483{
7484 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7485}
7486
7487
7488/**
7489 * Implements 'CLI'.
7490 */
7491IEM_CIMPL_DEF_0(iemCImpl_cli)
7492{
7493 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7494#ifdef LOG_ENABLED
7495 uint32_t const fEflOld = fEfl;
7496#endif
7497
7498 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7499 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7500 {
7501 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7502 if (!(fEfl & X86_EFL_VM))
7503 {
7504 if (pVCpu->iem.s.uCpl <= uIopl)
7505 fEfl &= ~X86_EFL_IF;
7506 else if ( pVCpu->iem.s.uCpl == 3
7507 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7508 fEfl &= ~X86_EFL_VIF;
7509 else
7510 return iemRaiseGeneralProtectionFault0(pVCpu);
7511 }
7512 /* V8086 */
7513 else if (uIopl == 3)
7514 fEfl &= ~X86_EFL_IF;
7515 else if ( uIopl < 3
7516 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7517 fEfl &= ~X86_EFL_VIF;
7518 else
7519 return iemRaiseGeneralProtectionFault0(pVCpu);
7520 }
7521 /* real mode */
7522 else
7523 fEfl &= ~X86_EFL_IF;
7524
7525 /* Commit. */
7526 IEMMISC_SET_EFL(pVCpu, fEfl);
7527 VBOXSTRICTRC const rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7528 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl));
7529 return rcStrict;
7530}
7531
7532
7533/**
7534 * Implements 'STI'.
7535 */
7536IEM_CIMPL_DEF_0(iemCImpl_sti)
7537{
7538 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7539 uint32_t const fEflOld = fEfl;
7540
7541 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7542 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7543 {
7544 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7545 if (!(fEfl & X86_EFL_VM))
7546 {
7547 if (pVCpu->iem.s.uCpl <= uIopl)
7548 fEfl |= X86_EFL_IF;
7549 else if ( pVCpu->iem.s.uCpl == 3
7550 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7551 && !(fEfl & X86_EFL_VIP) )
7552 fEfl |= X86_EFL_VIF;
7553 else
7554 return iemRaiseGeneralProtectionFault0(pVCpu);
7555 }
7556 /* V8086 */
7557 else if (uIopl == 3)
7558 fEfl |= X86_EFL_IF;
7559 else if ( uIopl < 3
7560 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7561 && !(fEfl & X86_EFL_VIP) )
7562 fEfl |= X86_EFL_VIF;
7563 else
7564 return iemRaiseGeneralProtectionFault0(pVCpu);
7565 }
7566 /* real mode */
7567 else
7568 fEfl |= X86_EFL_IF;
7569
7570 /*
7571 * Commit.
7572 *
7573 * Note! Setting the shadow interrupt flag must be done after RIP updating.
7574 */
7575 IEMMISC_SET_EFL(pVCpu, fEfl);
7576 VBOXSTRICTRC const rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7577 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7578 {
7579 /** @todo only set it the shadow flag if it was clear before? */
7580 CPUMSetInInterruptShadowSti(&pVCpu->cpum.GstCtx);
7581 }
7582 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7583 return rcStrict;
7584}
7585
7586
7587/**
7588 * Implements 'HLT'.
7589 */
7590IEM_CIMPL_DEF_0(iemCImpl_hlt)
7591{
7592 if (pVCpu->iem.s.uCpl != 0)
7593 return iemRaiseGeneralProtectionFault0(pVCpu);
7594
7595 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7596 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7597 {
7598 Log2(("hlt: Guest intercept -> VM-exit\n"));
7599 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7600 }
7601
7602 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7603 {
7604 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7605 IEM_SVM_UPDATE_NRIP(pVCpu);
7606 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7607 }
7608
7609 /** @todo finish: This ASSUMES that iemRegAddToRipAndFinishingClearingRF won't
7610 * be returning any status codes relating to non-guest events being raised, as
7611 * we'll mess up the guest HALT otherwise. */
7612 VBOXSTRICTRC rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7613 if (rcStrict == VINF_SUCCESS)
7614 rcStrict = VINF_EM_HALT;
7615 return rcStrict;
7616}
7617
7618
7619/**
7620 * Implements 'MONITOR'.
7621 */
7622IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7623{
7624 /*
7625 * Permission checks.
7626 */
7627 if (pVCpu->iem.s.uCpl != 0)
7628 {
7629 Log2(("monitor: CPL != 0\n"));
7630 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7631 }
7632 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7633 {
7634 Log2(("monitor: Not in CPUID\n"));
7635 return iemRaiseUndefinedOpcode(pVCpu);
7636 }
7637
7638 /*
7639 * Check VMX guest-intercept.
7640 * This should be considered a fault-like VM-exit.
7641 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7642 */
7643 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7644 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7645 {
7646 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7647 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7648 }
7649
7650 /*
7651 * Gather the operands and validate them.
7652 */
7653 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7654 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7655 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7656/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7657 * \#GP first. */
7658 if (uEcx != 0)
7659 {
7660 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7661 return iemRaiseGeneralProtectionFault0(pVCpu);
7662 }
7663
7664 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7665 if (rcStrict != VINF_SUCCESS)
7666 return rcStrict;
7667
7668 RTGCPHYS GCPhysMem;
7669 /** @todo access size */
7670 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, 1, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7671 if (rcStrict != VINF_SUCCESS)
7672 return rcStrict;
7673
7674#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7675 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7676 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7677 {
7678 /*
7679 * MONITOR does not access the memory, just monitors the address. However,
7680 * if the address falls in the APIC-access page, the address monitored must
7681 * instead be the corresponding address in the virtual-APIC page.
7682 *
7683 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7684 */
7685 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem, 1, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA);
7686 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7687 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7688 return rcStrict;
7689 }
7690#endif
7691
7692 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7693 {
7694 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7695 IEM_SVM_UPDATE_NRIP(pVCpu);
7696 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7697 }
7698
7699 /*
7700 * Call EM to prepare the monitor/wait.
7701 */
7702 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7703 Assert(rcStrict == VINF_SUCCESS);
7704 if (rcStrict == VINF_SUCCESS)
7705 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7706 return rcStrict;
7707}
7708
7709
7710/**
7711 * Implements 'MWAIT'.
7712 */
7713IEM_CIMPL_DEF_0(iemCImpl_mwait)
7714{
7715 /*
7716 * Permission checks.
7717 */
7718 if (pVCpu->iem.s.uCpl != 0)
7719 {
7720 Log2(("mwait: CPL != 0\n"));
7721 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7722 * EFLAGS.VM then.) */
7723 return iemRaiseUndefinedOpcode(pVCpu);
7724 }
7725 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7726 {
7727 Log2(("mwait: Not in CPUID\n"));
7728 return iemRaiseUndefinedOpcode(pVCpu);
7729 }
7730
7731 /* Check VMX nested-guest intercept. */
7732 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7733 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7734 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7735
7736 /*
7737 * Gather the operands and validate them.
7738 */
7739 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7740 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7741 if (uEcx != 0)
7742 {
7743 /* Only supported extension is break on IRQ when IF=0. */
7744 if (uEcx > 1)
7745 {
7746 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7747 return iemRaiseGeneralProtectionFault0(pVCpu);
7748 }
7749 uint32_t fMWaitFeatures = 0;
7750 uint32_t uIgnore = 0;
7751 CPUMGetGuestCpuId(pVCpu, 5, 0, -1 /*f64BitMode*/, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7752 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7753 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7754 {
7755 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7756 return iemRaiseGeneralProtectionFault0(pVCpu);
7757 }
7758
7759#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7760 /*
7761 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7762 * for delivery; and interrupts are disabled the processor does not enter its
7763 * mwait state but rather passes control to the next instruction.
7764 *
7765 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7766 */
7767 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7768 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7769 {
7770 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7771 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7772 /** @todo finish: check up this out after we move int window stuff out of the
7773 * run loop and into the instruction finishing logic here. */
7774 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7775 }
7776#endif
7777 }
7778
7779 /*
7780 * Check SVM nested-guest mwait intercepts.
7781 */
7782 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7783 && EMMonitorIsArmed(pVCpu))
7784 {
7785 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7786 IEM_SVM_UPDATE_NRIP(pVCpu);
7787 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7788 }
7789 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7790 {
7791 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7792 IEM_SVM_UPDATE_NRIP(pVCpu);
7793 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7794 }
7795
7796 /*
7797 * Call EM to prepare the monitor/wait.
7798 *
7799 * This will return VINF_EM_HALT. If there the trap flag is set, we may
7800 * override it when executing iemRegAddToRipAndFinishingClearingRF ASSUMING
7801 * that will only return guest related events.
7802 */
7803 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7804
7805 /** @todo finish: This needs more thinking as we should suppress internal
7806 * debugger events here, or we'll bugger up the guest state even more than we
7807 * alread do around VINF_EM_HALT. */
7808 VBOXSTRICTRC rcStrict2 = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7809 if (rcStrict2 != VINF_SUCCESS)
7810 {
7811 Log2(("mwait: %Rrc (perform) -> %Rrc (finish)!\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2) ));
7812 rcStrict = rcStrict2;
7813 }
7814
7815 return rcStrict;
7816}
7817
7818
7819/**
7820 * Implements 'SWAPGS'.
7821 */
7822IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7823{
7824 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7825
7826 /*
7827 * Permission checks.
7828 */
7829 if (pVCpu->iem.s.uCpl != 0)
7830 {
7831 Log2(("swapgs: CPL != 0\n"));
7832 return iemRaiseUndefinedOpcode(pVCpu);
7833 }
7834
7835 /*
7836 * Do the job.
7837 */
7838 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7839 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7840 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7841 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7842
7843 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7844}
7845
7846
7847#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
7848/**
7849 * Handles a CPUID call.
7850 */
7851static VBOXSTRICTRC iemCpuIdVBoxCall(PVMCPUCC pVCpu, uint32_t iFunction,
7852 uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
7853{
7854 switch (iFunction)
7855 {
7856 case VBOX_CPUID_FN_ID:
7857 LogFlow(("iemCpuIdVBoxCall: VBOX_CPUID_FN_ID\n"));
7858 *pEax = VBOX_CPUID_RESP_ID_EAX;
7859 *pEbx = VBOX_CPUID_RESP_ID_EBX;
7860 *pEcx = VBOX_CPUID_RESP_ID_ECX;
7861 *pEdx = VBOX_CPUID_RESP_ID_EDX;
7862 break;
7863
7864 case VBOX_CPUID_FN_LOG:
7865 {
7866 CPUM_IMPORT_EXTRN_RET(pVCpu, CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX | CPUMCTX_EXTRN_RSI
7867 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
7868
7869 /* Validate input. */
7870 uint32_t cchToLog = *pEdx;
7871 if (cchToLog <= _2M)
7872 {
7873 uint32_t const uLogPicker = *pEbx;
7874 if (uLogPicker <= 1)
7875 {
7876 /* Resolve the logger. */
7877 PRTLOGGER const pLogger = !uLogPicker
7878 ? RTLogDefaultInstanceEx(UINT32_MAX) : RTLogRelGetDefaultInstanceEx(UINT32_MAX);
7879 if (pLogger)
7880 {
7881 /* Copy over the data: */
7882 RTGCPTR GCPtrSrc = pVCpu->cpum.GstCtx.rsi;
7883 while (cchToLog > 0)
7884 {
7885 uint32_t cbToMap = GUEST_PAGE_SIZE - (GCPtrSrc & GUEST_PAGE_OFFSET_MASK);
7886 if (cbToMap > cchToLog)
7887 cbToMap = cchToLog;
7888 /** @todo Extend iemMemMap to allowing page size accessing and avoid 7
7889 * unnecessary calls & iterations per pages. */
7890 if (cbToMap > 512)
7891 cbToMap = 512;
7892 void *pvSrc = NULL;
7893 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvSrc, cbToMap, UINT8_MAX, GCPtrSrc, IEM_ACCESS_DATA_R, 0);
7894 if (rcStrict == VINF_SUCCESS)
7895 {
7896 RTLogBulkNestedWrite(pLogger, (const char *)pvSrc, cbToMap, "Gst:");
7897 rcStrict = iemMemCommitAndUnmap(pVCpu, pvSrc, IEM_ACCESS_DATA_R);
7898 AssertRCSuccessReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7899 }
7900 else
7901 {
7902 Log(("iemCpuIdVBoxCall: %Rrc at %RGp LB %#x\n", VBOXSTRICTRC_VAL(rcStrict), GCPtrSrc, cbToMap));
7903 return rcStrict;
7904 }
7905
7906 /* Advance. */
7907 pVCpu->cpum.GstCtx.rsi = GCPtrSrc += cbToMap;
7908 *pEdx = cchToLog -= cbToMap;
7909 }
7910 *pEax = VINF_SUCCESS;
7911 }
7912 else
7913 *pEax = (uint32_t)VERR_NOT_FOUND;
7914 }
7915 else
7916 *pEax = (uint32_t)VERR_NOT_FOUND;
7917 }
7918 else
7919 *pEax = (uint32_t)VERR_TOO_MUCH_DATA;
7920 *pEdx = VBOX_CPUID_RESP_GEN_EDX;
7921 *pEcx = VBOX_CPUID_RESP_GEN_ECX;
7922 *pEbx = VBOX_CPUID_RESP_GEN_EBX;
7923 break;
7924 }
7925
7926 default:
7927 LogFlow(("iemCpuIdVBoxCall: Invalid function %#x (%#x, %#x)\n", iFunction, *pEbx, *pEdx));
7928 *pEax = (uint32_t)VERR_INVALID_FUNCTION;
7929 *pEbx = (uint32_t)VERR_INVALID_FUNCTION;
7930 *pEcx = (uint32_t)VERR_INVALID_FUNCTION;
7931 *pEdx = (uint32_t)VERR_INVALID_FUNCTION;
7932 break;
7933 }
7934 return VINF_SUCCESS;
7935}
7936#endif /* VBOX_WITHOUT_CPUID_HOST_CALL */
7937
7938/**
7939 * Implements 'CPUID'.
7940 */
7941IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7942{
7943 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7944 {
7945 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7946 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7947 }
7948
7949 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7950 {
7951 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7952 IEM_SVM_UPDATE_NRIP(pVCpu);
7953 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7954 }
7955
7956
7957 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7958 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7959
7960#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
7961 /*
7962 * CPUID host call backdoor.
7963 */
7964 if ( uEax == VBOX_CPUID_REQ_EAX_FIXED
7965 && (uEcx & VBOX_CPUID_REQ_ECX_FIXED_MASK) == VBOX_CPUID_REQ_ECX_FIXED
7966 && pVCpu->CTX_SUFF(pVM)->iem.s.fCpuIdHostCall)
7967 {
7968 VBOXSTRICTRC rcStrict = iemCpuIdVBoxCall(pVCpu, uEcx & VBOX_CPUID_REQ_ECX_FN_MASK,
7969 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx,
7970 &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7971 if (rcStrict != VINF_SUCCESS)
7972 return rcStrict;
7973 }
7974 /*
7975 * Regular CPUID.
7976 */
7977 else
7978#endif
7979 CPUMGetGuestCpuId(pVCpu, uEax, uEcx, pVCpu->cpum.GstCtx.cs.Attr.n.u1Long,
7980 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7981
7982 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7983 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7984 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7985 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7986 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7987
7988 pVCpu->iem.s.cPotentialExits++;
7989 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7990}
7991
7992
7993/**
7994 * Implements 'AAD'.
7995 *
7996 * @param bImm The immediate operand.
7997 */
7998IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7999{
8000 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
8001 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
8002 pVCpu->cpum.GstCtx.ax = al;
8003 iemHlpUpdateArithEFlagsU8(pVCpu, al,
8004 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
8005 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
8006
8007 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8008}
8009
8010
8011/**
8012 * Implements 'AAM'.
8013 *
8014 * @param bImm The immediate operand. Cannot be 0.
8015 */
8016IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
8017{
8018 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
8019
8020 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
8021 uint8_t const al = (uint8_t)ax % bImm;
8022 uint8_t const ah = (uint8_t)ax / bImm;
8023 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
8024 iemHlpUpdateArithEFlagsU8(pVCpu, al,
8025 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
8026 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
8027
8028 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8029}
8030
8031
8032/**
8033 * Implements 'DAA'.
8034 */
8035IEM_CIMPL_DEF_0(iemCImpl_daa)
8036{
8037 uint8_t const al = pVCpu->cpum.GstCtx.al;
8038 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
8039
8040 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8041 || (al & 0xf) >= 10)
8042 {
8043 pVCpu->cpum.GstCtx.al = al + 6;
8044 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8045 }
8046 else
8047 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8048
8049 if (al >= 0x9a || fCarry)
8050 {
8051 pVCpu->cpum.GstCtx.al += 0x60;
8052 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8053 }
8054 else
8055 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8056
8057 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8058 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8059}
8060
8061
8062/**
8063 * Implements 'DAS'.
8064 */
8065IEM_CIMPL_DEF_0(iemCImpl_das)
8066{
8067 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
8068 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
8069
8070 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8071 || (uInputAL & 0xf) >= 10)
8072 {
8073 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8074 if (uInputAL < 6)
8075 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8076 pVCpu->cpum.GstCtx.al = uInputAL - 6;
8077 }
8078 else
8079 {
8080 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8081 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8082 }
8083
8084 if (uInputAL >= 0x9a || fCarry)
8085 {
8086 pVCpu->cpum.GstCtx.al -= 0x60;
8087 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8088 }
8089
8090 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8091 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8092}
8093
8094
8095/**
8096 * Implements 'AAA'.
8097 */
8098IEM_CIMPL_DEF_0(iemCImpl_aaa)
8099{
8100 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
8101 {
8102 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8103 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8104 {
8105 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.uBoth);
8106 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8107 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8108 }
8109 else
8110 {
8111 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8112 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8113 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8114 }
8115 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8116 }
8117 else
8118 {
8119 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8120 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8121 {
8122 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
8123 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8124 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8125 }
8126 else
8127 {
8128 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8129 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8130 }
8131 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8132 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8133 }
8134
8135 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8136}
8137
8138
8139/**
8140 * Implements 'AAS'.
8141 */
8142IEM_CIMPL_DEF_0(iemCImpl_aas)
8143{
8144 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
8145 {
8146 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8147 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8148 {
8149 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.uBoth);
8150 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8151 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8152 }
8153 else
8154 {
8155 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8156 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8157 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8158 }
8159 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8160 }
8161 else
8162 {
8163 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8164 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8165 {
8166 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
8167 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8168 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8169 }
8170 else
8171 {
8172 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8173 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8174 }
8175 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8176 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8177 }
8178
8179 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8180}
8181
8182
8183/**
8184 * Implements the 16-bit version of 'BOUND'.
8185 *
8186 * @note We have separate 16-bit and 32-bit variants of this function due to
8187 * the decoder using unsigned parameters, whereas we want signed one to
8188 * do the job. This is significant for a recompiler.
8189 */
8190IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
8191{
8192 /*
8193 * Check if the index is inside the bounds, otherwise raise #BR.
8194 */
8195 if ( idxArray >= idxLowerBound
8196 && idxArray <= idxUpperBound)
8197 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8198 return iemRaiseBoundRangeExceeded(pVCpu);
8199}
8200
8201
8202/**
8203 * Implements the 32-bit version of 'BOUND'.
8204 */
8205IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
8206{
8207 /*
8208 * Check if the index is inside the bounds, otherwise raise #BR.
8209 */
8210 if ( idxArray >= idxLowerBound
8211 && idxArray <= idxUpperBound)
8212 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8213 return iemRaiseBoundRangeExceeded(pVCpu);
8214}
8215
8216
8217
8218/*
8219 * Instantiate the various string operation combinations.
8220 */
8221#define OP_SIZE 8
8222#define ADDR_SIZE 16
8223#include "IEMAllCImplStrInstr.cpp.h"
8224#define OP_SIZE 8
8225#define ADDR_SIZE 32
8226#include "IEMAllCImplStrInstr.cpp.h"
8227#define OP_SIZE 8
8228#define ADDR_SIZE 64
8229#include "IEMAllCImplStrInstr.cpp.h"
8230
8231#define OP_SIZE 16
8232#define ADDR_SIZE 16
8233#include "IEMAllCImplStrInstr.cpp.h"
8234#define OP_SIZE 16
8235#define ADDR_SIZE 32
8236#include "IEMAllCImplStrInstr.cpp.h"
8237#define OP_SIZE 16
8238#define ADDR_SIZE 64
8239#include "IEMAllCImplStrInstr.cpp.h"
8240
8241#define OP_SIZE 32
8242#define ADDR_SIZE 16
8243#include "IEMAllCImplStrInstr.cpp.h"
8244#define OP_SIZE 32
8245#define ADDR_SIZE 32
8246#include "IEMAllCImplStrInstr.cpp.h"
8247#define OP_SIZE 32
8248#define ADDR_SIZE 64
8249#include "IEMAllCImplStrInstr.cpp.h"
8250
8251#define OP_SIZE 64
8252#define ADDR_SIZE 32
8253#include "IEMAllCImplStrInstr.cpp.h"
8254#define OP_SIZE 64
8255#define ADDR_SIZE 64
8256#include "IEMAllCImplStrInstr.cpp.h"
8257
8258
8259/**
8260 * Implements 'XGETBV'.
8261 */
8262IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
8263{
8264 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
8265 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8266 {
8267 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8268 switch (uEcx)
8269 {
8270 case 0:
8271 break;
8272
8273 case 1: /** @todo Implement XCR1 support. */
8274 default:
8275 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
8276 return iemRaiseGeneralProtectionFault0(pVCpu);
8277
8278 }
8279 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8280 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8281 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8282
8283 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8284 }
8285 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
8286 return iemRaiseUndefinedOpcode(pVCpu);
8287}
8288
8289
8290/**
8291 * Implements 'XSETBV'.
8292 */
8293IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
8294{
8295 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8296 {
8297 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
8298 {
8299 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
8300 IEM_SVM_UPDATE_NRIP(pVCpu);
8301 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
8302 }
8303
8304 if (pVCpu->iem.s.uCpl == 0)
8305 {
8306 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8307
8308 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8309 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
8310
8311 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8312 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
8313 switch (uEcx)
8314 {
8315 case 0:
8316 {
8317 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
8318 if (rc == VINF_SUCCESS)
8319 break;
8320 Assert(rc == VERR_CPUM_RAISE_GP_0);
8321 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8322 return iemRaiseGeneralProtectionFault0(pVCpu);
8323 }
8324
8325 case 1: /** @todo Implement XCR1 support. */
8326 default:
8327 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8328 return iemRaiseGeneralProtectionFault0(pVCpu);
8329
8330 }
8331
8332 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8333 }
8334
8335 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
8336 return iemRaiseGeneralProtectionFault0(pVCpu);
8337 }
8338 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
8339 return iemRaiseUndefinedOpcode(pVCpu);
8340}
8341
8342#ifndef RT_ARCH_ARM64
8343# ifdef IN_RING3
8344
8345/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
8346struct IEMCIMPLCX16ARGS
8347{
8348 PRTUINT128U pu128Dst;
8349 PRTUINT128U pu128RaxRdx;
8350 PRTUINT128U pu128RbxRcx;
8351 uint32_t *pEFlags;
8352# ifdef VBOX_STRICT
8353 uint32_t cCalls;
8354# endif
8355};
8356
8357/**
8358 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
8359 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
8360 */
8361static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPUCC pVCpu, void *pvUser)
8362{
8363 RT_NOREF(pVM, pVCpu);
8364 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
8365# ifdef VBOX_STRICT
8366 Assert(pArgs->cCalls == 0);
8367 pArgs->cCalls++;
8368# endif
8369
8370 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
8371 return VINF_SUCCESS;
8372}
8373
8374# endif /* IN_RING3 */
8375
8376/**
8377 * Implements 'CMPXCHG16B' fallback using rendezvous.
8378 */
8379IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
8380 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
8381{
8382# ifdef IN_RING3
8383 struct IEMCIMPLCX16ARGS Args;
8384 Args.pu128Dst = pu128Dst;
8385 Args.pu128RaxRdx = pu128RaxRdx;
8386 Args.pu128RbxRcx = pu128RbxRcx;
8387 Args.pEFlags = pEFlags;
8388# ifdef VBOX_STRICT
8389 Args.cCalls = 0;
8390# endif
8391 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
8392 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
8393 Assert(Args.cCalls == 1);
8394 if (rcStrict == VINF_SUCCESS)
8395 {
8396 /* Duplicated tail code. */
8397 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
8398 if (rcStrict == VINF_SUCCESS)
8399 {
8400 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
8401 if (!(*pEFlags & X86_EFL_ZF))
8402 {
8403 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
8404 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
8405 }
8406 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8407 }
8408 }
8409 return rcStrict;
8410# else
8411 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
8412 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
8413# endif
8414}
8415
8416#endif /* RT_ARCH_ARM64 */
8417
8418/**
8419 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
8420 *
8421 * This is implemented in C because it triggers a load like behaviour without
8422 * actually reading anything. Since that's not so common, it's implemented
8423 * here.
8424 *
8425 * @param iEffSeg The effective segment.
8426 * @param GCPtrEff The address of the image.
8427 */
8428IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8429{
8430 /*
8431 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
8432 */
8433 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
8434 if (rcStrict == VINF_SUCCESS)
8435 {
8436 RTGCPHYS GCPhysMem;
8437 /** @todo access size. */
8438 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, 1, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
8439 if (rcStrict == VINF_SUCCESS)
8440 {
8441#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8442 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8443 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
8444 {
8445 /*
8446 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
8447 * that contains the address. However, if the address falls in the APIC-access
8448 * page, the address flushed must instead be the corresponding address in the
8449 * virtual-APIC page.
8450 *
8451 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
8452 */
8453 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem, 1, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA);
8454 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
8455 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
8456 return rcStrict;
8457 }
8458#endif
8459 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8460 }
8461 }
8462
8463 return rcStrict;
8464}
8465
8466
8467/**
8468 * Implements 'FINIT' and 'FNINIT'.
8469 *
8470 * @param fCheckXcpts Whether to check for umasked pending exceptions or
8471 * not.
8472 */
8473IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
8474{
8475 /*
8476 * Exceptions.
8477 */
8478 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
8479 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
8480 return iemRaiseDeviceNotAvailable(pVCpu);
8481
8482 iemFpuActualizeStateForChange(pVCpu);
8483 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
8484
8485 /* FINIT: Raise #MF on pending exception(s): */
8486 if (fCheckXcpts && (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES))
8487 return iemRaiseMathFault(pVCpu);
8488
8489 /*
8490 * Reset the state.
8491 */
8492 PX86XSAVEAREA pXState = &pVCpu->cpum.GstCtx.XState;
8493
8494 /* Rotate the stack to account for changed TOS. */
8495 iemFpuRotateStackSetTop(&pXState->x87, 0);
8496
8497 pXState->x87.FCW = 0x37f;
8498 pXState->x87.FSW = 0;
8499 pXState->x87.FTW = 0x00; /* 0 - empty. */
8500 /** @todo Intel says the instruction and data pointers are not cleared on
8501 * 387, presume that 8087 and 287 doesn't do so either. */
8502 /** @todo test this stuff. */
8503 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
8504 {
8505 pXState->x87.FPUDP = 0;
8506 pXState->x87.DS = 0; //??
8507 pXState->x87.Rsrvd2 = 0;
8508 pXState->x87.FPUIP = 0;
8509 pXState->x87.CS = 0; //??
8510 pXState->x87.Rsrvd1 = 0;
8511 }
8512 pXState->x87.FOP = 0;
8513
8514 iemHlpUsedFpu(pVCpu);
8515 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8516}
8517
8518
8519/**
8520 * Implements 'FXSAVE'.
8521 *
8522 * @param iEffSeg The effective segment.
8523 * @param GCPtrEff The address of the image.
8524 * @param enmEffOpSize The operand size (only REX.W really matters).
8525 */
8526IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8527{
8528 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8529
8530 /*
8531 * Raise exceptions.
8532 */
8533 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8534 return iemRaiseDeviceNotAvailable(pVCpu);
8535
8536 /*
8537 * Access the memory.
8538 */
8539 void *pvMem512;
8540 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE,
8541 15 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8542 if (rcStrict != VINF_SUCCESS)
8543 return rcStrict;
8544 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8545 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8546
8547 /*
8548 * Store the registers.
8549 */
8550 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8551 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
8552
8553 /* common for all formats */
8554 pDst->FCW = pSrc->FCW;
8555 pDst->FSW = pSrc->FSW;
8556 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8557 pDst->FOP = pSrc->FOP;
8558 pDst->MXCSR = pSrc->MXCSR;
8559 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8560 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8561 {
8562 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8563 * them for now... */
8564 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8565 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8566 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8567 pDst->aRegs[i].au32[3] = 0;
8568 }
8569
8570 /* FPU IP, CS, DP and DS. */
8571 pDst->FPUIP = pSrc->FPUIP;
8572 pDst->CS = pSrc->CS;
8573 pDst->FPUDP = pSrc->FPUDP;
8574 pDst->DS = pSrc->DS;
8575 if (enmEffOpSize == IEMMODE_64BIT)
8576 {
8577 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8578 pDst->Rsrvd1 = pSrc->Rsrvd1;
8579 pDst->Rsrvd2 = pSrc->Rsrvd2;
8580 }
8581 else
8582 {
8583 pDst->Rsrvd1 = 0;
8584 pDst->Rsrvd2 = 0;
8585 }
8586
8587 /* XMM registers. Skipped in 64-bit CPL0 if EFER.FFXSR (AMD only) is set. */
8588 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8589 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8590 || pVCpu->iem.s.uCpl != 0)
8591 {
8592 uint32_t cXmmRegs = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? 16 : 8;
8593 for (uint32_t i = 0; i < cXmmRegs; i++)
8594 pDst->aXMM[i] = pSrc->aXMM[i];
8595 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8596 * right? */
8597 }
8598
8599 /*
8600 * Commit the memory.
8601 */
8602 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8603 if (rcStrict != VINF_SUCCESS)
8604 return rcStrict;
8605
8606 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8607}
8608
8609
8610/**
8611 * Implements 'FXRSTOR'.
8612 *
8613 * @param iEffSeg The effective segment register for @a GCPtrEff.
8614 * @param GCPtrEff The address of the image.
8615 * @param enmEffOpSize The operand size (only REX.W really matters).
8616 */
8617IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8618{
8619 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8620
8621 /*
8622 * Raise exceptions.
8623 */
8624 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8625 return iemRaiseDeviceNotAvailable(pVCpu);
8626
8627 /*
8628 * Access the memory.
8629 */
8630 void *pvMem512;
8631 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R,
8632 15 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8633 if (rcStrict != VINF_SUCCESS)
8634 return rcStrict;
8635 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8636 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8637
8638 /*
8639 * Check the state for stuff which will #GP(0).
8640 */
8641 uint32_t const fMXCSR = pSrc->MXCSR;
8642 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8643 if (fMXCSR & ~fMXCSR_MASK)
8644 {
8645 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8646 return iemRaiseGeneralProtectionFault0(pVCpu);
8647 }
8648
8649 /*
8650 * Load the registers.
8651 */
8652 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8653 * implementation specific whether MXCSR and XMM0-XMM7 are
8654 * restored according to Intel.
8655 * AMD says MXCSR and XMM registers are never loaded if
8656 * CR4.OSFXSR=0.
8657 */
8658
8659 /* common for all formats */
8660 pDst->FCW = pSrc->FCW;
8661 pDst->FSW = pSrc->FSW;
8662 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8663 pDst->FOP = pSrc->FOP;
8664 pDst->MXCSR = fMXCSR;
8665 /* (MXCSR_MASK is read-only) */
8666 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8667 {
8668 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8669 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8670 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8671 pDst->aRegs[i].au32[3] = 0;
8672 }
8673
8674 /* FPU IP, CS, DP and DS. */
8675 /** @todo AMD says this is only done if FSW.ES is set after loading. */
8676 if (enmEffOpSize == IEMMODE_64BIT)
8677 {
8678 pDst->FPUIP = pSrc->FPUIP;
8679 pDst->CS = pSrc->CS;
8680 pDst->Rsrvd1 = pSrc->Rsrvd1;
8681 pDst->FPUDP = pSrc->FPUDP;
8682 pDst->DS = pSrc->DS;
8683 pDst->Rsrvd2 = pSrc->Rsrvd2;
8684 }
8685 else
8686 {
8687 pDst->FPUIP = pSrc->FPUIP;
8688 pDst->CS = pSrc->CS;
8689 pDst->Rsrvd1 = 0;
8690 pDst->FPUDP = pSrc->FPUDP;
8691 pDst->DS = pSrc->DS;
8692 pDst->Rsrvd2 = 0;
8693 }
8694
8695 /* XMM registers. Skipped in 64-bit CPL0 if EFER.FFXSR (AMD only) is set.
8696 * Does not affect MXCSR, only registers.
8697 */
8698 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8699 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8700 || pVCpu->iem.s.uCpl != 0)
8701 {
8702 uint32_t cXmmRegs = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? 16 : 8;
8703 for (uint32_t i = 0; i < cXmmRegs; i++)
8704 pDst->aXMM[i] = pSrc->aXMM[i];
8705 }
8706
8707 pDst->FCW &= ~X86_FCW_ZERO_MASK;
8708 iemFpuRecalcExceptionStatus(pDst);
8709
8710 if (pDst->FSW & X86_FSW_ES)
8711 Log11(("fxrstor: %04x:%08RX64: loading state with pending FPU exception (FSW=%#x)\n",
8712 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pSrc->FSW));
8713
8714 /*
8715 * Unmap the memory.
8716 */
8717 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8718 if (rcStrict != VINF_SUCCESS)
8719 return rcStrict;
8720
8721 iemHlpUsedFpu(pVCpu);
8722 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8723}
8724
8725
8726/**
8727 * Implements 'XSAVE'.
8728 *
8729 * @param iEffSeg The effective segment.
8730 * @param GCPtrEff The address of the image.
8731 * @param enmEffOpSize The operand size (only REX.W really matters).
8732 */
8733IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8734{
8735 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8736
8737 /*
8738 * Raise exceptions.
8739 */
8740 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8741 return iemRaiseUndefinedOpcode(pVCpu);
8742 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8743 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8744 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8745 {
8746 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8747 return iemRaiseUndefinedOpcode(pVCpu);
8748 }
8749 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8750 return iemRaiseDeviceNotAvailable(pVCpu);
8751
8752 /*
8753 * Calc the requested mask.
8754 */
8755 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8756 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8757 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8758
8759/** @todo figure out the exact protocol for the memory access. Currently we
8760 * just need this crap to work halfways to make it possible to test
8761 * AVX instructions. */
8762/** @todo figure out the XINUSE and XMODIFIED */
8763
8764 /*
8765 * Access the x87 memory state.
8766 */
8767 /* The x87+SSE state. */
8768 void *pvMem512;
8769 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE,
8770 63 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8771 if (rcStrict != VINF_SUCCESS)
8772 return rcStrict;
8773 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8774 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8775
8776 /* The header. */
8777 PX86XSAVEHDR pHdr;
8778 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW, 0 /* checked above */);
8779 if (rcStrict != VINF_SUCCESS)
8780 return rcStrict;
8781
8782 /*
8783 * Store the X87 state.
8784 */
8785 if (fReqComponents & XSAVE_C_X87)
8786 {
8787 /* common for all formats */
8788 pDst->FCW = pSrc->FCW;
8789 pDst->FSW = pSrc->FSW;
8790 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8791 pDst->FOP = pSrc->FOP;
8792 pDst->FPUIP = pSrc->FPUIP;
8793 pDst->CS = pSrc->CS;
8794 pDst->FPUDP = pSrc->FPUDP;
8795 pDst->DS = pSrc->DS;
8796 if (enmEffOpSize == IEMMODE_64BIT)
8797 {
8798 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8799 pDst->Rsrvd1 = pSrc->Rsrvd1;
8800 pDst->Rsrvd2 = pSrc->Rsrvd2;
8801 }
8802 else
8803 {
8804 pDst->Rsrvd1 = 0;
8805 pDst->Rsrvd2 = 0;
8806 }
8807 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8808 {
8809 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8810 * them for now... */
8811 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8812 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8813 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8814 pDst->aRegs[i].au32[3] = 0;
8815 }
8816
8817 }
8818
8819 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8820 {
8821 pDst->MXCSR = pSrc->MXCSR;
8822 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8823 }
8824
8825 if (fReqComponents & XSAVE_C_SSE)
8826 {
8827 /* XMM registers. */
8828 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8829 for (uint32_t i = 0; i < cXmmRegs; i++)
8830 pDst->aXMM[i] = pSrc->aXMM[i];
8831 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8832 * right? */
8833 }
8834
8835 /* Commit the x87 state bits. (probably wrong) */
8836 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8837 if (rcStrict != VINF_SUCCESS)
8838 return rcStrict;
8839
8840 /*
8841 * Store AVX state.
8842 */
8843 if (fReqComponents & XSAVE_C_YMM)
8844 {
8845 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8846 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8847 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8848 PX86XSAVEYMMHI pCompDst;
8849 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8850 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE, 0 /* checked above */);
8851 if (rcStrict != VINF_SUCCESS)
8852 return rcStrict;
8853
8854 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8855 for (uint32_t i = 0; i < cXmmRegs; i++)
8856 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8857
8858 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8859 if (rcStrict != VINF_SUCCESS)
8860 return rcStrict;
8861 }
8862
8863 /*
8864 * Update the header.
8865 */
8866 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8867 | (fReqComponents & fXInUse);
8868
8869 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8870 if (rcStrict != VINF_SUCCESS)
8871 return rcStrict;
8872
8873 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8874}
8875
8876
8877/**
8878 * Implements 'XRSTOR'.
8879 *
8880 * @param iEffSeg The effective segment.
8881 * @param GCPtrEff The address of the image.
8882 * @param enmEffOpSize The operand size (only REX.W really matters).
8883 */
8884IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8885{
8886 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8887
8888 /*
8889 * Raise exceptions.
8890 */
8891 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8892 return iemRaiseUndefinedOpcode(pVCpu);
8893 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8894 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8895 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8896 {
8897 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8898 return iemRaiseUndefinedOpcode(pVCpu);
8899 }
8900 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8901 return iemRaiseDeviceNotAvailable(pVCpu);
8902 if (GCPtrEff & 63)
8903 {
8904 /** @todo CPU/VM detection possible! \#AC might not be signal for
8905 * all/any misalignment sizes, intel says its an implementation detail. */
8906 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8907 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8908 && pVCpu->iem.s.uCpl == 3)
8909 return iemRaiseAlignmentCheckException(pVCpu);
8910 return iemRaiseGeneralProtectionFault0(pVCpu);
8911 }
8912
8913/** @todo figure out the exact protocol for the memory access. Currently we
8914 * just need this crap to work halfways to make it possible to test
8915 * AVX instructions. */
8916/** @todo figure out the XINUSE and XMODIFIED */
8917
8918 /*
8919 * Access the x87 memory state.
8920 */
8921 /* The x87+SSE state. */
8922 void *pvMem512;
8923 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R,
8924 63 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8925 if (rcStrict != VINF_SUCCESS)
8926 return rcStrict;
8927 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8928 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8929
8930 /*
8931 * Calc the requested mask
8932 */
8933 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.XState.Hdr;
8934 PCX86XSAVEHDR pHdrSrc;
8935 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512,
8936 IEM_ACCESS_DATA_R, 0 /* checked above */);
8937 if (rcStrict != VINF_SUCCESS)
8938 return rcStrict;
8939
8940 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8941 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8942 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8943 uint64_t const fRstorMask = pHdrSrc->bmXState;
8944 uint64_t const fCompMask = pHdrSrc->bmXComp;
8945
8946 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8947
8948 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8949
8950 /* We won't need this any longer. */
8951 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8952 if (rcStrict != VINF_SUCCESS)
8953 return rcStrict;
8954
8955 /*
8956 * Load the X87 state.
8957 */
8958 if (fReqComponents & XSAVE_C_X87)
8959 {
8960 if (fRstorMask & XSAVE_C_X87)
8961 {
8962 pDst->FCW = pSrc->FCW;
8963 pDst->FSW = pSrc->FSW;
8964 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8965 pDst->FOP = pSrc->FOP;
8966 pDst->FPUIP = pSrc->FPUIP;
8967 pDst->CS = pSrc->CS;
8968 pDst->FPUDP = pSrc->FPUDP;
8969 pDst->DS = pSrc->DS;
8970 if (enmEffOpSize == IEMMODE_64BIT)
8971 {
8972 /* Load upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8973 pDst->Rsrvd1 = pSrc->Rsrvd1;
8974 pDst->Rsrvd2 = pSrc->Rsrvd2;
8975 }
8976 else
8977 {
8978 pDst->Rsrvd1 = 0;
8979 pDst->Rsrvd2 = 0;
8980 }
8981 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8982 {
8983 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8984 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8985 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8986 pDst->aRegs[i].au32[3] = 0;
8987 }
8988
8989 pDst->FCW &= ~X86_FCW_ZERO_MASK;
8990 iemFpuRecalcExceptionStatus(pDst);
8991
8992 if (pDst->FSW & X86_FSW_ES)
8993 Log11(("xrstor: %04x:%08RX64: loading state with pending FPU exception (FSW=%#x)\n",
8994 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pSrc->FSW));
8995 }
8996 else
8997 {
8998 pDst->FCW = 0x37f;
8999 pDst->FSW = 0;
9000 pDst->FTW = 0x00; /* 0 - empty. */
9001 pDst->FPUDP = 0;
9002 pDst->DS = 0; //??
9003 pDst->Rsrvd2= 0;
9004 pDst->FPUIP = 0;
9005 pDst->CS = 0; //??
9006 pDst->Rsrvd1= 0;
9007 pDst->FOP = 0;
9008 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
9009 {
9010 pDst->aRegs[i].au32[0] = 0;
9011 pDst->aRegs[i].au32[1] = 0;
9012 pDst->aRegs[i].au32[2] = 0;
9013 pDst->aRegs[i].au32[3] = 0;
9014 }
9015 }
9016 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
9017 }
9018
9019 /* MXCSR */
9020 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
9021 {
9022 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
9023 pDst->MXCSR = pSrc->MXCSR;
9024 else
9025 pDst->MXCSR = 0x1f80;
9026 }
9027
9028 /* XMM registers. */
9029 if (fReqComponents & XSAVE_C_SSE)
9030 {
9031 if (fRstorMask & XSAVE_C_SSE)
9032 {
9033 for (uint32_t i = 0; i < cXmmRegs; i++)
9034 pDst->aXMM[i] = pSrc->aXMM[i];
9035 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
9036 * right? */
9037 }
9038 else
9039 {
9040 for (uint32_t i = 0; i < cXmmRegs; i++)
9041 {
9042 pDst->aXMM[i].au64[0] = 0;
9043 pDst->aXMM[i].au64[1] = 0;
9044 }
9045 }
9046 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
9047 }
9048
9049 /* Unmap the x87 state bits (so we've don't run out of mapping). */
9050 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
9051 if (rcStrict != VINF_SUCCESS)
9052 return rcStrict;
9053
9054 /*
9055 * Restore AVX state.
9056 */
9057 if (fReqComponents & XSAVE_C_YMM)
9058 {
9059 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
9060 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
9061
9062 if (fRstorMask & XSAVE_C_YMM)
9063 {
9064 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
9065 PCX86XSAVEYMMHI pCompSrc;
9066 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
9067 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
9068 IEM_ACCESS_DATA_R, 0 /* checked above */);
9069 if (rcStrict != VINF_SUCCESS)
9070 return rcStrict;
9071
9072 for (uint32_t i = 0; i < cXmmRegs; i++)
9073 {
9074 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
9075 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
9076 }
9077
9078 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
9079 if (rcStrict != VINF_SUCCESS)
9080 return rcStrict;
9081 }
9082 else
9083 {
9084 for (uint32_t i = 0; i < cXmmRegs; i++)
9085 {
9086 pCompDst->aYmmHi[i].au64[0] = 0;
9087 pCompDst->aYmmHi[i].au64[1] = 0;
9088 }
9089 }
9090 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
9091 }
9092
9093 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9094}
9095
9096
9097
9098
9099/**
9100 * Implements 'STMXCSR'.
9101 *
9102 * @param iEffSeg The effective segment register for @a GCPtrEff.
9103 * @param GCPtrEff The address of the image.
9104 */
9105IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
9106{
9107 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
9108
9109 /*
9110 * Raise exceptions.
9111 */
9112 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
9113 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
9114 {
9115 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
9116 {
9117 /*
9118 * Do the job.
9119 */
9120 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
9121 if (rcStrict == VINF_SUCCESS)
9122 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9123 return rcStrict;
9124 }
9125 return iemRaiseDeviceNotAvailable(pVCpu);
9126 }
9127 return iemRaiseUndefinedOpcode(pVCpu);
9128}
9129
9130
9131/**
9132 * Implements 'VSTMXCSR'.
9133 *
9134 * @param iEffSeg The effective segment register for @a GCPtrEff.
9135 * @param GCPtrEff The address of the image.
9136 */
9137IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
9138{
9139 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
9140
9141 /*
9142 * Raise exceptions.
9143 */
9144 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
9145 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
9146 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
9147 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
9148 {
9149 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
9150 {
9151 /*
9152 * Do the job.
9153 */
9154 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
9155 if (rcStrict == VINF_SUCCESS)
9156 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9157 return rcStrict;
9158 }
9159 return iemRaiseDeviceNotAvailable(pVCpu);
9160 }
9161 return iemRaiseUndefinedOpcode(pVCpu);
9162}
9163
9164
9165/**
9166 * Implements 'LDMXCSR'.
9167 *
9168 * @param iEffSeg The effective segment register for @a GCPtrEff.
9169 * @param GCPtrEff The address of the image.
9170 */
9171IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
9172{
9173 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
9174
9175 /*
9176 * Raise exceptions.
9177 */
9178 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
9179 * happen after or before \#UD and \#EM? */
9180 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
9181 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
9182 {
9183 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
9184 {
9185 /*
9186 * Do the job.
9187 */
9188 uint32_t fNewMxCsr;
9189 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
9190 if (rcStrict == VINF_SUCCESS)
9191 {
9192 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
9193 if (!(fNewMxCsr & ~fMxCsrMask))
9194 {
9195 pVCpu->cpum.GstCtx.XState.x87.MXCSR = fNewMxCsr;
9196 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9197 }
9198 Log(("ldmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
9199 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
9200 return iemRaiseGeneralProtectionFault0(pVCpu);
9201 }
9202 return rcStrict;
9203 }
9204 return iemRaiseDeviceNotAvailable(pVCpu);
9205 }
9206 return iemRaiseUndefinedOpcode(pVCpu);
9207}
9208
9209
9210/**
9211 * Commmon routine for fnstenv and fnsave.
9212 *
9213 * @param pVCpu The cross context virtual CPU structure of the calling thread.
9214 * @param enmEffOpSize The effective operand size.
9215 * @param uPtr Where to store the state.
9216 */
9217static void iemCImplCommonFpuStoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
9218{
9219 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9220 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.XState.x87;
9221 if (enmEffOpSize == IEMMODE_16BIT)
9222 {
9223 uPtr.pu16[0] = pSrcX87->FCW;
9224 uPtr.pu16[1] = pSrcX87->FSW;
9225 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
9226 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9227 {
9228 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
9229 * protected mode or long mode and we save it in real mode? And vice
9230 * versa? And with 32-bit operand size? I think CPU is storing the
9231 * effective address ((CS << 4) + IP) in the offset register and not
9232 * doing any address calculations here. */
9233 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
9234 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
9235 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
9236 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
9237 }
9238 else
9239 {
9240 uPtr.pu16[3] = pSrcX87->FPUIP;
9241 uPtr.pu16[4] = pSrcX87->CS;
9242 uPtr.pu16[5] = pSrcX87->FPUDP;
9243 uPtr.pu16[6] = pSrcX87->DS;
9244 }
9245 }
9246 else
9247 {
9248 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
9249 uPtr.pu16[0*2] = pSrcX87->FCW;
9250 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
9251 uPtr.pu16[1*2] = pSrcX87->FSW;
9252 uPtr.pu16[1*2+1] = 0xffff;
9253 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
9254 uPtr.pu16[2*2+1] = 0xffff;
9255 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9256 {
9257 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
9258 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
9259 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
9260 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
9261 }
9262 else
9263 {
9264 uPtr.pu32[3] = pSrcX87->FPUIP;
9265 uPtr.pu16[4*2] = pSrcX87->CS;
9266 uPtr.pu16[4*2+1] = pSrcX87->FOP;
9267 uPtr.pu32[5] = pSrcX87->FPUDP;
9268 uPtr.pu16[6*2] = pSrcX87->DS;
9269 uPtr.pu16[6*2+1] = 0xffff;
9270 }
9271 }
9272}
9273
9274
9275/**
9276 * Commmon routine for fldenv and frstor
9277 *
9278 * @param pVCpu The cross context virtual CPU structure of the calling thread.
9279 * @param enmEffOpSize The effective operand size.
9280 * @param uPtr Where to store the state.
9281 */
9282static void iemCImplCommonFpuRestoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
9283{
9284 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9285 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.XState.x87;
9286 if (enmEffOpSize == IEMMODE_16BIT)
9287 {
9288 pDstX87->FCW = uPtr.pu16[0];
9289 pDstX87->FSW = uPtr.pu16[1];
9290 pDstX87->FTW = uPtr.pu16[2];
9291 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9292 {
9293 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
9294 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
9295 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
9296 pDstX87->CS = 0;
9297 pDstX87->Rsrvd1= 0;
9298 pDstX87->DS = 0;
9299 pDstX87->Rsrvd2= 0;
9300 }
9301 else
9302 {
9303 pDstX87->FPUIP = uPtr.pu16[3];
9304 pDstX87->CS = uPtr.pu16[4];
9305 pDstX87->Rsrvd1= 0;
9306 pDstX87->FPUDP = uPtr.pu16[5];
9307 pDstX87->DS = uPtr.pu16[6];
9308 pDstX87->Rsrvd2= 0;
9309 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
9310 }
9311 }
9312 else
9313 {
9314 pDstX87->FCW = uPtr.pu16[0*2];
9315 pDstX87->FSW = uPtr.pu16[1*2];
9316 pDstX87->FTW = uPtr.pu16[2*2];
9317 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9318 {
9319 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
9320 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
9321 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
9322 pDstX87->CS = 0;
9323 pDstX87->Rsrvd1= 0;
9324 pDstX87->DS = 0;
9325 pDstX87->Rsrvd2= 0;
9326 }
9327 else
9328 {
9329 pDstX87->FPUIP = uPtr.pu32[3];
9330 pDstX87->CS = uPtr.pu16[4*2];
9331 pDstX87->Rsrvd1= 0;
9332 pDstX87->FOP = uPtr.pu16[4*2+1];
9333 pDstX87->FPUDP = uPtr.pu32[5];
9334 pDstX87->DS = uPtr.pu16[6*2];
9335 pDstX87->Rsrvd2= 0;
9336 }
9337 }
9338
9339 /* Make adjustments. */
9340 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
9341#ifdef LOG_ENABLED
9342 uint16_t const fOldFsw = pDstX87->FSW;
9343#endif
9344 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
9345 iemFpuRecalcExceptionStatus(pDstX87);
9346#ifdef LOG_ENABLED
9347 if ((pDstX87->FSW & X86_FSW_ES) ^ (fOldFsw & X86_FSW_ES))
9348 Log11(("iemCImplCommonFpuRestoreEnv: %04x:%08RX64: %s FPU exception (FCW=%#x FSW=%#x -> %#x)\n",
9349 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fOldFsw & X86_FSW_ES ? "Supressed" : "Raised",
9350 pDstX87->FCW, fOldFsw, pDstX87->FSW));
9351#endif
9352
9353 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
9354 * exceptions are pending after loading the saved state? */
9355}
9356
9357
9358/**
9359 * Implements 'FNSTENV'.
9360 *
9361 * @param enmEffOpSize The operand size (only REX.W really matters).
9362 * @param iEffSeg The effective segment register for @a GCPtrEffDst.
9363 * @param GCPtrEffDst The address of the image.
9364 */
9365IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9366{
9367 RTPTRUNION uPtr;
9368 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9369 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE,
9370 enmEffOpSize == IEMMODE_16BIT ? 1 : 3 /** @todo ? */);
9371 if (rcStrict != VINF_SUCCESS)
9372 return rcStrict;
9373
9374 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9375
9376 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9377 if (rcStrict != VINF_SUCCESS)
9378 return rcStrict;
9379
9380 /* Mask all math exceptions. Any possibly pending exceptions will be cleared. */
9381 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9382 pFpuCtx->FCW |= X86_FCW_XCPT_MASK;
9383#ifdef LOG_ENABLED
9384 uint16_t fOldFsw = pFpuCtx->FSW;
9385#endif
9386 iemFpuRecalcExceptionStatus(pFpuCtx);
9387#ifdef LOG_ENABLED
9388 if ((pFpuCtx->FSW & X86_FSW_ES) ^ (fOldFsw & X86_FSW_ES))
9389 Log11(("fnstenv: %04x:%08RX64: %s FPU exception (FCW=%#x, FSW %#x -> %#x)\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
9390 fOldFsw & X86_FSW_ES ? "Supressed" : "Raised", pFpuCtx->FCW, fOldFsw, pFpuCtx->FSW));
9391#endif
9392
9393 iemHlpUsedFpu(pVCpu);
9394
9395 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9396 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9397}
9398
9399
9400/**
9401 * Implements 'FNSAVE'.
9402 *
9403 * @param enmEffOpSize The operand size.
9404 * @param iEffSeg The effective segment register for @a GCPtrEffDst.
9405 * @param GCPtrEffDst The address of the image.
9406 */
9407IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9408{
9409 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9410
9411 RTPTRUNION uPtr;
9412 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9413 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE, 3 /** @todo ? */);
9414 if (rcStrict != VINF_SUCCESS)
9415 return rcStrict;
9416
9417 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9418 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9419 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9420 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9421 {
9422 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
9423 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
9424 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
9425 }
9426
9427 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9428 if (rcStrict != VINF_SUCCESS)
9429 return rcStrict;
9430
9431 /* Rotate the stack to account for changed TOS. */
9432 iemFpuRotateStackSetTop(pFpuCtx, 0);
9433
9434 /*
9435 * Re-initialize the FPU context.
9436 */
9437 pFpuCtx->FCW = 0x37f;
9438 pFpuCtx->FSW = 0;
9439 pFpuCtx->FTW = 0x00; /* 0 - empty */
9440 pFpuCtx->FPUDP = 0;
9441 pFpuCtx->DS = 0;
9442 pFpuCtx->Rsrvd2= 0;
9443 pFpuCtx->FPUIP = 0;
9444 pFpuCtx->CS = 0;
9445 pFpuCtx->Rsrvd1= 0;
9446 pFpuCtx->FOP = 0;
9447
9448 iemHlpUsedFpu(pVCpu);
9449 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9450}
9451
9452
9453
9454/**
9455 * Implements 'FLDENV'.
9456 *
9457 * @param enmEffOpSize The operand size (only REX.W really matters).
9458 * @param iEffSeg The effective segment register for @a GCPtrEffSrc.
9459 * @param GCPtrEffSrc The address of the image.
9460 */
9461IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9462{
9463 RTCPTRUNION uPtr;
9464 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9465 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R,
9466 enmEffOpSize == IEMMODE_16BIT ? 1 : 3 /** @todo ?*/);
9467 if (rcStrict != VINF_SUCCESS)
9468 return rcStrict;
9469
9470 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9471
9472 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9473 if (rcStrict != VINF_SUCCESS)
9474 return rcStrict;
9475
9476 iemHlpUsedFpu(pVCpu);
9477 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9478}
9479
9480
9481/**
9482 * Implements 'FRSTOR'.
9483 *
9484 * @param enmEffOpSize The operand size.
9485 * @param iEffSeg The effective segment register for @a GCPtrEffSrc.
9486 * @param GCPtrEffSrc The address of the image.
9487 */
9488IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9489{
9490 RTCPTRUNION uPtr;
9491 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9492 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R, 3 /** @todo ?*/ );
9493 if (rcStrict != VINF_SUCCESS)
9494 return rcStrict;
9495
9496 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9497 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9498 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9499 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9500 {
9501 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
9502 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
9503 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
9504 pFpuCtx->aRegs[i].au32[3] = 0;
9505 }
9506
9507 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9508 if (rcStrict != VINF_SUCCESS)
9509 return rcStrict;
9510
9511 iemHlpUsedFpu(pVCpu);
9512 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9513}
9514
9515
9516/**
9517 * Implements 'FLDCW'.
9518 *
9519 * @param u16Fcw The new FCW.
9520 */
9521IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
9522{
9523 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9524
9525 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
9526 /** @todo Testcase: Try see what happens when trying to set undefined bits
9527 * (other than 6 and 7). Currently ignoring them. */
9528 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
9529 * according to FSW. (This is what is currently implemented.) */
9530 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9531 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
9532#ifdef LOG_ENABLED
9533 uint16_t fOldFsw = pFpuCtx->FSW;
9534#endif
9535 iemFpuRecalcExceptionStatus(pFpuCtx);
9536#ifdef LOG_ENABLED
9537 if ((pFpuCtx->FSW & X86_FSW_ES) ^ (fOldFsw & X86_FSW_ES))
9538 Log11(("fldcw: %04x:%08RX64: %s FPU exception (FCW=%#x, FSW %#x -> %#x)\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
9539 fOldFsw & X86_FSW_ES ? "Supressed" : "Raised", pFpuCtx->FCW, fOldFsw, pFpuCtx->FSW));
9540#endif
9541
9542 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9543 iemHlpUsedFpu(pVCpu);
9544 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9545}
9546
9547
9548
9549/**
9550 * Implements the underflow case of fxch.
9551 *
9552 * @param iStReg The other stack register.
9553 */
9554IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
9555{
9556 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9557
9558 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9559 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
9560 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9561 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
9562
9563 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
9564 * registers are read as QNaN and then exchanged. This could be
9565 * wrong... */
9566 if (pFpuCtx->FCW & X86_FCW_IM)
9567 {
9568 if (RT_BIT(iReg1) & pFpuCtx->FTW)
9569 {
9570 if (RT_BIT(iReg2) & pFpuCtx->FTW)
9571 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9572 else
9573 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
9574 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
9575 }
9576 else
9577 {
9578 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
9579 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9580 }
9581 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9582 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9583 }
9584 else
9585 {
9586 /* raise underflow exception, don't change anything. */
9587 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9588 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9589 Log11(("fxch: %04x:%08RX64: Underflow exception (FSW=%#x)\n",
9590 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
9591 }
9592
9593 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9594 iemHlpUsedFpu(pVCpu);
9595 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9596}
9597
9598
9599/**
9600 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9601 *
9602 * @param iStReg The other stack register.
9603 * @param pfnAImpl The assembly comparison implementation.
9604 * @param fPop Whether we should pop the stack when done or not.
9605 */
9606IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9607{
9608 Assert(iStReg < 8);
9609 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9610
9611 /*
9612 * Raise exceptions.
9613 */
9614 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9615 return iemRaiseDeviceNotAvailable(pVCpu);
9616
9617 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9618 uint16_t u16Fsw = pFpuCtx->FSW;
9619 if (u16Fsw & X86_FSW_ES)
9620 return iemRaiseMathFault(pVCpu);
9621
9622 /*
9623 * Check if any of the register accesses causes #SF + #IA.
9624 */
9625 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9626 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9627 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9628 {
9629 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9630
9631 pFpuCtx->FSW &= ~X86_FSW_C1;
9632 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9633 if ( !(u16Fsw & X86_FSW_IE)
9634 || (pFpuCtx->FCW & X86_FCW_IM) )
9635 {
9636 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9637 pVCpu->cpum.GstCtx.eflags.u |= u32Eflags & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9638 }
9639 }
9640 else if (pFpuCtx->FCW & X86_FCW_IM)
9641 {
9642 /* Masked underflow. */
9643 pFpuCtx->FSW &= ~X86_FSW_C1;
9644 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9645 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9646 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9647 }
9648 else
9649 {
9650 /* Raise underflow - don't touch EFLAGS or TOP. */
9651 pFpuCtx->FSW &= ~X86_FSW_C1;
9652 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9653 Log11(("fxch: %04x:%08RX64: Raising IE+SF exception (FSW=%#x)\n",
9654 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
9655 fPop = false;
9656 }
9657
9658 /*
9659 * Pop if necessary.
9660 */
9661 if (fPop)
9662 {
9663 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9664 iemFpuStackIncTop(pVCpu);
9665 }
9666
9667 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9668 iemHlpUsedFpu(pVCpu);
9669 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9670}
9671
9672/** @} */
9673
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette