1 | /* $Id: IEMAllCImpl.cpp.h 62601 2016-07-27 15:46:22Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Implementation in C/C++ (code include).
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2016 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | /** @name Misc Helpers
|
---|
19 | * @{
|
---|
20 | */
|
---|
21 |
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Worker function for iemHlpCheckPortIOPermission, don't call directly.
|
---|
25 | *
|
---|
26 | * @returns Strict VBox status code.
|
---|
27 | *
|
---|
28 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
29 | * @param pCtx The register context.
|
---|
30 | * @param u16Port The port number.
|
---|
31 | * @param cbOperand The operand size.
|
---|
32 | */
|
---|
33 | static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
|
---|
34 | {
|
---|
35 | /* The TSS bits we're interested in are the same on 386 and AMD64. */
|
---|
36 | AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
37 | AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
|
---|
38 | AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
|
---|
39 | AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
|
---|
40 |
|
---|
41 | /*
|
---|
42 | * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
|
---|
43 | */
|
---|
44 | Assert(!pCtx->tr.Attr.n.u1DescType);
|
---|
45 | if (RT_UNLIKELY( pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
|
---|
46 | && pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
|
---|
47 | {
|
---|
48 | Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
|
---|
49 | u16Port, cbOperand, pCtx->tr.Attr.n.u4Type, pCtx->tr.Attr.u));
|
---|
50 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
51 | }
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * Read the bitmap offset (may #PF).
|
---|
55 | */
|
---|
56 | uint16_t offBitmap;
|
---|
57 | VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
|
---|
58 | pCtx->tr.u64Base + RT_OFFSETOF(X86TSS64, offIoBitmap));
|
---|
59 | if (rcStrict != VINF_SUCCESS)
|
---|
60 | {
|
---|
61 | Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
62 | return rcStrict;
|
---|
63 | }
|
---|
64 |
|
---|
65 | /*
|
---|
66 | * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
|
---|
67 | * describes the CPU actually reading two bytes regardless of whether the
|
---|
68 | * bit range crosses a byte boundrary. Thus the + 1 in the test below.
|
---|
69 | */
|
---|
70 | uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
|
---|
71 | /** @todo check if real CPUs ensures that offBitmap has a minimum value of
|
---|
72 | * for instance sizeof(X86TSS32). */
|
---|
73 | if (offFirstBit + 1 > pCtx->tr.u32Limit) /* the limit is inclusive */
|
---|
74 | {
|
---|
75 | Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
|
---|
76 | offFirstBit, pCtx->tr.u32Limit));
|
---|
77 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
78 | }
|
---|
79 |
|
---|
80 | /*
|
---|
81 | * Read the necessary bits.
|
---|
82 | */
|
---|
83 | /** @todo Test the assertion in the intel manual that the CPU reads two
|
---|
84 | * bytes. The question is how this works wrt to #PF and #GP on the
|
---|
85 | * 2nd byte when it's not required. */
|
---|
86 | uint16_t bmBytes = UINT16_MAX;
|
---|
87 | rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pCtx->tr.u64Base + offFirstBit);
|
---|
88 | if (rcStrict != VINF_SUCCESS)
|
---|
89 | {
|
---|
90 | Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
91 | return rcStrict;
|
---|
92 | }
|
---|
93 |
|
---|
94 | /*
|
---|
95 | * Perform the check.
|
---|
96 | */
|
---|
97 | uint16_t fPortMask = (1 << cbOperand) - 1;
|
---|
98 | bmBytes >>= (u16Port & 7);
|
---|
99 | if (bmBytes & fPortMask)
|
---|
100 | {
|
---|
101 | Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
|
---|
102 | u16Port, cbOperand, bmBytes, fPortMask));
|
---|
103 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
104 | }
|
---|
105 |
|
---|
106 | return VINF_SUCCESS;
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Checks if we are allowed to access the given I/O port, raising the
|
---|
112 | * appropriate exceptions if we aren't (or if the I/O bitmap is not
|
---|
113 | * accessible).
|
---|
114 | *
|
---|
115 | * @returns Strict VBox status code.
|
---|
116 | *
|
---|
117 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
118 | * @param pCtx The register context.
|
---|
119 | * @param u16Port The port number.
|
---|
120 | * @param cbOperand The operand size.
|
---|
121 | */
|
---|
122 | DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
|
---|
123 | {
|
---|
124 | X86EFLAGS Efl;
|
---|
125 | Efl.u = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
126 | if ( (pCtx->cr0 & X86_CR0_PE)
|
---|
127 | && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
|
---|
128 | || Efl.Bits.u1VM) )
|
---|
129 | return iemHlpCheckPortIOPermissionBitmap(pVCpu, pCtx, u16Port, cbOperand);
|
---|
130 | return VINF_SUCCESS;
|
---|
131 | }
|
---|
132 |
|
---|
133 |
|
---|
134 | #if 0
|
---|
135 | /**
|
---|
136 | * Calculates the parity bit.
|
---|
137 | *
|
---|
138 | * @returns true if the bit is set, false if not.
|
---|
139 | * @param u8Result The least significant byte of the result.
|
---|
140 | */
|
---|
141 | static bool iemHlpCalcParityFlag(uint8_t u8Result)
|
---|
142 | {
|
---|
143 | /*
|
---|
144 | * Parity is set if the number of bits in the least significant byte of
|
---|
145 | * the result is even.
|
---|
146 | */
|
---|
147 | uint8_t cBits;
|
---|
148 | cBits = u8Result & 1; /* 0 */
|
---|
149 | u8Result >>= 1;
|
---|
150 | cBits += u8Result & 1;
|
---|
151 | u8Result >>= 1;
|
---|
152 | cBits += u8Result & 1;
|
---|
153 | u8Result >>= 1;
|
---|
154 | cBits += u8Result & 1;
|
---|
155 | u8Result >>= 1;
|
---|
156 | cBits += u8Result & 1; /* 4 */
|
---|
157 | u8Result >>= 1;
|
---|
158 | cBits += u8Result & 1;
|
---|
159 | u8Result >>= 1;
|
---|
160 | cBits += u8Result & 1;
|
---|
161 | u8Result >>= 1;
|
---|
162 | cBits += u8Result & 1;
|
---|
163 | return !(cBits & 1);
|
---|
164 | }
|
---|
165 | #endif /* not used */
|
---|
166 |
|
---|
167 |
|
---|
168 | /**
|
---|
169 | * Updates the specified flags according to a 8-bit result.
|
---|
170 | *
|
---|
171 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
172 | * @param u8Result The result to set the flags according to.
|
---|
173 | * @param fToUpdate The flags to update.
|
---|
174 | * @param fUndefined The flags that are specified as undefined.
|
---|
175 | */
|
---|
176 | static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
|
---|
177 | {
|
---|
178 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
179 |
|
---|
180 | uint32_t fEFlags = pCtx->eflags.u;
|
---|
181 | iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
|
---|
182 | pCtx->eflags.u &= ~(fToUpdate | fUndefined);
|
---|
183 | pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags;
|
---|
184 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
185 | pVCpu->iem.s.fUndefinedEFlags |= fUndefined;
|
---|
186 | #endif
|
---|
187 | }
|
---|
188 |
|
---|
189 |
|
---|
190 | /**
|
---|
191 | * Helper used by iret.
|
---|
192 | *
|
---|
193 | * @param uCpl The new CPL.
|
---|
194 | * @param pSReg Pointer to the segment register.
|
---|
195 | */
|
---|
196 | static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
|
---|
197 | {
|
---|
198 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
199 | if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
|
---|
200 | CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
|
---|
201 | #else
|
---|
202 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
203 | #endif
|
---|
204 |
|
---|
205 | if ( uCpl > pSReg->Attr.n.u2Dpl
|
---|
206 | && pSReg->Attr.n.u1DescType /* code or data, not system */
|
---|
207 | && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
208 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
|
---|
209 | iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
|
---|
210 | }
|
---|
211 |
|
---|
212 |
|
---|
213 | /**
|
---|
214 | * Indicates that we have modified the FPU state.
|
---|
215 | *
|
---|
216 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
217 | */
|
---|
218 | DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu)
|
---|
219 | {
|
---|
220 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
221 | }
|
---|
222 |
|
---|
223 | /** @} */
|
---|
224 |
|
---|
225 | /** @name C Implementations
|
---|
226 | * @{
|
---|
227 | */
|
---|
228 |
|
---|
229 | /**
|
---|
230 | * Implements a 16-bit popa.
|
---|
231 | */
|
---|
232 | IEM_CIMPL_DEF_0(iemCImpl_popa_16)
|
---|
233 | {
|
---|
234 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
235 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
236 | RTGCPTR GCPtrLast = GCPtrStart + 15;
|
---|
237 | VBOXSTRICTRC rcStrict;
|
---|
238 |
|
---|
239 | /*
|
---|
240 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
241 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
242 | * end of the stack segment. In protected mode we check the whole access
|
---|
243 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
244 | * danger of wrapping around.
|
---|
245 | */
|
---|
246 | /** @todo do popa boundary / wrap-around checks. */
|
---|
247 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
|
---|
248 | && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
249 | {
|
---|
250 | /* word-by-word */
|
---|
251 | RTUINT64U TmpRsp;
|
---|
252 | TmpRsp.u = pCtx->rsp;
|
---|
253 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->di, &TmpRsp);
|
---|
254 | if (rcStrict == VINF_SUCCESS)
|
---|
255 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->si, &TmpRsp);
|
---|
256 | if (rcStrict == VINF_SUCCESS)
|
---|
257 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->bp, &TmpRsp);
|
---|
258 | if (rcStrict == VINF_SUCCESS)
|
---|
259 | {
|
---|
260 | iemRegAddToRspEx(pVCpu, pCtx, &TmpRsp, 2); /* sp */
|
---|
261 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->bx, &TmpRsp);
|
---|
262 | }
|
---|
263 | if (rcStrict == VINF_SUCCESS)
|
---|
264 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->dx, &TmpRsp);
|
---|
265 | if (rcStrict == VINF_SUCCESS)
|
---|
266 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->cx, &TmpRsp);
|
---|
267 | if (rcStrict == VINF_SUCCESS)
|
---|
268 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->ax, &TmpRsp);
|
---|
269 | if (rcStrict == VINF_SUCCESS)
|
---|
270 | {
|
---|
271 | pCtx->rsp = TmpRsp.u;
|
---|
272 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
273 | }
|
---|
274 | }
|
---|
275 | else
|
---|
276 | {
|
---|
277 | uint16_t const *pa16Mem = NULL;
|
---|
278 | rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
279 | if (rcStrict == VINF_SUCCESS)
|
---|
280 | {
|
---|
281 | pCtx->di = pa16Mem[7 - X86_GREG_xDI];
|
---|
282 | pCtx->si = pa16Mem[7 - X86_GREG_xSI];
|
---|
283 | pCtx->bp = pa16Mem[7 - X86_GREG_xBP];
|
---|
284 | /* skip sp */
|
---|
285 | pCtx->bx = pa16Mem[7 - X86_GREG_xBX];
|
---|
286 | pCtx->dx = pa16Mem[7 - X86_GREG_xDX];
|
---|
287 | pCtx->cx = pa16Mem[7 - X86_GREG_xCX];
|
---|
288 | pCtx->ax = pa16Mem[7 - X86_GREG_xAX];
|
---|
289 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
|
---|
290 | if (rcStrict == VINF_SUCCESS)
|
---|
291 | {
|
---|
292 | iemRegAddToRsp(pVCpu, pCtx, 16);
|
---|
293 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
294 | }
|
---|
295 | }
|
---|
296 | }
|
---|
297 | return rcStrict;
|
---|
298 | }
|
---|
299 |
|
---|
300 |
|
---|
301 | /**
|
---|
302 | * Implements a 32-bit popa.
|
---|
303 | */
|
---|
304 | IEM_CIMPL_DEF_0(iemCImpl_popa_32)
|
---|
305 | {
|
---|
306 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
307 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
308 | RTGCPTR GCPtrLast = GCPtrStart + 31;
|
---|
309 | VBOXSTRICTRC rcStrict;
|
---|
310 |
|
---|
311 | /*
|
---|
312 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
313 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
314 | * end of the stack segment. In protected mode we check the whole access
|
---|
315 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
316 | * danger of wrapping around.
|
---|
317 | */
|
---|
318 | /** @todo do popa boundary / wrap-around checks. */
|
---|
319 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
|
---|
320 | && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
321 | {
|
---|
322 | /* word-by-word */
|
---|
323 | RTUINT64U TmpRsp;
|
---|
324 | TmpRsp.u = pCtx->rsp;
|
---|
325 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->edi, &TmpRsp);
|
---|
326 | if (rcStrict == VINF_SUCCESS)
|
---|
327 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->esi, &TmpRsp);
|
---|
328 | if (rcStrict == VINF_SUCCESS)
|
---|
329 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ebp, &TmpRsp);
|
---|
330 | if (rcStrict == VINF_SUCCESS)
|
---|
331 | {
|
---|
332 | iemRegAddToRspEx(pVCpu, pCtx, &TmpRsp, 2); /* sp */
|
---|
333 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ebx, &TmpRsp);
|
---|
334 | }
|
---|
335 | if (rcStrict == VINF_SUCCESS)
|
---|
336 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->edx, &TmpRsp);
|
---|
337 | if (rcStrict == VINF_SUCCESS)
|
---|
338 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ecx, &TmpRsp);
|
---|
339 | if (rcStrict == VINF_SUCCESS)
|
---|
340 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->eax, &TmpRsp);
|
---|
341 | if (rcStrict == VINF_SUCCESS)
|
---|
342 | {
|
---|
343 | #if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
|
---|
344 | pCtx->rdi &= UINT32_MAX;
|
---|
345 | pCtx->rsi &= UINT32_MAX;
|
---|
346 | pCtx->rbp &= UINT32_MAX;
|
---|
347 | pCtx->rbx &= UINT32_MAX;
|
---|
348 | pCtx->rdx &= UINT32_MAX;
|
---|
349 | pCtx->rcx &= UINT32_MAX;
|
---|
350 | pCtx->rax &= UINT32_MAX;
|
---|
351 | #endif
|
---|
352 | pCtx->rsp = TmpRsp.u;
|
---|
353 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
354 | }
|
---|
355 | }
|
---|
356 | else
|
---|
357 | {
|
---|
358 | uint32_t const *pa32Mem;
|
---|
359 | rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
360 | if (rcStrict == VINF_SUCCESS)
|
---|
361 | {
|
---|
362 | pCtx->rdi = pa32Mem[7 - X86_GREG_xDI];
|
---|
363 | pCtx->rsi = pa32Mem[7 - X86_GREG_xSI];
|
---|
364 | pCtx->rbp = pa32Mem[7 - X86_GREG_xBP];
|
---|
365 | /* skip esp */
|
---|
366 | pCtx->rbx = pa32Mem[7 - X86_GREG_xBX];
|
---|
367 | pCtx->rdx = pa32Mem[7 - X86_GREG_xDX];
|
---|
368 | pCtx->rcx = pa32Mem[7 - X86_GREG_xCX];
|
---|
369 | pCtx->rax = pa32Mem[7 - X86_GREG_xAX];
|
---|
370 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
|
---|
371 | if (rcStrict == VINF_SUCCESS)
|
---|
372 | {
|
---|
373 | iemRegAddToRsp(pVCpu, pCtx, 32);
|
---|
374 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
375 | }
|
---|
376 | }
|
---|
377 | }
|
---|
378 | return rcStrict;
|
---|
379 | }
|
---|
380 |
|
---|
381 |
|
---|
382 | /**
|
---|
383 | * Implements a 16-bit pusha.
|
---|
384 | */
|
---|
385 | IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
|
---|
386 | {
|
---|
387 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
388 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
389 | RTGCPTR GCPtrBottom = GCPtrTop - 15;
|
---|
390 | VBOXSTRICTRC rcStrict;
|
---|
391 |
|
---|
392 | /*
|
---|
393 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
394 | * around in real mode as long as none of the individual "pushd" crosses the
|
---|
395 | * end of the stack segment. In protected mode we check the whole access
|
---|
396 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
397 | * danger of wrapping around.
|
---|
398 | */
|
---|
399 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
400 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
401 | && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
|
---|
402 | {
|
---|
403 | /* word-by-word */
|
---|
404 | RTUINT64U TmpRsp;
|
---|
405 | TmpRsp.u = pCtx->rsp;
|
---|
406 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->ax, &TmpRsp);
|
---|
407 | if (rcStrict == VINF_SUCCESS)
|
---|
408 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->cx, &TmpRsp);
|
---|
409 | if (rcStrict == VINF_SUCCESS)
|
---|
410 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->dx, &TmpRsp);
|
---|
411 | if (rcStrict == VINF_SUCCESS)
|
---|
412 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->bx, &TmpRsp);
|
---|
413 | if (rcStrict == VINF_SUCCESS)
|
---|
414 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->sp, &TmpRsp);
|
---|
415 | if (rcStrict == VINF_SUCCESS)
|
---|
416 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->bp, &TmpRsp);
|
---|
417 | if (rcStrict == VINF_SUCCESS)
|
---|
418 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->si, &TmpRsp);
|
---|
419 | if (rcStrict == VINF_SUCCESS)
|
---|
420 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->di, &TmpRsp);
|
---|
421 | if (rcStrict == VINF_SUCCESS)
|
---|
422 | {
|
---|
423 | pCtx->rsp = TmpRsp.u;
|
---|
424 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
425 | }
|
---|
426 | }
|
---|
427 | else
|
---|
428 | {
|
---|
429 | GCPtrBottom--;
|
---|
430 | uint16_t *pa16Mem = NULL;
|
---|
431 | rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
432 | if (rcStrict == VINF_SUCCESS)
|
---|
433 | {
|
---|
434 | pa16Mem[7 - X86_GREG_xDI] = pCtx->di;
|
---|
435 | pa16Mem[7 - X86_GREG_xSI] = pCtx->si;
|
---|
436 | pa16Mem[7 - X86_GREG_xBP] = pCtx->bp;
|
---|
437 | pa16Mem[7 - X86_GREG_xSP] = pCtx->sp;
|
---|
438 | pa16Mem[7 - X86_GREG_xBX] = pCtx->bx;
|
---|
439 | pa16Mem[7 - X86_GREG_xDX] = pCtx->dx;
|
---|
440 | pa16Mem[7 - X86_GREG_xCX] = pCtx->cx;
|
---|
441 | pa16Mem[7 - X86_GREG_xAX] = pCtx->ax;
|
---|
442 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
|
---|
443 | if (rcStrict == VINF_SUCCESS)
|
---|
444 | {
|
---|
445 | iemRegSubFromRsp(pVCpu, pCtx, 16);
|
---|
446 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
447 | }
|
---|
448 | }
|
---|
449 | }
|
---|
450 | return rcStrict;
|
---|
451 | }
|
---|
452 |
|
---|
453 |
|
---|
454 | /**
|
---|
455 | * Implements a 32-bit pusha.
|
---|
456 | */
|
---|
457 | IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
|
---|
458 | {
|
---|
459 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
460 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
461 | RTGCPTR GCPtrBottom = GCPtrTop - 31;
|
---|
462 | VBOXSTRICTRC rcStrict;
|
---|
463 |
|
---|
464 | /*
|
---|
465 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
466 | * around in real mode as long as none of the individual "pusha" crosses the
|
---|
467 | * end of the stack segment. In protected mode we check the whole access
|
---|
468 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
469 | * danger of wrapping around.
|
---|
470 | */
|
---|
471 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
472 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
473 | && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
|
---|
474 | {
|
---|
475 | /* word-by-word */
|
---|
476 | RTUINT64U TmpRsp;
|
---|
477 | TmpRsp.u = pCtx->rsp;
|
---|
478 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->eax, &TmpRsp);
|
---|
479 | if (rcStrict == VINF_SUCCESS)
|
---|
480 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ecx, &TmpRsp);
|
---|
481 | if (rcStrict == VINF_SUCCESS)
|
---|
482 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->edx, &TmpRsp);
|
---|
483 | if (rcStrict == VINF_SUCCESS)
|
---|
484 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ebx, &TmpRsp);
|
---|
485 | if (rcStrict == VINF_SUCCESS)
|
---|
486 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->esp, &TmpRsp);
|
---|
487 | if (rcStrict == VINF_SUCCESS)
|
---|
488 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ebp, &TmpRsp);
|
---|
489 | if (rcStrict == VINF_SUCCESS)
|
---|
490 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->esi, &TmpRsp);
|
---|
491 | if (rcStrict == VINF_SUCCESS)
|
---|
492 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->edi, &TmpRsp);
|
---|
493 | if (rcStrict == VINF_SUCCESS)
|
---|
494 | {
|
---|
495 | pCtx->rsp = TmpRsp.u;
|
---|
496 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
497 | }
|
---|
498 | }
|
---|
499 | else
|
---|
500 | {
|
---|
501 | GCPtrBottom--;
|
---|
502 | uint32_t *pa32Mem;
|
---|
503 | rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
504 | if (rcStrict == VINF_SUCCESS)
|
---|
505 | {
|
---|
506 | pa32Mem[7 - X86_GREG_xDI] = pCtx->edi;
|
---|
507 | pa32Mem[7 - X86_GREG_xSI] = pCtx->esi;
|
---|
508 | pa32Mem[7 - X86_GREG_xBP] = pCtx->ebp;
|
---|
509 | pa32Mem[7 - X86_GREG_xSP] = pCtx->esp;
|
---|
510 | pa32Mem[7 - X86_GREG_xBX] = pCtx->ebx;
|
---|
511 | pa32Mem[7 - X86_GREG_xDX] = pCtx->edx;
|
---|
512 | pa32Mem[7 - X86_GREG_xCX] = pCtx->ecx;
|
---|
513 | pa32Mem[7 - X86_GREG_xAX] = pCtx->eax;
|
---|
514 | rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
|
---|
515 | if (rcStrict == VINF_SUCCESS)
|
---|
516 | {
|
---|
517 | iemRegSubFromRsp(pVCpu, pCtx, 32);
|
---|
518 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
519 | }
|
---|
520 | }
|
---|
521 | }
|
---|
522 | return rcStrict;
|
---|
523 | }
|
---|
524 |
|
---|
525 |
|
---|
526 | /**
|
---|
527 | * Implements pushf.
|
---|
528 | *
|
---|
529 | *
|
---|
530 | * @param enmEffOpSize The effective operand size.
|
---|
531 | */
|
---|
532 | IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
|
---|
533 | {
|
---|
534 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
535 |
|
---|
536 | /*
|
---|
537 | * If we're in V8086 mode some care is required (which is why we're in
|
---|
538 | * doing this in a C implementation).
|
---|
539 | */
|
---|
540 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
541 | if ( (fEfl & X86_EFL_VM)
|
---|
542 | && X86_EFL_GET_IOPL(fEfl) != 3 )
|
---|
543 | {
|
---|
544 | Assert(pCtx->cr0 & X86_CR0_PE);
|
---|
545 | if ( enmEffOpSize != IEMMODE_16BIT
|
---|
546 | || !(pCtx->cr4 & X86_CR4_VME))
|
---|
547 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
548 | fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
|
---|
549 | fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
|
---|
550 | return iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
|
---|
551 | }
|
---|
552 |
|
---|
553 | /*
|
---|
554 | * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
|
---|
555 | */
|
---|
556 | fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
|
---|
557 |
|
---|
558 | VBOXSTRICTRC rcStrict;
|
---|
559 | switch (enmEffOpSize)
|
---|
560 | {
|
---|
561 | case IEMMODE_16BIT:
|
---|
562 | AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
|
---|
563 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
|
---|
564 | fEfl |= UINT16_C(0xf000);
|
---|
565 | rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
|
---|
566 | break;
|
---|
567 | case IEMMODE_32BIT:
|
---|
568 | rcStrict = iemMemStackPushU32(pVCpu, fEfl);
|
---|
569 | break;
|
---|
570 | case IEMMODE_64BIT:
|
---|
571 | rcStrict = iemMemStackPushU64(pVCpu, fEfl);
|
---|
572 | break;
|
---|
573 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
574 | }
|
---|
575 | if (rcStrict != VINF_SUCCESS)
|
---|
576 | return rcStrict;
|
---|
577 |
|
---|
578 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
579 | return VINF_SUCCESS;
|
---|
580 | }
|
---|
581 |
|
---|
582 |
|
---|
583 | /**
|
---|
584 | * Implements popf.
|
---|
585 | *
|
---|
586 | * @param enmEffOpSize The effective operand size.
|
---|
587 | */
|
---|
588 | IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
|
---|
589 | {
|
---|
590 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
591 | uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
592 | VBOXSTRICTRC rcStrict;
|
---|
593 | uint32_t fEflNew;
|
---|
594 |
|
---|
595 | /*
|
---|
596 | * V8086 is special as usual.
|
---|
597 | */
|
---|
598 | if (fEflOld & X86_EFL_VM)
|
---|
599 | {
|
---|
600 | /*
|
---|
601 | * Almost anything goes if IOPL is 3.
|
---|
602 | */
|
---|
603 | if (X86_EFL_GET_IOPL(fEflOld) == 3)
|
---|
604 | {
|
---|
605 | switch (enmEffOpSize)
|
---|
606 | {
|
---|
607 | case IEMMODE_16BIT:
|
---|
608 | {
|
---|
609 | uint16_t u16Value;
|
---|
610 | rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
|
---|
611 | if (rcStrict != VINF_SUCCESS)
|
---|
612 | return rcStrict;
|
---|
613 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
614 | break;
|
---|
615 | }
|
---|
616 | case IEMMODE_32BIT:
|
---|
617 | rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
|
---|
618 | if (rcStrict != VINF_SUCCESS)
|
---|
619 | return rcStrict;
|
---|
620 | break;
|
---|
621 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
622 | }
|
---|
623 |
|
---|
624 | const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
|
---|
625 | ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
|
---|
626 | fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
|
---|
627 | fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
628 | }
|
---|
629 | /*
|
---|
630 | * Interrupt flag virtualization with CR4.VME=1.
|
---|
631 | */
|
---|
632 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
633 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
634 | {
|
---|
635 | uint16_t u16Value;
|
---|
636 | RTUINT64U TmpRsp;
|
---|
637 | TmpRsp.u = pCtx->rsp;
|
---|
638 | rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
|
---|
639 | if (rcStrict != VINF_SUCCESS)
|
---|
640 | return rcStrict;
|
---|
641 |
|
---|
642 | /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
|
---|
643 | * or before? */
|
---|
644 | if ( ( (u16Value & X86_EFL_IF)
|
---|
645 | && (fEflOld & X86_EFL_VIP))
|
---|
646 | || (u16Value & X86_EFL_TF) )
|
---|
647 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
648 |
|
---|
649 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
|
---|
650 | fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
|
---|
651 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
652 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
653 |
|
---|
654 | pCtx->rsp = TmpRsp.u;
|
---|
655 | }
|
---|
656 | else
|
---|
657 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
658 |
|
---|
659 | }
|
---|
660 | /*
|
---|
661 | * Not in V8086 mode.
|
---|
662 | */
|
---|
663 | else
|
---|
664 | {
|
---|
665 | /* Pop the flags. */
|
---|
666 | switch (enmEffOpSize)
|
---|
667 | {
|
---|
668 | case IEMMODE_16BIT:
|
---|
669 | {
|
---|
670 | uint16_t u16Value;
|
---|
671 | rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
|
---|
672 | if (rcStrict != VINF_SUCCESS)
|
---|
673 | return rcStrict;
|
---|
674 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
675 |
|
---|
676 | /*
|
---|
677 | * Ancient CPU adjustments:
|
---|
678 | * - 8086, 80186, V20/30:
|
---|
679 | * Fixed bits 15:12 bits are not kept correctly internally, mostly for
|
---|
680 | * practical reasons (masking below). We add them when pushing flags.
|
---|
681 | * - 80286:
|
---|
682 | * The NT and IOPL flags cannot be popped from real mode and are
|
---|
683 | * therefore always zero (since a 286 can never exit from PM and
|
---|
684 | * their initial value is zero). This changed on a 386 and can
|
---|
685 | * therefore be used to detect 286 or 386 CPU in real mode.
|
---|
686 | */
|
---|
687 | if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
|
---|
688 | && !(pCtx->cr0 & X86_CR0_PE) )
|
---|
689 | fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
|
---|
690 | break;
|
---|
691 | }
|
---|
692 | case IEMMODE_32BIT:
|
---|
693 | rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
|
---|
694 | if (rcStrict != VINF_SUCCESS)
|
---|
695 | return rcStrict;
|
---|
696 | break;
|
---|
697 | case IEMMODE_64BIT:
|
---|
698 | {
|
---|
699 | uint64_t u64Value;
|
---|
700 | rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
|
---|
701 | if (rcStrict != VINF_SUCCESS)
|
---|
702 | return rcStrict;
|
---|
703 | fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
|
---|
704 | break;
|
---|
705 | }
|
---|
706 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
707 | }
|
---|
708 |
|
---|
709 | /* Merge them with the current flags. */
|
---|
710 | const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
|
---|
711 | ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
|
---|
712 | if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
|
---|
713 | || pVCpu->iem.s.uCpl == 0)
|
---|
714 | {
|
---|
715 | fEflNew &= fPopfBits;
|
---|
716 | fEflNew |= ~fPopfBits & fEflOld;
|
---|
717 | }
|
---|
718 | else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
|
---|
719 | {
|
---|
720 | fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
|
---|
721 | fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
722 | }
|
---|
723 | else
|
---|
724 | {
|
---|
725 | fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
726 | fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
727 | }
|
---|
728 | }
|
---|
729 |
|
---|
730 | /*
|
---|
731 | * Commit the flags.
|
---|
732 | */
|
---|
733 | Assert(fEflNew & RT_BIT_32(1));
|
---|
734 | IEMMISC_SET_EFL(pVCpu, pCtx, fEflNew);
|
---|
735 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
736 |
|
---|
737 | return VINF_SUCCESS;
|
---|
738 | }
|
---|
739 |
|
---|
740 |
|
---|
741 | /**
|
---|
742 | * Implements an indirect call.
|
---|
743 | *
|
---|
744 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
745 | * operand).
|
---|
746 | * @param enmEffOpSize The effective operand size.
|
---|
747 | */
|
---|
748 | IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
|
---|
749 | {
|
---|
750 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
751 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
752 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
753 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
754 |
|
---|
755 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
|
---|
756 | if (rcStrict != VINF_SUCCESS)
|
---|
757 | return rcStrict;
|
---|
758 |
|
---|
759 | pCtx->rip = uNewPC;
|
---|
760 | pCtx->eflags.Bits.u1RF = 0;
|
---|
761 |
|
---|
762 | #ifndef IEM_WITH_CODE_TLB
|
---|
763 | /* Flush the prefetch buffer. */
|
---|
764 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
765 | #endif
|
---|
766 | return VINF_SUCCESS;
|
---|
767 | }
|
---|
768 |
|
---|
769 |
|
---|
770 | /**
|
---|
771 | * Implements a 16-bit relative call.
|
---|
772 | *
|
---|
773 | * @param offDisp The displacment offset.
|
---|
774 | */
|
---|
775 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
|
---|
776 | {
|
---|
777 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
778 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
779 | uint16_t uNewPC = uOldPC + offDisp;
|
---|
780 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
781 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
782 |
|
---|
783 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
|
---|
784 | if (rcStrict != VINF_SUCCESS)
|
---|
785 | return rcStrict;
|
---|
786 |
|
---|
787 | pCtx->rip = uNewPC;
|
---|
788 | pCtx->eflags.Bits.u1RF = 0;
|
---|
789 |
|
---|
790 | #ifndef IEM_WITH_CODE_TLB
|
---|
791 | /* Flush the prefetch buffer. */
|
---|
792 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
793 | #endif
|
---|
794 | return VINF_SUCCESS;
|
---|
795 | }
|
---|
796 |
|
---|
797 |
|
---|
798 | /**
|
---|
799 | * Implements a 32-bit indirect call.
|
---|
800 | *
|
---|
801 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
802 | * operand).
|
---|
803 | * @param enmEffOpSize The effective operand size.
|
---|
804 | */
|
---|
805 | IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
|
---|
806 | {
|
---|
807 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
808 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
809 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
810 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
811 |
|
---|
812 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
|
---|
813 | if (rcStrict != VINF_SUCCESS)
|
---|
814 | return rcStrict;
|
---|
815 |
|
---|
816 | #if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
|
---|
817 | /*
|
---|
818 | * CASM hook for recording interesting indirect calls.
|
---|
819 | */
|
---|
820 | if ( !pCtx->eflags.Bits.u1IF
|
---|
821 | && (pCtx->cr0 & X86_CR0_PG)
|
---|
822 | && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM))
|
---|
823 | && pVCpu->iem.s.uCpl == 0)
|
---|
824 | {
|
---|
825 | EMSTATE enmState = EMGetState(pVCpu);
|
---|
826 | if ( enmState == EMSTATE_IEM_THEN_REM
|
---|
827 | || enmState == EMSTATE_IEM
|
---|
828 | || enmState == EMSTATE_REM)
|
---|
829 | CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pCtx->eip);
|
---|
830 | }
|
---|
831 | #endif
|
---|
832 |
|
---|
833 | pCtx->rip = uNewPC;
|
---|
834 | pCtx->eflags.Bits.u1RF = 0;
|
---|
835 |
|
---|
836 | #ifndef IEM_WITH_CODE_TLB
|
---|
837 | /* Flush the prefetch buffer. */
|
---|
838 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
839 | #endif
|
---|
840 | return VINF_SUCCESS;
|
---|
841 | }
|
---|
842 |
|
---|
843 |
|
---|
844 | /**
|
---|
845 | * Implements a 32-bit relative call.
|
---|
846 | *
|
---|
847 | * @param offDisp The displacment offset.
|
---|
848 | */
|
---|
849 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
|
---|
850 | {
|
---|
851 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
852 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
853 | uint32_t uNewPC = uOldPC + offDisp;
|
---|
854 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
855 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
856 |
|
---|
857 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
|
---|
858 | if (rcStrict != VINF_SUCCESS)
|
---|
859 | return rcStrict;
|
---|
860 |
|
---|
861 | pCtx->rip = uNewPC;
|
---|
862 | pCtx->eflags.Bits.u1RF = 0;
|
---|
863 |
|
---|
864 | #ifndef IEM_WITH_CODE_TLB
|
---|
865 | /* Flush the prefetch buffer. */
|
---|
866 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
867 | #endif
|
---|
868 | return VINF_SUCCESS;
|
---|
869 | }
|
---|
870 |
|
---|
871 |
|
---|
872 | /**
|
---|
873 | * Implements a 64-bit indirect call.
|
---|
874 | *
|
---|
875 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
876 | * operand).
|
---|
877 | * @param enmEffOpSize The effective operand size.
|
---|
878 | */
|
---|
879 | IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
|
---|
880 | {
|
---|
881 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
882 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
883 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
884 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
885 |
|
---|
886 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
|
---|
887 | if (rcStrict != VINF_SUCCESS)
|
---|
888 | return rcStrict;
|
---|
889 |
|
---|
890 | pCtx->rip = uNewPC;
|
---|
891 | pCtx->eflags.Bits.u1RF = 0;
|
---|
892 |
|
---|
893 | #ifndef IEM_WITH_CODE_TLB
|
---|
894 | /* Flush the prefetch buffer. */
|
---|
895 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
896 | #endif
|
---|
897 | return VINF_SUCCESS;
|
---|
898 | }
|
---|
899 |
|
---|
900 |
|
---|
901 | /**
|
---|
902 | * Implements a 64-bit relative call.
|
---|
903 | *
|
---|
904 | * @param offDisp The displacment offset.
|
---|
905 | */
|
---|
906 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
|
---|
907 | {
|
---|
908 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
909 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
910 | uint64_t uNewPC = uOldPC + offDisp;
|
---|
911 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
912 | return iemRaiseNotCanonical(pVCpu);
|
---|
913 |
|
---|
914 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
|
---|
915 | if (rcStrict != VINF_SUCCESS)
|
---|
916 | return rcStrict;
|
---|
917 |
|
---|
918 | pCtx->rip = uNewPC;
|
---|
919 | pCtx->eflags.Bits.u1RF = 0;
|
---|
920 |
|
---|
921 | #ifndef IEM_WITH_CODE_TLB
|
---|
922 | /* Flush the prefetch buffer. */
|
---|
923 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
924 | #endif
|
---|
925 |
|
---|
926 | return VINF_SUCCESS;
|
---|
927 | }
|
---|
928 |
|
---|
929 |
|
---|
930 | /**
|
---|
931 | * Implements far jumps and calls thru task segments (TSS).
|
---|
932 | *
|
---|
933 | * @param uSel The selector.
|
---|
934 | * @param enmBranch The kind of branching we're performing.
|
---|
935 | * @param enmEffOpSize The effective operand size.
|
---|
936 | * @param pDesc The descriptor corresponding to @a uSel. The type is
|
---|
937 | * task gate.
|
---|
938 | */
|
---|
939 | IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
940 | {
|
---|
941 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
942 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
943 | #else
|
---|
944 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
945 | Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
946 | || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
|
---|
947 | RT_NOREF_PV(enmEffOpSize);
|
---|
948 |
|
---|
949 | if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
|
---|
950 | || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
|
---|
951 | {
|
---|
952 | Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
|
---|
953 | pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
|
---|
954 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
955 | }
|
---|
956 |
|
---|
957 | /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
|
---|
958 | * far calls (see iemCImpl_callf). Most likely in both cases it should be
|
---|
959 | * checked here, need testcases. */
|
---|
960 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
961 | {
|
---|
962 | Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
|
---|
963 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
964 | }
|
---|
965 |
|
---|
966 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
967 | uint32_t uNextEip = pCtx->eip + cbInstr;
|
---|
968 | return iemTaskSwitch(pVCpu, pCtx, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
|
---|
969 | uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
|
---|
970 | #endif
|
---|
971 | }
|
---|
972 |
|
---|
973 |
|
---|
974 | /**
|
---|
975 | * Implements far jumps and calls thru task gates.
|
---|
976 | *
|
---|
977 | * @param uSel The selector.
|
---|
978 | * @param enmBranch The kind of branching we're performing.
|
---|
979 | * @param enmEffOpSize The effective operand size.
|
---|
980 | * @param pDesc The descriptor corresponding to @a uSel. The type is
|
---|
981 | * task gate.
|
---|
982 | */
|
---|
983 | IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
984 | {
|
---|
985 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
986 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
987 | #else
|
---|
988 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
989 | RT_NOREF_PV(enmEffOpSize);
|
---|
990 |
|
---|
991 | if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
|
---|
992 | || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
|
---|
993 | {
|
---|
994 | Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
|
---|
995 | pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
|
---|
996 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
997 | }
|
---|
998 |
|
---|
999 | /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
|
---|
1000 | * far calls (see iemCImpl_callf). Most likely in both cases it should be
|
---|
1001 | * checked here, need testcases. */
|
---|
1002 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
1003 | {
|
---|
1004 | Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
|
---|
1005 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | /*
|
---|
1009 | * Fetch the new TSS descriptor from the GDT.
|
---|
1010 | */
|
---|
1011 | RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
|
---|
1012 | if (uSelTss & X86_SEL_LDT)
|
---|
1013 | {
|
---|
1014 | Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
|
---|
1015 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | IEMSELDESC TssDesc;
|
---|
1019 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
|
---|
1020 | if (rcStrict != VINF_SUCCESS)
|
---|
1021 | return rcStrict;
|
---|
1022 |
|
---|
1023 | if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
|
---|
1024 | {
|
---|
1025 | Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
|
---|
1026 | TssDesc.Legacy.Gate.u4Type));
|
---|
1027 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | if (!TssDesc.Legacy.Gate.u1Present)
|
---|
1031 | {
|
---|
1032 | Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
|
---|
1033 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1037 | uint32_t uNextEip = pCtx->eip + cbInstr;
|
---|
1038 | return iemTaskSwitch(pVCpu, pCtx, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
|
---|
1039 | uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
|
---|
1040 | #endif
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 |
|
---|
1044 | /**
|
---|
1045 | * Implements far jumps and calls thru call gates.
|
---|
1046 | *
|
---|
1047 | * @param uSel The selector.
|
---|
1048 | * @param enmBranch The kind of branching we're performing.
|
---|
1049 | * @param enmEffOpSize The effective operand size.
|
---|
1050 | * @param pDesc The descriptor corresponding to @a uSel. The type is
|
---|
1051 | * call gate.
|
---|
1052 | */
|
---|
1053 | IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
1054 | {
|
---|
1055 | #define IEM_IMPLEMENTS_CALLGATE
|
---|
1056 | #ifndef IEM_IMPLEMENTS_CALLGATE
|
---|
1057 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
1058 | #else
|
---|
1059 | RT_NOREF_PV(enmEffOpSize);
|
---|
1060 |
|
---|
1061 | /* NB: Far jumps can only do intra-privilege transfers. Far calls support
|
---|
1062 | * inter-privilege calls and are much more complex.
|
---|
1063 | *
|
---|
1064 | * NB: 64-bit call gate has the same type as a 32-bit call gate! If
|
---|
1065 | * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
|
---|
1066 | * must be 16-bit or 32-bit.
|
---|
1067 | */
|
---|
1068 | /** @todo: effective operand size is probably irrelevant here, only the
|
---|
1069 | * call gate bitness matters??
|
---|
1070 | */
|
---|
1071 | VBOXSTRICTRC rcStrict;
|
---|
1072 | RTPTRUNION uPtrRet;
|
---|
1073 | uint64_t uNewRsp;
|
---|
1074 | uint64_t uNewRip;
|
---|
1075 | uint64_t u64Base;
|
---|
1076 | uint32_t cbLimit;
|
---|
1077 | RTSEL uNewCS;
|
---|
1078 | IEMSELDESC DescCS;
|
---|
1079 |
|
---|
1080 | AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1081 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
1082 | Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
|
---|
1083 | || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
|
---|
1084 |
|
---|
1085 | /* Determine the new instruction pointer from the gate descriptor. */
|
---|
1086 | uNewRip = pDesc->Legacy.Gate.u16OffsetLow
|
---|
1087 | | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
|
---|
1088 | | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
|
---|
1089 |
|
---|
1090 | /* Perform DPL checks on the gate descriptor. */
|
---|
1091 | if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
|
---|
1092 | || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
|
---|
1093 | {
|
---|
1094 | Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
|
---|
1095 | pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
|
---|
1096 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 | /** @todo does this catch NULL selectors, too? */
|
---|
1100 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
1101 | {
|
---|
1102 | Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
|
---|
1103 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | /*
|
---|
1107 | * Fetch the target CS descriptor from the GDT or LDT.
|
---|
1108 | */
|
---|
1109 | uNewCS = pDesc->Legacy.Gate.u16Sel;
|
---|
1110 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
|
---|
1111 | if (rcStrict != VINF_SUCCESS)
|
---|
1112 | return rcStrict;
|
---|
1113 |
|
---|
1114 | /* Target CS must be a code selector. */
|
---|
1115 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
1116 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
1117 | {
|
---|
1118 | Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
|
---|
1119 | uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
1120 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | /* Privilege checks on target CS. */
|
---|
1124 | if (enmBranch == IEMBRANCH_JUMP)
|
---|
1125 | {
|
---|
1126 | if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
1127 | {
|
---|
1128 | if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
|
---|
1129 | {
|
---|
1130 | Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
|
---|
1131 | uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1132 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1133 | }
|
---|
1134 | }
|
---|
1135 | else
|
---|
1136 | {
|
---|
1137 | if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
|
---|
1138 | {
|
---|
1139 | Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
|
---|
1140 | uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1141 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1142 | }
|
---|
1143 | }
|
---|
1144 | }
|
---|
1145 | else
|
---|
1146 | {
|
---|
1147 | Assert(enmBranch == IEMBRANCH_CALL);
|
---|
1148 | if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
|
---|
1149 | {
|
---|
1150 | Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
|
---|
1151 | uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1152 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
1153 | }
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | /* Additional long mode checks. */
|
---|
1157 | if (IEM_IS_LONG_MODE(pVCpu))
|
---|
1158 | {
|
---|
1159 | if (!DescCS.Legacy.Gen.u1Long)
|
---|
1160 | {
|
---|
1161 | Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
|
---|
1162 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | /* L vs D. */
|
---|
1166 | if ( DescCS.Legacy.Gen.u1Long
|
---|
1167 | && DescCS.Legacy.Gen.u1DefBig)
|
---|
1168 | {
|
---|
1169 | Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
|
---|
1170 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1171 | }
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | if (!DescCS.Legacy.Gate.u1Present)
|
---|
1175 | {
|
---|
1176 | Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
|
---|
1177 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1181 |
|
---|
1182 | if (enmBranch == IEMBRANCH_JUMP)
|
---|
1183 | {
|
---|
1184 | /** @todo: This is very similar to regular far jumps; merge! */
|
---|
1185 | /* Jumps are fairly simple... */
|
---|
1186 |
|
---|
1187 | /* Chop the high bits off if 16-bit gate (Intel says so). */
|
---|
1188 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
|
---|
1189 | uNewRip = (uint16_t)uNewRip;
|
---|
1190 |
|
---|
1191 | /* Limit check for non-long segments. */
|
---|
1192 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
1193 | if (DescCS.Legacy.Gen.u1Long)
|
---|
1194 | u64Base = 0;
|
---|
1195 | else
|
---|
1196 | {
|
---|
1197 | if (uNewRip > cbLimit)
|
---|
1198 | {
|
---|
1199 | Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
|
---|
1200 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
|
---|
1201 | }
|
---|
1202 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
1203 | }
|
---|
1204 |
|
---|
1205 | /* Canonical address check. */
|
---|
1206 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
1207 | {
|
---|
1208 | Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
|
---|
1209 | return iemRaiseNotCanonical(pVCpu);
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | /*
|
---|
1213 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
1214 | * committing the result into CS, CSHID and RIP.
|
---|
1215 | */
|
---|
1216 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1217 | {
|
---|
1218 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
1219 | if (rcStrict != VINF_SUCCESS)
|
---|
1220 | return rcStrict;
|
---|
1221 | /** @todo check what VT-x and AMD-V does. */
|
---|
1222 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | /* commit */
|
---|
1226 | pCtx->rip = uNewRip;
|
---|
1227 | pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
|
---|
1228 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
|
---|
1229 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1230 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1231 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
1232 | pCtx->cs.u32Limit = cbLimit;
|
---|
1233 | pCtx->cs.u64Base = u64Base;
|
---|
1234 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1235 | }
|
---|
1236 | else
|
---|
1237 | {
|
---|
1238 | Assert(enmBranch == IEMBRANCH_CALL);
|
---|
1239 | /* Calls are much more complicated. */
|
---|
1240 |
|
---|
1241 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
|
---|
1242 | {
|
---|
1243 | uint16_t offNewStack; /* Offset of new stack in TSS. */
|
---|
1244 | uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
|
---|
1245 | uint8_t uNewCSDpl;
|
---|
1246 | uint8_t cbWords;
|
---|
1247 | RTSEL uNewSS;
|
---|
1248 | RTSEL uOldSS;
|
---|
1249 | uint64_t uOldRsp;
|
---|
1250 | IEMSELDESC DescSS;
|
---|
1251 | RTPTRUNION uPtrTSS;
|
---|
1252 | RTGCPTR GCPtrTSS;
|
---|
1253 | RTPTRUNION uPtrParmWds;
|
---|
1254 | RTGCPTR GCPtrParmWds;
|
---|
1255 |
|
---|
1256 | /* More privilege. This is the fun part. */
|
---|
1257 | Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
|
---|
1258 |
|
---|
1259 | /*
|
---|
1260 | * Determine new SS:rSP from the TSS.
|
---|
1261 | */
|
---|
1262 | Assert(!pCtx->tr.Attr.n.u1DescType);
|
---|
1263 |
|
---|
1264 | /* Figure out where the new stack pointer is stored in the TSS. */
|
---|
1265 | uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
|
---|
1266 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1267 | {
|
---|
1268 | if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
1269 | {
|
---|
1270 | offNewStack = RT_OFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
|
---|
1271 | cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
|
---|
1272 | }
|
---|
1273 | else
|
---|
1274 | {
|
---|
1275 | Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
|
---|
1276 | offNewStack = RT_OFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
|
---|
1277 | cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
|
---|
1278 | }
|
---|
1279 | }
|
---|
1280 | else
|
---|
1281 | {
|
---|
1282 | Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
|
---|
1283 | offNewStack = RT_OFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
|
---|
1284 | cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 | /* Check against TSS limit. */
|
---|
1288 | if ((uint16_t)(offNewStack + cbNewStack - 1) > pCtx->tr.u32Limit)
|
---|
1289 | {
|
---|
1290 | Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pCtx->tr.u32Limit));
|
---|
1291 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, pCtx->tr.Sel);
|
---|
1292 | }
|
---|
1293 |
|
---|
1294 | GCPtrTSS = pCtx->tr.u64Base + offNewStack;
|
---|
1295 | rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
|
---|
1296 | if (rcStrict != VINF_SUCCESS)
|
---|
1297 | {
|
---|
1298 | Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1299 | return rcStrict;
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1303 | {
|
---|
1304 | if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
1305 | {
|
---|
1306 | uNewRsp = uPtrTSS.pu32[0];
|
---|
1307 | uNewSS = uPtrTSS.pu16[2];
|
---|
1308 | }
|
---|
1309 | else
|
---|
1310 | {
|
---|
1311 | Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
|
---|
1312 | uNewRsp = uPtrTSS.pu16[0];
|
---|
1313 | uNewSS = uPtrTSS.pu16[1];
|
---|
1314 | }
|
---|
1315 | }
|
---|
1316 | else
|
---|
1317 | {
|
---|
1318 | Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
|
---|
1319 | /* SS will be a NULL selector, but that's valid. */
|
---|
1320 | uNewRsp = uPtrTSS.pu64[0];
|
---|
1321 | uNewSS = uNewCSDpl;
|
---|
1322 | }
|
---|
1323 |
|
---|
1324 | /* Done with the TSS now. */
|
---|
1325 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
|
---|
1326 | if (rcStrict != VINF_SUCCESS)
|
---|
1327 | {
|
---|
1328 | Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1329 | return rcStrict;
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | /* Only used outside of long mode. */
|
---|
1333 | cbWords = pDesc->Legacy.Gate.u4ParmCount;
|
---|
1334 |
|
---|
1335 | /* If EFER.LMA is 0, there's extra work to do. */
|
---|
1336 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1337 | {
|
---|
1338 | if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
|
---|
1339 | {
|
---|
1340 | Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
|
---|
1341 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
|
---|
1342 | }
|
---|
1343 |
|
---|
1344 | /* Grab the new SS descriptor. */
|
---|
1345 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
|
---|
1346 | if (rcStrict != VINF_SUCCESS)
|
---|
1347 | return rcStrict;
|
---|
1348 |
|
---|
1349 | /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
|
---|
1350 | if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
|
---|
1351 | || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
|
---|
1352 | {
|
---|
1353 | Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
|
---|
1354 | uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
|
---|
1355 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
|
---|
1356 | }
|
---|
1357 |
|
---|
1358 | /* Ensure new SS is a writable data segment. */
|
---|
1359 | if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
|
---|
1360 | {
|
---|
1361 | Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
|
---|
1362 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
1366 | {
|
---|
1367 | Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
|
---|
1368 | return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
|
---|
1369 | }
|
---|
1370 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
|
---|
1371 | cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
|
---|
1372 | else
|
---|
1373 | cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
|
---|
1374 | }
|
---|
1375 | else
|
---|
1376 | {
|
---|
1377 | /* Just grab the new (NULL) SS descriptor. */
|
---|
1378 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
|
---|
1379 | if (rcStrict != VINF_SUCCESS)
|
---|
1380 | return rcStrict;
|
---|
1381 |
|
---|
1382 | cbNewStack = sizeof(uint64_t) * 4;
|
---|
1383 | }
|
---|
1384 |
|
---|
1385 | /** @todo: According to Intel, new stack is checked for enough space first,
|
---|
1386 | * then switched. According to AMD, the stack is switched first and
|
---|
1387 | * then pushes might fault!
|
---|
1388 | */
|
---|
1389 |
|
---|
1390 | /** @todo: According to AMD, CS is loaded first, then SS.
|
---|
1391 | * According to Intel, it's the other way around!?
|
---|
1392 | */
|
---|
1393 |
|
---|
1394 | /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
|
---|
1395 |
|
---|
1396 | /* Set the accessed bit before committing new SS. */
|
---|
1397 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1398 | {
|
---|
1399 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
|
---|
1400 | if (rcStrict != VINF_SUCCESS)
|
---|
1401 | return rcStrict;
|
---|
1402 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 | /* Remember the old SS:rSP and their linear address. */
|
---|
1406 | uOldSS = pCtx->ss.Sel;
|
---|
1407 | uOldRsp = pCtx->rsp;
|
---|
1408 |
|
---|
1409 | GCPtrParmWds = pCtx->ss.u64Base + pCtx->rsp;
|
---|
1410 |
|
---|
1411 | /* Commit new SS:rSP. */
|
---|
1412 | pCtx->ss.Sel = uNewSS;
|
---|
1413 | pCtx->ss.ValidSel = uNewSS;
|
---|
1414 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
1415 | pCtx->ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
1416 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
1417 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1418 | pCtx->rsp = uNewRsp;
|
---|
1419 | pVCpu->iem.s.uCpl = uNewCSDpl;
|
---|
1420 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
1421 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
1422 |
|
---|
1423 | /* Check new stack - may #SS(NewSS). */
|
---|
1424 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
|
---|
1425 | &uPtrRet.pv, &uNewRsp);
|
---|
1426 | if (rcStrict != VINF_SUCCESS)
|
---|
1427 | {
|
---|
1428 | Log(("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1429 | return rcStrict;
|
---|
1430 | }
|
---|
1431 |
|
---|
1432 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1433 | {
|
---|
1434 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
|
---|
1435 | {
|
---|
1436 | /* Push the old CS:rIP. */
|
---|
1437 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
1438 | uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
|
---|
1439 |
|
---|
1440 | /* Map the relevant chunk of the old stack. */
|
---|
1441 | rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
|
---|
1442 | if (rcStrict != VINF_SUCCESS)
|
---|
1443 | {
|
---|
1444 | Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1445 | return rcStrict;
|
---|
1446 | }
|
---|
1447 |
|
---|
1448 | /* Copy the parameter (d)words. */
|
---|
1449 | for (int i = 0; i < cbWords; ++i)
|
---|
1450 | uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
|
---|
1451 |
|
---|
1452 | /* Unmap the old stack. */
|
---|
1453 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
|
---|
1454 | if (rcStrict != VINF_SUCCESS)
|
---|
1455 | {
|
---|
1456 | Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1457 | return rcStrict;
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 | /* Push the old SS:rSP. */
|
---|
1461 | uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
|
---|
1462 | uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
|
---|
1463 | }
|
---|
1464 | else
|
---|
1465 | {
|
---|
1466 | Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
|
---|
1467 |
|
---|
1468 | /* Push the old CS:rIP. */
|
---|
1469 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
1470 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
1471 |
|
---|
1472 | /* Map the relevant chunk of the old stack. */
|
---|
1473 | rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
|
---|
1474 | if (rcStrict != VINF_SUCCESS)
|
---|
1475 | {
|
---|
1476 | Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1477 | return rcStrict;
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 | /* Copy the parameter words. */
|
---|
1481 | for (int i = 0; i < cbWords; ++i)
|
---|
1482 | uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
|
---|
1483 |
|
---|
1484 | /* Unmap the old stack. */
|
---|
1485 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
|
---|
1486 | if (rcStrict != VINF_SUCCESS)
|
---|
1487 | {
|
---|
1488 | Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1489 | return rcStrict;
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | /* Push the old SS:rSP. */
|
---|
1493 | uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
|
---|
1494 | uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
|
---|
1495 | }
|
---|
1496 | }
|
---|
1497 | else
|
---|
1498 | {
|
---|
1499 | Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1500 |
|
---|
1501 | /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
|
---|
1502 | uPtrRet.pu64[0] = pCtx->rip + cbInstr;
|
---|
1503 | uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
|
---|
1504 | uPtrRet.pu64[2] = uOldRsp;
|
---|
1505 | uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
1509 | if (rcStrict != VINF_SUCCESS)
|
---|
1510 | {
|
---|
1511 | Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1512 | return rcStrict;
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | /* Chop the high bits off if 16-bit gate (Intel says so). */
|
---|
1516 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
|
---|
1517 | uNewRip = (uint16_t)uNewRip;
|
---|
1518 |
|
---|
1519 | /* Limit / canonical check. */
|
---|
1520 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
1521 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1522 | {
|
---|
1523 | if (uNewRip > cbLimit)
|
---|
1524 | {
|
---|
1525 | Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
|
---|
1526 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
|
---|
1527 | }
|
---|
1528 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
1529 | }
|
---|
1530 | else
|
---|
1531 | {
|
---|
1532 | Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1533 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
1534 | {
|
---|
1535 | Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
|
---|
1536 | return iemRaiseNotCanonical(pVCpu);
|
---|
1537 | }
|
---|
1538 | u64Base = 0;
|
---|
1539 | }
|
---|
1540 |
|
---|
1541 | /*
|
---|
1542 | * Now set the accessed bit before
|
---|
1543 | * writing the return address to the stack and committing the result into
|
---|
1544 | * CS, CSHID and RIP.
|
---|
1545 | */
|
---|
1546 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
1547 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1548 | {
|
---|
1549 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
1550 | if (rcStrict != VINF_SUCCESS)
|
---|
1551 | return rcStrict;
|
---|
1552 | /** @todo check what VT-x and AMD-V does. */
|
---|
1553 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 | /* Commit new CS:rIP. */
|
---|
1557 | pCtx->rip = uNewRip;
|
---|
1558 | pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
|
---|
1559 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl;
|
---|
1560 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1561 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1562 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
1563 | pCtx->cs.u32Limit = cbLimit;
|
---|
1564 | pCtx->cs.u64Base = u64Base;
|
---|
1565 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1566 | }
|
---|
1567 | else
|
---|
1568 | {
|
---|
1569 | /* Same privilege. */
|
---|
1570 | /** @todo: This is very similar to regular far calls; merge! */
|
---|
1571 |
|
---|
1572 | /* Check stack first - may #SS(0). */
|
---|
1573 | /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
|
---|
1574 | * 16-bit code cause a two or four byte CS to be pushed? */
|
---|
1575 | rcStrict = iemMemStackPushBeginSpecial(pVCpu,
|
---|
1576 | IEM_IS_LONG_MODE(pVCpu) ? 8+8
|
---|
1577 | : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
|
---|
1578 | &uPtrRet.pv, &uNewRsp);
|
---|
1579 | if (rcStrict != VINF_SUCCESS)
|
---|
1580 | return rcStrict;
|
---|
1581 |
|
---|
1582 | /* Chop the high bits off if 16-bit gate (Intel says so). */
|
---|
1583 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
|
---|
1584 | uNewRip = (uint16_t)uNewRip;
|
---|
1585 |
|
---|
1586 | /* Limit / canonical check. */
|
---|
1587 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
1588 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1589 | {
|
---|
1590 | if (uNewRip > cbLimit)
|
---|
1591 | {
|
---|
1592 | Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
|
---|
1593 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
|
---|
1594 | }
|
---|
1595 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
1596 | }
|
---|
1597 | else
|
---|
1598 | {
|
---|
1599 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
1600 | {
|
---|
1601 | Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
|
---|
1602 | return iemRaiseNotCanonical(pVCpu);
|
---|
1603 | }
|
---|
1604 | u64Base = 0;
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 | /*
|
---|
1608 | * Now set the accessed bit before
|
---|
1609 | * writing the return address to the stack and committing the result into
|
---|
1610 | * CS, CSHID and RIP.
|
---|
1611 | */
|
---|
1612 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
1613 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1614 | {
|
---|
1615 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
1616 | if (rcStrict != VINF_SUCCESS)
|
---|
1617 | return rcStrict;
|
---|
1618 | /** @todo check what VT-x and AMD-V does. */
|
---|
1619 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | /* stack */
|
---|
1623 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1624 | {
|
---|
1625 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
|
---|
1626 | {
|
---|
1627 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
1628 | uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
|
---|
1629 | }
|
---|
1630 | else
|
---|
1631 | {
|
---|
1632 | Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
|
---|
1633 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
1634 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
1635 | }
|
---|
1636 | }
|
---|
1637 | else
|
---|
1638 | {
|
---|
1639 | Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1640 | uPtrRet.pu64[0] = pCtx->rip + cbInstr;
|
---|
1641 | uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
|
---|
1642 | }
|
---|
1643 |
|
---|
1644 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
1645 | if (rcStrict != VINF_SUCCESS)
|
---|
1646 | return rcStrict;
|
---|
1647 |
|
---|
1648 | /* commit */
|
---|
1649 | pCtx->rip = uNewRip;
|
---|
1650 | pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
|
---|
1651 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl;
|
---|
1652 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1653 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1654 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
1655 | pCtx->cs.u32Limit = cbLimit;
|
---|
1656 | pCtx->cs.u64Base = u64Base;
|
---|
1657 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1658 | }
|
---|
1659 | }
|
---|
1660 | pCtx->eflags.Bits.u1RF = 0;
|
---|
1661 |
|
---|
1662 | /* Flush the prefetch buffer. */
|
---|
1663 | # ifdef IEM_WITH_CODE_TLB
|
---|
1664 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1665 | # else
|
---|
1666 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
1667 | # endif
|
---|
1668 | return VINF_SUCCESS;
|
---|
1669 | #endif
|
---|
1670 | }
|
---|
1671 |
|
---|
1672 |
|
---|
1673 | /**
|
---|
1674 | * Implements far jumps and calls thru system selectors.
|
---|
1675 | *
|
---|
1676 | * @param uSel The selector.
|
---|
1677 | * @param enmBranch The kind of branching we're performing.
|
---|
1678 | * @param enmEffOpSize The effective operand size.
|
---|
1679 | * @param pDesc The descriptor corresponding to @a uSel.
|
---|
1680 | */
|
---|
1681 | IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
1682 | {
|
---|
1683 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
1684 | Assert((uSel & X86_SEL_MASK_OFF_RPL));
|
---|
1685 |
|
---|
1686 | if (IEM_IS_LONG_MODE(pVCpu))
|
---|
1687 | switch (pDesc->Legacy.Gen.u4Type)
|
---|
1688 | {
|
---|
1689 | case AMD64_SEL_TYPE_SYS_CALL_GATE:
|
---|
1690 | return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1691 |
|
---|
1692 | default:
|
---|
1693 | case AMD64_SEL_TYPE_SYS_LDT:
|
---|
1694 | case AMD64_SEL_TYPE_SYS_TSS_BUSY:
|
---|
1695 | case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
|
---|
1696 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
1697 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
1698 | Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
|
---|
1699 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | switch (pDesc->Legacy.Gen.u4Type)
|
---|
1703 | {
|
---|
1704 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
1705 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
1706 | return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1707 |
|
---|
1708 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
1709 | return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1710 |
|
---|
1711 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
1712 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
1713 | return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1714 |
|
---|
1715 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
1716 | Log(("branch %04x -> busy 286 TSS\n", uSel));
|
---|
1717 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1718 |
|
---|
1719 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
1720 | Log(("branch %04x -> busy 386 TSS\n", uSel));
|
---|
1721 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1722 |
|
---|
1723 | default:
|
---|
1724 | case X86_SEL_TYPE_SYS_LDT:
|
---|
1725 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
1726 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
1727 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
1728 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
1729 | Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
|
---|
1730 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1731 | }
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 |
|
---|
1735 | /**
|
---|
1736 | * Implements far jumps.
|
---|
1737 | *
|
---|
1738 | * @param uSel The selector.
|
---|
1739 | * @param offSeg The segment offset.
|
---|
1740 | * @param enmEffOpSize The effective operand size.
|
---|
1741 | */
|
---|
1742 | IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
|
---|
1743 | {
|
---|
1744 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1745 | NOREF(cbInstr);
|
---|
1746 | Assert(offSeg <= UINT32_MAX);
|
---|
1747 |
|
---|
1748 | /*
|
---|
1749 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
1750 | * CS.limit doesn't change and the limit check is done against the current
|
---|
1751 | * limit.
|
---|
1752 | */
|
---|
1753 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
1754 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
1755 | {
|
---|
1756 | if (offSeg > pCtx->cs.u32Limit)
|
---|
1757 | {
|
---|
1758 | Log(("iemCImpl_FarJmp: 16-bit limit\n"));
|
---|
1759 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1760 | }
|
---|
1761 |
|
---|
1762 | if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
|
---|
1763 | pCtx->rip = offSeg;
|
---|
1764 | else
|
---|
1765 | pCtx->rip = offSeg & UINT16_MAX;
|
---|
1766 | pCtx->cs.Sel = uSel;
|
---|
1767 | pCtx->cs.ValidSel = uSel;
|
---|
1768 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1769 | pCtx->cs.u64Base = (uint32_t)uSel << 4;
|
---|
1770 | pCtx->eflags.Bits.u1RF = 0;
|
---|
1771 | return VINF_SUCCESS;
|
---|
1772 | }
|
---|
1773 |
|
---|
1774 | /*
|
---|
1775 | * Protected mode. Need to parse the specified descriptor...
|
---|
1776 | */
|
---|
1777 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
1778 | {
|
---|
1779 | Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
|
---|
1780 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1781 | }
|
---|
1782 |
|
---|
1783 | /* Fetch the descriptor. */
|
---|
1784 | IEMSELDESC Desc;
|
---|
1785 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
|
---|
1786 | if (rcStrict != VINF_SUCCESS)
|
---|
1787 | return rcStrict;
|
---|
1788 |
|
---|
1789 | /* Is it there? */
|
---|
1790 | if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
|
---|
1791 | {
|
---|
1792 | Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
|
---|
1793 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
1794 | }
|
---|
1795 |
|
---|
1796 | /*
|
---|
1797 | * Deal with it according to its type. We do the standard code selectors
|
---|
1798 | * here and dispatch the system selectors to worker functions.
|
---|
1799 | */
|
---|
1800 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
1801 | return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
|
---|
1802 |
|
---|
1803 | /* Only code segments. */
|
---|
1804 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
1805 | {
|
---|
1806 | Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
1807 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1808 | }
|
---|
1809 |
|
---|
1810 | /* L vs D. */
|
---|
1811 | if ( Desc.Legacy.Gen.u1Long
|
---|
1812 | && Desc.Legacy.Gen.u1DefBig
|
---|
1813 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
1814 | {
|
---|
1815 | Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
|
---|
1816 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1817 | }
|
---|
1818 |
|
---|
1819 | /* DPL/RPL/CPL check, where conforming segments makes a difference. */
|
---|
1820 | if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
1821 | {
|
---|
1822 | if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
|
---|
1823 | {
|
---|
1824 | Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
|
---|
1825 | uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1826 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1827 | }
|
---|
1828 | }
|
---|
1829 | else
|
---|
1830 | {
|
---|
1831 | if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
|
---|
1832 | {
|
---|
1833 | Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1834 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1835 | }
|
---|
1836 | if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
|
---|
1837 | {
|
---|
1838 | Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
|
---|
1839 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1840 | }
|
---|
1841 | }
|
---|
1842 |
|
---|
1843 | /* Chop the high bits if 16-bit (Intel says so). */
|
---|
1844 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
1845 | offSeg &= UINT16_MAX;
|
---|
1846 |
|
---|
1847 | /* Limit check. (Should alternatively check for non-canonical addresses
|
---|
1848 | here, but that is ruled out by offSeg being 32-bit, right?) */
|
---|
1849 | uint64_t u64Base;
|
---|
1850 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
1851 | if (Desc.Legacy.Gen.u1Long)
|
---|
1852 | u64Base = 0;
|
---|
1853 | else
|
---|
1854 | {
|
---|
1855 | if (offSeg > cbLimit)
|
---|
1856 | {
|
---|
1857 | Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
|
---|
1858 | /** @todo: Intel says this is #GP(0)! */
|
---|
1859 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1860 | }
|
---|
1861 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | /*
|
---|
1865 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
1866 | * committing the result into CS, CSHID and RIP.
|
---|
1867 | */
|
---|
1868 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1869 | {
|
---|
1870 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
1871 | if (rcStrict != VINF_SUCCESS)
|
---|
1872 | return rcStrict;
|
---|
1873 | /** @todo check what VT-x and AMD-V does. */
|
---|
1874 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1875 | }
|
---|
1876 |
|
---|
1877 | /* commit */
|
---|
1878 | pCtx->rip = offSeg;
|
---|
1879 | pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
|
---|
1880 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
|
---|
1881 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1882 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1883 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
1884 | pCtx->cs.u32Limit = cbLimit;
|
---|
1885 | pCtx->cs.u64Base = u64Base;
|
---|
1886 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1887 | pCtx->eflags.Bits.u1RF = 0;
|
---|
1888 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
1889 | * mode. */
|
---|
1890 |
|
---|
1891 | /* Flush the prefetch buffer. */
|
---|
1892 | #ifdef IEM_WITH_CODE_TLB
|
---|
1893 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1894 | #else
|
---|
1895 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
1896 | #endif
|
---|
1897 |
|
---|
1898 | return VINF_SUCCESS;
|
---|
1899 | }
|
---|
1900 |
|
---|
1901 |
|
---|
1902 | /**
|
---|
1903 | * Implements far calls.
|
---|
1904 | *
|
---|
1905 | * This very similar to iemCImpl_FarJmp.
|
---|
1906 | *
|
---|
1907 | * @param uSel The selector.
|
---|
1908 | * @param offSeg The segment offset.
|
---|
1909 | * @param enmEffOpSize The operand size (in case we need it).
|
---|
1910 | */
|
---|
1911 | IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
|
---|
1912 | {
|
---|
1913 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1914 | VBOXSTRICTRC rcStrict;
|
---|
1915 | uint64_t uNewRsp;
|
---|
1916 | RTPTRUNION uPtrRet;
|
---|
1917 |
|
---|
1918 | /*
|
---|
1919 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
1920 | * CS.limit doesn't change and the limit check is done against the current
|
---|
1921 | * limit.
|
---|
1922 | */
|
---|
1923 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
1924 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
1925 | {
|
---|
1926 | Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
|
---|
1927 |
|
---|
1928 | /* Check stack first - may #SS(0). */
|
---|
1929 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 6 : 4,
|
---|
1930 | &uPtrRet.pv, &uNewRsp);
|
---|
1931 | if (rcStrict != VINF_SUCCESS)
|
---|
1932 | return rcStrict;
|
---|
1933 |
|
---|
1934 | /* Check the target address range. */
|
---|
1935 | if (offSeg > UINT32_MAX)
|
---|
1936 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1937 |
|
---|
1938 | /* Everything is fine, push the return address. */
|
---|
1939 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
1940 | {
|
---|
1941 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
1942 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
1943 | }
|
---|
1944 | else
|
---|
1945 | {
|
---|
1946 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
1947 | uPtrRet.pu16[3] = pCtx->cs.Sel;
|
---|
1948 | }
|
---|
1949 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
1950 | if (rcStrict != VINF_SUCCESS)
|
---|
1951 | return rcStrict;
|
---|
1952 |
|
---|
1953 | /* Branch. */
|
---|
1954 | pCtx->rip = offSeg;
|
---|
1955 | pCtx->cs.Sel = uSel;
|
---|
1956 | pCtx->cs.ValidSel = uSel;
|
---|
1957 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1958 | pCtx->cs.u64Base = (uint32_t)uSel << 4;
|
---|
1959 | pCtx->eflags.Bits.u1RF = 0;
|
---|
1960 | return VINF_SUCCESS;
|
---|
1961 | }
|
---|
1962 |
|
---|
1963 | /*
|
---|
1964 | * Protected mode. Need to parse the specified descriptor...
|
---|
1965 | */
|
---|
1966 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
1967 | {
|
---|
1968 | Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
|
---|
1969 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1970 | }
|
---|
1971 |
|
---|
1972 | /* Fetch the descriptor. */
|
---|
1973 | IEMSELDESC Desc;
|
---|
1974 | rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
|
---|
1975 | if (rcStrict != VINF_SUCCESS)
|
---|
1976 | return rcStrict;
|
---|
1977 |
|
---|
1978 | /*
|
---|
1979 | * Deal with it according to its type. We do the standard code selectors
|
---|
1980 | * here and dispatch the system selectors to worker functions.
|
---|
1981 | */
|
---|
1982 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
1983 | return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
|
---|
1984 |
|
---|
1985 | /* Only code segments. */
|
---|
1986 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
1987 | {
|
---|
1988 | Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
1989 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1990 | }
|
---|
1991 |
|
---|
1992 | /* L vs D. */
|
---|
1993 | if ( Desc.Legacy.Gen.u1Long
|
---|
1994 | && Desc.Legacy.Gen.u1DefBig
|
---|
1995 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
1996 | {
|
---|
1997 | Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
|
---|
1998 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 | /* DPL/RPL/CPL check, where conforming segments makes a difference. */
|
---|
2002 | if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
2003 | {
|
---|
2004 | if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
|
---|
2005 | {
|
---|
2006 | Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
|
---|
2007 | uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
2008 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2009 | }
|
---|
2010 | }
|
---|
2011 | else
|
---|
2012 | {
|
---|
2013 | if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
|
---|
2014 | {
|
---|
2015 | Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
2016 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2017 | }
|
---|
2018 | if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
|
---|
2019 | {
|
---|
2020 | Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
|
---|
2021 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2022 | }
|
---|
2023 | }
|
---|
2024 |
|
---|
2025 | /* Is it there? */
|
---|
2026 | if (!Desc.Legacy.Gen.u1Present)
|
---|
2027 | {
|
---|
2028 | Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
|
---|
2029 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
2030 | }
|
---|
2031 |
|
---|
2032 | /* Check stack first - may #SS(0). */
|
---|
2033 | /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
|
---|
2034 | * 16-bit code cause a two or four byte CS to be pushed? */
|
---|
2035 | rcStrict = iemMemStackPushBeginSpecial(pVCpu,
|
---|
2036 | enmEffOpSize == IEMMODE_64BIT ? 8+8
|
---|
2037 | : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
|
---|
2038 | &uPtrRet.pv, &uNewRsp);
|
---|
2039 | if (rcStrict != VINF_SUCCESS)
|
---|
2040 | return rcStrict;
|
---|
2041 |
|
---|
2042 | /* Chop the high bits if 16-bit (Intel says so). */
|
---|
2043 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2044 | offSeg &= UINT16_MAX;
|
---|
2045 |
|
---|
2046 | /* Limit / canonical check. */
|
---|
2047 | uint64_t u64Base;
|
---|
2048 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
2049 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2050 | {
|
---|
2051 | if (!IEM_IS_CANONICAL(offSeg))
|
---|
2052 | {
|
---|
2053 | Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
|
---|
2054 | return iemRaiseNotCanonical(pVCpu);
|
---|
2055 | }
|
---|
2056 | u64Base = 0;
|
---|
2057 | }
|
---|
2058 | else
|
---|
2059 | {
|
---|
2060 | if (offSeg > cbLimit)
|
---|
2061 | {
|
---|
2062 | Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
|
---|
2063 | /** @todo: Intel says this is #GP(0)! */
|
---|
2064 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2065 | }
|
---|
2066 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
2067 | }
|
---|
2068 |
|
---|
2069 | /*
|
---|
2070 | * Now set the accessed bit before
|
---|
2071 | * writing the return address to the stack and committing the result into
|
---|
2072 | * CS, CSHID and RIP.
|
---|
2073 | */
|
---|
2074 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
2075 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2076 | {
|
---|
2077 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
2078 | if (rcStrict != VINF_SUCCESS)
|
---|
2079 | return rcStrict;
|
---|
2080 | /** @todo check what VT-x and AMD-V does. */
|
---|
2081 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2082 | }
|
---|
2083 |
|
---|
2084 | /* stack */
|
---|
2085 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2086 | {
|
---|
2087 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
2088 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
2089 | }
|
---|
2090 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2091 | {
|
---|
2092 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
2093 | uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
|
---|
2094 | }
|
---|
2095 | else
|
---|
2096 | {
|
---|
2097 | uPtrRet.pu64[0] = pCtx->rip + cbInstr;
|
---|
2098 | uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
|
---|
2099 | }
|
---|
2100 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
2101 | if (rcStrict != VINF_SUCCESS)
|
---|
2102 | return rcStrict;
|
---|
2103 |
|
---|
2104 | /* commit */
|
---|
2105 | pCtx->rip = offSeg;
|
---|
2106 | pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
|
---|
2107 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl;
|
---|
2108 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
2109 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2110 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
2111 | pCtx->cs.u32Limit = cbLimit;
|
---|
2112 | pCtx->cs.u64Base = u64Base;
|
---|
2113 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
2114 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2115 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
2116 | * mode. */
|
---|
2117 |
|
---|
2118 | /* Flush the prefetch buffer. */
|
---|
2119 | #ifdef IEM_WITH_CODE_TLB
|
---|
2120 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
2121 | #else
|
---|
2122 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
2123 | #endif
|
---|
2124 | return VINF_SUCCESS;
|
---|
2125 | }
|
---|
2126 |
|
---|
2127 |
|
---|
2128 | /**
|
---|
2129 | * Implements retf.
|
---|
2130 | *
|
---|
2131 | * @param enmEffOpSize The effective operand size.
|
---|
2132 | * @param cbPop The amount of arguments to pop from the stack
|
---|
2133 | * (bytes).
|
---|
2134 | */
|
---|
2135 | IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
2136 | {
|
---|
2137 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2138 | VBOXSTRICTRC rcStrict;
|
---|
2139 | RTCPTRUNION uPtrFrame;
|
---|
2140 | uint64_t uNewRsp;
|
---|
2141 | uint64_t uNewRip;
|
---|
2142 | uint16_t uNewCs;
|
---|
2143 | NOREF(cbInstr);
|
---|
2144 |
|
---|
2145 | /*
|
---|
2146 | * Read the stack values first.
|
---|
2147 | */
|
---|
2148 | uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
|
---|
2149 | : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
|
---|
2150 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
|
---|
2151 | if (rcStrict != VINF_SUCCESS)
|
---|
2152 | return rcStrict;
|
---|
2153 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2154 | {
|
---|
2155 | uNewRip = uPtrFrame.pu16[0];
|
---|
2156 | uNewCs = uPtrFrame.pu16[1];
|
---|
2157 | }
|
---|
2158 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2159 | {
|
---|
2160 | uNewRip = uPtrFrame.pu32[0];
|
---|
2161 | uNewCs = uPtrFrame.pu16[2];
|
---|
2162 | }
|
---|
2163 | else
|
---|
2164 | {
|
---|
2165 | uNewRip = uPtrFrame.pu64[0];
|
---|
2166 | uNewCs = uPtrFrame.pu16[4];
|
---|
2167 | }
|
---|
2168 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
|
---|
2169 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
2170 | { /* extremely likely */ }
|
---|
2171 | else
|
---|
2172 | return rcStrict;
|
---|
2173 |
|
---|
2174 | /*
|
---|
2175 | * Real mode and V8086 mode are easy.
|
---|
2176 | */
|
---|
2177 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
2178 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
2179 | {
|
---|
2180 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
2181 | /** @todo check how this is supposed to work if sp=0xfffe. */
|
---|
2182 |
|
---|
2183 | /* Check the limit of the new EIP. */
|
---|
2184 | /** @todo Intel pseudo code only does the limit check for 16-bit
|
---|
2185 | * operands, AMD does not make any distinction. What is right? */
|
---|
2186 | if (uNewRip > pCtx->cs.u32Limit)
|
---|
2187 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
2188 |
|
---|
2189 | /* commit the operation. */
|
---|
2190 | pCtx->rsp = uNewRsp;
|
---|
2191 | pCtx->rip = uNewRip;
|
---|
2192 | pCtx->cs.Sel = uNewCs;
|
---|
2193 | pCtx->cs.ValidSel = uNewCs;
|
---|
2194 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2195 | pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
|
---|
2196 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2197 | /** @todo do we load attribs and limit as well? */
|
---|
2198 | if (cbPop)
|
---|
2199 | iemRegAddToRsp(pVCpu, pCtx, cbPop);
|
---|
2200 | return VINF_SUCCESS;
|
---|
2201 | }
|
---|
2202 |
|
---|
2203 | /*
|
---|
2204 | * Protected mode is complicated, of course.
|
---|
2205 | */
|
---|
2206 | if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
|
---|
2207 | {
|
---|
2208 | Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
|
---|
2209 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2210 | }
|
---|
2211 |
|
---|
2212 | /* Fetch the descriptor. */
|
---|
2213 | IEMSELDESC DescCs;
|
---|
2214 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
|
---|
2215 | if (rcStrict != VINF_SUCCESS)
|
---|
2216 | return rcStrict;
|
---|
2217 |
|
---|
2218 | /* Can only return to a code selector. */
|
---|
2219 | if ( !DescCs.Legacy.Gen.u1DescType
|
---|
2220 | || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
2221 | {
|
---|
2222 | Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
|
---|
2223 | uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
|
---|
2224 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2225 | }
|
---|
2226 |
|
---|
2227 | /* L vs D. */
|
---|
2228 | if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
|
---|
2229 | && DescCs.Legacy.Gen.u1DefBig
|
---|
2230 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
2231 | {
|
---|
2232 | Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
|
---|
2233 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2234 | }
|
---|
2235 |
|
---|
2236 | /* DPL/RPL/CPL checks. */
|
---|
2237 | if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
|
---|
2238 | {
|
---|
2239 | Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
|
---|
2240 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2241 | }
|
---|
2242 |
|
---|
2243 | if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
2244 | {
|
---|
2245 | if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
|
---|
2246 | {
|
---|
2247 | Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
|
---|
2248 | uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
|
---|
2249 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2250 | }
|
---|
2251 | }
|
---|
2252 | else
|
---|
2253 | {
|
---|
2254 | if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
|
---|
2255 | {
|
---|
2256 | Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
|
---|
2257 | uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
|
---|
2258 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2259 | }
|
---|
2260 | }
|
---|
2261 |
|
---|
2262 | /* Is it there? */
|
---|
2263 | if (!DescCs.Legacy.Gen.u1Present)
|
---|
2264 | {
|
---|
2265 | Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
|
---|
2266 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
2267 | }
|
---|
2268 |
|
---|
2269 | /*
|
---|
2270 | * Return to outer privilege? (We'll typically have entered via a call gate.)
|
---|
2271 | */
|
---|
2272 | if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
|
---|
2273 | {
|
---|
2274 | /* Read the outer stack pointer stored *after* the parameters. */
|
---|
2275 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
|
---|
2276 | if (rcStrict != VINF_SUCCESS)
|
---|
2277 | return rcStrict;
|
---|
2278 |
|
---|
2279 | uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
|
---|
2280 |
|
---|
2281 | uint16_t uNewOuterSs;
|
---|
2282 | uint64_t uNewOuterRsp;
|
---|
2283 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2284 | {
|
---|
2285 | uNewOuterRsp = uPtrFrame.pu16[0];
|
---|
2286 | uNewOuterSs = uPtrFrame.pu16[1];
|
---|
2287 | }
|
---|
2288 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2289 | {
|
---|
2290 | uNewOuterRsp = uPtrFrame.pu32[0];
|
---|
2291 | uNewOuterSs = uPtrFrame.pu16[2];
|
---|
2292 | }
|
---|
2293 | else
|
---|
2294 | {
|
---|
2295 | uNewOuterRsp = uPtrFrame.pu64[0];
|
---|
2296 | uNewOuterSs = uPtrFrame.pu16[4];
|
---|
2297 | }
|
---|
2298 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
|
---|
2299 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
2300 | { /* extremely likely */ }
|
---|
2301 | else
|
---|
2302 | return rcStrict;
|
---|
2303 |
|
---|
2304 | /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
|
---|
2305 | and read the selector. */
|
---|
2306 | IEMSELDESC DescSs;
|
---|
2307 | if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
|
---|
2308 | {
|
---|
2309 | if ( !DescCs.Legacy.Gen.u1Long
|
---|
2310 | || (uNewOuterSs & X86_SEL_RPL) == 3)
|
---|
2311 | {
|
---|
2312 | Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
|
---|
2313 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2314 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2315 | }
|
---|
2316 | /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
|
---|
2317 | iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
|
---|
2318 | }
|
---|
2319 | else
|
---|
2320 | {
|
---|
2321 | /* Fetch the descriptor for the new stack segment. */
|
---|
2322 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
|
---|
2323 | if (rcStrict != VINF_SUCCESS)
|
---|
2324 | return rcStrict;
|
---|
2325 | }
|
---|
2326 |
|
---|
2327 | /* Check that RPL of stack and code selectors match. */
|
---|
2328 | if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
|
---|
2329 | {
|
---|
2330 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2331 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2332 | }
|
---|
2333 |
|
---|
2334 | /* Must be a writable data segment. */
|
---|
2335 | if ( !DescSs.Legacy.Gen.u1DescType
|
---|
2336 | || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
2337 | || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
2338 | {
|
---|
2339 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
|
---|
2340 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
|
---|
2341 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2342 | }
|
---|
2343 |
|
---|
2344 | /* L vs D. (Not mentioned by intel.) */
|
---|
2345 | if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
|
---|
2346 | && DescSs.Legacy.Gen.u1DefBig
|
---|
2347 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
2348 | {
|
---|
2349 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
|
---|
2350 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2351 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2352 | }
|
---|
2353 |
|
---|
2354 | /* DPL/RPL/CPL checks. */
|
---|
2355 | if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
|
---|
2356 | {
|
---|
2357 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
|
---|
2358 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
|
---|
2359 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2360 | }
|
---|
2361 |
|
---|
2362 | /* Is it there? */
|
---|
2363 | if (!DescSs.Legacy.Gen.u1Present)
|
---|
2364 | {
|
---|
2365 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2366 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
2367 | }
|
---|
2368 |
|
---|
2369 | /* Calc SS limit.*/
|
---|
2370 | uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
|
---|
2371 |
|
---|
2372 | /* Is RIP canonical or within CS.limit? */
|
---|
2373 | uint64_t u64Base;
|
---|
2374 | uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
|
---|
2375 |
|
---|
2376 | /** @todo Testcase: Is this correct? */
|
---|
2377 | if ( DescCs.Legacy.Gen.u1Long
|
---|
2378 | && IEM_IS_LONG_MODE(pVCpu) )
|
---|
2379 | {
|
---|
2380 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
2381 | {
|
---|
2382 | Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2383 | return iemRaiseNotCanonical(pVCpu);
|
---|
2384 | }
|
---|
2385 | u64Base = 0;
|
---|
2386 | }
|
---|
2387 | else
|
---|
2388 | {
|
---|
2389 | if (uNewRip > cbLimitCs)
|
---|
2390 | {
|
---|
2391 | Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
|
---|
2392 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
|
---|
2393 | /** @todo: Intel says this is #GP(0)! */
|
---|
2394 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2395 | }
|
---|
2396 | u64Base = X86DESC_BASE(&DescCs.Legacy);
|
---|
2397 | }
|
---|
2398 |
|
---|
2399 | /*
|
---|
2400 | * Now set the accessed bit before
|
---|
2401 | * writing the return address to the stack and committing the result into
|
---|
2402 | * CS, CSHID and RIP.
|
---|
2403 | */
|
---|
2404 | /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
|
---|
2405 | if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2406 | {
|
---|
2407 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
2408 | if (rcStrict != VINF_SUCCESS)
|
---|
2409 | return rcStrict;
|
---|
2410 | /** @todo check what VT-x and AMD-V does. */
|
---|
2411 | DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2412 | }
|
---|
2413 | /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
|
---|
2414 | if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2415 | {
|
---|
2416 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
|
---|
2417 | if (rcStrict != VINF_SUCCESS)
|
---|
2418 | return rcStrict;
|
---|
2419 | /** @todo check what VT-x and AMD-V does. */
|
---|
2420 | DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2421 | }
|
---|
2422 |
|
---|
2423 | /* commit */
|
---|
2424 | pCtx->rsp = uNewRsp;
|
---|
2425 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2426 | pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
|
---|
2427 | else
|
---|
2428 | pCtx->rip = uNewRip;
|
---|
2429 | pCtx->cs.Sel = uNewCs;
|
---|
2430 | pCtx->cs.ValidSel = uNewCs;
|
---|
2431 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2432 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
|
---|
2433 | pCtx->cs.u32Limit = cbLimitCs;
|
---|
2434 | pCtx->cs.u64Base = u64Base;
|
---|
2435 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
2436 | pCtx->rsp = uNewOuterRsp;
|
---|
2437 | pCtx->ss.Sel = uNewOuterSs;
|
---|
2438 | pCtx->ss.ValidSel = uNewOuterSs;
|
---|
2439 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2440 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
|
---|
2441 | pCtx->ss.u32Limit = cbLimitSs;
|
---|
2442 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2443 | pCtx->ss.u64Base = 0;
|
---|
2444 | else
|
---|
2445 | pCtx->ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
|
---|
2446 |
|
---|
2447 | pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
|
---|
2448 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
|
---|
2449 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
|
---|
2450 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
|
---|
2451 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
|
---|
2452 |
|
---|
2453 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
2454 | * mode. */
|
---|
2455 |
|
---|
2456 | if (cbPop)
|
---|
2457 | iemRegAddToRsp(pVCpu, pCtx, cbPop);
|
---|
2458 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2459 |
|
---|
2460 | /* Done! */
|
---|
2461 | }
|
---|
2462 | /*
|
---|
2463 | * Return to the same privilege level
|
---|
2464 | */
|
---|
2465 | else
|
---|
2466 | {
|
---|
2467 | /* Limit / canonical check. */
|
---|
2468 | uint64_t u64Base;
|
---|
2469 | uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
|
---|
2470 |
|
---|
2471 | /** @todo Testcase: Is this correct? */
|
---|
2472 | if ( DescCs.Legacy.Gen.u1Long
|
---|
2473 | && IEM_IS_LONG_MODE(pVCpu) )
|
---|
2474 | {
|
---|
2475 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
2476 | {
|
---|
2477 | Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
|
---|
2478 | return iemRaiseNotCanonical(pVCpu);
|
---|
2479 | }
|
---|
2480 | u64Base = 0;
|
---|
2481 | }
|
---|
2482 | else
|
---|
2483 | {
|
---|
2484 | if (uNewRip > cbLimitCs)
|
---|
2485 | {
|
---|
2486 | Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
|
---|
2487 | /** @todo: Intel says this is #GP(0)! */
|
---|
2488 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2489 | }
|
---|
2490 | u64Base = X86DESC_BASE(&DescCs.Legacy);
|
---|
2491 | }
|
---|
2492 |
|
---|
2493 | /*
|
---|
2494 | * Now set the accessed bit before
|
---|
2495 | * writing the return address to the stack and committing the result into
|
---|
2496 | * CS, CSHID and RIP.
|
---|
2497 | */
|
---|
2498 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
2499 | if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2500 | {
|
---|
2501 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
2502 | if (rcStrict != VINF_SUCCESS)
|
---|
2503 | return rcStrict;
|
---|
2504 | /** @todo check what VT-x and AMD-V does. */
|
---|
2505 | DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2506 | }
|
---|
2507 |
|
---|
2508 | /* commit */
|
---|
2509 | pCtx->rsp = uNewRsp;
|
---|
2510 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2511 | pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
|
---|
2512 | else
|
---|
2513 | pCtx->rip = uNewRip;
|
---|
2514 | pCtx->cs.Sel = uNewCs;
|
---|
2515 | pCtx->cs.ValidSel = uNewCs;
|
---|
2516 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2517 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
|
---|
2518 | pCtx->cs.u32Limit = cbLimitCs;
|
---|
2519 | pCtx->cs.u64Base = u64Base;
|
---|
2520 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
2521 | * mode. */
|
---|
2522 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
2523 | if (cbPop)
|
---|
2524 | iemRegAddToRsp(pVCpu, pCtx, cbPop);
|
---|
2525 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2526 | }
|
---|
2527 |
|
---|
2528 | /* Flush the prefetch buffer. */
|
---|
2529 | #ifdef IEM_WITH_CODE_TLB
|
---|
2530 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
2531 | #else
|
---|
2532 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
2533 | #endif
|
---|
2534 | return VINF_SUCCESS;
|
---|
2535 | }
|
---|
2536 |
|
---|
2537 |
|
---|
2538 | /**
|
---|
2539 | * Implements retn.
|
---|
2540 | *
|
---|
2541 | * We're doing this in C because of the \#GP that might be raised if the popped
|
---|
2542 | * program counter is out of bounds.
|
---|
2543 | *
|
---|
2544 | * @param enmEffOpSize The effective operand size.
|
---|
2545 | * @param cbPop The amount of arguments to pop from the stack
|
---|
2546 | * (bytes).
|
---|
2547 | */
|
---|
2548 | IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
2549 | {
|
---|
2550 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2551 | NOREF(cbInstr);
|
---|
2552 |
|
---|
2553 | /* Fetch the RSP from the stack. */
|
---|
2554 | VBOXSTRICTRC rcStrict;
|
---|
2555 | RTUINT64U NewRip;
|
---|
2556 | RTUINT64U NewRsp;
|
---|
2557 | NewRsp.u = pCtx->rsp;
|
---|
2558 | switch (enmEffOpSize)
|
---|
2559 | {
|
---|
2560 | case IEMMODE_16BIT:
|
---|
2561 | NewRip.u = 0;
|
---|
2562 | rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
|
---|
2563 | break;
|
---|
2564 | case IEMMODE_32BIT:
|
---|
2565 | NewRip.u = 0;
|
---|
2566 | rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
|
---|
2567 | break;
|
---|
2568 | case IEMMODE_64BIT:
|
---|
2569 | rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
|
---|
2570 | break;
|
---|
2571 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2572 | }
|
---|
2573 | if (rcStrict != VINF_SUCCESS)
|
---|
2574 | return rcStrict;
|
---|
2575 |
|
---|
2576 | /* Check the new RSP before loading it. */
|
---|
2577 | /** @todo Should test this as the intel+amd pseudo code doesn't mention half
|
---|
2578 | * of it. The canonical test is performed here and for call. */
|
---|
2579 | if (enmEffOpSize != IEMMODE_64BIT)
|
---|
2580 | {
|
---|
2581 | if (NewRip.DWords.dw0 > pCtx->cs.u32Limit)
|
---|
2582 | {
|
---|
2583 | Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pCtx->cs.u32Limit));
|
---|
2584 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
2585 | }
|
---|
2586 | }
|
---|
2587 | else
|
---|
2588 | {
|
---|
2589 | if (!IEM_IS_CANONICAL(NewRip.u))
|
---|
2590 | {
|
---|
2591 | Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
|
---|
2592 | return iemRaiseNotCanonical(pVCpu);
|
---|
2593 | }
|
---|
2594 | }
|
---|
2595 |
|
---|
2596 | /* Apply cbPop */
|
---|
2597 | if (cbPop)
|
---|
2598 | iemRegAddToRspEx(pVCpu, pCtx, &NewRsp, cbPop);
|
---|
2599 |
|
---|
2600 | /* Commit it. */
|
---|
2601 | pCtx->rip = NewRip.u;
|
---|
2602 | pCtx->rsp = NewRsp.u;
|
---|
2603 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2604 |
|
---|
2605 | /* Flush the prefetch buffer. */
|
---|
2606 | #ifndef IEM_WITH_CODE_TLB
|
---|
2607 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
2608 | #endif
|
---|
2609 |
|
---|
2610 | return VINF_SUCCESS;
|
---|
2611 | }
|
---|
2612 |
|
---|
2613 |
|
---|
2614 | /**
|
---|
2615 | * Implements enter.
|
---|
2616 | *
|
---|
2617 | * We're doing this in C because the instruction is insane, even for the
|
---|
2618 | * u8NestingLevel=0 case dealing with the stack is tedious.
|
---|
2619 | *
|
---|
2620 | * @param enmEffOpSize The effective operand size.
|
---|
2621 | */
|
---|
2622 | IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
|
---|
2623 | {
|
---|
2624 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2625 |
|
---|
2626 | /* Push RBP, saving the old value in TmpRbp. */
|
---|
2627 | RTUINT64U NewRsp; NewRsp.u = pCtx->rsp;
|
---|
2628 | RTUINT64U TmpRbp; TmpRbp.u = pCtx->rbp;
|
---|
2629 | RTUINT64U NewRbp;
|
---|
2630 | VBOXSTRICTRC rcStrict;
|
---|
2631 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
2632 | {
|
---|
2633 | rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
|
---|
2634 | NewRbp = NewRsp;
|
---|
2635 | }
|
---|
2636 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2637 | {
|
---|
2638 | rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
|
---|
2639 | NewRbp = NewRsp;
|
---|
2640 | }
|
---|
2641 | else
|
---|
2642 | {
|
---|
2643 | rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
|
---|
2644 | NewRbp = TmpRbp;
|
---|
2645 | NewRbp.Words.w0 = NewRsp.Words.w0;
|
---|
2646 | }
|
---|
2647 | if (rcStrict != VINF_SUCCESS)
|
---|
2648 | return rcStrict;
|
---|
2649 |
|
---|
2650 | /* Copy the parameters (aka nesting levels by Intel). */
|
---|
2651 | cParameters &= 0x1f;
|
---|
2652 | if (cParameters > 0)
|
---|
2653 | {
|
---|
2654 | switch (enmEffOpSize)
|
---|
2655 | {
|
---|
2656 | case IEMMODE_16BIT:
|
---|
2657 | if (pCtx->ss.Attr.n.u1DefBig)
|
---|
2658 | TmpRbp.DWords.dw0 -= 2;
|
---|
2659 | else
|
---|
2660 | TmpRbp.Words.w0 -= 2;
|
---|
2661 | do
|
---|
2662 | {
|
---|
2663 | uint16_t u16Tmp;
|
---|
2664 | rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
|
---|
2665 | if (rcStrict != VINF_SUCCESS)
|
---|
2666 | break;
|
---|
2667 | rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
|
---|
2668 | } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
|
---|
2669 | break;
|
---|
2670 |
|
---|
2671 | case IEMMODE_32BIT:
|
---|
2672 | if (pCtx->ss.Attr.n.u1DefBig)
|
---|
2673 | TmpRbp.DWords.dw0 -= 4;
|
---|
2674 | else
|
---|
2675 | TmpRbp.Words.w0 -= 4;
|
---|
2676 | do
|
---|
2677 | {
|
---|
2678 | uint32_t u32Tmp;
|
---|
2679 | rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
|
---|
2680 | if (rcStrict != VINF_SUCCESS)
|
---|
2681 | break;
|
---|
2682 | rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
|
---|
2683 | } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
|
---|
2684 | break;
|
---|
2685 |
|
---|
2686 | case IEMMODE_64BIT:
|
---|
2687 | TmpRbp.u -= 8;
|
---|
2688 | do
|
---|
2689 | {
|
---|
2690 | uint64_t u64Tmp;
|
---|
2691 | rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
|
---|
2692 | if (rcStrict != VINF_SUCCESS)
|
---|
2693 | break;
|
---|
2694 | rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
|
---|
2695 | } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
|
---|
2696 | break;
|
---|
2697 |
|
---|
2698 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2699 | }
|
---|
2700 | if (rcStrict != VINF_SUCCESS)
|
---|
2701 | return VINF_SUCCESS;
|
---|
2702 |
|
---|
2703 | /* Push the new RBP */
|
---|
2704 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
2705 | rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
|
---|
2706 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2707 | rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
|
---|
2708 | else
|
---|
2709 | rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
|
---|
2710 | if (rcStrict != VINF_SUCCESS)
|
---|
2711 | return rcStrict;
|
---|
2712 |
|
---|
2713 | }
|
---|
2714 |
|
---|
2715 | /* Recalc RSP. */
|
---|
2716 | iemRegSubFromRspEx(pVCpu, pCtx, &NewRsp, cbFrame);
|
---|
2717 |
|
---|
2718 | /** @todo Should probe write access at the new RSP according to AMD. */
|
---|
2719 |
|
---|
2720 | /* Commit it. */
|
---|
2721 | pCtx->rbp = NewRbp.u;
|
---|
2722 | pCtx->rsp = NewRsp.u;
|
---|
2723 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2724 |
|
---|
2725 | return VINF_SUCCESS;
|
---|
2726 | }
|
---|
2727 |
|
---|
2728 |
|
---|
2729 |
|
---|
2730 | /**
|
---|
2731 | * Implements leave.
|
---|
2732 | *
|
---|
2733 | * We're doing this in C because messing with the stack registers is annoying
|
---|
2734 | * since they depends on SS attributes.
|
---|
2735 | *
|
---|
2736 | * @param enmEffOpSize The effective operand size.
|
---|
2737 | */
|
---|
2738 | IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
|
---|
2739 | {
|
---|
2740 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2741 |
|
---|
2742 | /* Calculate the intermediate RSP from RBP and the stack attributes. */
|
---|
2743 | RTUINT64U NewRsp;
|
---|
2744 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2745 | NewRsp.u = pCtx->rbp;
|
---|
2746 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
2747 | NewRsp.u = pCtx->ebp;
|
---|
2748 | else
|
---|
2749 | {
|
---|
2750 | /** @todo Check that LEAVE actually preserve the high EBP bits. */
|
---|
2751 | NewRsp.u = pCtx->rsp;
|
---|
2752 | NewRsp.Words.w0 = pCtx->bp;
|
---|
2753 | }
|
---|
2754 |
|
---|
2755 | /* Pop RBP according to the operand size. */
|
---|
2756 | VBOXSTRICTRC rcStrict;
|
---|
2757 | RTUINT64U NewRbp;
|
---|
2758 | switch (enmEffOpSize)
|
---|
2759 | {
|
---|
2760 | case IEMMODE_16BIT:
|
---|
2761 | NewRbp.u = pCtx->rbp;
|
---|
2762 | rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
|
---|
2763 | break;
|
---|
2764 | case IEMMODE_32BIT:
|
---|
2765 | NewRbp.u = 0;
|
---|
2766 | rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
|
---|
2767 | break;
|
---|
2768 | case IEMMODE_64BIT:
|
---|
2769 | rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
|
---|
2770 | break;
|
---|
2771 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2772 | }
|
---|
2773 | if (rcStrict != VINF_SUCCESS)
|
---|
2774 | return rcStrict;
|
---|
2775 |
|
---|
2776 |
|
---|
2777 | /* Commit it. */
|
---|
2778 | pCtx->rbp = NewRbp.u;
|
---|
2779 | pCtx->rsp = NewRsp.u;
|
---|
2780 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2781 |
|
---|
2782 | return VINF_SUCCESS;
|
---|
2783 | }
|
---|
2784 |
|
---|
2785 |
|
---|
2786 | /**
|
---|
2787 | * Implements int3 and int XX.
|
---|
2788 | *
|
---|
2789 | * @param u8Int The interrupt vector number.
|
---|
2790 | * @param fIsBpInstr Is it the breakpoint instruction.
|
---|
2791 | */
|
---|
2792 | IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, bool, fIsBpInstr)
|
---|
2793 | {
|
---|
2794 | Assert(pVCpu->iem.s.cXcptRecursions == 0);
|
---|
2795 | return iemRaiseXcptOrInt(pVCpu,
|
---|
2796 | cbInstr,
|
---|
2797 | u8Int,
|
---|
2798 | (fIsBpInstr ? IEM_XCPT_FLAGS_BP_INSTR : 0) | IEM_XCPT_FLAGS_T_SOFT_INT,
|
---|
2799 | 0,
|
---|
2800 | 0);
|
---|
2801 | }
|
---|
2802 |
|
---|
2803 |
|
---|
2804 | /**
|
---|
2805 | * Implements iret for real mode and V8086 mode.
|
---|
2806 | *
|
---|
2807 | * @param enmEffOpSize The effective operand size.
|
---|
2808 | */
|
---|
2809 | IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
|
---|
2810 | {
|
---|
2811 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2812 | X86EFLAGS Efl;
|
---|
2813 | Efl.u = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
2814 | NOREF(cbInstr);
|
---|
2815 |
|
---|
2816 | /*
|
---|
2817 | * iret throws an exception if VME isn't enabled.
|
---|
2818 | */
|
---|
2819 | if ( Efl.Bits.u1VM
|
---|
2820 | && Efl.Bits.u2IOPL != 3
|
---|
2821 | && !(pCtx->cr4 & X86_CR4_VME))
|
---|
2822 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2823 |
|
---|
2824 | /*
|
---|
2825 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
2826 | * out right.
|
---|
2827 | */
|
---|
2828 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
2829 | VBOXSTRICTRC rcStrict;
|
---|
2830 | RTCPTRUNION uFrame;
|
---|
2831 | uint16_t uNewCs;
|
---|
2832 | uint32_t uNewEip;
|
---|
2833 | uint32_t uNewFlags;
|
---|
2834 | uint64_t uNewRsp;
|
---|
2835 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2836 | {
|
---|
2837 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
|
---|
2838 | if (rcStrict != VINF_SUCCESS)
|
---|
2839 | return rcStrict;
|
---|
2840 | uNewEip = uFrame.pu32[0];
|
---|
2841 | if (uNewEip > UINT16_MAX)
|
---|
2842 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2843 |
|
---|
2844 | uNewCs = (uint16_t)uFrame.pu32[1];
|
---|
2845 | uNewFlags = uFrame.pu32[2];
|
---|
2846 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
2847 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
|
---|
2848 | | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
|
---|
2849 | | X86_EFL_ID;
|
---|
2850 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
2851 | uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
|
---|
2852 | uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
|
---|
2853 | }
|
---|
2854 | else
|
---|
2855 | {
|
---|
2856 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
|
---|
2857 | if (rcStrict != VINF_SUCCESS)
|
---|
2858 | return rcStrict;
|
---|
2859 | uNewEip = uFrame.pu16[0];
|
---|
2860 | uNewCs = uFrame.pu16[1];
|
---|
2861 | uNewFlags = uFrame.pu16[2];
|
---|
2862 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
2863 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
|
---|
2864 | uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
|
---|
2865 | /** @todo The intel pseudo code does not indicate what happens to
|
---|
2866 | * reserved flags. We just ignore them. */
|
---|
2867 | /* Ancient CPU adjustments: See iemCImpl_popf. */
|
---|
2868 | if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
|
---|
2869 | uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
|
---|
2870 | }
|
---|
2871 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
|
---|
2872 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
2873 | { /* extremely likely */ }
|
---|
2874 | else
|
---|
2875 | return rcStrict;
|
---|
2876 |
|
---|
2877 | /** @todo Check how this is supposed to work if sp=0xfffe. */
|
---|
2878 | Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
|
---|
2879 | uNewCs, uNewEip, uNewFlags, uNewRsp));
|
---|
2880 |
|
---|
2881 | /*
|
---|
2882 | * Check the limit of the new EIP.
|
---|
2883 | */
|
---|
2884 | /** @todo Only the AMD pseudo code check the limit here, what's
|
---|
2885 | * right? */
|
---|
2886 | if (uNewEip > pCtx->cs.u32Limit)
|
---|
2887 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
2888 |
|
---|
2889 | /*
|
---|
2890 | * V8086 checks and flag adjustments
|
---|
2891 | */
|
---|
2892 | if (Efl.Bits.u1VM)
|
---|
2893 | {
|
---|
2894 | if (Efl.Bits.u2IOPL == 3)
|
---|
2895 | {
|
---|
2896 | /* Preserve IOPL and clear RF. */
|
---|
2897 | uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
|
---|
2898 | uNewFlags |= Efl.u & (X86_EFL_IOPL);
|
---|
2899 | }
|
---|
2900 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
2901 | && ( !(uNewFlags & X86_EFL_IF)
|
---|
2902 | || !Efl.Bits.u1VIP )
|
---|
2903 | && !(uNewFlags & X86_EFL_TF) )
|
---|
2904 | {
|
---|
2905 | /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
|
---|
2906 | uNewFlags &= ~X86_EFL_VIF;
|
---|
2907 | uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
|
---|
2908 | uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
|
---|
2909 | uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
|
---|
2910 | }
|
---|
2911 | else
|
---|
2912 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2913 | Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
|
---|
2914 | }
|
---|
2915 |
|
---|
2916 | /*
|
---|
2917 | * Commit the operation.
|
---|
2918 | */
|
---|
2919 | #ifdef DBGFTRACE_ENABLED
|
---|
2920 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
|
---|
2921 | pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
|
---|
2922 | #endif
|
---|
2923 | pCtx->rsp = uNewRsp;
|
---|
2924 | pCtx->rip = uNewEip;
|
---|
2925 | pCtx->cs.Sel = uNewCs;
|
---|
2926 | pCtx->cs.ValidSel = uNewCs;
|
---|
2927 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2928 | pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
|
---|
2929 | /** @todo do we load attribs and limit as well? */
|
---|
2930 | Assert(uNewFlags & X86_EFL_1);
|
---|
2931 | IEMMISC_SET_EFL(pVCpu, pCtx, uNewFlags);
|
---|
2932 |
|
---|
2933 | /* Flush the prefetch buffer. */
|
---|
2934 | #ifdef IEM_WITH_CODE_TLB
|
---|
2935 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
2936 | #else
|
---|
2937 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
2938 | #endif
|
---|
2939 |
|
---|
2940 | return VINF_SUCCESS;
|
---|
2941 | }
|
---|
2942 |
|
---|
2943 |
|
---|
2944 | /**
|
---|
2945 | * Loads a segment register when entering V8086 mode.
|
---|
2946 | *
|
---|
2947 | * @param pSReg The segment register.
|
---|
2948 | * @param uSeg The segment to load.
|
---|
2949 | */
|
---|
2950 | static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
|
---|
2951 | {
|
---|
2952 | pSReg->Sel = uSeg;
|
---|
2953 | pSReg->ValidSel = uSeg;
|
---|
2954 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2955 | pSReg->u64Base = (uint32_t)uSeg << 4;
|
---|
2956 | pSReg->u32Limit = 0xffff;
|
---|
2957 | pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
|
---|
2958 | /** @todo Testcase: Check if VT-x really needs this and what it does itself when
|
---|
2959 | * IRET'ing to V8086. */
|
---|
2960 | }
|
---|
2961 |
|
---|
2962 |
|
---|
2963 | /**
|
---|
2964 | * Implements iret for protected mode returning to V8086 mode.
|
---|
2965 | *
|
---|
2966 | * @param pCtx Pointer to the CPU context.
|
---|
2967 | * @param uNewEip The new EIP.
|
---|
2968 | * @param uNewCs The new CS.
|
---|
2969 | * @param uNewFlags The new EFLAGS.
|
---|
2970 | * @param uNewRsp The RSP after the initial IRET frame.
|
---|
2971 | *
|
---|
2972 | * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
|
---|
2973 | */
|
---|
2974 | IEM_CIMPL_DEF_5(iemCImpl_iret_prot_v8086, PCPUMCTX, pCtx, uint32_t, uNewEip, uint16_t, uNewCs,
|
---|
2975 | uint32_t, uNewFlags, uint64_t, uNewRsp)
|
---|
2976 | {
|
---|
2977 | RT_NOREF_PV(cbInstr);
|
---|
2978 |
|
---|
2979 | /*
|
---|
2980 | * Pop the V8086 specific frame bits off the stack.
|
---|
2981 | */
|
---|
2982 | VBOXSTRICTRC rcStrict;
|
---|
2983 | RTCPTRUNION uFrame;
|
---|
2984 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
|
---|
2985 | if (rcStrict != VINF_SUCCESS)
|
---|
2986 | return rcStrict;
|
---|
2987 | uint32_t uNewEsp = uFrame.pu32[0];
|
---|
2988 | uint16_t uNewSs = uFrame.pu32[1];
|
---|
2989 | uint16_t uNewEs = uFrame.pu32[2];
|
---|
2990 | uint16_t uNewDs = uFrame.pu32[3];
|
---|
2991 | uint16_t uNewFs = uFrame.pu32[4];
|
---|
2992 | uint16_t uNewGs = uFrame.pu32[5];
|
---|
2993 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
|
---|
2994 | if (rcStrict != VINF_SUCCESS)
|
---|
2995 | return rcStrict;
|
---|
2996 |
|
---|
2997 | /*
|
---|
2998 | * Commit the operation.
|
---|
2999 | */
|
---|
3000 | uNewFlags &= X86_EFL_LIVE_MASK;
|
---|
3001 | uNewFlags |= X86_EFL_RA1_MASK;
|
---|
3002 | #ifdef DBGFTRACE_ENABLED
|
---|
3003 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
|
---|
3004 | pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
|
---|
3005 | #endif
|
---|
3006 |
|
---|
3007 | IEMMISC_SET_EFL(pVCpu, pCtx, uNewFlags);
|
---|
3008 | iemCImplCommonV8086LoadSeg(&pCtx->cs, uNewCs);
|
---|
3009 | iemCImplCommonV8086LoadSeg(&pCtx->ss, uNewSs);
|
---|
3010 | iemCImplCommonV8086LoadSeg(&pCtx->es, uNewEs);
|
---|
3011 | iemCImplCommonV8086LoadSeg(&pCtx->ds, uNewDs);
|
---|
3012 | iemCImplCommonV8086LoadSeg(&pCtx->fs, uNewFs);
|
---|
3013 | iemCImplCommonV8086LoadSeg(&pCtx->gs, uNewGs);
|
---|
3014 | pCtx->rip = (uint16_t)uNewEip;
|
---|
3015 | pCtx->rsp = uNewEsp; /** @todo check this out! */
|
---|
3016 | pVCpu->iem.s.uCpl = 3;
|
---|
3017 |
|
---|
3018 | /* Flush the prefetch buffer. */
|
---|
3019 | #ifdef IEM_WITH_CODE_TLB
|
---|
3020 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3021 | #else
|
---|
3022 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3023 | #endif
|
---|
3024 |
|
---|
3025 | return VINF_SUCCESS;
|
---|
3026 | }
|
---|
3027 |
|
---|
3028 |
|
---|
3029 | /**
|
---|
3030 | * Implements iret for protected mode returning via a nested task.
|
---|
3031 | *
|
---|
3032 | * @param enmEffOpSize The effective operand size.
|
---|
3033 | */
|
---|
3034 | IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
|
---|
3035 | {
|
---|
3036 | Log7(("iemCImpl_iret_prot_NestedTask:\n"));
|
---|
3037 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
3038 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
3039 | #else
|
---|
3040 | RT_NOREF_PV(enmEffOpSize);
|
---|
3041 |
|
---|
3042 | /*
|
---|
3043 | * Read the segment selector in the link-field of the current TSS.
|
---|
3044 | */
|
---|
3045 | RTSEL uSelRet;
|
---|
3046 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3047 | VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pCtx->tr.u64Base);
|
---|
3048 | if (rcStrict != VINF_SUCCESS)
|
---|
3049 | return rcStrict;
|
---|
3050 |
|
---|
3051 | /*
|
---|
3052 | * Fetch the returning task's TSS descriptor from the GDT.
|
---|
3053 | */
|
---|
3054 | if (uSelRet & X86_SEL_LDT)
|
---|
3055 | {
|
---|
3056 | Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
|
---|
3057 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
|
---|
3058 | }
|
---|
3059 |
|
---|
3060 | IEMSELDESC TssDesc;
|
---|
3061 | rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
|
---|
3062 | if (rcStrict != VINF_SUCCESS)
|
---|
3063 | return rcStrict;
|
---|
3064 |
|
---|
3065 | if (TssDesc.Legacy.Gate.u1DescType)
|
---|
3066 | {
|
---|
3067 | Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
|
---|
3068 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
|
---|
3069 | }
|
---|
3070 |
|
---|
3071 | if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
3072 | && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
3073 | {
|
---|
3074 | Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
|
---|
3075 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
|
---|
3076 | }
|
---|
3077 |
|
---|
3078 | if (!TssDesc.Legacy.Gate.u1Present)
|
---|
3079 | {
|
---|
3080 | Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
|
---|
3081 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
|
---|
3082 | }
|
---|
3083 |
|
---|
3084 | uint32_t uNextEip = pCtx->eip + cbInstr;
|
---|
3085 | return iemTaskSwitch(pVCpu, pCtx, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
|
---|
3086 | 0 /* uCr2 */, uSelRet, &TssDesc);
|
---|
3087 | #endif
|
---|
3088 | }
|
---|
3089 |
|
---|
3090 |
|
---|
3091 | /**
|
---|
3092 | * Implements iret for protected mode
|
---|
3093 | *
|
---|
3094 | * @param enmEffOpSize The effective operand size.
|
---|
3095 | */
|
---|
3096 | IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
|
---|
3097 | {
|
---|
3098 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3099 | NOREF(cbInstr);
|
---|
3100 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
3101 |
|
---|
3102 | /*
|
---|
3103 | * Nested task return.
|
---|
3104 | */
|
---|
3105 | if (pCtx->eflags.Bits.u1NT)
|
---|
3106 | return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
|
---|
3107 |
|
---|
3108 | /*
|
---|
3109 | * Normal return.
|
---|
3110 | *
|
---|
3111 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
3112 | * out right.
|
---|
3113 | */
|
---|
3114 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
3115 | VBOXSTRICTRC rcStrict;
|
---|
3116 | RTCPTRUNION uFrame;
|
---|
3117 | uint16_t uNewCs;
|
---|
3118 | uint32_t uNewEip;
|
---|
3119 | uint32_t uNewFlags;
|
---|
3120 | uint64_t uNewRsp;
|
---|
3121 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
3122 | {
|
---|
3123 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
|
---|
3124 | if (rcStrict != VINF_SUCCESS)
|
---|
3125 | return rcStrict;
|
---|
3126 | uNewEip = uFrame.pu32[0];
|
---|
3127 | uNewCs = (uint16_t)uFrame.pu32[1];
|
---|
3128 | uNewFlags = uFrame.pu32[2];
|
---|
3129 | }
|
---|
3130 | else
|
---|
3131 | {
|
---|
3132 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
|
---|
3133 | if (rcStrict != VINF_SUCCESS)
|
---|
3134 | return rcStrict;
|
---|
3135 | uNewEip = uFrame.pu16[0];
|
---|
3136 | uNewCs = uFrame.pu16[1];
|
---|
3137 | uNewFlags = uFrame.pu16[2];
|
---|
3138 | }
|
---|
3139 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
|
---|
3140 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3141 | { /* extremely likely */ }
|
---|
3142 | else
|
---|
3143 | return rcStrict;
|
---|
3144 | Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n", uNewCs, uNewEip, uNewFlags, uNewRsp));
|
---|
3145 |
|
---|
3146 | /*
|
---|
3147 | * We're hopefully not returning to V8086 mode...
|
---|
3148 | */
|
---|
3149 | if ( (uNewFlags & X86_EFL_VM)
|
---|
3150 | && pVCpu->iem.s.uCpl == 0)
|
---|
3151 | {
|
---|
3152 | Assert(enmEffOpSize == IEMMODE_32BIT);
|
---|
3153 | return IEM_CIMPL_CALL_5(iemCImpl_iret_prot_v8086, pCtx, uNewEip, uNewCs, uNewFlags, uNewRsp);
|
---|
3154 | }
|
---|
3155 |
|
---|
3156 | /*
|
---|
3157 | * Protected mode.
|
---|
3158 | */
|
---|
3159 | /* Read the CS descriptor. */
|
---|
3160 | if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
|
---|
3161 | {
|
---|
3162 | Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
|
---|
3163 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 | IEMSELDESC DescCS;
|
---|
3167 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
|
---|
3168 | if (rcStrict != VINF_SUCCESS)
|
---|
3169 | {
|
---|
3170 | Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3171 | return rcStrict;
|
---|
3172 | }
|
---|
3173 |
|
---|
3174 | /* Must be a code descriptor. */
|
---|
3175 | if (!DescCS.Legacy.Gen.u1DescType)
|
---|
3176 | {
|
---|
3177 | Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
|
---|
3178 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3179 | }
|
---|
3180 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3181 | {
|
---|
3182 | Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
|
---|
3183 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3184 | }
|
---|
3185 |
|
---|
3186 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
3187 | /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
|
---|
3188 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3189 | if (EMIsRawRing0Enabled(pVM) && !HMIsEnabled(pVM))
|
---|
3190 | {
|
---|
3191 | if ((uNewCs & X86_SEL_RPL) == 1)
|
---|
3192 | {
|
---|
3193 | if ( pVCpu->iem.s.uCpl == 0
|
---|
3194 | && ( !EMIsRawRing1Enabled(pVM)
|
---|
3195 | || pCtx->cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
|
---|
3196 | {
|
---|
3197 | Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
|
---|
3198 | uNewCs &= X86_SEL_MASK_OFF_RPL;
|
---|
3199 | }
|
---|
3200 | # ifdef LOG_ENABLED
|
---|
3201 | else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM))
|
---|
3202 | Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
|
---|
3203 | # endif
|
---|
3204 | }
|
---|
3205 | else if ( (uNewCs & X86_SEL_RPL) == 2
|
---|
3206 | && EMIsRawRing1Enabled(pVM)
|
---|
3207 | && pVCpu->iem.s.uCpl <= 1)
|
---|
3208 | {
|
---|
3209 | Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
|
---|
3210 | uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
|
---|
3211 | }
|
---|
3212 | }
|
---|
3213 | #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
3214 |
|
---|
3215 |
|
---|
3216 | /* Privilege checks. */
|
---|
3217 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
|
---|
3218 | {
|
---|
3219 | if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
|
---|
3220 | {
|
---|
3221 | Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3222 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3223 | }
|
---|
3224 | }
|
---|
3225 | else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
|
---|
3226 | {
|
---|
3227 | Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3228 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3229 | }
|
---|
3230 | if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
|
---|
3231 | {
|
---|
3232 | Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
|
---|
3233 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3234 | }
|
---|
3235 |
|
---|
3236 | /* Present? */
|
---|
3237 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3238 | {
|
---|
3239 | Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
|
---|
3240 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
3241 | }
|
---|
3242 |
|
---|
3243 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3244 |
|
---|
3245 | /*
|
---|
3246 | * Return to outer level?
|
---|
3247 | */
|
---|
3248 | if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
|
---|
3249 | {
|
---|
3250 | uint16_t uNewSS;
|
---|
3251 | uint32_t uNewESP;
|
---|
3252 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
3253 | {
|
---|
3254 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
|
---|
3255 | if (rcStrict != VINF_SUCCESS)
|
---|
3256 | return rcStrict;
|
---|
3257 | /** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
|
---|
3258 | * 16-bit or 32-bit are being loaded into SP depends on the D/B
|
---|
3259 | * bit of the popped SS selector it turns out. */
|
---|
3260 | uNewESP = uFrame.pu32[0];
|
---|
3261 | uNewSS = (uint16_t)uFrame.pu32[1];
|
---|
3262 | }
|
---|
3263 | else
|
---|
3264 | {
|
---|
3265 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
|
---|
3266 | if (rcStrict != VINF_SUCCESS)
|
---|
3267 | return rcStrict;
|
---|
3268 | uNewESP = uFrame.pu16[0];
|
---|
3269 | uNewSS = uFrame.pu16[1];
|
---|
3270 | }
|
---|
3271 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
|
---|
3272 | if (rcStrict != VINF_SUCCESS)
|
---|
3273 | return rcStrict;
|
---|
3274 | Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
|
---|
3275 |
|
---|
3276 | /* Read the SS descriptor. */
|
---|
3277 | if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
|
---|
3278 | {
|
---|
3279 | Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
|
---|
3280 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3281 | }
|
---|
3282 |
|
---|
3283 | IEMSELDESC DescSS;
|
---|
3284 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
3285 | if (rcStrict != VINF_SUCCESS)
|
---|
3286 | {
|
---|
3287 | Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
|
---|
3288 | uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3289 | return rcStrict;
|
---|
3290 | }
|
---|
3291 |
|
---|
3292 | /* Privilege checks. */
|
---|
3293 | if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
|
---|
3294 | {
|
---|
3295 | Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
|
---|
3296 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3297 | }
|
---|
3298 | if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
|
---|
3299 | {
|
---|
3300 | Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
|
---|
3301 | uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
|
---|
3302 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3303 | }
|
---|
3304 |
|
---|
3305 | /* Must be a writeable data segment descriptor. */
|
---|
3306 | if (!DescSS.Legacy.Gen.u1DescType)
|
---|
3307 | {
|
---|
3308 | Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
|
---|
3309 | uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
|
---|
3310 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3311 | }
|
---|
3312 | if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
|
---|
3313 | {
|
---|
3314 | Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
|
---|
3315 | uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
|
---|
3316 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3317 | }
|
---|
3318 |
|
---|
3319 | /* Present? */
|
---|
3320 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
3321 | {
|
---|
3322 | Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
|
---|
3323 | return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
|
---|
3324 | }
|
---|
3325 |
|
---|
3326 | uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3327 |
|
---|
3328 | /* Check EIP. */
|
---|
3329 | if (uNewEip > cbLimitCS)
|
---|
3330 | {
|
---|
3331 | Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
|
---|
3332 | uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
|
---|
3333 | /** @todo: Which is it, #GP(0) or #GP(sel)? */
|
---|
3334 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3335 | }
|
---|
3336 |
|
---|
3337 | /*
|
---|
3338 | * Commit the changes, marking CS and SS accessed first since
|
---|
3339 | * that may fail.
|
---|
3340 | */
|
---|
3341 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3342 | {
|
---|
3343 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
3344 | if (rcStrict != VINF_SUCCESS)
|
---|
3345 | return rcStrict;
|
---|
3346 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3347 | }
|
---|
3348 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3349 | {
|
---|
3350 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
|
---|
3351 | if (rcStrict != VINF_SUCCESS)
|
---|
3352 | return rcStrict;
|
---|
3353 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3354 | }
|
---|
3355 |
|
---|
3356 | uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
3357 | | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
|
---|
3358 | if (enmEffOpSize != IEMMODE_16BIT)
|
---|
3359 | fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
|
---|
3360 | if (pVCpu->iem.s.uCpl == 0)
|
---|
3361 | fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
|
---|
3362 | else if (pVCpu->iem.s.uCpl <= pCtx->eflags.Bits.u2IOPL)
|
---|
3363 | fEFlagsMask |= X86_EFL_IF;
|
---|
3364 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
3365 | fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
|
---|
3366 | uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
3367 | fEFlagsNew &= ~fEFlagsMask;
|
---|
3368 | fEFlagsNew |= uNewFlags & fEFlagsMask;
|
---|
3369 | #ifdef DBGFTRACE_ENABLED
|
---|
3370 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
|
---|
3371 | pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pCtx->cs.Sel, pCtx->eip,
|
---|
3372 | uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
|
---|
3373 | #endif
|
---|
3374 |
|
---|
3375 | IEMMISC_SET_EFL(pVCpu, pCtx, fEFlagsNew);
|
---|
3376 | pCtx->rip = uNewEip;
|
---|
3377 | pCtx->cs.Sel = uNewCs;
|
---|
3378 | pCtx->cs.ValidSel = uNewCs;
|
---|
3379 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3380 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3381 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
3382 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3383 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
3384 | if (!pCtx->ss.Attr.n.u1DefBig)
|
---|
3385 | pCtx->sp = (uint16_t)uNewESP;
|
---|
3386 | else
|
---|
3387 | pCtx->rsp = uNewESP;
|
---|
3388 | pCtx->ss.Sel = uNewSS;
|
---|
3389 | pCtx->ss.ValidSel = uNewSS;
|
---|
3390 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3391 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3392 | pCtx->ss.u32Limit = cbLimitSs;
|
---|
3393 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3394 |
|
---|
3395 | pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
|
---|
3396 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
|
---|
3397 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
|
---|
3398 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
|
---|
3399 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
|
---|
3400 |
|
---|
3401 | /* Done! */
|
---|
3402 |
|
---|
3403 | }
|
---|
3404 | /*
|
---|
3405 | * Return to the same level.
|
---|
3406 | */
|
---|
3407 | else
|
---|
3408 | {
|
---|
3409 | /* Check EIP. */
|
---|
3410 | if (uNewEip > cbLimitCS)
|
---|
3411 | {
|
---|
3412 | Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
|
---|
3413 | /** @todo: Which is it, #GP(0) or #GP(sel)? */
|
---|
3414 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3415 | }
|
---|
3416 |
|
---|
3417 | /*
|
---|
3418 | * Commit the changes, marking CS first since it may fail.
|
---|
3419 | */
|
---|
3420 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3421 | {
|
---|
3422 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
3423 | if (rcStrict != VINF_SUCCESS)
|
---|
3424 | return rcStrict;
|
---|
3425 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3426 | }
|
---|
3427 |
|
---|
3428 | X86EFLAGS NewEfl;
|
---|
3429 | NewEfl.u = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
3430 | uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
3431 | | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
|
---|
3432 | if (enmEffOpSize != IEMMODE_16BIT)
|
---|
3433 | fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
|
---|
3434 | if (pVCpu->iem.s.uCpl == 0)
|
---|
3435 | fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
|
---|
3436 | else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
|
---|
3437 | fEFlagsMask |= X86_EFL_IF;
|
---|
3438 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
3439 | fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
|
---|
3440 | NewEfl.u &= ~fEFlagsMask;
|
---|
3441 | NewEfl.u |= fEFlagsMask & uNewFlags;
|
---|
3442 | #ifdef DBGFTRACE_ENABLED
|
---|
3443 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
|
---|
3444 | pVCpu->iem.s.uCpl, pCtx->cs.Sel, pCtx->eip,
|
---|
3445 | uNewCs, uNewEip, uNewFlags, pCtx->ss.Sel, uNewRsp);
|
---|
3446 | #endif
|
---|
3447 |
|
---|
3448 | IEMMISC_SET_EFL(pVCpu, pCtx, NewEfl.u);
|
---|
3449 | pCtx->rip = uNewEip;
|
---|
3450 | pCtx->cs.Sel = uNewCs;
|
---|
3451 | pCtx->cs.ValidSel = uNewCs;
|
---|
3452 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3453 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3454 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
3455 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3456 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
3457 | pCtx->rsp = uNewRsp;
|
---|
3458 | /* Done! */
|
---|
3459 | }
|
---|
3460 |
|
---|
3461 | /* Flush the prefetch buffer. */
|
---|
3462 | #ifdef IEM_WITH_CODE_TLB
|
---|
3463 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3464 | #else
|
---|
3465 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3466 | #endif
|
---|
3467 |
|
---|
3468 | return VINF_SUCCESS;
|
---|
3469 | }
|
---|
3470 |
|
---|
3471 |
|
---|
3472 | /**
|
---|
3473 | * Implements iret for long mode
|
---|
3474 | *
|
---|
3475 | * @param enmEffOpSize The effective operand size.
|
---|
3476 | */
|
---|
3477 | IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
|
---|
3478 | {
|
---|
3479 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3480 | NOREF(cbInstr);
|
---|
3481 |
|
---|
3482 | /*
|
---|
3483 | * Nested task return is not supported in long mode.
|
---|
3484 | */
|
---|
3485 | if (pCtx->eflags.Bits.u1NT)
|
---|
3486 | {
|
---|
3487 | Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pCtx->eflags.u));
|
---|
3488 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3489 | }
|
---|
3490 |
|
---|
3491 | /*
|
---|
3492 | * Normal return.
|
---|
3493 | *
|
---|
3494 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
3495 | * out right.
|
---|
3496 | */
|
---|
3497 | VBOXSTRICTRC rcStrict;
|
---|
3498 | RTCPTRUNION uFrame;
|
---|
3499 | uint64_t uNewRip;
|
---|
3500 | uint16_t uNewCs;
|
---|
3501 | uint16_t uNewSs;
|
---|
3502 | uint32_t uNewFlags;
|
---|
3503 | uint64_t uNewRsp;
|
---|
3504 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
3505 | {
|
---|
3506 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
|
---|
3507 | if (rcStrict != VINF_SUCCESS)
|
---|
3508 | return rcStrict;
|
---|
3509 | uNewRip = uFrame.pu64[0];
|
---|
3510 | uNewCs = (uint16_t)uFrame.pu64[1];
|
---|
3511 | uNewFlags = (uint32_t)uFrame.pu64[2];
|
---|
3512 | uNewRsp = uFrame.pu64[3];
|
---|
3513 | uNewSs = (uint16_t)uFrame.pu64[4];
|
---|
3514 | }
|
---|
3515 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
3516 | {
|
---|
3517 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
|
---|
3518 | if (rcStrict != VINF_SUCCESS)
|
---|
3519 | return rcStrict;
|
---|
3520 | uNewRip = uFrame.pu32[0];
|
---|
3521 | uNewCs = (uint16_t)uFrame.pu32[1];
|
---|
3522 | uNewFlags = uFrame.pu32[2];
|
---|
3523 | uNewRsp = uFrame.pu32[3];
|
---|
3524 | uNewSs = (uint16_t)uFrame.pu32[4];
|
---|
3525 | }
|
---|
3526 | else
|
---|
3527 | {
|
---|
3528 | Assert(enmEffOpSize == IEMMODE_16BIT);
|
---|
3529 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
|
---|
3530 | if (rcStrict != VINF_SUCCESS)
|
---|
3531 | return rcStrict;
|
---|
3532 | uNewRip = uFrame.pu16[0];
|
---|
3533 | uNewCs = uFrame.pu16[1];
|
---|
3534 | uNewFlags = uFrame.pu16[2];
|
---|
3535 | uNewRsp = uFrame.pu16[3];
|
---|
3536 | uNewSs = uFrame.pu16[4];
|
---|
3537 | }
|
---|
3538 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
|
---|
3539 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3540 | { /* extremely like */ }
|
---|
3541 | else
|
---|
3542 | return rcStrict;
|
---|
3543 | Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
|
---|
3544 |
|
---|
3545 | /*
|
---|
3546 | * Check stuff.
|
---|
3547 | */
|
---|
3548 | /* Read the CS descriptor. */
|
---|
3549 | if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
|
---|
3550 | {
|
---|
3551 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3552 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3553 | }
|
---|
3554 |
|
---|
3555 | IEMSELDESC DescCS;
|
---|
3556 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
|
---|
3557 | if (rcStrict != VINF_SUCCESS)
|
---|
3558 | {
|
---|
3559 | Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
|
---|
3560 | uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3561 | return rcStrict;
|
---|
3562 | }
|
---|
3563 |
|
---|
3564 | /* Must be a code descriptor. */
|
---|
3565 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
3566 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3567 | {
|
---|
3568 | Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
|
---|
3569 | uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
3570 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3571 | }
|
---|
3572 |
|
---|
3573 | /* Privilege checks. */
|
---|
3574 | uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
|
---|
3575 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
|
---|
3576 | {
|
---|
3577 | if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
|
---|
3578 | {
|
---|
3579 | Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3580 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3581 | }
|
---|
3582 | }
|
---|
3583 | else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
|
---|
3584 | {
|
---|
3585 | Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3586 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3587 | }
|
---|
3588 | if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
|
---|
3589 | {
|
---|
3590 | Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
|
---|
3591 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3592 | }
|
---|
3593 |
|
---|
3594 | /* Present? */
|
---|
3595 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3596 | {
|
---|
3597 | Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3598 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
3599 | }
|
---|
3600 |
|
---|
3601 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3602 |
|
---|
3603 | /* Read the SS descriptor. */
|
---|
3604 | IEMSELDESC DescSS;
|
---|
3605 | if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
|
---|
3606 | {
|
---|
3607 | if ( !DescCS.Legacy.Gen.u1Long
|
---|
3608 | || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
|
---|
3609 | || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
|
---|
3610 | {
|
---|
3611 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3612 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3613 | }
|
---|
3614 | DescSS.Legacy.u = 0;
|
---|
3615 | }
|
---|
3616 | else
|
---|
3617 | {
|
---|
3618 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
3619 | if (rcStrict != VINF_SUCCESS)
|
---|
3620 | {
|
---|
3621 | Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
|
---|
3622 | uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3623 | return rcStrict;
|
---|
3624 | }
|
---|
3625 | }
|
---|
3626 |
|
---|
3627 | /* Privilege checks. */
|
---|
3628 | if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
|
---|
3629 | {
|
---|
3630 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3631 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3632 | }
|
---|
3633 |
|
---|
3634 | uint32_t cbLimitSs;
|
---|
3635 | if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
|
---|
3636 | cbLimitSs = UINT32_MAX;
|
---|
3637 | else
|
---|
3638 | {
|
---|
3639 | if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
|
---|
3640 | {
|
---|
3641 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
|
---|
3642 | uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
|
---|
3643 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3644 | }
|
---|
3645 |
|
---|
3646 | /* Must be a writeable data segment descriptor. */
|
---|
3647 | if (!DescSS.Legacy.Gen.u1DescType)
|
---|
3648 | {
|
---|
3649 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
|
---|
3650 | uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
|
---|
3651 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3652 | }
|
---|
3653 | if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
|
---|
3654 | {
|
---|
3655 | Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
|
---|
3656 | uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
|
---|
3657 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3658 | }
|
---|
3659 |
|
---|
3660 | /* Present? */
|
---|
3661 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
3662 | {
|
---|
3663 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3664 | return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
|
---|
3665 | }
|
---|
3666 | cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3667 | }
|
---|
3668 |
|
---|
3669 | /* Check EIP. */
|
---|
3670 | if (DescCS.Legacy.Gen.u1Long)
|
---|
3671 | {
|
---|
3672 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
3673 | {
|
---|
3674 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
|
---|
3675 | uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3676 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3677 | }
|
---|
3678 | }
|
---|
3679 | else
|
---|
3680 | {
|
---|
3681 | if (uNewRip > cbLimitCS)
|
---|
3682 | {
|
---|
3683 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
|
---|
3684 | uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
|
---|
3685 | /** @todo: Which is it, #GP(0) or #GP(sel)? */
|
---|
3686 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3687 | }
|
---|
3688 | }
|
---|
3689 |
|
---|
3690 | /*
|
---|
3691 | * Commit the changes, marking CS and SS accessed first since
|
---|
3692 | * that may fail.
|
---|
3693 | */
|
---|
3694 | /** @todo where exactly are these actually marked accessed by a real CPU? */
|
---|
3695 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3696 | {
|
---|
3697 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
3698 | if (rcStrict != VINF_SUCCESS)
|
---|
3699 | return rcStrict;
|
---|
3700 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3701 | }
|
---|
3702 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3703 | {
|
---|
3704 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
|
---|
3705 | if (rcStrict != VINF_SUCCESS)
|
---|
3706 | return rcStrict;
|
---|
3707 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3708 | }
|
---|
3709 |
|
---|
3710 | uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
3711 | | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
|
---|
3712 | if (enmEffOpSize != IEMMODE_16BIT)
|
---|
3713 | fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
|
---|
3714 | if (pVCpu->iem.s.uCpl == 0)
|
---|
3715 | fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
|
---|
3716 | else if (pVCpu->iem.s.uCpl <= pCtx->eflags.Bits.u2IOPL)
|
---|
3717 | fEFlagsMask |= X86_EFL_IF;
|
---|
3718 | uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
3719 | fEFlagsNew &= ~fEFlagsMask;
|
---|
3720 | fEFlagsNew |= uNewFlags & fEFlagsMask;
|
---|
3721 | #ifdef DBGFTRACE_ENABLED
|
---|
3722 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
|
---|
3723 | pVCpu->iem.s.uCpl, uNewCpl, pCtx->rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
|
---|
3724 | #endif
|
---|
3725 |
|
---|
3726 | IEMMISC_SET_EFL(pVCpu, pCtx, fEFlagsNew);
|
---|
3727 | pCtx->rip = uNewRip;
|
---|
3728 | pCtx->cs.Sel = uNewCs;
|
---|
3729 | pCtx->cs.ValidSel = uNewCs;
|
---|
3730 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3731 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3732 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
3733 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3734 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
3735 | if (pCtx->cs.Attr.n.u1Long || pCtx->cs.Attr.n.u1DefBig)
|
---|
3736 | pCtx->rsp = uNewRsp;
|
---|
3737 | else
|
---|
3738 | pCtx->sp = (uint16_t)uNewRsp;
|
---|
3739 | pCtx->ss.Sel = uNewSs;
|
---|
3740 | pCtx->ss.ValidSel = uNewSs;
|
---|
3741 | if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
|
---|
3742 | {
|
---|
3743 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3744 | pCtx->ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
|
---|
3745 | pCtx->ss.u32Limit = UINT32_MAX;
|
---|
3746 | pCtx->ss.u64Base = 0;
|
---|
3747 | Log2(("iretq new SS: NULL\n"));
|
---|
3748 | }
|
---|
3749 | else
|
---|
3750 | {
|
---|
3751 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3752 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3753 | pCtx->ss.u32Limit = cbLimitSs;
|
---|
3754 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3755 | Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u));
|
---|
3756 | }
|
---|
3757 |
|
---|
3758 | if (pVCpu->iem.s.uCpl != uNewCpl)
|
---|
3759 | {
|
---|
3760 | pVCpu->iem.s.uCpl = uNewCpl;
|
---|
3761 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->ds);
|
---|
3762 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->es);
|
---|
3763 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->fs);
|
---|
3764 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->gs);
|
---|
3765 | }
|
---|
3766 |
|
---|
3767 | /* Flush the prefetch buffer. */
|
---|
3768 | #ifdef IEM_WITH_CODE_TLB
|
---|
3769 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3770 | #else
|
---|
3771 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3772 | #endif
|
---|
3773 |
|
---|
3774 | return VINF_SUCCESS;
|
---|
3775 | }
|
---|
3776 |
|
---|
3777 |
|
---|
3778 | /**
|
---|
3779 | * Implements iret.
|
---|
3780 | *
|
---|
3781 | * @param enmEffOpSize The effective operand size.
|
---|
3782 | */
|
---|
3783 | IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
|
---|
3784 | {
|
---|
3785 | /*
|
---|
3786 | * First, clear NMI blocking, if any, before causing any exceptions.
|
---|
3787 | */
|
---|
3788 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3789 |
|
---|
3790 | /*
|
---|
3791 | * Call a mode specific worker.
|
---|
3792 | */
|
---|
3793 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
3794 | return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
|
---|
3795 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
3796 | return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
|
---|
3797 | return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
|
---|
3798 | }
|
---|
3799 |
|
---|
3800 |
|
---|
3801 | /**
|
---|
3802 | * Implements SYSCALL (AMD and Intel64).
|
---|
3803 | *
|
---|
3804 | * @param enmEffOpSize The effective operand size.
|
---|
3805 | */
|
---|
3806 | IEM_CIMPL_DEF_0(iemCImpl_syscall)
|
---|
3807 | {
|
---|
3808 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3809 |
|
---|
3810 | /*
|
---|
3811 | * Check preconditions.
|
---|
3812 | *
|
---|
3813 | * Note that CPUs described in the documentation may load a few odd values
|
---|
3814 | * into CS and SS than we allow here. This has yet to be checked on real
|
---|
3815 | * hardware.
|
---|
3816 | */
|
---|
3817 | if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
|
---|
3818 | {
|
---|
3819 | Log(("syscall: Not enabled in EFER -> #UD\n"));
|
---|
3820 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3821 | }
|
---|
3822 | if (!(pCtx->cr0 & X86_CR0_PE))
|
---|
3823 | {
|
---|
3824 | Log(("syscall: Protected mode is required -> #GP(0)\n"));
|
---|
3825 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3826 | }
|
---|
3827 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(pCtx))
|
---|
3828 | {
|
---|
3829 | Log(("syscall: Only available in long mode on intel -> #UD\n"));
|
---|
3830 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3831 | }
|
---|
3832 |
|
---|
3833 | /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
|
---|
3834 | /** @todo what about LDT selectors? Shouldn't matter, really. */
|
---|
3835 | uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
|
---|
3836 | uint16_t uNewSs = uNewCs + 8;
|
---|
3837 | if (uNewCs == 0 || uNewSs == 0)
|
---|
3838 | {
|
---|
3839 | Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
|
---|
3840 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3841 | }
|
---|
3842 |
|
---|
3843 | /* Long mode and legacy mode differs. */
|
---|
3844 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
3845 | {
|
---|
3846 | uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->msrLSTAR : pCtx-> msrCSTAR;
|
---|
3847 |
|
---|
3848 | /* This test isn't in the docs, but I'm not trusting the guys writing
|
---|
3849 | the MSRs to have validated the values as canonical like they should. */
|
---|
3850 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
3851 | {
|
---|
3852 | Log(("syscall: Only available in long mode on intel -> #UD\n"));
|
---|
3853 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3854 | }
|
---|
3855 |
|
---|
3856 | /*
|
---|
3857 | * Commit it.
|
---|
3858 | */
|
---|
3859 | Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, uNewRip));
|
---|
3860 | pCtx->rcx = pCtx->rip + cbInstr;
|
---|
3861 | pCtx->rip = uNewRip;
|
---|
3862 |
|
---|
3863 | pCtx->rflags.u &= ~X86_EFL_RF;
|
---|
3864 | pCtx->r11 = pCtx->rflags.u;
|
---|
3865 | pCtx->rflags.u &= ~pCtx->msrSFMASK;
|
---|
3866 | pCtx->rflags.u |= X86_EFL_1;
|
---|
3867 |
|
---|
3868 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
|
---|
3869 | pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
|
---|
3870 | }
|
---|
3871 | else
|
---|
3872 | {
|
---|
3873 | /*
|
---|
3874 | * Commit it.
|
---|
3875 | */
|
---|
3876 | Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
|
---|
3877 | pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, (uint32_t)(pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
|
---|
3878 | pCtx->rcx = pCtx->eip + cbInstr;
|
---|
3879 | pCtx->rip = pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
|
---|
3880 | pCtx->rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
|
---|
3881 |
|
---|
3882 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
|
---|
3883 | pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
|
---|
3884 | }
|
---|
3885 | pCtx->cs.Sel = uNewCs;
|
---|
3886 | pCtx->cs.ValidSel = uNewCs;
|
---|
3887 | pCtx->cs.u64Base = 0;
|
---|
3888 | pCtx->cs.u32Limit = UINT32_MAX;
|
---|
3889 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3890 |
|
---|
3891 | pCtx->ss.Sel = uNewSs;
|
---|
3892 | pCtx->ss.ValidSel = uNewSs;
|
---|
3893 | pCtx->ss.u64Base = 0;
|
---|
3894 | pCtx->ss.u32Limit = UINT32_MAX;
|
---|
3895 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3896 |
|
---|
3897 | /* Flush the prefetch buffer. */
|
---|
3898 | #ifdef IEM_WITH_CODE_TLB
|
---|
3899 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3900 | #else
|
---|
3901 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3902 | #endif
|
---|
3903 |
|
---|
3904 | return VINF_SUCCESS;
|
---|
3905 | }
|
---|
3906 |
|
---|
3907 |
|
---|
3908 | /**
|
---|
3909 | * Implements SYSRET (AMD and Intel64).
|
---|
3910 | */
|
---|
3911 | IEM_CIMPL_DEF_0(iemCImpl_sysret)
|
---|
3912 |
|
---|
3913 | {
|
---|
3914 | RT_NOREF_PV(cbInstr);
|
---|
3915 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3916 |
|
---|
3917 | /*
|
---|
3918 | * Check preconditions.
|
---|
3919 | *
|
---|
3920 | * Note that CPUs described in the documentation may load a few odd values
|
---|
3921 | * into CS and SS than we allow here. This has yet to be checked on real
|
---|
3922 | * hardware.
|
---|
3923 | */
|
---|
3924 | if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
|
---|
3925 | {
|
---|
3926 | Log(("sysret: Not enabled in EFER -> #UD\n"));
|
---|
3927 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3928 | }
|
---|
3929 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(pCtx))
|
---|
3930 | {
|
---|
3931 | Log(("sysret: Only available in long mode on intel -> #UD\n"));
|
---|
3932 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3933 | }
|
---|
3934 | if (!(pCtx->cr0 & X86_CR0_PE))
|
---|
3935 | {
|
---|
3936 | Log(("sysret: Protected mode is required -> #GP(0)\n"));
|
---|
3937 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3938 | }
|
---|
3939 | if (pVCpu->iem.s.uCpl != 0)
|
---|
3940 | {
|
---|
3941 | Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
3942 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3943 | }
|
---|
3944 |
|
---|
3945 | /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
|
---|
3946 | uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
|
---|
3947 | uint16_t uNewSs = uNewCs + 8;
|
---|
3948 | if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
|
---|
3949 | uNewCs += 16;
|
---|
3950 | if (uNewCs == 0 || uNewSs == 0)
|
---|
3951 | {
|
---|
3952 | Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
|
---|
3953 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3954 | }
|
---|
3955 |
|
---|
3956 | /*
|
---|
3957 | * Commit it.
|
---|
3958 | */
|
---|
3959 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
3960 | {
|
---|
3961 | if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
|
---|
3962 | {
|
---|
3963 | Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
|
---|
3964 | pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->rcx, pCtx->r11));
|
---|
3965 | /* Note! We disregard intel manual regarding the RCX cananonical
|
---|
3966 | check, ask intel+xen why AMD doesn't do it. */
|
---|
3967 | pCtx->rip = pCtx->rcx;
|
---|
3968 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
|
---|
3969 | | (3 << X86DESCATTR_DPL_SHIFT);
|
---|
3970 | }
|
---|
3971 | else
|
---|
3972 | {
|
---|
3973 | Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
|
---|
3974 | pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->ecx, pCtx->r11));
|
---|
3975 | pCtx->rip = pCtx->ecx;
|
---|
3976 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
|
---|
3977 | | (3 << X86DESCATTR_DPL_SHIFT);
|
---|
3978 | }
|
---|
3979 | /** @todo testcase: See what kind of flags we can make SYSRET restore and
|
---|
3980 | * what it really ignores. RF and VM are hinted at being zero, by AMD. */
|
---|
3981 | pCtx->rflags.u = pCtx->r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
|
---|
3982 | pCtx->rflags.u |= X86_EFL_1;
|
---|
3983 | }
|
---|
3984 | else
|
---|
3985 | {
|
---|
3986 | Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, pCtx->ecx));
|
---|
3987 | pCtx->rip = pCtx->rcx;
|
---|
3988 | pCtx->rflags.u |= X86_EFL_IF;
|
---|
3989 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
|
---|
3990 | | (3 << X86DESCATTR_DPL_SHIFT);
|
---|
3991 | }
|
---|
3992 | pCtx->cs.Sel = uNewCs | 3;
|
---|
3993 | pCtx->cs.ValidSel = uNewCs | 3;
|
---|
3994 | pCtx->cs.u64Base = 0;
|
---|
3995 | pCtx->cs.u32Limit = UINT32_MAX;
|
---|
3996 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3997 |
|
---|
3998 | pCtx->ss.Sel = uNewSs | 3;
|
---|
3999 | pCtx->ss.ValidSel = uNewSs | 3;
|
---|
4000 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4001 | /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
|
---|
4002 | pCtx->ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
|
---|
4003 | /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
|
---|
4004 | * on sysret. */
|
---|
4005 |
|
---|
4006 | /* Flush the prefetch buffer. */
|
---|
4007 | #ifdef IEM_WITH_CODE_TLB
|
---|
4008 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
4009 | #else
|
---|
4010 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
4011 | #endif
|
---|
4012 |
|
---|
4013 | return VINF_SUCCESS;
|
---|
4014 | }
|
---|
4015 |
|
---|
4016 |
|
---|
4017 | /**
|
---|
4018 | * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
|
---|
4019 | *
|
---|
4020 | * @param iSegReg The segment register number (valid).
|
---|
4021 | * @param uSel The new selector value.
|
---|
4022 | */
|
---|
4023 | IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
4024 | {
|
---|
4025 | /*PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);*/
|
---|
4026 | uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
|
---|
4027 | PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
|
---|
4028 |
|
---|
4029 | Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
|
---|
4030 |
|
---|
4031 | /*
|
---|
4032 | * Real mode and V8086 mode are easy.
|
---|
4033 | */
|
---|
4034 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
4035 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
4036 | {
|
---|
4037 | *pSel = uSel;
|
---|
4038 | pHid->u64Base = (uint32_t)uSel << 4;
|
---|
4039 | pHid->ValidSel = uSel;
|
---|
4040 | pHid->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4041 | #if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
|
---|
4042 | /** @todo Does the CPU actually load limits and attributes in the
|
---|
4043 | * real/V8086 mode segment load case? It doesn't for CS in far
|
---|
4044 | * jumps... Affects unreal mode. */
|
---|
4045 | pHid->u32Limit = 0xffff;
|
---|
4046 | pHid->Attr.u = 0;
|
---|
4047 | pHid->Attr.n.u1Present = 1;
|
---|
4048 | pHid->Attr.n.u1DescType = 1;
|
---|
4049 | pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
|
---|
4050 | ? X86_SEL_TYPE_RW
|
---|
4051 | : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
|
---|
4052 | #endif
|
---|
4053 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
4054 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4055 | return VINF_SUCCESS;
|
---|
4056 | }
|
---|
4057 |
|
---|
4058 | /*
|
---|
4059 | * Protected mode.
|
---|
4060 | *
|
---|
4061 | * Check if it's a null segment selector value first, that's OK for DS, ES,
|
---|
4062 | * FS and GS. If not null, then we have to load and parse the descriptor.
|
---|
4063 | */
|
---|
4064 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
4065 | {
|
---|
4066 | Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
|
---|
4067 | if (iSegReg == X86_SREG_SS)
|
---|
4068 | {
|
---|
4069 | /* In 64-bit kernel mode, the stack can be 0 because of the way
|
---|
4070 | interrupts are dispatched. AMD seems to have a slighly more
|
---|
4071 | relaxed relationship to SS.RPL than intel does. */
|
---|
4072 | /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
|
---|
4073 | if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
4074 | || pVCpu->iem.s.uCpl > 2
|
---|
4075 | || ( uSel != pVCpu->iem.s.uCpl
|
---|
4076 | && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
|
---|
4077 | {
|
---|
4078 | Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
|
---|
4079 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4080 | }
|
---|
4081 | }
|
---|
4082 |
|
---|
4083 | *pSel = uSel; /* Not RPL, remember :-) */
|
---|
4084 | iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
|
---|
4085 | if (iSegReg == X86_SREG_SS)
|
---|
4086 | pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
|
---|
4087 |
|
---|
4088 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
|
---|
4089 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
4090 |
|
---|
4091 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4092 | return VINF_SUCCESS;
|
---|
4093 | }
|
---|
4094 |
|
---|
4095 | /* Fetch the descriptor. */
|
---|
4096 | IEMSELDESC Desc;
|
---|
4097 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
4098 | if (rcStrict != VINF_SUCCESS)
|
---|
4099 | return rcStrict;
|
---|
4100 |
|
---|
4101 | /* Check GPs first. */
|
---|
4102 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
4103 | {
|
---|
4104 | Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
|
---|
4105 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4106 | }
|
---|
4107 | if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
|
---|
4108 | {
|
---|
4109 | if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
4110 | || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
4111 | {
|
---|
4112 | Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
|
---|
4113 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4114 | }
|
---|
4115 | if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
|
---|
4116 | {
|
---|
4117 | Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
|
---|
4118 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4119 | }
|
---|
4120 | if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
|
---|
4121 | {
|
---|
4122 | Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
4123 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4124 | }
|
---|
4125 | }
|
---|
4126 | else
|
---|
4127 | {
|
---|
4128 | if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
4129 | {
|
---|
4130 | Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
|
---|
4131 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4132 | }
|
---|
4133 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4134 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4135 | {
|
---|
4136 | #if 0 /* this is what intel says. */
|
---|
4137 | if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
4138 | && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4139 | {
|
---|
4140 | Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
|
---|
4141 | iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
4142 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4143 | }
|
---|
4144 | #else /* this is what makes more sense. */
|
---|
4145 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
4146 | {
|
---|
4147 | Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
4148 | iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
|
---|
4149 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4150 | }
|
---|
4151 | if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4152 | {
|
---|
4153 | Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
4154 | iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
4155 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4156 | }
|
---|
4157 | #endif
|
---|
4158 | }
|
---|
4159 | }
|
---|
4160 |
|
---|
4161 | /* Is it there? */
|
---|
4162 | if (!Desc.Legacy.Gen.u1Present)
|
---|
4163 | {
|
---|
4164 | Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
|
---|
4165 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
4166 | }
|
---|
4167 |
|
---|
4168 | /* The base and limit. */
|
---|
4169 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
4170 | uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
4171 |
|
---|
4172 | /*
|
---|
4173 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
4174 | * committing the result into the registers.
|
---|
4175 | */
|
---|
4176 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
4177 | {
|
---|
4178 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
4179 | if (rcStrict != VINF_SUCCESS)
|
---|
4180 | return rcStrict;
|
---|
4181 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
4182 | }
|
---|
4183 |
|
---|
4184 | /* commit */
|
---|
4185 | *pSel = uSel;
|
---|
4186 | pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
4187 | pHid->u32Limit = cbLimit;
|
---|
4188 | pHid->u64Base = u64Base;
|
---|
4189 | pHid->ValidSel = uSel;
|
---|
4190 | pHid->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4191 |
|
---|
4192 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
4193 | * mode. */
|
---|
4194 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
|
---|
4195 |
|
---|
4196 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
4197 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4198 | return VINF_SUCCESS;
|
---|
4199 | }
|
---|
4200 |
|
---|
4201 |
|
---|
4202 | /**
|
---|
4203 | * Implements 'mov SReg, r/m'.
|
---|
4204 | *
|
---|
4205 | * @param iSegReg The segment register number (valid).
|
---|
4206 | * @param uSel The new selector value.
|
---|
4207 | */
|
---|
4208 | IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
4209 | {
|
---|
4210 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
4211 | if (rcStrict == VINF_SUCCESS)
|
---|
4212 | {
|
---|
4213 | if (iSegReg == X86_SREG_SS)
|
---|
4214 | {
|
---|
4215 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4216 | EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
|
---|
4217 | }
|
---|
4218 | }
|
---|
4219 | return rcStrict;
|
---|
4220 | }
|
---|
4221 |
|
---|
4222 |
|
---|
4223 | /**
|
---|
4224 | * Implements 'pop SReg'.
|
---|
4225 | *
|
---|
4226 | * @param iSegReg The segment register number (valid).
|
---|
4227 | * @param enmEffOpSize The efficient operand size (valid).
|
---|
4228 | */
|
---|
4229 | IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
|
---|
4230 | {
|
---|
4231 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4232 | VBOXSTRICTRC rcStrict;
|
---|
4233 |
|
---|
4234 | /*
|
---|
4235 | * Read the selector off the stack and join paths with mov ss, reg.
|
---|
4236 | */
|
---|
4237 | RTUINT64U TmpRsp;
|
---|
4238 | TmpRsp.u = pCtx->rsp;
|
---|
4239 | switch (enmEffOpSize)
|
---|
4240 | {
|
---|
4241 | case IEMMODE_16BIT:
|
---|
4242 | {
|
---|
4243 | uint16_t uSel;
|
---|
4244 | rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
|
---|
4245 | if (rcStrict == VINF_SUCCESS)
|
---|
4246 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
4247 | break;
|
---|
4248 | }
|
---|
4249 |
|
---|
4250 | case IEMMODE_32BIT:
|
---|
4251 | {
|
---|
4252 | uint32_t u32Value;
|
---|
4253 | rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
|
---|
4254 | if (rcStrict == VINF_SUCCESS)
|
---|
4255 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
|
---|
4256 | break;
|
---|
4257 | }
|
---|
4258 |
|
---|
4259 | case IEMMODE_64BIT:
|
---|
4260 | {
|
---|
4261 | uint64_t u64Value;
|
---|
4262 | rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
|
---|
4263 | if (rcStrict == VINF_SUCCESS)
|
---|
4264 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
|
---|
4265 | break;
|
---|
4266 | }
|
---|
4267 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4268 | }
|
---|
4269 |
|
---|
4270 | /*
|
---|
4271 | * Commit the stack on success.
|
---|
4272 | */
|
---|
4273 | if (rcStrict == VINF_SUCCESS)
|
---|
4274 | {
|
---|
4275 | pCtx->rsp = TmpRsp.u;
|
---|
4276 | if (iSegReg == X86_SREG_SS)
|
---|
4277 | EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
|
---|
4278 | }
|
---|
4279 | return rcStrict;
|
---|
4280 | }
|
---|
4281 |
|
---|
4282 |
|
---|
4283 | /**
|
---|
4284 | * Implements lgs, lfs, les, lds & lss.
|
---|
4285 | */
|
---|
4286 | IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
|
---|
4287 | uint16_t, uSel,
|
---|
4288 | uint64_t, offSeg,
|
---|
4289 | uint8_t, iSegReg,
|
---|
4290 | uint8_t, iGReg,
|
---|
4291 | IEMMODE, enmEffOpSize)
|
---|
4292 | {
|
---|
4293 | /*PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);*/
|
---|
4294 | VBOXSTRICTRC rcStrict;
|
---|
4295 |
|
---|
4296 | /*
|
---|
4297 | * Use iemCImpl_LoadSReg to do the tricky segment register loading.
|
---|
4298 | */
|
---|
4299 | /** @todo verify and test that mov, pop and lXs works the segment
|
---|
4300 | * register loading in the exact same way. */
|
---|
4301 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
4302 | if (rcStrict == VINF_SUCCESS)
|
---|
4303 | {
|
---|
4304 | switch (enmEffOpSize)
|
---|
4305 | {
|
---|
4306 | case IEMMODE_16BIT:
|
---|
4307 | *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
|
---|
4308 | break;
|
---|
4309 | case IEMMODE_32BIT:
|
---|
4310 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
|
---|
4311 | break;
|
---|
4312 | case IEMMODE_64BIT:
|
---|
4313 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
|
---|
4314 | break;
|
---|
4315 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4316 | }
|
---|
4317 | }
|
---|
4318 |
|
---|
4319 | return rcStrict;
|
---|
4320 | }
|
---|
4321 |
|
---|
4322 |
|
---|
4323 | /**
|
---|
4324 | * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
|
---|
4325 | *
|
---|
4326 | * @retval VINF_SUCCESS on success.
|
---|
4327 | * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
|
---|
4328 | * @retval iemMemFetchSysU64 return value.
|
---|
4329 | *
|
---|
4330 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4331 | * @param uSel The selector value.
|
---|
4332 | * @param fAllowSysDesc Whether system descriptors are OK or not.
|
---|
4333 | * @param pDesc Where to return the descriptor on success.
|
---|
4334 | */
|
---|
4335 | static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
|
---|
4336 | {
|
---|
4337 | pDesc->Long.au64[0] = 0;
|
---|
4338 | pDesc->Long.au64[1] = 0;
|
---|
4339 |
|
---|
4340 | if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
|
---|
4341 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4342 |
|
---|
4343 | /* Within the table limits? */
|
---|
4344 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4345 | RTGCPTR GCPtrBase;
|
---|
4346 | if (uSel & X86_SEL_LDT)
|
---|
4347 | {
|
---|
4348 | if ( !pCtx->ldtr.Attr.n.u1Present
|
---|
4349 | || (uSel | X86_SEL_RPL_LDT) > pCtx->ldtr.u32Limit )
|
---|
4350 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4351 | GCPtrBase = pCtx->ldtr.u64Base;
|
---|
4352 | }
|
---|
4353 | else
|
---|
4354 | {
|
---|
4355 | if ((uSel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
|
---|
4356 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4357 | GCPtrBase = pCtx->gdtr.pGdt;
|
---|
4358 | }
|
---|
4359 |
|
---|
4360 | /* Fetch the descriptor. */
|
---|
4361 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
|
---|
4362 | if (rcStrict != VINF_SUCCESS)
|
---|
4363 | return rcStrict;
|
---|
4364 | if (!pDesc->Legacy.Gen.u1DescType)
|
---|
4365 | {
|
---|
4366 | if (!fAllowSysDesc)
|
---|
4367 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4368 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
4369 | {
|
---|
4370 | rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
|
---|
4371 | if (rcStrict != VINF_SUCCESS)
|
---|
4372 | return rcStrict;
|
---|
4373 | }
|
---|
4374 |
|
---|
4375 | }
|
---|
4376 |
|
---|
4377 | return VINF_SUCCESS;
|
---|
4378 | }
|
---|
4379 |
|
---|
4380 |
|
---|
4381 | /**
|
---|
4382 | * Implements verr (fWrite = false) and verw (fWrite = true).
|
---|
4383 | */
|
---|
4384 | IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
|
---|
4385 | {
|
---|
4386 | Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
|
---|
4387 |
|
---|
4388 | /** @todo figure whether the accessed bit is set or not. */
|
---|
4389 |
|
---|
4390 | bool fAccessible = true;
|
---|
4391 | IEMSELDESC Desc;
|
---|
4392 | VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
|
---|
4393 | if (rcStrict == VINF_SUCCESS)
|
---|
4394 | {
|
---|
4395 | /* Check the descriptor, order doesn't matter much here. */
|
---|
4396 | if ( !Desc.Legacy.Gen.u1DescType
|
---|
4397 | || !Desc.Legacy.Gen.u1Present)
|
---|
4398 | fAccessible = false;
|
---|
4399 | else
|
---|
4400 | {
|
---|
4401 | if ( fWrite
|
---|
4402 | ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
|
---|
4403 | : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
4404 | fAccessible = false;
|
---|
4405 |
|
---|
4406 | /** @todo testcase for the conforming behavior. */
|
---|
4407 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4408 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4409 | {
|
---|
4410 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
4411 | fAccessible = false;
|
---|
4412 | else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4413 | fAccessible = false;
|
---|
4414 | }
|
---|
4415 | }
|
---|
4416 |
|
---|
4417 | }
|
---|
4418 | else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
|
---|
4419 | fAccessible = false;
|
---|
4420 | else
|
---|
4421 | return rcStrict;
|
---|
4422 |
|
---|
4423 | /* commit */
|
---|
4424 | IEM_GET_CTX(pVCpu)->eflags.Bits.u1ZF = fAccessible;
|
---|
4425 |
|
---|
4426 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4427 | return VINF_SUCCESS;
|
---|
4428 | }
|
---|
4429 |
|
---|
4430 |
|
---|
4431 | /**
|
---|
4432 | * Implements LAR and LSL with 64-bit operand size.
|
---|
4433 | *
|
---|
4434 | * @returns VINF_SUCCESS.
|
---|
4435 | * @param pu16Dst Pointer to the destination register.
|
---|
4436 | * @param uSel The selector to load details for.
|
---|
4437 | * @param fIsLar true = LAR, false = LSL.
|
---|
4438 | */
|
---|
4439 | IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
|
---|
4440 | {
|
---|
4441 | Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
|
---|
4442 |
|
---|
4443 | /** @todo figure whether the accessed bit is set or not. */
|
---|
4444 |
|
---|
4445 | bool fDescOk = true;
|
---|
4446 | IEMSELDESC Desc;
|
---|
4447 | VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
|
---|
4448 | if (rcStrict == VINF_SUCCESS)
|
---|
4449 | {
|
---|
4450 | /*
|
---|
4451 | * Check the descriptor type.
|
---|
4452 | */
|
---|
4453 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
4454 | {
|
---|
4455 | if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
|
---|
4456 | {
|
---|
4457 | if (Desc.Long.Gen.u5Zeros)
|
---|
4458 | fDescOk = false;
|
---|
4459 | else
|
---|
4460 | switch (Desc.Long.Gen.u4Type)
|
---|
4461 | {
|
---|
4462 | /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
|
---|
4463 | case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
|
---|
4464 | case AMD64_SEL_TYPE_SYS_TSS_BUSY:
|
---|
4465 | case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
|
---|
4466 | break;
|
---|
4467 | case AMD64_SEL_TYPE_SYS_CALL_GATE:
|
---|
4468 | fDescOk = fIsLar;
|
---|
4469 | break;
|
---|
4470 | default:
|
---|
4471 | fDescOk = false;
|
---|
4472 | break;
|
---|
4473 | }
|
---|
4474 | }
|
---|
4475 | else
|
---|
4476 | {
|
---|
4477 | switch (Desc.Long.Gen.u4Type)
|
---|
4478 | {
|
---|
4479 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
4480 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
4481 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
4482 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
4483 | case X86_SEL_TYPE_SYS_LDT:
|
---|
4484 | break;
|
---|
4485 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
4486 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
4487 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
4488 | fDescOk = fIsLar;
|
---|
4489 | break;
|
---|
4490 | default:
|
---|
4491 | fDescOk = false;
|
---|
4492 | break;
|
---|
4493 | }
|
---|
4494 | }
|
---|
4495 | }
|
---|
4496 | if (fDescOk)
|
---|
4497 | {
|
---|
4498 | /*
|
---|
4499 | * Check the RPL/DPL/CPL interaction..
|
---|
4500 | */
|
---|
4501 | /** @todo testcase for the conforming behavior. */
|
---|
4502 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
|
---|
4503 | || !Desc.Legacy.Gen.u1DescType)
|
---|
4504 | {
|
---|
4505 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
4506 | fDescOk = false;
|
---|
4507 | else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4508 | fDescOk = false;
|
---|
4509 | }
|
---|
4510 | }
|
---|
4511 |
|
---|
4512 | if (fDescOk)
|
---|
4513 | {
|
---|
4514 | /*
|
---|
4515 | * All fine, start committing the result.
|
---|
4516 | */
|
---|
4517 | if (fIsLar)
|
---|
4518 | *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
|
---|
4519 | else
|
---|
4520 | *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
4521 | }
|
---|
4522 |
|
---|
4523 | }
|
---|
4524 | else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
|
---|
4525 | fDescOk = false;
|
---|
4526 | else
|
---|
4527 | return rcStrict;
|
---|
4528 |
|
---|
4529 | /* commit flags value and advance rip. */
|
---|
4530 | IEM_GET_CTX(pVCpu)->eflags.Bits.u1ZF = fDescOk;
|
---|
4531 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4532 |
|
---|
4533 | return VINF_SUCCESS;
|
---|
4534 | }
|
---|
4535 |
|
---|
4536 |
|
---|
4537 | /**
|
---|
4538 | * Implements LAR and LSL with 16-bit operand size.
|
---|
4539 | *
|
---|
4540 | * @returns VINF_SUCCESS.
|
---|
4541 | * @param pu16Dst Pointer to the destination register.
|
---|
4542 | * @param u16Sel The selector to load details for.
|
---|
4543 | * @param fIsLar true = LAR, false = LSL.
|
---|
4544 | */
|
---|
4545 | IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
|
---|
4546 | {
|
---|
4547 | uint64_t u64TmpDst = *pu16Dst;
|
---|
4548 | IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
|
---|
4549 | *pu16Dst = u64TmpDst;
|
---|
4550 | return VINF_SUCCESS;
|
---|
4551 | }
|
---|
4552 |
|
---|
4553 |
|
---|
4554 | /**
|
---|
4555 | * Implements lgdt.
|
---|
4556 | *
|
---|
4557 | * @param iEffSeg The segment of the new gdtr contents
|
---|
4558 | * @param GCPtrEffSrc The address of the new gdtr contents.
|
---|
4559 | * @param enmEffOpSize The effective operand size.
|
---|
4560 | */
|
---|
4561 | IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
4562 | {
|
---|
4563 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4564 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4565 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
4566 |
|
---|
4567 | /*
|
---|
4568 | * Fetch the limit and base address.
|
---|
4569 | */
|
---|
4570 | uint16_t cbLimit;
|
---|
4571 | RTGCPTR GCPtrBase;
|
---|
4572 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
4573 | if (rcStrict == VINF_SUCCESS)
|
---|
4574 | {
|
---|
4575 | if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
4576 | || X86_IS_CANONICAL(GCPtrBase))
|
---|
4577 | {
|
---|
4578 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4579 | rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
|
---|
4580 | else
|
---|
4581 | {
|
---|
4582 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4583 | pCtx->gdtr.cbGdt = cbLimit;
|
---|
4584 | pCtx->gdtr.pGdt = GCPtrBase;
|
---|
4585 | }
|
---|
4586 | if (rcStrict == VINF_SUCCESS)
|
---|
4587 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4588 | }
|
---|
4589 | else
|
---|
4590 | {
|
---|
4591 | Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
|
---|
4592 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4593 | }
|
---|
4594 | }
|
---|
4595 | return rcStrict;
|
---|
4596 | }
|
---|
4597 |
|
---|
4598 |
|
---|
4599 | /**
|
---|
4600 | * Implements sgdt.
|
---|
4601 | *
|
---|
4602 | * @param iEffSeg The segment where to store the gdtr content.
|
---|
4603 | * @param GCPtrEffDst The address where to store the gdtr content.
|
---|
4604 | */
|
---|
4605 | IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
4606 | {
|
---|
4607 | /*
|
---|
4608 | * Join paths with sidt.
|
---|
4609 | * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
|
---|
4610 | * you really must know.
|
---|
4611 | */
|
---|
4612 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4613 | VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pCtx->gdtr.cbGdt, pCtx->gdtr.pGdt, iEffSeg, GCPtrEffDst);
|
---|
4614 | if (rcStrict == VINF_SUCCESS)
|
---|
4615 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4616 | return rcStrict;
|
---|
4617 | }
|
---|
4618 |
|
---|
4619 |
|
---|
4620 | /**
|
---|
4621 | * Implements lidt.
|
---|
4622 | *
|
---|
4623 | * @param iEffSeg The segment of the new idtr contents
|
---|
4624 | * @param GCPtrEffSrc The address of the new idtr contents.
|
---|
4625 | * @param enmEffOpSize The effective operand size.
|
---|
4626 | */
|
---|
4627 | IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
4628 | {
|
---|
4629 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4630 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4631 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
4632 |
|
---|
4633 | /*
|
---|
4634 | * Fetch the limit and base address.
|
---|
4635 | */
|
---|
4636 | uint16_t cbLimit;
|
---|
4637 | RTGCPTR GCPtrBase;
|
---|
4638 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
4639 | if (rcStrict == VINF_SUCCESS)
|
---|
4640 | {
|
---|
4641 | if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
4642 | || X86_IS_CANONICAL(GCPtrBase))
|
---|
4643 | {
|
---|
4644 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4645 | CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
|
---|
4646 | else
|
---|
4647 | {
|
---|
4648 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4649 | pCtx->idtr.cbIdt = cbLimit;
|
---|
4650 | pCtx->idtr.pIdt = GCPtrBase;
|
---|
4651 | }
|
---|
4652 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4653 | }
|
---|
4654 | else
|
---|
4655 | {
|
---|
4656 | Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
|
---|
4657 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4658 | }
|
---|
4659 | }
|
---|
4660 | return rcStrict;
|
---|
4661 | }
|
---|
4662 |
|
---|
4663 |
|
---|
4664 | /**
|
---|
4665 | * Implements sidt.
|
---|
4666 | *
|
---|
4667 | * @param iEffSeg The segment where to store the idtr content.
|
---|
4668 | * @param GCPtrEffDst The address where to store the idtr content.
|
---|
4669 | */
|
---|
4670 | IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
4671 | {
|
---|
4672 | /*
|
---|
4673 | * Join paths with sgdt.
|
---|
4674 | * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
|
---|
4675 | * you really must know.
|
---|
4676 | */
|
---|
4677 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4678 | VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pCtx->idtr.cbIdt, pCtx->idtr.pIdt, iEffSeg, GCPtrEffDst);
|
---|
4679 | if (rcStrict == VINF_SUCCESS)
|
---|
4680 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4681 | return rcStrict;
|
---|
4682 | }
|
---|
4683 |
|
---|
4684 |
|
---|
4685 | /**
|
---|
4686 | * Implements lldt.
|
---|
4687 | *
|
---|
4688 | * @param uNewLdt The new LDT selector value.
|
---|
4689 | */
|
---|
4690 | IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
|
---|
4691 | {
|
---|
4692 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4693 |
|
---|
4694 | /*
|
---|
4695 | * Check preconditions.
|
---|
4696 | */
|
---|
4697 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
4698 | {
|
---|
4699 | Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
|
---|
4700 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
4701 | }
|
---|
4702 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4703 | {
|
---|
4704 | Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
|
---|
4705 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4706 | }
|
---|
4707 | if (uNewLdt & X86_SEL_LDT)
|
---|
4708 | {
|
---|
4709 | Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
|
---|
4710 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
|
---|
4711 | }
|
---|
4712 |
|
---|
4713 | /*
|
---|
4714 | * Now, loading a NULL selector is easy.
|
---|
4715 | */
|
---|
4716 | if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
|
---|
4717 | {
|
---|
4718 | Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
|
---|
4719 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4720 | CPUMSetGuestLDTR(pVCpu, uNewLdt);
|
---|
4721 | else
|
---|
4722 | pCtx->ldtr.Sel = uNewLdt;
|
---|
4723 | pCtx->ldtr.ValidSel = uNewLdt;
|
---|
4724 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4725 | if (IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
4726 | {
|
---|
4727 | pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE;
|
---|
4728 | pCtx->ldtr.u64Base = pCtx->ldtr.u32Limit = 0; /* For verfication against REM. */
|
---|
4729 | }
|
---|
4730 | else if (IEM_IS_GUEST_CPU_AMD(pVCpu))
|
---|
4731 | {
|
---|
4732 | /* AMD-V seems to leave the base and limit alone. */
|
---|
4733 | pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE;
|
---|
4734 | }
|
---|
4735 | else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
4736 | {
|
---|
4737 | /* VT-x (Intel 3960x) seems to be doing the following. */
|
---|
4738 | pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
|
---|
4739 | pCtx->ldtr.u64Base = 0;
|
---|
4740 | pCtx->ldtr.u32Limit = UINT32_MAX;
|
---|
4741 | }
|
---|
4742 |
|
---|
4743 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4744 | return VINF_SUCCESS;
|
---|
4745 | }
|
---|
4746 |
|
---|
4747 | /*
|
---|
4748 | * Read the descriptor.
|
---|
4749 | */
|
---|
4750 | IEMSELDESC Desc;
|
---|
4751 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
4752 | if (rcStrict != VINF_SUCCESS)
|
---|
4753 | return rcStrict;
|
---|
4754 |
|
---|
4755 | /* Check GPs first. */
|
---|
4756 | if (Desc.Legacy.Gen.u1DescType)
|
---|
4757 | {
|
---|
4758 | Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
|
---|
4759 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4760 | }
|
---|
4761 | if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
|
---|
4762 | {
|
---|
4763 | Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
|
---|
4764 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4765 | }
|
---|
4766 | uint64_t u64Base;
|
---|
4767 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
4768 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
4769 | else
|
---|
4770 | {
|
---|
4771 | if (Desc.Long.Gen.u5Zeros)
|
---|
4772 | {
|
---|
4773 | Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
|
---|
4774 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4775 | }
|
---|
4776 |
|
---|
4777 | u64Base = X86DESC64_BASE(&Desc.Long);
|
---|
4778 | if (!IEM_IS_CANONICAL(u64Base))
|
---|
4779 | {
|
---|
4780 | Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
|
---|
4781 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4782 | }
|
---|
4783 | }
|
---|
4784 |
|
---|
4785 | /* NP */
|
---|
4786 | if (!Desc.Legacy.Gen.u1Present)
|
---|
4787 | {
|
---|
4788 | Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
|
---|
4789 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
|
---|
4790 | }
|
---|
4791 |
|
---|
4792 | /*
|
---|
4793 | * It checks out alright, update the registers.
|
---|
4794 | */
|
---|
4795 | /** @todo check if the actual value is loaded or if the RPL is dropped */
|
---|
4796 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4797 | CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4798 | else
|
---|
4799 | pCtx->ldtr.Sel = uNewLdt & X86_SEL_MASK_OFF_RPL;
|
---|
4800 | pCtx->ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
|
---|
4801 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4802 | pCtx->ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
4803 | pCtx->ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
4804 | pCtx->ldtr.u64Base = u64Base;
|
---|
4805 |
|
---|
4806 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4807 | return VINF_SUCCESS;
|
---|
4808 | }
|
---|
4809 |
|
---|
4810 |
|
---|
4811 | /**
|
---|
4812 | * Implements lldt.
|
---|
4813 | *
|
---|
4814 | * @param uNewLdt The new LDT selector value.
|
---|
4815 | */
|
---|
4816 | IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
|
---|
4817 | {
|
---|
4818 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4819 |
|
---|
4820 | /*
|
---|
4821 | * Check preconditions.
|
---|
4822 | */
|
---|
4823 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
4824 | {
|
---|
4825 | Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
|
---|
4826 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
4827 | }
|
---|
4828 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4829 | {
|
---|
4830 | Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
|
---|
4831 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4832 | }
|
---|
4833 | if (uNewTr & X86_SEL_LDT)
|
---|
4834 | {
|
---|
4835 | Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
|
---|
4836 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
|
---|
4837 | }
|
---|
4838 | if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
|
---|
4839 | {
|
---|
4840 | Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
|
---|
4841 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4842 | }
|
---|
4843 |
|
---|
4844 | /*
|
---|
4845 | * Read the descriptor.
|
---|
4846 | */
|
---|
4847 | IEMSELDESC Desc;
|
---|
4848 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
4849 | if (rcStrict != VINF_SUCCESS)
|
---|
4850 | return rcStrict;
|
---|
4851 |
|
---|
4852 | /* Check GPs first. */
|
---|
4853 | if (Desc.Legacy.Gen.u1DescType)
|
---|
4854 | {
|
---|
4855 | Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
|
---|
4856 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4857 | }
|
---|
4858 | if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
|
---|
4859 | && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
4860 | || IEM_IS_LONG_MODE(pVCpu)) )
|
---|
4861 | {
|
---|
4862 | Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
|
---|
4863 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4864 | }
|
---|
4865 | uint64_t u64Base;
|
---|
4866 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
4867 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
4868 | else
|
---|
4869 | {
|
---|
4870 | if (Desc.Long.Gen.u5Zeros)
|
---|
4871 | {
|
---|
4872 | Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
|
---|
4873 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4874 | }
|
---|
4875 |
|
---|
4876 | u64Base = X86DESC64_BASE(&Desc.Long);
|
---|
4877 | if (!IEM_IS_CANONICAL(u64Base))
|
---|
4878 | {
|
---|
4879 | Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
|
---|
4880 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4881 | }
|
---|
4882 | }
|
---|
4883 |
|
---|
4884 | /* NP */
|
---|
4885 | if (!Desc.Legacy.Gen.u1Present)
|
---|
4886 | {
|
---|
4887 | Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
|
---|
4888 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
|
---|
4889 | }
|
---|
4890 |
|
---|
4891 | /*
|
---|
4892 | * Set it busy.
|
---|
4893 | * Note! Intel says this should lock down the whole descriptor, but we'll
|
---|
4894 | * restrict our selves to 32-bit for now due to lack of inline
|
---|
4895 | * assembly and such.
|
---|
4896 | */
|
---|
4897 | void *pvDesc;
|
---|
4898 | rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pCtx->gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
|
---|
4899 | if (rcStrict != VINF_SUCCESS)
|
---|
4900 | return rcStrict;
|
---|
4901 | switch ((uintptr_t)pvDesc & 3)
|
---|
4902 | {
|
---|
4903 | case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
|
---|
4904 | case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
|
---|
4905 | case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
|
---|
4906 | case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
|
---|
4907 | }
|
---|
4908 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
|
---|
4909 | if (rcStrict != VINF_SUCCESS)
|
---|
4910 | return rcStrict;
|
---|
4911 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
4912 |
|
---|
4913 | /*
|
---|
4914 | * It checks out alright, update the registers.
|
---|
4915 | */
|
---|
4916 | /** @todo check if the actual value is loaded or if the RPL is dropped */
|
---|
4917 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4918 | CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4919 | else
|
---|
4920 | pCtx->tr.Sel = uNewTr & X86_SEL_MASK_OFF_RPL;
|
---|
4921 | pCtx->tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
|
---|
4922 | pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4923 | pCtx->tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
4924 | pCtx->tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
4925 | pCtx->tr.u64Base = u64Base;
|
---|
4926 |
|
---|
4927 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4928 | return VINF_SUCCESS;
|
---|
4929 | }
|
---|
4930 |
|
---|
4931 |
|
---|
4932 | /**
|
---|
4933 | * Implements mov GReg,CRx.
|
---|
4934 | *
|
---|
4935 | * @param iGReg The general register to store the CRx value in.
|
---|
4936 | * @param iCrReg The CRx register to read (valid).
|
---|
4937 | */
|
---|
4938 | IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
|
---|
4939 | {
|
---|
4940 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4941 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4942 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4943 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
4944 |
|
---|
4945 | /* read it */
|
---|
4946 | uint64_t crX;
|
---|
4947 | switch (iCrReg)
|
---|
4948 | {
|
---|
4949 | case 0:
|
---|
4950 | crX = pCtx->cr0;
|
---|
4951 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
4952 | crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
|
---|
4953 | break;
|
---|
4954 | case 2: crX = pCtx->cr2; break;
|
---|
4955 | case 3: crX = pCtx->cr3; break;
|
---|
4956 | case 4: crX = pCtx->cr4; break;
|
---|
4957 | case 8:
|
---|
4958 | {
|
---|
4959 | uint8_t uTpr;
|
---|
4960 | int rc = PDMApicGetTPR(pVCpu, &uTpr, NULL, NULL);
|
---|
4961 | if (RT_SUCCESS(rc))
|
---|
4962 | crX = uTpr >> 4;
|
---|
4963 | else
|
---|
4964 | crX = 0;
|
---|
4965 | break;
|
---|
4966 | }
|
---|
4967 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
4968 | }
|
---|
4969 |
|
---|
4970 | /* store it */
|
---|
4971 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
4972 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
|
---|
4973 | else
|
---|
4974 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
|
---|
4975 |
|
---|
4976 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4977 | return VINF_SUCCESS;
|
---|
4978 | }
|
---|
4979 |
|
---|
4980 |
|
---|
4981 | /**
|
---|
4982 | * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
|
---|
4983 | *
|
---|
4984 | * @param iCrReg The CRx register to write (valid).
|
---|
4985 | * @param uNewCrX The new value.
|
---|
4986 | */
|
---|
4987 | IEM_CIMPL_DEF_2(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX)
|
---|
4988 | {
|
---|
4989 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4990 | VBOXSTRICTRC rcStrict;
|
---|
4991 | int rc;
|
---|
4992 |
|
---|
4993 | /*
|
---|
4994 | * Try store it.
|
---|
4995 | * Unfortunately, CPUM only does a tiny bit of the work.
|
---|
4996 | */
|
---|
4997 | switch (iCrReg)
|
---|
4998 | {
|
---|
4999 | case 0:
|
---|
5000 | {
|
---|
5001 | /*
|
---|
5002 | * Perform checks.
|
---|
5003 | */
|
---|
5004 | uint64_t const uOldCrX = pCtx->cr0;
|
---|
5005 | uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
|
---|
5006 | | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
|
---|
5007 | | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
|
---|
5008 |
|
---|
5009 | /* ET is hardcoded on 486 and later. */
|
---|
5010 | if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
|
---|
5011 | uNewCrX |= X86_CR0_ET;
|
---|
5012 | /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
|
---|
5013 | else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
|
---|
5014 | {
|
---|
5015 | uNewCrX &= fValid;
|
---|
5016 | uNewCrX |= X86_CR0_ET;
|
---|
5017 | }
|
---|
5018 | else
|
---|
5019 | uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
|
---|
5020 |
|
---|
5021 | /* Check for reserved bits. */
|
---|
5022 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
5023 | {
|
---|
5024 | Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
5025 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5026 | }
|
---|
5027 |
|
---|
5028 | /* Check for invalid combinations. */
|
---|
5029 | if ( (uNewCrX & X86_CR0_PG)
|
---|
5030 | && !(uNewCrX & X86_CR0_PE) )
|
---|
5031 | {
|
---|
5032 | Log(("Trying to set CR0.PG without CR0.PE\n"));
|
---|
5033 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5034 | }
|
---|
5035 |
|
---|
5036 | if ( !(uNewCrX & X86_CR0_CD)
|
---|
5037 | && (uNewCrX & X86_CR0_NW) )
|
---|
5038 | {
|
---|
5039 | Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
|
---|
5040 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5041 | }
|
---|
5042 |
|
---|
5043 | /* Long mode consistency checks. */
|
---|
5044 | if ( (uNewCrX & X86_CR0_PG)
|
---|
5045 | && !(uOldCrX & X86_CR0_PG)
|
---|
5046 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
5047 | {
|
---|
5048 | if (!(pCtx->cr4 & X86_CR4_PAE))
|
---|
5049 | {
|
---|
5050 | Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
|
---|
5051 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5052 | }
|
---|
5053 | if (pCtx->cs.Attr.n.u1Long)
|
---|
5054 | {
|
---|
5055 | Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
|
---|
5056 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5057 | }
|
---|
5058 | }
|
---|
5059 |
|
---|
5060 | /** @todo check reserved PDPTR bits as AMD states. */
|
---|
5061 |
|
---|
5062 | /*
|
---|
5063 | * Change CR0.
|
---|
5064 | */
|
---|
5065 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5066 | CPUMSetGuestCR0(pVCpu, uNewCrX);
|
---|
5067 | else
|
---|
5068 | pCtx->cr0 = uNewCrX;
|
---|
5069 | Assert(pCtx->cr0 == uNewCrX);
|
---|
5070 |
|
---|
5071 | /*
|
---|
5072 | * Change EFER.LMA if entering or leaving long mode.
|
---|
5073 | */
|
---|
5074 | if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
|
---|
5075 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
5076 | {
|
---|
5077 | uint64_t NewEFER = pCtx->msrEFER;
|
---|
5078 | if (uNewCrX & X86_CR0_PG)
|
---|
5079 | NewEFER |= MSR_K6_EFER_LMA;
|
---|
5080 | else
|
---|
5081 | NewEFER &= ~MSR_K6_EFER_LMA;
|
---|
5082 |
|
---|
5083 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5084 | CPUMSetGuestEFER(pVCpu, NewEFER);
|
---|
5085 | else
|
---|
5086 | pCtx->msrEFER = NewEFER;
|
---|
5087 | Assert(pCtx->msrEFER == NewEFER);
|
---|
5088 | }
|
---|
5089 |
|
---|
5090 | /*
|
---|
5091 | * Inform PGM.
|
---|
5092 | */
|
---|
5093 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5094 | {
|
---|
5095 | if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
5096 | != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
|
---|
5097 | {
|
---|
5098 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
5099 | AssertRCReturn(rc, rc);
|
---|
5100 | /* ignore informational status codes */
|
---|
5101 | }
|
---|
5102 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
5103 | }
|
---|
5104 | else
|
---|
5105 | rcStrict = VINF_SUCCESS;
|
---|
5106 |
|
---|
5107 | #ifdef IN_RC
|
---|
5108 | /* Return to ring-3 for rescheduling if WP or AM changes. */
|
---|
5109 | if ( rcStrict == VINF_SUCCESS
|
---|
5110 | && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
|
---|
5111 | != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
|
---|
5112 | rcStrict = VINF_EM_RESCHEDULE;
|
---|
5113 | #endif
|
---|
5114 | break;
|
---|
5115 | }
|
---|
5116 |
|
---|
5117 | /*
|
---|
5118 | * CR2 can be changed without any restrictions.
|
---|
5119 | */
|
---|
5120 | case 2:
|
---|
5121 | pCtx->cr2 = uNewCrX;
|
---|
5122 | rcStrict = VINF_SUCCESS;
|
---|
5123 | break;
|
---|
5124 |
|
---|
5125 | /*
|
---|
5126 | * CR3 is relatively simple, although AMD and Intel have different
|
---|
5127 | * accounts of how setting reserved bits are handled. We take intel's
|
---|
5128 | * word for the lower bits and AMD's for the high bits (63:52). The
|
---|
5129 | * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
|
---|
5130 | * on this.
|
---|
5131 | */
|
---|
5132 | /** @todo Testcase: Setting reserved bits in CR3, especially before
|
---|
5133 | * enabling paging. */
|
---|
5134 | case 3:
|
---|
5135 | {
|
---|
5136 | /* check / mask the value. */
|
---|
5137 | if (uNewCrX & UINT64_C(0xfff0000000000000))
|
---|
5138 | {
|
---|
5139 | Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
|
---|
5140 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5141 | }
|
---|
5142 |
|
---|
5143 | uint64_t fValid;
|
---|
5144 | if ( (pCtx->cr4 & X86_CR4_PAE)
|
---|
5145 | && (pCtx->msrEFER & MSR_K6_EFER_LME))
|
---|
5146 | fValid = UINT64_C(0x000fffffffffffff);
|
---|
5147 | else
|
---|
5148 | fValid = UINT64_C(0xffffffff);
|
---|
5149 | if (uNewCrX & ~fValid)
|
---|
5150 | {
|
---|
5151 | Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
|
---|
5152 | uNewCrX, uNewCrX & ~fValid));
|
---|
5153 | uNewCrX &= fValid;
|
---|
5154 | }
|
---|
5155 |
|
---|
5156 | /** @todo If we're in PAE mode we should check the PDPTRs for
|
---|
5157 | * invalid bits. */
|
---|
5158 |
|
---|
5159 | /* Make the change. */
|
---|
5160 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5161 | {
|
---|
5162 | rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
|
---|
5163 | AssertRCSuccessReturn(rc, rc);
|
---|
5164 | }
|
---|
5165 | else
|
---|
5166 | pCtx->cr3 = uNewCrX;
|
---|
5167 |
|
---|
5168 | /* Inform PGM. */
|
---|
5169 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5170 | {
|
---|
5171 | if (pCtx->cr0 & X86_CR0_PG)
|
---|
5172 | {
|
---|
5173 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr4 & X86_CR4_PGE));
|
---|
5174 | AssertRCReturn(rc, rc);
|
---|
5175 | /* ignore informational status codes */
|
---|
5176 | }
|
---|
5177 | }
|
---|
5178 | rcStrict = VINF_SUCCESS;
|
---|
5179 | break;
|
---|
5180 | }
|
---|
5181 |
|
---|
5182 | /*
|
---|
5183 | * CR4 is a bit more tedious as there are bits which cannot be cleared
|
---|
5184 | * under some circumstances and such.
|
---|
5185 | */
|
---|
5186 | case 4:
|
---|
5187 | {
|
---|
5188 | uint64_t const uOldCrX = pCtx->cr4;
|
---|
5189 |
|
---|
5190 | /** @todo Shouldn't this look at the guest CPUID bits to determine
|
---|
5191 | * valid bits? e.g. if guest CPUID doesn't allow X86_CR4_OSXMMEEXCPT, we
|
---|
5192 | * should #GP(0). */
|
---|
5193 | /* reserved bits */
|
---|
5194 | uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
|
---|
5195 | | X86_CR4_TSD | X86_CR4_DE
|
---|
5196 | | X86_CR4_PSE | X86_CR4_PAE
|
---|
5197 | | X86_CR4_MCE | X86_CR4_PGE
|
---|
5198 | | X86_CR4_PCE | X86_CR4_OSFXSR
|
---|
5199 | | X86_CR4_OSXMMEEXCPT;
|
---|
5200 | //if (xxx)
|
---|
5201 | // fValid |= X86_CR4_VMXE;
|
---|
5202 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXSaveRstor)
|
---|
5203 | fValid |= X86_CR4_OSXSAVE;
|
---|
5204 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
5205 | {
|
---|
5206 | Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
5207 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5208 | }
|
---|
5209 |
|
---|
5210 | /* long mode checks. */
|
---|
5211 | if ( (uOldCrX & X86_CR4_PAE)
|
---|
5212 | && !(uNewCrX & X86_CR4_PAE)
|
---|
5213 | && CPUMIsGuestInLongModeEx(pCtx) )
|
---|
5214 | {
|
---|
5215 | Log(("Trying to set clear CR4.PAE while long mode is active\n"));
|
---|
5216 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5217 | }
|
---|
5218 |
|
---|
5219 |
|
---|
5220 | /*
|
---|
5221 | * Change it.
|
---|
5222 | */
|
---|
5223 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5224 | {
|
---|
5225 | rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
|
---|
5226 | AssertRCSuccessReturn(rc, rc);
|
---|
5227 | }
|
---|
5228 | else
|
---|
5229 | pCtx->cr4 = uNewCrX;
|
---|
5230 | Assert(pCtx->cr4 == uNewCrX);
|
---|
5231 |
|
---|
5232 | /*
|
---|
5233 | * Notify SELM and PGM.
|
---|
5234 | */
|
---|
5235 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5236 | {
|
---|
5237 | /* SELM - VME may change things wrt to the TSS shadowing. */
|
---|
5238 | if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
|
---|
5239 | {
|
---|
5240 | Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
|
---|
5241 | RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
|
---|
5242 | #ifdef VBOX_WITH_RAW_MODE
|
---|
5243 | if (!HMIsEnabled(pVCpu->CTX_SUFF(pVM)))
|
---|
5244 | VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
|
---|
5245 | #endif
|
---|
5246 | }
|
---|
5247 |
|
---|
5248 | /* PGM - flushing and mode. */
|
---|
5249 | if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE))
|
---|
5250 | {
|
---|
5251 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
5252 | AssertRCReturn(rc, rc);
|
---|
5253 | /* ignore informational status codes */
|
---|
5254 | }
|
---|
5255 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
5256 | }
|
---|
5257 | else
|
---|
5258 | rcStrict = VINF_SUCCESS;
|
---|
5259 | break;
|
---|
5260 | }
|
---|
5261 |
|
---|
5262 | /*
|
---|
5263 | * CR8 maps to the APIC TPR.
|
---|
5264 | */
|
---|
5265 | case 8:
|
---|
5266 | if (uNewCrX & ~(uint64_t)0xf)
|
---|
5267 | {
|
---|
5268 | Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
|
---|
5269 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5270 | }
|
---|
5271 |
|
---|
5272 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5273 | PDMApicSetTPR(pVCpu, (uint8_t)uNewCrX << 4);
|
---|
5274 | rcStrict = VINF_SUCCESS;
|
---|
5275 | break;
|
---|
5276 |
|
---|
5277 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
5278 | }
|
---|
5279 |
|
---|
5280 | /*
|
---|
5281 | * Advance the RIP on success.
|
---|
5282 | */
|
---|
5283 | if (RT_SUCCESS(rcStrict))
|
---|
5284 | {
|
---|
5285 | if (rcStrict != VINF_SUCCESS)
|
---|
5286 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5287 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5288 | }
|
---|
5289 |
|
---|
5290 | return rcStrict;
|
---|
5291 | }
|
---|
5292 |
|
---|
5293 |
|
---|
5294 | /**
|
---|
5295 | * Implements mov CRx,GReg.
|
---|
5296 | *
|
---|
5297 | * @param iCrReg The CRx register to write (valid).
|
---|
5298 | * @param iGReg The general register to load the DRx value from.
|
---|
5299 | */
|
---|
5300 | IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
|
---|
5301 | {
|
---|
5302 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5303 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5304 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
5305 |
|
---|
5306 | /*
|
---|
5307 | * Read the new value from the source register and call common worker.
|
---|
5308 | */
|
---|
5309 | uint64_t uNewCrX;
|
---|
5310 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5311 | uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
|
---|
5312 | else
|
---|
5313 | uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
|
---|
5314 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, iCrReg, uNewCrX);
|
---|
5315 | }
|
---|
5316 |
|
---|
5317 |
|
---|
5318 | /**
|
---|
5319 | * Implements 'LMSW r/m16'
|
---|
5320 | *
|
---|
5321 | * @param u16NewMsw The new value.
|
---|
5322 | */
|
---|
5323 | IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw)
|
---|
5324 | {
|
---|
5325 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5326 |
|
---|
5327 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5328 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5329 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
5330 |
|
---|
5331 | /*
|
---|
5332 | * Compose the new CR0 value and call common worker.
|
---|
5333 | */
|
---|
5334 | uint64_t uNewCr0 = pCtx->cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
5335 | uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
5336 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
|
---|
5337 | }
|
---|
5338 |
|
---|
5339 |
|
---|
5340 | /**
|
---|
5341 | * Implements 'CLTS'.
|
---|
5342 | */
|
---|
5343 | IEM_CIMPL_DEF_0(iemCImpl_clts)
|
---|
5344 | {
|
---|
5345 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5346 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5347 |
|
---|
5348 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5349 | uint64_t uNewCr0 = pCtx->cr0;
|
---|
5350 | uNewCr0 &= ~X86_CR0_TS;
|
---|
5351 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
|
---|
5352 | }
|
---|
5353 |
|
---|
5354 |
|
---|
5355 | /**
|
---|
5356 | * Implements mov GReg,DRx.
|
---|
5357 | *
|
---|
5358 | * @param iGReg The general register to store the DRx value in.
|
---|
5359 | * @param iDrReg The DRx register to read (0-7).
|
---|
5360 | */
|
---|
5361 | IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
|
---|
5362 | {
|
---|
5363 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5364 |
|
---|
5365 | /*
|
---|
5366 | * Check preconditions.
|
---|
5367 | */
|
---|
5368 |
|
---|
5369 | /* Raise GPs. */
|
---|
5370 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5371 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5372 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
5373 |
|
---|
5374 | if ( (iDrReg == 4 || iDrReg == 5)
|
---|
5375 | && (pCtx->cr4 & X86_CR4_DE) )
|
---|
5376 | {
|
---|
5377 | Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
|
---|
5378 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5379 | }
|
---|
5380 |
|
---|
5381 | /* Raise #DB if general access detect is enabled. */
|
---|
5382 | if (pCtx->dr[7] & X86_DR7_GD)
|
---|
5383 | {
|
---|
5384 | Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
|
---|
5385 | return iemRaiseDebugException(pVCpu);
|
---|
5386 | }
|
---|
5387 |
|
---|
5388 | /*
|
---|
5389 | * Read the debug register and store it in the specified general register.
|
---|
5390 | */
|
---|
5391 | uint64_t drX;
|
---|
5392 | switch (iDrReg)
|
---|
5393 | {
|
---|
5394 | case 0: drX = pCtx->dr[0]; break;
|
---|
5395 | case 1: drX = pCtx->dr[1]; break;
|
---|
5396 | case 2: drX = pCtx->dr[2]; break;
|
---|
5397 | case 3: drX = pCtx->dr[3]; break;
|
---|
5398 | case 6:
|
---|
5399 | case 4:
|
---|
5400 | drX = pCtx->dr[6];
|
---|
5401 | drX |= X86_DR6_RA1_MASK;
|
---|
5402 | drX &= ~X86_DR6_RAZ_MASK;
|
---|
5403 | break;
|
---|
5404 | case 7:
|
---|
5405 | case 5:
|
---|
5406 | drX = pCtx->dr[7];
|
---|
5407 | drX |=X86_DR7_RA1_MASK;
|
---|
5408 | drX &= ~X86_DR7_RAZ_MASK;
|
---|
5409 | break;
|
---|
5410 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
5411 | }
|
---|
5412 |
|
---|
5413 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5414 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
|
---|
5415 | else
|
---|
5416 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
|
---|
5417 |
|
---|
5418 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5419 | return VINF_SUCCESS;
|
---|
5420 | }
|
---|
5421 |
|
---|
5422 |
|
---|
5423 | /**
|
---|
5424 | * Implements mov DRx,GReg.
|
---|
5425 | *
|
---|
5426 | * @param iDrReg The DRx register to write (valid).
|
---|
5427 | * @param iGReg The general register to load the DRx value from.
|
---|
5428 | */
|
---|
5429 | IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
|
---|
5430 | {
|
---|
5431 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5432 |
|
---|
5433 | /*
|
---|
5434 | * Check preconditions.
|
---|
5435 | */
|
---|
5436 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5437 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5438 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
5439 |
|
---|
5440 | if (iDrReg == 4 || iDrReg == 5)
|
---|
5441 | {
|
---|
5442 | if (pCtx->cr4 & X86_CR4_DE)
|
---|
5443 | {
|
---|
5444 | Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
|
---|
5445 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5446 | }
|
---|
5447 | iDrReg += 2;
|
---|
5448 | }
|
---|
5449 |
|
---|
5450 | /* Raise #DB if general access detect is enabled. */
|
---|
5451 | /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
|
---|
5452 | * \#GP? */
|
---|
5453 | if (pCtx->dr[7] & X86_DR7_GD)
|
---|
5454 | {
|
---|
5455 | Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
|
---|
5456 | return iemRaiseDebugException(pVCpu);
|
---|
5457 | }
|
---|
5458 |
|
---|
5459 | /*
|
---|
5460 | * Read the new value from the source register.
|
---|
5461 | */
|
---|
5462 | uint64_t uNewDrX;
|
---|
5463 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5464 | uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
|
---|
5465 | else
|
---|
5466 | uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
|
---|
5467 |
|
---|
5468 | /*
|
---|
5469 | * Adjust it.
|
---|
5470 | */
|
---|
5471 | switch (iDrReg)
|
---|
5472 | {
|
---|
5473 | case 0:
|
---|
5474 | case 1:
|
---|
5475 | case 2:
|
---|
5476 | case 3:
|
---|
5477 | /* nothing to adjust */
|
---|
5478 | break;
|
---|
5479 |
|
---|
5480 | case 6:
|
---|
5481 | if (uNewDrX & X86_DR6_MBZ_MASK)
|
---|
5482 | {
|
---|
5483 | Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
|
---|
5484 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5485 | }
|
---|
5486 | uNewDrX |= X86_DR6_RA1_MASK;
|
---|
5487 | uNewDrX &= ~X86_DR6_RAZ_MASK;
|
---|
5488 | break;
|
---|
5489 |
|
---|
5490 | case 7:
|
---|
5491 | if (uNewDrX & X86_DR7_MBZ_MASK)
|
---|
5492 | {
|
---|
5493 | Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
|
---|
5494 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5495 | }
|
---|
5496 | uNewDrX |= X86_DR7_RA1_MASK;
|
---|
5497 | uNewDrX &= ~X86_DR7_RAZ_MASK;
|
---|
5498 | break;
|
---|
5499 |
|
---|
5500 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
5501 | }
|
---|
5502 |
|
---|
5503 | /*
|
---|
5504 | * Do the actual setting.
|
---|
5505 | */
|
---|
5506 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5507 | {
|
---|
5508 | int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
|
---|
5509 | AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
|
---|
5510 | }
|
---|
5511 | else
|
---|
5512 | pCtx->dr[iDrReg] = uNewDrX;
|
---|
5513 |
|
---|
5514 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5515 | return VINF_SUCCESS;
|
---|
5516 | }
|
---|
5517 |
|
---|
5518 |
|
---|
5519 | /**
|
---|
5520 | * Implements 'INVLPG m'.
|
---|
5521 | *
|
---|
5522 | * @param GCPtrPage The effective address of the page to invalidate.
|
---|
5523 | * @remarks Updates the RIP.
|
---|
5524 | */
|
---|
5525 | IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
|
---|
5526 | {
|
---|
5527 | /* ring-0 only. */
|
---|
5528 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5529 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5530 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
5531 |
|
---|
5532 | int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
|
---|
5533 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5534 |
|
---|
5535 | if (rc == VINF_SUCCESS)
|
---|
5536 | return VINF_SUCCESS;
|
---|
5537 | if (rc == VINF_PGM_SYNC_CR3)
|
---|
5538 | return iemSetPassUpStatus(pVCpu, rc);
|
---|
5539 |
|
---|
5540 | AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
|
---|
5541 | Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
|
---|
5542 | return rc;
|
---|
5543 | }
|
---|
5544 |
|
---|
5545 |
|
---|
5546 | /**
|
---|
5547 | * Implements RDTSC.
|
---|
5548 | */
|
---|
5549 | IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
|
---|
5550 | {
|
---|
5551 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5552 |
|
---|
5553 | /*
|
---|
5554 | * Check preconditions.
|
---|
5555 | */
|
---|
5556 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
|
---|
5557 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5558 |
|
---|
5559 | if ( (pCtx->cr4 & X86_CR4_TSD)
|
---|
5560 | && pVCpu->iem.s.uCpl != 0)
|
---|
5561 | {
|
---|
5562 | Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5563 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5564 | }
|
---|
5565 |
|
---|
5566 | /*
|
---|
5567 | * Do the job.
|
---|
5568 | */
|
---|
5569 | uint64_t uTicks = TMCpuTickGet(pVCpu);
|
---|
5570 | pCtx->rax = (uint32_t)uTicks;
|
---|
5571 | pCtx->rdx = uTicks >> 32;
|
---|
5572 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
5573 | pVCpu->iem.s.fIgnoreRaxRdx = true;
|
---|
5574 | #endif
|
---|
5575 |
|
---|
5576 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5577 | return VINF_SUCCESS;
|
---|
5578 | }
|
---|
5579 |
|
---|
5580 |
|
---|
5581 | /**
|
---|
5582 | * Implements RDMSR.
|
---|
5583 | */
|
---|
5584 | IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
|
---|
5585 | {
|
---|
5586 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5587 |
|
---|
5588 | /*
|
---|
5589 | * Check preconditions.
|
---|
5590 | */
|
---|
5591 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
|
---|
5592 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5593 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5594 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5595 |
|
---|
5596 | /*
|
---|
5597 | * Do the job.
|
---|
5598 | */
|
---|
5599 | RTUINT64U uValue;
|
---|
5600 | VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pCtx->ecx, &uValue.u);
|
---|
5601 | if (rcStrict == VINF_SUCCESS)
|
---|
5602 | {
|
---|
5603 | pCtx->rax = uValue.s.Lo;
|
---|
5604 | pCtx->rdx = uValue.s.Hi;
|
---|
5605 |
|
---|
5606 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5607 | return VINF_SUCCESS;
|
---|
5608 | }
|
---|
5609 |
|
---|
5610 | #ifndef IN_RING3
|
---|
5611 | /* Deferred to ring-3. */
|
---|
5612 | if (rcStrict == VINF_CPUM_R3_MSR_READ)
|
---|
5613 | {
|
---|
5614 | Log(("IEM: rdmsr(%#x) -> ring-3\n", pCtx->ecx));
|
---|
5615 | return rcStrict;
|
---|
5616 | }
|
---|
5617 | #else /* IN_RING3 */
|
---|
5618 | /* Often a unimplemented MSR or MSR bit, so worth logging. */
|
---|
5619 | static uint32_t s_cTimes = 0;
|
---|
5620 | if (s_cTimes++ < 10)
|
---|
5621 | LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx));
|
---|
5622 | else
|
---|
5623 | #endif
|
---|
5624 | Log(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx));
|
---|
5625 | AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
|
---|
5626 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5627 | }
|
---|
5628 |
|
---|
5629 |
|
---|
5630 | /**
|
---|
5631 | * Implements WRMSR.
|
---|
5632 | */
|
---|
5633 | IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
|
---|
5634 | {
|
---|
5635 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5636 |
|
---|
5637 | /*
|
---|
5638 | * Check preconditions.
|
---|
5639 | */
|
---|
5640 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
|
---|
5641 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5642 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5643 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5644 |
|
---|
5645 | /*
|
---|
5646 | * Do the job.
|
---|
5647 | */
|
---|
5648 | RTUINT64U uValue;
|
---|
5649 | uValue.s.Lo = pCtx->eax;
|
---|
5650 | uValue.s.Hi = pCtx->edx;
|
---|
5651 |
|
---|
5652 | VBOXSTRICTRC rcStrict;
|
---|
5653 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5654 | rcStrict = CPUMSetGuestMsr(pVCpu, pCtx->ecx, uValue.u);
|
---|
5655 | else
|
---|
5656 | {
|
---|
5657 | #ifdef IN_RING3
|
---|
5658 | CPUMCTX CtxTmp = *pCtx;
|
---|
5659 | rcStrict = CPUMSetGuestMsr(pVCpu, pCtx->ecx, uValue.u);
|
---|
5660 | PCPUMCTX pCtx2 = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
5661 | *pCtx = *pCtx2;
|
---|
5662 | *pCtx2 = CtxTmp;
|
---|
5663 | #else
|
---|
5664 | AssertReleaseFailedReturn(VERR_IEM_IPE_2);
|
---|
5665 | #endif
|
---|
5666 | }
|
---|
5667 | if (rcStrict == VINF_SUCCESS)
|
---|
5668 | {
|
---|
5669 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5670 | return VINF_SUCCESS;
|
---|
5671 | }
|
---|
5672 |
|
---|
5673 | #ifndef IN_RING3
|
---|
5674 | /* Deferred to ring-3. */
|
---|
5675 | if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
|
---|
5676 | {
|
---|
5677 | Log(("IEM: rdmsr(%#x) -> ring-3\n", pCtx->ecx));
|
---|
5678 | return rcStrict;
|
---|
5679 | }
|
---|
5680 | #else /* IN_RING3 */
|
---|
5681 | /* Often a unimplemented MSR or MSR bit, so worth logging. */
|
---|
5682 | static uint32_t s_cTimes = 0;
|
---|
5683 | if (s_cTimes++ < 10)
|
---|
5684 | LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo));
|
---|
5685 | else
|
---|
5686 | #endif
|
---|
5687 | Log(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo));
|
---|
5688 | AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
|
---|
5689 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5690 | }
|
---|
5691 |
|
---|
5692 |
|
---|
5693 | /**
|
---|
5694 | * Implements 'IN eAX, port'.
|
---|
5695 | *
|
---|
5696 | * @param u16Port The source port.
|
---|
5697 | * @param cbReg The register size.
|
---|
5698 | */
|
---|
5699 | IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg)
|
---|
5700 | {
|
---|
5701 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5702 |
|
---|
5703 | /*
|
---|
5704 | * CPL check
|
---|
5705 | */
|
---|
5706 | VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, pCtx, u16Port, cbReg);
|
---|
5707 | if (rcStrict != VINF_SUCCESS)
|
---|
5708 | return rcStrict;
|
---|
5709 |
|
---|
5710 | /*
|
---|
5711 | * Perform the I/O.
|
---|
5712 | */
|
---|
5713 | uint32_t u32Value;
|
---|
5714 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5715 | rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
|
---|
5716 | else
|
---|
5717 | rcStrict = iemVerifyFakeIOPortRead(pVCpu, u16Port, &u32Value, cbReg);
|
---|
5718 | if (IOM_SUCCESS(rcStrict))
|
---|
5719 | {
|
---|
5720 | switch (cbReg)
|
---|
5721 | {
|
---|
5722 | case 1: pCtx->al = (uint8_t)u32Value; break;
|
---|
5723 | case 2: pCtx->ax = (uint16_t)u32Value; break;
|
---|
5724 | case 4: pCtx->rax = u32Value; break;
|
---|
5725 | default: AssertFailedReturn(VERR_IEM_IPE_3);
|
---|
5726 | }
|
---|
5727 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5728 | pVCpu->iem.s.cPotentialExits++;
|
---|
5729 | if (rcStrict != VINF_SUCCESS)
|
---|
5730 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5731 | Assert(rcStrict == VINF_SUCCESS); /* assumed below */
|
---|
5732 |
|
---|
5733 | /*
|
---|
5734 | * Check for I/O breakpoints.
|
---|
5735 | */
|
---|
5736 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
5737 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
5738 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
5739 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
5740 | || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
|
---|
5741 | {
|
---|
5742 | rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx, u16Port, cbReg);
|
---|
5743 | if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
5744 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
5745 | }
|
---|
5746 | }
|
---|
5747 |
|
---|
5748 | return rcStrict;
|
---|
5749 | }
|
---|
5750 |
|
---|
5751 |
|
---|
5752 | /**
|
---|
5753 | * Implements 'IN eAX, DX'.
|
---|
5754 | *
|
---|
5755 | * @param cbReg The register size.
|
---|
5756 | */
|
---|
5757 | IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
|
---|
5758 | {
|
---|
5759 | return IEM_CIMPL_CALL_2(iemCImpl_in, IEM_GET_CTX(pVCpu)->dx, cbReg);
|
---|
5760 | }
|
---|
5761 |
|
---|
5762 |
|
---|
5763 | /**
|
---|
5764 | * Implements 'OUT port, eAX'.
|
---|
5765 | *
|
---|
5766 | * @param u16Port The destination port.
|
---|
5767 | * @param cbReg The register size.
|
---|
5768 | */
|
---|
5769 | IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg)
|
---|
5770 | {
|
---|
5771 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5772 |
|
---|
5773 | /*
|
---|
5774 | * CPL check
|
---|
5775 | */
|
---|
5776 | VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, pCtx, u16Port, cbReg);
|
---|
5777 | if (rcStrict != VINF_SUCCESS)
|
---|
5778 | return rcStrict;
|
---|
5779 |
|
---|
5780 | /*
|
---|
5781 | * Perform the I/O.
|
---|
5782 | */
|
---|
5783 | uint32_t u32Value;
|
---|
5784 | switch (cbReg)
|
---|
5785 | {
|
---|
5786 | case 1: u32Value = pCtx->al; break;
|
---|
5787 | case 2: u32Value = pCtx->ax; break;
|
---|
5788 | case 4: u32Value = pCtx->eax; break;
|
---|
5789 | default: AssertFailedReturn(VERR_IEM_IPE_4);
|
---|
5790 | }
|
---|
5791 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5792 | rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
|
---|
5793 | else
|
---|
5794 | rcStrict = iemVerifyFakeIOPortWrite(pVCpu, u16Port, u32Value, cbReg);
|
---|
5795 | if (IOM_SUCCESS(rcStrict))
|
---|
5796 | {
|
---|
5797 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5798 | pVCpu->iem.s.cPotentialExits++;
|
---|
5799 | if (rcStrict != VINF_SUCCESS)
|
---|
5800 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5801 | Assert(rcStrict == VINF_SUCCESS); /* assumed below */
|
---|
5802 |
|
---|
5803 | /*
|
---|
5804 | * Check for I/O breakpoints.
|
---|
5805 | */
|
---|
5806 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
5807 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
5808 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
5809 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
5810 | || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
|
---|
5811 | {
|
---|
5812 | rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx, u16Port, cbReg);
|
---|
5813 | if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
5814 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
5815 | }
|
---|
5816 | }
|
---|
5817 | return rcStrict;
|
---|
5818 | }
|
---|
5819 |
|
---|
5820 |
|
---|
5821 | /**
|
---|
5822 | * Implements 'OUT DX, eAX'.
|
---|
5823 | *
|
---|
5824 | * @param cbReg The register size.
|
---|
5825 | */
|
---|
5826 | IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
|
---|
5827 | {
|
---|
5828 | return IEM_CIMPL_CALL_2(iemCImpl_out, IEM_GET_CTX(pVCpu)->dx, cbReg);
|
---|
5829 | }
|
---|
5830 |
|
---|
5831 |
|
---|
5832 | /**
|
---|
5833 | * Implements 'CLI'.
|
---|
5834 | */
|
---|
5835 | IEM_CIMPL_DEF_0(iemCImpl_cli)
|
---|
5836 | {
|
---|
5837 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5838 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
5839 | uint32_t const fEflOld = fEfl;
|
---|
5840 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
5841 | {
|
---|
5842 | uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
|
---|
5843 | if (!(fEfl & X86_EFL_VM))
|
---|
5844 | {
|
---|
5845 | if (pVCpu->iem.s.uCpl <= uIopl)
|
---|
5846 | fEfl &= ~X86_EFL_IF;
|
---|
5847 | else if ( pVCpu->iem.s.uCpl == 3
|
---|
5848 | && (pCtx->cr4 & X86_CR4_PVI) )
|
---|
5849 | fEfl &= ~X86_EFL_VIF;
|
---|
5850 | else
|
---|
5851 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5852 | }
|
---|
5853 | /* V8086 */
|
---|
5854 | else if (uIopl == 3)
|
---|
5855 | fEfl &= ~X86_EFL_IF;
|
---|
5856 | else if ( uIopl < 3
|
---|
5857 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
5858 | fEfl &= ~X86_EFL_VIF;
|
---|
5859 | else
|
---|
5860 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5861 | }
|
---|
5862 | /* real mode */
|
---|
5863 | else
|
---|
5864 | fEfl &= ~X86_EFL_IF;
|
---|
5865 |
|
---|
5866 | /* Commit. */
|
---|
5867 | IEMMISC_SET_EFL(pVCpu, pCtx, fEfl);
|
---|
5868 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5869 | Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
|
---|
5870 | return VINF_SUCCESS;
|
---|
5871 | }
|
---|
5872 |
|
---|
5873 |
|
---|
5874 | /**
|
---|
5875 | * Implements 'STI'.
|
---|
5876 | */
|
---|
5877 | IEM_CIMPL_DEF_0(iemCImpl_sti)
|
---|
5878 | {
|
---|
5879 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5880 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
5881 | uint32_t const fEflOld = fEfl;
|
---|
5882 |
|
---|
5883 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
5884 | {
|
---|
5885 | uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
|
---|
5886 | if (!(fEfl & X86_EFL_VM))
|
---|
5887 | {
|
---|
5888 | if (pVCpu->iem.s.uCpl <= uIopl)
|
---|
5889 | fEfl |= X86_EFL_IF;
|
---|
5890 | else if ( pVCpu->iem.s.uCpl == 3
|
---|
5891 | && (pCtx->cr4 & X86_CR4_PVI)
|
---|
5892 | && !(fEfl & X86_EFL_VIP) )
|
---|
5893 | fEfl |= X86_EFL_VIF;
|
---|
5894 | else
|
---|
5895 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5896 | }
|
---|
5897 | /* V8086 */
|
---|
5898 | else if (uIopl == 3)
|
---|
5899 | fEfl |= X86_EFL_IF;
|
---|
5900 | else if ( uIopl < 3
|
---|
5901 | && (pCtx->cr4 & X86_CR4_VME)
|
---|
5902 | && !(fEfl & X86_EFL_VIP) )
|
---|
5903 | fEfl |= X86_EFL_VIF;
|
---|
5904 | else
|
---|
5905 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5906 | }
|
---|
5907 | /* real mode */
|
---|
5908 | else
|
---|
5909 | fEfl |= X86_EFL_IF;
|
---|
5910 |
|
---|
5911 | /* Commit. */
|
---|
5912 | IEMMISC_SET_EFL(pVCpu, pCtx, fEfl);
|
---|
5913 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5914 | if ((!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF)) || IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
5915 | EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
|
---|
5916 | Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
|
---|
5917 | return VINF_SUCCESS;
|
---|
5918 | }
|
---|
5919 |
|
---|
5920 |
|
---|
5921 | /**
|
---|
5922 | * Implements 'HLT'.
|
---|
5923 | */
|
---|
5924 | IEM_CIMPL_DEF_0(iemCImpl_hlt)
|
---|
5925 | {
|
---|
5926 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5927 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5928 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5929 | return VINF_EM_HALT;
|
---|
5930 | }
|
---|
5931 |
|
---|
5932 |
|
---|
5933 | /**
|
---|
5934 | * Implements 'MONITOR'.
|
---|
5935 | */
|
---|
5936 | IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
|
---|
5937 | {
|
---|
5938 | /*
|
---|
5939 | * Permission checks.
|
---|
5940 | */
|
---|
5941 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5942 | {
|
---|
5943 | Log2(("monitor: CPL != 0\n"));
|
---|
5944 | return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
|
---|
5945 | }
|
---|
5946 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
|
---|
5947 | {
|
---|
5948 | Log2(("monitor: Not in CPUID\n"));
|
---|
5949 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5950 | }
|
---|
5951 |
|
---|
5952 | /*
|
---|
5953 | * Gather the operands and validate them.
|
---|
5954 | */
|
---|
5955 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5956 | RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
|
---|
5957 | uint32_t uEcx = pCtx->ecx;
|
---|
5958 | uint32_t uEdx = pCtx->edx;
|
---|
5959 | /** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
|
---|
5960 | * \#GP first. */
|
---|
5961 | if (uEcx != 0)
|
---|
5962 | {
|
---|
5963 | Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
|
---|
5964 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5965 | }
|
---|
5966 |
|
---|
5967 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
|
---|
5968 | if (rcStrict != VINF_SUCCESS)
|
---|
5969 | return rcStrict;
|
---|
5970 |
|
---|
5971 | RTGCPHYS GCPhysMem;
|
---|
5972 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
|
---|
5973 | if (rcStrict != VINF_SUCCESS)
|
---|
5974 | return rcStrict;
|
---|
5975 |
|
---|
5976 | /*
|
---|
5977 | * Call EM to prepare the monitor/wait.
|
---|
5978 | */
|
---|
5979 | rcStrict = EMMonitorWaitPrepare(pVCpu, pCtx->rax, pCtx->rcx, pCtx->rdx, GCPhysMem);
|
---|
5980 | Assert(rcStrict == VINF_SUCCESS);
|
---|
5981 |
|
---|
5982 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5983 | return rcStrict;
|
---|
5984 | }
|
---|
5985 |
|
---|
5986 |
|
---|
5987 | /**
|
---|
5988 | * Implements 'MWAIT'.
|
---|
5989 | */
|
---|
5990 | IEM_CIMPL_DEF_0(iemCImpl_mwait)
|
---|
5991 | {
|
---|
5992 | /*
|
---|
5993 | * Permission checks.
|
---|
5994 | */
|
---|
5995 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5996 | {
|
---|
5997 | Log2(("mwait: CPL != 0\n"));
|
---|
5998 | /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
|
---|
5999 | * EFLAGS.VM then.) */
|
---|
6000 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6001 | }
|
---|
6002 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
|
---|
6003 | {
|
---|
6004 | Log2(("mwait: Not in CPUID\n"));
|
---|
6005 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6006 | }
|
---|
6007 |
|
---|
6008 | /*
|
---|
6009 | * Gather the operands and validate them.
|
---|
6010 | */
|
---|
6011 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6012 | uint32_t uEax = pCtx->eax;
|
---|
6013 | uint32_t uEcx = pCtx->ecx;
|
---|
6014 | if (uEcx != 0)
|
---|
6015 | {
|
---|
6016 | /* Only supported extension is break on IRQ when IF=0. */
|
---|
6017 | if (uEcx > 1)
|
---|
6018 | {
|
---|
6019 | Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
|
---|
6020 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6021 | }
|
---|
6022 | uint32_t fMWaitFeatures = 0;
|
---|
6023 | uint32_t uIgnore = 0;
|
---|
6024 | CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
|
---|
6025 | if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
|
---|
6026 | != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
|
---|
6027 | {
|
---|
6028 | Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
|
---|
6029 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6030 | }
|
---|
6031 | }
|
---|
6032 |
|
---|
6033 | /*
|
---|
6034 | * Call EM to prepare the monitor/wait.
|
---|
6035 | */
|
---|
6036 | VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
|
---|
6037 |
|
---|
6038 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6039 | return rcStrict;
|
---|
6040 | }
|
---|
6041 |
|
---|
6042 |
|
---|
6043 | /**
|
---|
6044 | * Implements 'SWAPGS'.
|
---|
6045 | */
|
---|
6046 | IEM_CIMPL_DEF_0(iemCImpl_swapgs)
|
---|
6047 | {
|
---|
6048 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
|
---|
6049 |
|
---|
6050 | /*
|
---|
6051 | * Permission checks.
|
---|
6052 | */
|
---|
6053 | if (pVCpu->iem.s.uCpl != 0)
|
---|
6054 | {
|
---|
6055 | Log2(("swapgs: CPL != 0\n"));
|
---|
6056 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6057 | }
|
---|
6058 |
|
---|
6059 | /*
|
---|
6060 | * Do the job.
|
---|
6061 | */
|
---|
6062 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6063 | uint64_t uOtherGsBase = pCtx->msrKERNELGSBASE;
|
---|
6064 | pCtx->msrKERNELGSBASE = pCtx->gs.u64Base;
|
---|
6065 | pCtx->gs.u64Base = uOtherGsBase;
|
---|
6066 |
|
---|
6067 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6068 | return VINF_SUCCESS;
|
---|
6069 | }
|
---|
6070 |
|
---|
6071 |
|
---|
6072 | /**
|
---|
6073 | * Implements 'CPUID'.
|
---|
6074 | */
|
---|
6075 | IEM_CIMPL_DEF_0(iemCImpl_cpuid)
|
---|
6076 | {
|
---|
6077 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6078 |
|
---|
6079 | CPUMGetGuestCpuId(pVCpu, pCtx->eax, pCtx->ecx, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx);
|
---|
6080 | pCtx->rax &= UINT32_C(0xffffffff);
|
---|
6081 | pCtx->rbx &= UINT32_C(0xffffffff);
|
---|
6082 | pCtx->rcx &= UINT32_C(0xffffffff);
|
---|
6083 | pCtx->rdx &= UINT32_C(0xffffffff);
|
---|
6084 |
|
---|
6085 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6086 | return VINF_SUCCESS;
|
---|
6087 | }
|
---|
6088 |
|
---|
6089 |
|
---|
6090 | /**
|
---|
6091 | * Implements 'AAD'.
|
---|
6092 | *
|
---|
6093 | * @param bImm The immediate operand.
|
---|
6094 | */
|
---|
6095 | IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
|
---|
6096 | {
|
---|
6097 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6098 |
|
---|
6099 | uint16_t const ax = pCtx->ax;
|
---|
6100 | uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
|
---|
6101 | pCtx->ax = al;
|
---|
6102 | iemHlpUpdateArithEFlagsU8(pVCpu, al,
|
---|
6103 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
|
---|
6104 | X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
|
---|
6105 |
|
---|
6106 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6107 | return VINF_SUCCESS;
|
---|
6108 | }
|
---|
6109 |
|
---|
6110 |
|
---|
6111 | /**
|
---|
6112 | * Implements 'AAM'.
|
---|
6113 | *
|
---|
6114 | * @param bImm The immediate operand. Cannot be 0.
|
---|
6115 | */
|
---|
6116 | IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
|
---|
6117 | {
|
---|
6118 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6119 | Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
|
---|
6120 |
|
---|
6121 | uint16_t const ax = pCtx->ax;
|
---|
6122 | uint8_t const al = (uint8_t)ax % bImm;
|
---|
6123 | uint8_t const ah = (uint8_t)ax / bImm;
|
---|
6124 | pCtx->ax = (ah << 8) + al;
|
---|
6125 | iemHlpUpdateArithEFlagsU8(pVCpu, al,
|
---|
6126 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
|
---|
6127 | X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
|
---|
6128 |
|
---|
6129 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6130 | return VINF_SUCCESS;
|
---|
6131 | }
|
---|
6132 |
|
---|
6133 |
|
---|
6134 | /**
|
---|
6135 | * Implements 'DAA'.
|
---|
6136 | */
|
---|
6137 | IEM_CIMPL_DEF_0(iemCImpl_daa)
|
---|
6138 | {
|
---|
6139 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6140 |
|
---|
6141 | uint8_t const al = pCtx->al;
|
---|
6142 | bool const fCarry = pCtx->eflags.Bits.u1CF;
|
---|
6143 |
|
---|
6144 | if ( pCtx->eflags.Bits.u1AF
|
---|
6145 | || (al & 0xf) >= 10)
|
---|
6146 | {
|
---|
6147 | pCtx->al = al + 6;
|
---|
6148 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6149 | }
|
---|
6150 | else
|
---|
6151 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6152 |
|
---|
6153 | if (al >= 0x9a || fCarry)
|
---|
6154 | {
|
---|
6155 | pCtx->al += 0x60;
|
---|
6156 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6157 | }
|
---|
6158 | else
|
---|
6159 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6160 |
|
---|
6161 | iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6162 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6163 | return VINF_SUCCESS;
|
---|
6164 | }
|
---|
6165 |
|
---|
6166 |
|
---|
6167 | /**
|
---|
6168 | * Implements 'DAS'.
|
---|
6169 | */
|
---|
6170 | IEM_CIMPL_DEF_0(iemCImpl_das)
|
---|
6171 | {
|
---|
6172 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6173 |
|
---|
6174 | uint8_t const uInputAL = pCtx->al;
|
---|
6175 | bool const fCarry = pCtx->eflags.Bits.u1CF;
|
---|
6176 |
|
---|
6177 | if ( pCtx->eflags.Bits.u1AF
|
---|
6178 | || (uInputAL & 0xf) >= 10)
|
---|
6179 | {
|
---|
6180 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6181 | if (uInputAL < 6)
|
---|
6182 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6183 | pCtx->al = uInputAL - 6;
|
---|
6184 | }
|
---|
6185 | else
|
---|
6186 | {
|
---|
6187 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6188 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6189 | }
|
---|
6190 |
|
---|
6191 | if (uInputAL >= 0x9a || fCarry)
|
---|
6192 | {
|
---|
6193 | pCtx->al -= 0x60;
|
---|
6194 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6195 | }
|
---|
6196 |
|
---|
6197 | iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6198 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6199 | return VINF_SUCCESS;
|
---|
6200 | }
|
---|
6201 |
|
---|
6202 |
|
---|
6203 |
|
---|
6204 |
|
---|
6205 | /*
|
---|
6206 | * Instantiate the various string operation combinations.
|
---|
6207 | */
|
---|
6208 | #define OP_SIZE 8
|
---|
6209 | #define ADDR_SIZE 16
|
---|
6210 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6211 | #define OP_SIZE 8
|
---|
6212 | #define ADDR_SIZE 32
|
---|
6213 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6214 | #define OP_SIZE 8
|
---|
6215 | #define ADDR_SIZE 64
|
---|
6216 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6217 |
|
---|
6218 | #define OP_SIZE 16
|
---|
6219 | #define ADDR_SIZE 16
|
---|
6220 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6221 | #define OP_SIZE 16
|
---|
6222 | #define ADDR_SIZE 32
|
---|
6223 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6224 | #define OP_SIZE 16
|
---|
6225 | #define ADDR_SIZE 64
|
---|
6226 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6227 |
|
---|
6228 | #define OP_SIZE 32
|
---|
6229 | #define ADDR_SIZE 16
|
---|
6230 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6231 | #define OP_SIZE 32
|
---|
6232 | #define ADDR_SIZE 32
|
---|
6233 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6234 | #define OP_SIZE 32
|
---|
6235 | #define ADDR_SIZE 64
|
---|
6236 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6237 |
|
---|
6238 | #define OP_SIZE 64
|
---|
6239 | #define ADDR_SIZE 32
|
---|
6240 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6241 | #define OP_SIZE 64
|
---|
6242 | #define ADDR_SIZE 64
|
---|
6243 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6244 |
|
---|
6245 |
|
---|
6246 | /**
|
---|
6247 | * Implements 'XGETBV'.
|
---|
6248 | */
|
---|
6249 | IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
|
---|
6250 | {
|
---|
6251 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6252 | if (pCtx->cr4 & X86_CR4_OSXSAVE)
|
---|
6253 | {
|
---|
6254 | uint32_t uEcx = pCtx->ecx;
|
---|
6255 | switch (uEcx)
|
---|
6256 | {
|
---|
6257 | case 0:
|
---|
6258 | break;
|
---|
6259 |
|
---|
6260 | case 1: /** @todo Implement XCR1 support. */
|
---|
6261 | default:
|
---|
6262 | Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
|
---|
6263 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6264 |
|
---|
6265 | }
|
---|
6266 | pCtx->rax = RT_LO_U32(pCtx->aXcr[uEcx]);
|
---|
6267 | pCtx->rdx = RT_HI_U32(pCtx->aXcr[uEcx]);
|
---|
6268 |
|
---|
6269 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6270 | return VINF_SUCCESS;
|
---|
6271 | }
|
---|
6272 | Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
|
---|
6273 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6274 | }
|
---|
6275 |
|
---|
6276 |
|
---|
6277 | /**
|
---|
6278 | * Implements 'XSETBV'.
|
---|
6279 | */
|
---|
6280 | IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
|
---|
6281 | {
|
---|
6282 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6283 | if (pCtx->cr4 & X86_CR4_OSXSAVE)
|
---|
6284 | {
|
---|
6285 | if (pVCpu->iem.s.uCpl == 0)
|
---|
6286 | {
|
---|
6287 | uint32_t uEcx = pCtx->ecx;
|
---|
6288 | uint64_t uNewValue = RT_MAKE_U64(pCtx->eax, pCtx->edx);
|
---|
6289 | switch (uEcx)
|
---|
6290 | {
|
---|
6291 | case 0:
|
---|
6292 | {
|
---|
6293 | int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
|
---|
6294 | if (rc == VINF_SUCCESS)
|
---|
6295 | break;
|
---|
6296 | Assert(rc == VERR_CPUM_RAISE_GP_0);
|
---|
6297 | Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
|
---|
6298 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6299 | }
|
---|
6300 |
|
---|
6301 | case 1: /** @todo Implement XCR1 support. */
|
---|
6302 | default:
|
---|
6303 | Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
|
---|
6304 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6305 |
|
---|
6306 | }
|
---|
6307 |
|
---|
6308 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6309 | return VINF_SUCCESS;
|
---|
6310 | }
|
---|
6311 |
|
---|
6312 | Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
6313 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6314 | }
|
---|
6315 | Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
|
---|
6316 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6317 | }
|
---|
6318 |
|
---|
6319 |
|
---|
6320 |
|
---|
6321 | /**
|
---|
6322 | * Implements 'FINIT' and 'FNINIT'.
|
---|
6323 | *
|
---|
6324 | * @param fCheckXcpts Whether to check for umasked pending exceptions or
|
---|
6325 | * not.
|
---|
6326 | */
|
---|
6327 | IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
|
---|
6328 | {
|
---|
6329 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6330 |
|
---|
6331 | if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
|
---|
6332 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
6333 |
|
---|
6334 | NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
|
---|
6335 | if (fCheckXcpts && TODO )
|
---|
6336 | return iemRaiseMathFault(pVCpu);
|
---|
6337 | */
|
---|
6338 |
|
---|
6339 | PX86XSAVEAREA pXState = pCtx->CTX_SUFF(pXState);
|
---|
6340 | pXState->x87.FCW = 0x37f;
|
---|
6341 | pXState->x87.FSW = 0;
|
---|
6342 | pXState->x87.FTW = 0x00; /* 0 - empty. */
|
---|
6343 | pXState->x87.FPUDP = 0;
|
---|
6344 | pXState->x87.DS = 0; //??
|
---|
6345 | pXState->x87.Rsrvd2= 0;
|
---|
6346 | pXState->x87.FPUIP = 0;
|
---|
6347 | pXState->x87.CS = 0; //??
|
---|
6348 | pXState->x87.Rsrvd1= 0;
|
---|
6349 | pXState->x87.FOP = 0;
|
---|
6350 |
|
---|
6351 | iemHlpUsedFpu(pVCpu);
|
---|
6352 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6353 | return VINF_SUCCESS;
|
---|
6354 | }
|
---|
6355 |
|
---|
6356 |
|
---|
6357 | /**
|
---|
6358 | * Implements 'FXSAVE'.
|
---|
6359 | *
|
---|
6360 | * @param iEffSeg The effective segment.
|
---|
6361 | * @param GCPtrEff The address of the image.
|
---|
6362 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
6363 | */
|
---|
6364 | IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
|
---|
6365 | {
|
---|
6366 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6367 |
|
---|
6368 | /*
|
---|
6369 | * Raise exceptions.
|
---|
6370 | */
|
---|
6371 | if (pCtx->cr0 & X86_CR0_EM)
|
---|
6372 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6373 | if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
|
---|
6374 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
6375 | if (GCPtrEff & 15)
|
---|
6376 | {
|
---|
6377 | /** @todo CPU/VM detection possible! \#AC might not be signal for
|
---|
6378 | * all/any misalignment sizes, intel says its an implementation detail. */
|
---|
6379 | if ( (pCtx->cr0 & X86_CR0_AM)
|
---|
6380 | && pCtx->eflags.Bits.u1AC
|
---|
6381 | && pVCpu->iem.s.uCpl == 3)
|
---|
6382 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
6383 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6384 | }
|
---|
6385 |
|
---|
6386 | /*
|
---|
6387 | * Access the memory.
|
---|
6388 | */
|
---|
6389 | void *pvMem512;
|
---|
6390 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
6391 | if (rcStrict != VINF_SUCCESS)
|
---|
6392 | return rcStrict;
|
---|
6393 | PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
|
---|
6394 | PCX86FXSTATE pSrc = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6395 |
|
---|
6396 | /*
|
---|
6397 | * Store the registers.
|
---|
6398 | */
|
---|
6399 | /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
|
---|
6400 | * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
|
---|
6401 |
|
---|
6402 | /* common for all formats */
|
---|
6403 | pDst->FCW = pSrc->FCW;
|
---|
6404 | pDst->FSW = pSrc->FSW;
|
---|
6405 | pDst->FTW = pSrc->FTW & UINT16_C(0xff);
|
---|
6406 | pDst->FOP = pSrc->FOP;
|
---|
6407 | pDst->MXCSR = pSrc->MXCSR;
|
---|
6408 | pDst->MXCSR_MASK = pSrc->MXCSR_MASK;
|
---|
6409 | for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
|
---|
6410 | {
|
---|
6411 | /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
|
---|
6412 | * them for now... */
|
---|
6413 | pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
|
---|
6414 | pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
|
---|
6415 | pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
|
---|
6416 | pDst->aRegs[i].au32[3] = 0;
|
---|
6417 | }
|
---|
6418 |
|
---|
6419 | /* FPU IP, CS, DP and DS. */
|
---|
6420 | pDst->FPUIP = pSrc->FPUIP;
|
---|
6421 | pDst->CS = pSrc->CS;
|
---|
6422 | pDst->FPUDP = pSrc->FPUDP;
|
---|
6423 | pDst->DS = pSrc->DS;
|
---|
6424 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
6425 | {
|
---|
6426 | /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
|
---|
6427 | pDst->Rsrvd1 = pSrc->Rsrvd1;
|
---|
6428 | pDst->Rsrvd2 = pSrc->Rsrvd2;
|
---|
6429 | pDst->au32RsrvdForSoftware[0] = 0;
|
---|
6430 | }
|
---|
6431 | else
|
---|
6432 | {
|
---|
6433 | pDst->Rsrvd1 = 0;
|
---|
6434 | pDst->Rsrvd2 = 0;
|
---|
6435 | pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
|
---|
6436 | }
|
---|
6437 |
|
---|
6438 | /* XMM registers. */
|
---|
6439 | if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
|
---|
6440 | || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
6441 | || pVCpu->iem.s.uCpl != 0)
|
---|
6442 | {
|
---|
6443 | uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
|
---|
6444 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
6445 | pDst->aXMM[i] = pSrc->aXMM[i];
|
---|
6446 | /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
|
---|
6447 | * right? */
|
---|
6448 | }
|
---|
6449 |
|
---|
6450 | /*
|
---|
6451 | * Commit the memory.
|
---|
6452 | */
|
---|
6453 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
6454 | if (rcStrict != VINF_SUCCESS)
|
---|
6455 | return rcStrict;
|
---|
6456 |
|
---|
6457 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6458 | return VINF_SUCCESS;
|
---|
6459 | }
|
---|
6460 |
|
---|
6461 |
|
---|
6462 | /**
|
---|
6463 | * Implements 'FXRSTOR'.
|
---|
6464 | *
|
---|
6465 | * @param GCPtrEff The address of the image.
|
---|
6466 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
6467 | */
|
---|
6468 | IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
|
---|
6469 | {
|
---|
6470 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6471 |
|
---|
6472 | /*
|
---|
6473 | * Raise exceptions.
|
---|
6474 | */
|
---|
6475 | if (pCtx->cr0 & X86_CR0_EM)
|
---|
6476 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6477 | if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
|
---|
6478 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
6479 | if (GCPtrEff & 15)
|
---|
6480 | {
|
---|
6481 | /** @todo CPU/VM detection possible! \#AC might not be signal for
|
---|
6482 | * all/any misalignment sizes, intel says its an implementation detail. */
|
---|
6483 | if ( (pCtx->cr0 & X86_CR0_AM)
|
---|
6484 | && pCtx->eflags.Bits.u1AC
|
---|
6485 | && pVCpu->iem.s.uCpl == 3)
|
---|
6486 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
6487 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6488 | }
|
---|
6489 |
|
---|
6490 | /*
|
---|
6491 | * Access the memory.
|
---|
6492 | */
|
---|
6493 | void *pvMem512;
|
---|
6494 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
|
---|
6495 | if (rcStrict != VINF_SUCCESS)
|
---|
6496 | return rcStrict;
|
---|
6497 | PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
|
---|
6498 | PX86FXSTATE pDst = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6499 |
|
---|
6500 | /*
|
---|
6501 | * Check the state for stuff which will #GP(0).
|
---|
6502 | */
|
---|
6503 | uint32_t const fMXCSR = pSrc->MXCSR;
|
---|
6504 | uint32_t const fMXCSR_MASK = pDst->MXCSR_MASK ? pDst->MXCSR_MASK : UINT32_C(0xffbf);
|
---|
6505 | if (fMXCSR & ~fMXCSR_MASK)
|
---|
6506 | {
|
---|
6507 | Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
|
---|
6508 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6509 | }
|
---|
6510 |
|
---|
6511 | /*
|
---|
6512 | * Load the registers.
|
---|
6513 | */
|
---|
6514 | /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
|
---|
6515 | * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
|
---|
6516 |
|
---|
6517 | /* common for all formats */
|
---|
6518 | pDst->FCW = pSrc->FCW;
|
---|
6519 | pDst->FSW = pSrc->FSW;
|
---|
6520 | pDst->FTW = pSrc->FTW & UINT16_C(0xff);
|
---|
6521 | pDst->FOP = pSrc->FOP;
|
---|
6522 | pDst->MXCSR = fMXCSR;
|
---|
6523 | /* (MXCSR_MASK is read-only) */
|
---|
6524 | for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
|
---|
6525 | {
|
---|
6526 | pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
|
---|
6527 | pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
|
---|
6528 | pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
|
---|
6529 | pDst->aRegs[i].au32[3] = 0;
|
---|
6530 | }
|
---|
6531 |
|
---|
6532 | /* FPU IP, CS, DP and DS. */
|
---|
6533 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
6534 | {
|
---|
6535 | pDst->FPUIP = pSrc->FPUIP;
|
---|
6536 | pDst->CS = pSrc->CS;
|
---|
6537 | pDst->Rsrvd1 = pSrc->Rsrvd1;
|
---|
6538 | pDst->FPUDP = pSrc->FPUDP;
|
---|
6539 | pDst->DS = pSrc->DS;
|
---|
6540 | pDst->Rsrvd2 = pSrc->Rsrvd2;
|
---|
6541 | }
|
---|
6542 | else
|
---|
6543 | {
|
---|
6544 | pDst->FPUIP = pSrc->FPUIP;
|
---|
6545 | pDst->CS = pSrc->CS;
|
---|
6546 | pDst->Rsrvd1 = 0;
|
---|
6547 | pDst->FPUDP = pSrc->FPUDP;
|
---|
6548 | pDst->DS = pSrc->DS;
|
---|
6549 | pDst->Rsrvd2 = 0;
|
---|
6550 | }
|
---|
6551 |
|
---|
6552 | /* XMM registers. */
|
---|
6553 | if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
|
---|
6554 | || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
6555 | || pVCpu->iem.s.uCpl != 0)
|
---|
6556 | {
|
---|
6557 | uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
|
---|
6558 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
6559 | pDst->aXMM[i] = pSrc->aXMM[i];
|
---|
6560 | }
|
---|
6561 |
|
---|
6562 | /*
|
---|
6563 | * Commit the memory.
|
---|
6564 | */
|
---|
6565 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
|
---|
6566 | if (rcStrict != VINF_SUCCESS)
|
---|
6567 | return rcStrict;
|
---|
6568 |
|
---|
6569 | iemHlpUsedFpu(pVCpu);
|
---|
6570 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6571 | return VINF_SUCCESS;
|
---|
6572 | }
|
---|
6573 |
|
---|
6574 |
|
---|
6575 | /**
|
---|
6576 | * Commmon routine for fnstenv and fnsave.
|
---|
6577 | *
|
---|
6578 | * @param uPtr Where to store the state.
|
---|
6579 | * @param pCtx The CPU context.
|
---|
6580 | */
|
---|
6581 | static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr, PCCPUMCTX pCtx)
|
---|
6582 | {
|
---|
6583 | PCX86FXSTATE pSrcX87 = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6584 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
6585 | {
|
---|
6586 | uPtr.pu16[0] = pSrcX87->FCW;
|
---|
6587 | uPtr.pu16[1] = pSrcX87->FSW;
|
---|
6588 | uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
|
---|
6589 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
6590 | {
|
---|
6591 | /** @todo Testcase: How does this work when the FPUIP/CS was saved in
|
---|
6592 | * protected mode or long mode and we save it in real mode? And vice
|
---|
6593 | * versa? And with 32-bit operand size? I think CPU is storing the
|
---|
6594 | * effective address ((CS << 4) + IP) in the offset register and not
|
---|
6595 | * doing any address calculations here. */
|
---|
6596 | uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
|
---|
6597 | uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
|
---|
6598 | uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
|
---|
6599 | uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
|
---|
6600 | }
|
---|
6601 | else
|
---|
6602 | {
|
---|
6603 | uPtr.pu16[3] = pSrcX87->FPUIP;
|
---|
6604 | uPtr.pu16[4] = pSrcX87->CS;
|
---|
6605 | uPtr.pu16[5] = pSrcX87->FPUDP;
|
---|
6606 | uPtr.pu16[6] = pSrcX87->DS;
|
---|
6607 | }
|
---|
6608 | }
|
---|
6609 | else
|
---|
6610 | {
|
---|
6611 | /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
|
---|
6612 | uPtr.pu16[0*2] = pSrcX87->FCW;
|
---|
6613 | uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
|
---|
6614 | uPtr.pu16[1*2] = pSrcX87->FSW;
|
---|
6615 | uPtr.pu16[1*2+1] = 0xffff;
|
---|
6616 | uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
|
---|
6617 | uPtr.pu16[2*2+1] = 0xffff;
|
---|
6618 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
6619 | {
|
---|
6620 | uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
|
---|
6621 | uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
|
---|
6622 | uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
|
---|
6623 | uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
|
---|
6624 | }
|
---|
6625 | else
|
---|
6626 | {
|
---|
6627 | uPtr.pu32[3] = pSrcX87->FPUIP;
|
---|
6628 | uPtr.pu16[4*2] = pSrcX87->CS;
|
---|
6629 | uPtr.pu16[4*2+1] = pSrcX87->FOP;
|
---|
6630 | uPtr.pu32[5] = pSrcX87->FPUDP;
|
---|
6631 | uPtr.pu16[6*2] = pSrcX87->DS;
|
---|
6632 | uPtr.pu16[6*2+1] = 0xffff;
|
---|
6633 | }
|
---|
6634 | }
|
---|
6635 | }
|
---|
6636 |
|
---|
6637 |
|
---|
6638 | /**
|
---|
6639 | * Commmon routine for fldenv and frstor
|
---|
6640 | *
|
---|
6641 | * @param uPtr Where to store the state.
|
---|
6642 | * @param pCtx The CPU context.
|
---|
6643 | */
|
---|
6644 | static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr, PCPUMCTX pCtx)
|
---|
6645 | {
|
---|
6646 | PX86FXSTATE pDstX87 = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6647 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
6648 | {
|
---|
6649 | pDstX87->FCW = uPtr.pu16[0];
|
---|
6650 | pDstX87->FSW = uPtr.pu16[1];
|
---|
6651 | pDstX87->FTW = uPtr.pu16[2];
|
---|
6652 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
6653 | {
|
---|
6654 | pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
|
---|
6655 | pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
|
---|
6656 | pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
|
---|
6657 | pDstX87->CS = 0;
|
---|
6658 | pDstX87->Rsrvd1= 0;
|
---|
6659 | pDstX87->DS = 0;
|
---|
6660 | pDstX87->Rsrvd2= 0;
|
---|
6661 | }
|
---|
6662 | else
|
---|
6663 | {
|
---|
6664 | pDstX87->FPUIP = uPtr.pu16[3];
|
---|
6665 | pDstX87->CS = uPtr.pu16[4];
|
---|
6666 | pDstX87->Rsrvd1= 0;
|
---|
6667 | pDstX87->FPUDP = uPtr.pu16[5];
|
---|
6668 | pDstX87->DS = uPtr.pu16[6];
|
---|
6669 | pDstX87->Rsrvd2= 0;
|
---|
6670 | /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
|
---|
6671 | }
|
---|
6672 | }
|
---|
6673 | else
|
---|
6674 | {
|
---|
6675 | pDstX87->FCW = uPtr.pu16[0*2];
|
---|
6676 | pDstX87->FSW = uPtr.pu16[1*2];
|
---|
6677 | pDstX87->FTW = uPtr.pu16[2*2];
|
---|
6678 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
6679 | {
|
---|
6680 | pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
|
---|
6681 | pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
|
---|
6682 | pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
|
---|
6683 | pDstX87->CS = 0;
|
---|
6684 | pDstX87->Rsrvd1= 0;
|
---|
6685 | pDstX87->DS = 0;
|
---|
6686 | pDstX87->Rsrvd2= 0;
|
---|
6687 | }
|
---|
6688 | else
|
---|
6689 | {
|
---|
6690 | pDstX87->FPUIP = uPtr.pu32[3];
|
---|
6691 | pDstX87->CS = uPtr.pu16[4*2];
|
---|
6692 | pDstX87->Rsrvd1= 0;
|
---|
6693 | pDstX87->FOP = uPtr.pu16[4*2+1];
|
---|
6694 | pDstX87->FPUDP = uPtr.pu32[5];
|
---|
6695 | pDstX87->DS = uPtr.pu16[6*2];
|
---|
6696 | pDstX87->Rsrvd2= 0;
|
---|
6697 | }
|
---|
6698 | }
|
---|
6699 |
|
---|
6700 | /* Make adjustments. */
|
---|
6701 | pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
|
---|
6702 | pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
|
---|
6703 | iemFpuRecalcExceptionStatus(pDstX87);
|
---|
6704 | /** @todo Testcase: Check if ES and/or B are automatically cleared if no
|
---|
6705 | * exceptions are pending after loading the saved state? */
|
---|
6706 | }
|
---|
6707 |
|
---|
6708 |
|
---|
6709 | /**
|
---|
6710 | * Implements 'FNSTENV'.
|
---|
6711 | *
|
---|
6712 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
6713 | * @param iEffSeg The effective segment register for @a GCPtrEff.
|
---|
6714 | * @param GCPtrEffDst The address of the image.
|
---|
6715 | */
|
---|
6716 | IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
6717 | {
|
---|
6718 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6719 | RTPTRUNION uPtr;
|
---|
6720 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
|
---|
6721 | iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
6722 | if (rcStrict != VINF_SUCCESS)
|
---|
6723 | return rcStrict;
|
---|
6724 |
|
---|
6725 | iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
6726 |
|
---|
6727 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
6728 | if (rcStrict != VINF_SUCCESS)
|
---|
6729 | return rcStrict;
|
---|
6730 |
|
---|
6731 | /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
|
---|
6732 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6733 | return VINF_SUCCESS;
|
---|
6734 | }
|
---|
6735 |
|
---|
6736 |
|
---|
6737 | /**
|
---|
6738 | * Implements 'FNSAVE'.
|
---|
6739 | *
|
---|
6740 | * @param GCPtrEffDst The address of the image.
|
---|
6741 | * @param enmEffOpSize The operand size.
|
---|
6742 | */
|
---|
6743 | IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
6744 | {
|
---|
6745 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6746 | RTPTRUNION uPtr;
|
---|
6747 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
|
---|
6748 | iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
6749 | if (rcStrict != VINF_SUCCESS)
|
---|
6750 | return rcStrict;
|
---|
6751 |
|
---|
6752 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6753 | iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
6754 | PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
|
---|
6755 | for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
|
---|
6756 | {
|
---|
6757 | paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
|
---|
6758 | paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
|
---|
6759 | paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
|
---|
6760 | }
|
---|
6761 |
|
---|
6762 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
6763 | if (rcStrict != VINF_SUCCESS)
|
---|
6764 | return rcStrict;
|
---|
6765 |
|
---|
6766 | /*
|
---|
6767 | * Re-initialize the FPU context.
|
---|
6768 | */
|
---|
6769 | pFpuCtx->FCW = 0x37f;
|
---|
6770 | pFpuCtx->FSW = 0;
|
---|
6771 | pFpuCtx->FTW = 0x00; /* 0 - empty */
|
---|
6772 | pFpuCtx->FPUDP = 0;
|
---|
6773 | pFpuCtx->DS = 0;
|
---|
6774 | pFpuCtx->Rsrvd2= 0;
|
---|
6775 | pFpuCtx->FPUIP = 0;
|
---|
6776 | pFpuCtx->CS = 0;
|
---|
6777 | pFpuCtx->Rsrvd1= 0;
|
---|
6778 | pFpuCtx->FOP = 0;
|
---|
6779 |
|
---|
6780 | iemHlpUsedFpu(pVCpu);
|
---|
6781 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6782 | return VINF_SUCCESS;
|
---|
6783 | }
|
---|
6784 |
|
---|
6785 |
|
---|
6786 |
|
---|
6787 | /**
|
---|
6788 | * Implements 'FLDENV'.
|
---|
6789 | *
|
---|
6790 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
6791 | * @param iEffSeg The effective segment register for @a GCPtrEff.
|
---|
6792 | * @param GCPtrEffSrc The address of the image.
|
---|
6793 | */
|
---|
6794 | IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
|
---|
6795 | {
|
---|
6796 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6797 | RTCPTRUNION uPtr;
|
---|
6798 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
|
---|
6799 | iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
|
---|
6800 | if (rcStrict != VINF_SUCCESS)
|
---|
6801 | return rcStrict;
|
---|
6802 |
|
---|
6803 | iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
6804 |
|
---|
6805 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
|
---|
6806 | if (rcStrict != VINF_SUCCESS)
|
---|
6807 | return rcStrict;
|
---|
6808 |
|
---|
6809 | iemHlpUsedFpu(pVCpu);
|
---|
6810 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6811 | return VINF_SUCCESS;
|
---|
6812 | }
|
---|
6813 |
|
---|
6814 |
|
---|
6815 | /**
|
---|
6816 | * Implements 'FRSTOR'.
|
---|
6817 | *
|
---|
6818 | * @param GCPtrEffSrc The address of the image.
|
---|
6819 | * @param enmEffOpSize The operand size.
|
---|
6820 | */
|
---|
6821 | IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
|
---|
6822 | {
|
---|
6823 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6824 | RTCPTRUNION uPtr;
|
---|
6825 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
|
---|
6826 | iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
|
---|
6827 | if (rcStrict != VINF_SUCCESS)
|
---|
6828 | return rcStrict;
|
---|
6829 |
|
---|
6830 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6831 | iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
6832 | PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
|
---|
6833 | for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
|
---|
6834 | {
|
---|
6835 | pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
|
---|
6836 | pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
|
---|
6837 | pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
|
---|
6838 | pFpuCtx->aRegs[i].au32[3] = 0;
|
---|
6839 | }
|
---|
6840 |
|
---|
6841 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
|
---|
6842 | if (rcStrict != VINF_SUCCESS)
|
---|
6843 | return rcStrict;
|
---|
6844 |
|
---|
6845 | iemHlpUsedFpu(pVCpu);
|
---|
6846 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6847 | return VINF_SUCCESS;
|
---|
6848 | }
|
---|
6849 |
|
---|
6850 |
|
---|
6851 | /**
|
---|
6852 | * Implements 'FLDCW'.
|
---|
6853 | *
|
---|
6854 | * @param u16Fcw The new FCW.
|
---|
6855 | */
|
---|
6856 | IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
|
---|
6857 | {
|
---|
6858 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6859 |
|
---|
6860 | /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
|
---|
6861 | /** @todo Testcase: Try see what happens when trying to set undefined bits
|
---|
6862 | * (other than 6 and 7). Currently ignoring them. */
|
---|
6863 | /** @todo Testcase: Test that it raises and loweres the FPU exception bits
|
---|
6864 | * according to FSW. (This is was is currently implemented.) */
|
---|
6865 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6866 | pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
|
---|
6867 | iemFpuRecalcExceptionStatus(pFpuCtx);
|
---|
6868 |
|
---|
6869 | /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
|
---|
6870 | iemHlpUsedFpu(pVCpu);
|
---|
6871 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6872 | return VINF_SUCCESS;
|
---|
6873 | }
|
---|
6874 |
|
---|
6875 |
|
---|
6876 |
|
---|
6877 | /**
|
---|
6878 | * Implements the underflow case of fxch.
|
---|
6879 | *
|
---|
6880 | * @param iStReg The other stack register.
|
---|
6881 | */
|
---|
6882 | IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
|
---|
6883 | {
|
---|
6884 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6885 |
|
---|
6886 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6887 | unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
6888 | unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6889 | Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
|
---|
6890 |
|
---|
6891 | /** @todo Testcase: fxch underflow. Making assumptions that underflowed
|
---|
6892 | * registers are read as QNaN and then exchanged. This could be
|
---|
6893 | * wrong... */
|
---|
6894 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6895 | {
|
---|
6896 | if (RT_BIT(iReg1) & pFpuCtx->FTW)
|
---|
6897 | {
|
---|
6898 | if (RT_BIT(iReg2) & pFpuCtx->FTW)
|
---|
6899 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
6900 | else
|
---|
6901 | pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
|
---|
6902 | iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
|
---|
6903 | }
|
---|
6904 | else
|
---|
6905 | {
|
---|
6906 | pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
|
---|
6907 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
6908 | }
|
---|
6909 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6910 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
|
---|
6911 | }
|
---|
6912 | else
|
---|
6913 | {
|
---|
6914 | /* raise underflow exception, don't change anything. */
|
---|
6915 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
|
---|
6916 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6917 | }
|
---|
6918 |
|
---|
6919 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6920 | iemHlpUsedFpu(pVCpu);
|
---|
6921 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6922 | return VINF_SUCCESS;
|
---|
6923 | }
|
---|
6924 |
|
---|
6925 |
|
---|
6926 | /**
|
---|
6927 | * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
|
---|
6928 | *
|
---|
6929 | * @param cToAdd 1 or 7.
|
---|
6930 | */
|
---|
6931 | IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
|
---|
6932 | {
|
---|
6933 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6934 | Assert(iStReg < 8);
|
---|
6935 |
|
---|
6936 | /*
|
---|
6937 | * Raise exceptions.
|
---|
6938 | */
|
---|
6939 | if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
|
---|
6940 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
6941 |
|
---|
6942 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6943 | uint16_t u16Fsw = pFpuCtx->FSW;
|
---|
6944 | if (u16Fsw & X86_FSW_ES)
|
---|
6945 | return iemRaiseMathFault(pVCpu);
|
---|
6946 |
|
---|
6947 | /*
|
---|
6948 | * Check if any of the register accesses causes #SF + #IA.
|
---|
6949 | */
|
---|
6950 | unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
|
---|
6951 | unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6952 | if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
|
---|
6953 | {
|
---|
6954 | uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
|
---|
6955 | NOREF(u32Eflags);
|
---|
6956 |
|
---|
6957 | pFpuCtx->FSW &= ~X86_FSW_C1;
|
---|
6958 | pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
|
---|
6959 | if ( !(u16Fsw & X86_FSW_IE)
|
---|
6960 | || (pFpuCtx->FCW & X86_FCW_IM) )
|
---|
6961 | {
|
---|
6962 | pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
|
---|
6963 | pCtx->eflags.u |= pCtx->eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
|
---|
6964 | }
|
---|
6965 | }
|
---|
6966 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6967 | {
|
---|
6968 | /* Masked underflow. */
|
---|
6969 | pFpuCtx->FSW &= ~X86_FSW_C1;
|
---|
6970 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
6971 | pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
|
---|
6972 | pCtx->eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
|
---|
6973 | }
|
---|
6974 | else
|
---|
6975 | {
|
---|
6976 | /* Raise underflow - don't touch EFLAGS or TOP. */
|
---|
6977 | pFpuCtx->FSW &= ~X86_FSW_C1;
|
---|
6978 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6979 | fPop = false;
|
---|
6980 | }
|
---|
6981 |
|
---|
6982 | /*
|
---|
6983 | * Pop if necessary.
|
---|
6984 | */
|
---|
6985 | if (fPop)
|
---|
6986 | {
|
---|
6987 | pFpuCtx->FTW &= ~RT_BIT(iReg1);
|
---|
6988 | pFpuCtx->FSW &= X86_FSW_TOP_MASK;
|
---|
6989 | pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
|
---|
6990 | }
|
---|
6991 |
|
---|
6992 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6993 | iemHlpUsedFpu(pVCpu);
|
---|
6994 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6995 | return VINF_SUCCESS;
|
---|
6996 | }
|
---|
6997 |
|
---|
6998 | /** @} */
|
---|
6999 |
|
---|