VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp@ 62338

Last change on this file since 62338 was 62338, checked in by vboxsync, 8 years ago

IEM: Improved return codes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 35.7 KB
Line 
1/* $Id: IEMAllAImplC.cpp 62338 2016-07-20 07:53:42Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in Assembly, portable C variant.
4 */
5
6/*
7 * Copyright (C) 2011-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#include "IEMInternal.h"
23#include <VBox/vmm/vm.h>
24#include <iprt/x86.h>
25
26
27/*********************************************************************************************************************************
28* Global Variables *
29*********************************************************************************************************************************/
30/**
31 * Parity calculation table.
32 *
33 * The generator code:
34 * @code
35 * #include <stdio.h>
36 *
37 * int main()
38 * {
39 * unsigned b;
40 * for (b = 0; b < 256; b++)
41 * {
42 * int cOnes = ( b & 1)
43 * + ((b >> 1) & 1)
44 * + ((b >> 2) & 1)
45 * + ((b >> 3) & 1)
46 * + ((b >> 4) & 1)
47 * + ((b >> 5) & 1)
48 * + ((b >> 6) & 1)
49 * + ((b >> 7) & 1);
50 * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n",
51 * b,
52 * (b >> 7) & 1,
53 * (b >> 6) & 1,
54 * (b >> 5) & 1,
55 * (b >> 4) & 1,
56 * (b >> 3) & 1,
57 * (b >> 2) & 1,
58 * (b >> 1) & 1,
59 * b & 1,
60 * cOnes & 1 ? "0" : "X86_EFL_PF");
61 * }
62 * return 0;
63 * }
64 * @endcode
65 */
66static uint8_t const g_afParity[256] =
67{
68 /* 0000 = 00000000b */ X86_EFL_PF,
69 /* 0x01 = 00000001b */ 0,
70 /* 0x02 = 00000010b */ 0,
71 /* 0x03 = 00000011b */ X86_EFL_PF,
72 /* 0x04 = 00000100b */ 0,
73 /* 0x05 = 00000101b */ X86_EFL_PF,
74 /* 0x06 = 00000110b */ X86_EFL_PF,
75 /* 0x07 = 00000111b */ 0,
76 /* 0x08 = 00001000b */ 0,
77 /* 0x09 = 00001001b */ X86_EFL_PF,
78 /* 0x0a = 00001010b */ X86_EFL_PF,
79 /* 0x0b = 00001011b */ 0,
80 /* 0x0c = 00001100b */ X86_EFL_PF,
81 /* 0x0d = 00001101b */ 0,
82 /* 0x0e = 00001110b */ 0,
83 /* 0x0f = 00001111b */ X86_EFL_PF,
84 /* 0x10 = 00010000b */ 0,
85 /* 0x11 = 00010001b */ X86_EFL_PF,
86 /* 0x12 = 00010010b */ X86_EFL_PF,
87 /* 0x13 = 00010011b */ 0,
88 /* 0x14 = 00010100b */ X86_EFL_PF,
89 /* 0x15 = 00010101b */ 0,
90 /* 0x16 = 00010110b */ 0,
91 /* 0x17 = 00010111b */ X86_EFL_PF,
92 /* 0x18 = 00011000b */ X86_EFL_PF,
93 /* 0x19 = 00011001b */ 0,
94 /* 0x1a = 00011010b */ 0,
95 /* 0x1b = 00011011b */ X86_EFL_PF,
96 /* 0x1c = 00011100b */ 0,
97 /* 0x1d = 00011101b */ X86_EFL_PF,
98 /* 0x1e = 00011110b */ X86_EFL_PF,
99 /* 0x1f = 00011111b */ 0,
100 /* 0x20 = 00100000b */ 0,
101 /* 0x21 = 00100001b */ X86_EFL_PF,
102 /* 0x22 = 00100010b */ X86_EFL_PF,
103 /* 0x23 = 00100011b */ 0,
104 /* 0x24 = 00100100b */ X86_EFL_PF,
105 /* 0x25 = 00100101b */ 0,
106 /* 0x26 = 00100110b */ 0,
107 /* 0x27 = 00100111b */ X86_EFL_PF,
108 /* 0x28 = 00101000b */ X86_EFL_PF,
109 /* 0x29 = 00101001b */ 0,
110 /* 0x2a = 00101010b */ 0,
111 /* 0x2b = 00101011b */ X86_EFL_PF,
112 /* 0x2c = 00101100b */ 0,
113 /* 0x2d = 00101101b */ X86_EFL_PF,
114 /* 0x2e = 00101110b */ X86_EFL_PF,
115 /* 0x2f = 00101111b */ 0,
116 /* 0x30 = 00110000b */ X86_EFL_PF,
117 /* 0x31 = 00110001b */ 0,
118 /* 0x32 = 00110010b */ 0,
119 /* 0x33 = 00110011b */ X86_EFL_PF,
120 /* 0x34 = 00110100b */ 0,
121 /* 0x35 = 00110101b */ X86_EFL_PF,
122 /* 0x36 = 00110110b */ X86_EFL_PF,
123 /* 0x37 = 00110111b */ 0,
124 /* 0x38 = 00111000b */ 0,
125 /* 0x39 = 00111001b */ X86_EFL_PF,
126 /* 0x3a = 00111010b */ X86_EFL_PF,
127 /* 0x3b = 00111011b */ 0,
128 /* 0x3c = 00111100b */ X86_EFL_PF,
129 /* 0x3d = 00111101b */ 0,
130 /* 0x3e = 00111110b */ 0,
131 /* 0x3f = 00111111b */ X86_EFL_PF,
132 /* 0x40 = 01000000b */ 0,
133 /* 0x41 = 01000001b */ X86_EFL_PF,
134 /* 0x42 = 01000010b */ X86_EFL_PF,
135 /* 0x43 = 01000011b */ 0,
136 /* 0x44 = 01000100b */ X86_EFL_PF,
137 /* 0x45 = 01000101b */ 0,
138 /* 0x46 = 01000110b */ 0,
139 /* 0x47 = 01000111b */ X86_EFL_PF,
140 /* 0x48 = 01001000b */ X86_EFL_PF,
141 /* 0x49 = 01001001b */ 0,
142 /* 0x4a = 01001010b */ 0,
143 /* 0x4b = 01001011b */ X86_EFL_PF,
144 /* 0x4c = 01001100b */ 0,
145 /* 0x4d = 01001101b */ X86_EFL_PF,
146 /* 0x4e = 01001110b */ X86_EFL_PF,
147 /* 0x4f = 01001111b */ 0,
148 /* 0x50 = 01010000b */ X86_EFL_PF,
149 /* 0x51 = 01010001b */ 0,
150 /* 0x52 = 01010010b */ 0,
151 /* 0x53 = 01010011b */ X86_EFL_PF,
152 /* 0x54 = 01010100b */ 0,
153 /* 0x55 = 01010101b */ X86_EFL_PF,
154 /* 0x56 = 01010110b */ X86_EFL_PF,
155 /* 0x57 = 01010111b */ 0,
156 /* 0x58 = 01011000b */ 0,
157 /* 0x59 = 01011001b */ X86_EFL_PF,
158 /* 0x5a = 01011010b */ X86_EFL_PF,
159 /* 0x5b = 01011011b */ 0,
160 /* 0x5c = 01011100b */ X86_EFL_PF,
161 /* 0x5d = 01011101b */ 0,
162 /* 0x5e = 01011110b */ 0,
163 /* 0x5f = 01011111b */ X86_EFL_PF,
164 /* 0x60 = 01100000b */ X86_EFL_PF,
165 /* 0x61 = 01100001b */ 0,
166 /* 0x62 = 01100010b */ 0,
167 /* 0x63 = 01100011b */ X86_EFL_PF,
168 /* 0x64 = 01100100b */ 0,
169 /* 0x65 = 01100101b */ X86_EFL_PF,
170 /* 0x66 = 01100110b */ X86_EFL_PF,
171 /* 0x67 = 01100111b */ 0,
172 /* 0x68 = 01101000b */ 0,
173 /* 0x69 = 01101001b */ X86_EFL_PF,
174 /* 0x6a = 01101010b */ X86_EFL_PF,
175 /* 0x6b = 01101011b */ 0,
176 /* 0x6c = 01101100b */ X86_EFL_PF,
177 /* 0x6d = 01101101b */ 0,
178 /* 0x6e = 01101110b */ 0,
179 /* 0x6f = 01101111b */ X86_EFL_PF,
180 /* 0x70 = 01110000b */ 0,
181 /* 0x71 = 01110001b */ X86_EFL_PF,
182 /* 0x72 = 01110010b */ X86_EFL_PF,
183 /* 0x73 = 01110011b */ 0,
184 /* 0x74 = 01110100b */ X86_EFL_PF,
185 /* 0x75 = 01110101b */ 0,
186 /* 0x76 = 01110110b */ 0,
187 /* 0x77 = 01110111b */ X86_EFL_PF,
188 /* 0x78 = 01111000b */ X86_EFL_PF,
189 /* 0x79 = 01111001b */ 0,
190 /* 0x7a = 01111010b */ 0,
191 /* 0x7b = 01111011b */ X86_EFL_PF,
192 /* 0x7c = 01111100b */ 0,
193 /* 0x7d = 01111101b */ X86_EFL_PF,
194 /* 0x7e = 01111110b */ X86_EFL_PF,
195 /* 0x7f = 01111111b */ 0,
196 /* 0x80 = 10000000b */ 0,
197 /* 0x81 = 10000001b */ X86_EFL_PF,
198 /* 0x82 = 10000010b */ X86_EFL_PF,
199 /* 0x83 = 10000011b */ 0,
200 /* 0x84 = 10000100b */ X86_EFL_PF,
201 /* 0x85 = 10000101b */ 0,
202 /* 0x86 = 10000110b */ 0,
203 /* 0x87 = 10000111b */ X86_EFL_PF,
204 /* 0x88 = 10001000b */ X86_EFL_PF,
205 /* 0x89 = 10001001b */ 0,
206 /* 0x8a = 10001010b */ 0,
207 /* 0x8b = 10001011b */ X86_EFL_PF,
208 /* 0x8c = 10001100b */ 0,
209 /* 0x8d = 10001101b */ X86_EFL_PF,
210 /* 0x8e = 10001110b */ X86_EFL_PF,
211 /* 0x8f = 10001111b */ 0,
212 /* 0x90 = 10010000b */ X86_EFL_PF,
213 /* 0x91 = 10010001b */ 0,
214 /* 0x92 = 10010010b */ 0,
215 /* 0x93 = 10010011b */ X86_EFL_PF,
216 /* 0x94 = 10010100b */ 0,
217 /* 0x95 = 10010101b */ X86_EFL_PF,
218 /* 0x96 = 10010110b */ X86_EFL_PF,
219 /* 0x97 = 10010111b */ 0,
220 /* 0x98 = 10011000b */ 0,
221 /* 0x99 = 10011001b */ X86_EFL_PF,
222 /* 0x9a = 10011010b */ X86_EFL_PF,
223 /* 0x9b = 10011011b */ 0,
224 /* 0x9c = 10011100b */ X86_EFL_PF,
225 /* 0x9d = 10011101b */ 0,
226 /* 0x9e = 10011110b */ 0,
227 /* 0x9f = 10011111b */ X86_EFL_PF,
228 /* 0xa0 = 10100000b */ X86_EFL_PF,
229 /* 0xa1 = 10100001b */ 0,
230 /* 0xa2 = 10100010b */ 0,
231 /* 0xa3 = 10100011b */ X86_EFL_PF,
232 /* 0xa4 = 10100100b */ 0,
233 /* 0xa5 = 10100101b */ X86_EFL_PF,
234 /* 0xa6 = 10100110b */ X86_EFL_PF,
235 /* 0xa7 = 10100111b */ 0,
236 /* 0xa8 = 10101000b */ 0,
237 /* 0xa9 = 10101001b */ X86_EFL_PF,
238 /* 0xaa = 10101010b */ X86_EFL_PF,
239 /* 0xab = 10101011b */ 0,
240 /* 0xac = 10101100b */ X86_EFL_PF,
241 /* 0xad = 10101101b */ 0,
242 /* 0xae = 10101110b */ 0,
243 /* 0xaf = 10101111b */ X86_EFL_PF,
244 /* 0xb0 = 10110000b */ 0,
245 /* 0xb1 = 10110001b */ X86_EFL_PF,
246 /* 0xb2 = 10110010b */ X86_EFL_PF,
247 /* 0xb3 = 10110011b */ 0,
248 /* 0xb4 = 10110100b */ X86_EFL_PF,
249 /* 0xb5 = 10110101b */ 0,
250 /* 0xb6 = 10110110b */ 0,
251 /* 0xb7 = 10110111b */ X86_EFL_PF,
252 /* 0xb8 = 10111000b */ X86_EFL_PF,
253 /* 0xb9 = 10111001b */ 0,
254 /* 0xba = 10111010b */ 0,
255 /* 0xbb = 10111011b */ X86_EFL_PF,
256 /* 0xbc = 10111100b */ 0,
257 /* 0xbd = 10111101b */ X86_EFL_PF,
258 /* 0xbe = 10111110b */ X86_EFL_PF,
259 /* 0xbf = 10111111b */ 0,
260 /* 0xc0 = 11000000b */ X86_EFL_PF,
261 /* 0xc1 = 11000001b */ 0,
262 /* 0xc2 = 11000010b */ 0,
263 /* 0xc3 = 11000011b */ X86_EFL_PF,
264 /* 0xc4 = 11000100b */ 0,
265 /* 0xc5 = 11000101b */ X86_EFL_PF,
266 /* 0xc6 = 11000110b */ X86_EFL_PF,
267 /* 0xc7 = 11000111b */ 0,
268 /* 0xc8 = 11001000b */ 0,
269 /* 0xc9 = 11001001b */ X86_EFL_PF,
270 /* 0xca = 11001010b */ X86_EFL_PF,
271 /* 0xcb = 11001011b */ 0,
272 /* 0xcc = 11001100b */ X86_EFL_PF,
273 /* 0xcd = 11001101b */ 0,
274 /* 0xce = 11001110b */ 0,
275 /* 0xcf = 11001111b */ X86_EFL_PF,
276 /* 0xd0 = 11010000b */ 0,
277 /* 0xd1 = 11010001b */ X86_EFL_PF,
278 /* 0xd2 = 11010010b */ X86_EFL_PF,
279 /* 0xd3 = 11010011b */ 0,
280 /* 0xd4 = 11010100b */ X86_EFL_PF,
281 /* 0xd5 = 11010101b */ 0,
282 /* 0xd6 = 11010110b */ 0,
283 /* 0xd7 = 11010111b */ X86_EFL_PF,
284 /* 0xd8 = 11011000b */ X86_EFL_PF,
285 /* 0xd9 = 11011001b */ 0,
286 /* 0xda = 11011010b */ 0,
287 /* 0xdb = 11011011b */ X86_EFL_PF,
288 /* 0xdc = 11011100b */ 0,
289 /* 0xdd = 11011101b */ X86_EFL_PF,
290 /* 0xde = 11011110b */ X86_EFL_PF,
291 /* 0xdf = 11011111b */ 0,
292 /* 0xe0 = 11100000b */ 0,
293 /* 0xe1 = 11100001b */ X86_EFL_PF,
294 /* 0xe2 = 11100010b */ X86_EFL_PF,
295 /* 0xe3 = 11100011b */ 0,
296 /* 0xe4 = 11100100b */ X86_EFL_PF,
297 /* 0xe5 = 11100101b */ 0,
298 /* 0xe6 = 11100110b */ 0,
299 /* 0xe7 = 11100111b */ X86_EFL_PF,
300 /* 0xe8 = 11101000b */ X86_EFL_PF,
301 /* 0xe9 = 11101001b */ 0,
302 /* 0xea = 11101010b */ 0,
303 /* 0xeb = 11101011b */ X86_EFL_PF,
304 /* 0xec = 11101100b */ 0,
305 /* 0xed = 11101101b */ X86_EFL_PF,
306 /* 0xee = 11101110b */ X86_EFL_PF,
307 /* 0xef = 11101111b */ 0,
308 /* 0xf0 = 11110000b */ X86_EFL_PF,
309 /* 0xf1 = 11110001b */ 0,
310 /* 0xf2 = 11110010b */ 0,
311 /* 0xf3 = 11110011b */ X86_EFL_PF,
312 /* 0xf4 = 11110100b */ 0,
313 /* 0xf5 = 11110101b */ X86_EFL_PF,
314 /* 0xf6 = 11110110b */ X86_EFL_PF,
315 /* 0xf7 = 11110111b */ 0,
316 /* 0xf8 = 11111000b */ 0,
317 /* 0xf9 = 11111001b */ X86_EFL_PF,
318 /* 0xfa = 11111010b */ X86_EFL_PF,
319 /* 0xfb = 11111011b */ 0,
320 /* 0xfc = 11111100b */ X86_EFL_PF,
321 /* 0xfd = 11111101b */ 0,
322 /* 0xfe = 11111110b */ 0,
323 /* 0xff = 11111111b */ X86_EFL_PF,
324};
325
326
327/**
328 * Calculates the signed flag value given a result and it's bit width.
329 *
330 * The signed flag (SF) is a duplication of the most significant bit in the
331 * result.
332 *
333 * @returns X86_EFL_SF or 0.
334 * @param a_uResult Unsigned result value.
335 * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
336 */
337#define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \
338 ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT)) & X86_EFL_SF )
339
340/**
341 * Calculates the zero flag value given a result.
342 *
343 * The zero flag (ZF) indicates whether the result is zero or not.
344 *
345 * @returns X86_EFL_ZF or 0.
346 * @param a_uResult Unsigned result value.
347 */
348#define X86_EFL_CALC_ZF(a_uResult) \
349 ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT )
350
351/**
352 * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op.
353 *
354 * CF and OF are defined to be 0 by logical operations. AF on the other hand is
355 * undefined. We do not set AF, as that seems to make the most sense (which
356 * probably makes it the most wrong in real life).
357 *
358 * @returns Status bits.
359 * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
360 * @param a_uResult Unsigned result value.
361 * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
362 * @param a_fExtra Additional bits to set.
363 */
364#define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \
365 do { \
366 uint32_t fEflTmp = *(a_pfEFlags); \
367 fEflTmp &= ~X86_EFL_STATUS_BITS; \
368 fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
369 fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
370 fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
371 fEflTmp |= (a_fExtra); \
372 *(a_pfEFlags) = fEflTmp; \
373 } while (0)
374
375
376#ifdef RT_ARCH_X86
377/*
378 * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing
379 * it all in C is probably safer atm., optimize what's necessary later, maybe.
380 */
381
382
383/* Binary ops */
384
385IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
386{
387 uint64_t uDst = *puDst;
388 uint64_t uResult = uDst + uSrc;
389 *puDst = uResult;
390
391 /* Calc EFLAGS. */
392 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
393 fEfl |= (uResult < uDst) << X86_EFL_CF_BIT;
394 fEfl |= g_afParity[uResult & 0xff];
395 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
396 fEfl |= X86_EFL_CALC_ZF(uResult);
397 fEfl |= X86_EFL_CALC_SF(uResult, 64);
398 fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
399 *pfEFlags = fEfl;
400}
401
402
403IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
404{
405 if (!(*pfEFlags & X86_EFL_CF))
406 iemAImpl_add_u64(puDst, uSrc, pfEFlags);
407 else
408 {
409 uint64_t uDst = *puDst;
410 uint64_t uResult = uDst + uSrc + 1;
411 *puDst = uResult;
412
413 /* Calc EFLAGS. */
414 /** @todo verify AF and OF calculations. */
415 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
416 fEfl |= (uResult <= uDst) << X86_EFL_CF_BIT;
417 fEfl |= g_afParity[uResult & 0xff];
418 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
419 fEfl |= X86_EFL_CALC_ZF(uResult);
420 fEfl |= X86_EFL_CALC_SF(uResult, 64);
421 fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
422 *pfEFlags = fEfl;
423 }
424}
425
426
427IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
428{
429 uint64_t uDst = *puDst;
430 uint64_t uResult = uDst - uSrc;
431 *puDst = uResult;
432
433 /* Calc EFLAGS. */
434 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
435 fEfl |= (uDst < uSrc) << X86_EFL_CF_BIT;
436 fEfl |= g_afParity[uResult & 0xff];
437 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
438 fEfl |= X86_EFL_CALC_ZF(uResult);
439 fEfl |= X86_EFL_CALC_SF(uResult, 64);
440 fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
441 *pfEFlags = fEfl;
442}
443
444
445IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
446{
447 if (!(*pfEFlags & X86_EFL_CF))
448 iemAImpl_sub_u64(puDst, uSrc, pfEFlags);
449 else
450 {
451 uint64_t uDst = *puDst;
452 uint64_t uResult = uDst - uSrc - 1;
453 *puDst = uResult;
454
455 /* Calc EFLAGS. */
456 /** @todo verify AF and OF calculations. */
457 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
458 fEfl |= (uDst <= uSrc) << X86_EFL_CF_BIT;
459 fEfl |= g_afParity[uResult & 0xff];
460 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
461 fEfl |= X86_EFL_CALC_ZF(uResult);
462 fEfl |= X86_EFL_CALC_SF(uResult, 64);
463 fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
464 *pfEFlags = fEfl;
465 }
466}
467
468
469IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
470{
471 uint64_t uResult = *puDst | uSrc;
472 *puDst = uResult;
473 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
474}
475
476
477IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
478{
479 uint64_t uResult = *puDst ^ uSrc;
480 *puDst = uResult;
481 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
482}
483
484
485IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
486{
487 uint64_t uResult = *puDst & uSrc;
488 *puDst = uResult;
489 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
490}
491
492
493IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
494{
495 uint64_t uDstTmp = *puDst;
496 iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags);
497}
498
499
500IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
501{
502 uint64_t uResult = *puDst & uSrc;
503 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
504}
505
506
507/** 64-bit locked binary operand operation. */
508# define DO_LOCKED_BIN_OP_U64(a_Mnemonic) \
509 do { \
510 uint64_t uOld = ASMAtomicReadU64(puDst); \
511 uint64_t uTmp; \
512 uint32_t fEflTmp; \
513 do \
514 { \
515 uTmp = uOld; \
516 fEflTmp = *pfEFlags; \
517 iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, uSrc, &fEflTmp); \
518 } while (!ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \
519 *pfEFlags = fEflTmp; \
520 } while (0)
521
522
523IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
524{
525 DO_LOCKED_BIN_OP_U64(adc);
526}
527
528
529IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
530{
531 DO_LOCKED_BIN_OP_U64(adc);
532}
533
534
535IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
536{
537 DO_LOCKED_BIN_OP_U64(sub);
538}
539
540
541IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
542{
543 DO_LOCKED_BIN_OP_U64(sbb);
544}
545
546
547IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
548{
549 DO_LOCKED_BIN_OP_U64(or);
550}
551
552
553IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
554{
555 DO_LOCKED_BIN_OP_U64(xor);
556}
557
558
559IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
560{
561 DO_LOCKED_BIN_OP_U64(and);
562}
563
564
565IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags))
566{
567 uint64_t uDst = *puDst;
568 uint64_t uResult = uDst;
569 iemAImpl_add_u64(&uResult, *puReg, pfEFlags);
570 *puDst = uResult;
571 *puReg = uDst;
572}
573
574
575IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags))
576{
577 uint64_t uOld = ASMAtomicReadU64(puDst);
578 uint64_t uTmpDst;
579 uint32_t fEflTmp;
580 do
581 {
582 uTmpDst = uOld;
583 fEflTmp = *pfEFlags;
584 iemAImpl_add_u64(&uTmpDst, *puReg, pfEFlags);
585 } while (!ASMAtomicCmpXchgExU64(puDst, uTmpDst, uOld, &uOld));
586 *puReg = uOld;
587 *pfEFlags = fEflTmp;
588}
589
590
591/* Bit operations (same signature as above). */
592
593IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
594{
595 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
596 logical operation (AND/OR/whatever). */
597 Assert(uSrc < 64);
598 uint64_t uDst = *puDst;
599 if (uDst & RT_BIT_64(uSrc))
600 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
601 else
602 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
603}
604
605IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
606{
607 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
608 logical operation (AND/OR/whatever). */
609 Assert(uSrc < 64);
610 uint64_t fMask = RT_BIT_64(uSrc);
611 uint64_t uDst = *puDst;
612 if (uDst & fMask)
613 {
614 uDst &= ~fMask;
615 *puDst = uDst;
616 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
617 }
618 else
619 {
620 uDst |= fMask;
621 *puDst = uDst;
622 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
623 }
624}
625
626IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
627{
628 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
629 logical operation (AND/OR/whatever). */
630 Assert(uSrc < 64);
631 uint64_t fMask = RT_BIT_64(uSrc);
632 uint64_t uDst = *puDst;
633 if (uDst & fMask)
634 {
635 uDst &= ~fMask;
636 *puDst = uDst;
637 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
638 }
639 else
640 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
641}
642
643IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
644{
645 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
646 logical operation (AND/OR/whatever). */
647 Assert(uSrc < 64);
648 uint64_t fMask = RT_BIT_64(uSrc);
649 uint64_t uDst = *puDst;
650 if (uDst & fMask)
651 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
652 else
653 {
654 uDst |= fMask;
655 *puDst = uDst;
656 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
657 }
658}
659
660
661IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
662{
663 DO_LOCKED_BIN_OP_U64(btc);
664}
665
666IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
667{
668 DO_LOCKED_BIN_OP_U64(btr);
669}
670
671IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
672{
673 DO_LOCKED_BIN_OP_U64(bts);
674}
675
676
677/* bit scan */
678
679IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
680{
681 /* Note! "undefined" flags: OF, SF, AF, PF, CF. */
682 /** @todo check what real CPUs does. */
683 if (uSrc)
684 {
685 uint8_t iBit;
686 uint32_t u32Src;
687 if (uSrc & UINT32_MAX)
688 {
689 iBit = 0;
690 u32Src = uSrc;
691 }
692 else
693 {
694 iBit = 32;
695 u32Src = uSrc >> 32;
696 }
697 if (!(u32Src & UINT16_MAX))
698 {
699 iBit += 16;
700 u32Src >>= 16;
701 }
702 if (!(u32Src & UINT8_MAX))
703 {
704 iBit += 8;
705 u32Src >>= 8;
706 }
707 if (!(u32Src & 0xf))
708 {
709 iBit += 4;
710 u32Src >>= 4;
711 }
712 if (!(u32Src & 0x3))
713 {
714 iBit += 2;
715 u32Src >>= 2;
716 }
717 if (!(u32Src & 1))
718 {
719 iBit += 1;
720 Assert(u32Src & 2);
721 }
722
723 *puDst = iBit;
724 *pfEFlags &= ~X86_EFL_ZF;
725 }
726 else
727 *pfEFlags |= X86_EFL_ZF;
728}
729
730IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
731{
732 /* Note! "undefined" flags: OF, SF, AF, PF, CF. */
733 /** @todo check what real CPUs does. */
734 if (uSrc)
735 {
736 uint8_t iBit;
737 uint32_t u32Src;
738 if (uSrc & UINT64_C(0xffffffff00000000))
739 {
740 iBit = 64;
741 u32Src = uSrc >> 32;
742 }
743 else
744 {
745 iBit = 32;
746 u32Src = uSrc;
747 }
748 if (!(u32Src & UINT32_C(0xffff0000)))
749 {
750 iBit -= 16;
751 u32Src <<= 16;
752 }
753 if (!(u32Src & UINT32_C(0xff000000)))
754 {
755 iBit -= 8;
756 u32Src <<= 8;
757 }
758 if (!(u32Src & UINT32_C(0xf0000000)))
759 {
760 iBit -= 4;
761 u32Src <<= 4;
762 }
763 if (!(u32Src & UINT32_C(0xc0000000)))
764 {
765 iBit -= 2;
766 u32Src <<= 2;
767 }
768 if (!(u32Src & UINT32_C(0x10000000)))
769 {
770 iBit -= 1;
771 u32Src <<= 1;
772 Assert(u32Src & RT_BIT_64(63));
773 }
774
775 *puDst = iBit;
776 *pfEFlags &= ~X86_EFL_ZF;
777 }
778 else
779 *pfEFlags |= X86_EFL_ZF;
780}
781
782
783/* Unary operands. */
784
785IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags))
786{
787 uint64_t uDst = *puDst;
788 uint64_t uResult = uDst + 1;
789 *puDst = uResult;
790
791 /*
792 * Calc EFLAGS.
793 * CF is NOT modified for hysterical raisins (allegedly for carrying and
794 * borrowing in arithmetic loops on intel 8008).
795 */
796 uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF);
797 fEfl |= g_afParity[uResult & 0xff];
798 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
799 fEfl |= X86_EFL_CALC_ZF(uResult);
800 fEfl |= X86_EFL_CALC_SF(uResult, 64);
801 fEfl |= (((uDst ^ RT_BIT_64(63)) & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
802 *pfEFlags = fEfl;
803}
804
805
806IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags))
807{
808 uint64_t uDst = *puDst;
809 uint64_t uResult = uDst - 1;
810 *puDst = uResult;
811
812 /*
813 * Calc EFLAGS.
814 * CF is NOT modified for hysterical raisins (allegedly for carrying and
815 * borrowing in arithmetic loops on intel 8008).
816 */
817 uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF);
818 fEfl |= g_afParity[uResult & 0xff];
819 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
820 fEfl |= X86_EFL_CALC_ZF(uResult);
821 fEfl |= X86_EFL_CALC_SF(uResult, 64);
822 fEfl |= ((uDst & (uResult ^ RT_BIT_64(63))) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
823 *pfEFlags = fEfl;
824}
825
826
827IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags))
828{
829 uint64_t uDst = *puDst;
830 uint64_t uResult = ~uDst;
831 *puDst = uResult;
832 /* EFLAGS are not modified. */
833}
834
835
836IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags))
837{
838 uint64_t uDst = 0;
839 uint64_t uSrc = *puDst;
840 uint64_t uResult = uDst - uSrc;
841 *puDst = uResult;
842
843 /* Calc EFLAGS. */
844 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
845 fEfl |= (uSrc != 0) << X86_EFL_CF_BIT;
846 fEfl |= g_afParity[uResult & 0xff];
847 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
848 fEfl |= X86_EFL_CALC_ZF(uResult);
849 fEfl |= X86_EFL_CALC_SF(uResult, 64);
850 fEfl |= ((uSrc & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
851 *pfEFlags = fEfl;
852}
853
854
855/** 64-bit locked unary operand operation. */
856# define DO_LOCKED_UNARY_OP_U64(a_Mnemonic) \
857 do { \
858 uint64_t uOld = ASMAtomicReadU64(puDst); \
859 uint64_t uTmp; \
860 uint32_t fEflTmp; \
861 do \
862 { \
863 uTmp = uOld; \
864 fEflTmp = *pfEFlags; \
865 iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, &fEflTmp); \
866 } while (!ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \
867 *pfEFlags = fEflTmp; \
868 } while (0)
869
870IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
871{
872 DO_LOCKED_UNARY_OP_U64(inc);
873}
874
875
876IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
877{
878 DO_LOCKED_UNARY_OP_U64(dec);
879}
880
881
882IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
883{
884 DO_LOCKED_UNARY_OP_U64(not);
885}
886
887
888IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
889{
890 DO_LOCKED_UNARY_OP_U64(neg);
891}
892
893
894/* Shift and rotate. */
895
896IEM_DECL_IMPL_DEF(void, iemAImpl_rol_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
897{
898 cShift &= 63;
899 if (cShift)
900 {
901 uint64_t uDst = *puDst;
902 uint64_t uResult;
903 uResult = uDst << cShift;
904 uResult |= uDst >> (64 - cShift);
905 *puDst = uResult;
906
907 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
908 it the same way as for 1 bit shifts. */
909 AssertCompile(X86_EFL_CF_BIT == 0);
910 uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF);
911 uint32_t fCarry = (uResult & 1);
912 fEfl |= fCarry;
913 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
914 *pfEFlags = fEfl;
915 }
916}
917
918
919IEM_DECL_IMPL_DEF(void, iemAImpl_ror_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
920{
921 cShift &= 63;
922 if (cShift)
923 {
924 uint64_t uDst = *puDst;
925 uint64_t uResult;
926 uResult = uDst >> cShift;
927 uResult |= uDst << (64 - cShift);
928 *puDst = uResult;
929
930 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
931 it the same way as for 1 bit shifts (OF = OF XOR New-CF). */
932 AssertCompile(X86_EFL_CF_BIT == 0);
933 uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF);
934 uint32_t fCarry = (uResult >> 63) & X86_EFL_CF;
935 fEfl |= fCarry;
936 fEfl |= (((uResult >> 62) ^ fCarry) << X86_EFL_OF_BIT) & X86_EFL_OF;
937 *pfEFlags = fEfl;
938 }
939}
940
941
942IEM_DECL_IMPL_DEF(void, iemAImpl_rcl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
943{
944 cShift &= 63;
945 if (cShift)
946 {
947 uint32_t fEfl = *pfEFlags;
948 uint64_t uDst = *puDst;
949 uint64_t uResult;
950 uResult = uDst << cShift;
951 AssertCompile(X86_EFL_CF_BIT == 0);
952 if (cShift > 1)
953 uResult |= uDst >> (65 - cShift);
954 uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (cShift - 1);
955 *puDst = uResult;
956
957 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
958 it the same way as for 1 bit shifts. */
959 uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF;
960 fEfl &= ~(X86_EFL_CF | X86_EFL_OF);
961 fEfl |= fCarry;
962 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
963 *pfEFlags = fEfl;
964 }
965}
966
967
968IEM_DECL_IMPL_DEF(void, iemAImpl_rcr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
969{
970 cShift &= 63;
971 if (cShift)
972 {
973 uint32_t fEfl = *pfEFlags;
974 uint64_t uDst = *puDst;
975 uint64_t uResult;
976 uResult = uDst >> cShift;
977 AssertCompile(X86_EFL_CF_BIT == 0);
978 if (cShift > 1)
979 uResult |= uDst << (65 - cShift);
980 uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (64 - cShift);
981 *puDst = uResult;
982
983 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
984 it the same way as for 1 bit shifts. */
985 uint32_t fCarry = (uDst >> (cShift - 1)) & X86_EFL_CF;
986 fEfl &= ~(X86_EFL_CF | X86_EFL_OF);
987 fEfl |= fCarry;
988 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
989 *pfEFlags = fEfl;
990 }
991}
992
993
994IEM_DECL_IMPL_DEF(void, iemAImpl_shl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
995{
996 cShift &= 63;
997 if (cShift)
998 {
999 uint64_t uDst = *puDst;
1000 uint64_t uResult = uDst << cShift;
1001 *puDst = uResult;
1002
1003 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1004 it the same way as for 1 bit shifts. The AF bit is undefined, we
1005 always set it to zero atm. */
1006 AssertCompile(X86_EFL_CF_BIT == 0);
1007 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1008 uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF;
1009 fEfl |= fCarry;
1010 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
1011 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1012 fEfl |= X86_EFL_CALC_ZF(uResult);
1013 fEfl |= g_afParity[uResult & 0xff];
1014 *pfEFlags = fEfl;
1015 }
1016}
1017
1018
1019IEM_DECL_IMPL_DEF(void, iemAImpl_shr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
1020{
1021 cShift &= 63;
1022 if (cShift)
1023 {
1024 uint64_t uDst = *puDst;
1025 uint64_t uResult = uDst >> cShift;
1026 *puDst = uResult;
1027
1028 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1029 it the same way as for 1 bit shifts. The AF bit is undefined, we
1030 always set it to zero atm. */
1031 AssertCompile(X86_EFL_CF_BIT == 0);
1032 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1033 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1034 fEfl |= (uDst >> 63) << X86_EFL_OF_BIT;
1035 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1036 fEfl |= X86_EFL_CALC_ZF(uResult);
1037 fEfl |= g_afParity[uResult & 0xff];
1038 *pfEFlags = fEfl;
1039 }
1040}
1041
1042
1043IEM_DECL_IMPL_DEF(void, iemAImpl_sar_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
1044{
1045 cShift &= 63;
1046 if (cShift)
1047 {
1048 uint64_t uDst = *puDst;
1049 uint64_t uResult = (int64_t)uDst >> cShift;
1050 *puDst = uResult;
1051
1052 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1053 it the same way as for 1 bit shifts (0). The AF bit is undefined,
1054 we always set it to zero atm. */
1055 AssertCompile(X86_EFL_CF_BIT == 0);
1056 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1057 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1058 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1059 fEfl |= X86_EFL_CALC_ZF(uResult);
1060 fEfl |= g_afParity[uResult & 0xff];
1061 *pfEFlags = fEfl;
1062 }
1063}
1064
1065
1066IEM_DECL_IMPL_DEF(void, iemAImpl_shld_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags))
1067{
1068 cShift &= 63;
1069 if (cShift)
1070 {
1071 uint64_t uDst = *puDst;
1072 uint64_t uResult;
1073 uResult = uDst << cShift;
1074 uResult |= uSrc >> (64 - cShift);
1075 *puDst = uResult;
1076
1077 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1078 it the same way as for 1 bit shifts. The AF bit is undefined,
1079 we always set it to zero atm. */
1080 AssertCompile(X86_EFL_CF_BIT == 0);
1081 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1082 fEfl |= (uDst >> (64 - cShift)) & X86_EFL_CF;
1083 fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT;
1084 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1085 fEfl |= X86_EFL_CALC_ZF(uResult);
1086 fEfl |= g_afParity[uResult & 0xff];
1087 *pfEFlags = fEfl;
1088 }
1089}
1090
1091
1092IEM_DECL_IMPL_DEF(void, iemAImpl_shrd_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags))
1093{
1094 cShift &= 63;
1095 if (cShift)
1096 {
1097 uint64_t uDst = *puDst;
1098 uint64_t uResult;
1099 uResult = uDst >> cShift;
1100 uResult |= uSrc << (64 - cShift);
1101 *puDst = uResult;
1102
1103 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1104 it the same way as for 1 bit shifts. The AF bit is undefined,
1105 we always set it to zero atm. */
1106 AssertCompile(X86_EFL_CF_BIT == 0);
1107 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1108 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1109 fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT;
1110 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1111 fEfl |= X86_EFL_CALC_ZF(uResult);
1112 fEfl |= g_afParity[uResult & 0xff];
1113 *pfEFlags = fEfl;
1114 }
1115}
1116
1117
1118/* misc */
1119
1120IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64,(uint64_t *puMem, uint64_t *puReg))
1121{
1122 /* XCHG implies LOCK. */
1123 uint64_t uOldMem = *puMem;
1124 while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem))
1125 ASMNopPause();
1126 *puReg = uOldMem;
1127}
1128
1129
1130/* multiplication and division */
1131
1132IEM_DECL_IMPL_DEF(int, iemAImpl_mul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags))
1133{
1134 AssertFailed();
1135 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1136}
1137
1138
1139IEM_DECL_IMPL_DEF(int, iemAImpl_imul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags))
1140{
1141 AssertFailed();
1142 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1143}
1144
1145
1146IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
1147{
1148 AssertFailed();
1149}
1150
1151
1152
1153IEM_DECL_IMPL_DEF(int, iemAImpl_div_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags))
1154{
1155 AssertFailed();
1156 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1157}
1158
1159
1160IEM_DECL_IMPL_DEF(int, iemAImpl_idiv_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags))
1161{
1162 AssertFailed();
1163 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1164}
1165
1166
1167#endif /* RT_ARCH_X86 */
1168
1169
1170IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags))
1171{
1172 if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL))
1173 {
1174 *pu16Dst &= X86_SEL_MASK_OFF_RPL;
1175 *pu16Dst |= u16Src & X86_SEL_RPL;
1176
1177 *pfEFlags |= X86_EFL_ZF;
1178 }
1179 else
1180 *pfEFlags &= ~X86_EFL_ZF;
1181}
1182
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette