VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp@ 97441

Last change on this file since 97441 was 97407, checked in by vboxsync, 2 years ago

VMM/IEM,CPUM: Partial single stepping support in the interpreter. [scm fix] bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 348.8 KB
Line 
1/* $Id: IEMAllCImpl.cpp 97407 2022-11-05 12:45:24Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_IEM
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/iem.h>
35#include <VBox/vmm/cpum.h>
36#include <VBox/vmm/apic.h>
37#include <VBox/vmm/pdm.h>
38#include <VBox/vmm/pgm.h>
39#include <VBox/vmm/iom.h>
40#include <VBox/vmm/em.h>
41#include <VBox/vmm/hm.h>
42#include <VBox/vmm/nem.h>
43#include <VBox/vmm/gim.h>
44#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
45# include <VBox/vmm/em.h>
46# include <VBox/vmm/hm_svm.h>
47#endif
48#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
49# include <VBox/vmm/hmvmxinline.h>
50#endif
51#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
52# include <VBox/vmm/cpuidcall.h>
53#endif
54#include <VBox/vmm/tm.h>
55#include <VBox/vmm/dbgf.h>
56#include <VBox/vmm/dbgftrace.h>
57#include "IEMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62#include <VBox/dis.h>
63#include <VBox/disopcode.h>
64#include <iprt/asm-math.h>
65#include <iprt/assert.h>
66#include <iprt/string.h>
67#include <iprt/x86.h>
68
69#include "IEMInline.h"
70
71
72/** @name Misc Helpers
73 * @{
74 */
75
76
77/**
78 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
79 *
80 * @returns Strict VBox status code.
81 *
82 * @param pVCpu The cross context virtual CPU structure of the calling thread.
83 * @param u16Port The port number.
84 * @param cbOperand The operand size.
85 */
86static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
87{
88 /* The TSS bits we're interested in are the same on 386 and AMD64. */
89 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
90 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
91 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
92 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
93
94 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
95
96 /*
97 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
98 */
99 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
100 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
101 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
102 {
103 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
104 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
105 return iemRaiseGeneralProtectionFault0(pVCpu);
106 }
107
108 /*
109 * Read the bitmap offset (may #PF).
110 */
111 uint16_t offBitmap;
112 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
113 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
114 if (rcStrict != VINF_SUCCESS)
115 {
116 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
117 return rcStrict;
118 }
119
120 /*
121 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
122 * describes the CPU actually reading two bytes regardless of whether the
123 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
124 */
125 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
126 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
127 * for instance sizeof(X86TSS32). */
128 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
129 {
130 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
131 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
132 return iemRaiseGeneralProtectionFault0(pVCpu);
133 }
134
135 /*
136 * Read the necessary bits.
137 */
138 /** @todo Test the assertion in the intel manual that the CPU reads two
139 * bytes. The question is how this works wrt to \#PF and \#GP on the
140 * 2nd byte when it's not required. */
141 uint16_t bmBytes = UINT16_MAX;
142 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
143 if (rcStrict != VINF_SUCCESS)
144 {
145 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
146 return rcStrict;
147 }
148
149 /*
150 * Perform the check.
151 */
152 uint16_t fPortMask = (1 << cbOperand) - 1;
153 bmBytes >>= (u16Port & 7);
154 if (bmBytes & fPortMask)
155 {
156 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
157 u16Port, cbOperand, bmBytes, fPortMask));
158 return iemRaiseGeneralProtectionFault0(pVCpu);
159 }
160
161 return VINF_SUCCESS;
162}
163
164
165/**
166 * Checks if we are allowed to access the given I/O port, raising the
167 * appropriate exceptions if we aren't (or if the I/O bitmap is not
168 * accessible).
169 *
170 * @returns Strict VBox status code.
171 *
172 * @param pVCpu The cross context virtual CPU structure of the calling thread.
173 * @param u16Port The port number.
174 * @param cbOperand The operand size.
175 */
176DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
177{
178 X86EFLAGS Efl;
179 Efl.u = IEMMISC_GET_EFL(pVCpu);
180 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
181 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
182 || Efl.Bits.u1VM) )
183 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
184 return VINF_SUCCESS;
185}
186
187
188#if 0
189/**
190 * Calculates the parity bit.
191 *
192 * @returns true if the bit is set, false if not.
193 * @param u8Result The least significant byte of the result.
194 */
195static bool iemHlpCalcParityFlag(uint8_t u8Result)
196{
197 /*
198 * Parity is set if the number of bits in the least significant byte of
199 * the result is even.
200 */
201 uint8_t cBits;
202 cBits = u8Result & 1; /* 0 */
203 u8Result >>= 1;
204 cBits += u8Result & 1;
205 u8Result >>= 1;
206 cBits += u8Result & 1;
207 u8Result >>= 1;
208 cBits += u8Result & 1;
209 u8Result >>= 1;
210 cBits += u8Result & 1; /* 4 */
211 u8Result >>= 1;
212 cBits += u8Result & 1;
213 u8Result >>= 1;
214 cBits += u8Result & 1;
215 u8Result >>= 1;
216 cBits += u8Result & 1;
217 return !(cBits & 1);
218}
219#endif /* not used */
220
221
222/**
223 * Updates the specified flags according to a 8-bit result.
224 *
225 * @param pVCpu The cross context virtual CPU structure of the calling thread.
226 * @param u8Result The result to set the flags according to.
227 * @param fToUpdate The flags to update.
228 * @param fUndefined The flags that are specified as undefined.
229 */
230static void iemHlpUpdateArithEFlagsU8(PVMCPUCC pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
231{
232 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
233 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
234 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
235 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
236}
237
238
239/**
240 * Updates the specified flags according to a 16-bit result.
241 *
242 * @param pVCpu The cross context virtual CPU structure of the calling thread.
243 * @param u16Result The result to set the flags according to.
244 * @param fToUpdate The flags to update.
245 * @param fUndefined The flags that are specified as undefined.
246 */
247static void iemHlpUpdateArithEFlagsU16(PVMCPUCC pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
248{
249 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
250 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
251 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
252 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
253}
254
255
256/**
257 * Helper used by iret.
258 *
259 * @param pVCpu The cross context virtual CPU structure of the calling thread.
260 * @param uCpl The new CPL.
261 * @param pSReg Pointer to the segment register.
262 */
263static void iemHlpAdjustSelectorForNewCpl(PVMCPUCC pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
264{
265 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
266 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
267
268 if ( uCpl > pSReg->Attr.n.u2Dpl
269 && pSReg->Attr.n.u1DescType /* code or data, not system */
270 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
271 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
272 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
273}
274
275
276/**
277 * Indicates that we have modified the FPU state.
278 *
279 * @param pVCpu The cross context virtual CPU structure of the calling thread.
280 */
281DECLINLINE(void) iemHlpUsedFpu(PVMCPUCC pVCpu)
282{
283 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
284}
285
286/** @} */
287
288/** @name C Implementations
289 * @{
290 */
291
292/**
293 * Implements a 16-bit popa.
294 */
295IEM_CIMPL_DEF_0(iemCImpl_popa_16)
296{
297 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
298 RTGCPTR GCPtrLast = GCPtrStart + 15;
299 VBOXSTRICTRC rcStrict;
300
301 /*
302 * The docs are a bit hard to comprehend here, but it looks like we wrap
303 * around in real mode as long as none of the individual "popa" crosses the
304 * end of the stack segment. In protected mode we check the whole access
305 * in one go. For efficiency, only do the word-by-word thing if we're in
306 * danger of wrapping around.
307 */
308 /** @todo do popa boundary / wrap-around checks. */
309 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
310 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
311 {
312 /* word-by-word */
313 RTUINT64U TmpRsp;
314 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
315 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
316 if (rcStrict == VINF_SUCCESS)
317 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
318 if (rcStrict == VINF_SUCCESS)
319 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
320 if (rcStrict == VINF_SUCCESS)
321 {
322 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
323 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
324 }
325 if (rcStrict == VINF_SUCCESS)
326 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
327 if (rcStrict == VINF_SUCCESS)
328 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
329 if (rcStrict == VINF_SUCCESS)
330 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
331 if (rcStrict == VINF_SUCCESS)
332 {
333 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
334 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
335 }
336 }
337 else
338 {
339 uint16_t const *pa16Mem = NULL;
340 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R, sizeof(*pa16Mem) - 1);
341 if (rcStrict == VINF_SUCCESS)
342 {
343 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
344 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
345 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
346 /* skip sp */
347 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
348 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
349 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
350 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
351 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
352 if (rcStrict == VINF_SUCCESS)
353 {
354 iemRegAddToRsp(pVCpu, 16);
355 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
356 }
357 }
358 }
359 return rcStrict;
360}
361
362
363/**
364 * Implements a 32-bit popa.
365 */
366IEM_CIMPL_DEF_0(iemCImpl_popa_32)
367{
368 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
369 RTGCPTR GCPtrLast = GCPtrStart + 31;
370 VBOXSTRICTRC rcStrict;
371
372 /*
373 * The docs are a bit hard to comprehend here, but it looks like we wrap
374 * around in real mode as long as none of the individual "popa" crosses the
375 * end of the stack segment. In protected mode we check the whole access
376 * in one go. For efficiency, only do the word-by-word thing if we're in
377 * danger of wrapping around.
378 */
379 /** @todo do popa boundary / wrap-around checks. */
380 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
381 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
382 {
383 /* word-by-word */
384 RTUINT64U TmpRsp;
385 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
386 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
387 if (rcStrict == VINF_SUCCESS)
388 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
389 if (rcStrict == VINF_SUCCESS)
390 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
391 if (rcStrict == VINF_SUCCESS)
392 {
393 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
394 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
395 }
396 if (rcStrict == VINF_SUCCESS)
397 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
398 if (rcStrict == VINF_SUCCESS)
399 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
400 if (rcStrict == VINF_SUCCESS)
401 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
402 if (rcStrict == VINF_SUCCESS)
403 {
404#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
405 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
406 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
407 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
408 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
409 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
410 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
411 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
412#endif
413 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
414 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
415 }
416 }
417 else
418 {
419 uint32_t const *pa32Mem;
420 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R, sizeof(*pa32Mem) - 1);
421 if (rcStrict == VINF_SUCCESS)
422 {
423 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
424 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
425 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
426 /* skip esp */
427 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
428 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
429 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
430 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
431 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
432 if (rcStrict == VINF_SUCCESS)
433 {
434 iemRegAddToRsp(pVCpu, 32);
435 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
436 }
437 }
438 }
439 return rcStrict;
440}
441
442
443/**
444 * Implements a 16-bit pusha.
445 */
446IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
447{
448 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
449 RTGCPTR GCPtrBottom = GCPtrTop - 15;
450 VBOXSTRICTRC rcStrict;
451
452 /*
453 * The docs are a bit hard to comprehend here, but it looks like we wrap
454 * around in real mode as long as none of the individual "pushd" crosses the
455 * end of the stack segment. In protected mode we check the whole access
456 * in one go. For efficiency, only do the word-by-word thing if we're in
457 * danger of wrapping around.
458 */
459 /** @todo do pusha boundary / wrap-around checks. */
460 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
461 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
462 {
463 /* word-by-word */
464 RTUINT64U TmpRsp;
465 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
466 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
467 if (rcStrict == VINF_SUCCESS)
468 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
469 if (rcStrict == VINF_SUCCESS)
470 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
471 if (rcStrict == VINF_SUCCESS)
472 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
473 if (rcStrict == VINF_SUCCESS)
474 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
475 if (rcStrict == VINF_SUCCESS)
476 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
477 if (rcStrict == VINF_SUCCESS)
478 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
479 if (rcStrict == VINF_SUCCESS)
480 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
481 if (rcStrict == VINF_SUCCESS)
482 {
483 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
484 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
485 }
486 }
487 else
488 {
489 GCPtrBottom--;
490 uint16_t *pa16Mem = NULL;
491 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W, sizeof(*pa16Mem) - 1);
492 if (rcStrict == VINF_SUCCESS)
493 {
494 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
495 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
496 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
497 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
498 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
499 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
500 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
501 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
502 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
503 if (rcStrict == VINF_SUCCESS)
504 {
505 iemRegSubFromRsp(pVCpu, 16);
506 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
507 }
508 }
509 }
510 return rcStrict;
511}
512
513
514/**
515 * Implements a 32-bit pusha.
516 */
517IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
518{
519 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
520 RTGCPTR GCPtrBottom = GCPtrTop - 31;
521 VBOXSTRICTRC rcStrict;
522
523 /*
524 * The docs are a bit hard to comprehend here, but it looks like we wrap
525 * around in real mode as long as none of the individual "pusha" crosses the
526 * end of the stack segment. In protected mode we check the whole access
527 * in one go. For efficiency, only do the word-by-word thing if we're in
528 * danger of wrapping around.
529 */
530 /** @todo do pusha boundary / wrap-around checks. */
531 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
532 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
533 {
534 /* word-by-word */
535 RTUINT64U TmpRsp;
536 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
537 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
538 if (rcStrict == VINF_SUCCESS)
539 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
540 if (rcStrict == VINF_SUCCESS)
541 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
542 if (rcStrict == VINF_SUCCESS)
543 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
544 if (rcStrict == VINF_SUCCESS)
545 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
546 if (rcStrict == VINF_SUCCESS)
547 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
548 if (rcStrict == VINF_SUCCESS)
549 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
550 if (rcStrict == VINF_SUCCESS)
551 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
552 if (rcStrict == VINF_SUCCESS)
553 {
554 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
555 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
556 }
557 }
558 else
559 {
560 GCPtrBottom--;
561 uint32_t *pa32Mem;
562 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W, sizeof(*pa32Mem) - 1);
563 if (rcStrict == VINF_SUCCESS)
564 {
565 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
566 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
567 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
568 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
569 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
570 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
571 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
572 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
573 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
574 if (rcStrict == VINF_SUCCESS)
575 {
576 iemRegSubFromRsp(pVCpu, 32);
577 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
578 }
579 }
580 }
581 return rcStrict;
582}
583
584
585/**
586 * Implements pushf.
587 *
588 *
589 * @param enmEffOpSize The effective operand size.
590 */
591IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
592{
593 VBOXSTRICTRC rcStrict;
594
595 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
596 {
597 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
598 IEM_SVM_UPDATE_NRIP(pVCpu);
599 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
600 }
601
602 /*
603 * If we're in V8086 mode some care is required (which is why we're in
604 * doing this in a C implementation).
605 */
606 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
607 if ( (fEfl & X86_EFL_VM)
608 && X86_EFL_GET_IOPL(fEfl) != 3 )
609 {
610 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
611 if ( enmEffOpSize != IEMMODE_16BIT
612 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
613 return iemRaiseGeneralProtectionFault0(pVCpu);
614 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
615 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
616 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
617 }
618 else
619 {
620
621 /*
622 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
623 */
624 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
625
626 switch (enmEffOpSize)
627 {
628 case IEMMODE_16BIT:
629 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
630 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
631 fEfl |= UINT16_C(0xf000);
632 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
633 break;
634 case IEMMODE_32BIT:
635 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
636 break;
637 case IEMMODE_64BIT:
638 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
639 break;
640 IEM_NOT_REACHED_DEFAULT_CASE_RET();
641 }
642 }
643
644 if (rcStrict == VINF_SUCCESS)
645 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
646 return rcStrict;
647}
648
649
650/**
651 * Implements popf.
652 *
653 * @param enmEffOpSize The effective operand size.
654 */
655IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
656{
657 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
658 VBOXSTRICTRC rcStrict;
659 uint32_t fEflNew;
660
661 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
662 {
663 Log2(("popf: Guest intercept -> #VMEXIT\n"));
664 IEM_SVM_UPDATE_NRIP(pVCpu);
665 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
666 }
667
668 /*
669 * V8086 is special as usual.
670 */
671 if (fEflOld & X86_EFL_VM)
672 {
673 /*
674 * Almost anything goes if IOPL is 3.
675 */
676 if (X86_EFL_GET_IOPL(fEflOld) == 3)
677 {
678 switch (enmEffOpSize)
679 {
680 case IEMMODE_16BIT:
681 {
682 uint16_t u16Value;
683 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
684 if (rcStrict != VINF_SUCCESS)
685 return rcStrict;
686 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
687 break;
688 }
689 case IEMMODE_32BIT:
690 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
691 if (rcStrict != VINF_SUCCESS)
692 return rcStrict;
693 break;
694 IEM_NOT_REACHED_DEFAULT_CASE_RET();
695 }
696
697 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
698 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
699 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
700 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
701 }
702 /*
703 * Interrupt flag virtualization with CR4.VME=1.
704 */
705 else if ( enmEffOpSize == IEMMODE_16BIT
706 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
707 {
708 uint16_t u16Value;
709 RTUINT64U TmpRsp;
710 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
711 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
712 if (rcStrict != VINF_SUCCESS)
713 return rcStrict;
714
715 /** @todo Is the popf VME \#GP(0) delivered after updating RSP+RIP
716 * or before? */
717 if ( ( (u16Value & X86_EFL_IF)
718 && (fEflOld & X86_EFL_VIP))
719 || (u16Value & X86_EFL_TF) )
720 return iemRaiseGeneralProtectionFault0(pVCpu);
721
722 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
723 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
724 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
725 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
726
727 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
728 }
729 else
730 return iemRaiseGeneralProtectionFault0(pVCpu);
731
732 }
733 /*
734 * Not in V8086 mode.
735 */
736 else
737 {
738 /* Pop the flags. */
739 switch (enmEffOpSize)
740 {
741 case IEMMODE_16BIT:
742 {
743 uint16_t u16Value;
744 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
745 if (rcStrict != VINF_SUCCESS)
746 return rcStrict;
747 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
748
749 /*
750 * Ancient CPU adjustments:
751 * - 8086, 80186, V20/30:
752 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
753 * practical reasons (masking below). We add them when pushing flags.
754 * - 80286:
755 * The NT and IOPL flags cannot be popped from real mode and are
756 * therefore always zero (since a 286 can never exit from PM and
757 * their initial value is zero). This changed on a 386 and can
758 * therefore be used to detect 286 or 386 CPU in real mode.
759 */
760 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
761 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
762 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
763 break;
764 }
765 case IEMMODE_32BIT:
766 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
767 if (rcStrict != VINF_SUCCESS)
768 return rcStrict;
769 break;
770 case IEMMODE_64BIT:
771 {
772 uint64_t u64Value;
773 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
774 if (rcStrict != VINF_SUCCESS)
775 return rcStrict;
776 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
777 break;
778 }
779 IEM_NOT_REACHED_DEFAULT_CASE_RET();
780 }
781
782 /* Merge them with the current flags. */
783 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
784 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
785 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
786 || pVCpu->iem.s.uCpl == 0)
787 {
788 fEflNew &= fPopfBits;
789 fEflNew |= ~fPopfBits & fEflOld;
790 }
791 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
792 {
793 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
794 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
795 }
796 else
797 {
798 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
799 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
800 }
801 }
802
803 /*
804 * Commit the flags.
805 */
806 Assert(fEflNew & RT_BIT_32(1));
807 IEMMISC_SET_EFL(pVCpu, fEflNew);
808 return iemRegAddToRipAndFinishingClearingRfEx(pVCpu, cbInstr, fEflOld);
809}
810
811
812/**
813 * Implements an indirect call.
814 *
815 * @param uNewPC The new program counter (RIP) value (loaded from the
816 * operand).
817 */
818IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
819{
820 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
821 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
822 return iemRaiseGeneralProtectionFault0(pVCpu);
823
824 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
825 if (rcStrict != VINF_SUCCESS)
826 return rcStrict;
827
828 pVCpu->cpum.GstCtx.rip = uNewPC;
829 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
830
831#ifndef IEM_WITH_CODE_TLB
832 /* Flush the prefetch buffer. */
833 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
834#endif
835 return VINF_SUCCESS;
836}
837
838
839/**
840 * Implements a 16-bit relative call.
841 *
842 * @param offDisp The displacment offset.
843 */
844IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
845{
846 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
847 uint16_t uNewPC = uOldPC + offDisp;
848 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
849 return iemRaiseGeneralProtectionFault0(pVCpu);
850
851 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
852 if (rcStrict != VINF_SUCCESS)
853 return rcStrict;
854
855 pVCpu->cpum.GstCtx.rip = uNewPC;
856 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
857
858#ifndef IEM_WITH_CODE_TLB
859 /* Flush the prefetch buffer. */
860 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
861#endif
862 return VINF_SUCCESS;
863}
864
865
866/**
867 * Implements a 32-bit indirect call.
868 *
869 * @param uNewPC The new program counter (RIP) value (loaded from the
870 * operand).
871 */
872IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
873{
874 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
875 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
876 return iemRaiseGeneralProtectionFault0(pVCpu);
877
878 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
879 if (rcStrict != VINF_SUCCESS)
880 return rcStrict;
881
882 pVCpu->cpum.GstCtx.rip = uNewPC;
883 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
884
885#ifndef IEM_WITH_CODE_TLB
886 /* Flush the prefetch buffer. */
887 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
888#endif
889 return VINF_SUCCESS;
890}
891
892
893/**
894 * Implements a 32-bit relative call.
895 *
896 * @param offDisp The displacment offset.
897 */
898IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
899{
900 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
901 uint32_t uNewPC = uOldPC + offDisp;
902 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
903 return iemRaiseGeneralProtectionFault0(pVCpu);
904
905 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
906 if (rcStrict != VINF_SUCCESS)
907 return rcStrict;
908
909 pVCpu->cpum.GstCtx.rip = uNewPC;
910 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
911
912#ifndef IEM_WITH_CODE_TLB
913 /* Flush the prefetch buffer. */
914 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
915#endif
916 return VINF_SUCCESS;
917}
918
919
920/**
921 * Implements a 64-bit indirect call.
922 *
923 * @param uNewPC The new program counter (RIP) value (loaded from the
924 * operand).
925 */
926IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
927{
928 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
929 if (!IEM_IS_CANONICAL(uNewPC))
930 return iemRaiseGeneralProtectionFault0(pVCpu);
931
932 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
933 if (rcStrict != VINF_SUCCESS)
934 return rcStrict;
935
936 pVCpu->cpum.GstCtx.rip = uNewPC;
937 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
938
939#ifndef IEM_WITH_CODE_TLB
940 /* Flush the prefetch buffer. */
941 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
942#endif
943 return VINF_SUCCESS;
944}
945
946
947/**
948 * Implements a 64-bit relative call.
949 *
950 * @param offDisp The displacment offset.
951 */
952IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
953{
954 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
955 uint64_t uNewPC = uOldPC + offDisp;
956 if (!IEM_IS_CANONICAL(uNewPC))
957 return iemRaiseNotCanonical(pVCpu);
958
959 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
960 if (rcStrict != VINF_SUCCESS)
961 return rcStrict;
962
963 pVCpu->cpum.GstCtx.rip = uNewPC;
964 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
965
966#ifndef IEM_WITH_CODE_TLB
967 /* Flush the prefetch buffer. */
968 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
969#endif
970
971 return VINF_SUCCESS;
972}
973
974
975/**
976 * Implements far jumps and calls thru task segments (TSS).
977 *
978 * @param uSel The selector.
979 * @param enmBranch The kind of branching we're performing.
980 * @param enmEffOpSize The effective operand size.
981 * @param pDesc The descriptor corresponding to @a uSel. The type is
982 * task gate.
983 */
984IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
985{
986#ifndef IEM_IMPLEMENTS_TASKSWITCH
987 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
988#else
989 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
990 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
991 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
992 RT_NOREF_PV(enmEffOpSize);
993 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
994
995 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
996 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
997 {
998 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
999 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1000 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1001 }
1002
1003 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1004 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1005 * checked here, need testcases. */
1006 if (!pDesc->Legacy.Gen.u1Present)
1007 {
1008 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
1009 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1010 }
1011
1012 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1013 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1014 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
1015#endif
1016}
1017
1018
1019/**
1020 * Implements far jumps and calls thru task gates.
1021 *
1022 * @param uSel The selector.
1023 * @param enmBranch The kind of branching we're performing.
1024 * @param enmEffOpSize The effective operand size.
1025 * @param pDesc The descriptor corresponding to @a uSel. The type is
1026 * task gate.
1027 */
1028IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1029{
1030#ifndef IEM_IMPLEMENTS_TASKSWITCH
1031 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1032#else
1033 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1034 RT_NOREF_PV(enmEffOpSize);
1035 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1036
1037 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1038 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1039 {
1040 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1041 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1042 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1043 }
1044
1045 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1046 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1047 * checked here, need testcases. */
1048 if (!pDesc->Legacy.Gen.u1Present)
1049 {
1050 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1051 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1052 }
1053
1054 /*
1055 * Fetch the new TSS descriptor from the GDT.
1056 */
1057 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1058 if (uSelTss & X86_SEL_LDT)
1059 {
1060 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1061 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1062 }
1063
1064 IEMSELDESC TssDesc;
1065 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1066 if (rcStrict != VINF_SUCCESS)
1067 return rcStrict;
1068
1069 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1070 {
1071 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1072 TssDesc.Legacy.Gate.u4Type));
1073 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1074 }
1075
1076 if (!TssDesc.Legacy.Gate.u1Present)
1077 {
1078 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1079 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1080 }
1081
1082 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1083 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1084 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1085#endif
1086}
1087
1088
1089/**
1090 * Implements far jumps and calls thru call gates.
1091 *
1092 * @param uSel The selector.
1093 * @param enmBranch The kind of branching we're performing.
1094 * @param enmEffOpSize The effective operand size.
1095 * @param pDesc The descriptor corresponding to @a uSel. The type is
1096 * call gate.
1097 */
1098IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1099{
1100#define IEM_IMPLEMENTS_CALLGATE
1101#ifndef IEM_IMPLEMENTS_CALLGATE
1102 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1103#else
1104 RT_NOREF_PV(enmEffOpSize);
1105 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1106
1107 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1108 * inter-privilege calls and are much more complex.
1109 *
1110 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1111 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1112 * must be 16-bit or 32-bit.
1113 */
1114 /** @todo effective operand size is probably irrelevant here, only the
1115 * call gate bitness matters??
1116 */
1117 VBOXSTRICTRC rcStrict;
1118 RTPTRUNION uPtrRet;
1119 uint64_t uNewRsp;
1120 uint64_t uNewRip;
1121 uint64_t u64Base;
1122 uint32_t cbLimit;
1123 RTSEL uNewCS;
1124 IEMSELDESC DescCS;
1125
1126 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1127 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1128 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1129 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1130
1131 /* Determine the new instruction pointer from the gate descriptor. */
1132 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1133 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1134 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1135
1136 /* Perform DPL checks on the gate descriptor. */
1137 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1138 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1139 {
1140 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1141 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1142 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1143 }
1144
1145 /** @todo does this catch NULL selectors, too? */
1146 if (!pDesc->Legacy.Gen.u1Present)
1147 {
1148 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1149 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1150 }
1151
1152 /*
1153 * Fetch the target CS descriptor from the GDT or LDT.
1154 */
1155 uNewCS = pDesc->Legacy.Gate.u16Sel;
1156 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1157 if (rcStrict != VINF_SUCCESS)
1158 return rcStrict;
1159
1160 /* Target CS must be a code selector. */
1161 if ( !DescCS.Legacy.Gen.u1DescType
1162 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1163 {
1164 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1165 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1166 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1167 }
1168
1169 /* Privilege checks on target CS. */
1170 if (enmBranch == IEMBRANCH_JUMP)
1171 {
1172 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1173 {
1174 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1175 {
1176 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1177 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1178 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1179 }
1180 }
1181 else
1182 {
1183 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1184 {
1185 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1186 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1187 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1188 }
1189 }
1190 }
1191 else
1192 {
1193 Assert(enmBranch == IEMBRANCH_CALL);
1194 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1195 {
1196 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1197 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1198 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1199 }
1200 }
1201
1202 /* Additional long mode checks. */
1203 if (IEM_IS_LONG_MODE(pVCpu))
1204 {
1205 if (!DescCS.Legacy.Gen.u1Long)
1206 {
1207 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1208 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1209 }
1210
1211 /* L vs D. */
1212 if ( DescCS.Legacy.Gen.u1Long
1213 && DescCS.Legacy.Gen.u1DefBig)
1214 {
1215 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1216 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1217 }
1218 }
1219
1220 if (!DescCS.Legacy.Gate.u1Present)
1221 {
1222 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1223 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1224 }
1225
1226 if (enmBranch == IEMBRANCH_JUMP)
1227 {
1228 /** @todo This is very similar to regular far jumps; merge! */
1229 /* Jumps are fairly simple... */
1230
1231 /* Chop the high bits off if 16-bit gate (Intel says so). */
1232 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1233 uNewRip = (uint16_t)uNewRip;
1234
1235 /* Limit check for non-long segments. */
1236 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1237 if (DescCS.Legacy.Gen.u1Long)
1238 u64Base = 0;
1239 else
1240 {
1241 if (uNewRip > cbLimit)
1242 {
1243 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1244 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1245 }
1246 u64Base = X86DESC_BASE(&DescCS.Legacy);
1247 }
1248
1249 /* Canonical address check. */
1250 if (!IEM_IS_CANONICAL(uNewRip))
1251 {
1252 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1253 return iemRaiseNotCanonical(pVCpu);
1254 }
1255
1256 /*
1257 * Ok, everything checked out fine. Now set the accessed bit before
1258 * committing the result into CS, CSHID and RIP.
1259 */
1260 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1261 {
1262 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1263 if (rcStrict != VINF_SUCCESS)
1264 return rcStrict;
1265 /** @todo check what VT-x and AMD-V does. */
1266 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1267 }
1268
1269 /* commit */
1270 pVCpu->cpum.GstCtx.rip = uNewRip;
1271 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1272 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1273 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1274 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1275 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1276 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1277 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1278 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1279 }
1280 else
1281 {
1282 Assert(enmBranch == IEMBRANCH_CALL);
1283 /* Calls are much more complicated. */
1284
1285 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1286 {
1287 uint16_t offNewStack; /* Offset of new stack in TSS. */
1288 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1289 uint8_t uNewCSDpl;
1290 uint8_t cbWords;
1291 RTSEL uNewSS;
1292 RTSEL uOldSS;
1293 uint64_t uOldRsp;
1294 IEMSELDESC DescSS;
1295 RTPTRUNION uPtrTSS;
1296 RTGCPTR GCPtrTSS;
1297 RTPTRUNION uPtrParmWds;
1298 RTGCPTR GCPtrParmWds;
1299
1300 /* More privilege. This is the fun part. */
1301 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1302
1303 /*
1304 * Determine new SS:rSP from the TSS.
1305 */
1306 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1307
1308 /* Figure out where the new stack pointer is stored in the TSS. */
1309 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1310 if (!IEM_IS_LONG_MODE(pVCpu))
1311 {
1312 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1313 {
1314 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1315 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1316 }
1317 else
1318 {
1319 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1320 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1321 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1322 }
1323 }
1324 else
1325 {
1326 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1327 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1328 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1329 }
1330
1331 /* Check against TSS limit. */
1332 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1333 {
1334 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1335 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1336 }
1337
1338 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1339 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R, 0);
1340 if (rcStrict != VINF_SUCCESS)
1341 {
1342 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1343 return rcStrict;
1344 }
1345
1346 if (!IEM_IS_LONG_MODE(pVCpu))
1347 {
1348 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1349 {
1350 uNewRsp = uPtrTSS.pu32[0];
1351 uNewSS = uPtrTSS.pu16[2];
1352 }
1353 else
1354 {
1355 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1356 uNewRsp = uPtrTSS.pu16[0];
1357 uNewSS = uPtrTSS.pu16[1];
1358 }
1359 }
1360 else
1361 {
1362 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1363 /* SS will be a NULL selector, but that's valid. */
1364 uNewRsp = uPtrTSS.pu64[0];
1365 uNewSS = uNewCSDpl;
1366 }
1367
1368 /* Done with the TSS now. */
1369 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1370 if (rcStrict != VINF_SUCCESS)
1371 {
1372 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1373 return rcStrict;
1374 }
1375
1376 /* Only used outside of long mode. */
1377 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1378
1379 /* If EFER.LMA is 0, there's extra work to do. */
1380 if (!IEM_IS_LONG_MODE(pVCpu))
1381 {
1382 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1383 {
1384 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1385 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1386 }
1387
1388 /* Grab the new SS descriptor. */
1389 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1390 if (rcStrict != VINF_SUCCESS)
1391 return rcStrict;
1392
1393 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1394 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1395 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1396 {
1397 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1398 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1399 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1400 }
1401
1402 /* Ensure new SS is a writable data segment. */
1403 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1404 {
1405 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1406 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1407 }
1408
1409 if (!DescSS.Legacy.Gen.u1Present)
1410 {
1411 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1412 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1413 }
1414 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1415 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1416 else
1417 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1418 }
1419 else
1420 {
1421 /* Just grab the new (NULL) SS descriptor. */
1422 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1423 * like we do... */
1424 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1425 if (rcStrict != VINF_SUCCESS)
1426 return rcStrict;
1427
1428 cbNewStack = sizeof(uint64_t) * 4;
1429 }
1430
1431 /** @todo According to Intel, new stack is checked for enough space first,
1432 * then switched. According to AMD, the stack is switched first and
1433 * then pushes might fault!
1434 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1435 * incoming stack \#PF happens before actual stack switch. AMD is
1436 * either lying or implicitly assumes that new state is committed
1437 * only if and when an instruction doesn't fault.
1438 */
1439
1440 /** @todo According to AMD, CS is loaded first, then SS.
1441 * According to Intel, it's the other way around!?
1442 */
1443
1444 /** @todo Intel and AMD disagree on when exactly the CPL changes! */
1445
1446 /* Set the accessed bit before committing new SS. */
1447 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1448 {
1449 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1450 if (rcStrict != VINF_SUCCESS)
1451 return rcStrict;
1452 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1453 }
1454
1455 /* Remember the old SS:rSP and their linear address. */
1456 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1457 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1458
1459 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1460
1461 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1462 or #PF, the former is not implemented in this workaround. */
1463 /** @todo Proper fix callgate target stack exceptions. */
1464 /** @todo testcase: Cover callgates with partially or fully inaccessible
1465 * target stacks. */
1466 void *pvNewFrame;
1467 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1468 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW, 0);
1469 if (rcStrict != VINF_SUCCESS)
1470 {
1471 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1472 return rcStrict;
1473 }
1474 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1475 if (rcStrict != VINF_SUCCESS)
1476 {
1477 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1478 return rcStrict;
1479 }
1480
1481 /* Commit new SS:rSP. */
1482 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1483 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1484 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1485 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1486 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1487 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1488 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1489 pVCpu->iem.s.uCpl = uNewCSDpl; /** @todo is the parameter words accessed using the new CPL or the old CPL? */
1490 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1491 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1492
1493 /* At this point the stack access must not fail because new state was already committed. */
1494 /** @todo this can still fail due to SS.LIMIT not check. */
1495 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1496 IEM_IS_LONG_MODE(pVCpu) ? 7
1497 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 3 : 1,
1498 &uPtrRet.pv, &uNewRsp);
1499 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1500 VERR_INTERNAL_ERROR_5);
1501
1502 if (!IEM_IS_LONG_MODE(pVCpu))
1503 {
1504 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1505 {
1506 if (cbWords)
1507 {
1508 /* Map the relevant chunk of the old stack. */
1509 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds,
1510 IEM_ACCESS_DATA_R, 0 /** @todo Can uNewCSDpl == 3? Then we need alignment mask here! */);
1511 if (rcStrict != VINF_SUCCESS)
1512 {
1513 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1514 return rcStrict;
1515 }
1516
1517 /* Copy the parameter (d)words. */
1518 for (int i = 0; i < cbWords; ++i)
1519 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1520
1521 /* Unmap the old stack. */
1522 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1523 if (rcStrict != VINF_SUCCESS)
1524 {
1525 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1526 return rcStrict;
1527 }
1528 }
1529
1530 /* Push the old CS:rIP. */
1531 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1532 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1533
1534 /* Push the old SS:rSP. */
1535 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1536 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1537 }
1538 else
1539 {
1540 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1541
1542 if (cbWords)
1543 {
1544 /* Map the relevant chunk of the old stack. */
1545 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds,
1546 IEM_ACCESS_DATA_R, 0 /** @todo Can uNewCSDpl == 3? Then we need alignment mask here! */);
1547 if (rcStrict != VINF_SUCCESS)
1548 {
1549 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1550 return rcStrict;
1551 }
1552
1553 /* Copy the parameter words. */
1554 for (int i = 0; i < cbWords; ++i)
1555 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1556
1557 /* Unmap the old stack. */
1558 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1559 if (rcStrict != VINF_SUCCESS)
1560 {
1561 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1562 return rcStrict;
1563 }
1564 }
1565
1566 /* Push the old CS:rIP. */
1567 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1568 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1569
1570 /* Push the old SS:rSP. */
1571 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1572 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1573 }
1574 }
1575 else
1576 {
1577 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1578
1579 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1580 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1581 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1582 uPtrRet.pu64[2] = uOldRsp;
1583 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1584 }
1585
1586 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1587 if (rcStrict != VINF_SUCCESS)
1588 {
1589 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1590 return rcStrict;
1591 }
1592
1593 /* Chop the high bits off if 16-bit gate (Intel says so). */
1594 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1595 uNewRip = (uint16_t)uNewRip;
1596
1597 /* Limit / canonical check. */
1598 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1599 if (!IEM_IS_LONG_MODE(pVCpu))
1600 {
1601 if (uNewRip > cbLimit)
1602 {
1603 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1604 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1605 }
1606 u64Base = X86DESC_BASE(&DescCS.Legacy);
1607 }
1608 else
1609 {
1610 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1611 if (!IEM_IS_CANONICAL(uNewRip))
1612 {
1613 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1614 return iemRaiseNotCanonical(pVCpu);
1615 }
1616 u64Base = 0;
1617 }
1618
1619 /*
1620 * Now set the accessed bit before
1621 * writing the return address to the stack and committing the result into
1622 * CS, CSHID and RIP.
1623 */
1624 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1625 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1626 {
1627 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1628 if (rcStrict != VINF_SUCCESS)
1629 return rcStrict;
1630 /** @todo check what VT-x and AMD-V does. */
1631 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1632 }
1633
1634 /* Commit new CS:rIP. */
1635 pVCpu->cpum.GstCtx.rip = uNewRip;
1636 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1637 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1638 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1639 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1640 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1641 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1642 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1643 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1644 }
1645 else
1646 {
1647 /* Same privilege. */
1648 /** @todo This is very similar to regular far calls; merge! */
1649
1650 /* Check stack first - may #SS(0). */
1651 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1652 * 16-bit code cause a two or four byte CS to be pushed? */
1653 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1654 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1655 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1656 IEM_IS_LONG_MODE(pVCpu) ? 7
1657 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 3 : 2,
1658 &uPtrRet.pv, &uNewRsp);
1659 if (rcStrict != VINF_SUCCESS)
1660 return rcStrict;
1661
1662 /* Chop the high bits off if 16-bit gate (Intel says so). */
1663 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1664 uNewRip = (uint16_t)uNewRip;
1665
1666 /* Limit / canonical check. */
1667 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1668 if (!IEM_IS_LONG_MODE(pVCpu))
1669 {
1670 if (uNewRip > cbLimit)
1671 {
1672 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1673 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1674 }
1675 u64Base = X86DESC_BASE(&DescCS.Legacy);
1676 }
1677 else
1678 {
1679 if (!IEM_IS_CANONICAL(uNewRip))
1680 {
1681 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1682 return iemRaiseNotCanonical(pVCpu);
1683 }
1684 u64Base = 0;
1685 }
1686
1687 /*
1688 * Now set the accessed bit before
1689 * writing the return address to the stack and committing the result into
1690 * CS, CSHID and RIP.
1691 */
1692 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1693 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1694 {
1695 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1696 if (rcStrict != VINF_SUCCESS)
1697 return rcStrict;
1698 /** @todo check what VT-x and AMD-V does. */
1699 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1700 }
1701
1702 /* stack */
1703 if (!IEM_IS_LONG_MODE(pVCpu))
1704 {
1705 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1706 {
1707 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1708 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1709 }
1710 else
1711 {
1712 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1713 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1714 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1715 }
1716 }
1717 else
1718 {
1719 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1720 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1721 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1722 }
1723
1724 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1725 if (rcStrict != VINF_SUCCESS)
1726 return rcStrict;
1727
1728 /* commit */
1729 pVCpu->cpum.GstCtx.rip = uNewRip;
1730 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1731 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1732 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1733 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1734 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1735 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1736 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1737 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1738 }
1739 }
1740 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1741
1742 /* Flush the prefetch buffer. */
1743# ifdef IEM_WITH_CODE_TLB
1744 pVCpu->iem.s.pbInstrBuf = NULL;
1745# else
1746 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1747# endif
1748 return VINF_SUCCESS;
1749#endif
1750}
1751
1752
1753/**
1754 * Implements far jumps and calls thru system selectors.
1755 *
1756 * @param uSel The selector.
1757 * @param enmBranch The kind of branching we're performing.
1758 * @param enmEffOpSize The effective operand size.
1759 * @param pDesc The descriptor corresponding to @a uSel.
1760 */
1761IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1762{
1763 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1764 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1765 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1766
1767 if (IEM_IS_LONG_MODE(pVCpu))
1768 switch (pDesc->Legacy.Gen.u4Type)
1769 {
1770 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1771 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1772
1773 default:
1774 case AMD64_SEL_TYPE_SYS_LDT:
1775 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1776 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1777 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1778 case AMD64_SEL_TYPE_SYS_INT_GATE:
1779 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1780 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1781 }
1782
1783 switch (pDesc->Legacy.Gen.u4Type)
1784 {
1785 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1786 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1787 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1788
1789 case X86_SEL_TYPE_SYS_TASK_GATE:
1790 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1791
1792 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1793 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1794 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1795
1796 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1797 Log(("branch %04x -> busy 286 TSS\n", uSel));
1798 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1799
1800 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1801 Log(("branch %04x -> busy 386 TSS\n", uSel));
1802 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1803
1804 default:
1805 case X86_SEL_TYPE_SYS_LDT:
1806 case X86_SEL_TYPE_SYS_286_INT_GATE:
1807 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1808 case X86_SEL_TYPE_SYS_386_INT_GATE:
1809 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1810 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1811 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1812 }
1813}
1814
1815
1816/**
1817 * Implements far jumps.
1818 *
1819 * @param uSel The selector.
1820 * @param offSeg The segment offset.
1821 * @param enmEffOpSize The effective operand size.
1822 */
1823IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1824{
1825 NOREF(cbInstr);
1826 Assert(offSeg <= UINT32_MAX);
1827
1828 /*
1829 * Real mode and V8086 mode are easy. The only snag seems to be that
1830 * CS.limit doesn't change and the limit check is done against the current
1831 * limit.
1832 */
1833 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1834 * 1998) that up to and including the Intel 486, far control
1835 * transfers in real mode set default CS attributes (0x93) and also
1836 * set a 64K segment limit. Starting with the Pentium, the
1837 * attributes and limit are left alone but the access rights are
1838 * ignored. We only implement the Pentium+ behavior.
1839 * */
1840 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1841 {
1842 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1843 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1844 {
1845 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1846 return iemRaiseGeneralProtectionFault0(pVCpu);
1847 }
1848
1849 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1850 pVCpu->cpum.GstCtx.rip = offSeg;
1851 else
1852 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1853 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1854 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1855 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1856 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1857 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1858 return VINF_SUCCESS;
1859 }
1860
1861 /*
1862 * Protected mode. Need to parse the specified descriptor...
1863 */
1864 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1865 {
1866 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1867 return iemRaiseGeneralProtectionFault0(pVCpu);
1868 }
1869
1870 /* Fetch the descriptor. */
1871 IEMSELDESC Desc;
1872 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1873 if (rcStrict != VINF_SUCCESS)
1874 return rcStrict;
1875
1876 /* Is it there? */
1877 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1878 {
1879 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1880 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1881 }
1882
1883 /*
1884 * Deal with it according to its type. We do the standard code selectors
1885 * here and dispatch the system selectors to worker functions.
1886 */
1887 if (!Desc.Legacy.Gen.u1DescType)
1888 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1889
1890 /* Only code segments. */
1891 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1892 {
1893 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1894 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1895 }
1896
1897 /* L vs D. */
1898 if ( Desc.Legacy.Gen.u1Long
1899 && Desc.Legacy.Gen.u1DefBig
1900 && IEM_IS_LONG_MODE(pVCpu))
1901 {
1902 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1903 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1904 }
1905
1906 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1907 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1908 {
1909 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1910 {
1911 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1912 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1913 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1914 }
1915 }
1916 else
1917 {
1918 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1919 {
1920 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1921 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1922 }
1923 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1924 {
1925 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1926 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1927 }
1928 }
1929
1930 /* Chop the high bits if 16-bit (Intel says so). */
1931 if (enmEffOpSize == IEMMODE_16BIT)
1932 offSeg &= UINT16_MAX;
1933
1934 /* Limit check. (Should alternatively check for non-canonical addresses
1935 here, but that is ruled out by offSeg being 32-bit, right?) */
1936 uint64_t u64Base;
1937 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1938 if (Desc.Legacy.Gen.u1Long)
1939 u64Base = 0;
1940 else
1941 {
1942 if (offSeg > cbLimit)
1943 {
1944 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1945 /** @todo Intel says this is \#GP(0)! */
1946 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1947 }
1948 u64Base = X86DESC_BASE(&Desc.Legacy);
1949 }
1950
1951 /*
1952 * Ok, everything checked out fine. Now set the accessed bit before
1953 * committing the result into CS, CSHID and RIP.
1954 */
1955 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1956 {
1957 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1958 if (rcStrict != VINF_SUCCESS)
1959 return rcStrict;
1960 /** @todo check what VT-x and AMD-V does. */
1961 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1962 }
1963
1964 /* commit */
1965 pVCpu->cpum.GstCtx.rip = offSeg;
1966 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1967 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1968 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1969 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1970 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1971 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1972 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1973 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1974 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1975 /** @todo check if the hidden bits are loaded correctly for 64-bit
1976 * mode. */
1977
1978 /* Flush the prefetch buffer. */
1979#ifdef IEM_WITH_CODE_TLB
1980 pVCpu->iem.s.pbInstrBuf = NULL;
1981#else
1982 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1983#endif
1984
1985 return VINF_SUCCESS;
1986}
1987
1988
1989/**
1990 * Implements far calls.
1991 *
1992 * This very similar to iemCImpl_FarJmp.
1993 *
1994 * @param uSel The selector.
1995 * @param offSeg The segment offset.
1996 * @param enmEffOpSize The operand size (in case we need it).
1997 */
1998IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1999{
2000 VBOXSTRICTRC rcStrict;
2001 uint64_t uNewRsp;
2002 RTPTRUNION uPtrRet;
2003
2004 /*
2005 * Real mode and V8086 mode are easy. The only snag seems to be that
2006 * CS.limit doesn't change and the limit check is done against the current
2007 * limit.
2008 */
2009 /** @todo See comment for similar code in iemCImpl_FarJmp */
2010 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2011 {
2012 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
2013
2014 /* Check stack first - may #SS(0). */
2015 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2016 enmEffOpSize == IEMMODE_32BIT ? 3 : 1,
2017 &uPtrRet.pv, &uNewRsp);
2018 if (rcStrict != VINF_SUCCESS)
2019 return rcStrict;
2020
2021 /* Check the target address range. */
2022 if (offSeg > UINT32_MAX)
2023 return iemRaiseGeneralProtectionFault0(pVCpu);
2024
2025 /* Everything is fine, push the return address. */
2026 if (enmEffOpSize == IEMMODE_16BIT)
2027 {
2028 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2029 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2030 }
2031 else
2032 {
2033 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2034 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
2035 }
2036 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2037 if (rcStrict != VINF_SUCCESS)
2038 return rcStrict;
2039
2040 /* Branch. */
2041 pVCpu->cpum.GstCtx.rip = offSeg;
2042 pVCpu->cpum.GstCtx.cs.Sel = uSel;
2043 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
2044 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2045 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
2046 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2047 return VINF_SUCCESS;
2048 }
2049
2050 /*
2051 * Protected mode. Need to parse the specified descriptor...
2052 */
2053 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2054 {
2055 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2056 return iemRaiseGeneralProtectionFault0(pVCpu);
2057 }
2058
2059 /* Fetch the descriptor. */
2060 IEMSELDESC Desc;
2061 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2062 if (rcStrict != VINF_SUCCESS)
2063 return rcStrict;
2064
2065 /*
2066 * Deal with it according to its type. We do the standard code selectors
2067 * here and dispatch the system selectors to worker functions.
2068 */
2069 if (!Desc.Legacy.Gen.u1DescType)
2070 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2071
2072 /* Only code segments. */
2073 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2074 {
2075 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2076 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2077 }
2078
2079 /* L vs D. */
2080 if ( Desc.Legacy.Gen.u1Long
2081 && Desc.Legacy.Gen.u1DefBig
2082 && IEM_IS_LONG_MODE(pVCpu))
2083 {
2084 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2085 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2086 }
2087
2088 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2089 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2090 {
2091 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2092 {
2093 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2094 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2095 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2096 }
2097 }
2098 else
2099 {
2100 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2101 {
2102 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2103 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2104 }
2105 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2106 {
2107 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2108 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2109 }
2110 }
2111
2112 /* Is it there? */
2113 if (!Desc.Legacy.Gen.u1Present)
2114 {
2115 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2116 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2117 }
2118
2119 /* Check stack first - may #SS(0). */
2120 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2121 * 16-bit code cause a two or four byte CS to be pushed? */
2122 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2123 enmEffOpSize == IEMMODE_64BIT ? 8+8 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2124 enmEffOpSize == IEMMODE_64BIT ? 7 : enmEffOpSize == IEMMODE_32BIT ? 3 : 1,
2125 &uPtrRet.pv, &uNewRsp);
2126 if (rcStrict != VINF_SUCCESS)
2127 return rcStrict;
2128
2129 /* Chop the high bits if 16-bit (Intel says so). */
2130 if (enmEffOpSize == IEMMODE_16BIT)
2131 offSeg &= UINT16_MAX;
2132
2133 /* Limit / canonical check. */
2134 uint64_t u64Base;
2135 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2136 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2137 {
2138 if (!IEM_IS_CANONICAL(offSeg))
2139 {
2140 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2141 return iemRaiseNotCanonical(pVCpu);
2142 }
2143 u64Base = 0;
2144 }
2145 else
2146 {
2147 if (offSeg > cbLimit)
2148 {
2149 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2150 /** @todo Intel says this is \#GP(0)! */
2151 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2152 }
2153 u64Base = X86DESC_BASE(&Desc.Legacy);
2154 }
2155
2156 /*
2157 * Now set the accessed bit before
2158 * writing the return address to the stack and committing the result into
2159 * CS, CSHID and RIP.
2160 */
2161 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2162 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2163 {
2164 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2165 if (rcStrict != VINF_SUCCESS)
2166 return rcStrict;
2167 /** @todo check what VT-x and AMD-V does. */
2168 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2169 }
2170
2171 /* stack */
2172 if (enmEffOpSize == IEMMODE_16BIT)
2173 {
2174 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2175 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2176 }
2177 else if (enmEffOpSize == IEMMODE_32BIT)
2178 {
2179 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2180 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2181 }
2182 else
2183 {
2184 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2185 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2186 }
2187 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2188 if (rcStrict != VINF_SUCCESS)
2189 return rcStrict;
2190
2191 /* commit */
2192 pVCpu->cpum.GstCtx.rip = offSeg;
2193 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2194 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2195 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2196 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2197 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2198 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2199 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2200 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2201 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2202 /** @todo check if the hidden bits are loaded correctly for 64-bit
2203 * mode. */
2204
2205 /* Flush the prefetch buffer. */
2206#ifdef IEM_WITH_CODE_TLB
2207 pVCpu->iem.s.pbInstrBuf = NULL;
2208#else
2209 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2210#endif
2211 return VINF_SUCCESS;
2212}
2213
2214
2215/**
2216 * Implements retf.
2217 *
2218 * @param enmEffOpSize The effective operand size.
2219 * @param cbPop The amount of arguments to pop from the stack
2220 * (bytes).
2221 */
2222IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2223{
2224 VBOXSTRICTRC rcStrict;
2225 RTCPTRUNION uPtrFrame;
2226 uint64_t uNewRsp;
2227 uint64_t uNewRip;
2228 uint16_t uNewCs;
2229 NOREF(cbInstr);
2230
2231 /*
2232 * Read the stack values first.
2233 */
2234 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2235 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2236 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr,
2237 enmEffOpSize == IEMMODE_16BIT ? 1 : enmEffOpSize == IEMMODE_32BIT ? 3 : 7,
2238 &uPtrFrame.pv, &uNewRsp);
2239 if (rcStrict != VINF_SUCCESS)
2240 return rcStrict;
2241 if (enmEffOpSize == IEMMODE_16BIT)
2242 {
2243 uNewRip = uPtrFrame.pu16[0];
2244 uNewCs = uPtrFrame.pu16[1];
2245 }
2246 else if (enmEffOpSize == IEMMODE_32BIT)
2247 {
2248 uNewRip = uPtrFrame.pu32[0];
2249 uNewCs = uPtrFrame.pu16[2];
2250 }
2251 else
2252 {
2253 uNewRip = uPtrFrame.pu64[0];
2254 uNewCs = uPtrFrame.pu16[4];
2255 }
2256 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2257 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2258 { /* extremely likely */ }
2259 else
2260 return rcStrict;
2261
2262 /*
2263 * Real mode and V8086 mode are easy.
2264 */
2265 /** @todo See comment for similar code in iemCImpl_FarJmp */
2266 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2267 {
2268 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2269 /** @todo check how this is supposed to work if sp=0xfffe. */
2270
2271 /* Check the limit of the new EIP. */
2272 /** @todo Intel pseudo code only does the limit check for 16-bit
2273 * operands, AMD does not make any distinction. What is right? */
2274 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2275 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2276
2277 /* commit the operation. */
2278 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2279 pVCpu->cpum.GstCtx.rip = uNewRip;
2280 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2281 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2282 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2283 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2284 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2285 if (cbPop)
2286 iemRegAddToRsp(pVCpu, cbPop);
2287 return VINF_SUCCESS;
2288 }
2289
2290 /*
2291 * Protected mode is complicated, of course.
2292 */
2293 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2294 {
2295 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2296 return iemRaiseGeneralProtectionFault0(pVCpu);
2297 }
2298
2299 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2300
2301 /* Fetch the descriptor. */
2302 IEMSELDESC DescCs;
2303 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2304 if (rcStrict != VINF_SUCCESS)
2305 return rcStrict;
2306
2307 /* Can only return to a code selector. */
2308 if ( !DescCs.Legacy.Gen.u1DescType
2309 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2310 {
2311 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2312 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2313 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2314 }
2315
2316 /* L vs D. */
2317 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2318 && DescCs.Legacy.Gen.u1DefBig
2319 && IEM_IS_LONG_MODE(pVCpu))
2320 {
2321 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2322 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2323 }
2324
2325 /* DPL/RPL/CPL checks. */
2326 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2327 {
2328 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2329 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2330 }
2331
2332 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2333 {
2334 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2335 {
2336 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2337 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2338 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2339 }
2340 }
2341 else
2342 {
2343 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2344 {
2345 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2346 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2347 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2348 }
2349 }
2350
2351 /* Is it there? */
2352 if (!DescCs.Legacy.Gen.u1Present)
2353 {
2354 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2355 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2356 }
2357
2358 /*
2359 * Return to outer privilege? (We'll typically have entered via a call gate.)
2360 */
2361 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2362 {
2363 /* Read the outer stack pointer stored *after* the parameters. */
2364 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop /*off*/, cbRetPtr, &uPtrFrame.pv, uNewRsp);
2365 if (rcStrict != VINF_SUCCESS)
2366 return rcStrict;
2367
2368 uint16_t uNewOuterSs;
2369 uint64_t uNewOuterRsp;
2370 if (enmEffOpSize == IEMMODE_16BIT)
2371 {
2372 uNewOuterRsp = uPtrFrame.pu16[0];
2373 uNewOuterSs = uPtrFrame.pu16[1];
2374 }
2375 else if (enmEffOpSize == IEMMODE_32BIT)
2376 {
2377 uNewOuterRsp = uPtrFrame.pu32[0];
2378 uNewOuterSs = uPtrFrame.pu16[2];
2379 }
2380 else
2381 {
2382 uNewOuterRsp = uPtrFrame.pu64[0];
2383 uNewOuterSs = uPtrFrame.pu16[4];
2384 }
2385 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2386 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2387 { /* extremely likely */ }
2388 else
2389 return rcStrict;
2390
2391 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2392 and read the selector. */
2393 IEMSELDESC DescSs;
2394 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2395 {
2396 if ( !DescCs.Legacy.Gen.u1Long
2397 || (uNewOuterSs & X86_SEL_RPL) == 3)
2398 {
2399 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2400 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2401 return iemRaiseGeneralProtectionFault0(pVCpu);
2402 }
2403 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2404 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2405 }
2406 else
2407 {
2408 /* Fetch the descriptor for the new stack segment. */
2409 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2410 if (rcStrict != VINF_SUCCESS)
2411 return rcStrict;
2412 }
2413
2414 /* Check that RPL of stack and code selectors match. */
2415 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2416 {
2417 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2418 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2419 }
2420
2421 /* Must be a writable data segment. */
2422 if ( !DescSs.Legacy.Gen.u1DescType
2423 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2424 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2425 {
2426 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2427 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2428 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2429 }
2430
2431 /* L vs D. (Not mentioned by intel.) */
2432 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2433 && DescSs.Legacy.Gen.u1DefBig
2434 && IEM_IS_LONG_MODE(pVCpu))
2435 {
2436 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2437 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2438 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2439 }
2440
2441 /* DPL/RPL/CPL checks. */
2442 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2443 {
2444 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2445 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2446 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2447 }
2448
2449 /* Is it there? */
2450 if (!DescSs.Legacy.Gen.u1Present)
2451 {
2452 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2453 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2454 }
2455
2456 /* Calc SS limit.*/
2457 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2458
2459 /* Is RIP canonical or within CS.limit? */
2460 uint64_t u64Base;
2461 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2462
2463 /** @todo Testcase: Is this correct? */
2464 if ( DescCs.Legacy.Gen.u1Long
2465 && IEM_IS_LONG_MODE(pVCpu) )
2466 {
2467 if (!IEM_IS_CANONICAL(uNewRip))
2468 {
2469 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2470 return iemRaiseNotCanonical(pVCpu);
2471 }
2472 u64Base = 0;
2473 }
2474 else
2475 {
2476 if (uNewRip > cbLimitCs)
2477 {
2478 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2479 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2480 /** @todo Intel says this is \#GP(0)! */
2481 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2482 }
2483 u64Base = X86DESC_BASE(&DescCs.Legacy);
2484 }
2485
2486 /*
2487 * Now set the accessed bit before
2488 * writing the return address to the stack and committing the result into
2489 * CS, CSHID and RIP.
2490 */
2491 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2492 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2493 {
2494 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2495 if (rcStrict != VINF_SUCCESS)
2496 return rcStrict;
2497 /** @todo check what VT-x and AMD-V does. */
2498 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2499 }
2500 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2501 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2502 {
2503 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2504 if (rcStrict != VINF_SUCCESS)
2505 return rcStrict;
2506 /** @todo check what VT-x and AMD-V does. */
2507 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2508 }
2509
2510 /* commit */
2511 if (enmEffOpSize == IEMMODE_16BIT)
2512 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2513 else
2514 pVCpu->cpum.GstCtx.rip = uNewRip;
2515 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2516 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2517 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2518 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2519 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2520 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2521 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2522 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2523 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2524 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2525 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2526 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2527 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2528 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2529 else
2530 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2531 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2532 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2533 else
2534 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2535
2536 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2537 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2538 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2539 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2540 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2541
2542 /** @todo check if the hidden bits are loaded correctly for 64-bit
2543 * mode. */
2544
2545 if (cbPop)
2546 iemRegAddToRsp(pVCpu, cbPop);
2547 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2548
2549 /* Done! */
2550 }
2551 /*
2552 * Return to the same privilege level
2553 */
2554 else
2555 {
2556 /* Limit / canonical check. */
2557 uint64_t u64Base;
2558 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2559
2560 /** @todo Testcase: Is this correct? */
2561 if ( DescCs.Legacy.Gen.u1Long
2562 && IEM_IS_LONG_MODE(pVCpu) )
2563 {
2564 if (!IEM_IS_CANONICAL(uNewRip))
2565 {
2566 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2567 return iemRaiseNotCanonical(pVCpu);
2568 }
2569 u64Base = 0;
2570 }
2571 else
2572 {
2573 if (uNewRip > cbLimitCs)
2574 {
2575 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2576 /** @todo Intel says this is \#GP(0)! */
2577 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2578 }
2579 u64Base = X86DESC_BASE(&DescCs.Legacy);
2580 }
2581
2582 /*
2583 * Now set the accessed bit before
2584 * writing the return address to the stack and committing the result into
2585 * CS, CSHID and RIP.
2586 */
2587 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2588 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2589 {
2590 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2591 if (rcStrict != VINF_SUCCESS)
2592 return rcStrict;
2593 /** @todo check what VT-x and AMD-V does. */
2594 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2595 }
2596
2597 /* commit */
2598 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2599 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2600 else
2601 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2602 if (enmEffOpSize == IEMMODE_16BIT)
2603 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2604 else
2605 pVCpu->cpum.GstCtx.rip = uNewRip;
2606 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2607 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2608 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2609 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2610 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2611 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2612 /** @todo check if the hidden bits are loaded correctly for 64-bit
2613 * mode. */
2614 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2615 if (cbPop)
2616 iemRegAddToRsp(pVCpu, cbPop);
2617 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2618 }
2619
2620 /* Flush the prefetch buffer. */
2621#ifdef IEM_WITH_CODE_TLB
2622 pVCpu->iem.s.pbInstrBuf = NULL;
2623#else
2624 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2625#endif
2626 return VINF_SUCCESS;
2627}
2628
2629
2630/**
2631 * Implements retn.
2632 *
2633 * We're doing this in C because of the \#GP that might be raised if the popped
2634 * program counter is out of bounds.
2635 *
2636 * @param enmEffOpSize The effective operand size.
2637 * @param cbPop The amount of arguments to pop from the stack
2638 * (bytes).
2639 */
2640IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2641{
2642 NOREF(cbInstr);
2643
2644 /* Fetch the RSP from the stack. */
2645 VBOXSTRICTRC rcStrict;
2646 RTUINT64U NewRip;
2647 RTUINT64U NewRsp;
2648 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2649
2650 switch (enmEffOpSize)
2651 {
2652 case IEMMODE_16BIT:
2653 NewRip.u = 0;
2654 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2655 break;
2656 case IEMMODE_32BIT:
2657 NewRip.u = 0;
2658 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2659 break;
2660 case IEMMODE_64BIT:
2661 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2662 break;
2663 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2664 }
2665 if (rcStrict != VINF_SUCCESS)
2666 return rcStrict;
2667
2668 /* Check the new RSP before loading it. */
2669 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2670 * of it. The canonical test is performed here and for call. */
2671 if (enmEffOpSize != IEMMODE_64BIT)
2672 {
2673 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2674 {
2675 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2676 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2677 }
2678 }
2679 else
2680 {
2681 if (!IEM_IS_CANONICAL(NewRip.u))
2682 {
2683 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2684 return iemRaiseNotCanonical(pVCpu);
2685 }
2686 }
2687
2688 /* Apply cbPop */
2689 if (cbPop)
2690 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2691
2692 /* Commit it. */
2693 pVCpu->cpum.GstCtx.rip = NewRip.u;
2694 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2695 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2696
2697 /* Flush the prefetch buffer. */
2698#ifndef IEM_WITH_CODE_TLB
2699 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2700#endif
2701
2702 return VINF_SUCCESS;
2703}
2704
2705
2706/**
2707 * Implements enter.
2708 *
2709 * We're doing this in C because the instruction is insane, even for the
2710 * u8NestingLevel=0 case dealing with the stack is tedious.
2711 *
2712 * @param enmEffOpSize The effective operand size.
2713 * @param cbFrame Frame size.
2714 * @param cParameters Frame parameter count.
2715 */
2716IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2717{
2718 /* Push RBP, saving the old value in TmpRbp. */
2719 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2720 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2721 RTUINT64U NewRbp;
2722 VBOXSTRICTRC rcStrict;
2723 if (enmEffOpSize == IEMMODE_64BIT)
2724 {
2725 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2726 NewRbp = NewRsp;
2727 }
2728 else if (enmEffOpSize == IEMMODE_32BIT)
2729 {
2730 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2731 NewRbp = NewRsp;
2732 }
2733 else
2734 {
2735 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2736 NewRbp = TmpRbp;
2737 NewRbp.Words.w0 = NewRsp.Words.w0;
2738 }
2739 if (rcStrict != VINF_SUCCESS)
2740 return rcStrict;
2741
2742 /* Copy the parameters (aka nesting levels by Intel). */
2743 cParameters &= 0x1f;
2744 if (cParameters > 0)
2745 {
2746 switch (enmEffOpSize)
2747 {
2748 case IEMMODE_16BIT:
2749 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2750 TmpRbp.DWords.dw0 -= 2;
2751 else
2752 TmpRbp.Words.w0 -= 2;
2753 do
2754 {
2755 uint16_t u16Tmp;
2756 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2757 if (rcStrict != VINF_SUCCESS)
2758 break;
2759 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2760 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2761 break;
2762
2763 case IEMMODE_32BIT:
2764 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2765 TmpRbp.DWords.dw0 -= 4;
2766 else
2767 TmpRbp.Words.w0 -= 4;
2768 do
2769 {
2770 uint32_t u32Tmp;
2771 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2772 if (rcStrict != VINF_SUCCESS)
2773 break;
2774 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2775 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2776 break;
2777
2778 case IEMMODE_64BIT:
2779 TmpRbp.u -= 8;
2780 do
2781 {
2782 uint64_t u64Tmp;
2783 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2784 if (rcStrict != VINF_SUCCESS)
2785 break;
2786 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2787 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2788 break;
2789
2790 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2791 }
2792 if (rcStrict != VINF_SUCCESS)
2793 return VINF_SUCCESS;
2794
2795 /* Push the new RBP */
2796 if (enmEffOpSize == IEMMODE_64BIT)
2797 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2798 else if (enmEffOpSize == IEMMODE_32BIT)
2799 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2800 else
2801 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2802 if (rcStrict != VINF_SUCCESS)
2803 return rcStrict;
2804
2805 }
2806
2807 /* Recalc RSP. */
2808 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2809
2810 /** @todo Should probe write access at the new RSP according to AMD. */
2811 /** @todo Should handle accesses to the VMX APIC-access page. */
2812
2813 /* Commit it. */
2814 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2815 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2816 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
2817}
2818
2819
2820
2821/**
2822 * Implements leave.
2823 *
2824 * We're doing this in C because messing with the stack registers is annoying
2825 * since they depends on SS attributes.
2826 *
2827 * @param enmEffOpSize The effective operand size.
2828 */
2829IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2830{
2831 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2832 RTUINT64U NewRsp;
2833 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2834 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2835 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2836 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2837 else
2838 {
2839 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2840 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2841 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2842 }
2843
2844 /* Pop RBP according to the operand size. */
2845 VBOXSTRICTRC rcStrict;
2846 RTUINT64U NewRbp;
2847 switch (enmEffOpSize)
2848 {
2849 case IEMMODE_16BIT:
2850 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2851 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2852 break;
2853 case IEMMODE_32BIT:
2854 NewRbp.u = 0;
2855 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2856 break;
2857 case IEMMODE_64BIT:
2858 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2859 break;
2860 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2861 }
2862 if (rcStrict != VINF_SUCCESS)
2863 return rcStrict;
2864
2865
2866 /* Commit it. */
2867 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2868 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2869 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
2870}
2871
2872
2873/**
2874 * Implements int3 and int XX.
2875 *
2876 * @param u8Int The interrupt vector number.
2877 * @param enmInt The int instruction type.
2878 */
2879IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2880{
2881 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2882
2883 /*
2884 * We must check if this INT3 might belong to DBGF before raising a #BP.
2885 */
2886 if (u8Int == 3)
2887 {
2888 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2889 if (pVM->dbgf.ro.cEnabledInt3Breakpoints == 0)
2890 { /* likely: No vbox debugger breakpoints */ }
2891 else
2892 {
2893 VBOXSTRICTRC rcStrict = DBGFTrap03Handler(pVM, pVCpu, &pVCpu->cpum.GstCtx);
2894 Log(("iemCImpl_int: DBGFTrap03Handler -> %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
2895 if (rcStrict != VINF_EM_RAW_GUEST_TRAP)
2896 return iemSetPassUpStatus(pVCpu, rcStrict);
2897 }
2898 }
2899 return iemRaiseXcptOrInt(pVCpu,
2900 cbInstr,
2901 u8Int,
2902 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2903 0,
2904 0);
2905}
2906
2907
2908/**
2909 * Implements iret for real mode and V8086 mode.
2910 *
2911 * @param enmEffOpSize The effective operand size.
2912 */
2913IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2914{
2915 X86EFLAGS Efl;
2916 Efl.u = IEMMISC_GET_EFL(pVCpu);
2917 NOREF(cbInstr);
2918
2919 /*
2920 * iret throws an exception if VME isn't enabled.
2921 */
2922 if ( Efl.Bits.u1VM
2923 && Efl.Bits.u2IOPL != 3
2924 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2925 return iemRaiseGeneralProtectionFault0(pVCpu);
2926
2927 /*
2928 * Do the stack bits, but don't commit RSP before everything checks
2929 * out right.
2930 */
2931 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2932 VBOXSTRICTRC rcStrict;
2933 RTCPTRUNION uFrame;
2934 uint16_t uNewCs;
2935 uint32_t uNewEip;
2936 uint32_t uNewFlags;
2937 uint64_t uNewRsp;
2938 if (enmEffOpSize == IEMMODE_32BIT)
2939 {
2940 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, 1, &uFrame.pv, &uNewRsp);
2941 if (rcStrict != VINF_SUCCESS)
2942 return rcStrict;
2943 uNewEip = uFrame.pu32[0];
2944 if (uNewEip > UINT16_MAX)
2945 return iemRaiseGeneralProtectionFault0(pVCpu);
2946
2947 uNewCs = (uint16_t)uFrame.pu32[1];
2948 uNewFlags = uFrame.pu32[2];
2949 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2950 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2951 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2952 | X86_EFL_ID;
2953 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2954 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2955 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2956 }
2957 else
2958 {
2959 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, 1, &uFrame.pv, &uNewRsp);
2960 if (rcStrict != VINF_SUCCESS)
2961 return rcStrict;
2962 uNewEip = uFrame.pu16[0];
2963 uNewCs = uFrame.pu16[1];
2964 uNewFlags = uFrame.pu16[2];
2965 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2966 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2967 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2968 /** @todo The intel pseudo code does not indicate what happens to
2969 * reserved flags. We just ignore them. */
2970 /* Ancient CPU adjustments: See iemCImpl_popf. */
2971 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2972 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2973 }
2974 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2975 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2976 { /* extremely likely */ }
2977 else
2978 return rcStrict;
2979
2980 /** @todo Check how this is supposed to work if sp=0xfffe. */
2981 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2982 uNewCs, uNewEip, uNewFlags, uNewRsp));
2983
2984 /*
2985 * Check the limit of the new EIP.
2986 */
2987 /** @todo Only the AMD pseudo code check the limit here, what's
2988 * right? */
2989 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2990 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2991
2992 /*
2993 * V8086 checks and flag adjustments
2994 */
2995 if (Efl.Bits.u1VM)
2996 {
2997 if (Efl.Bits.u2IOPL == 3)
2998 {
2999 /* Preserve IOPL and clear RF. */
3000 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
3001 uNewFlags |= Efl.u & (X86_EFL_IOPL);
3002 }
3003 else if ( enmEffOpSize == IEMMODE_16BIT
3004 && ( !(uNewFlags & X86_EFL_IF)
3005 || !Efl.Bits.u1VIP )
3006 && !(uNewFlags & X86_EFL_TF) )
3007 {
3008 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
3009 uNewFlags &= ~X86_EFL_VIF;
3010 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
3011 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
3012 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
3013 }
3014 else
3015 return iemRaiseGeneralProtectionFault0(pVCpu);
3016 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
3017 }
3018
3019 /*
3020 * Commit the operation.
3021 */
3022#ifdef DBGFTRACE_ENABLED
3023 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
3024 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
3025#endif
3026 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3027 pVCpu->cpum.GstCtx.rip = uNewEip;
3028 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3029 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3030 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3031 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
3032 /** @todo do we load attribs and limit as well? */
3033 Assert(uNewFlags & X86_EFL_1);
3034 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3035
3036 /* Flush the prefetch buffer. */
3037#ifdef IEM_WITH_CODE_TLB
3038 pVCpu->iem.s.pbInstrBuf = NULL;
3039#else
3040 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3041#endif
3042
3043 return VINF_SUCCESS;
3044}
3045
3046
3047/**
3048 * Loads a segment register when entering V8086 mode.
3049 *
3050 * @param pSReg The segment register.
3051 * @param uSeg The segment to load.
3052 */
3053static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
3054{
3055 pSReg->Sel = uSeg;
3056 pSReg->ValidSel = uSeg;
3057 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
3058 pSReg->u64Base = (uint32_t)uSeg << 4;
3059 pSReg->u32Limit = 0xffff;
3060 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
3061 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
3062 * IRET'ing to V8086. */
3063}
3064
3065
3066/**
3067 * Implements iret for protected mode returning to V8086 mode.
3068 *
3069 * @param uNewEip The new EIP.
3070 * @param uNewCs The new CS.
3071 * @param uNewFlags The new EFLAGS.
3072 * @param uNewRsp The RSP after the initial IRET frame.
3073 *
3074 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3075 */
3076IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3077{
3078 RT_NOREF_PV(cbInstr);
3079 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3080
3081 /*
3082 * Pop the V8086 specific frame bits off the stack.
3083 */
3084 VBOXSTRICTRC rcStrict;
3085 RTCPTRUNION uFrame;
3086 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 0 /*off*/, 24 /*cbMem*/, &uFrame.pv, uNewRsp);
3087 if (rcStrict != VINF_SUCCESS)
3088 return rcStrict;
3089 uint32_t uNewEsp = uFrame.pu32[0];
3090 uint16_t uNewSs = uFrame.pu32[1];
3091 uint16_t uNewEs = uFrame.pu32[2];
3092 uint16_t uNewDs = uFrame.pu32[3];
3093 uint16_t uNewFs = uFrame.pu32[4];
3094 uint16_t uNewGs = uFrame.pu32[5];
3095 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3096 if (rcStrict != VINF_SUCCESS)
3097 return rcStrict;
3098
3099 /*
3100 * Commit the operation.
3101 */
3102 uNewFlags &= X86_EFL_LIVE_MASK;
3103 uNewFlags |= X86_EFL_RA1_MASK;
3104#ifdef DBGFTRACE_ENABLED
3105 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3106 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3107#endif
3108 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3109
3110 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3111 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3112 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3113 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3114 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3115 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3116 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3117 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3118 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3119 pVCpu->iem.s.uCpl = 3;
3120
3121 /* Flush the prefetch buffer. */
3122#ifdef IEM_WITH_CODE_TLB
3123 pVCpu->iem.s.pbInstrBuf = NULL;
3124#else
3125 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3126#endif
3127
3128 return VINF_SUCCESS;
3129}
3130
3131
3132/**
3133 * Implements iret for protected mode returning via a nested task.
3134 *
3135 * @param enmEffOpSize The effective operand size.
3136 */
3137IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3138{
3139 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3140#ifndef IEM_IMPLEMENTS_TASKSWITCH
3141 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3142#else
3143 RT_NOREF_PV(enmEffOpSize);
3144
3145 /*
3146 * Read the segment selector in the link-field of the current TSS.
3147 */
3148 RTSEL uSelRet;
3149 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3150 if (rcStrict != VINF_SUCCESS)
3151 return rcStrict;
3152
3153 /*
3154 * Fetch the returning task's TSS descriptor from the GDT.
3155 */
3156 if (uSelRet & X86_SEL_LDT)
3157 {
3158 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3159 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3160 }
3161
3162 IEMSELDESC TssDesc;
3163 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3164 if (rcStrict != VINF_SUCCESS)
3165 return rcStrict;
3166
3167 if (TssDesc.Legacy.Gate.u1DescType)
3168 {
3169 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3170 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3171 }
3172
3173 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3174 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3175 {
3176 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3177 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3178 }
3179
3180 if (!TssDesc.Legacy.Gate.u1Present)
3181 {
3182 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3183 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3184 }
3185
3186 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3187 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3188 0 /* uCr2 */, uSelRet, &TssDesc);
3189#endif
3190}
3191
3192
3193/**
3194 * Implements iret for protected mode
3195 *
3196 * @param enmEffOpSize The effective operand size.
3197 */
3198IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3199{
3200 NOREF(cbInstr);
3201 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3202
3203 /*
3204 * Nested task return.
3205 */
3206 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3207 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3208
3209 /*
3210 * Normal return.
3211 *
3212 * Do the stack bits, but don't commit RSP before everything checks
3213 * out right.
3214 */
3215 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3216 VBOXSTRICTRC rcStrict;
3217 RTCPTRUNION uFrame;
3218 uint16_t uNewCs;
3219 uint32_t uNewEip;
3220 uint32_t uNewFlags;
3221 uint64_t uNewRsp;
3222 if (enmEffOpSize == IEMMODE_32BIT)
3223 {
3224 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, 3, &uFrame.pv, &uNewRsp);
3225 if (rcStrict != VINF_SUCCESS)
3226 return rcStrict;
3227 uNewEip = uFrame.pu32[0];
3228 uNewCs = (uint16_t)uFrame.pu32[1];
3229 uNewFlags = uFrame.pu32[2];
3230 }
3231 else
3232 {
3233 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, 1, &uFrame.pv, &uNewRsp);
3234 if (rcStrict != VINF_SUCCESS)
3235 return rcStrict;
3236 uNewEip = uFrame.pu16[0];
3237 uNewCs = uFrame.pu16[1];
3238 uNewFlags = uFrame.pu16[2];
3239 }
3240 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3241 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3242 { /* extremely likely */ }
3243 else
3244 return rcStrict;
3245 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3246
3247 /*
3248 * We're hopefully not returning to V8086 mode...
3249 */
3250 if ( (uNewFlags & X86_EFL_VM)
3251 && pVCpu->iem.s.uCpl == 0)
3252 {
3253 Assert(enmEffOpSize == IEMMODE_32BIT);
3254 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3255 }
3256
3257 /*
3258 * Protected mode.
3259 */
3260 /* Read the CS descriptor. */
3261 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3262 {
3263 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3264 return iemRaiseGeneralProtectionFault0(pVCpu);
3265 }
3266
3267 IEMSELDESC DescCS;
3268 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3269 if (rcStrict != VINF_SUCCESS)
3270 {
3271 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3272 return rcStrict;
3273 }
3274
3275 /* Must be a code descriptor. */
3276 if (!DescCS.Legacy.Gen.u1DescType)
3277 {
3278 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3279 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3280 }
3281 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3282 {
3283 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3284 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3285 }
3286
3287 /* Privilege checks. */
3288 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3289 {
3290 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3291 {
3292 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3293 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3294 }
3295 }
3296 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3297 {
3298 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3299 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3300 }
3301 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3302 {
3303 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3304 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3305 }
3306
3307 /* Present? */
3308 if (!DescCS.Legacy.Gen.u1Present)
3309 {
3310 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3311 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3312 }
3313
3314 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3315
3316 /*
3317 * Return to outer level?
3318 */
3319 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3320 {
3321 uint16_t uNewSS;
3322 uint32_t uNewESP;
3323 if (enmEffOpSize == IEMMODE_32BIT)
3324 {
3325 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 0/*off*/, 8 /*cbMem*/, &uFrame.pv, uNewRsp);
3326 if (rcStrict != VINF_SUCCESS)
3327 return rcStrict;
3328/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3329 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3330 * bit of the popped SS selector it turns out. */
3331 uNewESP = uFrame.pu32[0];
3332 uNewSS = (uint16_t)uFrame.pu32[1];
3333 }
3334 else
3335 {
3336 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 0 /*off*/, 4 /*cbMem*/, &uFrame.pv, uNewRsp);
3337 if (rcStrict != VINF_SUCCESS)
3338 return rcStrict;
3339 uNewESP = uFrame.pu16[0];
3340 uNewSS = uFrame.pu16[1];
3341 }
3342 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3343 if (rcStrict != VINF_SUCCESS)
3344 return rcStrict;
3345 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3346
3347 /* Read the SS descriptor. */
3348 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3349 {
3350 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3351 return iemRaiseGeneralProtectionFault0(pVCpu);
3352 }
3353
3354 IEMSELDESC DescSS;
3355 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3356 if (rcStrict != VINF_SUCCESS)
3357 {
3358 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3359 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3360 return rcStrict;
3361 }
3362
3363 /* Privilege checks. */
3364 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3365 {
3366 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3367 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3368 }
3369 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3370 {
3371 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3372 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3373 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3374 }
3375
3376 /* Must be a writeable data segment descriptor. */
3377 if (!DescSS.Legacy.Gen.u1DescType)
3378 {
3379 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3380 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3381 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3382 }
3383 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3384 {
3385 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3386 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3387 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3388 }
3389
3390 /* Present? */
3391 if (!DescSS.Legacy.Gen.u1Present)
3392 {
3393 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3394 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3395 }
3396
3397 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3398
3399 /* Check EIP. */
3400 if (uNewEip > cbLimitCS)
3401 {
3402 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3403 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3404 /** @todo Which is it, \#GP(0) or \#GP(sel)? */
3405 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3406 }
3407
3408 /*
3409 * Commit the changes, marking CS and SS accessed first since
3410 * that may fail.
3411 */
3412 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3413 {
3414 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3415 if (rcStrict != VINF_SUCCESS)
3416 return rcStrict;
3417 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3418 }
3419 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3420 {
3421 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3422 if (rcStrict != VINF_SUCCESS)
3423 return rcStrict;
3424 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3425 }
3426
3427 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3428 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3429 if (enmEffOpSize != IEMMODE_16BIT)
3430 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3431 if (pVCpu->iem.s.uCpl == 0)
3432 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3433 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3434 fEFlagsMask |= X86_EFL_IF;
3435 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3436 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3437 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3438 fEFlagsNew &= ~fEFlagsMask;
3439 fEFlagsNew |= uNewFlags & fEFlagsMask;
3440#ifdef DBGFTRACE_ENABLED
3441 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3442 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3443 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3444#endif
3445
3446 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3447 pVCpu->cpum.GstCtx.rip = uNewEip;
3448 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3449 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3450 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3451 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3452 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3453 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3454 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3455
3456 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3457 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3458 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3459 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3460 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3461 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3462 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3463 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3464 else
3465 pVCpu->cpum.GstCtx.rsp = uNewESP;
3466
3467 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3468 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3469 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3470 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3471 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3472
3473 /* Done! */
3474
3475 }
3476 /*
3477 * Return to the same level.
3478 */
3479 else
3480 {
3481 /* Check EIP. */
3482 if (uNewEip > cbLimitCS)
3483 {
3484 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3485 /** @todo Which is it, \#GP(0) or \#GP(sel)? */
3486 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3487 }
3488
3489 /*
3490 * Commit the changes, marking CS first since it may fail.
3491 */
3492 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3493 {
3494 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3495 if (rcStrict != VINF_SUCCESS)
3496 return rcStrict;
3497 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3498 }
3499
3500 X86EFLAGS NewEfl;
3501 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3502 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3503 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3504 if (enmEffOpSize != IEMMODE_16BIT)
3505 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3506 if (pVCpu->iem.s.uCpl == 0)
3507 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3508 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3509 fEFlagsMask |= X86_EFL_IF;
3510 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3511 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3512 NewEfl.u &= ~fEFlagsMask;
3513 NewEfl.u |= fEFlagsMask & uNewFlags;
3514#ifdef DBGFTRACE_ENABLED
3515 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3516 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3517 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3518#endif
3519
3520 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3521 pVCpu->cpum.GstCtx.rip = uNewEip;
3522 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3523 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3524 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3525 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3526 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3527 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3528 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3529 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3530 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3531 else
3532 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3533 /* Done! */
3534 }
3535
3536 /* Flush the prefetch buffer. */
3537#ifdef IEM_WITH_CODE_TLB
3538 pVCpu->iem.s.pbInstrBuf = NULL;
3539#else
3540 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3541#endif
3542
3543 return VINF_SUCCESS;
3544}
3545
3546
3547/**
3548 * Implements iret for long mode
3549 *
3550 * @param enmEffOpSize The effective operand size.
3551 */
3552IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3553{
3554 NOREF(cbInstr);
3555
3556 /*
3557 * Nested task return is not supported in long mode.
3558 */
3559 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3560 {
3561 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3562 return iemRaiseGeneralProtectionFault0(pVCpu);
3563 }
3564
3565 /*
3566 * Normal return.
3567 *
3568 * Do the stack bits, but don't commit RSP before everything checks
3569 * out right.
3570 */
3571 VBOXSTRICTRC rcStrict;
3572 RTCPTRUNION uFrame;
3573 uint64_t uNewRip;
3574 uint16_t uNewCs;
3575 uint16_t uNewSs;
3576 uint32_t uNewFlags;
3577 uint64_t uNewRsp;
3578 if (enmEffOpSize == IEMMODE_64BIT)
3579 {
3580 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, 7, &uFrame.pv, &uNewRsp);
3581 if (rcStrict != VINF_SUCCESS)
3582 return rcStrict;
3583 uNewRip = uFrame.pu64[0];
3584 uNewCs = (uint16_t)uFrame.pu64[1];
3585 uNewFlags = (uint32_t)uFrame.pu64[2];
3586 uNewRsp = uFrame.pu64[3];
3587 uNewSs = (uint16_t)uFrame.pu64[4];
3588 }
3589 else if (enmEffOpSize == IEMMODE_32BIT)
3590 {
3591 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, 3, &uFrame.pv, &uNewRsp);
3592 if (rcStrict != VINF_SUCCESS)
3593 return rcStrict;
3594 uNewRip = uFrame.pu32[0];
3595 uNewCs = (uint16_t)uFrame.pu32[1];
3596 uNewFlags = uFrame.pu32[2];
3597 uNewRsp = uFrame.pu32[3];
3598 uNewSs = (uint16_t)uFrame.pu32[4];
3599 }
3600 else
3601 {
3602 Assert(enmEffOpSize == IEMMODE_16BIT);
3603 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, 1, &uFrame.pv, &uNewRsp);
3604 if (rcStrict != VINF_SUCCESS)
3605 return rcStrict;
3606 uNewRip = uFrame.pu16[0];
3607 uNewCs = uFrame.pu16[1];
3608 uNewFlags = uFrame.pu16[2];
3609 uNewRsp = uFrame.pu16[3];
3610 uNewSs = uFrame.pu16[4];
3611 }
3612 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3613 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3614 { /* extremely like */ }
3615 else
3616 return rcStrict;
3617 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3618
3619 /*
3620 * Check stuff.
3621 */
3622 /* Read the CS descriptor. */
3623 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3624 {
3625 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3626 return iemRaiseGeneralProtectionFault0(pVCpu);
3627 }
3628
3629 IEMSELDESC DescCS;
3630 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3631 if (rcStrict != VINF_SUCCESS)
3632 {
3633 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3634 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3635 return rcStrict;
3636 }
3637
3638 /* Must be a code descriptor. */
3639 if ( !DescCS.Legacy.Gen.u1DescType
3640 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3641 {
3642 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3643 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3644 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3645 }
3646
3647 /* Privilege checks. */
3648 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3649 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3650 {
3651 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3652 {
3653 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3654 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3655 }
3656 }
3657 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3658 {
3659 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3660 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3661 }
3662 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3663 {
3664 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3665 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3666 }
3667
3668 /* Present? */
3669 if (!DescCS.Legacy.Gen.u1Present)
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3673 }
3674
3675 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3676
3677 /* Read the SS descriptor. */
3678 IEMSELDESC DescSS;
3679 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3680 {
3681 if ( !DescCS.Legacy.Gen.u1Long
3682 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3683 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3684 {
3685 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3686 return iemRaiseGeneralProtectionFault0(pVCpu);
3687 }
3688 /* Make sure SS is sensible, marked as accessed etc. */
3689 iemMemFakeStackSelDesc(&DescSS, (uNewSs & X86_SEL_RPL));
3690 }
3691 else
3692 {
3693 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3694 if (rcStrict != VINF_SUCCESS)
3695 {
3696 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3697 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3698 return rcStrict;
3699 }
3700 }
3701
3702 /* Privilege checks. */
3703 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3704 {
3705 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3706 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3707 }
3708
3709 uint32_t cbLimitSs;
3710 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3711 cbLimitSs = UINT32_MAX;
3712 else
3713 {
3714 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3715 {
3716 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3717 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3718 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3719 }
3720
3721 /* Must be a writeable data segment descriptor. */
3722 if (!DescSS.Legacy.Gen.u1DescType)
3723 {
3724 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3725 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3726 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3727 }
3728 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3729 {
3730 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3731 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3732 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3733 }
3734
3735 /* Present? */
3736 if (!DescSS.Legacy.Gen.u1Present)
3737 {
3738 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3739 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3740 }
3741 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3742 }
3743
3744 /* Check EIP. */
3745 if (DescCS.Legacy.Gen.u1Long)
3746 {
3747 if (!IEM_IS_CANONICAL(uNewRip))
3748 {
3749 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3750 uNewCs, uNewRip, uNewSs, uNewRsp));
3751 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3752 }
3753 }
3754 else
3755 {
3756 if (uNewRip > cbLimitCS)
3757 {
3758 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3759 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3760 /** @todo Which is it, \#GP(0) or \#GP(sel)? */
3761 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3762 }
3763 }
3764
3765 /*
3766 * Commit the changes, marking CS and SS accessed first since
3767 * that may fail.
3768 */
3769 /** @todo where exactly are these actually marked accessed by a real CPU? */
3770 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3771 {
3772 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3773 if (rcStrict != VINF_SUCCESS)
3774 return rcStrict;
3775 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3776 }
3777 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3778 {
3779 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3780 if (rcStrict != VINF_SUCCESS)
3781 return rcStrict;
3782 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3783 }
3784
3785 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3786 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3787 if (enmEffOpSize != IEMMODE_16BIT)
3788 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3789 if (pVCpu->iem.s.uCpl == 0)
3790 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3791 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3792 fEFlagsMask |= X86_EFL_IF;
3793 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3794 fEFlagsNew &= ~fEFlagsMask;
3795 fEFlagsNew |= uNewFlags & fEFlagsMask;
3796#ifdef DBGFTRACE_ENABLED
3797 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3798 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3799#endif
3800
3801 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3802 pVCpu->cpum.GstCtx.rip = uNewRip;
3803 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3804 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3805 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3806 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3807 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3808 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3809 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3810 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3811 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3812 else
3813 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3814 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3815 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3816 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3817 {
3818 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3819 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3820 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3821 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3822 Log2(("iretq new SS: NULL\n"));
3823 }
3824 else
3825 {
3826 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3827 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3828 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3829 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3830 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3831 }
3832
3833 if (pVCpu->iem.s.uCpl != uNewCpl)
3834 {
3835 pVCpu->iem.s.uCpl = uNewCpl;
3836 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3837 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3838 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3839 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3840 }
3841
3842 /* Flush the prefetch buffer. */
3843#ifdef IEM_WITH_CODE_TLB
3844 pVCpu->iem.s.pbInstrBuf = NULL;
3845#else
3846 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3847#endif
3848
3849 return VINF_SUCCESS;
3850}
3851
3852
3853/**
3854 * Implements iret.
3855 *
3856 * @param enmEffOpSize The effective operand size.
3857 */
3858IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3859{
3860 bool fBlockingNmi = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
3861
3862#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3863 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3864 {
3865 /*
3866 * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
3867 * of this IRET instruction. We need to provide this information as part of some
3868 * VM-exits.
3869 *
3870 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3871 */
3872 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
3873 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
3874 else
3875 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3876
3877 /*
3878 * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
3879 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3880 */
3881 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
3882 fBlockingNmi = false;
3883
3884 /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
3885 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
3886 }
3887#endif
3888
3889 /*
3890 * The SVM nested-guest intercept for IRET takes priority over all exceptions,
3891 * The NMI is still held pending (which I assume means blocking of further NMIs
3892 * is in effect).
3893 *
3894 * See AMD spec. 15.9 "Instruction Intercepts".
3895 * See AMD spec. 15.21.9 "NMI Support".
3896 */
3897 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3898 {
3899 Log(("iret: Guest intercept -> #VMEXIT\n"));
3900 IEM_SVM_UPDATE_NRIP(pVCpu);
3901 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3902 }
3903
3904 /*
3905 * Clear NMI blocking, if any, before causing any further exceptions.
3906 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3907 */
3908 if (fBlockingNmi)
3909 CPUMClearInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
3910
3911 /*
3912 * Call a mode specific worker.
3913 */
3914 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3915 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3916 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3917 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3918 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3919 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3920}
3921
3922
3923static void iemLoadallSetSelector(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
3924{
3925 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3926
3927 pHid->Sel = uSel;
3928 pHid->ValidSel = uSel;
3929 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3930}
3931
3932
3933static void iemLoadall286SetDescCache(PVMCPUCC pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3934{
3935 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3936
3937 /* The base is in the first three bytes. */
3938 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3939 /* The attributes are in the fourth byte. */
3940 pHid->Attr.u = pbMem[3];
3941 /* The limit is in the last two bytes. */
3942 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3943}
3944
3945
3946/**
3947 * Implements 286 LOADALL (286 CPUs only).
3948 */
3949IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3950{
3951 NOREF(cbInstr);
3952
3953 /* Data is loaded from a buffer at 800h. No checks are done on the
3954 * validity of loaded state.
3955 *
3956 * LOADALL only loads the internal CPU state, it does not access any
3957 * GDT, LDT, or similar tables.
3958 */
3959
3960 if (pVCpu->iem.s.uCpl != 0)
3961 {
3962 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3963 return iemRaiseGeneralProtectionFault0(pVCpu);
3964 }
3965
3966 uint8_t const *pbMem = NULL;
3967 uint16_t const *pa16Mem;
3968 uint8_t const *pa8Mem;
3969 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3970 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R, 0);
3971 if (rcStrict != VINF_SUCCESS)
3972 return rcStrict;
3973
3974 /* The MSW is at offset 0x06. */
3975 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3976 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3977 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3978 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3979 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3980
3981 CPUMSetGuestCR0(pVCpu, uNewCr0);
3982 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3983
3984 /* Inform PGM if mode changed. */
3985 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3986 {
3987 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
3988 AssertRCReturn(rc, rc);
3989 /* ignore informational status codes */
3990 }
3991 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
3992 false /* fForce */);
3993
3994 /* TR selector is at offset 0x16. */
3995 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3996 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3997 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3998 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3999
4000 /* Followed by FLAGS... */
4001 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
4002 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
4003
4004 /* LDT is at offset 0x1C. */
4005 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
4006 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
4007 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
4008 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
4009
4010 /* Segment registers are at offset 0x1E. */
4011 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
4012 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
4013 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
4014 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
4015 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
4016
4017 /* GPRs are at offset 0x26. */
4018 pa16Mem = (uint16_t const *)(pbMem + 0x26);
4019 pVCpu->cpum.GstCtx.di = pa16Mem[0];
4020 pVCpu->cpum.GstCtx.si = pa16Mem[1];
4021 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
4022 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
4023 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
4024 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
4025 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
4026 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
4027
4028 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
4029 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
4030 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
4031 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
4032 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
4033
4034 /* GDTR contents are at offset 0x4E, 6 bytes. */
4035 RTGCPHYS GCPtrBase;
4036 uint16_t cbLimit;
4037 pa8Mem = pbMem + 0x4E;
4038 /* NB: Fourth byte "should be zero"; we are ignoring it. */
4039 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4040 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4041 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4042
4043 /* IDTR contents are at offset 0x5A, 6 bytes. */
4044 pa8Mem = pbMem + 0x5A;
4045 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4046 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4047 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4048
4049 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
4050 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
4051 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
4052 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
4053 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
4054 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
4055
4056 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
4057 if (rcStrict != VINF_SUCCESS)
4058 return rcStrict;
4059
4060 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
4061 * descriptor caches" but there is no word as to what happens if those are
4062 * not identical (probably bad things).
4063 */
4064 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
4065
4066 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4067
4068 /* Flush the prefetch buffer. */
4069#ifdef IEM_WITH_CODE_TLB
4070 pVCpu->iem.s.pbInstrBuf = NULL;
4071#else
4072 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4073#endif
4074 return rcStrict;
4075}
4076
4077
4078/**
4079 * Implements SYSCALL (AMD and Intel64).
4080 */
4081IEM_CIMPL_DEF_0(iemCImpl_syscall)
4082{
4083 /** @todo hack, LOADALL should be decoded as such on a 286. */
4084 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4085 return iemCImpl_loadall286(pVCpu, cbInstr);
4086
4087 /*
4088 * Check preconditions.
4089 *
4090 * Note that CPUs described in the documentation may load a few odd values
4091 * into CS and SS than we allow here. This has yet to be checked on real
4092 * hardware.
4093 */
4094 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4095 {
4096 Log(("syscall: Not enabled in EFER -> #UD\n"));
4097 return iemRaiseUndefinedOpcode(pVCpu);
4098 }
4099 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4100 {
4101 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4102 return iemRaiseGeneralProtectionFault0(pVCpu);
4103 }
4104 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4105 {
4106 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4107 return iemRaiseUndefinedOpcode(pVCpu);
4108 }
4109
4110 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4111
4112 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4113 /** @todo what about LDT selectors? Shouldn't matter, really. */
4114 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4115 uint16_t uNewSs = uNewCs + 8;
4116 if (uNewCs == 0 || uNewSs == 0)
4117 {
4118 /** @todo Neither Intel nor AMD document this check. */
4119 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4120 return iemRaiseGeneralProtectionFault0(pVCpu);
4121 }
4122
4123 /* Long mode and legacy mode differs. */
4124 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4125 {
4126 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4127
4128 /* This test isn't in the docs, but I'm not trusting the guys writing
4129 the MSRs to have validated the values as canonical like they should. */
4130 if (!IEM_IS_CANONICAL(uNewRip))
4131 {
4132 /** @todo Intel claims this can't happen because IA32_LSTAR MSR can't be written with non-canonical address. */
4133 Log(("syscall: New RIP not canonical -> #UD\n"));
4134 return iemRaiseUndefinedOpcode(pVCpu);
4135 }
4136
4137 /*
4138 * Commit it.
4139 */
4140 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4141 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4142 pVCpu->cpum.GstCtx.rip = uNewRip;
4143
4144 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4145 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4146 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4147 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4148
4149 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4150 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4151 }
4152 else
4153 {
4154 /*
4155 * Commit it.
4156 */
4157 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4158 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4159 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4160 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4161
4162 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4163 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4164 }
4165 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4166 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4167 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4168 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4169 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4170
4171 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4172 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4173 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4174 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4175 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4176
4177 pVCpu->iem.s.uCpl = 0;
4178 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
4179
4180 /* Flush the prefetch buffer. */
4181#ifdef IEM_WITH_CODE_TLB
4182 pVCpu->iem.s.pbInstrBuf = NULL;
4183#else
4184 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4185#endif
4186
4187 return VINF_SUCCESS;
4188}
4189
4190
4191/**
4192 * Implements SYSRET (AMD and Intel64).
4193 */
4194IEM_CIMPL_DEF_0(iemCImpl_sysret)
4195
4196{
4197 RT_NOREF_PV(cbInstr);
4198
4199 /*
4200 * Check preconditions.
4201 *
4202 * Note that CPUs described in the documentation may load a few odd values
4203 * into CS and SS than we allow here. This has yet to be checked on real
4204 * hardware.
4205 */
4206 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4207 {
4208 Log(("sysret: Not enabled in EFER -> #UD\n"));
4209 return iemRaiseUndefinedOpcode(pVCpu);
4210 }
4211 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4212 {
4213 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4214 return iemRaiseUndefinedOpcode(pVCpu);
4215 }
4216 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4217 {
4218 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4219 return iemRaiseGeneralProtectionFault0(pVCpu);
4220 }
4221 if (pVCpu->iem.s.uCpl != 0)
4222 {
4223 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4224 return iemRaiseGeneralProtectionFault0(pVCpu);
4225 }
4226
4227 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4228
4229 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4230 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4231 uint16_t uNewSs = uNewCs + 8;
4232 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4233 uNewCs += 16;
4234 if (uNewCs == 0 || uNewSs == 0)
4235 {
4236 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4237 return iemRaiseGeneralProtectionFault0(pVCpu);
4238 }
4239
4240 /*
4241 * Commit it.
4242 */
4243 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4244 {
4245 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4246 {
4247 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4248 /* Note! We disregard intel manual regarding the RCX canonical
4249 check, ask intel+xen why AMD doesn't do it. */
4250 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4251 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4252 | (3 << X86DESCATTR_DPL_SHIFT);
4253 }
4254 else
4255 {
4256 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4257 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4258 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4259 | (3 << X86DESCATTR_DPL_SHIFT);
4260 }
4261 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4262 * what it really ignores. RF and VM are hinted at being zero, by AMD.
4263 * Intel says: RFLAGS := (R11 & 3C7FD7H) | 2; */
4264 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4265 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4266 }
4267 else
4268 {
4269 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4270 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4271 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4272 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4273 | (3 << X86DESCATTR_DPL_SHIFT);
4274 }
4275 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4276 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4277 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4278 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4279 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4280
4281 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4282 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4283 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4284 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4285 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4286 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4287 * on sysret. */
4288
4289 pVCpu->iem.s.uCpl = 3;
4290 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
4291
4292 /* Flush the prefetch buffer. */
4293#ifdef IEM_WITH_CODE_TLB
4294 pVCpu->iem.s.pbInstrBuf = NULL;
4295#else
4296 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4297#endif
4298
4299 return VINF_SUCCESS;
4300}
4301
4302
4303/**
4304 * Implements SYSENTER (Intel, 32-bit AMD).
4305 */
4306IEM_CIMPL_DEF_0(iemCImpl_sysenter)
4307{
4308 RT_NOREF(cbInstr);
4309
4310 /*
4311 * Check preconditions.
4312 *
4313 * Note that CPUs described in the documentation may load a few odd values
4314 * into CS and SS than we allow here. This has yet to be checked on real
4315 * hardware.
4316 */
4317 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4318 {
4319 Log(("sysenter: not supported -=> #UD\n"));
4320 return iemRaiseUndefinedOpcode(pVCpu);
4321 }
4322 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4323 {
4324 Log(("sysenter: Protected or long mode is required -> #GP(0)\n"));
4325 return iemRaiseGeneralProtectionFault0(pVCpu);
4326 }
4327 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4328 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && fIsLongMode)
4329 {
4330 Log(("sysenter: Only available in protected mode on AMD -> #UD\n"));
4331 return iemRaiseUndefinedOpcode(pVCpu);
4332 }
4333 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4334 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4335 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4336 {
4337 Log(("sysenter: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4338 return iemRaiseGeneralProtectionFault0(pVCpu);
4339 }
4340
4341 /* This test isn't in the docs, it's just a safeguard against missing
4342 canonical checks when writing the registers. */
4343 if (RT_LIKELY( !fIsLongMode
4344 || ( IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.eip)
4345 && IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.esp))))
4346 { /* likely */ }
4347 else
4348 {
4349 Log(("sysenter: SYSENTER_EIP = %#RX64 or/and SYSENTER_ESP = %#RX64 not canonical -> #GP(0)\n",
4350 pVCpu->cpum.GstCtx.SysEnter.eip, pVCpu->cpum.GstCtx.SysEnter.esp));
4351 return iemRaiseUndefinedOpcode(pVCpu);
4352 }
4353
4354/** @todo Test: Sysenter from ring-0, ring-1 and ring-2. */
4355
4356 /*
4357 * Update registers and commit.
4358 */
4359 if (fIsLongMode)
4360 {
4361 Log(("sysenter: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4362 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, pVCpu->cpum.GstCtx.SysEnter.eip));
4363 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.SysEnter.eip;
4364 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.SysEnter.esp;
4365 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4366 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4367 }
4368 else
4369 {
4370 Log(("sysenter: %04x:%08RX32 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, (uint32_t)pVCpu->cpum.GstCtx.rip,
4371 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip));
4372 pVCpu->cpum.GstCtx.rip = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip;
4373 pVCpu->cpum.GstCtx.rsp = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.esp;
4374 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4375 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4376 }
4377 pVCpu->cpum.GstCtx.cs.Sel = uNewCs & X86_SEL_MASK_OFF_RPL;
4378 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs & X86_SEL_MASK_OFF_RPL;
4379 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4380 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4381 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4382
4383 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4384 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4385 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4386 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4387 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4388 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC;
4389 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4390
4391 pVCpu->cpum.GstCtx.rflags.Bits.u1IF = 0;
4392 pVCpu->cpum.GstCtx.rflags.Bits.u1VM = 0;
4393 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4394
4395 pVCpu->iem.s.uCpl = 0;
4396
4397 /* Flush the prefetch buffer. */
4398#ifdef IEM_WITH_CODE_TLB
4399 pVCpu->iem.s.pbInstrBuf = NULL;
4400#else
4401 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4402#endif
4403
4404 return VINF_SUCCESS;
4405}
4406
4407
4408/**
4409 * Implements SYSEXIT (Intel, 32-bit AMD).
4410 *
4411 * @param enmEffOpSize The effective operand size.
4412 */
4413IEM_CIMPL_DEF_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize)
4414{
4415 RT_NOREF(cbInstr);
4416
4417 /*
4418 * Check preconditions.
4419 *
4420 * Note that CPUs described in the documentation may load a few odd values
4421 * into CS and SS than we allow here. This has yet to be checked on real
4422 * hardware.
4423 */
4424 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4425 {
4426 Log(("sysexit: not supported -=> #UD\n"));
4427 return iemRaiseUndefinedOpcode(pVCpu);
4428 }
4429 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4430 {
4431 Log(("sysexit: Protected or long mode is required -> #GP(0)\n"));
4432 return iemRaiseGeneralProtectionFault0(pVCpu);
4433 }
4434 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4435 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && fIsLongMode)
4436 {
4437 Log(("sysexit: Only available in protected mode on AMD -> #UD\n"));
4438 return iemRaiseUndefinedOpcode(pVCpu);
4439 }
4440 if (pVCpu->iem.s.uCpl != 0)
4441 {
4442 Log(("sysexit: CPL(=%u) != 0 -> #GP(0)\n", pVCpu->iem.s.uCpl));
4443 return iemRaiseGeneralProtectionFault0(pVCpu);
4444 }
4445 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4446 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4447 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4448 {
4449 Log(("sysexit: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4450 return iemRaiseGeneralProtectionFault0(pVCpu);
4451 }
4452
4453 /*
4454 * Update registers and commit.
4455 */
4456 if (enmEffOpSize == IEMMODE_64BIT)
4457 {
4458 Log(("sysexit: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4459 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 32, pVCpu->cpum.GstCtx.rcx));
4460 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rdx;
4461 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.rcx;
4462 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4463 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4464 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 32;
4465 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 32;
4466 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 40;
4467 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 40;
4468 }
4469 else
4470 {
4471 Log(("sysexit: %04x:%08RX64 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4472 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 16, (uint32_t)pVCpu->cpum.GstCtx.edx));
4473 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.edx;
4474 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.ecx;
4475 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4476 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4477 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 16;
4478 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 16;
4479 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 24;
4480 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 24;
4481 }
4482 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4483 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4484 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4485
4486 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4487 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4488 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4489 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4490 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4491 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4492
4493 pVCpu->iem.s.uCpl = 3;
4494
4495 /* Flush the prefetch buffer. */
4496#ifdef IEM_WITH_CODE_TLB
4497 pVCpu->iem.s.pbInstrBuf = NULL;
4498#else
4499 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4500#endif
4501
4502 return VINF_SUCCESS;
4503}
4504
4505
4506/**
4507 * Completes a MOV SReg,XXX or POP SReg instruction.
4508 *
4509 * When not modifying SS or when we're already in an interrupt shadow we
4510 * can update RIP and finish the instruction the normal way.
4511 *
4512 * Otherwise, the MOV/POP SS interrupt shadow that we now enable will block
4513 * both TF and DBx events. The TF will be ignored while the DBx ones will
4514 * be delayed till the next instruction boundrary. For more details see
4515 * @sdmv3{077,200,6.8.3,Masking Exceptions and Interrupts When Switching Stacks}.
4516 */
4517DECLINLINE(VBOXSTRICTRC) iemCImpl_LoadSRegFinish(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iSegReg)
4518{
4519 if (iSegReg != X86_SREG_SS || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
4520 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
4521
4522 iemRegAddToRip(pVCpu, cbInstr);
4523 pVCpu->cpum.GstCtx.eflags.uBoth &= ~X86_EFL_RF; /* Shadow int isn't set and DRx is delayed, so only clear RF. */
4524 CPUMSetInInterruptShadowSs(&pVCpu->cpum.GstCtx);
4525
4526 return VINF_SUCCESS;
4527}
4528
4529
4530/**
4531 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4532 *
4533 * @param pVCpu The cross context virtual CPU structure of the calling
4534 * thread.
4535 * @param iSegReg The segment register number (valid).
4536 * @param uSel The new selector value.
4537 */
4538static VBOXSTRICTRC iemCImpl_LoadSRegWorker(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
4539{
4540 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4541 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4542 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4543
4544 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4545
4546 /*
4547 * Real mode and V8086 mode are easy.
4548 */
4549 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4550 {
4551 *pSel = uSel;
4552 pHid->u64Base = (uint32_t)uSel << 4;
4553 pHid->ValidSel = uSel;
4554 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4555#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4556 /** @todo Does the CPU actually load limits and attributes in the
4557 * real/V8086 mode segment load case? It doesn't for CS in far
4558 * jumps... Affects unreal mode. */
4559 pHid->u32Limit = 0xffff;
4560 pHid->Attr.u = 0;
4561 pHid->Attr.n.u1Present = 1;
4562 pHid->Attr.n.u1DescType = 1;
4563 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4564 ? X86_SEL_TYPE_RW
4565 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4566#endif
4567 }
4568 /*
4569 * Protected mode.
4570 *
4571 * Check if it's a null segment selector value first, that's OK for DS, ES,
4572 * FS and GS. If not null, then we have to load and parse the descriptor.
4573 */
4574 else if (!(uSel & X86_SEL_MASK_OFF_RPL))
4575 {
4576 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4577 if (iSegReg == X86_SREG_SS)
4578 {
4579 /* In 64-bit kernel mode, the stack can be 0 because of the way
4580 interrupts are dispatched. AMD seems to have a slighly more
4581 relaxed relationship to SS.RPL than intel does. */
4582 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4583 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4584 || pVCpu->iem.s.uCpl > 2
4585 || ( uSel != pVCpu->iem.s.uCpl
4586 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4587 {
4588 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4589 return iemRaiseGeneralProtectionFault0(pVCpu);
4590 }
4591 }
4592
4593 *pSel = uSel; /* Not RPL, remember :-) */
4594 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4595 if (iSegReg == X86_SREG_SS)
4596 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4597 }
4598 else
4599 {
4600
4601 /* Fetch the descriptor. */
4602 IEMSELDESC Desc;
4603 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4604 if (rcStrict != VINF_SUCCESS)
4605 return rcStrict;
4606
4607 /* Check GPs first. */
4608 if (!Desc.Legacy.Gen.u1DescType)
4609 {
4610 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4611 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4612 }
4613 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4614 {
4615 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4616 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4617 {
4618 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4619 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4620 }
4621 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4622 {
4623 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4624 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4625 }
4626 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4627 {
4628 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4629 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4630 }
4631 }
4632 else
4633 {
4634 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4635 {
4636 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4637 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4638 }
4639 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4640 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4641 {
4642#if 0 /* this is what intel says. */
4643 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4644 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4645 {
4646 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4647 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4648 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4649 }
4650#else /* this is what makes more sense. */
4651 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4652 {
4653 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4654 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4655 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4656 }
4657 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4658 {
4659 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4660 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4661 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4662 }
4663#endif
4664 }
4665 }
4666
4667 /* Is it there? */
4668 if (!Desc.Legacy.Gen.u1Present)
4669 {
4670 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4671 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4672 }
4673
4674 /* The base and limit. */
4675 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4676 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4677
4678 /*
4679 * Ok, everything checked out fine. Now set the accessed bit before
4680 * committing the result into the registers.
4681 */
4682 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4683 {
4684 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4685 if (rcStrict != VINF_SUCCESS)
4686 return rcStrict;
4687 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4688 }
4689
4690 /* commit */
4691 *pSel = uSel;
4692 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4693 pHid->u32Limit = cbLimit;
4694 pHid->u64Base = u64Base;
4695 pHid->ValidSel = uSel;
4696 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4697
4698 /** @todo check if the hidden bits are loaded correctly for 64-bit
4699 * mode. */
4700 }
4701
4702 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4703 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4704 return VINF_SUCCESS;
4705}
4706
4707
4708/**
4709 * Implements 'mov SReg, r/m'.
4710 *
4711 * @param iSegReg The segment register number (valid).
4712 * @param uSel The new selector value.
4713 */
4714IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4715{
4716 VBOXSTRICTRC rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, uSel);
4717 if (rcStrict == VINF_SUCCESS)
4718 rcStrict = iemCImpl_LoadSRegFinish(pVCpu, cbInstr, iSegReg);
4719 return rcStrict;
4720}
4721
4722
4723/**
4724 * Implements 'pop SReg'.
4725 *
4726 * @param iSegReg The segment register number (valid).
4727 * @param enmEffOpSize The efficient operand size (valid).
4728 */
4729IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4730{
4731 VBOXSTRICTRC rcStrict;
4732
4733 /*
4734 * Read the selector off the stack and join paths with mov ss, reg.
4735 */
4736 RTUINT64U TmpRsp;
4737 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4738 switch (enmEffOpSize)
4739 {
4740 case IEMMODE_16BIT:
4741 {
4742 uint16_t uSel;
4743 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4744 if (rcStrict == VINF_SUCCESS)
4745 rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, uSel);
4746 break;
4747 }
4748
4749 case IEMMODE_32BIT:
4750 {
4751 uint32_t u32Value;
4752 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4753 if (rcStrict == VINF_SUCCESS)
4754 rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, (uint16_t)u32Value);
4755 break;
4756 }
4757
4758 case IEMMODE_64BIT:
4759 {
4760 uint64_t u64Value;
4761 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4762 if (rcStrict == VINF_SUCCESS)
4763 rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, (uint16_t)u64Value);
4764 break;
4765 }
4766 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4767 }
4768
4769 /*
4770 * If the load succeeded, commit the stack change and finish the instruction.
4771 */
4772 if (rcStrict == VINF_SUCCESS)
4773 {
4774 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4775 rcStrict = iemCImpl_LoadSRegFinish(pVCpu, cbInstr, iSegReg);
4776 }
4777
4778 return rcStrict;
4779}
4780
4781
4782/**
4783 * Implements lgs, lfs, les, lds & lss.
4784 */
4785IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize)
4786{
4787 /*
4788 * Use iemCImpl_LoadSRegWorker to do the tricky segment register loading.
4789 */
4790 /** @todo verify and test that mov, pop and lXs works the segment
4791 * register loading in the exact same way. */
4792 VBOXSTRICTRC rcStrict = iemCImpl_LoadSRegWorker(pVCpu, iSegReg, uSel);
4793 if (rcStrict == VINF_SUCCESS)
4794 {
4795 switch (enmEffOpSize)
4796 {
4797 case IEMMODE_16BIT:
4798 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4799 break;
4800 case IEMMODE_32BIT:
4801 case IEMMODE_64BIT:
4802 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4803 break;
4804 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4805 }
4806 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
4807 }
4808 return rcStrict;
4809}
4810
4811
4812/**
4813 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4814 *
4815 * @retval VINF_SUCCESS on success.
4816 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4817 * @retval iemMemFetchSysU64 return value.
4818 *
4819 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4820 * @param uSel The selector value.
4821 * @param fAllowSysDesc Whether system descriptors are OK or not.
4822 * @param pDesc Where to return the descriptor on success.
4823 */
4824static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPUCC pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4825{
4826 pDesc->Long.au64[0] = 0;
4827 pDesc->Long.au64[1] = 0;
4828
4829 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4830 return VINF_IEM_SELECTOR_NOT_OK;
4831
4832 /* Within the table limits? */
4833 RTGCPTR GCPtrBase;
4834 if (uSel & X86_SEL_LDT)
4835 {
4836 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4837 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4838 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4839 return VINF_IEM_SELECTOR_NOT_OK;
4840 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4841 }
4842 else
4843 {
4844 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4845 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4846 return VINF_IEM_SELECTOR_NOT_OK;
4847 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4848 }
4849
4850 /* Fetch the descriptor. */
4851 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4852 if (rcStrict != VINF_SUCCESS)
4853 return rcStrict;
4854 if (!pDesc->Legacy.Gen.u1DescType)
4855 {
4856 if (!fAllowSysDesc)
4857 return VINF_IEM_SELECTOR_NOT_OK;
4858 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4859 {
4860 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4861 if (rcStrict != VINF_SUCCESS)
4862 return rcStrict;
4863 }
4864
4865 }
4866
4867 return VINF_SUCCESS;
4868}
4869
4870
4871/**
4872 * Implements verr (fWrite = false) and verw (fWrite = true).
4873 */
4874IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4875{
4876 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4877
4878 /** @todo figure whether the accessed bit is set or not. */
4879
4880 bool fAccessible = true;
4881 IEMSELDESC Desc;
4882 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4883 if (rcStrict == VINF_SUCCESS)
4884 {
4885 /* Check the descriptor, order doesn't matter much here. */
4886 if ( !Desc.Legacy.Gen.u1DescType
4887 || !Desc.Legacy.Gen.u1Present)
4888 fAccessible = false;
4889 else
4890 {
4891 if ( fWrite
4892 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4893 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4894 fAccessible = false;
4895
4896 /** @todo testcase for the conforming behavior. */
4897 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4898 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4899 {
4900 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4901 fAccessible = false;
4902 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4903 fAccessible = false;
4904 }
4905 }
4906
4907 }
4908 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4909 fAccessible = false;
4910 else
4911 return rcStrict;
4912
4913 /* commit */
4914 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4915
4916 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
4917}
4918
4919
4920/**
4921 * Implements LAR and LSL with 64-bit operand size.
4922 *
4923 * @returns VINF_SUCCESS.
4924 * @param pu64Dst Pointer to the destination register.
4925 * @param uSel The selector to load details for.
4926 * @param fIsLar true = LAR, false = LSL.
4927 */
4928IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4929{
4930 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4931
4932 /** @todo figure whether the accessed bit is set or not. */
4933
4934 bool fDescOk = true;
4935 IEMSELDESC Desc;
4936 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4937 if (rcStrict == VINF_SUCCESS)
4938 {
4939 /*
4940 * Check the descriptor type.
4941 */
4942 if (!Desc.Legacy.Gen.u1DescType)
4943 {
4944 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4945 {
4946 if (Desc.Long.Gen.u5Zeros)
4947 fDescOk = false;
4948 else
4949 switch (Desc.Long.Gen.u4Type)
4950 {
4951 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4952 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4953 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4954 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4955 break;
4956 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4957 fDescOk = fIsLar;
4958 break;
4959 default:
4960 fDescOk = false;
4961 break;
4962 }
4963 }
4964 else
4965 {
4966 switch (Desc.Long.Gen.u4Type)
4967 {
4968 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4969 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4970 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4971 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4972 case X86_SEL_TYPE_SYS_LDT:
4973 break;
4974 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4975 case X86_SEL_TYPE_SYS_TASK_GATE:
4976 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4977 fDescOk = fIsLar;
4978 break;
4979 default:
4980 fDescOk = false;
4981 break;
4982 }
4983 }
4984 }
4985 if (fDescOk)
4986 {
4987 /*
4988 * Check the RPL/DPL/CPL interaction..
4989 */
4990 /** @todo testcase for the conforming behavior. */
4991 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4992 || !Desc.Legacy.Gen.u1DescType)
4993 {
4994 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4995 fDescOk = false;
4996 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4997 fDescOk = false;
4998 }
4999 }
5000
5001 if (fDescOk)
5002 {
5003 /*
5004 * All fine, start committing the result.
5005 */
5006 if (fIsLar)
5007 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
5008 else
5009 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
5010 }
5011
5012 }
5013 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
5014 fDescOk = false;
5015 else
5016 return rcStrict;
5017
5018 /* commit flags value and advance rip. */
5019 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
5020 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5021}
5022
5023
5024/**
5025 * Implements LAR and LSL with 16-bit operand size.
5026 *
5027 * @returns VINF_SUCCESS.
5028 * @param pu16Dst Pointer to the destination register.
5029 * @param uSel The selector to load details for.
5030 * @param fIsLar true = LAR, false = LSL.
5031 */
5032IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
5033{
5034 uint64_t u64TmpDst = *pu16Dst;
5035 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
5036 *pu16Dst = u64TmpDst;
5037 return VINF_SUCCESS;
5038}
5039
5040
5041/**
5042 * Implements lgdt.
5043 *
5044 * @param iEffSeg The segment of the new gdtr contents
5045 * @param GCPtrEffSrc The address of the new gdtr contents.
5046 * @param enmEffOpSize The effective operand size.
5047 */
5048IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
5049{
5050 if (pVCpu->iem.s.uCpl != 0)
5051 return iemRaiseGeneralProtectionFault0(pVCpu);
5052 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5053
5054 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5055 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5056 {
5057 Log(("lgdt: Guest intercept -> VM-exit\n"));
5058 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
5059 }
5060
5061 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
5062 {
5063 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
5064 IEM_SVM_UPDATE_NRIP(pVCpu);
5065 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5066 }
5067
5068 /*
5069 * Fetch the limit and base address.
5070 */
5071 uint16_t cbLimit;
5072 RTGCPTR GCPtrBase;
5073 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
5074 if (rcStrict == VINF_SUCCESS)
5075 {
5076 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5077 || X86_IS_CANONICAL(GCPtrBase))
5078 {
5079 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
5080 if (rcStrict == VINF_SUCCESS)
5081 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5082 }
5083 else
5084 {
5085 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5086 return iemRaiseGeneralProtectionFault0(pVCpu);
5087 }
5088 }
5089 return rcStrict;
5090}
5091
5092
5093/**
5094 * Implements sgdt.
5095 *
5096 * @param iEffSeg The segment where to store the gdtr content.
5097 * @param GCPtrEffDst The address where to store the gdtr content.
5098 */
5099IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5100{
5101 /*
5102 * Join paths with sidt.
5103 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5104 * you really must know.
5105 */
5106 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5107 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5108 {
5109 Log(("sgdt: Guest intercept -> VM-exit\n"));
5110 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
5111 }
5112
5113 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
5114 {
5115 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
5116 IEM_SVM_UPDATE_NRIP(pVCpu);
5117 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5118 }
5119
5120 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
5121 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
5122 if (rcStrict == VINF_SUCCESS)
5123 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5124 return rcStrict;
5125}
5126
5127
5128/**
5129 * Implements lidt.
5130 *
5131 * @param iEffSeg The segment of the new idtr contents
5132 * @param GCPtrEffSrc The address of the new idtr contents.
5133 * @param enmEffOpSize The effective operand size.
5134 */
5135IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
5136{
5137 if (pVCpu->iem.s.uCpl != 0)
5138 return iemRaiseGeneralProtectionFault0(pVCpu);
5139 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5140
5141 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
5142 {
5143 Log(("lidt: Guest intercept -> #VMEXIT\n"));
5144 IEM_SVM_UPDATE_NRIP(pVCpu);
5145 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5146 }
5147
5148 /*
5149 * Fetch the limit and base address.
5150 */
5151 uint16_t cbLimit;
5152 RTGCPTR GCPtrBase;
5153 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
5154 if (rcStrict == VINF_SUCCESS)
5155 {
5156 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5157 || X86_IS_CANONICAL(GCPtrBase))
5158 {
5159 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
5160 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5161 }
5162 else
5163 {
5164 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5165 return iemRaiseGeneralProtectionFault0(pVCpu);
5166 }
5167 }
5168 return rcStrict;
5169}
5170
5171
5172/**
5173 * Implements sidt.
5174 *
5175 * @param iEffSeg The segment where to store the idtr content.
5176 * @param GCPtrEffDst The address where to store the idtr content.
5177 */
5178IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5179{
5180 /*
5181 * Join paths with sgdt.
5182 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5183 * you really must know.
5184 */
5185 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
5186 {
5187 Log(("sidt: Guest intercept -> #VMEXIT\n"));
5188 IEM_SVM_UPDATE_NRIP(pVCpu);
5189 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5190 }
5191
5192 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
5193 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
5194 if (rcStrict == VINF_SUCCESS)
5195 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5196 return rcStrict;
5197}
5198
5199
5200/**
5201 * Implements lldt.
5202 *
5203 * @param uNewLdt The new LDT selector value.
5204 */
5205IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
5206{
5207 /*
5208 * Check preconditions.
5209 */
5210 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5211 {
5212 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
5213 return iemRaiseUndefinedOpcode(pVCpu);
5214 }
5215 if (pVCpu->iem.s.uCpl != 0)
5216 {
5217 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
5218 return iemRaiseGeneralProtectionFault0(pVCpu);
5219 }
5220 /* Nested-guest VMX intercept. */
5221 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5222 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5223 {
5224 Log(("lldt: Guest intercept -> VM-exit\n"));
5225 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
5226 }
5227 if (uNewLdt & X86_SEL_LDT)
5228 {
5229 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
5230 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
5231 }
5232
5233 /*
5234 * Now, loading a NULL selector is easy.
5235 */
5236 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
5237 {
5238 /* Nested-guest SVM intercept. */
5239 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5240 {
5241 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5242 IEM_SVM_UPDATE_NRIP(pVCpu);
5243 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5244 }
5245
5246 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
5247 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5248 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5249 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5250 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5251 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5252 {
5253 /* AMD-V seems to leave the base and limit alone. */
5254 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5255 }
5256 else
5257 {
5258 /* VT-x (Intel 3960x) seems to be doing the following. */
5259 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5260 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5261 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5262 }
5263
5264 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5265 }
5266
5267 /*
5268 * Read the descriptor.
5269 */
5270 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5271 IEMSELDESC Desc;
5272 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5273 if (rcStrict != VINF_SUCCESS)
5274 return rcStrict;
5275
5276 /* Check GPs first. */
5277 if (Desc.Legacy.Gen.u1DescType)
5278 {
5279 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5280 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5281 }
5282 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5283 {
5284 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5285 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5286 }
5287 uint64_t u64Base;
5288 if (!IEM_IS_LONG_MODE(pVCpu))
5289 u64Base = X86DESC_BASE(&Desc.Legacy);
5290 else
5291 {
5292 if (Desc.Long.Gen.u5Zeros)
5293 {
5294 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5295 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5296 }
5297
5298 u64Base = X86DESC64_BASE(&Desc.Long);
5299 if (!IEM_IS_CANONICAL(u64Base))
5300 {
5301 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5302 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5303 }
5304 }
5305
5306 /* NP */
5307 if (!Desc.Legacy.Gen.u1Present)
5308 {
5309 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5310 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5311 }
5312
5313 /* Nested-guest SVM intercept. */
5314 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5315 {
5316 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5317 IEM_SVM_UPDATE_NRIP(pVCpu);
5318 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5319 }
5320
5321 /*
5322 * It checks out alright, update the registers.
5323 */
5324/** @todo check if the actual value is loaded or if the RPL is dropped */
5325 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5326 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5327 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5328 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5329 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5330 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5331
5332 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5333}
5334
5335
5336/**
5337 * Implements sldt GReg
5338 *
5339 * @param iGReg The general register to store the CRx value in.
5340 * @param enmEffOpSize The operand size.
5341 */
5342IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5343{
5344 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5345 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5346 {
5347 Log(("sldt: Guest intercept -> VM-exit\n"));
5348 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5349 }
5350
5351 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5352
5353 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5354 switch (enmEffOpSize)
5355 {
5356 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5357 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5358 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5359 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5360 }
5361 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5362}
5363
5364
5365/**
5366 * Implements sldt mem.
5367 *
5368 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5369 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5370 */
5371IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5372{
5373 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5374
5375 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5376 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5377 if (rcStrict == VINF_SUCCESS)
5378 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5379 return rcStrict;
5380}
5381
5382
5383/**
5384 * Implements ltr.
5385 *
5386 * @param uNewTr The new TSS selector value.
5387 */
5388IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5389{
5390 /*
5391 * Check preconditions.
5392 */
5393 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5394 {
5395 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5396 return iemRaiseUndefinedOpcode(pVCpu);
5397 }
5398 if (pVCpu->iem.s.uCpl != 0)
5399 {
5400 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5401 return iemRaiseGeneralProtectionFault0(pVCpu);
5402 }
5403 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5404 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5405 {
5406 Log(("ltr: Guest intercept -> VM-exit\n"));
5407 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5408 }
5409 if (uNewTr & X86_SEL_LDT)
5410 {
5411 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5412 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5413 }
5414 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5415 {
5416 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5417 return iemRaiseGeneralProtectionFault0(pVCpu);
5418 }
5419 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5420 {
5421 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5422 IEM_SVM_UPDATE_NRIP(pVCpu);
5423 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5424 }
5425
5426 /*
5427 * Read the descriptor.
5428 */
5429 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5430 IEMSELDESC Desc;
5431 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5432 if (rcStrict != VINF_SUCCESS)
5433 return rcStrict;
5434
5435 /* Check GPs first. */
5436 if (Desc.Legacy.Gen.u1DescType)
5437 {
5438 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5439 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5440 }
5441 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5442 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5443 || IEM_IS_LONG_MODE(pVCpu)) )
5444 {
5445 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5446 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5447 }
5448 uint64_t u64Base;
5449 if (!IEM_IS_LONG_MODE(pVCpu))
5450 u64Base = X86DESC_BASE(&Desc.Legacy);
5451 else
5452 {
5453 if (Desc.Long.Gen.u5Zeros)
5454 {
5455 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5456 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5457 }
5458
5459 u64Base = X86DESC64_BASE(&Desc.Long);
5460 if (!IEM_IS_CANONICAL(u64Base))
5461 {
5462 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5463 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5464 }
5465 }
5466
5467 /* NP */
5468 if (!Desc.Legacy.Gen.u1Present)
5469 {
5470 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5471 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5472 }
5473
5474 /*
5475 * Set it busy.
5476 * Note! Intel says this should lock down the whole descriptor, but we'll
5477 * restrict our selves to 32-bit for now due to lack of inline
5478 * assembly and such.
5479 */
5480 void *pvDesc;
5481 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL),
5482 IEM_ACCESS_DATA_RW, 0);
5483 if (rcStrict != VINF_SUCCESS)
5484 return rcStrict;
5485 switch ((uintptr_t)pvDesc & 3)
5486 {
5487 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5488 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5489 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5490 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5491 }
5492 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5493 if (rcStrict != VINF_SUCCESS)
5494 return rcStrict;
5495 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5496
5497 /*
5498 * It checks out alright, update the registers.
5499 */
5500/** @todo check if the actual value is loaded or if the RPL is dropped */
5501 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5502 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5503 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5504 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5505 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5506 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5507
5508 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5509}
5510
5511
5512/**
5513 * Implements str GReg
5514 *
5515 * @param iGReg The general register to store the CRx value in.
5516 * @param enmEffOpSize The operand size.
5517 */
5518IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5519{
5520 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5521 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5522 {
5523 Log(("str_reg: Guest intercept -> VM-exit\n"));
5524 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5525 }
5526
5527 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5528
5529 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5530 switch (enmEffOpSize)
5531 {
5532 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5533 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5534 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5535 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5536 }
5537 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5538}
5539
5540
5541/**
5542 * Implements str mem.
5543 *
5544 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5545 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5546 */
5547IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5548{
5549 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5550 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5551 {
5552 Log(("str_mem: Guest intercept -> VM-exit\n"));
5553 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5554 }
5555
5556 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5557
5558 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5559 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5560 if (rcStrict == VINF_SUCCESS)
5561 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5562 return rcStrict;
5563}
5564
5565
5566/**
5567 * Implements mov GReg,CRx.
5568 *
5569 * @param iGReg The general register to store the CRx value in.
5570 * @param iCrReg The CRx register to read (valid).
5571 */
5572IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5573{
5574 if (pVCpu->iem.s.uCpl != 0)
5575 return iemRaiseGeneralProtectionFault0(pVCpu);
5576 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5577
5578 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5579 {
5580 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5581 IEM_SVM_UPDATE_NRIP(pVCpu);
5582 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5583 }
5584
5585 /* Read it. */
5586 uint64_t crX;
5587 switch (iCrReg)
5588 {
5589 case 0:
5590 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5591 crX = pVCpu->cpum.GstCtx.cr0;
5592 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5593 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5594 break;
5595 case 2:
5596 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5597 crX = pVCpu->cpum.GstCtx.cr2;
5598 break;
5599 case 3:
5600 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5601 crX = pVCpu->cpum.GstCtx.cr3;
5602 break;
5603 case 4:
5604 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5605 crX = pVCpu->cpum.GstCtx.cr4;
5606 break;
5607 case 8:
5608 {
5609 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5610#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5611 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5612 {
5613 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5614 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5615 return rcStrict;
5616
5617 /*
5618 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5619 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5620 * are cleared.
5621 *
5622 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5623 */
5624 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5625 {
5626 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5627 crX = (uTpr >> 4) & 0xf;
5628 break;
5629 }
5630 }
5631#endif
5632#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5633 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5634 {
5635 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
5636 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5637 {
5638 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5639 break;
5640 }
5641 }
5642#endif
5643 uint8_t uTpr;
5644 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5645 if (RT_SUCCESS(rc))
5646 crX = uTpr >> 4;
5647 else
5648 crX = 0;
5649 break;
5650 }
5651 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5652 }
5653
5654#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5655 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5656 {
5657 switch (iCrReg)
5658 {
5659 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5660 case 0: crX = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u); break;
5661 case 4: crX = CPUMGetGuestVmxMaskedCr4(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u); break;
5662
5663 case 3:
5664 {
5665 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5666 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5667 return rcStrict;
5668 break;
5669 }
5670 }
5671 }
5672#endif
5673
5674 /* Store it. */
5675 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5676 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5677 else
5678 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5679
5680 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5681}
5682
5683
5684/**
5685 * Implements smsw GReg.
5686 *
5687 * @param iGReg The general register to store the CRx value in.
5688 * @param enmEffOpSize The operand size.
5689 */
5690IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5691{
5692 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5693
5694#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5695 uint64_t u64MaskedCr0;
5696 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5697 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5698 else
5699 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5700 uint64_t const u64GuestCr0 = u64MaskedCr0;
5701#else
5702 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5703#endif
5704
5705 switch (enmEffOpSize)
5706 {
5707 case IEMMODE_16BIT:
5708 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5709 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5710 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5711 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5712 else
5713 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5714 break;
5715
5716 case IEMMODE_32BIT:
5717 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5718 break;
5719
5720 case IEMMODE_64BIT:
5721 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5722 break;
5723
5724 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5725 }
5726
5727 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5728}
5729
5730
5731/**
5732 * Implements smsw mem.
5733 *
5734 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5735 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5736 */
5737IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5738{
5739 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5740
5741#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5742 uint64_t u64MaskedCr0;
5743 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5744 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5745 else
5746 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5747 uint64_t const u64GuestCr0 = u64MaskedCr0;
5748#else
5749 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5750#endif
5751
5752 uint16_t u16Value;
5753 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5754 u16Value = (uint16_t)u64GuestCr0;
5755 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5756 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5757 else
5758 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5759
5760 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5761 if (rcStrict == VINF_SUCCESS)
5762 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
5763 return rcStrict;
5764}
5765
5766
5767/**
5768 * Helper for mapping CR3 and PAE PDPEs for 'mov CRx,GReg'.
5769 */
5770#define IEM_MAP_PAE_PDPES_AT_CR3_RET(a_pVCpu, a_iCrReg, a_uCr3) \
5771 do \
5772 { \
5773 int const rcX = PGMGstMapPaePdpesAtCr3(a_pVCpu, a_uCr3); \
5774 if (RT_SUCCESS(rcX)) \
5775 { /* likely */ } \
5776 else \
5777 { \
5778 /* Either invalid PDPTEs or CR3 second-level translation failed. Raise #GP(0) either way. */ \
5779 Log(("iemCImpl_load_Cr%#x: Trying to load invalid PAE PDPEs\n", a_iCrReg)); \
5780 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
5781 } \
5782 } while (0)
5783
5784
5785/**
5786 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5787 *
5788 * @param iCrReg The CRx register to write (valid).
5789 * @param uNewCrX The new value.
5790 * @param enmAccessCrX The instruction that caused the CrX load.
5791 * @param iGReg The general register in case of a 'mov CRx,GReg'
5792 * instruction.
5793 */
5794IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5795{
5796 VBOXSTRICTRC rcStrict;
5797 int rc;
5798#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5799 RT_NOREF2(iGReg, enmAccessCrX);
5800#endif
5801
5802 /*
5803 * Try store it.
5804 * Unfortunately, CPUM only does a tiny bit of the work.
5805 */
5806 switch (iCrReg)
5807 {
5808 case 0:
5809 {
5810 /*
5811 * Perform checks.
5812 */
5813 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5814
5815 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5816 uint32_t const fValid = CPUMGetGuestCR0ValidMask();
5817
5818 /* ET is hardcoded on 486 and later. */
5819 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5820 uNewCrX |= X86_CR0_ET;
5821 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5822 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5823 {
5824 uNewCrX &= fValid;
5825 uNewCrX |= X86_CR0_ET;
5826 }
5827 else
5828 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5829
5830 /* Check for reserved bits. */
5831 if (uNewCrX & ~(uint64_t)fValid)
5832 {
5833 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5834 return iemRaiseGeneralProtectionFault0(pVCpu);
5835 }
5836
5837 /* Check for invalid combinations. */
5838 if ( (uNewCrX & X86_CR0_PG)
5839 && !(uNewCrX & X86_CR0_PE) )
5840 {
5841 Log(("Trying to set CR0.PG without CR0.PE\n"));
5842 return iemRaiseGeneralProtectionFault0(pVCpu);
5843 }
5844
5845 if ( !(uNewCrX & X86_CR0_CD)
5846 && (uNewCrX & X86_CR0_NW) )
5847 {
5848 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5849 return iemRaiseGeneralProtectionFault0(pVCpu);
5850 }
5851
5852 if ( !(uNewCrX & X86_CR0_PG)
5853 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5854 {
5855 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5856 return iemRaiseGeneralProtectionFault0(pVCpu);
5857 }
5858
5859 /* Long mode consistency checks. */
5860 if ( (uNewCrX & X86_CR0_PG)
5861 && !(uOldCrX & X86_CR0_PG)
5862 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5863 {
5864 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5865 {
5866 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5867 return iemRaiseGeneralProtectionFault0(pVCpu);
5868 }
5869 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5870 {
5871 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5872 return iemRaiseGeneralProtectionFault0(pVCpu);
5873 }
5874 }
5875
5876 /* Check for bits that must remain set or cleared in VMX operation,
5877 see Intel spec. 23.8 "Restrictions on VMX operation". */
5878 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5879 {
5880#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5881 uint64_t const uCr0Fixed0 = IEM_VMX_IS_NON_ROOT_MODE(pVCpu) ? iemVmxGetCr0Fixed0(pVCpu) : VMX_V_CR0_FIXED0;
5882#else
5883 uint64_t const uCr0Fixed0 = VMX_V_CR0_FIXED0;
5884#endif
5885 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5886 {
5887 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5888 return iemRaiseGeneralProtectionFault0(pVCpu);
5889 }
5890
5891 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5892 if (uNewCrX & ~uCr0Fixed1)
5893 {
5894 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5895 return iemRaiseGeneralProtectionFault0(pVCpu);
5896 }
5897 }
5898
5899 /*
5900 * SVM nested-guest CR0 write intercepts.
5901 */
5902 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5903 {
5904 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5905 IEM_SVM_UPDATE_NRIP(pVCpu);
5906 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5907 }
5908 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5909 {
5910 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5911 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5912 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5913 {
5914 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5915 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5916 IEM_SVM_UPDATE_NRIP(pVCpu);
5917 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5918 }
5919 }
5920
5921 /*
5922 * Change EFER.LMA if entering or leaving long mode.
5923 */
5924 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5925 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5926 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5927 {
5928 if (uNewCrX & X86_CR0_PG)
5929 NewEFER |= MSR_K6_EFER_LMA;
5930 else
5931 NewEFER &= ~MSR_K6_EFER_LMA;
5932
5933 CPUMSetGuestEFER(pVCpu, NewEFER);
5934 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5935 }
5936
5937 /*
5938 * Inform PGM.
5939 */
5940 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW))
5941 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW)) )
5942 {
5943 if ( enmAccessCrX != IEMACCESSCRX_MOV_CRX
5944 || !CPUMIsPaePagingEnabled(uNewCrX, pVCpu->cpum.GstCtx.cr4, NewEFER)
5945 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5946 { /* likely */ }
5947 else
5948 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
5949 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5950 AssertRCReturn(rc, rc);
5951 /* ignore informational status codes */
5952 }
5953
5954 /*
5955 * Change CR0.
5956 */
5957 CPUMSetGuestCR0(pVCpu, uNewCrX);
5958 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5959
5960 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
5961 false /* fForce */);
5962 break;
5963 }
5964
5965 /*
5966 * CR2 can be changed without any restrictions.
5967 */
5968 case 2:
5969 {
5970 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5971 {
5972 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5973 IEM_SVM_UPDATE_NRIP(pVCpu);
5974 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5975 }
5976 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5977 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5978 rcStrict = VINF_SUCCESS;
5979 break;
5980 }
5981
5982 /*
5983 * CR3 is relatively simple, although AMD and Intel have different
5984 * accounts of how setting reserved bits are handled. We take intel's
5985 * word for the lower bits and AMD's for the high bits (63:52). The
5986 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5987 * on this.
5988 */
5989 /** @todo Testcase: Setting reserved bits in CR3, especially before
5990 * enabling paging. */
5991 case 3:
5992 {
5993 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5994
5995 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5996 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5997 && (uNewCrX & RT_BIT_64(63)))
5998 {
5999 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
6000 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
6001 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
6002 * Paging-Structure Caches". */
6003 uNewCrX &= ~RT_BIT_64(63);
6004 }
6005
6006 /* Check / mask the value. */
6007#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6008 /* See Intel spec. 27.2.2 "EPT Translation Mechanism" footnote. */
6009 uint64_t const fInvPhysMask = !CPUMIsGuestVmxEptPagingEnabledEx(IEM_GET_CTX(pVCpu))
6010 ? (UINT64_MAX << IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
6011 : (~X86_CR3_EPT_PAGE_MASK & X86_PAGE_4K_BASE_MASK);
6012#else
6013 uint64_t const fInvPhysMask = UINT64_C(0xfff0000000000000);
6014#endif
6015 if (uNewCrX & fInvPhysMask)
6016 {
6017 /** @todo Should we raise this only for 64-bit mode like Intel claims? AMD is
6018 * very vague in this area. As mentioned above, need testcase on real
6019 * hardware... Sigh. */
6020 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
6021 return iemRaiseGeneralProtectionFault0(pVCpu);
6022 }
6023
6024 uint64_t fValid;
6025 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
6026 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
6027 {
6028 /** @todo Redundant? This value has already been validated above. */
6029 fValid = UINT64_C(0x000fffffffffffff);
6030 }
6031 else
6032 fValid = UINT64_C(0xffffffff);
6033 if (uNewCrX & ~fValid)
6034 {
6035 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
6036 uNewCrX, uNewCrX & ~fValid));
6037 uNewCrX &= fValid;
6038 }
6039
6040 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
6041 {
6042 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6043 IEM_SVM_UPDATE_NRIP(pVCpu);
6044 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
6045 }
6046
6047 /* Inform PGM. */
6048 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
6049 {
6050 if ( !CPUMIsGuestInPAEModeEx(IEM_GET_CTX(pVCpu))
6051 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6052 { /* likely */ }
6053 else
6054 {
6055 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
6056 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, uNewCrX);
6057 }
6058 rc = PGMFlushTLB(pVCpu, uNewCrX, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
6059 AssertRCReturn(rc, rc);
6060 /* ignore informational status codes */
6061 }
6062
6063 /* Make the change. */
6064 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
6065 AssertRCSuccessReturn(rc, rc);
6066
6067 rcStrict = VINF_SUCCESS;
6068 break;
6069 }
6070
6071 /*
6072 * CR4 is a bit more tedious as there are bits which cannot be cleared
6073 * under some circumstances and such.
6074 */
6075 case 4:
6076 {
6077 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6078 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
6079
6080 /* Reserved bits. */
6081 uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
6082 if (uNewCrX & ~(uint64_t)fValid)
6083 {
6084 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
6085 return iemRaiseGeneralProtectionFault0(pVCpu);
6086 }
6087
6088 bool const fPcide = !(uOldCrX & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
6089 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
6090
6091 /* PCIDE check. */
6092 if ( fPcide
6093 && ( !fLongMode
6094 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
6095 {
6096 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
6097 return iemRaiseGeneralProtectionFault0(pVCpu);
6098 }
6099
6100 /* PAE check. */
6101 if ( fLongMode
6102 && (uOldCrX & X86_CR4_PAE)
6103 && !(uNewCrX & X86_CR4_PAE))
6104 {
6105 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
6106 return iemRaiseGeneralProtectionFault0(pVCpu);
6107 }
6108
6109 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
6110 {
6111 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6112 IEM_SVM_UPDATE_NRIP(pVCpu);
6113 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
6114 }
6115
6116 /* Check for bits that must remain set or cleared in VMX operation,
6117 see Intel spec. 23.8 "Restrictions on VMX operation". */
6118 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
6119 {
6120 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6121 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
6122 {
6123 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
6124 return iemRaiseGeneralProtectionFault0(pVCpu);
6125 }
6126
6127 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6128 if (uNewCrX & ~uCr4Fixed1)
6129 {
6130 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
6131 return iemRaiseGeneralProtectionFault0(pVCpu);
6132 }
6133 }
6134
6135 /*
6136 * Notify PGM.
6137 */
6138 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
6139 {
6140 if ( !CPUMIsPaePagingEnabled(pVCpu->cpum.GstCtx.cr0, uNewCrX, pVCpu->cpum.GstCtx.msrEFER)
6141 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6142 { /* likely */ }
6143 else
6144 {
6145 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
6146 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
6147 }
6148 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
6149 AssertRCReturn(rc, rc);
6150 /* ignore informational status codes */
6151 }
6152
6153 /*
6154 * Change it.
6155 */
6156 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
6157 AssertRCSuccessReturn(rc, rc);
6158 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
6159
6160 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
6161 false /* fForce */);
6162 break;
6163 }
6164
6165 /*
6166 * CR8 maps to the APIC TPR.
6167 */
6168 case 8:
6169 {
6170 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
6171 if (uNewCrX & ~(uint64_t)0xf)
6172 {
6173 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
6174 return iemRaiseGeneralProtectionFault0(pVCpu);
6175 }
6176
6177#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6178 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6179 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
6180 {
6181 /*
6182 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
6183 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
6184 * cleared. Following this the processor performs TPR virtualization.
6185 *
6186 * However, we should not perform TPR virtualization immediately here but
6187 * after this instruction has completed.
6188 *
6189 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
6190 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
6191 */
6192 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
6193 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
6194 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
6195 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
6196 rcStrict = VINF_SUCCESS;
6197 break;
6198 }
6199#endif
6200
6201#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6202 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6203 {
6204 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
6205 {
6206 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6207 IEM_SVM_UPDATE_NRIP(pVCpu);
6208 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
6209 }
6210
6211 pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VTPR = uNewCrX;
6212 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
6213 {
6214 rcStrict = VINF_SUCCESS;
6215 break;
6216 }
6217 }
6218#endif
6219 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
6220 APICSetTpr(pVCpu, u8Tpr);
6221 rcStrict = VINF_SUCCESS;
6222 break;
6223 }
6224
6225 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6226 }
6227
6228 /*
6229 * Advance the RIP on success.
6230 */
6231 if (RT_SUCCESS(rcStrict))
6232 {
6233 if (rcStrict != VINF_SUCCESS)
6234 iemSetPassUpStatus(pVCpu, rcStrict);
6235 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6236 }
6237
6238 return rcStrict;
6239}
6240
6241
6242/**
6243 * Implements mov CRx,GReg.
6244 *
6245 * @param iCrReg The CRx register to write (valid).
6246 * @param iGReg The general register to load the CRx value from.
6247 */
6248IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
6249{
6250 if (pVCpu->iem.s.uCpl != 0)
6251 return iemRaiseGeneralProtectionFault0(pVCpu);
6252 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6253
6254 /*
6255 * Read the new value from the source register and call common worker.
6256 */
6257 uint64_t uNewCrX;
6258 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6259 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
6260 else
6261 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
6262
6263#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6264 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6265 {
6266 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6267 switch (iCrReg)
6268 {
6269 case 0:
6270 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6271 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6272 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6273 }
6274 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6275 return rcStrict;
6276 }
6277#endif
6278
6279 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6280}
6281
6282
6283/**
6284 * Implements 'LMSW r/m16'
6285 *
6286 * @param u16NewMsw The new value.
6287 * @param GCPtrEffDst The guest-linear address of the source operand in case
6288 * of a memory operand. For register operand, pass
6289 * NIL_RTGCPTR.
6290 */
6291IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6292{
6293 if (pVCpu->iem.s.uCpl != 0)
6294 return iemRaiseGeneralProtectionFault0(pVCpu);
6295 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6296 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6297
6298#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6299 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6300 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6301 {
6302 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6303 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6304 return rcStrict;
6305 }
6306#else
6307 RT_NOREF_PV(GCPtrEffDst);
6308#endif
6309
6310 /*
6311 * Compose the new CR0 value and call common worker.
6312 */
6313 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6314 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6315 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6316}
6317
6318
6319/**
6320 * Implements 'CLTS'.
6321 */
6322IEM_CIMPL_DEF_0(iemCImpl_clts)
6323{
6324 if (pVCpu->iem.s.uCpl != 0)
6325 return iemRaiseGeneralProtectionFault0(pVCpu);
6326
6327 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6328 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6329 uNewCr0 &= ~X86_CR0_TS;
6330
6331#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6332 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6333 {
6334 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6335 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6336 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6337 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6338 return rcStrict;
6339 }
6340#endif
6341
6342 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6343}
6344
6345
6346/**
6347 * Implements mov GReg,DRx.
6348 *
6349 * @param iGReg The general register to store the DRx value in.
6350 * @param iDrReg The DRx register to read (0-7).
6351 */
6352IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6353{
6354#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6355 /*
6356 * Check nested-guest VMX intercept.
6357 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6358 * over CPL and CR4.DE and even DR4/DR5 checks.
6359 *
6360 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6361 */
6362 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6363 {
6364 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6365 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6366 return rcStrict;
6367 }
6368#endif
6369
6370 /*
6371 * Check preconditions.
6372 */
6373 /* Raise GPs. */
6374 if (pVCpu->iem.s.uCpl != 0)
6375 return iemRaiseGeneralProtectionFault0(pVCpu);
6376 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6377 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6378
6379 if ( (iDrReg == 4 || iDrReg == 5)
6380 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6381 {
6382 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6383 return iemRaiseGeneralProtectionFault0(pVCpu);
6384 }
6385
6386 /* Raise #DB if general access detect is enabled. */
6387 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6388 {
6389 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6390 return iemRaiseDebugException(pVCpu);
6391 }
6392
6393 /*
6394 * Read the debug register and store it in the specified general register.
6395 */
6396 uint64_t drX;
6397 switch (iDrReg)
6398 {
6399 case 0:
6400 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6401 drX = pVCpu->cpum.GstCtx.dr[0];
6402 break;
6403 case 1:
6404 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6405 drX = pVCpu->cpum.GstCtx.dr[1];
6406 break;
6407 case 2:
6408 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6409 drX = pVCpu->cpum.GstCtx.dr[2];
6410 break;
6411 case 3:
6412 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6413 drX = pVCpu->cpum.GstCtx.dr[3];
6414 break;
6415 case 6:
6416 case 4:
6417 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6418 drX = pVCpu->cpum.GstCtx.dr[6];
6419 drX |= X86_DR6_RA1_MASK;
6420 drX &= ~X86_DR6_RAZ_MASK;
6421 break;
6422 case 7:
6423 case 5:
6424 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6425 drX = pVCpu->cpum.GstCtx.dr[7];
6426 drX |=X86_DR7_RA1_MASK;
6427 drX &= ~X86_DR7_RAZ_MASK;
6428 break;
6429 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* caller checks */
6430 }
6431
6432 /** @todo SVM nested-guest intercept for DR8-DR15? */
6433 /*
6434 * Check for any SVM nested-guest intercepts for the DRx read.
6435 */
6436 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6437 {
6438 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6439 IEM_SVM_UPDATE_NRIP(pVCpu);
6440 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6441 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6442 }
6443
6444 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6445 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6446 else
6447 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6448
6449 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6450}
6451
6452
6453/**
6454 * Implements mov DRx,GReg.
6455 *
6456 * @param iDrReg The DRx register to write (valid).
6457 * @param iGReg The general register to load the DRx value from.
6458 */
6459IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6460{
6461#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6462 /*
6463 * Check nested-guest VMX intercept.
6464 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6465 * over CPL and CR4.DE and even DR4/DR5 checks.
6466 *
6467 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6468 */
6469 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6470 {
6471 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6472 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6473 return rcStrict;
6474 }
6475#endif
6476
6477 /*
6478 * Check preconditions.
6479 */
6480 if (pVCpu->iem.s.uCpl != 0)
6481 return iemRaiseGeneralProtectionFault0(pVCpu);
6482 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6483 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6484
6485 if (iDrReg == 4 || iDrReg == 5)
6486 {
6487 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6488 {
6489 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6490 return iemRaiseGeneralProtectionFault0(pVCpu);
6491 }
6492 iDrReg += 2;
6493 }
6494
6495 /* Raise #DB if general access detect is enabled. */
6496 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6497 * \#GP? */
6498 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6499 {
6500 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6501 return iemRaiseDebugException(pVCpu);
6502 }
6503
6504 /*
6505 * Read the new value from the source register.
6506 */
6507 uint64_t uNewDrX;
6508 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6509 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6510 else
6511 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6512
6513 /*
6514 * Adjust it.
6515 */
6516 switch (iDrReg)
6517 {
6518 case 0:
6519 case 1:
6520 case 2:
6521 case 3:
6522 /* nothing to adjust */
6523 break;
6524
6525 case 6:
6526 if (uNewDrX & X86_DR6_MBZ_MASK)
6527 {
6528 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6529 return iemRaiseGeneralProtectionFault0(pVCpu);
6530 }
6531 uNewDrX |= X86_DR6_RA1_MASK;
6532 uNewDrX &= ~X86_DR6_RAZ_MASK;
6533 break;
6534
6535 case 7:
6536 if (uNewDrX & X86_DR7_MBZ_MASK)
6537 {
6538 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6539 return iemRaiseGeneralProtectionFault0(pVCpu);
6540 }
6541 uNewDrX |= X86_DR7_RA1_MASK;
6542 uNewDrX &= ~X86_DR7_RAZ_MASK;
6543 break;
6544
6545 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6546 }
6547
6548 /** @todo SVM nested-guest intercept for DR8-DR15? */
6549 /*
6550 * Check for any SVM nested-guest intercepts for the DRx write.
6551 */
6552 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6553 {
6554 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6555 IEM_SVM_UPDATE_NRIP(pVCpu);
6556 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6557 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6558 }
6559
6560 /*
6561 * Do the actual setting.
6562 */
6563 if (iDrReg < 4)
6564 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6565 else if (iDrReg == 6)
6566 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6567
6568 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6569 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6570
6571 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6572}
6573
6574
6575/**
6576 * Implements mov GReg,TRx.
6577 *
6578 * @param iGReg The general register to store the
6579 * TRx value in.
6580 * @param iTrReg The TRx register to read (6/7).
6581 */
6582IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg)
6583{
6584 /*
6585 * Check preconditions. NB: This instruction is 386/486 only.
6586 */
6587
6588 /* Raise GPs. */
6589 if (pVCpu->iem.s.uCpl != 0)
6590 return iemRaiseGeneralProtectionFault0(pVCpu);
6591 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6592
6593 if (iTrReg < 6 || iTrReg > 7)
6594 {
6595 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6596 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6597 return iemRaiseGeneralProtectionFault0(pVCpu);
6598 }
6599
6600 /*
6601 * Read the test register and store it in the specified general register.
6602 * This is currently a dummy implementation that only exists to satisfy
6603 * old debuggers like WDEB386 or OS/2 KDB which unconditionally read the
6604 * TR6/TR7 registers. Software which actually depends on the TR values
6605 * (different on 386/486) is exceedingly rare.
6606 */
6607 uint64_t trX;
6608 switch (iTrReg)
6609 {
6610 case 6:
6611 trX = 0; /* Currently a dummy. */
6612 break;
6613 case 7:
6614 trX = 0; /* Currently a dummy. */
6615 break;
6616 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6617 }
6618
6619 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)trX;
6620
6621 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6622}
6623
6624
6625/**
6626 * Implements mov TRx,GReg.
6627 *
6628 * @param iTrReg The TRx register to write (valid).
6629 * @param iGReg The general register to load the TRx
6630 * value from.
6631 */
6632IEM_CIMPL_DEF_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg)
6633{
6634 /*
6635 * Check preconditions. NB: This instruction is 386/486 only.
6636 */
6637
6638 /* Raise GPs. */
6639 if (pVCpu->iem.s.uCpl != 0)
6640 return iemRaiseGeneralProtectionFault0(pVCpu);
6641 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6642
6643 if (iTrReg < 6 || iTrReg > 7)
6644 {
6645 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6646 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6647 return iemRaiseGeneralProtectionFault0(pVCpu);
6648 }
6649
6650 /*
6651 * Read the new value from the source register.
6652 */
6653 uint64_t uNewTrX;
6654 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6655 uNewTrX = iemGRegFetchU64(pVCpu, iGReg);
6656 else
6657 uNewTrX = iemGRegFetchU32(pVCpu, iGReg);
6658
6659 /*
6660 * Here we would do the actual setting if this weren't a dummy implementation.
6661 * This is currently a dummy implementation that only exists to prevent
6662 * old debuggers like WDEB386 or OS/2 KDB from crashing.
6663 */
6664 RT_NOREF(uNewTrX);
6665
6666 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6667}
6668
6669
6670/**
6671 * Implements 'INVLPG m'.
6672 *
6673 * @param GCPtrPage The effective address of the page to invalidate.
6674 * @remarks Updates the RIP.
6675 */
6676IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6677{
6678 /* ring-0 only. */
6679 if (pVCpu->iem.s.uCpl != 0)
6680 return iemRaiseGeneralProtectionFault0(pVCpu);
6681 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6682 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6683
6684#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6685 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6686 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6687 {
6688 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6689 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6690 }
6691#endif
6692
6693 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6694 {
6695 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6696 IEM_SVM_UPDATE_NRIP(pVCpu);
6697 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6698 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6699 }
6700
6701 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6702 if (rc == VINF_SUCCESS)
6703 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6704 if (rc == VINF_PGM_SYNC_CR3)
6705 {
6706 iemSetPassUpStatus(pVCpu, rc);
6707 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6708 }
6709
6710 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6711 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6712 return rc;
6713}
6714
6715
6716/**
6717 * Implements INVPCID.
6718 *
6719 * @param iEffSeg The segment of the invpcid descriptor.
6720 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6721 * @param uInvpcidType The invalidation type.
6722 * @remarks Updates the RIP.
6723 */
6724IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType)
6725{
6726 /*
6727 * Check preconditions.
6728 */
6729 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6730 return iemRaiseUndefinedOpcode(pVCpu);
6731
6732 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6733 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6734 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6735 {
6736 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6737 return iemRaiseUndefinedOpcode(pVCpu);
6738 }
6739
6740 if (pVCpu->iem.s.uCpl != 0)
6741 {
6742 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6743 return iemRaiseGeneralProtectionFault0(pVCpu);
6744 }
6745
6746 if (IEM_IS_V86_MODE(pVCpu))
6747 {
6748 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6749 return iemRaiseGeneralProtectionFault0(pVCpu);
6750 }
6751
6752 /*
6753 * Check nested-guest intercept.
6754 *
6755 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6756 * both set. We have already checked the former earlier in this function.
6757 *
6758 * CPL and virtual-8086 mode checks take priority over this VM-exit.
6759 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6760 */
6761 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6762 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6763 {
6764 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6765 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6766 }
6767
6768 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6769 {
6770 Log(("invpcid: invalid/unrecognized invpcid type %#RX64 -> #GP(0)\n", uInvpcidType));
6771 return iemRaiseGeneralProtectionFault0(pVCpu);
6772 }
6773 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6774
6775 /*
6776 * Fetch the invpcid descriptor from guest memory.
6777 */
6778 RTUINT128U uDesc;
6779 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6780 if (rcStrict == VINF_SUCCESS)
6781 {
6782 /*
6783 * Validate the descriptor.
6784 */
6785 if (uDesc.s.Lo > 0xfff)
6786 {
6787 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6788 return iemRaiseGeneralProtectionFault0(pVCpu);
6789 }
6790
6791 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6792 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6793 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6794 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6795 switch (uInvpcidType)
6796 {
6797 case X86_INVPCID_TYPE_INDV_ADDR:
6798 {
6799 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6800 {
6801 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6802 return iemRaiseGeneralProtectionFault0(pVCpu);
6803 }
6804 if ( !(uCr4 & X86_CR4_PCIDE)
6805 && uPcid != 0)
6806 {
6807 Log(("invpcid: invalid pcid %#x\n", uPcid));
6808 return iemRaiseGeneralProtectionFault0(pVCpu);
6809 }
6810
6811 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6812 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6813 break;
6814 }
6815
6816 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6817 {
6818 if ( !(uCr4 & X86_CR4_PCIDE)
6819 && uPcid != 0)
6820 {
6821 Log(("invpcid: invalid pcid %#x\n", uPcid));
6822 return iemRaiseGeneralProtectionFault0(pVCpu);
6823 }
6824 /* Invalidate all mappings associated with PCID except global translations. */
6825 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6826 break;
6827 }
6828
6829 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6830 {
6831 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
6832 break;
6833 }
6834
6835 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6836 {
6837 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6838 break;
6839 }
6840 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6841 }
6842 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6843 }
6844 return rcStrict;
6845}
6846
6847
6848/**
6849 * Implements INVD.
6850 */
6851IEM_CIMPL_DEF_0(iemCImpl_invd)
6852{
6853 if (pVCpu->iem.s.uCpl != 0)
6854 {
6855 Log(("invd: CPL != 0 -> #GP(0)\n"));
6856 return iemRaiseGeneralProtectionFault0(pVCpu);
6857 }
6858
6859 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6860 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6861
6862 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6863
6864 /* We currently take no action here. */
6865 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6866}
6867
6868
6869/**
6870 * Implements WBINVD.
6871 */
6872IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6873{
6874 if (pVCpu->iem.s.uCpl != 0)
6875 {
6876 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6877 return iemRaiseGeneralProtectionFault0(pVCpu);
6878 }
6879
6880 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6881 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6882
6883 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6884
6885 /* We currently take no action here. */
6886 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6887}
6888
6889
6890/** Opcode 0x0f 0xaa. */
6891IEM_CIMPL_DEF_0(iemCImpl_rsm)
6892{
6893 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6894 NOREF(cbInstr);
6895 return iemRaiseUndefinedOpcode(pVCpu);
6896}
6897
6898
6899/**
6900 * Implements RDTSC.
6901 */
6902IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6903{
6904 /*
6905 * Check preconditions.
6906 */
6907 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6908 return iemRaiseUndefinedOpcode(pVCpu);
6909
6910 if (pVCpu->iem.s.uCpl != 0)
6911 {
6912 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6913 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6914 {
6915 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6916 return iemRaiseGeneralProtectionFault0(pVCpu);
6917 }
6918 }
6919
6920 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6921 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6922 {
6923 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6924 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6925 }
6926
6927 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6928 {
6929 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6930 IEM_SVM_UPDATE_NRIP(pVCpu);
6931 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6932 }
6933
6934 /*
6935 * Do the job.
6936 */
6937 uint64_t uTicks = TMCpuTickGet(pVCpu);
6938#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6939 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6940#endif
6941 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6942 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6943 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6944 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
6945}
6946
6947
6948/**
6949 * Implements RDTSC.
6950 */
6951IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6952{
6953 /*
6954 * Check preconditions.
6955 */
6956 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6957 return iemRaiseUndefinedOpcode(pVCpu);
6958
6959 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6960 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6961 {
6962 Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n"));
6963 return iemRaiseUndefinedOpcode(pVCpu);
6964 }
6965
6966 if (pVCpu->iem.s.uCpl != 0)
6967 {
6968 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6969 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6970 {
6971 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6972 return iemRaiseGeneralProtectionFault0(pVCpu);
6973 }
6974 }
6975
6976 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6977 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6978 {
6979 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6980 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6981 }
6982 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6983 {
6984 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6985 IEM_SVM_UPDATE_NRIP(pVCpu);
6986 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6987 }
6988
6989 /*
6990 * Do the job.
6991 * Query the MSR first in case of trips to ring-3.
6992 */
6993 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6994 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6995 if (rcStrict == VINF_SUCCESS)
6996 {
6997 /* Low dword of the TSC_AUX msr only. */
6998 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6999
7000 uint64_t uTicks = TMCpuTickGet(pVCpu);
7001#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
7002 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
7003#endif
7004 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
7005 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
7006 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
7007 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7008 }
7009 return rcStrict;
7010}
7011
7012
7013/**
7014 * Implements RDPMC.
7015 */
7016IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
7017{
7018 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
7019
7020 if ( pVCpu->iem.s.uCpl != 0
7021 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
7022 return iemRaiseGeneralProtectionFault0(pVCpu);
7023
7024 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7025 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
7026 {
7027 Log(("rdpmc: Guest intercept -> VM-exit\n"));
7028 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
7029 }
7030
7031 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
7032 {
7033 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
7034 IEM_SVM_UPDATE_NRIP(pVCpu);
7035 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7036 }
7037
7038 /** @todo Emulate performance counters, for now just return 0. */
7039 pVCpu->cpum.GstCtx.rax = 0;
7040 pVCpu->cpum.GstCtx.rdx = 0;
7041 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
7042 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
7043 * ecx but see @bugref{3472}! */
7044
7045 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7046}
7047
7048
7049/**
7050 * Implements RDMSR.
7051 */
7052IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
7053{
7054 /*
7055 * Check preconditions.
7056 */
7057 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7058 return iemRaiseUndefinedOpcode(pVCpu);
7059 if (pVCpu->iem.s.uCpl != 0)
7060 return iemRaiseGeneralProtectionFault0(pVCpu);
7061
7062 /*
7063 * Check nested-guest intercepts.
7064 */
7065#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7066 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7067 {
7068 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
7069 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
7070 }
7071#endif
7072
7073#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7074 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7075 {
7076 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
7077 if (rcStrict == VINF_SVM_VMEXIT)
7078 return VINF_SUCCESS;
7079 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7080 {
7081 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
7082 return rcStrict;
7083 }
7084 }
7085#endif
7086
7087 /*
7088 * Do the job.
7089 */
7090 RTUINT64U uValue;
7091 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7092 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7093
7094 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
7095 if (rcStrict == VINF_SUCCESS)
7096 {
7097 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
7098 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
7099 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
7100
7101 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7102 }
7103
7104#ifndef IN_RING3
7105 /* Deferred to ring-3. */
7106 if (rcStrict == VINF_CPUM_R3_MSR_READ)
7107 {
7108 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
7109 return rcStrict;
7110 }
7111#endif
7112
7113 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7114 if (pVCpu->iem.s.cLogRelRdMsr < 32)
7115 {
7116 pVCpu->iem.s.cLogRelRdMsr++;
7117 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7118 }
7119 else
7120 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7121 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7122 return iemRaiseGeneralProtectionFault0(pVCpu);
7123}
7124
7125
7126/**
7127 * Implements WRMSR.
7128 */
7129IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
7130{
7131 /*
7132 * Check preconditions.
7133 */
7134 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7135 return iemRaiseUndefinedOpcode(pVCpu);
7136 if (pVCpu->iem.s.uCpl != 0)
7137 return iemRaiseGeneralProtectionFault0(pVCpu);
7138
7139 RTUINT64U uValue;
7140 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
7141 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
7142
7143 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
7144
7145 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7146 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7147
7148 /*
7149 * Check nested-guest intercepts.
7150 */
7151#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7152 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7153 {
7154 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
7155 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
7156 }
7157#endif
7158
7159#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7160 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7161 {
7162 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
7163 if (rcStrict == VINF_SVM_VMEXIT)
7164 return VINF_SUCCESS;
7165 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7166 {
7167 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
7168 return rcStrict;
7169 }
7170 }
7171#endif
7172
7173 /*
7174 * Do the job.
7175 */
7176 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
7177 if (rcStrict == VINF_SUCCESS)
7178 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7179
7180#ifndef IN_RING3
7181 /* Deferred to ring-3. */
7182 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
7183 {
7184 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
7185 return rcStrict;
7186 }
7187#endif
7188
7189 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7190 if (pVCpu->iem.s.cLogRelWrMsr < 32)
7191 {
7192 pVCpu->iem.s.cLogRelWrMsr++;
7193 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7194 }
7195 else
7196 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7197 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7198 return iemRaiseGeneralProtectionFault0(pVCpu);
7199}
7200
7201
7202/**
7203 * Implements 'IN eAX, port'.
7204 *
7205 * @param u16Port The source port.
7206 * @param fImm Whether the port was specified through an immediate operand
7207 * or the implicit DX register.
7208 * @param cbReg The register size.
7209 */
7210IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7211{
7212 /*
7213 * CPL check
7214 */
7215 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7216 if (rcStrict != VINF_SUCCESS)
7217 return rcStrict;
7218
7219 /*
7220 * Check VMX nested-guest IO intercept.
7221 */
7222#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7223 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7224 {
7225 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
7226 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7227 return rcStrict;
7228 }
7229#else
7230 RT_NOREF(fImm);
7231#endif
7232
7233 /*
7234 * Check SVM nested-guest IO intercept.
7235 */
7236#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7237 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7238 {
7239 uint8_t cAddrSizeBits;
7240 switch (pVCpu->iem.s.enmEffAddrMode)
7241 {
7242 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7243 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7244 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7245 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7246 }
7247 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7248 false /* fRep */, false /* fStrIo */, cbInstr);
7249 if (rcStrict == VINF_SVM_VMEXIT)
7250 return VINF_SUCCESS;
7251 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7252 {
7253 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7254 VBOXSTRICTRC_VAL(rcStrict)));
7255 return rcStrict;
7256 }
7257 }
7258#endif
7259
7260 /*
7261 * Perform the I/O.
7262 */
7263 PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
7264 uint32_t u32Value = 0;
7265 rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, cbReg);
7266 if (IOM_SUCCESS(rcStrict))
7267 {
7268 switch (cbReg)
7269 {
7270 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
7271 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
7272 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
7273 default: AssertFailedReturn(VERR_IEM_IPE_3);
7274 }
7275
7276 pVCpu->iem.s.cPotentialExits++;
7277 if (rcStrict != VINF_SUCCESS)
7278 iemSetPassUpStatus(pVCpu, rcStrict);
7279 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7280
7281 /*
7282 * Check for I/O breakpoints.
7283 */
7284 /** @todo this should set a internal flag and be raised by
7285 * iemRegAddToRipAndFinishingClearingRF! */
7286 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7287 if (RT_UNLIKELY( ( ( (uDr7 & X86_DR7_ENABLED_MASK)
7288 && X86_DR7_ANY_RW_IO(uDr7)
7289 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7290 || DBGFBpIsHwIoArmed(pVM))
7291 && rcStrict == VINF_SUCCESS))
7292 {
7293 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7294 rcStrict = DBGFBpCheckIo(pVM, pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7295 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7296 rcStrict = iemRaiseDebugException(pVCpu);
7297 }
7298 }
7299
7300 return rcStrict;
7301}
7302
7303
7304/**
7305 * Implements 'IN eAX, DX'.
7306 *
7307 * @param cbReg The register size.
7308 */
7309IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
7310{
7311 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7312}
7313
7314
7315/**
7316 * Implements 'OUT port, eAX'.
7317 *
7318 * @param u16Port The destination port.
7319 * @param fImm Whether the port was specified through an immediate operand
7320 * or the implicit DX register.
7321 * @param cbReg The register size.
7322 */
7323IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7324{
7325 /*
7326 * CPL check
7327 */
7328 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7329 if (rcStrict != VINF_SUCCESS)
7330 return rcStrict;
7331
7332 /*
7333 * Check VMX nested-guest I/O intercept.
7334 */
7335#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7336 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7337 {
7338 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
7339 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7340 return rcStrict;
7341 }
7342#else
7343 RT_NOREF(fImm);
7344#endif
7345
7346 /*
7347 * Check SVM nested-guest I/O intercept.
7348 */
7349#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7350 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7351 {
7352 uint8_t cAddrSizeBits;
7353 switch (pVCpu->iem.s.enmEffAddrMode)
7354 {
7355 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7356 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7357 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7358 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7359 }
7360 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7361 false /* fRep */, false /* fStrIo */, cbInstr);
7362 if (rcStrict == VINF_SVM_VMEXIT)
7363 return VINF_SUCCESS;
7364 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7365 {
7366 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7367 VBOXSTRICTRC_VAL(rcStrict)));
7368 return rcStrict;
7369 }
7370 }
7371#endif
7372
7373 /*
7374 * Perform the I/O.
7375 */
7376 PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
7377 uint32_t u32Value;
7378 switch (cbReg)
7379 {
7380 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7381 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7382 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7383 default: AssertFailedReturn(VERR_IEM_IPE_4);
7384 }
7385 rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, u32Value, cbReg);
7386 if (IOM_SUCCESS(rcStrict))
7387 {
7388 pVCpu->iem.s.cPotentialExits++;
7389 if (rcStrict != VINF_SUCCESS)
7390 iemSetPassUpStatus(pVCpu, rcStrict);
7391 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7392
7393 /*
7394 * Check for I/O breakpoints.
7395 */
7396 /** @todo this should set a internal flag and be raised by
7397 * iemRegAddToRipAndFinishingClearingRF! */
7398 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7399 if (RT_UNLIKELY( ( ( (uDr7 & X86_DR7_ENABLED_MASK)
7400 && X86_DR7_ANY_RW_IO(uDr7)
7401 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7402 || DBGFBpIsHwIoArmed(pVM))
7403 && rcStrict == VINF_SUCCESS))
7404 {
7405 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7406 rcStrict = DBGFBpCheckIo(pVM, pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7407 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7408 rcStrict = iemRaiseDebugException(pVCpu);
7409 }
7410 }
7411 return rcStrict;
7412}
7413
7414
7415/**
7416 * Implements 'OUT DX, eAX'.
7417 *
7418 * @param cbReg The register size.
7419 */
7420IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7421{
7422 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7423}
7424
7425
7426/**
7427 * Implements 'CLI'.
7428 */
7429IEM_CIMPL_DEF_0(iemCImpl_cli)
7430{
7431 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7432#ifdef LOG_ENABLED
7433 uint32_t const fEflOld = fEfl;
7434#endif
7435
7436 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7437 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7438 {
7439 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7440 if (!(fEfl & X86_EFL_VM))
7441 {
7442 if (pVCpu->iem.s.uCpl <= uIopl)
7443 fEfl &= ~X86_EFL_IF;
7444 else if ( pVCpu->iem.s.uCpl == 3
7445 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7446 fEfl &= ~X86_EFL_VIF;
7447 else
7448 return iemRaiseGeneralProtectionFault0(pVCpu);
7449 }
7450 /* V8086 */
7451 else if (uIopl == 3)
7452 fEfl &= ~X86_EFL_IF;
7453 else if ( uIopl < 3
7454 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7455 fEfl &= ~X86_EFL_VIF;
7456 else
7457 return iemRaiseGeneralProtectionFault0(pVCpu);
7458 }
7459 /* real mode */
7460 else
7461 fEfl &= ~X86_EFL_IF;
7462
7463 /* Commit. */
7464 IEMMISC_SET_EFL(pVCpu, fEfl);
7465 VBOXSTRICTRC const rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7466 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl));
7467 return rcStrict;
7468}
7469
7470
7471/**
7472 * Implements 'STI'.
7473 */
7474IEM_CIMPL_DEF_0(iemCImpl_sti)
7475{
7476 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7477 uint32_t const fEflOld = fEfl;
7478
7479 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7480 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7481 {
7482 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7483 if (!(fEfl & X86_EFL_VM))
7484 {
7485 if (pVCpu->iem.s.uCpl <= uIopl)
7486 fEfl |= X86_EFL_IF;
7487 else if ( pVCpu->iem.s.uCpl == 3
7488 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7489 && !(fEfl & X86_EFL_VIP) )
7490 fEfl |= X86_EFL_VIF;
7491 else
7492 return iemRaiseGeneralProtectionFault0(pVCpu);
7493 }
7494 /* V8086 */
7495 else if (uIopl == 3)
7496 fEfl |= X86_EFL_IF;
7497 else if ( uIopl < 3
7498 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7499 && !(fEfl & X86_EFL_VIP) )
7500 fEfl |= X86_EFL_VIF;
7501 else
7502 return iemRaiseGeneralProtectionFault0(pVCpu);
7503 }
7504 /* real mode */
7505 else
7506 fEfl |= X86_EFL_IF;
7507
7508 /*
7509 * Commit.
7510 *
7511 * Note! Setting the shadow interrupt flag must be done after RIP updating.
7512 */
7513 IEMMISC_SET_EFL(pVCpu, fEfl);
7514 VBOXSTRICTRC const rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7515 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7516 {
7517 /** @todo only set it the shadow flag if it was clear before? */
7518 CPUMSetInInterruptShadowSti(&pVCpu->cpum.GstCtx);
7519 }
7520 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7521 return rcStrict;
7522}
7523
7524
7525/**
7526 * Implements 'HLT'.
7527 */
7528IEM_CIMPL_DEF_0(iemCImpl_hlt)
7529{
7530 if (pVCpu->iem.s.uCpl != 0)
7531 return iemRaiseGeneralProtectionFault0(pVCpu);
7532
7533 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7534 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7535 {
7536 Log2(("hlt: Guest intercept -> VM-exit\n"));
7537 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7538 }
7539
7540 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7541 {
7542 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7543 IEM_SVM_UPDATE_NRIP(pVCpu);
7544 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7545 }
7546
7547 /** @todo finish: This ASSUMES that iemRegAddToRipAndFinishingClearingRF won't
7548 * be returning any status codes relating to non-guest events being raised, as
7549 * we'll mess up the guest HALT otherwise. */
7550 VBOXSTRICTRC rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7551 if (rcStrict == VINF_SUCCESS)
7552 rcStrict = VINF_EM_HALT;
7553 return rcStrict;
7554}
7555
7556
7557/**
7558 * Implements 'MONITOR'.
7559 */
7560IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7561{
7562 /*
7563 * Permission checks.
7564 */
7565 if (pVCpu->iem.s.uCpl != 0)
7566 {
7567 Log2(("monitor: CPL != 0\n"));
7568 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7569 }
7570 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7571 {
7572 Log2(("monitor: Not in CPUID\n"));
7573 return iemRaiseUndefinedOpcode(pVCpu);
7574 }
7575
7576 /*
7577 * Check VMX guest-intercept.
7578 * This should be considered a fault-like VM-exit.
7579 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7580 */
7581 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7582 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7583 {
7584 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7585 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7586 }
7587
7588 /*
7589 * Gather the operands and validate them.
7590 */
7591 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7592 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7593 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7594/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7595 * \#GP first. */
7596 if (uEcx != 0)
7597 {
7598 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7599 return iemRaiseGeneralProtectionFault0(pVCpu);
7600 }
7601
7602 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7603 if (rcStrict != VINF_SUCCESS)
7604 return rcStrict;
7605
7606 RTGCPHYS GCPhysMem;
7607 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7608 if (rcStrict != VINF_SUCCESS)
7609 return rcStrict;
7610
7611#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7612 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7613 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7614 {
7615 /*
7616 * MONITOR does not access the memory, just monitors the address. However,
7617 * if the address falls in the APIC-access page, the address monitored must
7618 * instead be the corresponding address in the virtual-APIC page.
7619 *
7620 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7621 */
7622 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem, 1, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA);
7623 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7624 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7625 return rcStrict;
7626 }
7627#endif
7628
7629 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7630 {
7631 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7632 IEM_SVM_UPDATE_NRIP(pVCpu);
7633 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7634 }
7635
7636 /*
7637 * Call EM to prepare the monitor/wait.
7638 */
7639 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7640 Assert(rcStrict == VINF_SUCCESS);
7641 if (rcStrict == VINF_SUCCESS)
7642 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7643 return rcStrict;
7644}
7645
7646
7647/**
7648 * Implements 'MWAIT'.
7649 */
7650IEM_CIMPL_DEF_0(iemCImpl_mwait)
7651{
7652 /*
7653 * Permission checks.
7654 */
7655 if (pVCpu->iem.s.uCpl != 0)
7656 {
7657 Log2(("mwait: CPL != 0\n"));
7658 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7659 * EFLAGS.VM then.) */
7660 return iemRaiseUndefinedOpcode(pVCpu);
7661 }
7662 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7663 {
7664 Log2(("mwait: Not in CPUID\n"));
7665 return iemRaiseUndefinedOpcode(pVCpu);
7666 }
7667
7668 /* Check VMX nested-guest intercept. */
7669 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7670 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7671 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7672
7673 /*
7674 * Gather the operands and validate them.
7675 */
7676 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7677 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7678 if (uEcx != 0)
7679 {
7680 /* Only supported extension is break on IRQ when IF=0. */
7681 if (uEcx > 1)
7682 {
7683 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7684 return iemRaiseGeneralProtectionFault0(pVCpu);
7685 }
7686 uint32_t fMWaitFeatures = 0;
7687 uint32_t uIgnore = 0;
7688 CPUMGetGuestCpuId(pVCpu, 5, 0, -1 /*f64BitMode*/, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7689 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7690 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7691 {
7692 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7693 return iemRaiseGeneralProtectionFault0(pVCpu);
7694 }
7695
7696#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7697 /*
7698 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7699 * for delivery; and interrupts are disabled the processor does not enter its
7700 * mwait state but rather passes control to the next instruction.
7701 *
7702 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7703 */
7704 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7705 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7706 {
7707 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7708 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7709 /** @todo finish: check up this out after we move int window stuff out of the
7710 * run loop and into the instruction finishing logic here. */
7711 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7712 }
7713#endif
7714 }
7715
7716 /*
7717 * Check SVM nested-guest mwait intercepts.
7718 */
7719 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7720 && EMMonitorIsArmed(pVCpu))
7721 {
7722 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7723 IEM_SVM_UPDATE_NRIP(pVCpu);
7724 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7725 }
7726 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7727 {
7728 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7729 IEM_SVM_UPDATE_NRIP(pVCpu);
7730 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7731 }
7732
7733 /*
7734 * Call EM to prepare the monitor/wait.
7735 *
7736 * This will return VINF_EM_HALT. If there the trap flag is set, we may
7737 * override it when executing iemRegAddToRipAndFinishingClearingRF ASSUMING
7738 * that will only return guest related events.
7739 */
7740 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7741
7742 /** @todo finish: This needs more thinking as we should suppress internal
7743 * debugger events here, or we'll bugger up the guest state even more than we
7744 * alread do around VINF_EM_HALT. */
7745 VBOXSTRICTRC rcStrict2 = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7746 if (rcStrict2 != VINF_SUCCESS)
7747 {
7748 Log2(("mwait: %Rrc (perform) -> %Rrc (finish)!\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2) ));
7749 rcStrict = rcStrict2;
7750 }
7751
7752 return rcStrict;
7753}
7754
7755
7756/**
7757 * Implements 'SWAPGS'.
7758 */
7759IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7760{
7761 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7762
7763 /*
7764 * Permission checks.
7765 */
7766 if (pVCpu->iem.s.uCpl != 0)
7767 {
7768 Log2(("swapgs: CPL != 0\n"));
7769 return iemRaiseUndefinedOpcode(pVCpu);
7770 }
7771
7772 /*
7773 * Do the job.
7774 */
7775 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7776 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7777 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7778 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7779
7780 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7781}
7782
7783
7784#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
7785/**
7786 * Handles a CPUID call.
7787 */
7788static VBOXSTRICTRC iemCpuIdVBoxCall(PVMCPUCC pVCpu, uint32_t iFunction,
7789 uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
7790{
7791 switch (iFunction)
7792 {
7793 case VBOX_CPUID_FN_ID:
7794 LogFlow(("iemCpuIdVBoxCall: VBOX_CPUID_FN_ID\n"));
7795 *pEax = VBOX_CPUID_RESP_ID_EAX;
7796 *pEbx = VBOX_CPUID_RESP_ID_EBX;
7797 *pEcx = VBOX_CPUID_RESP_ID_ECX;
7798 *pEdx = VBOX_CPUID_RESP_ID_EDX;
7799 break;
7800
7801 case VBOX_CPUID_FN_LOG:
7802 {
7803 CPUM_IMPORT_EXTRN_RET(pVCpu, CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX | CPUMCTX_EXTRN_RSI
7804 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
7805
7806 /* Validate input. */
7807 uint32_t cchToLog = *pEdx;
7808 if (cchToLog <= _2M)
7809 {
7810 uint32_t const uLogPicker = *pEbx;
7811 if (uLogPicker <= 1)
7812 {
7813 /* Resolve the logger. */
7814 PRTLOGGER const pLogger = !uLogPicker
7815 ? RTLogDefaultInstanceEx(UINT32_MAX) : RTLogRelGetDefaultInstanceEx(UINT32_MAX);
7816 if (pLogger)
7817 {
7818 /* Copy over the data: */
7819 RTGCPTR GCPtrSrc = pVCpu->cpum.GstCtx.rsi;
7820 while (cchToLog > 0)
7821 {
7822 uint32_t cbToMap = GUEST_PAGE_SIZE - (GCPtrSrc & GUEST_PAGE_OFFSET_MASK);
7823 if (cbToMap > cchToLog)
7824 cbToMap = cchToLog;
7825 /** @todo Extend iemMemMap to allowing page size accessing and avoid 7
7826 * unnecessary calls & iterations per pages. */
7827 if (cbToMap > 512)
7828 cbToMap = 512;
7829 void *pvSrc = NULL;
7830 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvSrc, cbToMap, UINT8_MAX, GCPtrSrc, IEM_ACCESS_DATA_R, 0);
7831 if (rcStrict == VINF_SUCCESS)
7832 {
7833 RTLogBulkNestedWrite(pLogger, (const char *)pvSrc, cbToMap, "Gst:");
7834 rcStrict = iemMemCommitAndUnmap(pVCpu, pvSrc, IEM_ACCESS_DATA_R);
7835 AssertRCSuccessReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7836 }
7837 else
7838 {
7839 Log(("iemCpuIdVBoxCall: %Rrc at %RGp LB %#x\n", VBOXSTRICTRC_VAL(rcStrict), GCPtrSrc, cbToMap));
7840 return rcStrict;
7841 }
7842
7843 /* Advance. */
7844 pVCpu->cpum.GstCtx.rsi = GCPtrSrc += cbToMap;
7845 *pEdx = cchToLog -= cbToMap;
7846 }
7847 *pEax = VINF_SUCCESS;
7848 }
7849 else
7850 *pEax = (uint32_t)VERR_NOT_FOUND;
7851 }
7852 else
7853 *pEax = (uint32_t)VERR_NOT_FOUND;
7854 }
7855 else
7856 *pEax = (uint32_t)VERR_TOO_MUCH_DATA;
7857 *pEdx = VBOX_CPUID_RESP_GEN_EDX;
7858 *pEcx = VBOX_CPUID_RESP_GEN_ECX;
7859 *pEbx = VBOX_CPUID_RESP_GEN_EBX;
7860 break;
7861 }
7862
7863 default:
7864 LogFlow(("iemCpuIdVBoxCall: Invalid function %#x (%#x, %#x)\n", iFunction, *pEbx, *pEdx));
7865 *pEax = (uint32_t)VERR_INVALID_FUNCTION;
7866 *pEbx = (uint32_t)VERR_INVALID_FUNCTION;
7867 *pEcx = (uint32_t)VERR_INVALID_FUNCTION;
7868 *pEdx = (uint32_t)VERR_INVALID_FUNCTION;
7869 break;
7870 }
7871 return VINF_SUCCESS;
7872}
7873#endif /* VBOX_WITHOUT_CPUID_HOST_CALL */
7874
7875/**
7876 * Implements 'CPUID'.
7877 */
7878IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7879{
7880 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7881 {
7882 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7883 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7884 }
7885
7886 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7887 {
7888 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7889 IEM_SVM_UPDATE_NRIP(pVCpu);
7890 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7891 }
7892
7893
7894 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7895 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7896
7897#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
7898 /*
7899 * CPUID host call backdoor.
7900 */
7901 if ( uEax == VBOX_CPUID_REQ_EAX_FIXED
7902 && (uEcx & VBOX_CPUID_REQ_ECX_FIXED_MASK) == VBOX_CPUID_REQ_ECX_FIXED
7903 && pVCpu->CTX_SUFF(pVM)->iem.s.fCpuIdHostCall)
7904 {
7905 VBOXSTRICTRC rcStrict = iemCpuIdVBoxCall(pVCpu, uEcx & VBOX_CPUID_REQ_ECX_FN_MASK,
7906 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx,
7907 &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7908 if (rcStrict != VINF_SUCCESS)
7909 return rcStrict;
7910 }
7911 /*
7912 * Regular CPUID.
7913 */
7914 else
7915#endif
7916 CPUMGetGuestCpuId(pVCpu, uEax, uEcx, pVCpu->cpum.GstCtx.cs.Attr.n.u1Long,
7917 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7918
7919 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7920 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7921 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7922 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7923 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7924
7925 pVCpu->iem.s.cPotentialExits++;
7926 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7927}
7928
7929
7930/**
7931 * Implements 'AAD'.
7932 *
7933 * @param bImm The immediate operand.
7934 */
7935IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7936{
7937 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7938 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7939 pVCpu->cpum.GstCtx.ax = al;
7940 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7941 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7942 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7943
7944 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7945}
7946
7947
7948/**
7949 * Implements 'AAM'.
7950 *
7951 * @param bImm The immediate operand. Cannot be 0.
7952 */
7953IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7954{
7955 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7956
7957 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7958 uint8_t const al = (uint8_t)ax % bImm;
7959 uint8_t const ah = (uint8_t)ax / bImm;
7960 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7961 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7962 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7963 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7964
7965 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7966}
7967
7968
7969/**
7970 * Implements 'DAA'.
7971 */
7972IEM_CIMPL_DEF_0(iemCImpl_daa)
7973{
7974 uint8_t const al = pVCpu->cpum.GstCtx.al;
7975 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7976
7977 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7978 || (al & 0xf) >= 10)
7979 {
7980 pVCpu->cpum.GstCtx.al = al + 6;
7981 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7982 }
7983 else
7984 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7985
7986 if (al >= 0x9a || fCarry)
7987 {
7988 pVCpu->cpum.GstCtx.al += 0x60;
7989 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7990 }
7991 else
7992 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7993
7994 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7995 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7996}
7997
7998
7999/**
8000 * Implements 'DAS'.
8001 */
8002IEM_CIMPL_DEF_0(iemCImpl_das)
8003{
8004 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
8005 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
8006
8007 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8008 || (uInputAL & 0xf) >= 10)
8009 {
8010 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8011 if (uInputAL < 6)
8012 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8013 pVCpu->cpum.GstCtx.al = uInputAL - 6;
8014 }
8015 else
8016 {
8017 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8018 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8019 }
8020
8021 if (uInputAL >= 0x9a || fCarry)
8022 {
8023 pVCpu->cpum.GstCtx.al -= 0x60;
8024 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8025 }
8026
8027 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8028 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8029}
8030
8031
8032/**
8033 * Implements 'AAA'.
8034 */
8035IEM_CIMPL_DEF_0(iemCImpl_aaa)
8036{
8037 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
8038 {
8039 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8040 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8041 {
8042 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.uBoth);
8043 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8044 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8045 }
8046 else
8047 {
8048 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8049 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8050 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8051 }
8052 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8053 }
8054 else
8055 {
8056 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8057 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8058 {
8059 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
8060 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8061 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8062 }
8063 else
8064 {
8065 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8066 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8067 }
8068 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8069 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8070 }
8071
8072 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8073}
8074
8075
8076/**
8077 * Implements 'AAS'.
8078 */
8079IEM_CIMPL_DEF_0(iemCImpl_aas)
8080{
8081 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
8082 {
8083 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8084 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8085 {
8086 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.uBoth);
8087 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8088 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8089 }
8090 else
8091 {
8092 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8093 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8094 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8095 }
8096 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8097 }
8098 else
8099 {
8100 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
8101 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
8102 {
8103 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
8104 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
8105 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
8106 }
8107 else
8108 {
8109 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
8110 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
8111 }
8112 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
8113 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
8114 }
8115
8116 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8117}
8118
8119
8120/**
8121 * Implements the 16-bit version of 'BOUND'.
8122 *
8123 * @note We have separate 16-bit and 32-bit variants of this function due to
8124 * the decoder using unsigned parameters, whereas we want signed one to
8125 * do the job. This is significant for a recompiler.
8126 */
8127IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
8128{
8129 /*
8130 * Check if the index is inside the bounds, otherwise raise #BR.
8131 */
8132 if ( idxArray >= idxLowerBound
8133 && idxArray <= idxUpperBound)
8134 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8135 return iemRaiseBoundRangeExceeded(pVCpu);
8136}
8137
8138
8139/**
8140 * Implements the 32-bit version of 'BOUND'.
8141 */
8142IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
8143{
8144 /*
8145 * Check if the index is inside the bounds, otherwise raise #BR.
8146 */
8147 if ( idxArray >= idxLowerBound
8148 && idxArray <= idxUpperBound)
8149 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8150 return iemRaiseBoundRangeExceeded(pVCpu);
8151}
8152
8153
8154
8155/*
8156 * Instantiate the various string operation combinations.
8157 */
8158#define OP_SIZE 8
8159#define ADDR_SIZE 16
8160#include "IEMAllCImplStrInstr.cpp.h"
8161#define OP_SIZE 8
8162#define ADDR_SIZE 32
8163#include "IEMAllCImplStrInstr.cpp.h"
8164#define OP_SIZE 8
8165#define ADDR_SIZE 64
8166#include "IEMAllCImplStrInstr.cpp.h"
8167
8168#define OP_SIZE 16
8169#define ADDR_SIZE 16
8170#include "IEMAllCImplStrInstr.cpp.h"
8171#define OP_SIZE 16
8172#define ADDR_SIZE 32
8173#include "IEMAllCImplStrInstr.cpp.h"
8174#define OP_SIZE 16
8175#define ADDR_SIZE 64
8176#include "IEMAllCImplStrInstr.cpp.h"
8177
8178#define OP_SIZE 32
8179#define ADDR_SIZE 16
8180#include "IEMAllCImplStrInstr.cpp.h"
8181#define OP_SIZE 32
8182#define ADDR_SIZE 32
8183#include "IEMAllCImplStrInstr.cpp.h"
8184#define OP_SIZE 32
8185#define ADDR_SIZE 64
8186#include "IEMAllCImplStrInstr.cpp.h"
8187
8188#define OP_SIZE 64
8189#define ADDR_SIZE 32
8190#include "IEMAllCImplStrInstr.cpp.h"
8191#define OP_SIZE 64
8192#define ADDR_SIZE 64
8193#include "IEMAllCImplStrInstr.cpp.h"
8194
8195
8196/**
8197 * Implements 'XGETBV'.
8198 */
8199IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
8200{
8201 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
8202 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8203 {
8204 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8205 switch (uEcx)
8206 {
8207 case 0:
8208 break;
8209
8210 case 1: /** @todo Implement XCR1 support. */
8211 default:
8212 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
8213 return iemRaiseGeneralProtectionFault0(pVCpu);
8214
8215 }
8216 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8217 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8218 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8219
8220 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8221 }
8222 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
8223 return iemRaiseUndefinedOpcode(pVCpu);
8224}
8225
8226
8227/**
8228 * Implements 'XSETBV'.
8229 */
8230IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
8231{
8232 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8233 {
8234 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
8235 {
8236 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
8237 IEM_SVM_UPDATE_NRIP(pVCpu);
8238 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
8239 }
8240
8241 if (pVCpu->iem.s.uCpl == 0)
8242 {
8243 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8244
8245 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8246 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
8247
8248 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8249 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
8250 switch (uEcx)
8251 {
8252 case 0:
8253 {
8254 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
8255 if (rc == VINF_SUCCESS)
8256 break;
8257 Assert(rc == VERR_CPUM_RAISE_GP_0);
8258 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8259 return iemRaiseGeneralProtectionFault0(pVCpu);
8260 }
8261
8262 case 1: /** @todo Implement XCR1 support. */
8263 default:
8264 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8265 return iemRaiseGeneralProtectionFault0(pVCpu);
8266
8267 }
8268
8269 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8270 }
8271
8272 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
8273 return iemRaiseGeneralProtectionFault0(pVCpu);
8274 }
8275 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
8276 return iemRaiseUndefinedOpcode(pVCpu);
8277}
8278
8279#ifndef RT_ARCH_ARM64
8280# ifdef IN_RING3
8281
8282/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
8283struct IEMCIMPLCX16ARGS
8284{
8285 PRTUINT128U pu128Dst;
8286 PRTUINT128U pu128RaxRdx;
8287 PRTUINT128U pu128RbxRcx;
8288 uint32_t *pEFlags;
8289# ifdef VBOX_STRICT
8290 uint32_t cCalls;
8291# endif
8292};
8293
8294/**
8295 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
8296 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
8297 */
8298static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPUCC pVCpu, void *pvUser)
8299{
8300 RT_NOREF(pVM, pVCpu);
8301 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
8302# ifdef VBOX_STRICT
8303 Assert(pArgs->cCalls == 0);
8304 pArgs->cCalls++;
8305# endif
8306
8307 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
8308 return VINF_SUCCESS;
8309}
8310
8311# endif /* IN_RING3 */
8312
8313/**
8314 * Implements 'CMPXCHG16B' fallback using rendezvous.
8315 */
8316IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
8317 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
8318{
8319# ifdef IN_RING3
8320 struct IEMCIMPLCX16ARGS Args;
8321 Args.pu128Dst = pu128Dst;
8322 Args.pu128RaxRdx = pu128RaxRdx;
8323 Args.pu128RbxRcx = pu128RbxRcx;
8324 Args.pEFlags = pEFlags;
8325# ifdef VBOX_STRICT
8326 Args.cCalls = 0;
8327# endif
8328 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
8329 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
8330 Assert(Args.cCalls == 1);
8331 if (rcStrict == VINF_SUCCESS)
8332 {
8333 /* Duplicated tail code. */
8334 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
8335 if (rcStrict == VINF_SUCCESS)
8336 {
8337 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
8338 if (!(*pEFlags & X86_EFL_ZF))
8339 {
8340 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
8341 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
8342 }
8343 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8344 }
8345 }
8346 return rcStrict;
8347# else
8348 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
8349 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
8350# endif
8351}
8352
8353#endif /* RT_ARCH_ARM64 */
8354
8355/**
8356 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
8357 *
8358 * This is implemented in C because it triggers a load like behaviour without
8359 * actually reading anything. Since that's not so common, it's implemented
8360 * here.
8361 *
8362 * @param iEffSeg The effective segment.
8363 * @param GCPtrEff The address of the image.
8364 */
8365IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8366{
8367 /*
8368 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
8369 */
8370 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
8371 if (rcStrict == VINF_SUCCESS)
8372 {
8373 RTGCPHYS GCPhysMem;
8374 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
8375 if (rcStrict == VINF_SUCCESS)
8376 {
8377#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8378 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8379 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
8380 {
8381 /*
8382 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
8383 * that contains the address. However, if the address falls in the APIC-access
8384 * page, the address flushed must instead be the corresponding address in the
8385 * virtual-APIC page.
8386 *
8387 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
8388 */
8389 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem, 1, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA);
8390 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
8391 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
8392 return rcStrict;
8393 }
8394#endif
8395 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8396 }
8397 }
8398
8399 return rcStrict;
8400}
8401
8402
8403/**
8404 * Implements 'FINIT' and 'FNINIT'.
8405 *
8406 * @param fCheckXcpts Whether to check for umasked pending exceptions or
8407 * not.
8408 */
8409IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
8410{
8411 /*
8412 * Exceptions.
8413 */
8414 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
8415 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
8416 return iemRaiseDeviceNotAvailable(pVCpu);
8417
8418 iemFpuActualizeStateForChange(pVCpu);
8419 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
8420
8421 /* FINIT: Raise #MF on pending exception(s): */
8422 if (fCheckXcpts && (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES))
8423 return iemRaiseMathFault(pVCpu);
8424
8425 /*
8426 * Reset the state.
8427 */
8428 PX86XSAVEAREA pXState = &pVCpu->cpum.GstCtx.XState;
8429
8430 /* Rotate the stack to account for changed TOS. */
8431 iemFpuRotateStackSetTop(&pXState->x87, 0);
8432
8433 pXState->x87.FCW = 0x37f;
8434 pXState->x87.FSW = 0;
8435 pXState->x87.FTW = 0x00; /* 0 - empty. */
8436 /** @todo Intel says the instruction and data pointers are not cleared on
8437 * 387, presume that 8087 and 287 doesn't do so either. */
8438 /** @todo test this stuff. */
8439 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
8440 {
8441 pXState->x87.FPUDP = 0;
8442 pXState->x87.DS = 0; //??
8443 pXState->x87.Rsrvd2 = 0;
8444 pXState->x87.FPUIP = 0;
8445 pXState->x87.CS = 0; //??
8446 pXState->x87.Rsrvd1 = 0;
8447 }
8448 pXState->x87.FOP = 0;
8449
8450 iemHlpUsedFpu(pVCpu);
8451 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8452}
8453
8454
8455/**
8456 * Implements 'FXSAVE'.
8457 *
8458 * @param iEffSeg The effective segment.
8459 * @param GCPtrEff The address of the image.
8460 * @param enmEffOpSize The operand size (only REX.W really matters).
8461 */
8462IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8463{
8464 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8465
8466 /*
8467 * Raise exceptions.
8468 */
8469 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8470 return iemRaiseDeviceNotAvailable(pVCpu);
8471
8472 /*
8473 * Access the memory.
8474 */
8475 void *pvMem512;
8476 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE,
8477 15 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8478 if (rcStrict != VINF_SUCCESS)
8479 return rcStrict;
8480 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8481 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8482
8483 /*
8484 * Store the registers.
8485 */
8486 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8487 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
8488
8489 /* common for all formats */
8490 pDst->FCW = pSrc->FCW;
8491 pDst->FSW = pSrc->FSW;
8492 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8493 pDst->FOP = pSrc->FOP;
8494 pDst->MXCSR = pSrc->MXCSR;
8495 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8496 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8497 {
8498 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8499 * them for now... */
8500 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8501 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8502 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8503 pDst->aRegs[i].au32[3] = 0;
8504 }
8505
8506 /* FPU IP, CS, DP and DS. */
8507 pDst->FPUIP = pSrc->FPUIP;
8508 pDst->CS = pSrc->CS;
8509 pDst->FPUDP = pSrc->FPUDP;
8510 pDst->DS = pSrc->DS;
8511 if (enmEffOpSize == IEMMODE_64BIT)
8512 {
8513 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8514 pDst->Rsrvd1 = pSrc->Rsrvd1;
8515 pDst->Rsrvd2 = pSrc->Rsrvd2;
8516 }
8517 else
8518 {
8519 pDst->Rsrvd1 = 0;
8520 pDst->Rsrvd2 = 0;
8521 }
8522
8523 /* XMM registers. */
8524 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8525 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8526 || pVCpu->iem.s.uCpl != 0)
8527 {
8528 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8529 for (uint32_t i = 0; i < cXmmRegs; i++)
8530 pDst->aXMM[i] = pSrc->aXMM[i];
8531 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8532 * right? */
8533 }
8534
8535 /*
8536 * Commit the memory.
8537 */
8538 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8539 if (rcStrict != VINF_SUCCESS)
8540 return rcStrict;
8541
8542 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8543}
8544
8545
8546/**
8547 * Implements 'FXRSTOR'.
8548 *
8549 * @param iEffSeg The effective segment register for @a GCPtrEff.
8550 * @param GCPtrEff The address of the image.
8551 * @param enmEffOpSize The operand size (only REX.W really matters).
8552 */
8553IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8554{
8555 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8556
8557 /*
8558 * Raise exceptions.
8559 */
8560 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8561 return iemRaiseDeviceNotAvailable(pVCpu);
8562
8563 /*
8564 * Access the memory.
8565 */
8566 void *pvMem512;
8567 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R,
8568 15 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8569 if (rcStrict != VINF_SUCCESS)
8570 return rcStrict;
8571 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8572 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8573
8574 /*
8575 * Check the state for stuff which will #GP(0).
8576 */
8577 uint32_t const fMXCSR = pSrc->MXCSR;
8578 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8579 if (fMXCSR & ~fMXCSR_MASK)
8580 {
8581 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8582 return iemRaiseGeneralProtectionFault0(pVCpu);
8583 }
8584
8585 /*
8586 * Load the registers.
8587 */
8588 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8589 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8590
8591 /* common for all formats */
8592 pDst->FCW = pSrc->FCW;
8593 pDst->FSW = pSrc->FSW;
8594 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8595 pDst->FOP = pSrc->FOP;
8596 pDst->MXCSR = fMXCSR;
8597 /* (MXCSR_MASK is read-only) */
8598 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8599 {
8600 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8601 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8602 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8603 pDst->aRegs[i].au32[3] = 0;
8604 }
8605
8606 /* FPU IP, CS, DP and DS. */
8607 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8608 {
8609 pDst->FPUIP = pSrc->FPUIP;
8610 pDst->CS = pSrc->CS;
8611 pDst->Rsrvd1 = pSrc->Rsrvd1;
8612 pDst->FPUDP = pSrc->FPUDP;
8613 pDst->DS = pSrc->DS;
8614 pDst->Rsrvd2 = pSrc->Rsrvd2;
8615 }
8616 else
8617 {
8618 pDst->FPUIP = pSrc->FPUIP;
8619 pDst->CS = pSrc->CS;
8620 pDst->Rsrvd1 = 0;
8621 pDst->FPUDP = pSrc->FPUDP;
8622 pDst->DS = pSrc->DS;
8623 pDst->Rsrvd2 = 0;
8624 }
8625
8626 /* XMM registers. */
8627 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8628 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8629 || pVCpu->iem.s.uCpl != 0)
8630 {
8631 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8632 for (uint32_t i = 0; i < cXmmRegs; i++)
8633 pDst->aXMM[i] = pSrc->aXMM[i];
8634 }
8635
8636 if (pDst->FSW & X86_FSW_ES)
8637 Log11(("fxrstor: %04x:%08RX64: loading state with pending FPU exception (FSW=%#x)\n",
8638 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pSrc->FSW));
8639
8640 /*
8641 * Commit the memory.
8642 */
8643 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8644 if (rcStrict != VINF_SUCCESS)
8645 return rcStrict;
8646
8647 iemHlpUsedFpu(pVCpu);
8648 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8649}
8650
8651
8652/**
8653 * Implements 'XSAVE'.
8654 *
8655 * @param iEffSeg The effective segment.
8656 * @param GCPtrEff The address of the image.
8657 * @param enmEffOpSize The operand size (only REX.W really matters).
8658 */
8659IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8660{
8661 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8662
8663 /*
8664 * Raise exceptions.
8665 */
8666 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8667 return iemRaiseUndefinedOpcode(pVCpu);
8668 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8669 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8670 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8671 {
8672 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8673 return iemRaiseUndefinedOpcode(pVCpu);
8674 }
8675 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8676 return iemRaiseDeviceNotAvailable(pVCpu);
8677
8678 /*
8679 * Calc the requested mask.
8680 */
8681 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8682 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8683 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8684
8685/** @todo figure out the exact protocol for the memory access. Currently we
8686 * just need this crap to work halfways to make it possible to test
8687 * AVX instructions. */
8688/** @todo figure out the XINUSE and XMODIFIED */
8689
8690 /*
8691 * Access the x87 memory state.
8692 */
8693 /* The x87+SSE state. */
8694 void *pvMem512;
8695 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE,
8696 63 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8697 if (rcStrict != VINF_SUCCESS)
8698 return rcStrict;
8699 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8700 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8701
8702 /* The header. */
8703 PX86XSAVEHDR pHdr;
8704 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW, 0 /* checked above */);
8705 if (rcStrict != VINF_SUCCESS)
8706 return rcStrict;
8707
8708 /*
8709 * Store the X87 state.
8710 */
8711 if (fReqComponents & XSAVE_C_X87)
8712 {
8713 /* common for all formats */
8714 pDst->FCW = pSrc->FCW;
8715 pDst->FSW = pSrc->FSW;
8716 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8717 pDst->FOP = pSrc->FOP;
8718 pDst->FPUIP = pSrc->FPUIP;
8719 pDst->CS = pSrc->CS;
8720 pDst->FPUDP = pSrc->FPUDP;
8721 pDst->DS = pSrc->DS;
8722 if (enmEffOpSize == IEMMODE_64BIT)
8723 {
8724 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8725 pDst->Rsrvd1 = pSrc->Rsrvd1;
8726 pDst->Rsrvd2 = pSrc->Rsrvd2;
8727 }
8728 else
8729 {
8730 pDst->Rsrvd1 = 0;
8731 pDst->Rsrvd2 = 0;
8732 }
8733 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8734 {
8735 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8736 * them for now... */
8737 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8738 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8739 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8740 pDst->aRegs[i].au32[3] = 0;
8741 }
8742
8743 }
8744
8745 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8746 {
8747 pDst->MXCSR = pSrc->MXCSR;
8748 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8749 }
8750
8751 if (fReqComponents & XSAVE_C_SSE)
8752 {
8753 /* XMM registers. */
8754 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8755 for (uint32_t i = 0; i < cXmmRegs; i++)
8756 pDst->aXMM[i] = pSrc->aXMM[i];
8757 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8758 * right? */
8759 }
8760
8761 /* Commit the x87 state bits. (probably wrong) */
8762 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8763 if (rcStrict != VINF_SUCCESS)
8764 return rcStrict;
8765
8766 /*
8767 * Store AVX state.
8768 */
8769 if (fReqComponents & XSAVE_C_YMM)
8770 {
8771 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8772 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8773 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8774 PX86XSAVEYMMHI pCompDst;
8775 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8776 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE, 0 /* checked above */);
8777 if (rcStrict != VINF_SUCCESS)
8778 return rcStrict;
8779
8780 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8781 for (uint32_t i = 0; i < cXmmRegs; i++)
8782 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8783
8784 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8785 if (rcStrict != VINF_SUCCESS)
8786 return rcStrict;
8787 }
8788
8789 /*
8790 * Update the header.
8791 */
8792 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8793 | (fReqComponents & fXInUse);
8794
8795 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8796 if (rcStrict != VINF_SUCCESS)
8797 return rcStrict;
8798
8799 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8800}
8801
8802
8803/**
8804 * Implements 'XRSTOR'.
8805 *
8806 * @param iEffSeg The effective segment.
8807 * @param GCPtrEff The address of the image.
8808 * @param enmEffOpSize The operand size (only REX.W really matters).
8809 */
8810IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8811{
8812 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8813
8814 /*
8815 * Raise exceptions.
8816 */
8817 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8818 return iemRaiseUndefinedOpcode(pVCpu);
8819 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8820 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8821 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8822 {
8823 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8824 return iemRaiseUndefinedOpcode(pVCpu);
8825 }
8826 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8827 return iemRaiseDeviceNotAvailable(pVCpu);
8828 if (GCPtrEff & 63)
8829 {
8830 /** @todo CPU/VM detection possible! \#AC might not be signal for
8831 * all/any misalignment sizes, intel says its an implementation detail. */
8832 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8833 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8834 && pVCpu->iem.s.uCpl == 3)
8835 return iemRaiseAlignmentCheckException(pVCpu);
8836 return iemRaiseGeneralProtectionFault0(pVCpu);
8837 }
8838
8839/** @todo figure out the exact protocol for the memory access. Currently we
8840 * just need this crap to work halfways to make it possible to test
8841 * AVX instructions. */
8842/** @todo figure out the XINUSE and XMODIFIED */
8843
8844 /*
8845 * Access the x87 memory state.
8846 */
8847 /* The x87+SSE state. */
8848 void *pvMem512;
8849 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R,
8850 63 | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_GP_OR_AC);
8851 if (rcStrict != VINF_SUCCESS)
8852 return rcStrict;
8853 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8854 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8855
8856 /*
8857 * Calc the requested mask
8858 */
8859 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.XState.Hdr;
8860 PCX86XSAVEHDR pHdrSrc;
8861 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512,
8862 IEM_ACCESS_DATA_R, 0 /* checked above */);
8863 if (rcStrict != VINF_SUCCESS)
8864 return rcStrict;
8865
8866 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8867 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8868 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8869 uint64_t const fRstorMask = pHdrSrc->bmXState;
8870 uint64_t const fCompMask = pHdrSrc->bmXComp;
8871
8872 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8873
8874 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8875
8876 /* We won't need this any longer. */
8877 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8878 if (rcStrict != VINF_SUCCESS)
8879 return rcStrict;
8880
8881 /*
8882 * Store the X87 state.
8883 */
8884 if (fReqComponents & XSAVE_C_X87)
8885 {
8886 if (fRstorMask & XSAVE_C_X87)
8887 {
8888 pDst->FCW = pSrc->FCW;
8889 pDst->FSW = pSrc->FSW;
8890 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8891 pDst->FOP = pSrc->FOP;
8892 pDst->FPUIP = pSrc->FPUIP;
8893 pDst->CS = pSrc->CS;
8894 pDst->FPUDP = pSrc->FPUDP;
8895 pDst->DS = pSrc->DS;
8896 if (enmEffOpSize == IEMMODE_64BIT)
8897 {
8898 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8899 pDst->Rsrvd1 = pSrc->Rsrvd1;
8900 pDst->Rsrvd2 = pSrc->Rsrvd2;
8901 }
8902 else
8903 {
8904 pDst->Rsrvd1 = 0;
8905 pDst->Rsrvd2 = 0;
8906 }
8907 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8908 {
8909 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8910 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8911 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8912 pDst->aRegs[i].au32[3] = 0;
8913 }
8914 if (pDst->FSW & X86_FSW_ES)
8915 Log11(("xrstor: %04x:%08RX64: loading state with pending FPU exception (FSW=%#x)\n",
8916 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pSrc->FSW));
8917 }
8918 else
8919 {
8920 pDst->FCW = 0x37f;
8921 pDst->FSW = 0;
8922 pDst->FTW = 0x00; /* 0 - empty. */
8923 pDst->FPUDP = 0;
8924 pDst->DS = 0; //??
8925 pDst->Rsrvd2= 0;
8926 pDst->FPUIP = 0;
8927 pDst->CS = 0; //??
8928 pDst->Rsrvd1= 0;
8929 pDst->FOP = 0;
8930 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8931 {
8932 pDst->aRegs[i].au32[0] = 0;
8933 pDst->aRegs[i].au32[1] = 0;
8934 pDst->aRegs[i].au32[2] = 0;
8935 pDst->aRegs[i].au32[3] = 0;
8936 }
8937 }
8938 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8939 }
8940
8941 /* MXCSR */
8942 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8943 {
8944 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8945 pDst->MXCSR = pSrc->MXCSR;
8946 else
8947 pDst->MXCSR = 0x1f80;
8948 }
8949
8950 /* XMM registers. */
8951 if (fReqComponents & XSAVE_C_SSE)
8952 {
8953 if (fRstorMask & XSAVE_C_SSE)
8954 {
8955 for (uint32_t i = 0; i < cXmmRegs; i++)
8956 pDst->aXMM[i] = pSrc->aXMM[i];
8957 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8958 * right? */
8959 }
8960 else
8961 {
8962 for (uint32_t i = 0; i < cXmmRegs; i++)
8963 {
8964 pDst->aXMM[i].au64[0] = 0;
8965 pDst->aXMM[i].au64[1] = 0;
8966 }
8967 }
8968 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8969 }
8970
8971 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8972 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8973 if (rcStrict != VINF_SUCCESS)
8974 return rcStrict;
8975
8976 /*
8977 * Restore AVX state.
8978 */
8979 if (fReqComponents & XSAVE_C_YMM)
8980 {
8981 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8982 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8983
8984 if (fRstorMask & XSAVE_C_YMM)
8985 {
8986 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8987 PCX86XSAVEYMMHI pCompSrc;
8988 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8989 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8990 IEM_ACCESS_DATA_R, 0 /* checked above */);
8991 if (rcStrict != VINF_SUCCESS)
8992 return rcStrict;
8993
8994 for (uint32_t i = 0; i < cXmmRegs; i++)
8995 {
8996 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8997 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8998 }
8999
9000 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
9001 if (rcStrict != VINF_SUCCESS)
9002 return rcStrict;
9003 }
9004 else
9005 {
9006 for (uint32_t i = 0; i < cXmmRegs; i++)
9007 {
9008 pCompDst->aYmmHi[i].au64[0] = 0;
9009 pCompDst->aYmmHi[i].au64[1] = 0;
9010 }
9011 }
9012 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
9013 }
9014
9015 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9016}
9017
9018
9019
9020
9021/**
9022 * Implements 'STMXCSR'.
9023 *
9024 * @param iEffSeg The effective segment register for @a GCPtrEff.
9025 * @param GCPtrEff The address of the image.
9026 */
9027IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
9028{
9029 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
9030
9031 /*
9032 * Raise exceptions.
9033 */
9034 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
9035 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
9036 {
9037 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
9038 {
9039 /*
9040 * Do the job.
9041 */
9042 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
9043 if (rcStrict == VINF_SUCCESS)
9044 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9045 return rcStrict;
9046 }
9047 return iemRaiseDeviceNotAvailable(pVCpu);
9048 }
9049 return iemRaiseUndefinedOpcode(pVCpu);
9050}
9051
9052
9053/**
9054 * Implements 'VSTMXCSR'.
9055 *
9056 * @param iEffSeg The effective segment register for @a GCPtrEff.
9057 * @param GCPtrEff The address of the image.
9058 */
9059IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
9060{
9061 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
9062
9063 /*
9064 * Raise exceptions.
9065 */
9066 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
9067 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
9068 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
9069 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
9070 {
9071 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
9072 {
9073 /*
9074 * Do the job.
9075 */
9076 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
9077 if (rcStrict == VINF_SUCCESS)
9078 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9079 return rcStrict;
9080 }
9081 return iemRaiseDeviceNotAvailable(pVCpu);
9082 }
9083 return iemRaiseUndefinedOpcode(pVCpu);
9084}
9085
9086
9087/**
9088 * Implements 'LDMXCSR'.
9089 *
9090 * @param iEffSeg The effective segment register for @a GCPtrEff.
9091 * @param GCPtrEff The address of the image.
9092 */
9093IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
9094{
9095 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
9096
9097 /*
9098 * Raise exceptions.
9099 */
9100 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
9101 * happen after or before \#UD and \#EM? */
9102 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
9103 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
9104 {
9105 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
9106 {
9107 /*
9108 * Do the job.
9109 */
9110 uint32_t fNewMxCsr;
9111 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
9112 if (rcStrict == VINF_SUCCESS)
9113 {
9114 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
9115 if (!(fNewMxCsr & ~fMxCsrMask))
9116 {
9117 pVCpu->cpum.GstCtx.XState.x87.MXCSR = fNewMxCsr;
9118 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9119 }
9120 Log(("ldmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
9121 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
9122 return iemRaiseGeneralProtectionFault0(pVCpu);
9123 }
9124 return rcStrict;
9125 }
9126 return iemRaiseDeviceNotAvailable(pVCpu);
9127 }
9128 return iemRaiseUndefinedOpcode(pVCpu);
9129}
9130
9131
9132/**
9133 * Commmon routine for fnstenv and fnsave.
9134 *
9135 * @param pVCpu The cross context virtual CPU structure of the calling thread.
9136 * @param enmEffOpSize The effective operand size.
9137 * @param uPtr Where to store the state.
9138 */
9139static void iemCImplCommonFpuStoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
9140{
9141 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9142 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.XState.x87;
9143 if (enmEffOpSize == IEMMODE_16BIT)
9144 {
9145 uPtr.pu16[0] = pSrcX87->FCW;
9146 uPtr.pu16[1] = pSrcX87->FSW;
9147 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
9148 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9149 {
9150 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
9151 * protected mode or long mode and we save it in real mode? And vice
9152 * versa? And with 32-bit operand size? I think CPU is storing the
9153 * effective address ((CS << 4) + IP) in the offset register and not
9154 * doing any address calculations here. */
9155 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
9156 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
9157 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
9158 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
9159 }
9160 else
9161 {
9162 uPtr.pu16[3] = pSrcX87->FPUIP;
9163 uPtr.pu16[4] = pSrcX87->CS;
9164 uPtr.pu16[5] = pSrcX87->FPUDP;
9165 uPtr.pu16[6] = pSrcX87->DS;
9166 }
9167 }
9168 else
9169 {
9170 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
9171 uPtr.pu16[0*2] = pSrcX87->FCW;
9172 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
9173 uPtr.pu16[1*2] = pSrcX87->FSW;
9174 uPtr.pu16[1*2+1] = 0xffff;
9175 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
9176 uPtr.pu16[2*2+1] = 0xffff;
9177 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9178 {
9179 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
9180 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
9181 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
9182 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
9183 }
9184 else
9185 {
9186 uPtr.pu32[3] = pSrcX87->FPUIP;
9187 uPtr.pu16[4*2] = pSrcX87->CS;
9188 uPtr.pu16[4*2+1] = pSrcX87->FOP;
9189 uPtr.pu32[5] = pSrcX87->FPUDP;
9190 uPtr.pu16[6*2] = pSrcX87->DS;
9191 uPtr.pu16[6*2+1] = 0xffff;
9192 }
9193 }
9194}
9195
9196
9197/**
9198 * Commmon routine for fldenv and frstor
9199 *
9200 * @param pVCpu The cross context virtual CPU structure of the calling thread.
9201 * @param enmEffOpSize The effective operand size.
9202 * @param uPtr Where to store the state.
9203 */
9204static void iemCImplCommonFpuRestoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
9205{
9206 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9207 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.XState.x87;
9208 if (enmEffOpSize == IEMMODE_16BIT)
9209 {
9210 pDstX87->FCW = uPtr.pu16[0];
9211 pDstX87->FSW = uPtr.pu16[1];
9212 pDstX87->FTW = uPtr.pu16[2];
9213 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9214 {
9215 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
9216 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
9217 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
9218 pDstX87->CS = 0;
9219 pDstX87->Rsrvd1= 0;
9220 pDstX87->DS = 0;
9221 pDstX87->Rsrvd2= 0;
9222 }
9223 else
9224 {
9225 pDstX87->FPUIP = uPtr.pu16[3];
9226 pDstX87->CS = uPtr.pu16[4];
9227 pDstX87->Rsrvd1= 0;
9228 pDstX87->FPUDP = uPtr.pu16[5];
9229 pDstX87->DS = uPtr.pu16[6];
9230 pDstX87->Rsrvd2= 0;
9231 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
9232 }
9233 }
9234 else
9235 {
9236 pDstX87->FCW = uPtr.pu16[0*2];
9237 pDstX87->FSW = uPtr.pu16[1*2];
9238 pDstX87->FTW = uPtr.pu16[2*2];
9239 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9240 {
9241 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
9242 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
9243 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
9244 pDstX87->CS = 0;
9245 pDstX87->Rsrvd1= 0;
9246 pDstX87->DS = 0;
9247 pDstX87->Rsrvd2= 0;
9248 }
9249 else
9250 {
9251 pDstX87->FPUIP = uPtr.pu32[3];
9252 pDstX87->CS = uPtr.pu16[4*2];
9253 pDstX87->Rsrvd1= 0;
9254 pDstX87->FOP = uPtr.pu16[4*2+1];
9255 pDstX87->FPUDP = uPtr.pu32[5];
9256 pDstX87->DS = uPtr.pu16[6*2];
9257 pDstX87->Rsrvd2= 0;
9258 }
9259 }
9260
9261 /* Make adjustments. */
9262 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
9263#ifdef LOG_ENABLED
9264 uint16_t const fOldFsw = pDstX87->FSW;
9265#endif
9266 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
9267 iemFpuRecalcExceptionStatus(pDstX87);
9268#ifdef LOG_ENABLED
9269 if ((pDstX87->FSW & X86_FSW_ES) ^ (fOldFsw & X86_FSW_ES))
9270 Log11(("iemCImplCommonFpuRestoreEnv: %04x:%08RX64: %s FPU exception (FCW=%#x FSW=%#x -> %#x)\n",
9271 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fOldFsw & X86_FSW_ES ? "Supressed" : "Raised",
9272 pDstX87->FCW, fOldFsw, pDstX87->FSW));
9273#endif
9274
9275 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
9276 * exceptions are pending after loading the saved state? */
9277}
9278
9279
9280/**
9281 * Implements 'FNSTENV'.
9282 *
9283 * @param enmEffOpSize The operand size (only REX.W really matters).
9284 * @param iEffSeg The effective segment register for @a GCPtrEffDst.
9285 * @param GCPtrEffDst The address of the image.
9286 */
9287IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9288{
9289 RTPTRUNION uPtr;
9290 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9291 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE,
9292 enmEffOpSize == IEMMODE_16BIT ? 1 : 3 /** @todo ? */);
9293 if (rcStrict != VINF_SUCCESS)
9294 return rcStrict;
9295
9296 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9297
9298 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9299 if (rcStrict != VINF_SUCCESS)
9300 return rcStrict;
9301
9302 /* Mask all math exceptions. Any possibly pending exceptions will be cleared. */
9303 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9304 pFpuCtx->FCW |= X86_FCW_XCPT_MASK;
9305#ifdef LOG_ENABLED
9306 uint16_t fOldFsw = pFpuCtx->FSW;
9307#endif
9308 iemFpuRecalcExceptionStatus(pFpuCtx);
9309#ifdef LOG_ENABLED
9310 if ((pFpuCtx->FSW & X86_FSW_ES) ^ (fOldFsw & X86_FSW_ES))
9311 Log11(("fnstenv: %04x:%08RX64: %s FPU exception (FCW=%#x, FSW %#x -> %#x)\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
9312 fOldFsw & X86_FSW_ES ? "Supressed" : "Raised", pFpuCtx->FCW, fOldFsw, pFpuCtx->FSW));
9313#endif
9314
9315 iemHlpUsedFpu(pVCpu);
9316
9317 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9318 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9319}
9320
9321
9322/**
9323 * Implements 'FNSAVE'.
9324 *
9325 * @param enmEffOpSize The operand size.
9326 * @param iEffSeg The effective segment register for @a GCPtrEffDst.
9327 * @param GCPtrEffDst The address of the image.
9328 */
9329IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9330{
9331 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9332
9333 RTPTRUNION uPtr;
9334 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9335 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE, 3 /** @todo ? */);
9336 if (rcStrict != VINF_SUCCESS)
9337 return rcStrict;
9338
9339 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9340 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9341 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9342 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9343 {
9344 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
9345 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
9346 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
9347 }
9348
9349 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9350 if (rcStrict != VINF_SUCCESS)
9351 return rcStrict;
9352
9353 /* Rotate the stack to account for changed TOS. */
9354 iemFpuRotateStackSetTop(pFpuCtx, 0);
9355
9356 /*
9357 * Re-initialize the FPU context.
9358 */
9359 pFpuCtx->FCW = 0x37f;
9360 pFpuCtx->FSW = 0;
9361 pFpuCtx->FTW = 0x00; /* 0 - empty */
9362 pFpuCtx->FPUDP = 0;
9363 pFpuCtx->DS = 0;
9364 pFpuCtx->Rsrvd2= 0;
9365 pFpuCtx->FPUIP = 0;
9366 pFpuCtx->CS = 0;
9367 pFpuCtx->Rsrvd1= 0;
9368 pFpuCtx->FOP = 0;
9369
9370 iemHlpUsedFpu(pVCpu);
9371 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9372}
9373
9374
9375
9376/**
9377 * Implements 'FLDENV'.
9378 *
9379 * @param enmEffOpSize The operand size (only REX.W really matters).
9380 * @param iEffSeg The effective segment register for @a GCPtrEffSrc.
9381 * @param GCPtrEffSrc The address of the image.
9382 */
9383IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9384{
9385 RTCPTRUNION uPtr;
9386 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9387 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R,
9388 enmEffOpSize == IEMMODE_16BIT ? 1 : 3 /** @todo ?*/);
9389 if (rcStrict != VINF_SUCCESS)
9390 return rcStrict;
9391
9392 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9393
9394 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9395 if (rcStrict != VINF_SUCCESS)
9396 return rcStrict;
9397
9398 iemHlpUsedFpu(pVCpu);
9399 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9400}
9401
9402
9403/**
9404 * Implements 'FRSTOR'.
9405 *
9406 * @param enmEffOpSize The operand size.
9407 * @param iEffSeg The effective segment register for @a GCPtrEffSrc.
9408 * @param GCPtrEffSrc The address of the image.
9409 */
9410IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9411{
9412 RTCPTRUNION uPtr;
9413 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9414 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R, 3 /** @todo ?*/ );
9415 if (rcStrict != VINF_SUCCESS)
9416 return rcStrict;
9417
9418 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9419 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9420 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9421 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9422 {
9423 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
9424 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
9425 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
9426 pFpuCtx->aRegs[i].au32[3] = 0;
9427 }
9428
9429 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9430 if (rcStrict != VINF_SUCCESS)
9431 return rcStrict;
9432
9433 iemHlpUsedFpu(pVCpu);
9434 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9435}
9436
9437
9438/**
9439 * Implements 'FLDCW'.
9440 *
9441 * @param u16Fcw The new FCW.
9442 */
9443IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
9444{
9445 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9446
9447 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
9448 /** @todo Testcase: Try see what happens when trying to set undefined bits
9449 * (other than 6 and 7). Currently ignoring them. */
9450 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
9451 * according to FSW. (This is what is currently implemented.) */
9452 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9453 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
9454#ifdef LOG_ENABLED
9455 uint16_t fOldFsw = pFpuCtx->FSW;
9456#endif
9457 iemFpuRecalcExceptionStatus(pFpuCtx);
9458#ifdef LOG_ENABLED
9459 if ((pFpuCtx->FSW & X86_FSW_ES) ^ (fOldFsw & X86_FSW_ES))
9460 Log11(("fldcw: %04x:%08RX64: %s FPU exception (FCW=%#x, FSW %#x -> %#x)\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
9461 fOldFsw & X86_FSW_ES ? "Supressed" : "Raised", pFpuCtx->FCW, fOldFsw, pFpuCtx->FSW));
9462#endif
9463
9464 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9465 iemHlpUsedFpu(pVCpu);
9466 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9467}
9468
9469
9470
9471/**
9472 * Implements the underflow case of fxch.
9473 *
9474 * @param iStReg The other stack register.
9475 */
9476IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
9477{
9478 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9479
9480 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9481 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
9482 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9483 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
9484
9485 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
9486 * registers are read as QNaN and then exchanged. This could be
9487 * wrong... */
9488 if (pFpuCtx->FCW & X86_FCW_IM)
9489 {
9490 if (RT_BIT(iReg1) & pFpuCtx->FTW)
9491 {
9492 if (RT_BIT(iReg2) & pFpuCtx->FTW)
9493 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9494 else
9495 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
9496 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
9497 }
9498 else
9499 {
9500 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
9501 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9502 }
9503 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9504 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9505 }
9506 else
9507 {
9508 /* raise underflow exception, don't change anything. */
9509 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9510 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9511 Log11(("fxch: %04x:%08RX64: Underflow exception (FSW=%#x)\n",
9512 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
9513 }
9514
9515 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9516 iemHlpUsedFpu(pVCpu);
9517 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9518}
9519
9520
9521/**
9522 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9523 *
9524 * @param iStReg The other stack register.
9525 * @param pfnAImpl The assembly comparison implementation.
9526 * @param fPop Whether we should pop the stack when done or not.
9527 */
9528IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9529{
9530 Assert(iStReg < 8);
9531 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9532
9533 /*
9534 * Raise exceptions.
9535 */
9536 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9537 return iemRaiseDeviceNotAvailable(pVCpu);
9538
9539 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9540 uint16_t u16Fsw = pFpuCtx->FSW;
9541 if (u16Fsw & X86_FSW_ES)
9542 return iemRaiseMathFault(pVCpu);
9543
9544 /*
9545 * Check if any of the register accesses causes #SF + #IA.
9546 */
9547 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9548 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9549 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9550 {
9551 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9552
9553 pFpuCtx->FSW &= ~X86_FSW_C1;
9554 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9555 if ( !(u16Fsw & X86_FSW_IE)
9556 || (pFpuCtx->FCW & X86_FCW_IM) )
9557 {
9558 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9559 pVCpu->cpum.GstCtx.eflags.u |= u32Eflags & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9560 }
9561 }
9562 else if (pFpuCtx->FCW & X86_FCW_IM)
9563 {
9564 /* Masked underflow. */
9565 pFpuCtx->FSW &= ~X86_FSW_C1;
9566 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9567 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9568 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9569 }
9570 else
9571 {
9572 /* Raise underflow - don't touch EFLAGS or TOP. */
9573 pFpuCtx->FSW &= ~X86_FSW_C1;
9574 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9575 Log11(("fxch: %04x:%08RX64: Raising IE+SF exception (FSW=%#x)\n",
9576 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
9577 fPop = false;
9578 }
9579
9580 /*
9581 * Pop if necessary.
9582 */
9583 if (fPop)
9584 {
9585 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9586 iemFpuStackIncTop(pVCpu);
9587 }
9588
9589 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9590 iemHlpUsedFpu(pVCpu);
9591 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9592}
9593
9594/** @} */
9595
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette