1 | /* $Id: IEMAll.cpp 100966 2023-08-24 23:23:58Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /** @page pg_iem IEM - Interpreted Execution Manager
|
---|
30 | *
|
---|
31 | * The interpreted exeuction manager (IEM) is for executing short guest code
|
---|
32 | * sequences that are causing too many exits / virtualization traps. It will
|
---|
33 | * also be used to interpret single instructions, thus replacing the selective
|
---|
34 | * interpreters in EM and IOM.
|
---|
35 | *
|
---|
36 | * Design goals:
|
---|
37 | * - Relatively small footprint, although we favour speed and correctness
|
---|
38 | * over size.
|
---|
39 | * - Reasonably fast.
|
---|
40 | * - Correctly handle lock prefixed instructions.
|
---|
41 | * - Complete instruction set - eventually.
|
---|
42 | * - Refactorable into a recompiler, maybe.
|
---|
43 | * - Replace EMInterpret*.
|
---|
44 | *
|
---|
45 | * Using the existing disassembler has been considered, however this is thought
|
---|
46 | * to conflict with speed as the disassembler chews things a bit too much while
|
---|
47 | * leaving us with a somewhat complicated state to interpret afterwards.
|
---|
48 | *
|
---|
49 | *
|
---|
50 | * The current code is very much work in progress. You've been warned!
|
---|
51 | *
|
---|
52 | *
|
---|
53 | * @section sec_iem_fpu_instr FPU Instructions
|
---|
54 | *
|
---|
55 | * On x86 and AMD64 hosts, the FPU instructions are implemented by executing the
|
---|
56 | * same or equivalent instructions on the host FPU. To make life easy, we also
|
---|
57 | * let the FPU prioritize the unmasked exceptions for us. This however, only
|
---|
58 | * works reliably when CR0.NE is set, i.e. when using \#MF instead the IRQ 13
|
---|
59 | * for FPU exception delivery, because with CR0.NE=0 there is a window where we
|
---|
60 | * can trigger spurious FPU exceptions.
|
---|
61 | *
|
---|
62 | * The guest FPU state is not loaded into the host CPU and kept there till we
|
---|
63 | * leave IEM because the calling conventions have declared an all year open
|
---|
64 | * season on much of the FPU state. For instance an innocent looking call to
|
---|
65 | * memcpy might end up using a whole bunch of XMM or MM registers if the
|
---|
66 | * particular implementation finds it worthwhile.
|
---|
67 | *
|
---|
68 | *
|
---|
69 | * @section sec_iem_logging Logging
|
---|
70 | *
|
---|
71 | * The IEM code uses the \"IEM\" log group for the main logging. The different
|
---|
72 | * logging levels/flags are generally used for the following purposes:
|
---|
73 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events.
|
---|
74 | * - Flow (LogFlow) : Basic enter/exit IEM state info.
|
---|
75 | * - Level 2 (Log2) : ?
|
---|
76 | * - Level 3 (Log3) : More detailed enter/exit IEM state info.
|
---|
77 | * - Level 4 (Log4) : Decoding mnemonics w/ EIP.
|
---|
78 | * - Level 5 (Log5) : Decoding details.
|
---|
79 | * - Level 6 (Log6) : Enables/disables the lockstep comparison with REM.
|
---|
80 | * - Level 7 (Log7) : iret++ execution logging.
|
---|
81 | * - Level 8 (Log8) :
|
---|
82 | * - Level 9 (Log9) :
|
---|
83 | * - Level 10 (Log10): TLBs.
|
---|
84 | * - Level 11 (Log11): Unmasked FPU exceptions.
|
---|
85 | *
|
---|
86 | * The \"IEM_MEM\" log group covers most of memory related details logging,
|
---|
87 | * except for errors and exceptions:
|
---|
88 | * - Level 1 (Log) : Reads.
|
---|
89 | * - Level 2 (Log2) : Read fallbacks.
|
---|
90 | * - Level 3 (Log3) : MemMap read.
|
---|
91 | * - Level 4 (Log4) : MemMap read fallbacks.
|
---|
92 | * - Level 5 (Log5) : Writes
|
---|
93 | * - Level 6 (Log6) : Write fallbacks.
|
---|
94 | * - Level 7 (Log7) : MemMap writes and read-writes.
|
---|
95 | * - Level 8 (Log8) : MemMap write and read-write fallbacks.
|
---|
96 | * - Level 9 (Log9) : Stack reads.
|
---|
97 | * - Level 10 (Log10): Stack read fallbacks.
|
---|
98 | * - Level 11 (Log11): Stack writes.
|
---|
99 | * - Level 12 (Log12): Stack write fallbacks.
|
---|
100 | * - Flow (LogFlow) :
|
---|
101 | *
|
---|
102 | * The SVM (AMD-V) and VMX (VT-x) code has the following assignments:
|
---|
103 | * - Level 1 (Log) : Errors and other major events.
|
---|
104 | * - Flow (LogFlow) : Misc flow stuff (cleanup?)
|
---|
105 | * - Level 2 (Log2) : VM exits.
|
---|
106 | *
|
---|
107 | * The syscall logging level assignments:
|
---|
108 | * - Level 1: DOS and BIOS.
|
---|
109 | * - Level 2: Windows 3.x
|
---|
110 | * - Level 3: Linux.
|
---|
111 | */
|
---|
112 |
|
---|
113 | /* Disabled warning C4505: 'iemRaisePageFaultJmp' : unreferenced local function has been removed */
|
---|
114 | #ifdef _MSC_VER
|
---|
115 | # pragma warning(disable:4505)
|
---|
116 | #endif
|
---|
117 |
|
---|
118 |
|
---|
119 | /*********************************************************************************************************************************
|
---|
120 | * Header Files *
|
---|
121 | *********************************************************************************************************************************/
|
---|
122 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
123 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
124 | #include <VBox/vmm/iem.h>
|
---|
125 | #include <VBox/vmm/cpum.h>
|
---|
126 | #include <VBox/vmm/apic.h>
|
---|
127 | #include <VBox/vmm/pdm.h>
|
---|
128 | #include <VBox/vmm/pgm.h>
|
---|
129 | #include <VBox/vmm/iom.h>
|
---|
130 | #include <VBox/vmm/em.h>
|
---|
131 | #include <VBox/vmm/hm.h>
|
---|
132 | #include <VBox/vmm/nem.h>
|
---|
133 | #include <VBox/vmm/gim.h>
|
---|
134 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
135 | # include <VBox/vmm/em.h>
|
---|
136 | # include <VBox/vmm/hm_svm.h>
|
---|
137 | #endif
|
---|
138 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
139 | # include <VBox/vmm/hmvmxinline.h>
|
---|
140 | #endif
|
---|
141 | #include <VBox/vmm/tm.h>
|
---|
142 | #include <VBox/vmm/dbgf.h>
|
---|
143 | #include <VBox/vmm/dbgftrace.h>
|
---|
144 | #include "IEMInternal.h"
|
---|
145 | #include <VBox/vmm/vmcc.h>
|
---|
146 | #include <VBox/log.h>
|
---|
147 | #include <VBox/err.h>
|
---|
148 | #include <VBox/param.h>
|
---|
149 | #include <VBox/dis.h>
|
---|
150 | #include <iprt/asm-math.h>
|
---|
151 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
152 | # include <iprt/asm-amd64-x86.h>
|
---|
153 | #elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
|
---|
154 | # include <iprt/asm-arm.h>
|
---|
155 | #endif
|
---|
156 | #include <iprt/assert.h>
|
---|
157 | #include <iprt/string.h>
|
---|
158 | #include <iprt/x86.h>
|
---|
159 |
|
---|
160 | #include "IEMInline.h"
|
---|
161 |
|
---|
162 |
|
---|
163 | /*********************************************************************************************************************************
|
---|
164 | * Structures and Typedefs *
|
---|
165 | *********************************************************************************************************************************/
|
---|
166 | /**
|
---|
167 | * CPU exception classes.
|
---|
168 | */
|
---|
169 | typedef enum IEMXCPTCLASS
|
---|
170 | {
|
---|
171 | IEMXCPTCLASS_BENIGN,
|
---|
172 | IEMXCPTCLASS_CONTRIBUTORY,
|
---|
173 | IEMXCPTCLASS_PAGE_FAULT,
|
---|
174 | IEMXCPTCLASS_DOUBLE_FAULT
|
---|
175 | } IEMXCPTCLASS;
|
---|
176 |
|
---|
177 |
|
---|
178 | /*********************************************************************************************************************************
|
---|
179 | * Global Variables *
|
---|
180 | *********************************************************************************************************************************/
|
---|
181 | #if defined(IEM_LOG_MEMORY_WRITES)
|
---|
182 | /** What IEM just wrote. */
|
---|
183 | uint8_t g_abIemWrote[256];
|
---|
184 | /** How much IEM just wrote. */
|
---|
185 | size_t g_cbIemWrote;
|
---|
186 | #endif
|
---|
187 |
|
---|
188 |
|
---|
189 | /*********************************************************************************************************************************
|
---|
190 | * Internal Functions *
|
---|
191 | *********************************************************************************************************************************/
|
---|
192 | static VBOXSTRICTRC iemMemFetchSelDescWithErr(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel,
|
---|
193 | uint8_t uXcpt, uint16_t uErrorCode) RT_NOEXCEPT;
|
---|
194 |
|
---|
195 |
|
---|
196 | /**
|
---|
197 | * Calculates IEM_F_BRK_PENDING_XXX (IEM_F_PENDING_BRK_MASK) flags, slow code
|
---|
198 | * path.
|
---|
199 | *
|
---|
200 | * @returns IEM_F_BRK_PENDING_XXX or zero.
|
---|
201 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
202 | * calling thread.
|
---|
203 | *
|
---|
204 | * @note Don't call directly, use iemCalcExecDbgFlags instead.
|
---|
205 | */
|
---|
206 | uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu)
|
---|
207 | {
|
---|
208 | uint32_t fExec = 0;
|
---|
209 |
|
---|
210 | /*
|
---|
211 | * Process guest breakpoints.
|
---|
212 | */
|
---|
213 | #define PROCESS_ONE_BP(a_fDr7, a_iBp) do { \
|
---|
214 | if (a_fDr7 & X86_DR7_L_G(a_iBp)) \
|
---|
215 | { \
|
---|
216 | switch (X86_DR7_GET_RW(a_fDr7, a_iBp)) \
|
---|
217 | { \
|
---|
218 | case X86_DR7_RW_EO: \
|
---|
219 | fExec |= IEM_F_PENDING_BRK_INSTR; \
|
---|
220 | break; \
|
---|
221 | case X86_DR7_RW_WO: \
|
---|
222 | case X86_DR7_RW_RW: \
|
---|
223 | fExec |= IEM_F_PENDING_BRK_DATA; \
|
---|
224 | break; \
|
---|
225 | case X86_DR7_RW_IO: \
|
---|
226 | fExec |= IEM_F_PENDING_BRK_X86_IO; \
|
---|
227 | break; \
|
---|
228 | } \
|
---|
229 | } \
|
---|
230 | } while (0)
|
---|
231 |
|
---|
232 | uint32_t const fGstDr7 = (uint32_t)pVCpu->cpum.GstCtx.dr[7];
|
---|
233 | if (fGstDr7 & X86_DR7_ENABLED_MASK)
|
---|
234 | {
|
---|
235 | PROCESS_ONE_BP(fGstDr7, 0);
|
---|
236 | PROCESS_ONE_BP(fGstDr7, 1);
|
---|
237 | PROCESS_ONE_BP(fGstDr7, 2);
|
---|
238 | PROCESS_ONE_BP(fGstDr7, 3);
|
---|
239 | }
|
---|
240 |
|
---|
241 | /*
|
---|
242 | * Process hypervisor breakpoints.
|
---|
243 | */
|
---|
244 | uint32_t const fHyperDr7 = DBGFBpGetDR7(pVCpu->CTX_SUFF(pVM));
|
---|
245 | if (fHyperDr7 & X86_DR7_ENABLED_MASK)
|
---|
246 | {
|
---|
247 | PROCESS_ONE_BP(fHyperDr7, 0);
|
---|
248 | PROCESS_ONE_BP(fHyperDr7, 1);
|
---|
249 | PROCESS_ONE_BP(fHyperDr7, 2);
|
---|
250 | PROCESS_ONE_BP(fHyperDr7, 3);
|
---|
251 | }
|
---|
252 |
|
---|
253 | return fExec;
|
---|
254 | }
|
---|
255 |
|
---|
256 |
|
---|
257 | /**
|
---|
258 | * Initializes the decoder state.
|
---|
259 | *
|
---|
260 | * iemReInitDecoder is mostly a copy of this function.
|
---|
261 | *
|
---|
262 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
263 | * calling thread.
|
---|
264 | * @param fExecOpts Optional execution flags:
|
---|
265 | * - IEM_F_BYPASS_HANDLERS
|
---|
266 | * - IEM_F_X86_DISREGARD_LOCK
|
---|
267 | */
|
---|
268 | DECLINLINE(void) iemInitDecoder(PVMCPUCC pVCpu, uint32_t fExecOpts)
|
---|
269 | {
|
---|
270 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
271 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
272 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
273 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
274 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
275 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
276 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
277 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
278 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
279 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
280 |
|
---|
281 | /* Execution state: */
|
---|
282 | uint32_t fExec;
|
---|
283 | pVCpu->iem.s.fExec = fExec = iemCalcExecFlags(pVCpu) | fExecOpts;
|
---|
284 |
|
---|
285 | /* Decoder state: */
|
---|
286 | pVCpu->iem.s.enmDefAddrMode = fExec & IEM_F_MODE_CPUMODE_MASK; /** @todo check if this is correct... */
|
---|
287 | pVCpu->iem.s.enmEffAddrMode = fExec & IEM_F_MODE_CPUMODE_MASK;
|
---|
288 | if ((fExec & IEM_F_MODE_CPUMODE_MASK) != IEMMODE_64BIT)
|
---|
289 | {
|
---|
290 | pVCpu->iem.s.enmDefOpSize = fExec & IEM_F_MODE_CPUMODE_MASK; /** @todo check if this is correct... */
|
---|
291 | pVCpu->iem.s.enmEffOpSize = fExec & IEM_F_MODE_CPUMODE_MASK;
|
---|
292 | }
|
---|
293 | else
|
---|
294 | {
|
---|
295 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
296 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
297 | }
|
---|
298 | pVCpu->iem.s.fPrefixes = 0;
|
---|
299 | pVCpu->iem.s.uRexReg = 0;
|
---|
300 | pVCpu->iem.s.uRexB = 0;
|
---|
301 | pVCpu->iem.s.uRexIndex = 0;
|
---|
302 | pVCpu->iem.s.idxPrefix = 0;
|
---|
303 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
304 | pVCpu->iem.s.uVexLength = 0;
|
---|
305 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
306 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
307 | #ifdef IEM_WITH_CODE_TLB
|
---|
308 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
309 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
310 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
311 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
312 | pVCpu->iem.s.offOpcode = 0;
|
---|
313 | # endif
|
---|
314 | # ifdef VBOX_STRICT
|
---|
315 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
316 | pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
|
---|
317 | pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
|
---|
318 | pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
|
---|
319 | # endif
|
---|
320 | #else
|
---|
321 | pVCpu->iem.s.offOpcode = 0;
|
---|
322 | pVCpu->iem.s.cbOpcode = 0;
|
---|
323 | #endif
|
---|
324 | pVCpu->iem.s.offModRm = 0;
|
---|
325 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
326 | pVCpu->iem.s.iNextMapping = 0;
|
---|
327 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
328 |
|
---|
329 | #ifdef DBGFTRACE_ENABLED
|
---|
330 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
331 | {
|
---|
332 | case IEMMODE_64BIT:
|
---|
333 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
334 | break;
|
---|
335 | case IEMMODE_32BIT:
|
---|
336 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
337 | break;
|
---|
338 | case IEMMODE_16BIT:
|
---|
339 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
340 | break;
|
---|
341 | }
|
---|
342 | #endif
|
---|
343 | }
|
---|
344 |
|
---|
345 |
|
---|
346 | /**
|
---|
347 | * Reinitializes the decoder state 2nd+ loop of IEMExecLots.
|
---|
348 | *
|
---|
349 | * This is mostly a copy of iemInitDecoder.
|
---|
350 | *
|
---|
351 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
352 | */
|
---|
353 | DECLINLINE(void) iemReInitDecoder(PVMCPUCC pVCpu)
|
---|
354 | {
|
---|
355 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
356 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
357 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
358 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
359 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
360 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
361 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
362 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
363 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
364 |
|
---|
365 | /* ASSUMES: Anyone changing CPU state affecting the fExec bits will update them! */
|
---|
366 | AssertMsg((pVCpu->iem.s.fExec & ~IEM_F_USER_OPTS) == iemCalcExecFlags(pVCpu),
|
---|
367 | ("fExec=%#x iemCalcExecModeFlags=%#x\n", pVCpu->iem.s.fExec, iemCalcExecFlags(pVCpu)));
|
---|
368 |
|
---|
369 | IEMMODE const enmMode = IEM_GET_CPU_MODE(pVCpu);
|
---|
370 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
371 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
372 | if (enmMode != IEMMODE_64BIT)
|
---|
373 | {
|
---|
374 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
375 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
376 | }
|
---|
377 | else
|
---|
378 | {
|
---|
379 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
380 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
381 | }
|
---|
382 | pVCpu->iem.s.fPrefixes = 0;
|
---|
383 | pVCpu->iem.s.uRexReg = 0;
|
---|
384 | pVCpu->iem.s.uRexB = 0;
|
---|
385 | pVCpu->iem.s.uRexIndex = 0;
|
---|
386 | pVCpu->iem.s.idxPrefix = 0;
|
---|
387 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
388 | pVCpu->iem.s.uVexLength = 0;
|
---|
389 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
390 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
391 | #ifdef IEM_WITH_CODE_TLB
|
---|
392 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
393 | {
|
---|
394 | uint64_t off = (enmMode == IEMMODE_64BIT
|
---|
395 | ? pVCpu->cpum.GstCtx.rip
|
---|
396 | : pVCpu->cpum.GstCtx.eip + (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base)
|
---|
397 | - pVCpu->iem.s.uInstrBufPc;
|
---|
398 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
399 | {
|
---|
400 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
401 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
402 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
403 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
404 | else
|
---|
405 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
406 | }
|
---|
407 | else
|
---|
408 | {
|
---|
409 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
410 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
411 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
412 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
413 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
414 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
415 | }
|
---|
416 | }
|
---|
417 | else
|
---|
418 | {
|
---|
419 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
420 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
421 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
422 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
423 | # ifdef VBOX_STRICT
|
---|
424 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
425 | # endif
|
---|
426 | }
|
---|
427 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
428 | pVCpu->iem.s.offOpcode = 0;
|
---|
429 | # endif
|
---|
430 | #else /* !IEM_WITH_CODE_TLB */
|
---|
431 | pVCpu->iem.s.cbOpcode = 0;
|
---|
432 | pVCpu->iem.s.offOpcode = 0;
|
---|
433 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
434 | pVCpu->iem.s.offModRm = 0;
|
---|
435 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
436 | pVCpu->iem.s.iNextMapping = 0;
|
---|
437 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
438 | Assert(!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS));
|
---|
439 |
|
---|
440 | #ifdef DBGFTRACE_ENABLED
|
---|
441 | switch (enmMode)
|
---|
442 | {
|
---|
443 | case IEMMODE_64BIT:
|
---|
444 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
445 | break;
|
---|
446 | case IEMMODE_32BIT:
|
---|
447 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
448 | break;
|
---|
449 | case IEMMODE_16BIT:
|
---|
450 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
451 | break;
|
---|
452 | }
|
---|
453 | #endif
|
---|
454 | }
|
---|
455 |
|
---|
456 |
|
---|
457 |
|
---|
458 | /**
|
---|
459 | * Prefetch opcodes the first time when starting executing.
|
---|
460 | *
|
---|
461 | * @returns Strict VBox status code.
|
---|
462 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
463 | * calling thread.
|
---|
464 | * @param fExecOpts Optional execution flags:
|
---|
465 | * - IEM_F_BYPASS_HANDLERS
|
---|
466 | * - IEM_F_X86_DISREGARD_LOCK
|
---|
467 | */
|
---|
468 | static VBOXSTRICTRC iemInitDecoderAndPrefetchOpcodes(PVMCPUCC pVCpu, uint32_t fExecOpts) RT_NOEXCEPT
|
---|
469 | {
|
---|
470 | iemInitDecoder(pVCpu, fExecOpts);
|
---|
471 |
|
---|
472 | #ifndef IEM_WITH_CODE_TLB
|
---|
473 | /*
|
---|
474 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
475 | *
|
---|
476 | * First translate CS:rIP to a physical address.
|
---|
477 | *
|
---|
478 | * Note! The iemOpcodeFetchMoreBytes code depends on this here code to fetch
|
---|
479 | * all relevant bytes from the first page, as it ASSUMES it's only ever
|
---|
480 | * called for dealing with CS.LIM, page crossing and instructions that
|
---|
481 | * are too long.
|
---|
482 | */
|
---|
483 | uint32_t cbToTryRead;
|
---|
484 | RTGCPTR GCPtrPC;
|
---|
485 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
486 | {
|
---|
487 | cbToTryRead = GUEST_PAGE_SIZE;
|
---|
488 | GCPtrPC = pVCpu->cpum.GstCtx.rip;
|
---|
489 | if (IEM_IS_CANONICAL(GCPtrPC))
|
---|
490 | cbToTryRead = GUEST_PAGE_SIZE - (GCPtrPC & GUEST_PAGE_OFFSET_MASK);
|
---|
491 | else
|
---|
492 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
493 | }
|
---|
494 | else
|
---|
495 | {
|
---|
496 | uint32_t GCPtrPC32 = pVCpu->cpum.GstCtx.eip;
|
---|
497 | AssertMsg(!(GCPtrPC32 & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu), ("%04x:%RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
498 | if (GCPtrPC32 <= pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
499 | cbToTryRead = pVCpu->cpum.GstCtx.cs.u32Limit - GCPtrPC32 + 1;
|
---|
500 | else
|
---|
501 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
502 | if (cbToTryRead) { /* likely */ }
|
---|
503 | else /* overflowed */
|
---|
504 | {
|
---|
505 | Assert(GCPtrPC32 == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
506 | cbToTryRead = UINT32_MAX;
|
---|
507 | }
|
---|
508 | GCPtrPC = (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base + GCPtrPC32;
|
---|
509 | Assert(GCPtrPC <= UINT32_MAX);
|
---|
510 | }
|
---|
511 |
|
---|
512 | PGMPTWALK Walk;
|
---|
513 | int rc = PGMGstGetPage(pVCpu, GCPtrPC, &Walk);
|
---|
514 | if (RT_SUCCESS(rc))
|
---|
515 | Assert(Walk.fSucceeded); /* probable. */
|
---|
516 | else
|
---|
517 | {
|
---|
518 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - rc=%Rrc\n", GCPtrPC, rc));
|
---|
519 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
520 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
521 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
522 | # endif
|
---|
523 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
524 | }
|
---|
525 | if ((Walk.fEffective & X86_PTE_US) || IEM_GET_CPL(pVCpu) != 3) { /* likely */ }
|
---|
526 | else
|
---|
527 | {
|
---|
528 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - supervisor page\n", GCPtrPC));
|
---|
529 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
530 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
531 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
532 | # endif
|
---|
533 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
534 | }
|
---|
535 | if (!(Walk.fEffective & X86_PTE_PAE_NX) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE)) { /* likely */ }
|
---|
536 | else
|
---|
537 | {
|
---|
538 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - NX\n", GCPtrPC));
|
---|
539 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
540 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
541 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
542 | # endif
|
---|
543 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
544 | }
|
---|
545 | RTGCPHYS const GCPhys = Walk.GCPhys | (GCPtrPC & GUEST_PAGE_OFFSET_MASK);
|
---|
546 | /** @todo Check reserved bits and such stuff. PGM is better at doing
|
---|
547 | * that, so do it when implementing the guest virtual address
|
---|
548 | * TLB... */
|
---|
549 |
|
---|
550 | /*
|
---|
551 | * Read the bytes at this address.
|
---|
552 | */
|
---|
553 | uint32_t cbLeftOnPage = GUEST_PAGE_SIZE - (GCPtrPC & GUEST_PAGE_OFFSET_MASK);
|
---|
554 | if (cbToTryRead > cbLeftOnPage)
|
---|
555 | cbToTryRead = cbLeftOnPage;
|
---|
556 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode))
|
---|
557 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode);
|
---|
558 |
|
---|
559 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
560 | {
|
---|
561 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, pVCpu->iem.s.abOpcode, cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
562 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
563 | { /* likely */ }
|
---|
564 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
565 | {
|
---|
566 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
567 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
568 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
569 | }
|
---|
570 | else
|
---|
571 | {
|
---|
572 | Log((RT_SUCCESS(rcStrict)
|
---|
573 | ? "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
574 | : "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
575 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
576 | return rcStrict;
|
---|
577 | }
|
---|
578 | }
|
---|
579 | else
|
---|
580 | {
|
---|
581 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->iem.s.abOpcode, GCPhys, cbToTryRead);
|
---|
582 | if (RT_SUCCESS(rc))
|
---|
583 | { /* likely */ }
|
---|
584 | else
|
---|
585 | {
|
---|
586 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rc=%Rrc (!!)\n",
|
---|
587 | GCPtrPC, GCPhys, rc, cbToTryRead));
|
---|
588 | return rc;
|
---|
589 | }
|
---|
590 | }
|
---|
591 | pVCpu->iem.s.cbOpcode = cbToTryRead;
|
---|
592 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
593 | return VINF_SUCCESS;
|
---|
594 | }
|
---|
595 |
|
---|
596 |
|
---|
597 | /**
|
---|
598 | * Invalidates the IEM TLBs.
|
---|
599 | *
|
---|
600 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
601 | *
|
---|
602 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
603 | * thread.
|
---|
604 | */
|
---|
605 | VMM_INT_DECL(void) IEMTlbInvalidateAll(PVMCPUCC pVCpu)
|
---|
606 | {
|
---|
607 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
608 | Log10(("IEMTlbInvalidateAll\n"));
|
---|
609 | # ifdef IEM_WITH_CODE_TLB
|
---|
610 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
611 | pVCpu->iem.s.CodeTlb.uTlbRevision += IEMTLB_REVISION_INCR;
|
---|
612 | if (pVCpu->iem.s.CodeTlb.uTlbRevision != 0)
|
---|
613 | { /* very likely */ }
|
---|
614 | else
|
---|
615 | {
|
---|
616 | pVCpu->iem.s.CodeTlb.uTlbRevision = IEMTLB_REVISION_INCR;
|
---|
617 | unsigned i = RT_ELEMENTS(pVCpu->iem.s.CodeTlb.aEntries);
|
---|
618 | while (i-- > 0)
|
---|
619 | pVCpu->iem.s.CodeTlb.aEntries[i].uTag = 0;
|
---|
620 | }
|
---|
621 | # endif
|
---|
622 |
|
---|
623 | # ifdef IEM_WITH_DATA_TLB
|
---|
624 | pVCpu->iem.s.DataTlb.uTlbRevision += IEMTLB_REVISION_INCR;
|
---|
625 | if (pVCpu->iem.s.DataTlb.uTlbRevision != 0)
|
---|
626 | { /* very likely */ }
|
---|
627 | else
|
---|
628 | {
|
---|
629 | pVCpu->iem.s.DataTlb.uTlbRevision = IEMTLB_REVISION_INCR;
|
---|
630 | unsigned i = RT_ELEMENTS(pVCpu->iem.s.DataTlb.aEntries);
|
---|
631 | while (i-- > 0)
|
---|
632 | pVCpu->iem.s.DataTlb.aEntries[i].uTag = 0;
|
---|
633 | }
|
---|
634 | # endif
|
---|
635 | #else
|
---|
636 | RT_NOREF(pVCpu);
|
---|
637 | #endif
|
---|
638 | }
|
---|
639 |
|
---|
640 |
|
---|
641 | /**
|
---|
642 | * Invalidates a page in the TLBs.
|
---|
643 | *
|
---|
644 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
645 | * thread.
|
---|
646 | * @param GCPtr The address of the page to invalidate
|
---|
647 | * @thread EMT(pVCpu)
|
---|
648 | */
|
---|
649 | VMM_INT_DECL(void) IEMTlbInvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCPtr)
|
---|
650 | {
|
---|
651 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
652 | Log10(("IEMTlbInvalidatePage: GCPtr=%RGv\n", GCPtr));
|
---|
653 | GCPtr = IEMTLB_CALC_TAG_NO_REV(GCPtr);
|
---|
654 | Assert(!(GCPtr >> (48 - X86_PAGE_SHIFT)));
|
---|
655 | uintptr_t const idx = IEMTLB_TAG_TO_INDEX(GCPtr);
|
---|
656 |
|
---|
657 | # ifdef IEM_WITH_CODE_TLB
|
---|
658 | if (pVCpu->iem.s.CodeTlb.aEntries[idx].uTag == (GCPtr | pVCpu->iem.s.CodeTlb.uTlbRevision))
|
---|
659 | {
|
---|
660 | pVCpu->iem.s.CodeTlb.aEntries[idx].uTag = 0;
|
---|
661 | if (GCPtr == IEMTLB_CALC_TAG_NO_REV(pVCpu->iem.s.uInstrBufPc))
|
---|
662 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
663 | }
|
---|
664 | # endif
|
---|
665 |
|
---|
666 | # ifdef IEM_WITH_DATA_TLB
|
---|
667 | if (pVCpu->iem.s.DataTlb.aEntries[idx].uTag == (GCPtr | pVCpu->iem.s.DataTlb.uTlbRevision))
|
---|
668 | pVCpu->iem.s.DataTlb.aEntries[idx].uTag = 0;
|
---|
669 | # endif
|
---|
670 | #else
|
---|
671 | NOREF(pVCpu); NOREF(GCPtr);
|
---|
672 | #endif
|
---|
673 | }
|
---|
674 |
|
---|
675 |
|
---|
676 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
677 | /**
|
---|
678 | * Invalid both TLBs slow fashion following a rollover.
|
---|
679 | *
|
---|
680 | * Worker for IEMTlbInvalidateAllPhysical,
|
---|
681 | * IEMTlbInvalidateAllPhysicalAllCpus, iemOpcodeFetchBytesJmp, iemMemMap,
|
---|
682 | * iemMemMapJmp and others.
|
---|
683 | *
|
---|
684 | * @thread EMT(pVCpu)
|
---|
685 | */
|
---|
686 | static void IEMTlbInvalidateAllPhysicalSlow(PVMCPUCC pVCpu)
|
---|
687 | {
|
---|
688 | Log10(("IEMTlbInvalidateAllPhysicalSlow\n"));
|
---|
689 | ASMAtomicWriteU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev, IEMTLB_PHYS_REV_INCR * 2);
|
---|
690 | ASMAtomicWriteU64(&pVCpu->iem.s.DataTlb.uTlbPhysRev, IEMTLB_PHYS_REV_INCR * 2);
|
---|
691 |
|
---|
692 | unsigned i;
|
---|
693 | # ifdef IEM_WITH_CODE_TLB
|
---|
694 | i = RT_ELEMENTS(pVCpu->iem.s.CodeTlb.aEntries);
|
---|
695 | while (i-- > 0)
|
---|
696 | {
|
---|
697 | pVCpu->iem.s.CodeTlb.aEntries[i].pbMappingR3 = NULL;
|
---|
698 | pVCpu->iem.s.CodeTlb.aEntries[i].fFlagsAndPhysRev &= ~( IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ
|
---|
699 | | IEMTLBE_F_PG_UNASSIGNED | IEMTLBE_F_PHYS_REV);
|
---|
700 | }
|
---|
701 | # endif
|
---|
702 | # ifdef IEM_WITH_DATA_TLB
|
---|
703 | i = RT_ELEMENTS(pVCpu->iem.s.DataTlb.aEntries);
|
---|
704 | while (i-- > 0)
|
---|
705 | {
|
---|
706 | pVCpu->iem.s.DataTlb.aEntries[i].pbMappingR3 = NULL;
|
---|
707 | pVCpu->iem.s.DataTlb.aEntries[i].fFlagsAndPhysRev &= ~( IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ
|
---|
708 | | IEMTLBE_F_PG_UNASSIGNED | IEMTLBE_F_PHYS_REV);
|
---|
709 | }
|
---|
710 | # endif
|
---|
711 |
|
---|
712 | }
|
---|
713 | #endif
|
---|
714 |
|
---|
715 |
|
---|
716 | /**
|
---|
717 | * Invalidates the host physical aspects of the IEM TLBs.
|
---|
718 | *
|
---|
719 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
720 | *
|
---|
721 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
722 | * thread.
|
---|
723 | * @note Currently not used.
|
---|
724 | */
|
---|
725 | VMM_INT_DECL(void) IEMTlbInvalidateAllPhysical(PVMCPUCC pVCpu)
|
---|
726 | {
|
---|
727 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
728 | /* Note! This probably won't end up looking exactly like this, but it give an idea... */
|
---|
729 | Log10(("IEMTlbInvalidateAllPhysical\n"));
|
---|
730 |
|
---|
731 | # ifdef IEM_WITH_CODE_TLB
|
---|
732 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
733 | # endif
|
---|
734 | uint64_t uTlbPhysRev = pVCpu->iem.s.CodeTlb.uTlbPhysRev + IEMTLB_PHYS_REV_INCR;
|
---|
735 | if (RT_LIKELY(uTlbPhysRev > IEMTLB_PHYS_REV_INCR * 2))
|
---|
736 | {
|
---|
737 | pVCpu->iem.s.CodeTlb.uTlbPhysRev = uTlbPhysRev;
|
---|
738 | pVCpu->iem.s.DataTlb.uTlbPhysRev = uTlbPhysRev;
|
---|
739 | }
|
---|
740 | else
|
---|
741 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
742 | #else
|
---|
743 | NOREF(pVCpu);
|
---|
744 | #endif
|
---|
745 | }
|
---|
746 |
|
---|
747 |
|
---|
748 | /**
|
---|
749 | * Invalidates the host physical aspects of the IEM TLBs.
|
---|
750 | *
|
---|
751 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
752 | *
|
---|
753 | * @param pVM The cross context VM structure.
|
---|
754 | * @param idCpuCaller The ID of the calling EMT if available to the caller,
|
---|
755 | * otherwise NIL_VMCPUID.
|
---|
756 | * @param enmReason The reason we're called.
|
---|
757 | *
|
---|
758 | * @remarks Caller holds the PGM lock.
|
---|
759 | */
|
---|
760 | VMM_INT_DECL(void) IEMTlbInvalidateAllPhysicalAllCpus(PVMCC pVM, VMCPUID idCpuCaller, IEMTLBPHYSFLUSHREASON enmReason)
|
---|
761 | {
|
---|
762 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
763 | PVMCPUCC const pVCpuCaller = idCpuCaller >= pVM->cCpus ? VMMGetCpu(pVM) : VMMGetCpuById(pVM, idCpuCaller);
|
---|
764 | if (pVCpuCaller)
|
---|
765 | VMCPU_ASSERT_EMT(pVCpuCaller);
|
---|
766 | Log10(("IEMTlbInvalidateAllPhysicalAllCpus: %d\n", enmReason)); RT_NOREF(enmReason);
|
---|
767 |
|
---|
768 | VMCC_FOR_EACH_VMCPU(pVM)
|
---|
769 | {
|
---|
770 | # ifdef IEM_WITH_CODE_TLB
|
---|
771 | if (pVCpuCaller == pVCpu)
|
---|
772 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
773 | # endif
|
---|
774 |
|
---|
775 | uint64_t const uTlbPhysRevPrev = ASMAtomicUoReadU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev);
|
---|
776 | uint64_t uTlbPhysRevNew = uTlbPhysRevPrev + IEMTLB_PHYS_REV_INCR;
|
---|
777 | if (RT_LIKELY(uTlbPhysRevNew > IEMTLB_PHYS_REV_INCR * 2))
|
---|
778 | { /* likely */}
|
---|
779 | else if (pVCpuCaller == pVCpu)
|
---|
780 | uTlbPhysRevNew = IEMTLB_PHYS_REV_INCR;
|
---|
781 | else
|
---|
782 | {
|
---|
783 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
784 | continue;
|
---|
785 | }
|
---|
786 | ASMAtomicCmpXchgU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev, uTlbPhysRevNew, uTlbPhysRevPrev);
|
---|
787 | ASMAtomicCmpXchgU64(&pVCpu->iem.s.DataTlb.uTlbPhysRev, uTlbPhysRevNew, uTlbPhysRevPrev);
|
---|
788 | }
|
---|
789 | VMCC_FOR_EACH_VMCPU_END(pVM);
|
---|
790 |
|
---|
791 | #else
|
---|
792 | RT_NOREF(pVM, idCpuCaller, enmReason);
|
---|
793 | #endif
|
---|
794 | }
|
---|
795 |
|
---|
796 |
|
---|
797 | /**
|
---|
798 | * Flushes the prefetch buffer, light version.
|
---|
799 | */
|
---|
800 | void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
801 | {
|
---|
802 | #ifndef IEM_WITH_CODE_TLB
|
---|
803 | pVCpu->iem.s.cbOpcode = cbInstr;
|
---|
804 | #else
|
---|
805 | RT_NOREF(pVCpu, cbInstr);
|
---|
806 | #endif
|
---|
807 | }
|
---|
808 |
|
---|
809 |
|
---|
810 | /**
|
---|
811 | * Flushes the prefetch buffer, heavy version.
|
---|
812 | */
|
---|
813 | void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
814 | {
|
---|
815 | #ifndef IEM_WITH_CODE_TLB
|
---|
816 | pVCpu->iem.s.cbOpcode = cbInstr; /* Note! SVM and VT-x may set this to zero on exit, rather than the instruction length. */
|
---|
817 | #elif 1
|
---|
818 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
819 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
820 | RT_NOREF(cbInstr);
|
---|
821 | #else
|
---|
822 | RT_NOREF(pVCpu, cbInstr);
|
---|
823 | #endif
|
---|
824 | }
|
---|
825 |
|
---|
826 |
|
---|
827 |
|
---|
828 | #ifdef IEM_WITH_CODE_TLB
|
---|
829 |
|
---|
830 | /**
|
---|
831 | * Tries to fetches @a cbDst opcode bytes, raise the appropriate exception on
|
---|
832 | * failure and jumps.
|
---|
833 | *
|
---|
834 | * We end up here for a number of reasons:
|
---|
835 | * - pbInstrBuf isn't yet initialized.
|
---|
836 | * - Advancing beyond the buffer boundrary (e.g. cross page).
|
---|
837 | * - Advancing beyond the CS segment limit.
|
---|
838 | * - Fetching from non-mappable page (e.g. MMIO).
|
---|
839 | *
|
---|
840 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
841 | * calling thread.
|
---|
842 | * @param pvDst Where to return the bytes.
|
---|
843 | * @param cbDst Number of bytes to read. A value of zero is
|
---|
844 | * allowed for initializing pbInstrBuf (the
|
---|
845 | * recompiler does this). In this case it is best
|
---|
846 | * to set pbInstrBuf to NULL prior to the call.
|
---|
847 | */
|
---|
848 | void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
849 | {
|
---|
850 | # ifdef IN_RING3
|
---|
851 | for (;;)
|
---|
852 | {
|
---|
853 | Assert(cbDst <= 8);
|
---|
854 | uint32_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
855 |
|
---|
856 | /*
|
---|
857 | * We might have a partial buffer match, deal with that first to make the
|
---|
858 | * rest simpler. This is the first part of the cross page/buffer case.
|
---|
859 | */
|
---|
860 | if (pVCpu->iem.s.pbInstrBuf != NULL)
|
---|
861 | {
|
---|
862 | if (offBuf < pVCpu->iem.s.cbInstrBuf)
|
---|
863 | {
|
---|
864 | Assert(offBuf + cbDst > pVCpu->iem.s.cbInstrBuf);
|
---|
865 | uint32_t const cbCopy = pVCpu->iem.s.cbInstrBuf - pVCpu->iem.s.offInstrNextByte;
|
---|
866 | memcpy(pvDst, &pVCpu->iem.s.pbInstrBuf[offBuf], cbCopy);
|
---|
867 |
|
---|
868 | cbDst -= cbCopy;
|
---|
869 | pvDst = (uint8_t *)pvDst + cbCopy;
|
---|
870 | offBuf += cbCopy;
|
---|
871 | pVCpu->iem.s.offInstrNextByte += offBuf;
|
---|
872 | }
|
---|
873 | }
|
---|
874 |
|
---|
875 | /*
|
---|
876 | * Check segment limit, figuring how much we're allowed to access at this point.
|
---|
877 | *
|
---|
878 | * We will fault immediately if RIP is past the segment limit / in non-canonical
|
---|
879 | * territory. If we do continue, there are one or more bytes to read before we
|
---|
880 | * end up in trouble and we need to do that first before faulting.
|
---|
881 | */
|
---|
882 | RTGCPTR GCPtrFirst;
|
---|
883 | uint32_t cbMaxRead;
|
---|
884 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
885 | {
|
---|
886 | GCPtrFirst = pVCpu->cpum.GstCtx.rip + (offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart);
|
---|
887 | if (RT_LIKELY(IEM_IS_CANONICAL(GCPtrFirst)))
|
---|
888 | { /* likely */ }
|
---|
889 | else
|
---|
890 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
891 | cbMaxRead = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
892 | }
|
---|
893 | else
|
---|
894 | {
|
---|
895 | GCPtrFirst = pVCpu->cpum.GstCtx.eip + (offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart);
|
---|
896 | /* Assert(!(GCPtrFirst & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu)); - this is allowed */
|
---|
897 | if (RT_LIKELY((uint32_t)GCPtrFirst <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
898 | { /* likely */ }
|
---|
899 | else /** @todo For CPUs older than the 386, we should not necessarily generate \#GP here but wrap around! */
|
---|
900 | iemRaiseSelectorBoundsJmp(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
901 | cbMaxRead = pVCpu->cpum.GstCtx.cs.u32Limit - (uint32_t)GCPtrFirst + 1;
|
---|
902 | if (cbMaxRead != 0)
|
---|
903 | { /* likely */ }
|
---|
904 | else
|
---|
905 | {
|
---|
906 | /* Overflowed because address is 0 and limit is max. */
|
---|
907 | Assert(GCPtrFirst == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
908 | cbMaxRead = X86_PAGE_SIZE;
|
---|
909 | }
|
---|
910 | GCPtrFirst = (uint32_t)GCPtrFirst + (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
911 | uint32_t cbMaxRead2 = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
912 | if (cbMaxRead2 < cbMaxRead)
|
---|
913 | cbMaxRead = cbMaxRead2;
|
---|
914 | /** @todo testcase: unreal modes, both huge 16-bit and 32-bit. */
|
---|
915 | }
|
---|
916 |
|
---|
917 | /*
|
---|
918 | * Get the TLB entry for this piece of code.
|
---|
919 | */
|
---|
920 | uint64_t const uTag = IEMTLB_CALC_TAG( &pVCpu->iem.s.CodeTlb, GCPtrFirst);
|
---|
921 | PIEMTLBENTRY const pTlbe = IEMTLB_TAG_TO_ENTRY(&pVCpu->iem.s.CodeTlb, uTag);
|
---|
922 | if (pTlbe->uTag == uTag)
|
---|
923 | {
|
---|
924 | /* likely when executing lots of code, otherwise unlikely */
|
---|
925 | # ifdef VBOX_WITH_STATISTICS
|
---|
926 | pVCpu->iem.s.CodeTlb.cTlbHits++;
|
---|
927 | # endif
|
---|
928 | }
|
---|
929 | else
|
---|
930 | {
|
---|
931 | pVCpu->iem.s.CodeTlb.cTlbMisses++;
|
---|
932 | PGMPTWALK Walk;
|
---|
933 | int rc = PGMGstGetPage(pVCpu, GCPtrFirst, &Walk);
|
---|
934 | if (RT_FAILURE(rc))
|
---|
935 | {
|
---|
936 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
937 | /** @todo Nested VMX: Need to handle EPT violation/misconfig here? */
|
---|
938 | Assert(!(Walk.fFailed & PGM_WALKFAIL_EPT));
|
---|
939 | #endif
|
---|
940 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrFirst, rc));
|
---|
941 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
942 | }
|
---|
943 |
|
---|
944 | AssertCompile(IEMTLBE_F_PT_NO_EXEC == 1);
|
---|
945 | Assert(Walk.fSucceeded);
|
---|
946 | pTlbe->uTag = uTag;
|
---|
947 | pTlbe->fFlagsAndPhysRev = (~Walk.fEffective & (X86_PTE_US | X86_PTE_RW | X86_PTE_D | X86_PTE_A))
|
---|
948 | | (Walk.fEffective >> X86_PTE_PAE_BIT_NX);
|
---|
949 | pTlbe->GCPhys = Walk.GCPhys;
|
---|
950 | pTlbe->pbMappingR3 = NULL;
|
---|
951 | }
|
---|
952 |
|
---|
953 | /*
|
---|
954 | * Check TLB page table level access flags.
|
---|
955 | */
|
---|
956 | if (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PT_NO_USER | IEMTLBE_F_PT_NO_EXEC))
|
---|
957 | {
|
---|
958 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER) && IEM_GET_CPL(pVCpu) == 3)
|
---|
959 | {
|
---|
960 | Log(("iemOpcodeFetchBytesJmp: %RGv - supervisor page\n", GCPtrFirst));
|
---|
961 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
962 | }
|
---|
963 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_EXEC) && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE))
|
---|
964 | {
|
---|
965 | Log(("iemOpcodeFetchMoreBytes: %RGv - NX\n", GCPtrFirst));
|
---|
966 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
967 | }
|
---|
968 | }
|
---|
969 |
|
---|
970 | /*
|
---|
971 | * Look up the physical page info if necessary.
|
---|
972 | */
|
---|
973 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pVCpu->iem.s.CodeTlb.uTlbPhysRev)
|
---|
974 | { /* not necessary */ }
|
---|
975 | else
|
---|
976 | {
|
---|
977 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
|
---|
978 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
|
---|
979 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
|
---|
980 | AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
|
---|
981 | AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
|
---|
982 | if (RT_LIKELY(pVCpu->iem.s.CodeTlb.uTlbPhysRev > IEMTLB_PHYS_REV_INCR))
|
---|
983 | { /* likely */ }
|
---|
984 | else
|
---|
985 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
986 | pTlbe->fFlagsAndPhysRev &= ~( IEMTLBE_F_PHYS_REV
|
---|
987 | | IEMTLBE_F_NO_MAPPINGR3
|
---|
988 | | IEMTLBE_F_PG_NO_READ
|
---|
989 | | IEMTLBE_F_PG_NO_WRITE
|
---|
990 | | IEMTLBE_F_PG_UNASSIGNED
|
---|
991 | | IEMTLBE_F_PG_CODE_PAGE);
|
---|
992 | int rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, pTlbe->GCPhys, &pVCpu->iem.s.CodeTlb.uTlbPhysRev,
|
---|
993 | &pTlbe->pbMappingR3, &pTlbe->fFlagsAndPhysRev);
|
---|
994 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
995 | }
|
---|
996 |
|
---|
997 | # if defined(IN_RING3) || defined(IN_RING0) /** @todo fixme */
|
---|
998 | /*
|
---|
999 | * Try do a direct read using the pbMappingR3 pointer.
|
---|
1000 | */
|
---|
1001 | if ( (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PHYS_REV | IEMTLBE_F_NO_MAPPINGR3 | IEMTLBE_F_PG_NO_READ))
|
---|
1002 | == pVCpu->iem.s.CodeTlb.uTlbPhysRev)
|
---|
1003 | {
|
---|
1004 | uint32_t const offPg = (GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1005 | pVCpu->iem.s.cbInstrBufTotal = offPg + cbMaxRead;
|
---|
1006 | if (offBuf == (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart)
|
---|
1007 | {
|
---|
1008 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(15, cbMaxRead);
|
---|
1009 | pVCpu->iem.s.offCurInstrStart = (int16_t)offPg;
|
---|
1010 | }
|
---|
1011 | else
|
---|
1012 | {
|
---|
1013 | uint32_t const cbInstr = offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart;
|
---|
1014 | if (cbInstr + (uint32_t)cbDst <= 15)
|
---|
1015 | {
|
---|
1016 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(cbMaxRead + cbInstr, 15) - cbInstr;
|
---|
1017 | pVCpu->iem.s.offCurInstrStart = (int16_t)(offPg - cbInstr);
|
---|
1018 | }
|
---|
1019 | else
|
---|
1020 | {
|
---|
1021 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0)\n",
|
---|
1022 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, cbDst));
|
---|
1023 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1024 | }
|
---|
1025 | }
|
---|
1026 | if (cbDst <= cbMaxRead)
|
---|
1027 | {
|
---|
1028 | pVCpu->iem.s.fTbCrossedPage |= offPg == 0 || pVCpu->iem.s.fTbBranched != 0; /** @todo Spurious load effect on branch handling? */
|
---|
1029 | pVCpu->iem.s.GCPhysInstrBufPrev = pVCpu->iem.s.GCPhysInstrBuf;
|
---|
1030 |
|
---|
1031 | pVCpu->iem.s.offInstrNextByte = offPg + (uint32_t)cbDst;
|
---|
1032 | pVCpu->iem.s.uInstrBufPc = GCPtrFirst & ~(RTGCPTR)X86_PAGE_OFFSET_MASK;
|
---|
1033 | pVCpu->iem.s.GCPhysInstrBuf = pTlbe->GCPhys;
|
---|
1034 | pVCpu->iem.s.pbInstrBuf = pTlbe->pbMappingR3;
|
---|
1035 | memcpy(pvDst, &pTlbe->pbMappingR3[offPg], cbDst);
|
---|
1036 | return;
|
---|
1037 | }
|
---|
1038 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1039 |
|
---|
1040 | memcpy(pvDst, &pTlbe->pbMappingR3[offPg], cbMaxRead);
|
---|
1041 | pVCpu->iem.s.offInstrNextByte = offPg + cbMaxRead;
|
---|
1042 | }
|
---|
1043 | # else
|
---|
1044 | # error "refactor as needed"
|
---|
1045 | /*
|
---|
1046 | * If there is no special read handling, so we can read a bit more and
|
---|
1047 | * put it in the prefetch buffer.
|
---|
1048 | */
|
---|
1049 | if ( cbDst < cbMaxRead
|
---|
1050 | && (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PHYS_REV | IEMTLBE_F_PG_NO_READ)) == pVCpu->iem.s.CodeTlb.uTlbPhysRev)
|
---|
1051 | {
|
---|
1052 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), pTlbe->GCPhys,
|
---|
1053 | &pVCpu->iem.s.abOpcode[0], cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1054 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1055 | { /* likely */ }
|
---|
1056 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1057 | {
|
---|
1058 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1059 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1060 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1061 | AssertStmt(rcStrict == VINF_SUCCESS, IEM_DO_LONGJMP(pVCpu, VBOXSTRICRC_VAL(rcStrict)));
|
---|
1062 | }
|
---|
1063 | else
|
---|
1064 | {
|
---|
1065 | Log((RT_SUCCESS(rcStrict)
|
---|
1066 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1067 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1068 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1069 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1070 | }
|
---|
1071 | }
|
---|
1072 | # endif
|
---|
1073 | /*
|
---|
1074 | * Special read handling, so only read exactly what's needed.
|
---|
1075 | * This is a highly unlikely scenario.
|
---|
1076 | */
|
---|
1077 | else
|
---|
1078 | {
|
---|
1079 | pVCpu->iem.s.CodeTlb.cTlbSlowReadPath++;
|
---|
1080 |
|
---|
1081 | /* Check instruction length. */
|
---|
1082 | uint32_t const cbInstr = offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart;
|
---|
1083 | if (RT_LIKELY(cbInstr + cbDst <= 15))
|
---|
1084 | { /* likely */ }
|
---|
1085 | else
|
---|
1086 | {
|
---|
1087 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0) [slow]\n",
|
---|
1088 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, cbDst));
|
---|
1089 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1090 | }
|
---|
1091 |
|
---|
1092 | /* Do the reading. */
|
---|
1093 | uint32_t const cbToRead = RT_MIN((uint32_t)cbDst, cbMaxRead);
|
---|
1094 | if (cbToRead > 0)
|
---|
1095 | {
|
---|
1096 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK),
|
---|
1097 | pvDst, cbToRead, PGMACCESSORIGIN_IEM);
|
---|
1098 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1099 | { /* likely */ }
|
---|
1100 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1101 | {
|
---|
1102 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1103 | GCPtrFirst, pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK), VBOXSTRICTRC_VAL(rcStrict), cbToRead));
|
---|
1104 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1105 | AssertStmt(rcStrict == VINF_SUCCESS, IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1106 | }
|
---|
1107 | else
|
---|
1108 | {
|
---|
1109 | Log((RT_SUCCESS(rcStrict)
|
---|
1110 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1111 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1112 | GCPtrFirst, pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK), VBOXSTRICTRC_VAL(rcStrict), cbToRead));
|
---|
1113 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1114 | }
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | /* Update the state and probably return. */
|
---|
1118 | uint32_t const offPg = (GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1119 | pVCpu->iem.s.fTbCrossedPage |= offPg == 0 || pVCpu->iem.s.fTbBranched != 0;
|
---|
1120 | pVCpu->iem.s.GCPhysInstrBufPrev = pVCpu->iem.s.GCPhysInstrBuf;
|
---|
1121 |
|
---|
1122 | pVCpu->iem.s.offCurInstrStart = (int16_t)(offPg - cbInstr);
|
---|
1123 | pVCpu->iem.s.offInstrNextByte = offPg + cbInstr + cbToRead;
|
---|
1124 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(15, cbMaxRead + cbInstr) - cbToRead - cbInstr;
|
---|
1125 | pVCpu->iem.s.cbInstrBufTotal = X86_PAGE_SIZE; /** @todo ??? */
|
---|
1126 | pVCpu->iem.s.GCPhysInstrBuf = pTlbe->GCPhys;
|
---|
1127 | pVCpu->iem.s.uInstrBufPc = GCPtrFirst & ~(RTGCPTR)X86_PAGE_OFFSET_MASK;
|
---|
1128 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1129 | if (cbToRead == cbDst)
|
---|
1130 | return;
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 | /*
|
---|
1134 | * More to read, loop.
|
---|
1135 | */
|
---|
1136 | cbDst -= cbMaxRead;
|
---|
1137 | pvDst = (uint8_t *)pvDst + cbMaxRead;
|
---|
1138 | }
|
---|
1139 | # else /* !IN_RING3 */
|
---|
1140 | RT_NOREF(pvDst, cbDst);
|
---|
1141 | if (pvDst || cbDst)
|
---|
1142 | IEM_DO_LONGJMP(pVCpu, VERR_INTERNAL_ERROR);
|
---|
1143 | # endif /* !IN_RING3 */
|
---|
1144 | }
|
---|
1145 |
|
---|
1146 | #else /* !IEM_WITH_CODE_TLB */
|
---|
1147 |
|
---|
1148 | /**
|
---|
1149 | * Try fetch at least @a cbMin bytes more opcodes, raise the appropriate
|
---|
1150 | * exception if it fails.
|
---|
1151 | *
|
---|
1152 | * @returns Strict VBox status code.
|
---|
1153 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1154 | * calling thread.
|
---|
1155 | * @param cbMin The minimum number of bytes relative offOpcode
|
---|
1156 | * that must be read.
|
---|
1157 | */
|
---|
1158 | VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT
|
---|
1159 | {
|
---|
1160 | /*
|
---|
1161 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
1162 | *
|
---|
1163 | * First translate CS:rIP to a physical address.
|
---|
1164 | */
|
---|
1165 | uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
|
---|
1166 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1167 | uint8_t const cbLeft = cbOpcode - offOpcode;
|
---|
1168 | Assert(cbLeft < cbMin);
|
---|
1169 | Assert(cbOpcode <= sizeof(pVCpu->iem.s.abOpcode));
|
---|
1170 |
|
---|
1171 | uint32_t cbToTryRead;
|
---|
1172 | RTGCPTR GCPtrNext;
|
---|
1173 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
1174 | {
|
---|
1175 | GCPtrNext = pVCpu->cpum.GstCtx.rip + cbOpcode;
|
---|
1176 | if (!IEM_IS_CANONICAL(GCPtrNext))
|
---|
1177 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1178 | cbToTryRead = GUEST_PAGE_SIZE - (GCPtrNext & GUEST_PAGE_OFFSET_MASK);
|
---|
1179 | }
|
---|
1180 | else
|
---|
1181 | {
|
---|
1182 | uint32_t GCPtrNext32 = pVCpu->cpum.GstCtx.eip;
|
---|
1183 | /* Assert(!(GCPtrNext32 & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu)); - this is allowed */
|
---|
1184 | GCPtrNext32 += cbOpcode;
|
---|
1185 | if (GCPtrNext32 > pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
1186 | /** @todo For CPUs older than the 386, we should not generate \#GP here but wrap around! */
|
---|
1187 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1188 | cbToTryRead = pVCpu->cpum.GstCtx.cs.u32Limit - GCPtrNext32 + 1;
|
---|
1189 | if (!cbToTryRead) /* overflowed */
|
---|
1190 | {
|
---|
1191 | Assert(GCPtrNext32 == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
1192 | cbToTryRead = UINT32_MAX;
|
---|
1193 | /** @todo check out wrapping around the code segment. */
|
---|
1194 | }
|
---|
1195 | if (cbToTryRead < cbMin - cbLeft)
|
---|
1196 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1197 | GCPtrNext = (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base + GCPtrNext32;
|
---|
1198 |
|
---|
1199 | uint32_t cbLeftOnPage = GUEST_PAGE_SIZE - (GCPtrNext & GUEST_PAGE_OFFSET_MASK);
|
---|
1200 | if (cbToTryRead > cbLeftOnPage)
|
---|
1201 | cbToTryRead = cbLeftOnPage;
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 | /* Restrict to opcode buffer space.
|
---|
1205 |
|
---|
1206 | We're making ASSUMPTIONS here based on work done previously in
|
---|
1207 | iemInitDecoderAndPrefetchOpcodes, where bytes from the first page will
|
---|
1208 | be fetched in case of an instruction crossing two pages. */
|
---|
1209 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode) - cbOpcode)
|
---|
1210 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode) - cbOpcode;
|
---|
1211 | if (RT_LIKELY(cbToTryRead + cbLeft >= cbMin))
|
---|
1212 | { /* likely */ }
|
---|
1213 | else
|
---|
1214 | {
|
---|
1215 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0)\n",
|
---|
1216 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, offOpcode, cbMin));
|
---|
1217 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | PGMPTWALK Walk;
|
---|
1221 | int rc = PGMGstGetPage(pVCpu, GCPtrNext, &Walk);
|
---|
1222 | if (RT_FAILURE(rc))
|
---|
1223 | {
|
---|
1224 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrNext, rc));
|
---|
1225 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
1226 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
1227 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
1228 | #endif
|
---|
1229 | return iemRaisePageFault(pVCpu, GCPtrNext, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1230 | }
|
---|
1231 | if (!(Walk.fEffective & X86_PTE_US) && IEM_GET_CPL(pVCpu) == 3)
|
---|
1232 | {
|
---|
1233 | Log(("iemOpcodeFetchMoreBytes: %RGv - supervisor page\n", GCPtrNext));
|
---|
1234 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
1235 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
1236 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
1237 | #endif
|
---|
1238 | return iemRaisePageFault(pVCpu, GCPtrNext, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1239 | }
|
---|
1240 | if ((Walk.fEffective & X86_PTE_PAE_NX) && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE))
|
---|
1241 | {
|
---|
1242 | Log(("iemOpcodeFetchMoreBytes: %RGv - NX\n", GCPtrNext));
|
---|
1243 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
1244 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
1245 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
1246 | #endif
|
---|
1247 | return iemRaisePageFault(pVCpu, GCPtrNext, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1248 | }
|
---|
1249 | RTGCPHYS const GCPhys = Walk.GCPhys | (GCPtrNext & GUEST_PAGE_OFFSET_MASK);
|
---|
1250 | Log5(("GCPtrNext=%RGv GCPhys=%RGp cbOpcodes=%#x\n", GCPtrNext, GCPhys, cbOpcode));
|
---|
1251 | /** @todo Check reserved bits and such stuff. PGM is better at doing
|
---|
1252 | * that, so do it when implementing the guest virtual address
|
---|
1253 | * TLB... */
|
---|
1254 |
|
---|
1255 | /*
|
---|
1256 | * Read the bytes at this address.
|
---|
1257 | *
|
---|
1258 | * We read all unpatched bytes in iemInitDecoderAndPrefetchOpcodes already,
|
---|
1259 | * and since PATM should only patch the start of an instruction there
|
---|
1260 | * should be no need to check again here.
|
---|
1261 | */
|
---|
1262 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
1263 | {
|
---|
1264 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, &pVCpu->iem.s.abOpcode[cbOpcode],
|
---|
1265 | cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1266 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1267 | { /* likely */ }
|
---|
1268 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1269 | {
|
---|
1270 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1271 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1272 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1273 | }
|
---|
1274 | else
|
---|
1275 | {
|
---|
1276 | Log((RT_SUCCESS(rcStrict)
|
---|
1277 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1278 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1279 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1280 | return rcStrict;
|
---|
1281 | }
|
---|
1282 | }
|
---|
1283 | else
|
---|
1284 | {
|
---|
1285 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.abOpcode[cbOpcode], GCPhys, cbToTryRead);
|
---|
1286 | if (RT_SUCCESS(rc))
|
---|
1287 | { /* likely */ }
|
---|
1288 | else
|
---|
1289 | {
|
---|
1290 | Log(("iemOpcodeFetchMoreBytes: %RGv - read error - rc=%Rrc (!!)\n", GCPtrNext, rc));
|
---|
1291 | return rc;
|
---|
1292 | }
|
---|
1293 | }
|
---|
1294 | pVCpu->iem.s.cbOpcode = cbOpcode + cbToTryRead;
|
---|
1295 | Log5(("%.*Rhxs\n", pVCpu->iem.s.cbOpcode, pVCpu->iem.s.abOpcode));
|
---|
1296 |
|
---|
1297 | return VINF_SUCCESS;
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
1301 | #ifndef IEM_WITH_SETJMP
|
---|
1302 |
|
---|
1303 | /**
|
---|
1304 | * Deals with the problematic cases that iemOpcodeGetNextU8 doesn't like.
|
---|
1305 | *
|
---|
1306 | * @returns Strict VBox status code.
|
---|
1307 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1308 | * calling thread.
|
---|
1309 | * @param pb Where to return the opcode byte.
|
---|
1310 | */
|
---|
1311 | VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT
|
---|
1312 | {
|
---|
1313 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1314 | if (rcStrict == VINF_SUCCESS)
|
---|
1315 | {
|
---|
1316 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1317 | *pb = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1318 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
1319 | }
|
---|
1320 | else
|
---|
1321 | *pb = 0;
|
---|
1322 | return rcStrict;
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | #else /* IEM_WITH_SETJMP */
|
---|
1326 |
|
---|
1327 | /**
|
---|
1328 | * Deals with the problematic cases that iemOpcodeGetNextU8Jmp doesn't like, longjmp on error.
|
---|
1329 | *
|
---|
1330 | * @returns The opcode byte.
|
---|
1331 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1332 | */
|
---|
1333 | uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1334 | {
|
---|
1335 | # ifdef IEM_WITH_CODE_TLB
|
---|
1336 | uint8_t u8;
|
---|
1337 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u8), &u8);
|
---|
1338 | return u8;
|
---|
1339 | # else
|
---|
1340 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1341 | if (rcStrict == VINF_SUCCESS)
|
---|
1342 | return pVCpu->iem.s.abOpcode[pVCpu->iem.s.offOpcode++];
|
---|
1343 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1344 | # endif
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | #endif /* IEM_WITH_SETJMP */
|
---|
1348 |
|
---|
1349 | #ifndef IEM_WITH_SETJMP
|
---|
1350 |
|
---|
1351 | /**
|
---|
1352 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU16 doesn't like.
|
---|
1353 | *
|
---|
1354 | * @returns Strict VBox status code.
|
---|
1355 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1356 | * @param pu16 Where to return the opcode dword.
|
---|
1357 | */
|
---|
1358 | VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
1359 | {
|
---|
1360 | uint8_t u8;
|
---|
1361 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1362 | if (rcStrict == VINF_SUCCESS)
|
---|
1363 | *pu16 = (int8_t)u8;
|
---|
1364 | return rcStrict;
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 |
|
---|
1368 | /**
|
---|
1369 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU32 doesn't like.
|
---|
1370 | *
|
---|
1371 | * @returns Strict VBox status code.
|
---|
1372 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1373 | * @param pu32 Where to return the opcode dword.
|
---|
1374 | */
|
---|
1375 | VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1376 | {
|
---|
1377 | uint8_t u8;
|
---|
1378 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1379 | if (rcStrict == VINF_SUCCESS)
|
---|
1380 | *pu32 = (int8_t)u8;
|
---|
1381 | return rcStrict;
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 |
|
---|
1385 | /**
|
---|
1386 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU64 doesn't like.
|
---|
1387 | *
|
---|
1388 | * @returns Strict VBox status code.
|
---|
1389 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1390 | * @param pu64 Where to return the opcode qword.
|
---|
1391 | */
|
---|
1392 | VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1393 | {
|
---|
1394 | uint8_t u8;
|
---|
1395 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1396 | if (rcStrict == VINF_SUCCESS)
|
---|
1397 | *pu64 = (int8_t)u8;
|
---|
1398 | return rcStrict;
|
---|
1399 | }
|
---|
1400 |
|
---|
1401 | #endif /* !IEM_WITH_SETJMP */
|
---|
1402 |
|
---|
1403 |
|
---|
1404 | #ifndef IEM_WITH_SETJMP
|
---|
1405 |
|
---|
1406 | /**
|
---|
1407 | * Deals with the problematic cases that iemOpcodeGetNextU16 doesn't like.
|
---|
1408 | *
|
---|
1409 | * @returns Strict VBox status code.
|
---|
1410 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1411 | * @param pu16 Where to return the opcode word.
|
---|
1412 | */
|
---|
1413 | VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
1414 | {
|
---|
1415 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1416 | if (rcStrict == VINF_SUCCESS)
|
---|
1417 | {
|
---|
1418 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1419 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1420 | *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1421 | # else
|
---|
1422 | *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1423 | # endif
|
---|
1424 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1425 | }
|
---|
1426 | else
|
---|
1427 | *pu16 = 0;
|
---|
1428 | return rcStrict;
|
---|
1429 | }
|
---|
1430 |
|
---|
1431 | #else /* IEM_WITH_SETJMP */
|
---|
1432 |
|
---|
1433 | /**
|
---|
1434 | * Deals with the problematic cases that iemOpcodeGetNextU16Jmp doesn't like, longjmp on error
|
---|
1435 | *
|
---|
1436 | * @returns The opcode word.
|
---|
1437 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1438 | */
|
---|
1439 | uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1440 | {
|
---|
1441 | # ifdef IEM_WITH_CODE_TLB
|
---|
1442 | uint16_t u16;
|
---|
1443 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u16), &u16);
|
---|
1444 | return u16;
|
---|
1445 | # else
|
---|
1446 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1447 | if (rcStrict == VINF_SUCCESS)
|
---|
1448 | {
|
---|
1449 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1450 | pVCpu->iem.s.offOpcode += 2;
|
---|
1451 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1452 | return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1453 | # else
|
---|
1454 | return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1455 | # endif
|
---|
1456 | }
|
---|
1457 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1458 | # endif
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 | #endif /* IEM_WITH_SETJMP */
|
---|
1462 |
|
---|
1463 | #ifndef IEM_WITH_SETJMP
|
---|
1464 |
|
---|
1465 | /**
|
---|
1466 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU32 doesn't like.
|
---|
1467 | *
|
---|
1468 | * @returns Strict VBox status code.
|
---|
1469 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1470 | * @param pu32 Where to return the opcode double word.
|
---|
1471 | */
|
---|
1472 | VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1473 | {
|
---|
1474 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1475 | if (rcStrict == VINF_SUCCESS)
|
---|
1476 | {
|
---|
1477 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1478 | *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1479 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1480 | }
|
---|
1481 | else
|
---|
1482 | *pu32 = 0;
|
---|
1483 | return rcStrict;
|
---|
1484 | }
|
---|
1485 |
|
---|
1486 |
|
---|
1487 | /**
|
---|
1488 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU64 doesn't like.
|
---|
1489 | *
|
---|
1490 | * @returns Strict VBox status code.
|
---|
1491 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1492 | * @param pu64 Where to return the opcode quad word.
|
---|
1493 | */
|
---|
1494 | VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1495 | {
|
---|
1496 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1497 | if (rcStrict == VINF_SUCCESS)
|
---|
1498 | {
|
---|
1499 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1500 | *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1501 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1502 | }
|
---|
1503 | else
|
---|
1504 | *pu64 = 0;
|
---|
1505 | return rcStrict;
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | #endif /* !IEM_WITH_SETJMP */
|
---|
1509 |
|
---|
1510 | #ifndef IEM_WITH_SETJMP
|
---|
1511 |
|
---|
1512 | /**
|
---|
1513 | * Deals with the problematic cases that iemOpcodeGetNextU32 doesn't like.
|
---|
1514 | *
|
---|
1515 | * @returns Strict VBox status code.
|
---|
1516 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1517 | * @param pu32 Where to return the opcode dword.
|
---|
1518 | */
|
---|
1519 | VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1520 | {
|
---|
1521 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1522 | if (rcStrict == VINF_SUCCESS)
|
---|
1523 | {
|
---|
1524 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1525 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1526 | *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1527 | # else
|
---|
1528 | *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1529 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1530 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1531 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1532 | # endif
|
---|
1533 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1534 | }
|
---|
1535 | else
|
---|
1536 | *pu32 = 0;
|
---|
1537 | return rcStrict;
|
---|
1538 | }
|
---|
1539 |
|
---|
1540 | #else /* IEM_WITH_SETJMP */
|
---|
1541 |
|
---|
1542 | /**
|
---|
1543 | * Deals with the problematic cases that iemOpcodeGetNextU32Jmp doesn't like, longjmp on error.
|
---|
1544 | *
|
---|
1545 | * @returns The opcode dword.
|
---|
1546 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1547 | */
|
---|
1548 | uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1549 | {
|
---|
1550 | # ifdef IEM_WITH_CODE_TLB
|
---|
1551 | uint32_t u32;
|
---|
1552 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u32), &u32);
|
---|
1553 | return u32;
|
---|
1554 | # else
|
---|
1555 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1556 | if (rcStrict == VINF_SUCCESS)
|
---|
1557 | {
|
---|
1558 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1559 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1560 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1561 | return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1562 | # else
|
---|
1563 | return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1564 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1565 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1566 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1567 | # endif
|
---|
1568 | }
|
---|
1569 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1570 | # endif
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 | #endif /* IEM_WITH_SETJMP */
|
---|
1574 |
|
---|
1575 | #ifndef IEM_WITH_SETJMP
|
---|
1576 |
|
---|
1577 | /**
|
---|
1578 | * Deals with the problematic cases that iemOpcodeGetNextU32ZxU64 doesn't like.
|
---|
1579 | *
|
---|
1580 | * @returns Strict VBox status code.
|
---|
1581 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1582 | * @param pu64 Where to return the opcode dword.
|
---|
1583 | */
|
---|
1584 | VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1585 | {
|
---|
1586 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1587 | if (rcStrict == VINF_SUCCESS)
|
---|
1588 | {
|
---|
1589 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1590 | *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1591 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1592 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1593 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1594 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1595 | }
|
---|
1596 | else
|
---|
1597 | *pu64 = 0;
|
---|
1598 | return rcStrict;
|
---|
1599 | }
|
---|
1600 |
|
---|
1601 |
|
---|
1602 | /**
|
---|
1603 | * Deals with the problematic cases that iemOpcodeGetNextS32SxU64 doesn't like.
|
---|
1604 | *
|
---|
1605 | * @returns Strict VBox status code.
|
---|
1606 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1607 | * @param pu64 Where to return the opcode qword.
|
---|
1608 | */
|
---|
1609 | VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1610 | {
|
---|
1611 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1612 | if (rcStrict == VINF_SUCCESS)
|
---|
1613 | {
|
---|
1614 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1615 | *pu64 = (int32_t)RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1616 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1617 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1618 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1619 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1620 | }
|
---|
1621 | else
|
---|
1622 | *pu64 = 0;
|
---|
1623 | return rcStrict;
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | #endif /* !IEM_WITH_SETJMP */
|
---|
1627 |
|
---|
1628 | #ifndef IEM_WITH_SETJMP
|
---|
1629 |
|
---|
1630 | /**
|
---|
1631 | * Deals with the problematic cases that iemOpcodeGetNextU64 doesn't like.
|
---|
1632 | *
|
---|
1633 | * @returns Strict VBox status code.
|
---|
1634 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1635 | * @param pu64 Where to return the opcode qword.
|
---|
1636 | */
|
---|
1637 | VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1638 | {
|
---|
1639 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
1640 | if (rcStrict == VINF_SUCCESS)
|
---|
1641 | {
|
---|
1642 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1643 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1644 | *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1645 | # else
|
---|
1646 | *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1647 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1648 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1649 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1650 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1651 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1652 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1653 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1654 | # endif
|
---|
1655 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
1656 | }
|
---|
1657 | else
|
---|
1658 | *pu64 = 0;
|
---|
1659 | return rcStrict;
|
---|
1660 | }
|
---|
1661 |
|
---|
1662 | #else /* IEM_WITH_SETJMP */
|
---|
1663 |
|
---|
1664 | /**
|
---|
1665 | * Deals with the problematic cases that iemOpcodeGetNextU64Jmp doesn't like, longjmp on error.
|
---|
1666 | *
|
---|
1667 | * @returns The opcode qword.
|
---|
1668 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1669 | */
|
---|
1670 | uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1671 | {
|
---|
1672 | # ifdef IEM_WITH_CODE_TLB
|
---|
1673 | uint64_t u64;
|
---|
1674 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u64), &u64);
|
---|
1675 | return u64;
|
---|
1676 | # else
|
---|
1677 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
1678 | if (rcStrict == VINF_SUCCESS)
|
---|
1679 | {
|
---|
1680 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1681 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
1682 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1683 | return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1684 | # else
|
---|
1685 | return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1686 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1687 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1688 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1689 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1690 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1691 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1692 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1693 | # endif
|
---|
1694 | }
|
---|
1695 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1696 | # endif
|
---|
1697 | }
|
---|
1698 |
|
---|
1699 | #endif /* IEM_WITH_SETJMP */
|
---|
1700 |
|
---|
1701 |
|
---|
1702 |
|
---|
1703 | /** @name Misc Worker Functions.
|
---|
1704 | * @{
|
---|
1705 | */
|
---|
1706 |
|
---|
1707 | /**
|
---|
1708 | * Gets the exception class for the specified exception vector.
|
---|
1709 | *
|
---|
1710 | * @returns The class of the specified exception.
|
---|
1711 | * @param uVector The exception vector.
|
---|
1712 | */
|
---|
1713 | static IEMXCPTCLASS iemGetXcptClass(uint8_t uVector) RT_NOEXCEPT
|
---|
1714 | {
|
---|
1715 | Assert(uVector <= X86_XCPT_LAST);
|
---|
1716 | switch (uVector)
|
---|
1717 | {
|
---|
1718 | case X86_XCPT_DE:
|
---|
1719 | case X86_XCPT_TS:
|
---|
1720 | case X86_XCPT_NP:
|
---|
1721 | case X86_XCPT_SS:
|
---|
1722 | case X86_XCPT_GP:
|
---|
1723 | case X86_XCPT_SX: /* AMD only */
|
---|
1724 | return IEMXCPTCLASS_CONTRIBUTORY;
|
---|
1725 |
|
---|
1726 | case X86_XCPT_PF:
|
---|
1727 | case X86_XCPT_VE: /* Intel only */
|
---|
1728 | return IEMXCPTCLASS_PAGE_FAULT;
|
---|
1729 |
|
---|
1730 | case X86_XCPT_DF:
|
---|
1731 | return IEMXCPTCLASS_DOUBLE_FAULT;
|
---|
1732 | }
|
---|
1733 | return IEMXCPTCLASS_BENIGN;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 |
|
---|
1737 | /**
|
---|
1738 | * Evaluates how to handle an exception caused during delivery of another event
|
---|
1739 | * (exception / interrupt).
|
---|
1740 | *
|
---|
1741 | * @returns How to handle the recursive exception.
|
---|
1742 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1743 | * calling thread.
|
---|
1744 | * @param fPrevFlags The flags of the previous event.
|
---|
1745 | * @param uPrevVector The vector of the previous event.
|
---|
1746 | * @param fCurFlags The flags of the current exception.
|
---|
1747 | * @param uCurVector The vector of the current exception.
|
---|
1748 | * @param pfXcptRaiseInfo Where to store additional information about the
|
---|
1749 | * exception condition. Optional.
|
---|
1750 | */
|
---|
1751 | VMM_INT_DECL(IEMXCPTRAISE) IEMEvaluateRecursiveXcpt(PVMCPUCC pVCpu, uint32_t fPrevFlags, uint8_t uPrevVector, uint32_t fCurFlags,
|
---|
1752 | uint8_t uCurVector, PIEMXCPTRAISEINFO pfXcptRaiseInfo)
|
---|
1753 | {
|
---|
1754 | /*
|
---|
1755 | * Only CPU exceptions can be raised while delivering other events, software interrupt
|
---|
1756 | * (INTn/INT3/INTO/ICEBP) generated exceptions cannot occur as the current (second) exception.
|
---|
1757 | */
|
---|
1758 | AssertReturn(fCurFlags & IEM_XCPT_FLAGS_T_CPU_XCPT, IEMXCPTRAISE_INVALID);
|
---|
1759 | Assert(pVCpu); RT_NOREF(pVCpu);
|
---|
1760 | Log2(("IEMEvaluateRecursiveXcpt: uPrevVector=%#x uCurVector=%#x\n", uPrevVector, uCurVector));
|
---|
1761 |
|
---|
1762 | IEMXCPTRAISE enmRaise = IEMXCPTRAISE_CURRENT_XCPT;
|
---|
1763 | IEMXCPTRAISEINFO fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
1764 | if (fPrevFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
1765 | {
|
---|
1766 | IEMXCPTCLASS enmPrevXcptClass = iemGetXcptClass(uPrevVector);
|
---|
1767 | if (enmPrevXcptClass != IEMXCPTCLASS_BENIGN)
|
---|
1768 | {
|
---|
1769 | IEMXCPTCLASS enmCurXcptClass = iemGetXcptClass(uCurVector);
|
---|
1770 | if ( enmPrevXcptClass == IEMXCPTCLASS_PAGE_FAULT
|
---|
1771 | && ( enmCurXcptClass == IEMXCPTCLASS_PAGE_FAULT
|
---|
1772 | || enmCurXcptClass == IEMXCPTCLASS_CONTRIBUTORY))
|
---|
1773 | {
|
---|
1774 | enmRaise = IEMXCPTRAISE_DOUBLE_FAULT;
|
---|
1775 | fRaiseInfo = enmCurXcptClass == IEMXCPTCLASS_PAGE_FAULT ? IEMXCPTRAISEINFO_PF_PF
|
---|
1776 | : IEMXCPTRAISEINFO_PF_CONTRIBUTORY_XCPT;
|
---|
1777 | Log2(("IEMEvaluateRecursiveXcpt: Vectoring page fault. uPrevVector=%#x uCurVector=%#x uCr2=%#RX64\n", uPrevVector,
|
---|
1778 | uCurVector, pVCpu->cpum.GstCtx.cr2));
|
---|
1779 | }
|
---|
1780 | else if ( enmPrevXcptClass == IEMXCPTCLASS_CONTRIBUTORY
|
---|
1781 | && enmCurXcptClass == IEMXCPTCLASS_CONTRIBUTORY)
|
---|
1782 | {
|
---|
1783 | enmRaise = IEMXCPTRAISE_DOUBLE_FAULT;
|
---|
1784 | Log2(("IEMEvaluateRecursiveXcpt: uPrevVector=%#x uCurVector=%#x -> #DF\n", uPrevVector, uCurVector));
|
---|
1785 | }
|
---|
1786 | else if ( enmPrevXcptClass == IEMXCPTCLASS_DOUBLE_FAULT
|
---|
1787 | && ( enmCurXcptClass == IEMXCPTCLASS_CONTRIBUTORY
|
---|
1788 | || enmCurXcptClass == IEMXCPTCLASS_PAGE_FAULT))
|
---|
1789 | {
|
---|
1790 | enmRaise = IEMXCPTRAISE_TRIPLE_FAULT;
|
---|
1791 | Log2(("IEMEvaluateRecursiveXcpt: #DF handler raised a %#x exception -> triple fault\n", uCurVector));
|
---|
1792 | }
|
---|
1793 | }
|
---|
1794 | else
|
---|
1795 | {
|
---|
1796 | if (uPrevVector == X86_XCPT_NMI)
|
---|
1797 | {
|
---|
1798 | fRaiseInfo = IEMXCPTRAISEINFO_NMI_XCPT;
|
---|
1799 | if (uCurVector == X86_XCPT_PF)
|
---|
1800 | {
|
---|
1801 | fRaiseInfo |= IEMXCPTRAISEINFO_NMI_PF;
|
---|
1802 | Log2(("IEMEvaluateRecursiveXcpt: NMI delivery caused a page fault\n"));
|
---|
1803 | }
|
---|
1804 | }
|
---|
1805 | else if ( uPrevVector == X86_XCPT_AC
|
---|
1806 | && uCurVector == X86_XCPT_AC)
|
---|
1807 | {
|
---|
1808 | enmRaise = IEMXCPTRAISE_CPU_HANG;
|
---|
1809 | fRaiseInfo = IEMXCPTRAISEINFO_AC_AC;
|
---|
1810 | Log2(("IEMEvaluateRecursiveXcpt: Recursive #AC - Bad guest\n"));
|
---|
1811 | }
|
---|
1812 | }
|
---|
1813 | }
|
---|
1814 | else if (fPrevFlags & IEM_XCPT_FLAGS_T_EXT_INT)
|
---|
1815 | {
|
---|
1816 | fRaiseInfo = IEMXCPTRAISEINFO_EXT_INT_XCPT;
|
---|
1817 | if (uCurVector == X86_XCPT_PF)
|
---|
1818 | fRaiseInfo |= IEMXCPTRAISEINFO_EXT_INT_PF;
|
---|
1819 | }
|
---|
1820 | else
|
---|
1821 | {
|
---|
1822 | Assert(fPrevFlags & IEM_XCPT_FLAGS_T_SOFT_INT);
|
---|
1823 | fRaiseInfo = IEMXCPTRAISEINFO_SOFT_INT_XCPT;
|
---|
1824 | }
|
---|
1825 |
|
---|
1826 | if (pfXcptRaiseInfo)
|
---|
1827 | *pfXcptRaiseInfo = fRaiseInfo;
|
---|
1828 | return enmRaise;
|
---|
1829 | }
|
---|
1830 |
|
---|
1831 |
|
---|
1832 | /**
|
---|
1833 | * Enters the CPU shutdown state initiated by a triple fault or other
|
---|
1834 | * unrecoverable conditions.
|
---|
1835 | *
|
---|
1836 | * @returns Strict VBox status code.
|
---|
1837 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1838 | * calling thread.
|
---|
1839 | */
|
---|
1840 | static VBOXSTRICTRC iemInitiateCpuShutdown(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1841 | {
|
---|
1842 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1843 | IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(pVCpu, VMX_EXIT_TRIPLE_FAULT, 0 /* u64ExitQual */);
|
---|
1844 |
|
---|
1845 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SHUTDOWN))
|
---|
1846 | {
|
---|
1847 | Log2(("shutdown: Guest intercept -> #VMEXIT\n"));
|
---|
1848 | IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SHUTDOWN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
1849 | }
|
---|
1850 |
|
---|
1851 | RT_NOREF(pVCpu);
|
---|
1852 | return VINF_EM_TRIPLE_FAULT;
|
---|
1853 | }
|
---|
1854 |
|
---|
1855 |
|
---|
1856 | /**
|
---|
1857 | * Validates a new SS segment.
|
---|
1858 | *
|
---|
1859 | * @returns VBox strict status code.
|
---|
1860 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1861 | * calling thread.
|
---|
1862 | * @param NewSS The new SS selctor.
|
---|
1863 | * @param uCpl The CPL to load the stack for.
|
---|
1864 | * @param pDesc Where to return the descriptor.
|
---|
1865 | */
|
---|
1866 | static VBOXSTRICTRC iemMiscValidateNewSS(PVMCPUCC pVCpu, RTSEL NewSS, uint8_t uCpl, PIEMSELDESC pDesc) RT_NOEXCEPT
|
---|
1867 | {
|
---|
1868 | /* Null selectors are not allowed (we're not called for dispatching
|
---|
1869 | interrupts with SS=0 in long mode). */
|
---|
1870 | if (!(NewSS & X86_SEL_MASK_OFF_RPL))
|
---|
1871 | {
|
---|
1872 | Log(("iemMiscValidateNewSSandRsp: %#x - null selector -> #TS(0)\n", NewSS));
|
---|
1873 | return iemRaiseTaskSwitchFault0(pVCpu);
|
---|
1874 | }
|
---|
1875 |
|
---|
1876 | /** @todo testcase: check that the TSS.ssX RPL is checked. Also check when. */
|
---|
1877 | if ((NewSS & X86_SEL_RPL) != uCpl)
|
---|
1878 | {
|
---|
1879 | Log(("iemMiscValidateNewSSandRsp: %#x - RPL and CPL (%d) differs -> #TS\n", NewSS, uCpl));
|
---|
1880 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
1881 | }
|
---|
1882 |
|
---|
1883 | /*
|
---|
1884 | * Read the descriptor.
|
---|
1885 | */
|
---|
1886 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, pDesc, NewSS, X86_XCPT_TS);
|
---|
1887 | if (rcStrict != VINF_SUCCESS)
|
---|
1888 | return rcStrict;
|
---|
1889 |
|
---|
1890 | /*
|
---|
1891 | * Perform the descriptor validation documented for LSS, POP SS and MOV SS.
|
---|
1892 | */
|
---|
1893 | if (!pDesc->Legacy.Gen.u1DescType)
|
---|
1894 | {
|
---|
1895 | Log(("iemMiscValidateNewSSandRsp: %#x - system selector (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
1896 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
1897 | }
|
---|
1898 |
|
---|
1899 | if ( (pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
1900 | || !(pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
1901 | {
|
---|
1902 | Log(("iemMiscValidateNewSSandRsp: %#x - code or read only (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
1903 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
1904 | }
|
---|
1905 | if (pDesc->Legacy.Gen.u2Dpl != uCpl)
|
---|
1906 | {
|
---|
1907 | Log(("iemMiscValidateNewSSandRsp: %#x - DPL (%d) and CPL (%d) differs -> #TS\n", NewSS, pDesc->Legacy.Gen.u2Dpl, uCpl));
|
---|
1908 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
1909 | }
|
---|
1910 |
|
---|
1911 | /* Is it there? */
|
---|
1912 | /** @todo testcase: Is this checked before the canonical / limit check below? */
|
---|
1913 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
1914 | {
|
---|
1915 | Log(("iemMiscValidateNewSSandRsp: %#x - segment not present -> #NP\n", NewSS));
|
---|
1916 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewSS);
|
---|
1917 | }
|
---|
1918 |
|
---|
1919 | return VINF_SUCCESS;
|
---|
1920 | }
|
---|
1921 |
|
---|
1922 | /** @} */
|
---|
1923 |
|
---|
1924 |
|
---|
1925 | /** @name Raising Exceptions.
|
---|
1926 | *
|
---|
1927 | * @{
|
---|
1928 | */
|
---|
1929 |
|
---|
1930 |
|
---|
1931 | /**
|
---|
1932 | * Loads the specified stack far pointer from the TSS.
|
---|
1933 | *
|
---|
1934 | * @returns VBox strict status code.
|
---|
1935 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1936 | * @param uCpl The CPL to load the stack for.
|
---|
1937 | * @param pSelSS Where to return the new stack segment.
|
---|
1938 | * @param puEsp Where to return the new stack pointer.
|
---|
1939 | */
|
---|
1940 | static VBOXSTRICTRC iemRaiseLoadStackFromTss32Or16(PVMCPUCC pVCpu, uint8_t uCpl, PRTSEL pSelSS, uint32_t *puEsp) RT_NOEXCEPT
|
---|
1941 | {
|
---|
1942 | VBOXSTRICTRC rcStrict;
|
---|
1943 | Assert(uCpl < 4);
|
---|
1944 |
|
---|
1945 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
|
---|
1946 | switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
|
---|
1947 | {
|
---|
1948 | /*
|
---|
1949 | * 16-bit TSS (X86TSS16).
|
---|
1950 | */
|
---|
1951 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL: AssertFailed(); RT_FALL_THRU();
|
---|
1952 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
1953 | {
|
---|
1954 | uint32_t off = uCpl * 4 + 2;
|
---|
1955 | if (off + 4 <= pVCpu->cpum.GstCtx.tr.u32Limit)
|
---|
1956 | {
|
---|
1957 | /** @todo check actual access pattern here. */
|
---|
1958 | uint32_t u32Tmp = 0; /* gcc maybe... */
|
---|
1959 | rcStrict = iemMemFetchSysU32(pVCpu, &u32Tmp, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + off);
|
---|
1960 | if (rcStrict == VINF_SUCCESS)
|
---|
1961 | {
|
---|
1962 | *puEsp = RT_LOWORD(u32Tmp);
|
---|
1963 | *pSelSS = RT_HIWORD(u32Tmp);
|
---|
1964 | return VINF_SUCCESS;
|
---|
1965 | }
|
---|
1966 | }
|
---|
1967 | else
|
---|
1968 | {
|
---|
1969 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pVCpu->cpum.GstCtx.tr.u32Limit));
|
---|
1970 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
1971 | }
|
---|
1972 | break;
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 | /*
|
---|
1976 | * 32-bit TSS (X86TSS32).
|
---|
1977 | */
|
---|
1978 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL: AssertFailed(); RT_FALL_THRU();
|
---|
1979 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
1980 | {
|
---|
1981 | uint32_t off = uCpl * 8 + 4;
|
---|
1982 | if (off + 7 <= pVCpu->cpum.GstCtx.tr.u32Limit)
|
---|
1983 | {
|
---|
1984 | /** @todo check actual access pattern here. */
|
---|
1985 | uint64_t u64Tmp;
|
---|
1986 | rcStrict = iemMemFetchSysU64(pVCpu, &u64Tmp, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + off);
|
---|
1987 | if (rcStrict == VINF_SUCCESS)
|
---|
1988 | {
|
---|
1989 | *puEsp = u64Tmp & UINT32_MAX;
|
---|
1990 | *pSelSS = (RTSEL)(u64Tmp >> 32);
|
---|
1991 | return VINF_SUCCESS;
|
---|
1992 | }
|
---|
1993 | }
|
---|
1994 | else
|
---|
1995 | {
|
---|
1996 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pVCpu->cpum.GstCtx.tr.u32Limit));
|
---|
1997 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
1998 | }
|
---|
1999 | break;
|
---|
2000 | }
|
---|
2001 |
|
---|
2002 | default:
|
---|
2003 | AssertFailed();
|
---|
2004 | rcStrict = VERR_IEM_IPE_4;
|
---|
2005 | break;
|
---|
2006 | }
|
---|
2007 |
|
---|
2008 | *puEsp = 0; /* make gcc happy */
|
---|
2009 | *pSelSS = 0; /* make gcc happy */
|
---|
2010 | return rcStrict;
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 |
|
---|
2014 | /**
|
---|
2015 | * Loads the specified stack pointer from the 64-bit TSS.
|
---|
2016 | *
|
---|
2017 | * @returns VBox strict status code.
|
---|
2018 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2019 | * @param uCpl The CPL to load the stack for.
|
---|
2020 | * @param uIst The interrupt stack table index, 0 if to use uCpl.
|
---|
2021 | * @param puRsp Where to return the new stack pointer.
|
---|
2022 | */
|
---|
2023 | static VBOXSTRICTRC iemRaiseLoadStackFromTss64(PVMCPUCC pVCpu, uint8_t uCpl, uint8_t uIst, uint64_t *puRsp) RT_NOEXCEPT
|
---|
2024 | {
|
---|
2025 | Assert(uCpl < 4);
|
---|
2026 | Assert(uIst < 8);
|
---|
2027 | *puRsp = 0; /* make gcc happy */
|
---|
2028 |
|
---|
2029 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
|
---|
2030 | AssertReturn(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY, VERR_IEM_IPE_5);
|
---|
2031 |
|
---|
2032 | uint32_t off;
|
---|
2033 | if (uIst)
|
---|
2034 | off = (uIst - 1) * sizeof(uint64_t) + RT_UOFFSETOF(X86TSS64, ist1);
|
---|
2035 | else
|
---|
2036 | off = uCpl * sizeof(uint64_t) + RT_UOFFSETOF(X86TSS64, rsp0);
|
---|
2037 | if (off + sizeof(uint64_t) > pVCpu->cpum.GstCtx.tr.u32Limit)
|
---|
2038 | {
|
---|
2039 | Log(("iemRaiseLoadStackFromTss64: out of bounds! uCpl=%d uIst=%d, u32Limit=%#x\n", uCpl, uIst, pVCpu->cpum.GstCtx.tr.u32Limit));
|
---|
2040 | return iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
2041 | }
|
---|
2042 |
|
---|
2043 | return iemMemFetchSysU64(pVCpu, puRsp, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + off);
|
---|
2044 | }
|
---|
2045 |
|
---|
2046 |
|
---|
2047 | /**
|
---|
2048 | * Adjust the CPU state according to the exception being raised.
|
---|
2049 | *
|
---|
2050 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2051 | * @param u8Vector The exception that has been raised.
|
---|
2052 | */
|
---|
2053 | DECLINLINE(void) iemRaiseXcptAdjustState(PVMCPUCC pVCpu, uint8_t u8Vector)
|
---|
2054 | {
|
---|
2055 | switch (u8Vector)
|
---|
2056 | {
|
---|
2057 | case X86_XCPT_DB:
|
---|
2058 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
|
---|
2059 | pVCpu->cpum.GstCtx.dr[7] &= ~X86_DR7_GD;
|
---|
2060 | break;
|
---|
2061 | /** @todo Read the AMD and Intel exception reference... */
|
---|
2062 | }
|
---|
2063 | }
|
---|
2064 |
|
---|
2065 |
|
---|
2066 | /**
|
---|
2067 | * Implements exceptions and interrupts for real mode.
|
---|
2068 | *
|
---|
2069 | * @returns VBox strict status code.
|
---|
2070 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2071 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
2072 | * address.
|
---|
2073 | * @param u8Vector The interrupt / exception vector number.
|
---|
2074 | * @param fFlags The flags.
|
---|
2075 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
2076 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
2077 | */
|
---|
2078 | static VBOXSTRICTRC
|
---|
2079 | iemRaiseXcptOrIntInRealMode(PVMCPUCC pVCpu,
|
---|
2080 | uint8_t cbInstr,
|
---|
2081 | uint8_t u8Vector,
|
---|
2082 | uint32_t fFlags,
|
---|
2083 | uint16_t uErr,
|
---|
2084 | uint64_t uCr2) RT_NOEXCEPT
|
---|
2085 | {
|
---|
2086 | NOREF(uErr); NOREF(uCr2);
|
---|
2087 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
2088 |
|
---|
2089 | /*
|
---|
2090 | * Read the IDT entry.
|
---|
2091 | */
|
---|
2092 | if (pVCpu->cpum.GstCtx.idtr.cbIdt < UINT32_C(4) * u8Vector + 3)
|
---|
2093 | {
|
---|
2094 | Log(("RaiseXcptOrIntInRealMode: %#x is out of bounds (%#x)\n", u8Vector, pVCpu->cpum.GstCtx.idtr.cbIdt));
|
---|
2095 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
2096 | }
|
---|
2097 | RTFAR16 Idte;
|
---|
2098 | VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, (uint32_t *)&Idte, UINT8_MAX, pVCpu->cpum.GstCtx.idtr.pIdt + UINT32_C(4) * u8Vector);
|
---|
2099 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
2100 | {
|
---|
2101 | Log(("iemRaiseXcptOrIntInRealMode: failed to fetch IDT entry! vec=%#x rc=%Rrc\n", u8Vector, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2102 | return rcStrict;
|
---|
2103 | }
|
---|
2104 |
|
---|
2105 | /*
|
---|
2106 | * Push the stack frame.
|
---|
2107 | */
|
---|
2108 | uint16_t *pu16Frame;
|
---|
2109 | uint64_t uNewRsp;
|
---|
2110 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, 6, 3, (void **)&pu16Frame, &uNewRsp);
|
---|
2111 | if (rcStrict != VINF_SUCCESS)
|
---|
2112 | return rcStrict;
|
---|
2113 |
|
---|
2114 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
|
---|
2115 | #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
|
---|
2116 | AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
|
---|
2117 | if (pVCpu->iem.s.uTargetCpu <= IEMTARGETCPU_186)
|
---|
2118 | fEfl |= UINT16_C(0xf000);
|
---|
2119 | #endif
|
---|
2120 | pu16Frame[2] = (uint16_t)fEfl;
|
---|
2121 | pu16Frame[1] = (uint16_t)pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2122 | pu16Frame[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.ip + cbInstr : pVCpu->cpum.GstCtx.ip;
|
---|
2123 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, pu16Frame, uNewRsp);
|
---|
2124 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
2125 | return rcStrict;
|
---|
2126 |
|
---|
2127 | /*
|
---|
2128 | * Load the vector address into cs:ip and make exception specific state
|
---|
2129 | * adjustments.
|
---|
2130 | */
|
---|
2131 | pVCpu->cpum.GstCtx.cs.Sel = Idte.sel;
|
---|
2132 | pVCpu->cpum.GstCtx.cs.ValidSel = Idte.sel;
|
---|
2133 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2134 | pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)Idte.sel << 4;
|
---|
2135 | /** @todo do we load attribs and limit as well? Should we check against limit like far jump? */
|
---|
2136 | pVCpu->cpum.GstCtx.rip = Idte.off;
|
---|
2137 | fEfl &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_AC);
|
---|
2138 | IEMMISC_SET_EFL(pVCpu, fEfl);
|
---|
2139 |
|
---|
2140 | /** @todo do we actually do this in real mode? */
|
---|
2141 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
2142 | iemRaiseXcptAdjustState(pVCpu, u8Vector);
|
---|
2143 |
|
---|
2144 | /* The IEM_F_MODE_XXX and IEM_F_X86_CPL_MASK doesn't really change here,
|
---|
2145 | so best leave them alone in case we're in a weird kind of real mode... */
|
---|
2146 |
|
---|
2147 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
2148 | }
|
---|
2149 |
|
---|
2150 |
|
---|
2151 | /**
|
---|
2152 | * Loads a NULL data selector into when coming from V8086 mode.
|
---|
2153 | *
|
---|
2154 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2155 | * @param pSReg Pointer to the segment register.
|
---|
2156 | */
|
---|
2157 | DECLINLINE(void) iemHlpLoadNullDataSelectorOnV86Xcpt(PVMCPUCC pVCpu, PCPUMSELREG pSReg)
|
---|
2158 | {
|
---|
2159 | pSReg->Sel = 0;
|
---|
2160 | pSReg->ValidSel = 0;
|
---|
2161 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
2162 | {
|
---|
2163 | /* VT-x (Intel 3960x) doesn't change the base and limit, clears and sets the following attributes */
|
---|
2164 | pSReg->Attr.u &= X86DESCATTR_DT | X86DESCATTR_TYPE | X86DESCATTR_DPL | X86DESCATTR_G | X86DESCATTR_D;
|
---|
2165 | pSReg->Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2166 | }
|
---|
2167 | else
|
---|
2168 | {
|
---|
2169 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2170 | /** @todo check this on AMD-V */
|
---|
2171 | pSReg->u64Base = 0;
|
---|
2172 | pSReg->u32Limit = 0;
|
---|
2173 | }
|
---|
2174 | }
|
---|
2175 |
|
---|
2176 |
|
---|
2177 | /**
|
---|
2178 | * Loads a segment selector during a task switch in V8086 mode.
|
---|
2179 | *
|
---|
2180 | * @param pSReg Pointer to the segment register.
|
---|
2181 | * @param uSel The selector value to load.
|
---|
2182 | */
|
---|
2183 | DECLINLINE(void) iemHlpLoadSelectorInV86Mode(PCPUMSELREG pSReg, uint16_t uSel)
|
---|
2184 | {
|
---|
2185 | /* See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
|
---|
2186 | pSReg->Sel = uSel;
|
---|
2187 | pSReg->ValidSel = uSel;
|
---|
2188 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2189 | pSReg->u64Base = uSel << 4;
|
---|
2190 | pSReg->u32Limit = 0xffff;
|
---|
2191 | pSReg->Attr.u = 0xf3;
|
---|
2192 | }
|
---|
2193 |
|
---|
2194 |
|
---|
2195 | /**
|
---|
2196 | * Loads a segment selector during a task switch in protected mode.
|
---|
2197 | *
|
---|
2198 | * In this task switch scenario, we would throw \#TS exceptions rather than
|
---|
2199 | * \#GPs.
|
---|
2200 | *
|
---|
2201 | * @returns VBox strict status code.
|
---|
2202 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2203 | * @param pSReg Pointer to the segment register.
|
---|
2204 | * @param uSel The new selector value.
|
---|
2205 | *
|
---|
2206 | * @remarks This does _not_ handle CS or SS.
|
---|
2207 | * @remarks This expects IEM_GET_CPL(pVCpu) to return an up to date value.
|
---|
2208 | */
|
---|
2209 | static VBOXSTRICTRC iemHlpTaskSwitchLoadDataSelectorInProtMode(PVMCPUCC pVCpu, PCPUMSELREG pSReg, uint16_t uSel) RT_NOEXCEPT
|
---|
2210 | {
|
---|
2211 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2212 |
|
---|
2213 | /* Null data selector. */
|
---|
2214 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
2215 | {
|
---|
2216 | iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, uSel);
|
---|
2217 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
2218 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2219 | return VINF_SUCCESS;
|
---|
2220 | }
|
---|
2221 |
|
---|
2222 | /* Fetch the descriptor. */
|
---|
2223 | IEMSELDESC Desc;
|
---|
2224 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_TS);
|
---|
2225 | if (rcStrict != VINF_SUCCESS)
|
---|
2226 | {
|
---|
2227 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: failed to fetch selector. uSel=%u rc=%Rrc\n", uSel,
|
---|
2228 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2229 | return rcStrict;
|
---|
2230 | }
|
---|
2231 |
|
---|
2232 | /* Must be a data segment or readable code segment. */
|
---|
2233 | if ( !Desc.Legacy.Gen.u1DescType
|
---|
2234 | || (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
2235 | {
|
---|
2236 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: invalid segment type. uSel=%u Desc.u4Type=%#x\n", uSel,
|
---|
2237 | Desc.Legacy.Gen.u4Type));
|
---|
2238 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | /* Check privileges for data segments and non-conforming code segments. */
|
---|
2242 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
2243 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
2244 | {
|
---|
2245 | /* The RPL and the new CPL must be less than or equal to the DPL. */
|
---|
2246 | if ( (unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
2247 | || (IEM_GET_CPL(pVCpu) > Desc.Legacy.Gen.u2Dpl))
|
---|
2248 | {
|
---|
2249 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Invalid priv. uSel=%u uSel.RPL=%u DPL=%u CPL=%u\n",
|
---|
2250 | uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl, IEM_GET_CPL(pVCpu)));
|
---|
2251 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2252 | }
|
---|
2253 | }
|
---|
2254 |
|
---|
2255 | /* Is it there? */
|
---|
2256 | if (!Desc.Legacy.Gen.u1Present)
|
---|
2257 | {
|
---|
2258 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Segment not present. uSel=%u\n", uSel));
|
---|
2259 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2260 | }
|
---|
2261 |
|
---|
2262 | /* The base and limit. */
|
---|
2263 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
2264 | uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
2265 |
|
---|
2266 | /*
|
---|
2267 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
2268 | * committing the result into the registers.
|
---|
2269 | */
|
---|
2270 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2271 | {
|
---|
2272 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
2273 | if (rcStrict != VINF_SUCCESS)
|
---|
2274 | return rcStrict;
|
---|
2275 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2276 | }
|
---|
2277 |
|
---|
2278 | /* Commit */
|
---|
2279 | pSReg->Sel = uSel;
|
---|
2280 | pSReg->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
2281 | pSReg->u32Limit = cbLimit;
|
---|
2282 | pSReg->u64Base = u64Base; /** @todo testcase/investigate: seen claims that the upper half of the base remains unchanged... */
|
---|
2283 | pSReg->ValidSel = uSel;
|
---|
2284 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2285 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
2286 | pSReg->Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
2287 |
|
---|
2288 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
2289 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2290 | return VINF_SUCCESS;
|
---|
2291 | }
|
---|
2292 |
|
---|
2293 |
|
---|
2294 | /**
|
---|
2295 | * Performs a task switch.
|
---|
2296 | *
|
---|
2297 | * If the task switch is the result of a JMP, CALL or IRET instruction, the
|
---|
2298 | * caller is responsible for performing the necessary checks (like DPL, TSS
|
---|
2299 | * present etc.) which are specific to JMP/CALL/IRET. See Intel Instruction
|
---|
2300 | * reference for JMP, CALL, IRET.
|
---|
2301 | *
|
---|
2302 | * If the task switch is the due to a software interrupt or hardware exception,
|
---|
2303 | * the caller is responsible for validating the TSS selector and descriptor. See
|
---|
2304 | * Intel Instruction reference for INT n.
|
---|
2305 | *
|
---|
2306 | * @returns VBox strict status code.
|
---|
2307 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2308 | * @param enmTaskSwitch The cause of the task switch.
|
---|
2309 | * @param uNextEip The EIP effective after the task switch.
|
---|
2310 | * @param fFlags The flags, see IEM_XCPT_FLAGS_XXX.
|
---|
2311 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
2312 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
2313 | * @param SelTSS The TSS selector of the new task.
|
---|
2314 | * @param pNewDescTSS Pointer to the new TSS descriptor.
|
---|
2315 | */
|
---|
2316 | VBOXSTRICTRC
|
---|
2317 | iemTaskSwitch(PVMCPUCC pVCpu,
|
---|
2318 | IEMTASKSWITCH enmTaskSwitch,
|
---|
2319 | uint32_t uNextEip,
|
---|
2320 | uint32_t fFlags,
|
---|
2321 | uint16_t uErr,
|
---|
2322 | uint64_t uCr2,
|
---|
2323 | RTSEL SelTSS,
|
---|
2324 | PIEMSELDESC pNewDescTSS) RT_NOEXCEPT
|
---|
2325 | {
|
---|
2326 | Assert(!IEM_IS_REAL_MODE(pVCpu));
|
---|
2327 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2328 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
2329 |
|
---|
2330 | uint32_t const uNewTSSType = pNewDescTSS->Legacy.Gate.u4Type;
|
---|
2331 | Assert( uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
2332 | || uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
2333 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2334 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2335 |
|
---|
2336 | bool const fIsNewTSS386 = ( uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2337 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2338 |
|
---|
2339 | Log(("iemTaskSwitch: enmTaskSwitch=%u NewTSS=%#x fIsNewTSS386=%RTbool EIP=%#RX32 uNextEip=%#RX32\n", enmTaskSwitch, SelTSS,
|
---|
2340 | fIsNewTSS386, pVCpu->cpum.GstCtx.eip, uNextEip));
|
---|
2341 |
|
---|
2342 | /* Update CR2 in case it's a page-fault. */
|
---|
2343 | /** @todo This should probably be done much earlier in IEM/PGM. See
|
---|
2344 | * @bugref{5653#c49}. */
|
---|
2345 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
2346 | pVCpu->cpum.GstCtx.cr2 = uCr2;
|
---|
2347 |
|
---|
2348 | /*
|
---|
2349 | * Check the new TSS limit. See Intel spec. 6.15 "Exception and Interrupt Reference"
|
---|
2350 | * subsection "Interrupt 10 - Invalid TSS Exception (#TS)".
|
---|
2351 | */
|
---|
2352 | uint32_t const uNewTSSLimit = pNewDescTSS->Legacy.Gen.u16LimitLow | (pNewDescTSS->Legacy.Gen.u4LimitHigh << 16);
|
---|
2353 | uint32_t const uNewTSSLimitMin = fIsNewTSS386 ? X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN : X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN;
|
---|
2354 | if (uNewTSSLimit < uNewTSSLimitMin)
|
---|
2355 | {
|
---|
2356 | Log(("iemTaskSwitch: Invalid new TSS limit. enmTaskSwitch=%u uNewTSSLimit=%#x uNewTSSLimitMin=%#x -> #TS\n",
|
---|
2357 | enmTaskSwitch, uNewTSSLimit, uNewTSSLimitMin));
|
---|
2358 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, SelTSS & X86_SEL_MASK_OFF_RPL);
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 | /*
|
---|
2362 | * Task switches in VMX non-root mode always cause task switches.
|
---|
2363 | * The new TSS must have been read and validated (DPL, limits etc.) before a
|
---|
2364 | * task-switch VM-exit commences.
|
---|
2365 | *
|
---|
2366 | * See Intel spec. 25.4.2 "Treatment of Task Switches".
|
---|
2367 | */
|
---|
2368 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
2369 | {
|
---|
2370 | Log(("iemTaskSwitch: Guest intercept (source=%u, sel=%#x) -> VM-exit.\n", enmTaskSwitch, SelTSS));
|
---|
2371 | IEM_VMX_VMEXIT_TASK_SWITCH_RET(pVCpu, enmTaskSwitch, SelTSS, uNextEip - pVCpu->cpum.GstCtx.eip);
|
---|
2372 | }
|
---|
2373 |
|
---|
2374 | /*
|
---|
2375 | * The SVM nested-guest intercept for task-switch takes priority over all exceptions
|
---|
2376 | * after validating the incoming (new) TSS, see AMD spec. 15.14.1 "Task Switch Intercept".
|
---|
2377 | */
|
---|
2378 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TASK_SWITCH))
|
---|
2379 | {
|
---|
2380 | uint32_t const uExitInfo1 = SelTSS;
|
---|
2381 | uint32_t uExitInfo2 = uErr;
|
---|
2382 | switch (enmTaskSwitch)
|
---|
2383 | {
|
---|
2384 | case IEMTASKSWITCH_JUMP: uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_JUMP; break;
|
---|
2385 | case IEMTASKSWITCH_IRET: uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_IRET; break;
|
---|
2386 | default: break;
|
---|
2387 | }
|
---|
2388 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
2389 | uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_HAS_ERROR_CODE;
|
---|
2390 | if (pVCpu->cpum.GstCtx.eflags.Bits.u1RF)
|
---|
2391 | uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_EFLAGS_RF;
|
---|
2392 |
|
---|
2393 | Log(("iemTaskSwitch: Guest intercept -> #VMEXIT. uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitInfo1, uExitInfo2));
|
---|
2394 | IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TASK_SWITCH, uExitInfo1, uExitInfo2);
|
---|
2395 | RT_NOREF2(uExitInfo1, uExitInfo2);
|
---|
2396 | }
|
---|
2397 |
|
---|
2398 | /*
|
---|
2399 | * Check the current TSS limit. The last written byte to the current TSS during the
|
---|
2400 | * task switch will be 2 bytes at offset 0x5C (32-bit) and 1 byte at offset 0x28 (16-bit).
|
---|
2401 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
2402 | *
|
---|
2403 | * The AMD docs doesn't mention anything about limit checks with LTR which suggests you can
|
---|
2404 | * end up with smaller than "legal" TSS limits.
|
---|
2405 | */
|
---|
2406 | uint32_t const uCurTSSLimit = pVCpu->cpum.GstCtx.tr.u32Limit;
|
---|
2407 | uint32_t const uCurTSSLimitMin = fIsNewTSS386 ? 0x5F : 0x29;
|
---|
2408 | if (uCurTSSLimit < uCurTSSLimitMin)
|
---|
2409 | {
|
---|
2410 | Log(("iemTaskSwitch: Invalid current TSS limit. enmTaskSwitch=%u uCurTSSLimit=%#x uCurTSSLimitMin=%#x -> #TS\n",
|
---|
2411 | enmTaskSwitch, uCurTSSLimit, uCurTSSLimitMin));
|
---|
2412 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, SelTSS & X86_SEL_MASK_OFF_RPL);
|
---|
2413 | }
|
---|
2414 |
|
---|
2415 | /*
|
---|
2416 | * Verify that the new TSS can be accessed and map it. Map only the required contents
|
---|
2417 | * and not the entire TSS.
|
---|
2418 | */
|
---|
2419 | void *pvNewTSS;
|
---|
2420 | uint32_t const cbNewTSS = uNewTSSLimitMin + 1;
|
---|
2421 | RTGCPTR const GCPtrNewTSS = X86DESC_BASE(&pNewDescTSS->Legacy);
|
---|
2422 | AssertCompile(sizeof(X86TSS32) == X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1);
|
---|
2423 | /** @todo Handle if the TSS crosses a page boundary. Intel specifies that it may
|
---|
2424 | * not perform correct translation if this happens. See Intel spec. 7.2.1
|
---|
2425 | * "Task-State Segment". */
|
---|
2426 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvNewTSS, cbNewTSS, UINT8_MAX, GCPtrNewTSS, IEM_ACCESS_SYS_RW, 0);
|
---|
2427 | if (rcStrict != VINF_SUCCESS)
|
---|
2428 | {
|
---|
2429 | Log(("iemTaskSwitch: Failed to read new TSS. enmTaskSwitch=%u cbNewTSS=%u uNewTSSLimit=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2430 | cbNewTSS, uNewTSSLimit, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2431 | return rcStrict;
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 | /*
|
---|
2435 | * Clear the busy bit in current task's TSS descriptor if it's a task switch due to JMP/IRET.
|
---|
2436 | */
|
---|
2437 | uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
2438 | if ( enmTaskSwitch == IEMTASKSWITCH_JUMP
|
---|
2439 | || enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
2440 | {
|
---|
2441 | PX86DESC pDescCurTSS;
|
---|
2442 | rcStrict = iemMemMap(pVCpu, (void **)&pDescCurTSS, sizeof(*pDescCurTSS), UINT8_MAX,
|
---|
2443 | pVCpu->cpum.GstCtx.gdtr.pGdt + (pVCpu->cpum.GstCtx.tr.Sel & X86_SEL_MASK), IEM_ACCESS_SYS_RW, 0);
|
---|
2444 | if (rcStrict != VINF_SUCCESS)
|
---|
2445 | {
|
---|
2446 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2447 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2448 | return rcStrict;
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | pDescCurTSS->Gate.u4Type &= ~X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2452 | rcStrict = iemMemCommitAndUnmap(pVCpu, pDescCurTSS, IEM_ACCESS_SYS_RW);
|
---|
2453 | if (rcStrict != VINF_SUCCESS)
|
---|
2454 | {
|
---|
2455 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2456 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2457 | return rcStrict;
|
---|
2458 | }
|
---|
2459 |
|
---|
2460 | /* Clear EFLAGS.NT (Nested Task) in the eflags memory image, if it's a task switch due to an IRET. */
|
---|
2461 | if (enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
2462 | {
|
---|
2463 | Assert( uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
2464 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2465 | fEFlags &= ~X86_EFL_NT;
|
---|
2466 | }
|
---|
2467 | }
|
---|
2468 |
|
---|
2469 | /*
|
---|
2470 | * Save the CPU state into the current TSS.
|
---|
2471 | */
|
---|
2472 | RTGCPTR const GCPtrCurTSS = pVCpu->cpum.GstCtx.tr.u64Base;
|
---|
2473 | if (GCPtrNewTSS == GCPtrCurTSS)
|
---|
2474 | {
|
---|
2475 | Log(("iemTaskSwitch: Switching to the same TSS! enmTaskSwitch=%u GCPtr[Cur|New]TSS=%#RGv\n", enmTaskSwitch, GCPtrCurTSS));
|
---|
2476 | Log(("uCurCr3=%#x uCurEip=%#x uCurEflags=%#x uCurEax=%#x uCurEsp=%#x uCurEbp=%#x uCurCS=%#04x uCurSS=%#04x uCurLdt=%#x\n",
|
---|
2477 | pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, pVCpu->cpum.GstCtx.eax,
|
---|
2478 | pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel,
|
---|
2479 | pVCpu->cpum.GstCtx.ldtr.Sel));
|
---|
2480 | }
|
---|
2481 | if (fIsNewTSS386)
|
---|
2482 | {
|
---|
2483 | /*
|
---|
2484 | * Verify that the current TSS (32-bit) can be accessed, only the minimum required size.
|
---|
2485 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
2486 | */
|
---|
2487 | void *pvCurTSS32;
|
---|
2488 | uint32_t const offCurTSS = RT_UOFFSETOF(X86TSS32, eip);
|
---|
2489 | uint32_t const cbCurTSS = RT_UOFFSETOF(X86TSS32, selLdt) - RT_UOFFSETOF(X86TSS32, eip);
|
---|
2490 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS32, selLdt) - RTASSERT_OFFSET_OF(X86TSS32, eip) == 64);
|
---|
2491 | rcStrict = iemMemMap(pVCpu, &pvCurTSS32, cbCurTSS, UINT8_MAX, GCPtrCurTSS + offCurTSS, IEM_ACCESS_SYS_RW, 0);
|
---|
2492 | if (rcStrict != VINF_SUCCESS)
|
---|
2493 | {
|
---|
2494 | Log(("iemTaskSwitch: Failed to read current 32-bit TSS. enmTaskSwitch=%u GCPtrCurTSS=%#RGv cb=%u rc=%Rrc\n",
|
---|
2495 | enmTaskSwitch, GCPtrCurTSS, cbCurTSS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2496 | return rcStrict;
|
---|
2497 | }
|
---|
2498 |
|
---|
2499 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTSS..cbCurTSS). */
|
---|
2500 | PX86TSS32 pCurTSS32 = (PX86TSS32)((uintptr_t)pvCurTSS32 - offCurTSS);
|
---|
2501 | pCurTSS32->eip = uNextEip;
|
---|
2502 | pCurTSS32->eflags = fEFlags;
|
---|
2503 | pCurTSS32->eax = pVCpu->cpum.GstCtx.eax;
|
---|
2504 | pCurTSS32->ecx = pVCpu->cpum.GstCtx.ecx;
|
---|
2505 | pCurTSS32->edx = pVCpu->cpum.GstCtx.edx;
|
---|
2506 | pCurTSS32->ebx = pVCpu->cpum.GstCtx.ebx;
|
---|
2507 | pCurTSS32->esp = pVCpu->cpum.GstCtx.esp;
|
---|
2508 | pCurTSS32->ebp = pVCpu->cpum.GstCtx.ebp;
|
---|
2509 | pCurTSS32->esi = pVCpu->cpum.GstCtx.esi;
|
---|
2510 | pCurTSS32->edi = pVCpu->cpum.GstCtx.edi;
|
---|
2511 | pCurTSS32->es = pVCpu->cpum.GstCtx.es.Sel;
|
---|
2512 | pCurTSS32->cs = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2513 | pCurTSS32->ss = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
2514 | pCurTSS32->ds = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
2515 | pCurTSS32->fs = pVCpu->cpum.GstCtx.fs.Sel;
|
---|
2516 | pCurTSS32->gs = pVCpu->cpum.GstCtx.gs.Sel;
|
---|
2517 |
|
---|
2518 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvCurTSS32, IEM_ACCESS_SYS_RW);
|
---|
2519 | if (rcStrict != VINF_SUCCESS)
|
---|
2520 | {
|
---|
2521 | Log(("iemTaskSwitch: Failed to commit current 32-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2522 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2523 | return rcStrict;
|
---|
2524 | }
|
---|
2525 | }
|
---|
2526 | else
|
---|
2527 | {
|
---|
2528 | /*
|
---|
2529 | * Verify that the current TSS (16-bit) can be accessed. Again, only the minimum required size.
|
---|
2530 | */
|
---|
2531 | void *pvCurTSS16;
|
---|
2532 | uint32_t const offCurTSS = RT_UOFFSETOF(X86TSS16, ip);
|
---|
2533 | uint32_t const cbCurTSS = RT_UOFFSETOF(X86TSS16, selLdt) - RT_UOFFSETOF(X86TSS16, ip);
|
---|
2534 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS16, selLdt) - RTASSERT_OFFSET_OF(X86TSS16, ip) == 28);
|
---|
2535 | rcStrict = iemMemMap(pVCpu, &pvCurTSS16, cbCurTSS, UINT8_MAX, GCPtrCurTSS + offCurTSS, IEM_ACCESS_SYS_RW, 0);
|
---|
2536 | if (rcStrict != VINF_SUCCESS)
|
---|
2537 | {
|
---|
2538 | Log(("iemTaskSwitch: Failed to read current 16-bit TSS. enmTaskSwitch=%u GCPtrCurTSS=%#RGv cb=%u rc=%Rrc\n",
|
---|
2539 | enmTaskSwitch, GCPtrCurTSS, cbCurTSS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2540 | return rcStrict;
|
---|
2541 | }
|
---|
2542 |
|
---|
2543 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTSS..cbCurTSS). */
|
---|
2544 | PX86TSS16 pCurTSS16 = (PX86TSS16)((uintptr_t)pvCurTSS16 - offCurTSS);
|
---|
2545 | pCurTSS16->ip = uNextEip;
|
---|
2546 | pCurTSS16->flags = (uint16_t)fEFlags;
|
---|
2547 | pCurTSS16->ax = pVCpu->cpum.GstCtx.ax;
|
---|
2548 | pCurTSS16->cx = pVCpu->cpum.GstCtx.cx;
|
---|
2549 | pCurTSS16->dx = pVCpu->cpum.GstCtx.dx;
|
---|
2550 | pCurTSS16->bx = pVCpu->cpum.GstCtx.bx;
|
---|
2551 | pCurTSS16->sp = pVCpu->cpum.GstCtx.sp;
|
---|
2552 | pCurTSS16->bp = pVCpu->cpum.GstCtx.bp;
|
---|
2553 | pCurTSS16->si = pVCpu->cpum.GstCtx.si;
|
---|
2554 | pCurTSS16->di = pVCpu->cpum.GstCtx.di;
|
---|
2555 | pCurTSS16->es = pVCpu->cpum.GstCtx.es.Sel;
|
---|
2556 | pCurTSS16->cs = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2557 | pCurTSS16->ss = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
2558 | pCurTSS16->ds = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
2559 |
|
---|
2560 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvCurTSS16, IEM_ACCESS_SYS_RW);
|
---|
2561 | if (rcStrict != VINF_SUCCESS)
|
---|
2562 | {
|
---|
2563 | Log(("iemTaskSwitch: Failed to commit current 16-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2564 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2565 | return rcStrict;
|
---|
2566 | }
|
---|
2567 | }
|
---|
2568 |
|
---|
2569 | /*
|
---|
2570 | * Update the previous task link field for the new TSS, if the task switch is due to a CALL/INT_XCPT.
|
---|
2571 | */
|
---|
2572 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
2573 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
2574 | {
|
---|
2575 | /* 16 or 32-bit TSS doesn't matter, we only access the first, common 16-bit field (selPrev) here. */
|
---|
2576 | PX86TSS32 pNewTSS = (PX86TSS32)pvNewTSS;
|
---|
2577 | pNewTSS->selPrev = pVCpu->cpum.GstCtx.tr.Sel;
|
---|
2578 | }
|
---|
2579 |
|
---|
2580 | /*
|
---|
2581 | * Read the state from the new TSS into temporaries. Setting it immediately as the new CPU state is tricky,
|
---|
2582 | * it's done further below with error handling (e.g. CR3 changes will go through PGM).
|
---|
2583 | */
|
---|
2584 | uint32_t uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEcx, uNewEdx, uNewEbx, uNewEsp, uNewEbp, uNewEsi, uNewEdi;
|
---|
2585 | uint16_t uNewES, uNewCS, uNewSS, uNewDS, uNewFS, uNewGS, uNewLdt;
|
---|
2586 | bool fNewDebugTrap;
|
---|
2587 | if (fIsNewTSS386)
|
---|
2588 | {
|
---|
2589 | PCX86TSS32 pNewTSS32 = (PCX86TSS32)pvNewTSS;
|
---|
2590 | uNewCr3 = (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG) ? pNewTSS32->cr3 : 0;
|
---|
2591 | uNewEip = pNewTSS32->eip;
|
---|
2592 | uNewEflags = pNewTSS32->eflags;
|
---|
2593 | uNewEax = pNewTSS32->eax;
|
---|
2594 | uNewEcx = pNewTSS32->ecx;
|
---|
2595 | uNewEdx = pNewTSS32->edx;
|
---|
2596 | uNewEbx = pNewTSS32->ebx;
|
---|
2597 | uNewEsp = pNewTSS32->esp;
|
---|
2598 | uNewEbp = pNewTSS32->ebp;
|
---|
2599 | uNewEsi = pNewTSS32->esi;
|
---|
2600 | uNewEdi = pNewTSS32->edi;
|
---|
2601 | uNewES = pNewTSS32->es;
|
---|
2602 | uNewCS = pNewTSS32->cs;
|
---|
2603 | uNewSS = pNewTSS32->ss;
|
---|
2604 | uNewDS = pNewTSS32->ds;
|
---|
2605 | uNewFS = pNewTSS32->fs;
|
---|
2606 | uNewGS = pNewTSS32->gs;
|
---|
2607 | uNewLdt = pNewTSS32->selLdt;
|
---|
2608 | fNewDebugTrap = RT_BOOL(pNewTSS32->fDebugTrap);
|
---|
2609 | }
|
---|
2610 | else
|
---|
2611 | {
|
---|
2612 | PCX86TSS16 pNewTSS16 = (PCX86TSS16)pvNewTSS;
|
---|
2613 | uNewCr3 = 0;
|
---|
2614 | uNewEip = pNewTSS16->ip;
|
---|
2615 | uNewEflags = pNewTSS16->flags;
|
---|
2616 | uNewEax = UINT32_C(0xffff0000) | pNewTSS16->ax;
|
---|
2617 | uNewEcx = UINT32_C(0xffff0000) | pNewTSS16->cx;
|
---|
2618 | uNewEdx = UINT32_C(0xffff0000) | pNewTSS16->dx;
|
---|
2619 | uNewEbx = UINT32_C(0xffff0000) | pNewTSS16->bx;
|
---|
2620 | uNewEsp = UINT32_C(0xffff0000) | pNewTSS16->sp;
|
---|
2621 | uNewEbp = UINT32_C(0xffff0000) | pNewTSS16->bp;
|
---|
2622 | uNewEsi = UINT32_C(0xffff0000) | pNewTSS16->si;
|
---|
2623 | uNewEdi = UINT32_C(0xffff0000) | pNewTSS16->di;
|
---|
2624 | uNewES = pNewTSS16->es;
|
---|
2625 | uNewCS = pNewTSS16->cs;
|
---|
2626 | uNewSS = pNewTSS16->ss;
|
---|
2627 | uNewDS = pNewTSS16->ds;
|
---|
2628 | uNewFS = 0;
|
---|
2629 | uNewGS = 0;
|
---|
2630 | uNewLdt = pNewTSS16->selLdt;
|
---|
2631 | fNewDebugTrap = false;
|
---|
2632 | }
|
---|
2633 |
|
---|
2634 | if (GCPtrNewTSS == GCPtrCurTSS)
|
---|
2635 | Log(("uNewCr3=%#x uNewEip=%#x uNewEflags=%#x uNewEax=%#x uNewEsp=%#x uNewEbp=%#x uNewCS=%#04x uNewSS=%#04x uNewLdt=%#x\n",
|
---|
2636 | uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEsp, uNewEbp, uNewCS, uNewSS, uNewLdt));
|
---|
2637 |
|
---|
2638 | /*
|
---|
2639 | * We're done accessing the new TSS.
|
---|
2640 | */
|
---|
2641 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewTSS, IEM_ACCESS_SYS_RW);
|
---|
2642 | if (rcStrict != VINF_SUCCESS)
|
---|
2643 | {
|
---|
2644 | Log(("iemTaskSwitch: Failed to commit new TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2645 | return rcStrict;
|
---|
2646 | }
|
---|
2647 |
|
---|
2648 | /*
|
---|
2649 | * Set the busy bit in the new TSS descriptor, if the task switch is a JMP/CALL/INT_XCPT.
|
---|
2650 | */
|
---|
2651 | if (enmTaskSwitch != IEMTASKSWITCH_IRET)
|
---|
2652 | {
|
---|
2653 | rcStrict = iemMemMap(pVCpu, (void **)&pNewDescTSS, sizeof(*pNewDescTSS), UINT8_MAX,
|
---|
2654 | pVCpu->cpum.GstCtx.gdtr.pGdt + (SelTSS & X86_SEL_MASK), IEM_ACCESS_SYS_RW, 0);
|
---|
2655 | if (rcStrict != VINF_SUCCESS)
|
---|
2656 | {
|
---|
2657 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2658 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2659 | return rcStrict;
|
---|
2660 | }
|
---|
2661 |
|
---|
2662 | /* Check that the descriptor indicates the new TSS is available (not busy). */
|
---|
2663 | AssertMsg( pNewDescTSS->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
2664 | || pNewDescTSS->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL,
|
---|
2665 | ("Invalid TSS descriptor type=%#x", pNewDescTSS->Legacy.Gate.u4Type));
|
---|
2666 |
|
---|
2667 | pNewDescTSS->Legacy.Gate.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2668 | rcStrict = iemMemCommitAndUnmap(pVCpu, pNewDescTSS, IEM_ACCESS_SYS_RW);
|
---|
2669 | if (rcStrict != VINF_SUCCESS)
|
---|
2670 | {
|
---|
2671 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2672 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2673 | return rcStrict;
|
---|
2674 | }
|
---|
2675 | }
|
---|
2676 |
|
---|
2677 | /*
|
---|
2678 | * From this point on, we're technically in the new task. We will defer exceptions
|
---|
2679 | * until the completion of the task switch but before executing any instructions in the new task.
|
---|
2680 | */
|
---|
2681 | pVCpu->cpum.GstCtx.tr.Sel = SelTSS;
|
---|
2682 | pVCpu->cpum.GstCtx.tr.ValidSel = SelTSS;
|
---|
2683 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2684 | pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&pNewDescTSS->Legacy);
|
---|
2685 | pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&pNewDescTSS->Legacy);
|
---|
2686 | pVCpu->cpum.GstCtx.tr.u64Base = X86DESC_BASE(&pNewDescTSS->Legacy);
|
---|
2687 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_TR);
|
---|
2688 |
|
---|
2689 | /* Set the busy bit in TR. */
|
---|
2690 | pVCpu->cpum.GstCtx.tr.Attr.n.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2691 |
|
---|
2692 | /* Set EFLAGS.NT (Nested Task) in the eflags loaded from the new TSS, if it's a task switch due to a CALL/INT_XCPT. */
|
---|
2693 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
2694 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
2695 | {
|
---|
2696 | uNewEflags |= X86_EFL_NT;
|
---|
2697 | }
|
---|
2698 |
|
---|
2699 | pVCpu->cpum.GstCtx.dr[7] &= ~X86_DR7_LE_ALL; /** @todo Should we clear DR7.LE bit too? */
|
---|
2700 | pVCpu->cpum.GstCtx.cr0 |= X86_CR0_TS;
|
---|
2701 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_CR0);
|
---|
2702 |
|
---|
2703 | pVCpu->cpum.GstCtx.eip = uNewEip;
|
---|
2704 | pVCpu->cpum.GstCtx.eax = uNewEax;
|
---|
2705 | pVCpu->cpum.GstCtx.ecx = uNewEcx;
|
---|
2706 | pVCpu->cpum.GstCtx.edx = uNewEdx;
|
---|
2707 | pVCpu->cpum.GstCtx.ebx = uNewEbx;
|
---|
2708 | pVCpu->cpum.GstCtx.esp = uNewEsp;
|
---|
2709 | pVCpu->cpum.GstCtx.ebp = uNewEbp;
|
---|
2710 | pVCpu->cpum.GstCtx.esi = uNewEsi;
|
---|
2711 | pVCpu->cpum.GstCtx.edi = uNewEdi;
|
---|
2712 |
|
---|
2713 | uNewEflags &= X86_EFL_LIVE_MASK;
|
---|
2714 | uNewEflags |= X86_EFL_RA1_MASK;
|
---|
2715 | IEMMISC_SET_EFL(pVCpu, uNewEflags);
|
---|
2716 |
|
---|
2717 | /*
|
---|
2718 | * Switch the selectors here and do the segment checks later. If we throw exceptions, the selectors
|
---|
2719 | * will be valid in the exception handler. We cannot update the hidden parts until we've switched CR3
|
---|
2720 | * due to the hidden part data originating from the guest LDT/GDT which is accessed through paging.
|
---|
2721 | */
|
---|
2722 | pVCpu->cpum.GstCtx.es.Sel = uNewES;
|
---|
2723 | pVCpu->cpum.GstCtx.es.Attr.u &= ~X86DESCATTR_P;
|
---|
2724 |
|
---|
2725 | pVCpu->cpum.GstCtx.cs.Sel = uNewCS;
|
---|
2726 | pVCpu->cpum.GstCtx.cs.Attr.u &= ~X86DESCATTR_P;
|
---|
2727 |
|
---|
2728 | pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
|
---|
2729 | pVCpu->cpum.GstCtx.ss.Attr.u &= ~X86DESCATTR_P;
|
---|
2730 |
|
---|
2731 | pVCpu->cpum.GstCtx.ds.Sel = uNewDS;
|
---|
2732 | pVCpu->cpum.GstCtx.ds.Attr.u &= ~X86DESCATTR_P;
|
---|
2733 |
|
---|
2734 | pVCpu->cpum.GstCtx.fs.Sel = uNewFS;
|
---|
2735 | pVCpu->cpum.GstCtx.fs.Attr.u &= ~X86DESCATTR_P;
|
---|
2736 |
|
---|
2737 | pVCpu->cpum.GstCtx.gs.Sel = uNewGS;
|
---|
2738 | pVCpu->cpum.GstCtx.gs.Attr.u &= ~X86DESCATTR_P;
|
---|
2739 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2740 |
|
---|
2741 | pVCpu->cpum.GstCtx.ldtr.Sel = uNewLdt;
|
---|
2742 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2743 | pVCpu->cpum.GstCtx.ldtr.Attr.u &= ~X86DESCATTR_P;
|
---|
2744 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_LDTR);
|
---|
2745 |
|
---|
2746 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
2747 | {
|
---|
2748 | pVCpu->cpum.GstCtx.es.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2749 | pVCpu->cpum.GstCtx.cs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2750 | pVCpu->cpum.GstCtx.ss.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2751 | pVCpu->cpum.GstCtx.ds.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2752 | pVCpu->cpum.GstCtx.fs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2753 | pVCpu->cpum.GstCtx.gs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2754 | pVCpu->cpum.GstCtx.ldtr.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2755 | }
|
---|
2756 |
|
---|
2757 | /*
|
---|
2758 | * Switch CR3 for the new task.
|
---|
2759 | */
|
---|
2760 | if ( fIsNewTSS386
|
---|
2761 | && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG))
|
---|
2762 | {
|
---|
2763 | /** @todo Should we update and flush TLBs only if CR3 value actually changes? */
|
---|
2764 | int rc = CPUMSetGuestCR3(pVCpu, uNewCr3);
|
---|
2765 | AssertRCSuccessReturn(rc, rc);
|
---|
2766 |
|
---|
2767 | /* Inform PGM. */
|
---|
2768 | /** @todo Should we raise \#GP(0) here when PAE PDPEs are invalid? */
|
---|
2769 | rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
|
---|
2770 | AssertRCReturn(rc, rc);
|
---|
2771 | /* ignore informational status codes */
|
---|
2772 |
|
---|
2773 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_CR3);
|
---|
2774 | }
|
---|
2775 |
|
---|
2776 | /*
|
---|
2777 | * Switch LDTR for the new task.
|
---|
2778 | */
|
---|
2779 | if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
|
---|
2780 | iemHlpLoadNullDataSelectorProt(pVCpu, &pVCpu->cpum.GstCtx.ldtr, uNewLdt);
|
---|
2781 | else
|
---|
2782 | {
|
---|
2783 | Assert(!pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present); /* Ensures that LDT.TI check passes in iemMemFetchSelDesc() below. */
|
---|
2784 |
|
---|
2785 | IEMSELDESC DescNewLdt;
|
---|
2786 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescNewLdt, uNewLdt, X86_XCPT_TS);
|
---|
2787 | if (rcStrict != VINF_SUCCESS)
|
---|
2788 | {
|
---|
2789 | Log(("iemTaskSwitch: fetching LDT failed. enmTaskSwitch=%u uNewLdt=%u cbGdt=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2790 | uNewLdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2791 | return rcStrict;
|
---|
2792 | }
|
---|
2793 | if ( !DescNewLdt.Legacy.Gen.u1Present
|
---|
2794 | || DescNewLdt.Legacy.Gen.u1DescType
|
---|
2795 | || DescNewLdt.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
|
---|
2796 | {
|
---|
2797 | Log(("iemTaskSwitch: Invalid LDT. enmTaskSwitch=%u uNewLdt=%u DescNewLdt.Legacy.u=%#RX64 -> #TS\n", enmTaskSwitch,
|
---|
2798 | uNewLdt, DescNewLdt.Legacy.u));
|
---|
2799 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
2800 | }
|
---|
2801 |
|
---|
2802 | pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
|
---|
2803 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2804 | pVCpu->cpum.GstCtx.ldtr.u64Base = X86DESC_BASE(&DescNewLdt.Legacy);
|
---|
2805 | pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&DescNewLdt.Legacy);
|
---|
2806 | pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&DescNewLdt.Legacy);
|
---|
2807 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
2808 | pVCpu->cpum.GstCtx.ldtr.Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
2809 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
2810 | }
|
---|
2811 |
|
---|
2812 | IEMSELDESC DescSS;
|
---|
2813 | if (IEM_IS_V86_MODE(pVCpu))
|
---|
2814 | {
|
---|
2815 | IEM_SET_CPL(pVCpu, 3);
|
---|
2816 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.es, uNewES);
|
---|
2817 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.cs, uNewCS);
|
---|
2818 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.ss, uNewSS);
|
---|
2819 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.ds, uNewDS);
|
---|
2820 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.fs, uNewFS);
|
---|
2821 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.gs, uNewGS);
|
---|
2822 |
|
---|
2823 | /* Quick fix: fake DescSS. */ /** @todo fix the code further down? */
|
---|
2824 | DescSS.Legacy.u = 0;
|
---|
2825 | DescSS.Legacy.Gen.u16LimitLow = (uint16_t)pVCpu->cpum.GstCtx.ss.u32Limit;
|
---|
2826 | DescSS.Legacy.Gen.u4LimitHigh = pVCpu->cpum.GstCtx.ss.u32Limit >> 16;
|
---|
2827 | DescSS.Legacy.Gen.u16BaseLow = (uint16_t)pVCpu->cpum.GstCtx.ss.u64Base;
|
---|
2828 | DescSS.Legacy.Gen.u8BaseHigh1 = (uint8_t)(pVCpu->cpum.GstCtx.ss.u64Base >> 16);
|
---|
2829 | DescSS.Legacy.Gen.u8BaseHigh2 = (uint8_t)(pVCpu->cpum.GstCtx.ss.u64Base >> 24);
|
---|
2830 | DescSS.Legacy.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
|
---|
2831 | DescSS.Legacy.Gen.u2Dpl = 3;
|
---|
2832 | }
|
---|
2833 | else
|
---|
2834 | {
|
---|
2835 | uint8_t const uNewCpl = (uNewCS & X86_SEL_RPL);
|
---|
2836 |
|
---|
2837 | /*
|
---|
2838 | * Load the stack segment for the new task.
|
---|
2839 | */
|
---|
2840 | if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
|
---|
2841 | {
|
---|
2842 | Log(("iemTaskSwitch: Null stack segment. enmTaskSwitch=%u uNewSS=%#x -> #TS\n", enmTaskSwitch, uNewSS));
|
---|
2843 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
2844 | }
|
---|
2845 |
|
---|
2846 | /* Fetch the descriptor. */
|
---|
2847 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_TS);
|
---|
2848 | if (rcStrict != VINF_SUCCESS)
|
---|
2849 | {
|
---|
2850 | Log(("iemTaskSwitch: failed to fetch SS. uNewSS=%#x rc=%Rrc\n", uNewSS,
|
---|
2851 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2852 | return rcStrict;
|
---|
2853 | }
|
---|
2854 |
|
---|
2855 | /* SS must be a data segment and writable. */
|
---|
2856 | if ( !DescSS.Legacy.Gen.u1DescType
|
---|
2857 | || (DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
2858 | || !(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE))
|
---|
2859 | {
|
---|
2860 | Log(("iemTaskSwitch: SS invalid descriptor type. uNewSS=%#x u1DescType=%u u4Type=%#x\n",
|
---|
2861 | uNewSS, DescSS.Legacy.Gen.u1DescType, DescSS.Legacy.Gen.u4Type));
|
---|
2862 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
2863 | }
|
---|
2864 |
|
---|
2865 | /* The SS.RPL, SS.DPL, CS.RPL (CPL) must be equal. */
|
---|
2866 | if ( (uNewSS & X86_SEL_RPL) != uNewCpl
|
---|
2867 | || DescSS.Legacy.Gen.u2Dpl != uNewCpl)
|
---|
2868 | {
|
---|
2869 | Log(("iemTaskSwitch: Invalid priv. for SS. uNewSS=%#x SS.DPL=%u uNewCpl=%u -> #TS\n", uNewSS, DescSS.Legacy.Gen.u2Dpl,
|
---|
2870 | uNewCpl));
|
---|
2871 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
2872 | }
|
---|
2873 |
|
---|
2874 | /* Is it there? */
|
---|
2875 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
2876 | {
|
---|
2877 | Log(("iemTaskSwitch: SS not present. uNewSS=%#x -> #NP\n", uNewSS));
|
---|
2878 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
2879 | }
|
---|
2880 |
|
---|
2881 | uint32_t cbLimit = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
2882 | uint64_t u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
2883 |
|
---|
2884 | /* Set the accessed bit before committing the result into SS. */
|
---|
2885 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2886 | {
|
---|
2887 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
|
---|
2888 | if (rcStrict != VINF_SUCCESS)
|
---|
2889 | return rcStrict;
|
---|
2890 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2891 | }
|
---|
2892 |
|
---|
2893 | /* Commit SS. */
|
---|
2894 | pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
|
---|
2895 | pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
|
---|
2896 | pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
2897 | pVCpu->cpum.GstCtx.ss.u32Limit = cbLimit;
|
---|
2898 | pVCpu->cpum.GstCtx.ss.u64Base = u64Base;
|
---|
2899 | pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2900 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
2901 |
|
---|
2902 | /* CPL has changed, update IEM before loading rest of segments. */
|
---|
2903 | IEM_SET_CPL(pVCpu, uNewCpl);
|
---|
2904 |
|
---|
2905 | /*
|
---|
2906 | * Load the data segments for the new task.
|
---|
2907 | */
|
---|
2908 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.es, uNewES);
|
---|
2909 | if (rcStrict != VINF_SUCCESS)
|
---|
2910 | return rcStrict;
|
---|
2911 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.ds, uNewDS);
|
---|
2912 | if (rcStrict != VINF_SUCCESS)
|
---|
2913 | return rcStrict;
|
---|
2914 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.fs, uNewFS);
|
---|
2915 | if (rcStrict != VINF_SUCCESS)
|
---|
2916 | return rcStrict;
|
---|
2917 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.gs, uNewGS);
|
---|
2918 | if (rcStrict != VINF_SUCCESS)
|
---|
2919 | return rcStrict;
|
---|
2920 |
|
---|
2921 | /*
|
---|
2922 | * Load the code segment for the new task.
|
---|
2923 | */
|
---|
2924 | if (!(uNewCS & X86_SEL_MASK_OFF_RPL))
|
---|
2925 | {
|
---|
2926 | Log(("iemTaskSwitch #TS: Null code segment. enmTaskSwitch=%u uNewCS=%#x\n", enmTaskSwitch, uNewCS));
|
---|
2927 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
2928 | }
|
---|
2929 |
|
---|
2930 | /* Fetch the descriptor. */
|
---|
2931 | IEMSELDESC DescCS;
|
---|
2932 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_TS);
|
---|
2933 | if (rcStrict != VINF_SUCCESS)
|
---|
2934 | {
|
---|
2935 | Log(("iemTaskSwitch: failed to fetch CS. uNewCS=%u rc=%Rrc\n", uNewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2936 | return rcStrict;
|
---|
2937 | }
|
---|
2938 |
|
---|
2939 | /* CS must be a code segment. */
|
---|
2940 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
2941 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
2942 | {
|
---|
2943 | Log(("iemTaskSwitch: CS invalid descriptor type. uNewCS=%#x u1DescType=%u u4Type=%#x -> #TS\n", uNewCS,
|
---|
2944 | DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
2945 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
2946 | }
|
---|
2947 |
|
---|
2948 | /* For conforming CS, DPL must be less than or equal to the RPL. */
|
---|
2949 | if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
2950 | && DescCS.Legacy.Gen.u2Dpl > (uNewCS & X86_SEL_RPL))
|
---|
2951 | {
|
---|
2952 | Log(("iemTaskSwitch: confirming CS DPL > RPL. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS, DescCS.Legacy.Gen.u4Type,
|
---|
2953 | DescCS.Legacy.Gen.u2Dpl));
|
---|
2954 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
2955 | }
|
---|
2956 |
|
---|
2957 | /* For non-conforming CS, DPL must match RPL. */
|
---|
2958 | if ( !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
2959 | && DescCS.Legacy.Gen.u2Dpl != (uNewCS & X86_SEL_RPL))
|
---|
2960 | {
|
---|
2961 | Log(("iemTaskSwitch: non-confirming CS DPL RPL mismatch. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS,
|
---|
2962 | DescCS.Legacy.Gen.u4Type, DescCS.Legacy.Gen.u2Dpl));
|
---|
2963 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
2964 | }
|
---|
2965 |
|
---|
2966 | /* Is it there? */
|
---|
2967 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
2968 | {
|
---|
2969 | Log(("iemTaskSwitch: CS not present. uNewCS=%#x -> #NP\n", uNewCS));
|
---|
2970 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
2971 | }
|
---|
2972 |
|
---|
2973 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
2974 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
2975 |
|
---|
2976 | /* Set the accessed bit before committing the result into CS. */
|
---|
2977 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2978 | {
|
---|
2979 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
2980 | if (rcStrict != VINF_SUCCESS)
|
---|
2981 | return rcStrict;
|
---|
2982 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2983 | }
|
---|
2984 |
|
---|
2985 | /* Commit CS. */
|
---|
2986 | pVCpu->cpum.GstCtx.cs.Sel = uNewCS;
|
---|
2987 | pVCpu->cpum.GstCtx.cs.ValidSel = uNewCS;
|
---|
2988 | pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
2989 | pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
|
---|
2990 | pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
|
---|
2991 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2992 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
2993 | }
|
---|
2994 |
|
---|
2995 | /* Make sure the CPU mode is correct. */
|
---|
2996 | uint32_t const fExecNew = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS);
|
---|
2997 | if (fExecNew != pVCpu->iem.s.fExec)
|
---|
2998 | Log(("iemTaskSwitch: fExec %#x -> %#x (xor %#x)\n", pVCpu->iem.s.fExec, fExecNew, pVCpu->iem.s.fExec ^ fExecNew));
|
---|
2999 | pVCpu->iem.s.fExec = fExecNew;
|
---|
3000 |
|
---|
3001 | /** @todo Debug trap. */
|
---|
3002 | if (fIsNewTSS386 && fNewDebugTrap)
|
---|
3003 | Log(("iemTaskSwitch: Debug Trap set in new TSS. Not implemented!\n"));
|
---|
3004 |
|
---|
3005 | /*
|
---|
3006 | * Construct the error code masks based on what caused this task switch.
|
---|
3007 | * See Intel Instruction reference for INT.
|
---|
3008 | */
|
---|
3009 | uint16_t uExt;
|
---|
3010 | if ( enmTaskSwitch == IEMTASKSWITCH_INT_XCPT
|
---|
3011 | && ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3012 | || (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)))
|
---|
3013 | uExt = 1;
|
---|
3014 | else
|
---|
3015 | uExt = 0;
|
---|
3016 |
|
---|
3017 | /*
|
---|
3018 | * Push any error code on to the new stack.
|
---|
3019 | */
|
---|
3020 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3021 | {
|
---|
3022 | Assert(enmTaskSwitch == IEMTASKSWITCH_INT_XCPT);
|
---|
3023 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3024 | uint8_t const cbStackFrame = fIsNewTSS386 ? 4 : 2;
|
---|
3025 |
|
---|
3026 | /* Check that there is sufficient space on the stack. */
|
---|
3027 | /** @todo Factor out segment limit checking for normal/expand down segments
|
---|
3028 | * into a separate function. */
|
---|
3029 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
3030 | {
|
---|
3031 | if ( pVCpu->cpum.GstCtx.esp - 1 > cbLimitSS
|
---|
3032 | || pVCpu->cpum.GstCtx.esp < cbStackFrame)
|
---|
3033 | {
|
---|
3034 | /** @todo Intel says \#SS(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
3035 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #SS\n",
|
---|
3036 | pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp, cbStackFrame));
|
---|
3037 | return iemRaiseStackSelectorNotPresentWithErr(pVCpu, uExt);
|
---|
3038 | }
|
---|
3039 | }
|
---|
3040 | else
|
---|
3041 | {
|
---|
3042 | if ( pVCpu->cpum.GstCtx.esp - 1 > (DescSS.Legacy.Gen.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
|
---|
3043 | || pVCpu->cpum.GstCtx.esp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
3044 | {
|
---|
3045 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #SS\n",
|
---|
3046 | pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp, cbStackFrame));
|
---|
3047 | return iemRaiseStackSelectorNotPresentWithErr(pVCpu, uExt);
|
---|
3048 | }
|
---|
3049 | }
|
---|
3050 |
|
---|
3051 |
|
---|
3052 | if (fIsNewTSS386)
|
---|
3053 | rcStrict = iemMemStackPushU32(pVCpu, uErr);
|
---|
3054 | else
|
---|
3055 | rcStrict = iemMemStackPushU16(pVCpu, uErr);
|
---|
3056 | if (rcStrict != VINF_SUCCESS)
|
---|
3057 | {
|
---|
3058 | Log(("iemTaskSwitch: Can't push error code to new task's stack. %s-bit TSS. rc=%Rrc\n",
|
---|
3059 | fIsNewTSS386 ? "32" : "16", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3060 | return rcStrict;
|
---|
3061 | }
|
---|
3062 | }
|
---|
3063 |
|
---|
3064 | /* Check the new EIP against the new CS limit. */
|
---|
3065 | if (pVCpu->cpum.GstCtx.eip > pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
3066 | {
|
---|
3067 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: New EIP exceeds CS limit. uNewEIP=%#RX32 CS limit=%u -> #GP(0)\n",
|
---|
3068 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.cs.u32Limit));
|
---|
3069 | /** @todo Intel says \#GP(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
3070 | return iemRaiseGeneralProtectionFault(pVCpu, uExt);
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 | Log(("iemTaskSwitch: Success! New CS:EIP=%#04x:%#x SS=%#04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
|
---|
3074 | pVCpu->cpum.GstCtx.ss.Sel));
|
---|
3075 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3076 | }
|
---|
3077 |
|
---|
3078 |
|
---|
3079 | /**
|
---|
3080 | * Implements exceptions and interrupts for protected mode.
|
---|
3081 | *
|
---|
3082 | * @returns VBox strict status code.
|
---|
3083 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3084 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3085 | * address.
|
---|
3086 | * @param u8Vector The interrupt / exception vector number.
|
---|
3087 | * @param fFlags The flags.
|
---|
3088 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3089 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3090 | */
|
---|
3091 | static VBOXSTRICTRC
|
---|
3092 | iemRaiseXcptOrIntInProtMode(PVMCPUCC pVCpu,
|
---|
3093 | uint8_t cbInstr,
|
---|
3094 | uint8_t u8Vector,
|
---|
3095 | uint32_t fFlags,
|
---|
3096 | uint16_t uErr,
|
---|
3097 | uint64_t uCr2) RT_NOEXCEPT
|
---|
3098 | {
|
---|
3099 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
3100 |
|
---|
3101 | /*
|
---|
3102 | * Read the IDT entry.
|
---|
3103 | */
|
---|
3104 | if (pVCpu->cpum.GstCtx.idtr.cbIdt < UINT32_C(8) * u8Vector + 7)
|
---|
3105 | {
|
---|
3106 | Log(("RaiseXcptOrIntInProtMode: %#x is out of bounds (%#x)\n", u8Vector, pVCpu->cpum.GstCtx.idtr.cbIdt));
|
---|
3107 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3108 | }
|
---|
3109 | X86DESC Idte;
|
---|
3110 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &Idte.u, UINT8_MAX,
|
---|
3111 | pVCpu->cpum.GstCtx.idtr.pIdt + UINT32_C(8) * u8Vector);
|
---|
3112 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3113 | {
|
---|
3114 | Log(("iemRaiseXcptOrIntInProtMode: failed to fetch IDT entry! vec=%#x rc=%Rrc\n", u8Vector, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3115 | return rcStrict;
|
---|
3116 | }
|
---|
3117 | Log(("iemRaiseXcptOrIntInProtMode: vec=%#x P=%u DPL=%u DT=%u:%u A=%u %04x:%04x%04x - from %04x:%08RX64 efl=%#x depth=%d\n",
|
---|
3118 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
3119 | Idte.Gate.u5ParmCount, Idte.Gate.u16Sel, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow,
|
---|
3120 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u, pVCpu->iem.s.cXcptRecursions));
|
---|
3121 |
|
---|
3122 | /*
|
---|
3123 | * Check the descriptor type, DPL and such.
|
---|
3124 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
3125 | */
|
---|
3126 | if (Idte.Gate.u1DescType)
|
---|
3127 | {
|
---|
3128 | Log(("RaiseXcptOrIntInProtMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3129 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3130 | }
|
---|
3131 | bool fTaskGate = false;
|
---|
3132 | uint8_t f32BitGate = true;
|
---|
3133 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
3134 | switch (Idte.Gate.u4Type)
|
---|
3135 | {
|
---|
3136 | case X86_SEL_TYPE_SYS_UNDEFINED:
|
---|
3137 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
3138 | case X86_SEL_TYPE_SYS_LDT:
|
---|
3139 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
3140 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
3141 | case X86_SEL_TYPE_SYS_UNDEFINED2:
|
---|
3142 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
3143 | case X86_SEL_TYPE_SYS_UNDEFINED3:
|
---|
3144 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
3145 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
3146 | case X86_SEL_TYPE_SYS_UNDEFINED4:
|
---|
3147 | {
|
---|
3148 | /** @todo check what actually happens when the type is wrong...
|
---|
3149 | * esp. call gates. */
|
---|
3150 | Log(("RaiseXcptOrIntInProtMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3151 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3152 | }
|
---|
3153 |
|
---|
3154 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
3155 | f32BitGate = false;
|
---|
3156 | RT_FALL_THRU();
|
---|
3157 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
3158 | fEflToClear |= X86_EFL_IF;
|
---|
3159 | break;
|
---|
3160 |
|
---|
3161 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
3162 | fTaskGate = true;
|
---|
3163 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
3164 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Task gates\n"));
|
---|
3165 | #endif
|
---|
3166 | break;
|
---|
3167 |
|
---|
3168 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
3169 | f32BitGate = false;
|
---|
3170 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
3171 | break;
|
---|
3172 |
|
---|
3173 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3174 | }
|
---|
3175 |
|
---|
3176 | /* Check DPL against CPL if applicable. */
|
---|
3177 | if ((fFlags & (IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3178 | {
|
---|
3179 | if (IEM_GET_CPL(pVCpu) > Idte.Gate.u2Dpl)
|
---|
3180 | {
|
---|
3181 | Log(("RaiseXcptOrIntInProtMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, IEM_GET_CPL(pVCpu), Idte.Gate.u2Dpl));
|
---|
3182 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3183 | }
|
---|
3184 | }
|
---|
3185 |
|
---|
3186 | /* Is it there? */
|
---|
3187 | if (!Idte.Gate.u1Present)
|
---|
3188 | {
|
---|
3189 | Log(("RaiseXcptOrIntInProtMode %#x - not present -> #NP\n", u8Vector));
|
---|
3190 | return iemRaiseSelectorNotPresentWithErr(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3191 | }
|
---|
3192 |
|
---|
3193 | /* Is it a task-gate? */
|
---|
3194 | if (fTaskGate)
|
---|
3195 | {
|
---|
3196 | /*
|
---|
3197 | * Construct the error code masks based on what caused this task switch.
|
---|
3198 | * See Intel Instruction reference for INT.
|
---|
3199 | */
|
---|
3200 | uint16_t const uExt = ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3201 | && !(fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)) ? 0 : 1;
|
---|
3202 | uint16_t const uSelMask = X86_SEL_MASK_OFF_RPL;
|
---|
3203 | RTSEL SelTSS = Idte.Gate.u16Sel;
|
---|
3204 |
|
---|
3205 | /*
|
---|
3206 | * Fetch the TSS descriptor in the GDT.
|
---|
3207 | */
|
---|
3208 | IEMSELDESC DescTSS;
|
---|
3209 | rcStrict = iemMemFetchSelDescWithErr(pVCpu, &DescTSS, SelTSS, X86_XCPT_GP, (SelTSS & uSelMask) | uExt);
|
---|
3210 | if (rcStrict != VINF_SUCCESS)
|
---|
3211 | {
|
---|
3212 | Log(("RaiseXcptOrIntInProtMode %#x - failed to fetch TSS selector %#x, rc=%Rrc\n", u8Vector, SelTSS,
|
---|
3213 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3214 | return rcStrict;
|
---|
3215 | }
|
---|
3216 |
|
---|
3217 | /* The TSS descriptor must be a system segment and be available (not busy). */
|
---|
3218 | if ( DescTSS.Legacy.Gen.u1DescType
|
---|
3219 | || ( DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
3220 | && DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL))
|
---|
3221 | {
|
---|
3222 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x of task gate not a system descriptor or not available %#RX64\n",
|
---|
3223 | u8Vector, SelTSS, DescTSS.Legacy.au64));
|
---|
3224 | return iemRaiseGeneralProtectionFault(pVCpu, (SelTSS & uSelMask) | uExt);
|
---|
3225 | }
|
---|
3226 |
|
---|
3227 | /* The TSS must be present. */
|
---|
3228 | if (!DescTSS.Legacy.Gen.u1Present)
|
---|
3229 | {
|
---|
3230 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x not present %#RX64\n", u8Vector, SelTSS, DescTSS.Legacy.au64));
|
---|
3231 | return iemRaiseSelectorNotPresentWithErr(pVCpu, (SelTSS & uSelMask) | uExt);
|
---|
3232 | }
|
---|
3233 |
|
---|
3234 | /* Do the actual task switch. */
|
---|
3235 | return iemTaskSwitch(pVCpu, IEMTASKSWITCH_INT_XCPT,
|
---|
3236 | (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip,
|
---|
3237 | fFlags, uErr, uCr2, SelTSS, &DescTSS);
|
---|
3238 | }
|
---|
3239 |
|
---|
3240 | /* A null CS is bad. */
|
---|
3241 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
3242 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3243 | {
|
---|
3244 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
3245 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3246 | }
|
---|
3247 |
|
---|
3248 | /* Fetch the descriptor for the new CS. */
|
---|
3249 | IEMSELDESC DescCS;
|
---|
3250 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, NewCS, X86_XCPT_GP); /** @todo correct exception? */
|
---|
3251 | if (rcStrict != VINF_SUCCESS)
|
---|
3252 | {
|
---|
3253 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3254 | return rcStrict;
|
---|
3255 | }
|
---|
3256 |
|
---|
3257 | /* Must be a code segment. */
|
---|
3258 | if (!DescCS.Legacy.Gen.u1DescType)
|
---|
3259 | {
|
---|
3260 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3261 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3262 | }
|
---|
3263 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3264 | {
|
---|
3265 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - data selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3266 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3267 | }
|
---|
3268 |
|
---|
3269 | /* Don't allow lowering the privilege level. */
|
---|
3270 | /** @todo Does the lowering of privileges apply to software interrupts
|
---|
3271 | * only? This has bearings on the more-privileged or
|
---|
3272 | * same-privilege stack behavior further down. A testcase would
|
---|
3273 | * be nice. */
|
---|
3274 | if (DescCS.Legacy.Gen.u2Dpl > IEM_GET_CPL(pVCpu))
|
---|
3275 | {
|
---|
3276 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
3277 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, IEM_GET_CPL(pVCpu)));
|
---|
3278 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3279 | }
|
---|
3280 |
|
---|
3281 | /* Make sure the selector is present. */
|
---|
3282 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3283 | {
|
---|
3284 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
3285 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewCS);
|
---|
3286 | }
|
---|
3287 |
|
---|
3288 | #ifdef LOG_ENABLED
|
---|
3289 | /* If software interrupt, try decode it if logging is enabled and such. */
|
---|
3290 | if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3291 | && LogIsItEnabled(RTLOGGRPFLAGS_ENABLED, LOG_GROUP_IEM_SYSCALL))
|
---|
3292 | iemLogSyscallProtModeInt(pVCpu, u8Vector, cbInstr);
|
---|
3293 | #endif
|
---|
3294 |
|
---|
3295 | /* Check the new EIP against the new CS limit. */
|
---|
3296 | uint32_t const uNewEip = Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_INT_GATE
|
---|
3297 | || Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_TRAP_GATE
|
---|
3298 | ? Idte.Gate.u16OffsetLow
|
---|
3299 | : Idte.Gate.u16OffsetLow | ((uint32_t)Idte.Gate.u16OffsetHigh << 16);
|
---|
3300 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3301 | if (uNewEip > cbLimitCS)
|
---|
3302 | {
|
---|
3303 | Log(("RaiseXcptOrIntInProtMode %#x - EIP=%#x > cbLimitCS=%#x (CS=%#x) -> #GP(0)\n",
|
---|
3304 | u8Vector, uNewEip, cbLimitCS, NewCS));
|
---|
3305 | return iemRaiseGeneralProtectionFault(pVCpu, 0);
|
---|
3306 | }
|
---|
3307 | Log7(("iemRaiseXcptOrIntInProtMode: new EIP=%#x CS=%#x\n", uNewEip, NewCS));
|
---|
3308 |
|
---|
3309 | /* Calc the flag image to push. */
|
---|
3310 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
|
---|
3311 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
3312 | fEfl &= ~X86_EFL_RF;
|
---|
3313 | else
|
---|
3314 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
3315 |
|
---|
3316 | /* From V8086 mode only go to CPL 0. */
|
---|
3317 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
3318 | ? IEM_GET_CPL(pVCpu) : DescCS.Legacy.Gen.u2Dpl;
|
---|
3319 | if ((fEfl & X86_EFL_VM) && uNewCpl != 0) /** @todo When exactly is this raised? */
|
---|
3320 | {
|
---|
3321 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - New CPL (%d) != 0 w/ VM=1 -> #GP\n", u8Vector, NewCS, uNewCpl));
|
---|
3322 | return iemRaiseGeneralProtectionFault(pVCpu, 0);
|
---|
3323 | }
|
---|
3324 |
|
---|
3325 | /*
|
---|
3326 | * If the privilege level changes, we need to get a new stack from the TSS.
|
---|
3327 | * This in turns means validating the new SS and ESP...
|
---|
3328 | */
|
---|
3329 | if (uNewCpl != IEM_GET_CPL(pVCpu))
|
---|
3330 | {
|
---|
3331 | RTSEL NewSS;
|
---|
3332 | uint32_t uNewEsp;
|
---|
3333 | rcStrict = iemRaiseLoadStackFromTss32Or16(pVCpu, uNewCpl, &NewSS, &uNewEsp);
|
---|
3334 | if (rcStrict != VINF_SUCCESS)
|
---|
3335 | return rcStrict;
|
---|
3336 |
|
---|
3337 | IEMSELDESC DescSS;
|
---|
3338 | rcStrict = iemMiscValidateNewSS(pVCpu, NewSS, uNewCpl, &DescSS);
|
---|
3339 | if (rcStrict != VINF_SUCCESS)
|
---|
3340 | return rcStrict;
|
---|
3341 | /* If the new SS is 16-bit, we are only going to use SP, not ESP. */
|
---|
3342 | if (!DescSS.Legacy.Gen.u1DefBig)
|
---|
3343 | {
|
---|
3344 | Log(("iemRaiseXcptOrIntInProtMode: Forcing ESP=%#x to 16 bits\n", uNewEsp));
|
---|
3345 | uNewEsp = (uint16_t)uNewEsp;
|
---|
3346 | }
|
---|
3347 |
|
---|
3348 | Log7(("iemRaiseXcptOrIntInProtMode: New SS=%#x ESP=%#x (from TSS); current SS=%#x ESP=%#x\n", NewSS, uNewEsp, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp));
|
---|
3349 |
|
---|
3350 | /* Check that there is sufficient space for the stack frame. */
|
---|
3351 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3352 | uint8_t const cbStackFrame = !(fEfl & X86_EFL_VM)
|
---|
3353 | ? (fFlags & IEM_XCPT_FLAGS_ERR ? 12 : 10) << f32BitGate
|
---|
3354 | : (fFlags & IEM_XCPT_FLAGS_ERR ? 20 : 18) << f32BitGate;
|
---|
3355 |
|
---|
3356 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
3357 | {
|
---|
3358 | if ( uNewEsp - 1 > cbLimitSS
|
---|
3359 | || uNewEsp < cbStackFrame)
|
---|
3360 | {
|
---|
3361 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #GP\n",
|
---|
3362 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
3363 | return iemRaiseSelectorBoundsBySelector(pVCpu, NewSS);
|
---|
3364 | }
|
---|
3365 | }
|
---|
3366 | else
|
---|
3367 | {
|
---|
3368 | if ( uNewEsp - 1 > (DescSS.Legacy.Gen.u1DefBig ? UINT32_MAX : UINT16_MAX)
|
---|
3369 | || uNewEsp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
3370 | {
|
---|
3371 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #GP\n",
|
---|
3372 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
3373 | return iemRaiseSelectorBoundsBySelector(pVCpu, NewSS);
|
---|
3374 | }
|
---|
3375 | }
|
---|
3376 |
|
---|
3377 | /*
|
---|
3378 | * Start making changes.
|
---|
3379 | */
|
---|
3380 |
|
---|
3381 | /* Set the new CPL so that stack accesses use it. */
|
---|
3382 | uint8_t const uOldCpl = IEM_GET_CPL(pVCpu);
|
---|
3383 | IEM_SET_CPL(pVCpu, uNewCpl);
|
---|
3384 |
|
---|
3385 | /* Create the stack frame. */
|
---|
3386 | RTPTRUNION uStackFrame;
|
---|
3387 | rcStrict = iemMemMap(pVCpu, &uStackFrame.pv, cbStackFrame, UINT8_MAX,
|
---|
3388 | uNewEsp - cbStackFrame + X86DESC_BASE(&DescSS.Legacy),
|
---|
3389 | IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS, 0); /* _SYS is a hack ... */
|
---|
3390 | if (rcStrict != VINF_SUCCESS)
|
---|
3391 | return rcStrict;
|
---|
3392 | void * const pvStackFrame = uStackFrame.pv;
|
---|
3393 | if (f32BitGate)
|
---|
3394 | {
|
---|
3395 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3396 | *uStackFrame.pu32++ = uErr;
|
---|
3397 | uStackFrame.pu32[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip;
|
---|
3398 | uStackFrame.pu32[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | uOldCpl;
|
---|
3399 | uStackFrame.pu32[2] = fEfl;
|
---|
3400 | uStackFrame.pu32[3] = pVCpu->cpum.GstCtx.esp;
|
---|
3401 | uStackFrame.pu32[4] = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
3402 | Log7(("iemRaiseXcptOrIntInProtMode: 32-bit push SS=%#x ESP=%#x\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp));
|
---|
3403 | if (fEfl & X86_EFL_VM)
|
---|
3404 | {
|
---|
3405 | uStackFrame.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
3406 | uStackFrame.pu32[5] = pVCpu->cpum.GstCtx.es.Sel;
|
---|
3407 | uStackFrame.pu32[6] = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
3408 | uStackFrame.pu32[7] = pVCpu->cpum.GstCtx.fs.Sel;
|
---|
3409 | uStackFrame.pu32[8] = pVCpu->cpum.GstCtx.gs.Sel;
|
---|
3410 | }
|
---|
3411 | }
|
---|
3412 | else
|
---|
3413 | {
|
---|
3414 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3415 | *uStackFrame.pu16++ = uErr;
|
---|
3416 | uStackFrame.pu16[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.ip + cbInstr : pVCpu->cpum.GstCtx.ip;
|
---|
3417 | uStackFrame.pu16[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | uOldCpl;
|
---|
3418 | uStackFrame.pu16[2] = fEfl;
|
---|
3419 | uStackFrame.pu16[3] = pVCpu->cpum.GstCtx.sp;
|
---|
3420 | uStackFrame.pu16[4] = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
3421 | Log7(("iemRaiseXcptOrIntInProtMode: 16-bit push SS=%#x SP=%#x\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.sp));
|
---|
3422 | if (fEfl & X86_EFL_VM)
|
---|
3423 | {
|
---|
3424 | uStackFrame.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
3425 | uStackFrame.pu16[5] = pVCpu->cpum.GstCtx.es.Sel;
|
---|
3426 | uStackFrame.pu16[6] = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
3427 | uStackFrame.pu16[7] = pVCpu->cpum.GstCtx.fs.Sel;
|
---|
3428 | uStackFrame.pu16[8] = pVCpu->cpum.GstCtx.gs.Sel;
|
---|
3429 | }
|
---|
3430 | }
|
---|
3431 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS);
|
---|
3432 | if (rcStrict != VINF_SUCCESS)
|
---|
3433 | return rcStrict;
|
---|
3434 |
|
---|
3435 | /* Mark the selectors 'accessed' (hope this is the correct time). */
|
---|
3436 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
3437 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
3438 | * find out.) */
|
---|
3439 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3440 | {
|
---|
3441 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
3442 | if (rcStrict != VINF_SUCCESS)
|
---|
3443 | return rcStrict;
|
---|
3444 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3445 | }
|
---|
3446 |
|
---|
3447 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3448 | {
|
---|
3449 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewSS);
|
---|
3450 | if (rcStrict != VINF_SUCCESS)
|
---|
3451 | return rcStrict;
|
---|
3452 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3453 | }
|
---|
3454 |
|
---|
3455 | /*
|
---|
3456 | * Start comitting the register changes (joins with the DPL=CPL branch).
|
---|
3457 | */
|
---|
3458 | pVCpu->cpum.GstCtx.ss.Sel = NewSS;
|
---|
3459 | pVCpu->cpum.GstCtx.ss.ValidSel = NewSS;
|
---|
3460 | pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3461 | pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSS;
|
---|
3462 | pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3463 | pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3464 | /** @todo When coming from 32-bit code and operating with a 16-bit TSS and
|
---|
3465 | * 16-bit handler, the high word of ESP remains unchanged (i.e. only
|
---|
3466 | * SP is loaded).
|
---|
3467 | * Need to check the other combinations too:
|
---|
3468 | * - 16-bit TSS, 32-bit handler
|
---|
3469 | * - 32-bit TSS, 16-bit handler */
|
---|
3470 | if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
3471 | pVCpu->cpum.GstCtx.sp = (uint16_t)(uNewEsp - cbStackFrame);
|
---|
3472 | else
|
---|
3473 | pVCpu->cpum.GstCtx.rsp = uNewEsp - cbStackFrame;
|
---|
3474 |
|
---|
3475 | if (fEfl & X86_EFL_VM)
|
---|
3476 | {
|
---|
3477 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.gs);
|
---|
3478 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.fs);
|
---|
3479 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.es);
|
---|
3480 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.ds);
|
---|
3481 | }
|
---|
3482 | }
|
---|
3483 | /*
|
---|
3484 | * Same privilege, no stack change and smaller stack frame.
|
---|
3485 | */
|
---|
3486 | else
|
---|
3487 | {
|
---|
3488 | uint64_t uNewRsp;
|
---|
3489 | RTPTRUNION uStackFrame;
|
---|
3490 | uint8_t const cbStackFrame = (fFlags & IEM_XCPT_FLAGS_ERR ? 8 : 6) << f32BitGate;
|
---|
3491 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbStackFrame, f32BitGate ? 3 : 1, &uStackFrame.pv, &uNewRsp);
|
---|
3492 | if (rcStrict != VINF_SUCCESS)
|
---|
3493 | return rcStrict;
|
---|
3494 | void * const pvStackFrame = uStackFrame.pv;
|
---|
3495 |
|
---|
3496 | if (f32BitGate)
|
---|
3497 | {
|
---|
3498 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3499 | *uStackFrame.pu32++ = uErr;
|
---|
3500 | uStackFrame.pu32[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip;
|
---|
3501 | uStackFrame.pu32[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | IEM_GET_CPL(pVCpu);
|
---|
3502 | uStackFrame.pu32[2] = fEfl;
|
---|
3503 | }
|
---|
3504 | else
|
---|
3505 | {
|
---|
3506 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3507 | *uStackFrame.pu16++ = uErr;
|
---|
3508 | uStackFrame.pu16[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip;
|
---|
3509 | uStackFrame.pu16[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | IEM_GET_CPL(pVCpu);
|
---|
3510 | uStackFrame.pu16[2] = fEfl;
|
---|
3511 | }
|
---|
3512 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvStackFrame, IEM_ACCESS_STACK_W); /* don't use the commit here */
|
---|
3513 | if (rcStrict != VINF_SUCCESS)
|
---|
3514 | return rcStrict;
|
---|
3515 |
|
---|
3516 | /* Mark the CS selector as 'accessed'. */
|
---|
3517 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3518 | {
|
---|
3519 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
3520 | if (rcStrict != VINF_SUCCESS)
|
---|
3521 | return rcStrict;
|
---|
3522 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3523 | }
|
---|
3524 |
|
---|
3525 | /*
|
---|
3526 | * Start committing the register changes (joins with the other branch).
|
---|
3527 | */
|
---|
3528 | pVCpu->cpum.GstCtx.rsp = uNewRsp;
|
---|
3529 | }
|
---|
3530 |
|
---|
3531 | /* ... register committing continues. */
|
---|
3532 | pVCpu->cpum.GstCtx.cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3533 | pVCpu->cpum.GstCtx.cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3534 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3535 | pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
|
---|
3536 | pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3537 | pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3538 |
|
---|
3539 | pVCpu->cpum.GstCtx.rip = uNewEip; /* (The entire register is modified, see pe16_32 bs3kit tests.) */
|
---|
3540 | fEfl &= ~fEflToClear;
|
---|
3541 | IEMMISC_SET_EFL(pVCpu, fEfl);
|
---|
3542 |
|
---|
3543 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
3544 | pVCpu->cpum.GstCtx.cr2 = uCr2;
|
---|
3545 |
|
---|
3546 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
3547 | iemRaiseXcptAdjustState(pVCpu, u8Vector);
|
---|
3548 |
|
---|
3549 | /* Make sure the execution flags are correct. */
|
---|
3550 | uint32_t const fExecNew = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS);
|
---|
3551 | if (fExecNew != pVCpu->iem.s.fExec)
|
---|
3552 | Log(("iemRaiseXcptOrIntInProtMode: fExec %#x -> %#x (xor %#x)\n",
|
---|
3553 | pVCpu->iem.s.fExec, fExecNew, pVCpu->iem.s.fExec ^ fExecNew));
|
---|
3554 | pVCpu->iem.s.fExec = fExecNew;
|
---|
3555 | Assert(IEM_GET_CPL(pVCpu) == uNewCpl);
|
---|
3556 |
|
---|
3557 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3558 | }
|
---|
3559 |
|
---|
3560 |
|
---|
3561 | /**
|
---|
3562 | * Implements exceptions and interrupts for long mode.
|
---|
3563 | *
|
---|
3564 | * @returns VBox strict status code.
|
---|
3565 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3566 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3567 | * address.
|
---|
3568 | * @param u8Vector The interrupt / exception vector number.
|
---|
3569 | * @param fFlags The flags.
|
---|
3570 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3571 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3572 | */
|
---|
3573 | static VBOXSTRICTRC
|
---|
3574 | iemRaiseXcptOrIntInLongMode(PVMCPUCC pVCpu,
|
---|
3575 | uint8_t cbInstr,
|
---|
3576 | uint8_t u8Vector,
|
---|
3577 | uint32_t fFlags,
|
---|
3578 | uint16_t uErr,
|
---|
3579 | uint64_t uCr2) RT_NOEXCEPT
|
---|
3580 | {
|
---|
3581 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
3582 |
|
---|
3583 | /*
|
---|
3584 | * Read the IDT entry.
|
---|
3585 | */
|
---|
3586 | uint16_t offIdt = (uint16_t)u8Vector << 4;
|
---|
3587 | if (pVCpu->cpum.GstCtx.idtr.cbIdt < offIdt + 7)
|
---|
3588 | {
|
---|
3589 | Log(("iemRaiseXcptOrIntInLongMode: %#x is out of bounds (%#x)\n", u8Vector, pVCpu->cpum.GstCtx.idtr.cbIdt));
|
---|
3590 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3591 | }
|
---|
3592 | X86DESC64 Idte;
|
---|
3593 | #ifdef _MSC_VER /* Shut up silly compiler warning. */
|
---|
3594 | Idte.au64[0] = 0;
|
---|
3595 | Idte.au64[1] = 0;
|
---|
3596 | #endif
|
---|
3597 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &Idte.au64[0], UINT8_MAX, pVCpu->cpum.GstCtx.idtr.pIdt + offIdt);
|
---|
3598 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3599 | rcStrict = iemMemFetchSysU64(pVCpu, &Idte.au64[1], UINT8_MAX, pVCpu->cpum.GstCtx.idtr.pIdt + offIdt + 8);
|
---|
3600 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3601 | {
|
---|
3602 | Log(("iemRaiseXcptOrIntInLongMode: failed to fetch IDT entry! vec=%#x rc=%Rrc\n", u8Vector, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3603 | return rcStrict;
|
---|
3604 | }
|
---|
3605 | Log(("iemRaiseXcptOrIntInLongMode: vec=%#x P=%u DPL=%u DT=%u:%u IST=%u %04x:%08x%04x%04x\n",
|
---|
3606 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
3607 | Idte.Gate.u3IST, Idte.Gate.u16Sel, Idte.Gate.u32OffsetTop, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow));
|
---|
3608 |
|
---|
3609 | /*
|
---|
3610 | * Check the descriptor type, DPL and such.
|
---|
3611 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
3612 | */
|
---|
3613 | if (Idte.Gate.u1DescType)
|
---|
3614 | {
|
---|
3615 | Log(("iemRaiseXcptOrIntInLongMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3616 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3617 | }
|
---|
3618 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
3619 | switch (Idte.Gate.u4Type)
|
---|
3620 | {
|
---|
3621 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
3622 | fEflToClear |= X86_EFL_IF;
|
---|
3623 | break;
|
---|
3624 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
3625 | break;
|
---|
3626 |
|
---|
3627 | default:
|
---|
3628 | Log(("iemRaiseXcptOrIntInLongMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3629 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3630 | }
|
---|
3631 |
|
---|
3632 | /* Check DPL against CPL if applicable. */
|
---|
3633 | if ((fFlags & (IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3634 | {
|
---|
3635 | if (IEM_GET_CPL(pVCpu) > Idte.Gate.u2Dpl)
|
---|
3636 | {
|
---|
3637 | Log(("iemRaiseXcptOrIntInLongMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, IEM_GET_CPL(pVCpu), Idte.Gate.u2Dpl));
|
---|
3638 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3639 | }
|
---|
3640 | }
|
---|
3641 |
|
---|
3642 | /* Is it there? */
|
---|
3643 | if (!Idte.Gate.u1Present)
|
---|
3644 | {
|
---|
3645 | Log(("iemRaiseXcptOrIntInLongMode %#x - not present -> #NP\n", u8Vector));
|
---|
3646 | return iemRaiseSelectorNotPresentWithErr(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3647 | }
|
---|
3648 |
|
---|
3649 | /* A null CS is bad. */
|
---|
3650 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
3651 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3652 | {
|
---|
3653 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
3654 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3655 | }
|
---|
3656 |
|
---|
3657 | /* Fetch the descriptor for the new CS. */
|
---|
3658 | IEMSELDESC DescCS;
|
---|
3659 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, NewCS, X86_XCPT_GP);
|
---|
3660 | if (rcStrict != VINF_SUCCESS)
|
---|
3661 | {
|
---|
3662 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3663 | return rcStrict;
|
---|
3664 | }
|
---|
3665 |
|
---|
3666 | /* Must be a 64-bit code segment. */
|
---|
3667 | if (!DescCS.Long.Gen.u1DescType)
|
---|
3668 | {
|
---|
3669 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3670 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3671 | }
|
---|
3672 | if ( !DescCS.Long.Gen.u1Long
|
---|
3673 | || DescCS.Long.Gen.u1DefBig
|
---|
3674 | || !(DescCS.Long.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
3675 | {
|
---|
3676 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - not 64-bit code selector (%#x, L=%u, D=%u) -> #GP\n",
|
---|
3677 | u8Vector, NewCS, DescCS.Legacy.Gen.u4Type, DescCS.Long.Gen.u1Long, DescCS.Long.Gen.u1DefBig));
|
---|
3678 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3679 | }
|
---|
3680 |
|
---|
3681 | /* Don't allow lowering the privilege level. For non-conforming CS
|
---|
3682 | selectors, the CS.DPL sets the privilege level the trap/interrupt
|
---|
3683 | handler runs at. For conforming CS selectors, the CPL remains
|
---|
3684 | unchanged, but the CS.DPL must be <= CPL. */
|
---|
3685 | /** @todo Testcase: Interrupt handler with CS.DPL=1, interrupt dispatched
|
---|
3686 | * when CPU in Ring-0. Result \#GP? */
|
---|
3687 | if (DescCS.Legacy.Gen.u2Dpl > IEM_GET_CPL(pVCpu))
|
---|
3688 | {
|
---|
3689 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
3690 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, IEM_GET_CPL(pVCpu)));
|
---|
3691 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3692 | }
|
---|
3693 |
|
---|
3694 |
|
---|
3695 | /* Make sure the selector is present. */
|
---|
3696 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3697 | {
|
---|
3698 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
3699 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewCS);
|
---|
3700 | }
|
---|
3701 |
|
---|
3702 | /* Check that the new RIP is canonical. */
|
---|
3703 | uint64_t const uNewRip = Idte.Gate.u16OffsetLow
|
---|
3704 | | ((uint32_t)Idte.Gate.u16OffsetHigh << 16)
|
---|
3705 | | ((uint64_t)Idte.Gate.u32OffsetTop << 32);
|
---|
3706 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
3707 | {
|
---|
3708 | Log(("iemRaiseXcptOrIntInLongMode %#x - RIP=%#RX64 - Not canonical -> #GP(0)\n", u8Vector, uNewRip));
|
---|
3709 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3710 | }
|
---|
3711 |
|
---|
3712 | /*
|
---|
3713 | * If the privilege level changes or if the IST isn't zero, we need to get
|
---|
3714 | * a new stack from the TSS.
|
---|
3715 | */
|
---|
3716 | uint64_t uNewRsp;
|
---|
3717 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
3718 | ? IEM_GET_CPL(pVCpu) : DescCS.Legacy.Gen.u2Dpl;
|
---|
3719 | if ( uNewCpl != IEM_GET_CPL(pVCpu)
|
---|
3720 | || Idte.Gate.u3IST != 0)
|
---|
3721 | {
|
---|
3722 | rcStrict = iemRaiseLoadStackFromTss64(pVCpu, uNewCpl, Idte.Gate.u3IST, &uNewRsp);
|
---|
3723 | if (rcStrict != VINF_SUCCESS)
|
---|
3724 | return rcStrict;
|
---|
3725 | }
|
---|
3726 | else
|
---|
3727 | uNewRsp = pVCpu->cpum.GstCtx.rsp;
|
---|
3728 | uNewRsp &= ~(uint64_t)0xf;
|
---|
3729 |
|
---|
3730 | /*
|
---|
3731 | * Calc the flag image to push.
|
---|
3732 | */
|
---|
3733 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
|
---|
3734 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
3735 | fEfl &= ~X86_EFL_RF;
|
---|
3736 | else
|
---|
3737 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
3738 |
|
---|
3739 | /*
|
---|
3740 | * Start making changes.
|
---|
3741 | */
|
---|
3742 | /* Set the new CPL so that stack accesses use it. */
|
---|
3743 | uint8_t const uOldCpl = IEM_GET_CPL(pVCpu);
|
---|
3744 | IEM_SET_CPL(pVCpu, uNewCpl);
|
---|
3745 | /** @todo Setting CPL this early seems wrong as it would affect and errors we
|
---|
3746 | * raise accessing the stack and (?) GDT/LDT... */
|
---|
3747 |
|
---|
3748 | /* Create the stack frame. */
|
---|
3749 | uint32_t cbStackFrame = sizeof(uint64_t) * (5 + !!(fFlags & IEM_XCPT_FLAGS_ERR));
|
---|
3750 | RTPTRUNION uStackFrame;
|
---|
3751 | rcStrict = iemMemMap(pVCpu, &uStackFrame.pv, cbStackFrame, UINT8_MAX,
|
---|
3752 | uNewRsp - cbStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS, 0); /* _SYS is a hack ... */
|
---|
3753 | if (rcStrict != VINF_SUCCESS)
|
---|
3754 | return rcStrict;
|
---|
3755 | void * const pvStackFrame = uStackFrame.pv;
|
---|
3756 |
|
---|
3757 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3758 | *uStackFrame.pu64++ = uErr;
|
---|
3759 | uStackFrame.pu64[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pVCpu->cpum.GstCtx.rip + cbInstr : pVCpu->cpum.GstCtx.rip;
|
---|
3760 | uStackFrame.pu64[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | uOldCpl; /* CPL paranoia */
|
---|
3761 | uStackFrame.pu64[2] = fEfl;
|
---|
3762 | uStackFrame.pu64[3] = pVCpu->cpum.GstCtx.rsp;
|
---|
3763 | uStackFrame.pu64[4] = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
3764 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS);
|
---|
3765 | if (rcStrict != VINF_SUCCESS)
|
---|
3766 | return rcStrict;
|
---|
3767 |
|
---|
3768 | /* Mark the CS selectors 'accessed' (hope this is the correct time). */
|
---|
3769 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
3770 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
3771 | * find out.) */
|
---|
3772 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3773 | {
|
---|
3774 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
3775 | if (rcStrict != VINF_SUCCESS)
|
---|
3776 | return rcStrict;
|
---|
3777 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3778 | }
|
---|
3779 |
|
---|
3780 | /*
|
---|
3781 | * Start comitting the register changes.
|
---|
3782 | */
|
---|
3783 | /** @todo research/testcase: Figure out what VT-x and AMD-V loads into the
|
---|
3784 | * hidden registers when interrupting 32-bit or 16-bit code! */
|
---|
3785 | if (uNewCpl != uOldCpl)
|
---|
3786 | {
|
---|
3787 | pVCpu->cpum.GstCtx.ss.Sel = 0 | uNewCpl;
|
---|
3788 | pVCpu->cpum.GstCtx.ss.ValidSel = 0 | uNewCpl;
|
---|
3789 | pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3790 | pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
|
---|
3791 | pVCpu->cpum.GstCtx.ss.u64Base = 0;
|
---|
3792 | pVCpu->cpum.GstCtx.ss.Attr.u = (uNewCpl << X86DESCATTR_DPL_SHIFT) | X86DESCATTR_UNUSABLE;
|
---|
3793 | }
|
---|
3794 | pVCpu->cpum.GstCtx.rsp = uNewRsp - cbStackFrame;
|
---|
3795 | pVCpu->cpum.GstCtx.cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3796 | pVCpu->cpum.GstCtx.cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3797 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3798 | pVCpu->cpum.GstCtx.cs.u32Limit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3799 | pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3800 | pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3801 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
3802 |
|
---|
3803 | fEfl &= ~fEflToClear;
|
---|
3804 | IEMMISC_SET_EFL(pVCpu, fEfl);
|
---|
3805 |
|
---|
3806 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
3807 | pVCpu->cpum.GstCtx.cr2 = uCr2;
|
---|
3808 |
|
---|
3809 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
3810 | iemRaiseXcptAdjustState(pVCpu, u8Vector);
|
---|
3811 |
|
---|
3812 | iemRecalcExecModeAndCplFlags(pVCpu);
|
---|
3813 |
|
---|
3814 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3815 | }
|
---|
3816 |
|
---|
3817 |
|
---|
3818 | /**
|
---|
3819 | * Implements exceptions and interrupts.
|
---|
3820 | *
|
---|
3821 | * All exceptions and interrupts goes thru this function!
|
---|
3822 | *
|
---|
3823 | * @returns VBox strict status code.
|
---|
3824 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3825 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3826 | * address.
|
---|
3827 | * @param u8Vector The interrupt / exception vector number.
|
---|
3828 | * @param fFlags The flags.
|
---|
3829 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3830 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3831 | */
|
---|
3832 | VBOXSTRICTRC
|
---|
3833 | iemRaiseXcptOrInt(PVMCPUCC pVCpu,
|
---|
3834 | uint8_t cbInstr,
|
---|
3835 | uint8_t u8Vector,
|
---|
3836 | uint32_t fFlags,
|
---|
3837 | uint16_t uErr,
|
---|
3838 | uint64_t uCr2) RT_NOEXCEPT
|
---|
3839 | {
|
---|
3840 | /*
|
---|
3841 | * Get all the state that we might need here.
|
---|
3842 | */
|
---|
3843 | IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
3844 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
3845 |
|
---|
3846 | #ifndef IEM_WITH_CODE_TLB /** @todo we're doing it afterwards too, that should suffice... */
|
---|
3847 | /*
|
---|
3848 | * Flush prefetch buffer
|
---|
3849 | */
|
---|
3850 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3851 | #endif
|
---|
3852 |
|
---|
3853 | /*
|
---|
3854 | * Perform the V8086 IOPL check and upgrade the fault without nesting.
|
---|
3855 | */
|
---|
3856 | if ( pVCpu->cpum.GstCtx.eflags.Bits.u1VM
|
---|
3857 | && pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL != 3
|
---|
3858 | && (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
|
---|
3859 | | IEM_XCPT_FLAGS_BP_INSTR
|
---|
3860 | | IEM_XCPT_FLAGS_ICEBP_INSTR
|
---|
3861 | | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
|
---|
3862 | && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
|
---|
3863 | {
|
---|
3864 | Log(("iemRaiseXcptOrInt: V8086 IOPL check failed for int %#x -> #GP(0)\n", u8Vector));
|
---|
3865 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR;
|
---|
3866 | u8Vector = X86_XCPT_GP;
|
---|
3867 | uErr = 0;
|
---|
3868 | }
|
---|
3869 | #ifdef DBGFTRACE_ENABLED
|
---|
3870 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "Xcpt/%u: %02x %u %x %x %llx %04x:%04llx %04x:%04llx",
|
---|
3871 | pVCpu->iem.s.cXcptRecursions, u8Vector, cbInstr, fFlags, uErr, uCr2,
|
---|
3872 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp);
|
---|
3873 | #endif
|
---|
3874 |
|
---|
3875 | /*
|
---|
3876 | * Evaluate whether NMI blocking should be in effect.
|
---|
3877 | * Normally, NMI blocking is in effect whenever we inject an NMI.
|
---|
3878 | */
|
---|
3879 | bool fBlockNmi = u8Vector == X86_XCPT_NMI
|
---|
3880 | && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT);
|
---|
3881 |
|
---|
3882 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3883 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
3884 | {
|
---|
3885 | VBOXSTRICTRC rcStrict0 = iemVmxVmexitEvent(pVCpu, u8Vector, fFlags, uErr, uCr2, cbInstr);
|
---|
3886 | if (rcStrict0 != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
3887 | return rcStrict0;
|
---|
3888 |
|
---|
3889 | /* If virtual-NMI blocking is in effect for the nested-guest, guest NMIs are not blocked. */
|
---|
3890 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
|
---|
3891 | {
|
---|
3892 | Assert(CPUMIsGuestVmxPinCtlsSet(&pVCpu->cpum.GstCtx, VMX_PIN_CTLS_VIRT_NMI));
|
---|
3893 | fBlockNmi = false;
|
---|
3894 | }
|
---|
3895 | }
|
---|
3896 | #endif
|
---|
3897 |
|
---|
3898 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
3899 | if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
|
---|
3900 | {
|
---|
3901 | /*
|
---|
3902 | * If the event is being injected as part of VMRUN, it isn't subject to event
|
---|
3903 | * intercepts in the nested-guest. However, secondary exceptions that occur
|
---|
3904 | * during injection of any event -are- subject to exception intercepts.
|
---|
3905 | *
|
---|
3906 | * See AMD spec. 15.20 "Event Injection".
|
---|
3907 | */
|
---|
3908 | if (!pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents)
|
---|
3909 | pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents = true;
|
---|
3910 | else
|
---|
3911 | {
|
---|
3912 | /*
|
---|
3913 | * Check and handle if the event being raised is intercepted.
|
---|
3914 | */
|
---|
3915 | VBOXSTRICTRC rcStrict0 = iemHandleSvmEventIntercept(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
3916 | if (rcStrict0 != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
3917 | return rcStrict0;
|
---|
3918 | }
|
---|
3919 | }
|
---|
3920 | #endif
|
---|
3921 |
|
---|
3922 | /*
|
---|
3923 | * Set NMI blocking if necessary.
|
---|
3924 | */
|
---|
3925 | if (fBlockNmi)
|
---|
3926 | CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
|
---|
3927 |
|
---|
3928 | /*
|
---|
3929 | * Do recursion accounting.
|
---|
3930 | */
|
---|
3931 | uint8_t const uPrevXcpt = pVCpu->iem.s.uCurXcpt;
|
---|
3932 | uint32_t const fPrevXcpt = pVCpu->iem.s.fCurXcpt;
|
---|
3933 | if (pVCpu->iem.s.cXcptRecursions == 0)
|
---|
3934 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx\n",
|
---|
3935 | u8Vector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, fFlags, uErr, uCr2));
|
---|
3936 | else
|
---|
3937 | {
|
---|
3938 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx; prev=%#x depth=%d flags=%#x\n",
|
---|
3939 | u8Vector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, fFlags, uErr, uCr2, pVCpu->iem.s.uCurXcpt,
|
---|
3940 | pVCpu->iem.s.cXcptRecursions + 1, fPrevXcpt));
|
---|
3941 |
|
---|
3942 | if (pVCpu->iem.s.cXcptRecursions >= 4)
|
---|
3943 | {
|
---|
3944 | #ifdef DEBUG_bird
|
---|
3945 | AssertFailed();
|
---|
3946 | #endif
|
---|
3947 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Too many fault nestings.\n"));
|
---|
3948 | }
|
---|
3949 |
|
---|
3950 | /*
|
---|
3951 | * Evaluate the sequence of recurring events.
|
---|
3952 | */
|
---|
3953 | IEMXCPTRAISE enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fPrevXcpt, uPrevXcpt, fFlags, u8Vector,
|
---|
3954 | NULL /* pXcptRaiseInfo */);
|
---|
3955 | if (enmRaise == IEMXCPTRAISE_CURRENT_XCPT)
|
---|
3956 | { /* likely */ }
|
---|
3957 | else if (enmRaise == IEMXCPTRAISE_DOUBLE_FAULT)
|
---|
3958 | {
|
---|
3959 | Log2(("iemRaiseXcptOrInt: Raising double fault. uPrevXcpt=%#x\n", uPrevXcpt));
|
---|
3960 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR;
|
---|
3961 | u8Vector = X86_XCPT_DF;
|
---|
3962 | uErr = 0;
|
---|
3963 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3964 | /* VMX nested-guest #DF intercept needs to be checked here. */
|
---|
3965 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
3966 | {
|
---|
3967 | VBOXSTRICTRC rcStrict0 = iemVmxVmexitEventDoubleFault(pVCpu);
|
---|
3968 | if (rcStrict0 != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
3969 | return rcStrict0;
|
---|
3970 | }
|
---|
3971 | #endif
|
---|
3972 | /* SVM nested-guest #DF intercepts need to be checked now. See AMD spec. 15.12 "Exception Intercepts". */
|
---|
3973 | if (IEM_SVM_IS_XCPT_INTERCEPT_SET(pVCpu, X86_XCPT_DF))
|
---|
3974 | IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XCPT_DF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
3975 | }
|
---|
3976 | else if (enmRaise == IEMXCPTRAISE_TRIPLE_FAULT)
|
---|
3977 | {
|
---|
3978 | Log2(("iemRaiseXcptOrInt: Raising triple fault. uPrevXcpt=%#x\n", uPrevXcpt));
|
---|
3979 | return iemInitiateCpuShutdown(pVCpu);
|
---|
3980 | }
|
---|
3981 | else if (enmRaise == IEMXCPTRAISE_CPU_HANG)
|
---|
3982 | {
|
---|
3983 | /* If a nested-guest enters an endless CPU loop condition, we'll emulate it; otherwise guru. */
|
---|
3984 | Log2(("iemRaiseXcptOrInt: CPU hang condition detected\n"));
|
---|
3985 | if ( !CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))
|
---|
3986 | && !CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
|
---|
3987 | return VERR_EM_GUEST_CPU_HANG;
|
---|
3988 | }
|
---|
3989 | else
|
---|
3990 | {
|
---|
3991 | AssertMsgFailed(("Unexpected condition! enmRaise=%#x uPrevXcpt=%#x fPrevXcpt=%#x, u8Vector=%#x fFlags=%#x\n",
|
---|
3992 | enmRaise, uPrevXcpt, fPrevXcpt, u8Vector, fFlags));
|
---|
3993 | return VERR_IEM_IPE_9;
|
---|
3994 | }
|
---|
3995 |
|
---|
3996 | /*
|
---|
3997 | * The 'EXT' bit is set when an exception occurs during deliver of an external
|
---|
3998 | * event (such as an interrupt or earlier exception)[1]. Privileged software
|
---|
3999 | * exception (INT1) also sets the EXT bit[2]. Exceptions generated by software
|
---|
4000 | * interrupts and INTO, INT3 instructions, the 'EXT' bit will not be set.
|
---|
4001 | *
|
---|
4002 | * [1] - Intel spec. 6.13 "Error Code"
|
---|
4003 | * [2] - Intel spec. 26.5.1.1 "Details of Vectored-Event Injection".
|
---|
4004 | * [3] - Intel Instruction reference for INT n.
|
---|
4005 | */
|
---|
4006 | if ( (fPrevXcpt & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_EXT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR))
|
---|
4007 | && (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4008 | && u8Vector != X86_XCPT_PF
|
---|
4009 | && u8Vector != X86_XCPT_DF)
|
---|
4010 | {
|
---|
4011 | uErr |= X86_TRAP_ERR_EXTERNAL;
|
---|
4012 | }
|
---|
4013 | }
|
---|
4014 |
|
---|
4015 | pVCpu->iem.s.cXcptRecursions++;
|
---|
4016 | pVCpu->iem.s.uCurXcpt = u8Vector;
|
---|
4017 | pVCpu->iem.s.fCurXcpt = fFlags;
|
---|
4018 | pVCpu->iem.s.uCurXcptErr = uErr;
|
---|
4019 | pVCpu->iem.s.uCurXcptCr2 = uCr2;
|
---|
4020 |
|
---|
4021 | /*
|
---|
4022 | * Extensive logging.
|
---|
4023 | */
|
---|
4024 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
4025 | if (LogIs3Enabled())
|
---|
4026 | {
|
---|
4027 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR_MASK);
|
---|
4028 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4029 | char szRegs[4096];
|
---|
4030 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
4031 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
4032 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
4033 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
4034 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
4035 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
4036 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
4037 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
4038 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
4039 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
4040 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
4041 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
4042 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
4043 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
4044 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
4045 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
4046 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
4047 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
4048 | " efer=%016VR{efer}\n"
|
---|
4049 | " pat=%016VR{pat}\n"
|
---|
4050 | " sf_mask=%016VR{sf_mask}\n"
|
---|
4051 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
4052 | " lstar=%016VR{lstar}\n"
|
---|
4053 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
4054 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
4055 | );
|
---|
4056 |
|
---|
4057 | char szInstr[256];
|
---|
4058 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
4059 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
4060 | szInstr, sizeof(szInstr), NULL);
|
---|
4061 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
4062 | }
|
---|
4063 | #endif /* LOG_ENABLED */
|
---|
4064 |
|
---|
4065 | /*
|
---|
4066 | * Stats.
|
---|
4067 | */
|
---|
4068 | if (!(fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT))
|
---|
4069 | STAM_REL_STATS({ pVCpu->iem.s.aStatInts[u8Vector] += 1; });
|
---|
4070 | else if (u8Vector <= X86_XCPT_LAST)
|
---|
4071 | {
|
---|
4072 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.aStatXcpts[u8Vector]);
|
---|
4073 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_XCPT, u8Vector),
|
---|
4074 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base, ASMReadTSC());
|
---|
4075 | }
|
---|
4076 |
|
---|
4077 | /*
|
---|
4078 | * #PF's implies a INVLPG for the CR2 value (see 4.10.1.1 in Intel SDM Vol 3)
|
---|
4079 | * to ensure that a stale TLB or paging cache entry will only cause one
|
---|
4080 | * spurious #PF.
|
---|
4081 | */
|
---|
4082 | if ( u8Vector == X86_XCPT_PF
|
---|
4083 | && (fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_CR2)) == (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_CR2))
|
---|
4084 | IEMTlbInvalidatePage(pVCpu, uCr2);
|
---|
4085 |
|
---|
4086 | /*
|
---|
4087 | * Call the mode specific worker function.
|
---|
4088 | */
|
---|
4089 | VBOXSTRICTRC rcStrict;
|
---|
4090 | if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
|
---|
4091 | rcStrict = iemRaiseXcptOrIntInRealMode(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4092 | else if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
|
---|
4093 | rcStrict = iemRaiseXcptOrIntInLongMode(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4094 | else
|
---|
4095 | rcStrict = iemRaiseXcptOrIntInProtMode(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4096 |
|
---|
4097 | /* Flush the prefetch buffer. */
|
---|
4098 | iemOpcodeFlushHeavy(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
|
---|
4099 |
|
---|
4100 | /*
|
---|
4101 | * Unwind.
|
---|
4102 | */
|
---|
4103 | pVCpu->iem.s.cXcptRecursions--;
|
---|
4104 | pVCpu->iem.s.uCurXcpt = uPrevXcpt;
|
---|
4105 | pVCpu->iem.s.fCurXcpt = fPrevXcpt;
|
---|
4106 | Log(("iemRaiseXcptOrInt: returns %Rrc (vec=%#x); cs:rip=%04x:%RGv ss:rsp=%04x:%RGv cpl=%u depth=%d\n",
|
---|
4107 | VBOXSTRICTRC_VAL(rcStrict), u8Vector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel,
|
---|
4108 | pVCpu->cpum.GstCtx.esp, IEM_GET_CPL(pVCpu), pVCpu->iem.s.cXcptRecursions + 1));
|
---|
4109 | return rcStrict;
|
---|
4110 | }
|
---|
4111 |
|
---|
4112 | #ifdef IEM_WITH_SETJMP
|
---|
4113 | /**
|
---|
4114 | * See iemRaiseXcptOrInt. Will not return.
|
---|
4115 | */
|
---|
4116 | DECL_NO_RETURN(void)
|
---|
4117 | iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu,
|
---|
4118 | uint8_t cbInstr,
|
---|
4119 | uint8_t u8Vector,
|
---|
4120 | uint32_t fFlags,
|
---|
4121 | uint16_t uErr,
|
---|
4122 | uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4123 | {
|
---|
4124 | VBOXSTRICTRC rcStrict = iemRaiseXcptOrInt(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4125 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
4126 | }
|
---|
4127 | #endif
|
---|
4128 |
|
---|
4129 |
|
---|
4130 | /** \#DE - 00. */
|
---|
4131 | VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4132 | {
|
---|
4133 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4134 | }
|
---|
4135 |
|
---|
4136 |
|
---|
4137 | /** \#DB - 01.
|
---|
4138 | * @note This automatically clear DR7.GD. */
|
---|
4139 | VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4140 | {
|
---|
4141 | /* This always clears RF (via IEM_XCPT_FLAGS_DRx_INSTR_BP). */
|
---|
4142 | pVCpu->cpum.GstCtx.dr[7] &= ~X86_DR7_GD;
|
---|
4143 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DB, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_DRx_INSTR_BP, 0, 0);
|
---|
4144 | }
|
---|
4145 |
|
---|
4146 |
|
---|
4147 | /** \#BR - 05. */
|
---|
4148 | VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4149 | {
|
---|
4150 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_BR, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4151 | }
|
---|
4152 |
|
---|
4153 |
|
---|
4154 | /** \#UD - 06. */
|
---|
4155 | VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4156 | {
|
---|
4157 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4158 | }
|
---|
4159 |
|
---|
4160 |
|
---|
4161 | /** \#NM - 07. */
|
---|
4162 | VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4163 | {
|
---|
4164 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NM, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4165 | }
|
---|
4166 |
|
---|
4167 |
|
---|
4168 | /** \#TS(err) - 0a. */
|
---|
4169 | VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4170 | {
|
---|
4171 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4172 | }
|
---|
4173 |
|
---|
4174 |
|
---|
4175 | /** \#TS(tr) - 0a. */
|
---|
4176 | VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4177 | {
|
---|
4178 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4179 | pVCpu->cpum.GstCtx.tr.Sel, 0);
|
---|
4180 | }
|
---|
4181 |
|
---|
4182 |
|
---|
4183 | /** \#TS(0) - 0a. */
|
---|
4184 | VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4185 | {
|
---|
4186 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4187 | 0, 0);
|
---|
4188 | }
|
---|
4189 |
|
---|
4190 |
|
---|
4191 | /** \#TS(err) - 0a. */
|
---|
4192 | VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
4193 | {
|
---|
4194 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4195 | uSel & X86_SEL_MASK_OFF_RPL, 0);
|
---|
4196 | }
|
---|
4197 |
|
---|
4198 |
|
---|
4199 | /** \#NP(err) - 0b. */
|
---|
4200 | VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4201 | {
|
---|
4202 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4203 | }
|
---|
4204 |
|
---|
4205 |
|
---|
4206 | /** \#NP(sel) - 0b. */
|
---|
4207 | VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
4208 | {
|
---|
4209 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4210 | uSel & ~X86_SEL_RPL, 0);
|
---|
4211 | }
|
---|
4212 |
|
---|
4213 |
|
---|
4214 | /** \#SS(seg) - 0c. */
|
---|
4215 | VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
4216 | {
|
---|
4217 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4218 | uSel & ~X86_SEL_RPL, 0);
|
---|
4219 | }
|
---|
4220 |
|
---|
4221 |
|
---|
4222 | /** \#SS(err) - 0c. */
|
---|
4223 | VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4224 | {
|
---|
4225 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4226 | }
|
---|
4227 |
|
---|
4228 |
|
---|
4229 | /** \#GP(n) - 0d. */
|
---|
4230 | VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4231 | {
|
---|
4232 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4233 | }
|
---|
4234 |
|
---|
4235 |
|
---|
4236 | /** \#GP(0) - 0d. */
|
---|
4237 | VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4238 | {
|
---|
4239 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4240 | }
|
---|
4241 |
|
---|
4242 | #ifdef IEM_WITH_SETJMP
|
---|
4243 | /** \#GP(0) - 0d. */
|
---|
4244 | DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4245 | {
|
---|
4246 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4247 | }
|
---|
4248 | #endif
|
---|
4249 |
|
---|
4250 |
|
---|
4251 | /** \#GP(sel) - 0d. */
|
---|
4252 | VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT
|
---|
4253 | {
|
---|
4254 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4255 | Sel & ~X86_SEL_RPL, 0);
|
---|
4256 | }
|
---|
4257 |
|
---|
4258 |
|
---|
4259 | /** \#GP(0) - 0d. */
|
---|
4260 | VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4261 | {
|
---|
4262 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4263 | }
|
---|
4264 |
|
---|
4265 |
|
---|
4266 | /** \#GP(sel) - 0d. */
|
---|
4267 | VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT
|
---|
4268 | {
|
---|
4269 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4270 | return iemRaiseXcptOrInt(pVCpu, 0, iSegReg == X86_SREG_SS ? X86_XCPT_SS : X86_XCPT_GP,
|
---|
4271 | IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4272 | }
|
---|
4273 |
|
---|
4274 | #ifdef IEM_WITH_SETJMP
|
---|
4275 | /** \#GP(sel) - 0d, longjmp. */
|
---|
4276 | DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4277 | {
|
---|
4278 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4279 | iemRaiseXcptOrIntJmp(pVCpu, 0, iSegReg == X86_SREG_SS ? X86_XCPT_SS : X86_XCPT_GP,
|
---|
4280 | IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4281 | }
|
---|
4282 | #endif
|
---|
4283 |
|
---|
4284 | /** \#GP(sel) - 0d. */
|
---|
4285 | VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT
|
---|
4286 | {
|
---|
4287 | NOREF(Sel);
|
---|
4288 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4289 | }
|
---|
4290 |
|
---|
4291 | #ifdef IEM_WITH_SETJMP
|
---|
4292 | /** \#GP(sel) - 0d, longjmp. */
|
---|
4293 | DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4294 | {
|
---|
4295 | NOREF(Sel);
|
---|
4296 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4297 | }
|
---|
4298 | #endif
|
---|
4299 |
|
---|
4300 |
|
---|
4301 | /** \#GP(sel) - 0d. */
|
---|
4302 | VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT
|
---|
4303 | {
|
---|
4304 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4305 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4306 | }
|
---|
4307 |
|
---|
4308 | #ifdef IEM_WITH_SETJMP
|
---|
4309 | /** \#GP(sel) - 0d, longjmp. */
|
---|
4310 | DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4311 | {
|
---|
4312 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4313 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4314 | }
|
---|
4315 | #endif
|
---|
4316 |
|
---|
4317 |
|
---|
4318 | /** \#PF(n) - 0e. */
|
---|
4319 | VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT
|
---|
4320 | {
|
---|
4321 | uint16_t uErr;
|
---|
4322 | switch (rc)
|
---|
4323 | {
|
---|
4324 | case VERR_PAGE_NOT_PRESENT:
|
---|
4325 | case VERR_PAGE_TABLE_NOT_PRESENT:
|
---|
4326 | case VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT:
|
---|
4327 | case VERR_PAGE_MAP_LEVEL4_NOT_PRESENT:
|
---|
4328 | uErr = 0;
|
---|
4329 | break;
|
---|
4330 |
|
---|
4331 | default:
|
---|
4332 | AssertMsgFailed(("%Rrc\n", rc));
|
---|
4333 | RT_FALL_THRU();
|
---|
4334 | case VERR_ACCESS_DENIED:
|
---|
4335 | uErr = X86_TRAP_PF_P;
|
---|
4336 | break;
|
---|
4337 |
|
---|
4338 | /** @todo reserved */
|
---|
4339 | }
|
---|
4340 |
|
---|
4341 | if (IEM_GET_CPL(pVCpu) == 3)
|
---|
4342 | uErr |= X86_TRAP_PF_US;
|
---|
4343 |
|
---|
4344 | if ( (fAccess & IEM_ACCESS_WHAT_MASK) == IEM_ACCESS_WHAT_CODE
|
---|
4345 | && ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
|
---|
4346 | && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE) ) )
|
---|
4347 | uErr |= X86_TRAP_PF_ID;
|
---|
4348 |
|
---|
4349 | #if 0 /* This is so much non-sense, really. Why was it done like that? */
|
---|
4350 | /* Note! RW access callers reporting a WRITE protection fault, will clear
|
---|
4351 | the READ flag before calling. So, read-modify-write accesses (RW)
|
---|
4352 | can safely be reported as READ faults. */
|
---|
4353 | if ((fAccess & (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_TYPE_READ)) == IEM_ACCESS_TYPE_WRITE)
|
---|
4354 | uErr |= X86_TRAP_PF_RW;
|
---|
4355 | #else
|
---|
4356 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
4357 | {
|
---|
4358 | /// @todo r=bird: bs3-cpu-basic-2 wants X86_TRAP_PF_RW for xchg and cmpxchg
|
---|
4359 | /// (regardless of outcome of the comparison in the latter case).
|
---|
4360 | //if (!(fAccess & IEM_ACCESS_TYPE_READ))
|
---|
4361 | uErr |= X86_TRAP_PF_RW;
|
---|
4362 | }
|
---|
4363 | #endif
|
---|
4364 |
|
---|
4365 | /* For FXSAVE and FRSTOR the #PF is typically reported at the max address
|
---|
4366 | of the memory operand rather than at the start of it. (Not sure what
|
---|
4367 | happens if it crosses a page boundrary.) The current heuristics for
|
---|
4368 | this is to report the #PF for the last byte if the access is more than
|
---|
4369 | 64 bytes. This is probably not correct, but we can work that out later,
|
---|
4370 | main objective now is to get FXSAVE to work like for real hardware and
|
---|
4371 | make bs3-cpu-basic2 work. */
|
---|
4372 | if (cbAccess <= 64)
|
---|
4373 | { /* likely*/ }
|
---|
4374 | else
|
---|
4375 | GCPtrWhere += cbAccess - 1;
|
---|
4376 |
|
---|
4377 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_PF, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR | IEM_XCPT_FLAGS_CR2,
|
---|
4378 | uErr, GCPtrWhere);
|
---|
4379 | }
|
---|
4380 |
|
---|
4381 | #ifdef IEM_WITH_SETJMP
|
---|
4382 | /** \#PF(n) - 0e, longjmp. */
|
---|
4383 | DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess,
|
---|
4384 | uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4385 | {
|
---|
4386 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(iemRaisePageFault(pVCpu, GCPtrWhere, cbAccess, fAccess, rc)));
|
---|
4387 | }
|
---|
4388 | #endif
|
---|
4389 |
|
---|
4390 |
|
---|
4391 | /** \#MF(0) - 10. */
|
---|
4392 | VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4393 | {
|
---|
4394 | if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE)
|
---|
4395 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_MF, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4396 |
|
---|
4397 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
4398 | PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
|
---|
4399 | return iemRegUpdateRipAndFinishClearingRF(pVCpu);
|
---|
4400 | }
|
---|
4401 |
|
---|
4402 |
|
---|
4403 | /** \#AC(0) - 11. */
|
---|
4404 | VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4405 | {
|
---|
4406 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_AC, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4407 | }
|
---|
4408 |
|
---|
4409 | #ifdef IEM_WITH_SETJMP
|
---|
4410 | /** \#AC(0) - 11, longjmp. */
|
---|
4411 | DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4412 | {
|
---|
4413 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(iemRaiseAlignmentCheckException(pVCpu)));
|
---|
4414 | }
|
---|
4415 | #endif
|
---|
4416 |
|
---|
4417 |
|
---|
4418 | /** \#XF(0)/\#XM(0) - 19. */
|
---|
4419 | VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4420 | {
|
---|
4421 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_XF, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4422 | }
|
---|
4423 |
|
---|
4424 |
|
---|
4425 | /** Accessed via IEMOP_RAISE_DIVIDE_ERROR. */
|
---|
4426 | IEM_CIMPL_DEF_0(iemCImplRaiseDivideError)
|
---|
4427 | {
|
---|
4428 | NOREF(cbInstr);
|
---|
4429 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4430 | }
|
---|
4431 |
|
---|
4432 |
|
---|
4433 | /** Accessed via IEMOP_RAISE_INVALID_LOCK_PREFIX. */
|
---|
4434 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix)
|
---|
4435 | {
|
---|
4436 | NOREF(cbInstr);
|
---|
4437 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4438 | }
|
---|
4439 |
|
---|
4440 |
|
---|
4441 | /** Accessed via IEMOP_RAISE_INVALID_OPCODE. */
|
---|
4442 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode)
|
---|
4443 | {
|
---|
4444 | NOREF(cbInstr);
|
---|
4445 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4446 | }
|
---|
4447 |
|
---|
4448 |
|
---|
4449 | /** @} */
|
---|
4450 |
|
---|
4451 | /** @name Common opcode decoders.
|
---|
4452 | * @{
|
---|
4453 | */
|
---|
4454 | //#include <iprt/mem.h>
|
---|
4455 |
|
---|
4456 | /**
|
---|
4457 | * Used to add extra details about a stub case.
|
---|
4458 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4459 | */
|
---|
4460 | void iemOpStubMsg2(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4461 | {
|
---|
4462 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
4463 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4464 | char szRegs[4096];
|
---|
4465 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
4466 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
4467 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
4468 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
4469 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
4470 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
4471 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
4472 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
4473 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
4474 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
4475 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
4476 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
4477 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
4478 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
4479 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
4480 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
4481 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
4482 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
4483 | " efer=%016VR{efer}\n"
|
---|
4484 | " pat=%016VR{pat}\n"
|
---|
4485 | " sf_mask=%016VR{sf_mask}\n"
|
---|
4486 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
4487 | " lstar=%016VR{lstar}\n"
|
---|
4488 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
4489 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
4490 | );
|
---|
4491 |
|
---|
4492 | char szInstr[256];
|
---|
4493 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
4494 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
4495 | szInstr, sizeof(szInstr), NULL);
|
---|
4496 |
|
---|
4497 | RTAssertMsg2Weak("%s%s\n", szRegs, szInstr);
|
---|
4498 | #else
|
---|
4499 | RTAssertMsg2Weak("cs:rip=%04x:%RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip);
|
---|
4500 | #endif
|
---|
4501 | }
|
---|
4502 |
|
---|
4503 | /** @} */
|
---|
4504 |
|
---|
4505 |
|
---|
4506 |
|
---|
4507 | /** @name Register Access.
|
---|
4508 | * @{
|
---|
4509 | */
|
---|
4510 |
|
---|
4511 | /**
|
---|
4512 | * Adds a 8-bit signed jump offset to RIP/EIP/IP.
|
---|
4513 | *
|
---|
4514 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4515 | * segment limit.
|
---|
4516 | *
|
---|
4517 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4518 | * @param cbInstr Instruction size.
|
---|
4519 | * @param offNextInstr The offset of the next instruction.
|
---|
4520 | * @param enmEffOpSize Effective operand size.
|
---|
4521 | */
|
---|
4522 | VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
|
---|
4523 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
4524 | {
|
---|
4525 | switch (enmEffOpSize)
|
---|
4526 | {
|
---|
4527 | case IEMMODE_16BIT:
|
---|
4528 | {
|
---|
4529 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + (int16_t)offNextInstr;
|
---|
4530 | if (RT_LIKELY( uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
4531 | || IEM_IS_64BIT_CODE(pVCpu) /* no CS limit checks in 64-bit mode */))
|
---|
4532 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
4533 | else
|
---|
4534 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4535 | break;
|
---|
4536 | }
|
---|
4537 |
|
---|
4538 | case IEMMODE_32BIT:
|
---|
4539 | {
|
---|
4540 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
4541 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX);
|
---|
4542 |
|
---|
4543 | uint32_t const uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + (int32_t)offNextInstr;
|
---|
4544 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
4545 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
4546 | else
|
---|
4547 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4548 | break;
|
---|
4549 | }
|
---|
4550 |
|
---|
4551 | case IEMMODE_64BIT:
|
---|
4552 | {
|
---|
4553 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
4554 |
|
---|
4555 | uint64_t const uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
4556 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
4557 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
4558 | else
|
---|
4559 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4560 | break;
|
---|
4561 | }
|
---|
4562 |
|
---|
4563 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4564 | }
|
---|
4565 |
|
---|
4566 | #ifndef IEM_WITH_CODE_TLB
|
---|
4567 | /* Flush the prefetch buffer. */
|
---|
4568 | pVCpu->iem.s.cbOpcode = cbInstr;
|
---|
4569 | #endif
|
---|
4570 |
|
---|
4571 | /*
|
---|
4572 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
4573 | */
|
---|
4574 | return iemRegFinishClearingRF(pVCpu);
|
---|
4575 | }
|
---|
4576 |
|
---|
4577 |
|
---|
4578 | /**
|
---|
4579 | * Adds a 16-bit signed jump offset to RIP/EIP/IP.
|
---|
4580 | *
|
---|
4581 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4582 | * segment limit.
|
---|
4583 | *
|
---|
4584 | * @returns Strict VBox status code.
|
---|
4585 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4586 | * @param cbInstr Instruction size.
|
---|
4587 | * @param offNextInstr The offset of the next instruction.
|
---|
4588 | */
|
---|
4589 | VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT
|
---|
4590 | {
|
---|
4591 | Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT);
|
---|
4592 |
|
---|
4593 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + offNextInstr;
|
---|
4594 | if (RT_LIKELY( uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
4595 | || IEM_IS_64BIT_CODE(pVCpu) /* no limit checking in 64-bit mode */))
|
---|
4596 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
4597 | else
|
---|
4598 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4599 |
|
---|
4600 | #ifndef IEM_WITH_CODE_TLB
|
---|
4601 | /* Flush the prefetch buffer. */
|
---|
4602 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
4603 | #endif
|
---|
4604 |
|
---|
4605 | /*
|
---|
4606 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
4607 | */
|
---|
4608 | return iemRegFinishClearingRF(pVCpu);
|
---|
4609 | }
|
---|
4610 |
|
---|
4611 |
|
---|
4612 | /**
|
---|
4613 | * Adds a 32-bit signed jump offset to RIP/EIP/IP.
|
---|
4614 | *
|
---|
4615 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4616 | * segment limit.
|
---|
4617 | *
|
---|
4618 | * @returns Strict VBox status code.
|
---|
4619 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4620 | * @param cbInstr Instruction size.
|
---|
4621 | * @param offNextInstr The offset of the next instruction.
|
---|
4622 | * @param enmEffOpSize Effective operand size.
|
---|
4623 | */
|
---|
4624 | VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
|
---|
4625 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
4626 | {
|
---|
4627 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
4628 | {
|
---|
4629 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX); Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
4630 |
|
---|
4631 | uint32_t const uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + offNextInstr;
|
---|
4632 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
4633 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
4634 | else
|
---|
4635 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4636 | }
|
---|
4637 | else
|
---|
4638 | {
|
---|
4639 | Assert(enmEffOpSize == IEMMODE_64BIT);
|
---|
4640 |
|
---|
4641 | uint64_t const uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
4642 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
4643 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
4644 | else
|
---|
4645 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4646 | }
|
---|
4647 |
|
---|
4648 | #ifndef IEM_WITH_CODE_TLB
|
---|
4649 | /* Flush the prefetch buffer. */
|
---|
4650 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
4651 | #endif
|
---|
4652 |
|
---|
4653 | /*
|
---|
4654 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
4655 | */
|
---|
4656 | return iemRegFinishClearingRF(pVCpu);
|
---|
4657 | }
|
---|
4658 |
|
---|
4659 |
|
---|
4660 | /**
|
---|
4661 | * Performs a near jump to the specified address.
|
---|
4662 | *
|
---|
4663 | * May raise a \#GP(0) if the new IP outside the code segment limit.
|
---|
4664 | *
|
---|
4665 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4666 | * @param uNewIp The new IP value.
|
---|
4667 | */
|
---|
4668 | VBOXSTRICTRC iemRegRipJumpU16AndFinishClearningRF(PVMCPUCC pVCpu, uint16_t uNewIp) RT_NOEXCEPT
|
---|
4669 | {
|
---|
4670 | if (RT_LIKELY( uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
4671 | || IEM_IS_64BIT_CODE(pVCpu) /* no limit checks in 64-bit mode */))
|
---|
4672 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
4673 | else
|
---|
4674 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4675 | /** @todo Test 16-bit jump in 64-bit mode. */
|
---|
4676 |
|
---|
4677 | #ifndef IEM_WITH_CODE_TLB
|
---|
4678 | /* Flush the prefetch buffer. */
|
---|
4679 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
4680 | #endif
|
---|
4681 |
|
---|
4682 | /*
|
---|
4683 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
4684 | */
|
---|
4685 | return iemRegFinishClearingRF(pVCpu);
|
---|
4686 | }
|
---|
4687 |
|
---|
4688 |
|
---|
4689 | /**
|
---|
4690 | * Performs a near jump to the specified address.
|
---|
4691 | *
|
---|
4692 | * May raise a \#GP(0) if the new RIP is outside the code segment limit.
|
---|
4693 | *
|
---|
4694 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4695 | * @param uNewEip The new EIP value.
|
---|
4696 | */
|
---|
4697 | VBOXSTRICTRC iemRegRipJumpU32AndFinishClearningRF(PVMCPUCC pVCpu, uint32_t uNewEip) RT_NOEXCEPT
|
---|
4698 | {
|
---|
4699 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX);
|
---|
4700 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
4701 |
|
---|
4702 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
4703 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
4704 | else
|
---|
4705 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4706 |
|
---|
4707 | #ifndef IEM_WITH_CODE_TLB
|
---|
4708 | /* Flush the prefetch buffer. */
|
---|
4709 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
4710 | #endif
|
---|
4711 |
|
---|
4712 | /*
|
---|
4713 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
4714 | */
|
---|
4715 | return iemRegFinishClearingRF(pVCpu);
|
---|
4716 | }
|
---|
4717 |
|
---|
4718 |
|
---|
4719 | /**
|
---|
4720 | * Performs a near jump to the specified address.
|
---|
4721 | *
|
---|
4722 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4723 | * segment limit.
|
---|
4724 | *
|
---|
4725 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4726 | * @param uNewRip The new RIP value.
|
---|
4727 | */
|
---|
4728 | VBOXSTRICTRC iemRegRipJumpU64AndFinishClearningRF(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT
|
---|
4729 | {
|
---|
4730 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
4731 |
|
---|
4732 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
4733 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
4734 | else
|
---|
4735 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4736 |
|
---|
4737 | #ifndef IEM_WITH_CODE_TLB
|
---|
4738 | /* Flush the prefetch buffer. */
|
---|
4739 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
4740 | #endif
|
---|
4741 |
|
---|
4742 | /*
|
---|
4743 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
4744 | */
|
---|
4745 | return iemRegFinishClearingRF(pVCpu);
|
---|
4746 | }
|
---|
4747 |
|
---|
4748 | /** @} */
|
---|
4749 |
|
---|
4750 |
|
---|
4751 | /** @name FPU access and helpers.
|
---|
4752 | *
|
---|
4753 | * @{
|
---|
4754 | */
|
---|
4755 |
|
---|
4756 | /**
|
---|
4757 | * Updates the x87.DS and FPUDP registers.
|
---|
4758 | *
|
---|
4759 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4760 | * @param pFpuCtx The FPU context.
|
---|
4761 | * @param iEffSeg The effective segment register.
|
---|
4762 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
4763 | */
|
---|
4764 | DECLINLINE(void) iemFpuUpdateDP(PVMCPUCC pVCpu, PX86FXSTATE pFpuCtx, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
4765 | {
|
---|
4766 | RTSEL sel;
|
---|
4767 | switch (iEffSeg)
|
---|
4768 | {
|
---|
4769 | case X86_SREG_DS: sel = pVCpu->cpum.GstCtx.ds.Sel; break;
|
---|
4770 | case X86_SREG_SS: sel = pVCpu->cpum.GstCtx.ss.Sel; break;
|
---|
4771 | case X86_SREG_CS: sel = pVCpu->cpum.GstCtx.cs.Sel; break;
|
---|
4772 | case X86_SREG_ES: sel = pVCpu->cpum.GstCtx.es.Sel; break;
|
---|
4773 | case X86_SREG_FS: sel = pVCpu->cpum.GstCtx.fs.Sel; break;
|
---|
4774 | case X86_SREG_GS: sel = pVCpu->cpum.GstCtx.gs.Sel; break;
|
---|
4775 | default:
|
---|
4776 | AssertMsgFailed(("%d\n", iEffSeg));
|
---|
4777 | sel = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
4778 | }
|
---|
4779 | /** @todo pFpuCtx->DS and FPUDP needs to be kept seperately. */
|
---|
4780 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
4781 | {
|
---|
4782 | pFpuCtx->DS = 0;
|
---|
4783 | pFpuCtx->FPUDP = (uint32_t)GCPtrEff + ((uint32_t)sel << 4);
|
---|
4784 | }
|
---|
4785 | else if (!IEM_IS_LONG_MODE(pVCpu)) /** @todo this is weird. explain. */
|
---|
4786 | {
|
---|
4787 | pFpuCtx->DS = sel;
|
---|
4788 | pFpuCtx->FPUDP = GCPtrEff;
|
---|
4789 | }
|
---|
4790 | else
|
---|
4791 | *(uint64_t *)&pFpuCtx->FPUDP = GCPtrEff;
|
---|
4792 | }
|
---|
4793 |
|
---|
4794 |
|
---|
4795 | /**
|
---|
4796 | * Rotates the stack registers in the push direction.
|
---|
4797 | *
|
---|
4798 | * @param pFpuCtx The FPU context.
|
---|
4799 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
4800 | * stack order.
|
---|
4801 | */
|
---|
4802 | DECLINLINE(void) iemFpuRotateStackPush(PX86FXSTATE pFpuCtx)
|
---|
4803 | {
|
---|
4804 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[7].r80;
|
---|
4805 | pFpuCtx->aRegs[7].r80 = pFpuCtx->aRegs[6].r80;
|
---|
4806 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[5].r80;
|
---|
4807 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[4].r80;
|
---|
4808 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[3].r80;
|
---|
4809 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[2].r80;
|
---|
4810 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[1].r80;
|
---|
4811 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[0].r80;
|
---|
4812 | pFpuCtx->aRegs[0].r80 = r80Tmp;
|
---|
4813 | }
|
---|
4814 |
|
---|
4815 |
|
---|
4816 | /**
|
---|
4817 | * Rotates the stack registers in the pop direction.
|
---|
4818 | *
|
---|
4819 | * @param pFpuCtx The FPU context.
|
---|
4820 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
4821 | * stack order.
|
---|
4822 | */
|
---|
4823 | DECLINLINE(void) iemFpuRotateStackPop(PX86FXSTATE pFpuCtx)
|
---|
4824 | {
|
---|
4825 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[0].r80;
|
---|
4826 | pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[1].r80;
|
---|
4827 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[2].r80;
|
---|
4828 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[3].r80;
|
---|
4829 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[4].r80;
|
---|
4830 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[5].r80;
|
---|
4831 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[6].r80;
|
---|
4832 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[7].r80;
|
---|
4833 | pFpuCtx->aRegs[7].r80 = r80Tmp;
|
---|
4834 | }
|
---|
4835 |
|
---|
4836 |
|
---|
4837 | /**
|
---|
4838 | * Updates FSW and pushes a FPU result onto the FPU stack if no pending
|
---|
4839 | * exception prevents it.
|
---|
4840 | *
|
---|
4841 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4842 | * @param pResult The FPU operation result to push.
|
---|
4843 | * @param pFpuCtx The FPU context.
|
---|
4844 | */
|
---|
4845 | static void iemFpuMaybePushResult(PVMCPU pVCpu, PIEMFPURESULT pResult, PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
4846 | {
|
---|
4847 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
4848 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
4849 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
4850 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
4851 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
4852 | {
|
---|
4853 | if ((fFsw & X86_FSW_ES) && !(pFpuCtx->FCW & X86_FSW_ES))
|
---|
4854 | Log11(("iemFpuMaybePushResult: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
4855 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fFsw));
|
---|
4856 | pFpuCtx->FSW = fFsw;
|
---|
4857 | return;
|
---|
4858 | }
|
---|
4859 |
|
---|
4860 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
4861 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
4862 | {
|
---|
4863 | /* All is fine, push the actual value. */
|
---|
4864 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
4865 | pFpuCtx->aRegs[7].r80 = pResult->r80Result;
|
---|
4866 | }
|
---|
4867 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
4868 | {
|
---|
4869 | /* Masked stack overflow, push QNaN. */
|
---|
4870 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
4871 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
4872 | }
|
---|
4873 | else
|
---|
4874 | {
|
---|
4875 | /* Raise stack overflow, don't push anything. */
|
---|
4876 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
4877 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
4878 | Log11(("iemFpuMaybePushResult: %04x:%08RX64: stack overflow (FSW=%#x)\n",
|
---|
4879 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
4880 | return;
|
---|
4881 | }
|
---|
4882 |
|
---|
4883 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
4884 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
4885 | pFpuCtx->FSW = fFsw;
|
---|
4886 |
|
---|
4887 | iemFpuRotateStackPush(pFpuCtx);
|
---|
4888 | RT_NOREF(pVCpu);
|
---|
4889 | }
|
---|
4890 |
|
---|
4891 |
|
---|
4892 | /**
|
---|
4893 | * Stores a result in a FPU register and updates the FSW and FTW.
|
---|
4894 | *
|
---|
4895 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4896 | * @param pFpuCtx The FPU context.
|
---|
4897 | * @param pResult The result to store.
|
---|
4898 | * @param iStReg Which FPU register to store it in.
|
---|
4899 | */
|
---|
4900 | static void iemFpuStoreResultOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx, PIEMFPURESULT pResult, uint8_t iStReg) RT_NOEXCEPT
|
---|
4901 | {
|
---|
4902 | Assert(iStReg < 8);
|
---|
4903 | uint16_t fNewFsw = pFpuCtx->FSW;
|
---|
4904 | uint16_t const iReg = (X86_FSW_TOP_GET(fNewFsw) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
4905 | fNewFsw &= ~X86_FSW_C_MASK;
|
---|
4906 | fNewFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
4907 | if ((fNewFsw & X86_FSW_ES) && !(pFpuCtx->FSW & X86_FSW_ES))
|
---|
4908 | Log11(("iemFpuStoreResultOnly: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
4909 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fNewFsw));
|
---|
4910 | pFpuCtx->FSW = fNewFsw;
|
---|
4911 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
4912 | pFpuCtx->aRegs[iStReg].r80 = pResult->r80Result;
|
---|
4913 | RT_NOREF(pVCpu);
|
---|
4914 | }
|
---|
4915 |
|
---|
4916 |
|
---|
4917 | /**
|
---|
4918 | * Only updates the FPU status word (FSW) with the result of the current
|
---|
4919 | * instruction.
|
---|
4920 | *
|
---|
4921 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4922 | * @param pFpuCtx The FPU context.
|
---|
4923 | * @param u16FSW The FSW output of the current instruction.
|
---|
4924 | */
|
---|
4925 | static void iemFpuUpdateFSWOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx, uint16_t u16FSW) RT_NOEXCEPT
|
---|
4926 | {
|
---|
4927 | uint16_t fNewFsw = pFpuCtx->FSW;
|
---|
4928 | fNewFsw &= ~X86_FSW_C_MASK;
|
---|
4929 | fNewFsw |= u16FSW & ~X86_FSW_TOP_MASK;
|
---|
4930 | if ((fNewFsw & X86_FSW_ES) && !(pFpuCtx->FSW & X86_FSW_ES))
|
---|
4931 | Log11(("iemFpuStoreResultOnly: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
4932 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fNewFsw));
|
---|
4933 | pFpuCtx->FSW = fNewFsw;
|
---|
4934 | RT_NOREF(pVCpu);
|
---|
4935 | }
|
---|
4936 |
|
---|
4937 |
|
---|
4938 | /**
|
---|
4939 | * Pops one item off the FPU stack if no pending exception prevents it.
|
---|
4940 | *
|
---|
4941 | * @param pFpuCtx The FPU context.
|
---|
4942 | */
|
---|
4943 | static void iemFpuMaybePopOne(PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
4944 | {
|
---|
4945 | /* Check pending exceptions. */
|
---|
4946 | uint16_t uFSW = pFpuCtx->FSW;
|
---|
4947 | if ( (pFpuCtx->FSW & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
4948 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
4949 | return;
|
---|
4950 |
|
---|
4951 | /* TOP--. */
|
---|
4952 | uint16_t iOldTop = uFSW & X86_FSW_TOP_MASK;
|
---|
4953 | uFSW &= ~X86_FSW_TOP_MASK;
|
---|
4954 | uFSW |= (iOldTop + (UINT16_C(9) << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
4955 | pFpuCtx->FSW = uFSW;
|
---|
4956 |
|
---|
4957 | /* Mark the previous ST0 as empty. */
|
---|
4958 | iOldTop >>= X86_FSW_TOP_SHIFT;
|
---|
4959 | pFpuCtx->FTW &= ~RT_BIT(iOldTop);
|
---|
4960 |
|
---|
4961 | /* Rotate the registers. */
|
---|
4962 | iemFpuRotateStackPop(pFpuCtx);
|
---|
4963 | }
|
---|
4964 |
|
---|
4965 |
|
---|
4966 | /**
|
---|
4967 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it.
|
---|
4968 | *
|
---|
4969 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4970 | * @param pResult The FPU operation result to push.
|
---|
4971 | * @param uFpuOpcode The FPU opcode value.
|
---|
4972 | */
|
---|
4973 | void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
4974 | {
|
---|
4975 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
4976 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
4977 | iemFpuMaybePushResult(pVCpu, pResult, pFpuCtx);
|
---|
4978 | }
|
---|
4979 |
|
---|
4980 |
|
---|
4981 | /**
|
---|
4982 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it,
|
---|
4983 | * and sets FPUDP and FPUDS.
|
---|
4984 | *
|
---|
4985 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4986 | * @param pResult The FPU operation result to push.
|
---|
4987 | * @param iEffSeg The effective segment register.
|
---|
4988 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
4989 | * @param uFpuOpcode The FPU opcode value.
|
---|
4990 | */
|
---|
4991 | void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff,
|
---|
4992 | uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
4993 | {
|
---|
4994 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
4995 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
4996 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
4997 | iemFpuMaybePushResult(pVCpu, pResult, pFpuCtx);
|
---|
4998 | }
|
---|
4999 |
|
---|
5000 |
|
---|
5001 | /**
|
---|
5002 | * Replace ST0 with the first value and push the second onto the FPU stack,
|
---|
5003 | * unless a pending exception prevents it.
|
---|
5004 | *
|
---|
5005 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5006 | * @param pResult The FPU operation result to store and push.
|
---|
5007 | * @param uFpuOpcode The FPU opcode value.
|
---|
5008 | */
|
---|
5009 | void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5010 | {
|
---|
5011 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5012 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5013 |
|
---|
5014 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
5015 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
5016 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
5017 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
5018 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
5019 | {
|
---|
5020 | if ((fFsw & X86_FSW_ES) && !(pFpuCtx->FSW & X86_FSW_ES))
|
---|
5021 | Log11(("iemFpuPushResultTwo: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
5022 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fFsw));
|
---|
5023 | pFpuCtx->FSW = fFsw;
|
---|
5024 | return;
|
---|
5025 | }
|
---|
5026 |
|
---|
5027 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
5028 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
5029 | {
|
---|
5030 | /* All is fine, push the actual value. */
|
---|
5031 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5032 | pFpuCtx->aRegs[0].r80 = pResult->r80Result1;
|
---|
5033 | pFpuCtx->aRegs[7].r80 = pResult->r80Result2;
|
---|
5034 | }
|
---|
5035 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5036 | {
|
---|
5037 | /* Masked stack overflow, push QNaN. */
|
---|
5038 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
5039 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
5040 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5041 | }
|
---|
5042 | else
|
---|
5043 | {
|
---|
5044 | /* Raise stack overflow, don't push anything. */
|
---|
5045 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
5046 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
5047 | Log11(("iemFpuPushResultTwo: %04x:%08RX64: stack overflow (FSW=%#x)\n",
|
---|
5048 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5049 | return;
|
---|
5050 | }
|
---|
5051 |
|
---|
5052 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
5053 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5054 | pFpuCtx->FSW = fFsw;
|
---|
5055 |
|
---|
5056 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5057 | }
|
---|
5058 |
|
---|
5059 |
|
---|
5060 | /**
|
---|
5061 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
5062 | * FOP.
|
---|
5063 | *
|
---|
5064 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5065 | * @param pResult The result to store.
|
---|
5066 | * @param iStReg Which FPU register to store it in.
|
---|
5067 | * @param uFpuOpcode The FPU opcode value.
|
---|
5068 | */
|
---|
5069 | void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5070 | {
|
---|
5071 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5072 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5073 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5074 | }
|
---|
5075 |
|
---|
5076 |
|
---|
5077 | /**
|
---|
5078 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
5079 | * FOP, and then pops the stack.
|
---|
5080 | *
|
---|
5081 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5082 | * @param pResult The result to store.
|
---|
5083 | * @param iStReg Which FPU register to store it in.
|
---|
5084 | * @param uFpuOpcode The FPU opcode value.
|
---|
5085 | */
|
---|
5086 | void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5087 | {
|
---|
5088 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5089 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5090 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5091 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5092 | }
|
---|
5093 |
|
---|
5094 |
|
---|
5095 | /**
|
---|
5096 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
5097 | * FPUDP, and FPUDS.
|
---|
5098 | *
|
---|
5099 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5100 | * @param pResult The result to store.
|
---|
5101 | * @param iStReg Which FPU register to store it in.
|
---|
5102 | * @param iEffSeg The effective memory operand selector register.
|
---|
5103 | * @param GCPtrEff The effective memory operand offset.
|
---|
5104 | * @param uFpuOpcode The FPU opcode value.
|
---|
5105 | */
|
---|
5106 | void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
|
---|
5107 | uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5108 | {
|
---|
5109 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5110 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5111 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5112 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5113 | }
|
---|
5114 |
|
---|
5115 |
|
---|
5116 | /**
|
---|
5117 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
5118 | * FPUDP, and FPUDS, and then pops the stack.
|
---|
5119 | *
|
---|
5120 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5121 | * @param pResult The result to store.
|
---|
5122 | * @param iStReg Which FPU register to store it in.
|
---|
5123 | * @param iEffSeg The effective memory operand selector register.
|
---|
5124 | * @param GCPtrEff The effective memory operand offset.
|
---|
5125 | * @param uFpuOpcode The FPU opcode value.
|
---|
5126 | */
|
---|
5127 | void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult,
|
---|
5128 | uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5129 | {
|
---|
5130 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5131 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5132 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5133 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5134 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5135 | }
|
---|
5136 |
|
---|
5137 |
|
---|
5138 | /**
|
---|
5139 | * Updates the FOP, FPUIP, and FPUCS. For FNOP.
|
---|
5140 | *
|
---|
5141 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5142 | * @param uFpuOpcode The FPU opcode value.
|
---|
5143 | */
|
---|
5144 | void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5145 | {
|
---|
5146 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5147 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5148 | }
|
---|
5149 |
|
---|
5150 |
|
---|
5151 | /**
|
---|
5152 | * Updates the FSW, FOP, FPUIP, and FPUCS.
|
---|
5153 | *
|
---|
5154 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5155 | * @param u16FSW The FSW from the current instruction.
|
---|
5156 | * @param uFpuOpcode The FPU opcode value.
|
---|
5157 | */
|
---|
5158 | void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5159 | {
|
---|
5160 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5161 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5162 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5163 | }
|
---|
5164 |
|
---|
5165 |
|
---|
5166 | /**
|
---|
5167 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack.
|
---|
5168 | *
|
---|
5169 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5170 | * @param u16FSW The FSW from the current instruction.
|
---|
5171 | * @param uFpuOpcode The FPU opcode value.
|
---|
5172 | */
|
---|
5173 | void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5174 | {
|
---|
5175 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5176 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5177 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5178 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5179 | }
|
---|
5180 |
|
---|
5181 |
|
---|
5182 | /**
|
---|
5183 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS.
|
---|
5184 | *
|
---|
5185 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5186 | * @param u16FSW The FSW from the current instruction.
|
---|
5187 | * @param iEffSeg The effective memory operand selector register.
|
---|
5188 | * @param GCPtrEff The effective memory operand offset.
|
---|
5189 | * @param uFpuOpcode The FPU opcode value.
|
---|
5190 | */
|
---|
5191 | void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5192 | {
|
---|
5193 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5194 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5195 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5196 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5197 | }
|
---|
5198 |
|
---|
5199 |
|
---|
5200 | /**
|
---|
5201 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack twice.
|
---|
5202 | *
|
---|
5203 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5204 | * @param u16FSW The FSW from the current instruction.
|
---|
5205 | * @param uFpuOpcode The FPU opcode value.
|
---|
5206 | */
|
---|
5207 | void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5208 | {
|
---|
5209 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5210 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5211 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5212 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5213 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5214 | }
|
---|
5215 |
|
---|
5216 |
|
---|
5217 | /**
|
---|
5218 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS, then pops the stack.
|
---|
5219 | *
|
---|
5220 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5221 | * @param u16FSW The FSW from the current instruction.
|
---|
5222 | * @param iEffSeg The effective memory operand selector register.
|
---|
5223 | * @param GCPtrEff The effective memory operand offset.
|
---|
5224 | * @param uFpuOpcode The FPU opcode value.
|
---|
5225 | */
|
---|
5226 | void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff,
|
---|
5227 | uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5228 | {
|
---|
5229 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5230 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5231 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5232 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5233 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5234 | }
|
---|
5235 |
|
---|
5236 |
|
---|
5237 | /**
|
---|
5238 | * Worker routine for raising an FPU stack underflow exception.
|
---|
5239 | *
|
---|
5240 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5241 | * @param pFpuCtx The FPU context.
|
---|
5242 | * @param iStReg The stack register being accessed.
|
---|
5243 | */
|
---|
5244 | static void iemFpuStackUnderflowOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx, uint8_t iStReg)
|
---|
5245 | {
|
---|
5246 | Assert(iStReg < 8 || iStReg == UINT8_MAX);
|
---|
5247 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5248 | {
|
---|
5249 | /* Masked underflow. */
|
---|
5250 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5251 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5252 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
5253 | if (iStReg != UINT8_MAX)
|
---|
5254 | {
|
---|
5255 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
5256 | iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
|
---|
5257 | }
|
---|
5258 | }
|
---|
5259 | else
|
---|
5260 | {
|
---|
5261 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5262 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5263 | Log11(("iemFpuStackUnderflowOnly: %04x:%08RX64: underflow (FSW=%#x)\n",
|
---|
5264 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5265 | }
|
---|
5266 | RT_NOREF(pVCpu);
|
---|
5267 | }
|
---|
5268 |
|
---|
5269 |
|
---|
5270 | /**
|
---|
5271 | * Raises a FPU stack underflow exception.
|
---|
5272 | *
|
---|
5273 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5274 | * @param iStReg The destination register that should be loaded
|
---|
5275 | * with QNaN if \#IS is not masked. Specify
|
---|
5276 | * UINT8_MAX if none (like for fcom).
|
---|
5277 | * @param uFpuOpcode The FPU opcode value.
|
---|
5278 | */
|
---|
5279 | void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5280 | {
|
---|
5281 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5282 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5283 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5284 | }
|
---|
5285 |
|
---|
5286 |
|
---|
5287 | void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5288 | {
|
---|
5289 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5290 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5291 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5292 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5293 | }
|
---|
5294 |
|
---|
5295 |
|
---|
5296 | void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5297 | {
|
---|
5298 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5299 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5300 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5301 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5302 | }
|
---|
5303 |
|
---|
5304 |
|
---|
5305 | void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff,
|
---|
5306 | uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5307 | {
|
---|
5308 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5309 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5310 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5311 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5312 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5313 | }
|
---|
5314 |
|
---|
5315 |
|
---|
5316 | void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5317 | {
|
---|
5318 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5319 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5320 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, UINT8_MAX);
|
---|
5321 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5322 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5323 | }
|
---|
5324 |
|
---|
5325 |
|
---|
5326 | void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5327 | {
|
---|
5328 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5329 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5330 |
|
---|
5331 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5332 | {
|
---|
5333 | /* Masked overflow - Push QNaN. */
|
---|
5334 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5335 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
5336 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5337 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5338 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5339 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5340 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5341 | }
|
---|
5342 | else
|
---|
5343 | {
|
---|
5344 | /* Exception pending - don't change TOP or the register stack. */
|
---|
5345 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5346 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5347 | Log11(("iemFpuStackPushUnderflow: %04x:%08RX64: underflow (FSW=%#x)\n",
|
---|
5348 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5349 | }
|
---|
5350 | }
|
---|
5351 |
|
---|
5352 |
|
---|
5353 | void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5354 | {
|
---|
5355 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5356 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5357 |
|
---|
5358 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5359 | {
|
---|
5360 | /* Masked overflow - Push QNaN. */
|
---|
5361 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5362 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
5363 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5364 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5365 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5366 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
5367 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5368 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5369 | }
|
---|
5370 | else
|
---|
5371 | {
|
---|
5372 | /* Exception pending - don't change TOP or the register stack. */
|
---|
5373 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5374 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5375 | Log11(("iemFpuStackPushUnderflowTwo: %04x:%08RX64: underflow (FSW=%#x)\n",
|
---|
5376 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5377 | }
|
---|
5378 | }
|
---|
5379 |
|
---|
5380 |
|
---|
5381 | /**
|
---|
5382 | * Worker routine for raising an FPU stack overflow exception on a push.
|
---|
5383 | *
|
---|
5384 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5385 | * @param pFpuCtx The FPU context.
|
---|
5386 | */
|
---|
5387 | static void iemFpuStackPushOverflowOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
5388 | {
|
---|
5389 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5390 | {
|
---|
5391 | /* Masked overflow. */
|
---|
5392 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5393 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
5394 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
|
---|
5395 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5396 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5397 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5398 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5399 | }
|
---|
5400 | else
|
---|
5401 | {
|
---|
5402 | /* Exception pending - don't change TOP or the register stack. */
|
---|
5403 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5404 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5405 | Log11(("iemFpuStackPushOverflowOnly: %04x:%08RX64: overflow (FSW=%#x)\n",
|
---|
5406 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5407 | }
|
---|
5408 | RT_NOREF(pVCpu);
|
---|
5409 | }
|
---|
5410 |
|
---|
5411 |
|
---|
5412 | /**
|
---|
5413 | * Raises a FPU stack overflow exception on a push.
|
---|
5414 | *
|
---|
5415 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5416 | * @param uFpuOpcode The FPU opcode value.
|
---|
5417 | */
|
---|
5418 | void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5419 | {
|
---|
5420 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5421 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5422 | iemFpuStackPushOverflowOnly(pVCpu, pFpuCtx);
|
---|
5423 | }
|
---|
5424 |
|
---|
5425 |
|
---|
5426 | /**
|
---|
5427 | * Raises a FPU stack overflow exception on a push with a memory operand.
|
---|
5428 | *
|
---|
5429 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5430 | * @param iEffSeg The effective memory operand selector register.
|
---|
5431 | * @param GCPtrEff The effective memory operand offset.
|
---|
5432 | * @param uFpuOpcode The FPU opcode value.
|
---|
5433 | */
|
---|
5434 | void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5435 | {
|
---|
5436 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5437 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5438 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5439 | iemFpuStackPushOverflowOnly(pVCpu, pFpuCtx);
|
---|
5440 | }
|
---|
5441 |
|
---|
5442 | /** @} */
|
---|
5443 |
|
---|
5444 |
|
---|
5445 | /** @name SSE+AVX SIMD access and helpers.
|
---|
5446 | *
|
---|
5447 | * @{
|
---|
5448 | */
|
---|
5449 | /**
|
---|
5450 | * Stores a result in a SIMD XMM register, updates the MXCSR.
|
---|
5451 | *
|
---|
5452 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5453 | * @param pResult The result to store.
|
---|
5454 | * @param iXmmReg Which SIMD XMM register to store the result in.
|
---|
5455 | */
|
---|
5456 | void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT
|
---|
5457 | {
|
---|
5458 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5459 | pFpuCtx->MXCSR |= pResult->MXCSR & X86_MXCSR_XCPT_FLAGS;
|
---|
5460 |
|
---|
5461 | /* The result is only updated if there is no unmasked exception pending. */
|
---|
5462 | if (( ~((pFpuCtx->MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT)
|
---|
5463 | & (pFpuCtx->MXCSR & X86_MXCSR_XCPT_FLAGS)) == 0)
|
---|
5464 | pVCpu->cpum.GstCtx.XState.x87.aXMM[iXmmReg] = pResult->uResult;
|
---|
5465 | }
|
---|
5466 |
|
---|
5467 |
|
---|
5468 | /**
|
---|
5469 | * Updates the MXCSR.
|
---|
5470 | *
|
---|
5471 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5472 | * @param fMxcsr The new MXCSR value.
|
---|
5473 | */
|
---|
5474 | void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT
|
---|
5475 | {
|
---|
5476 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5477 | pFpuCtx->MXCSR |= fMxcsr & X86_MXCSR_XCPT_FLAGS;
|
---|
5478 | }
|
---|
5479 | /** @} */
|
---|
5480 |
|
---|
5481 |
|
---|
5482 | /** @name Memory access.
|
---|
5483 | *
|
---|
5484 | * @{
|
---|
5485 | */
|
---|
5486 |
|
---|
5487 | #undef LOG_GROUP
|
---|
5488 | #define LOG_GROUP LOG_GROUP_IEM_MEM
|
---|
5489 |
|
---|
5490 | /**
|
---|
5491 | * Updates the IEMCPU::cbWritten counter if applicable.
|
---|
5492 | *
|
---|
5493 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5494 | * @param fAccess The access being accounted for.
|
---|
5495 | * @param cbMem The access size.
|
---|
5496 | */
|
---|
5497 | DECL_FORCE_INLINE(void) iemMemUpdateWrittenCounter(PVMCPUCC pVCpu, uint32_t fAccess, size_t cbMem)
|
---|
5498 | {
|
---|
5499 | if ( (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_STACK | IEM_ACCESS_TYPE_WRITE)
|
---|
5500 | || (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_DATA | IEM_ACCESS_TYPE_WRITE) )
|
---|
5501 | pVCpu->iem.s.cbWritten += (uint32_t)cbMem;
|
---|
5502 | }
|
---|
5503 |
|
---|
5504 |
|
---|
5505 | /**
|
---|
5506 | * Applies the segment limit, base and attributes.
|
---|
5507 | *
|
---|
5508 | * This may raise a \#GP or \#SS.
|
---|
5509 | *
|
---|
5510 | * @returns VBox strict status code.
|
---|
5511 | *
|
---|
5512 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5513 | * @param fAccess The kind of access which is being performed.
|
---|
5514 | * @param iSegReg The index of the segment register to apply.
|
---|
5515 | * This is UINT8_MAX if none (for IDT, GDT, LDT,
|
---|
5516 | * TSS, ++).
|
---|
5517 | * @param cbMem The access size.
|
---|
5518 | * @param pGCPtrMem Pointer to the guest memory address to apply
|
---|
5519 | * segmentation to. Input and output parameter.
|
---|
5520 | */
|
---|
5521 | VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT
|
---|
5522 | {
|
---|
5523 | if (iSegReg == UINT8_MAX)
|
---|
5524 | return VINF_SUCCESS;
|
---|
5525 |
|
---|
5526 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
5527 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
5528 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
5529 | {
|
---|
5530 | case IEMMODE_16BIT:
|
---|
5531 | case IEMMODE_32BIT:
|
---|
5532 | {
|
---|
5533 | RTGCPTR32 GCPtrFirst32 = (RTGCPTR32)*pGCPtrMem;
|
---|
5534 | RTGCPTR32 GCPtrLast32 = GCPtrFirst32 + (uint32_t)cbMem - 1;
|
---|
5535 |
|
---|
5536 | if ( pSel->Attr.n.u1Present
|
---|
5537 | && !pSel->Attr.n.u1Unusable)
|
---|
5538 | {
|
---|
5539 | Assert(pSel->Attr.n.u1DescType);
|
---|
5540 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
|
---|
5541 | {
|
---|
5542 | if ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
5543 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
5544 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, fAccess);
|
---|
5545 |
|
---|
5546 | if (!IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
5547 | {
|
---|
5548 | /** @todo CPL check. */
|
---|
5549 | }
|
---|
5550 |
|
---|
5551 | /*
|
---|
5552 | * There are two kinds of data selectors, normal and expand down.
|
---|
5553 | */
|
---|
5554 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
|
---|
5555 | {
|
---|
5556 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
5557 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
5558 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
5559 | }
|
---|
5560 | else
|
---|
5561 | {
|
---|
5562 | /*
|
---|
5563 | * The upper boundary is defined by the B bit, not the G bit!
|
---|
5564 | */
|
---|
5565 | if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
|
---|
5566 | || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
|
---|
5567 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
5568 | }
|
---|
5569 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
5570 | }
|
---|
5571 | else
|
---|
5572 | {
|
---|
5573 | /*
|
---|
5574 | * Code selector and usually be used to read thru, writing is
|
---|
5575 | * only permitted in real and V8086 mode.
|
---|
5576 | */
|
---|
5577 | if ( ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
5578 | || ( (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
5579 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)) )
|
---|
5580 | && !IEM_IS_REAL_OR_V86_MODE(pVCpu) )
|
---|
5581 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, fAccess);
|
---|
5582 |
|
---|
5583 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
5584 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
5585 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
5586 |
|
---|
5587 | if (!IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
5588 | {
|
---|
5589 | /** @todo CPL check. */
|
---|
5590 | }
|
---|
5591 |
|
---|
5592 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
5593 | }
|
---|
5594 | }
|
---|
5595 | else
|
---|
5596 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5597 | return VINF_SUCCESS;
|
---|
5598 | }
|
---|
5599 |
|
---|
5600 | case IEMMODE_64BIT:
|
---|
5601 | {
|
---|
5602 | RTGCPTR GCPtrMem = *pGCPtrMem;
|
---|
5603 | if (iSegReg == X86_SREG_GS || iSegReg == X86_SREG_FS)
|
---|
5604 | *pGCPtrMem = GCPtrMem + pSel->u64Base;
|
---|
5605 |
|
---|
5606 | Assert(cbMem >= 1);
|
---|
5607 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
5608 | return VINF_SUCCESS;
|
---|
5609 | /** @todo We should probably raise \#SS(0) here if segment is SS; see AMD spec.
|
---|
5610 | * 4.12.2 "Data Limit Checks in 64-bit Mode". */
|
---|
5611 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5612 | }
|
---|
5613 |
|
---|
5614 | default:
|
---|
5615 | AssertFailedReturn(VERR_IEM_IPE_7);
|
---|
5616 | }
|
---|
5617 | }
|
---|
5618 |
|
---|
5619 |
|
---|
5620 | /**
|
---|
5621 | * Translates a virtual address to a physical physical address and checks if we
|
---|
5622 | * can access the page as specified.
|
---|
5623 | *
|
---|
5624 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5625 | * @param GCPtrMem The virtual address.
|
---|
5626 | * @param cbAccess The access size, for raising \#PF correctly for
|
---|
5627 | * FXSAVE and such.
|
---|
5628 | * @param fAccess The intended access.
|
---|
5629 | * @param pGCPhysMem Where to return the physical address.
|
---|
5630 | */
|
---|
5631 | VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess,
|
---|
5632 | uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT
|
---|
5633 | {
|
---|
5634 | /** @todo Need a different PGM interface here. We're currently using
|
---|
5635 | * generic / REM interfaces. this won't cut it for R0. */
|
---|
5636 | /** @todo If/when PGM handles paged real-mode, we can remove the hack in
|
---|
5637 | * iemSvmWorldSwitch/iemVmxWorldSwitch to work around raising a page-fault
|
---|
5638 | * here. */
|
---|
5639 | PGMPTWALK Walk;
|
---|
5640 | int rc = PGMGstGetPage(pVCpu, GCPtrMem, &Walk);
|
---|
5641 | if (RT_FAILURE(rc))
|
---|
5642 | {
|
---|
5643 | LogEx(LOG_GROUP_IEM,("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - failed to fetch page -> #PF\n", GCPtrMem));
|
---|
5644 | /** @todo Check unassigned memory in unpaged mode. */
|
---|
5645 | /** @todo Reserved bits in page tables. Requires new PGM interface. */
|
---|
5646 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
5647 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
5648 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
5649 | #endif
|
---|
5650 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
5651 | return iemRaisePageFault(pVCpu, GCPtrMem, cbAccess, fAccess, rc);
|
---|
5652 | }
|
---|
5653 |
|
---|
5654 | /* If the page is writable and does not have the no-exec bit set, all
|
---|
5655 | access is allowed. Otherwise we'll have to check more carefully... */
|
---|
5656 | if ((Walk.fEffective & (X86_PTE_RW | X86_PTE_US | X86_PTE_PAE_NX)) != (X86_PTE_RW | X86_PTE_US))
|
---|
5657 | {
|
---|
5658 | /* Write to read only memory? */
|
---|
5659 | if ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
5660 | && !(Walk.fEffective & X86_PTE_RW)
|
---|
5661 | && ( ( IEM_GET_CPL(pVCpu) == 3
|
---|
5662 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
5663 | || (pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP)))
|
---|
5664 | {
|
---|
5665 | LogEx(LOG_GROUP_IEM,("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - read-only page -> #PF\n", GCPtrMem));
|
---|
5666 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
5667 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
5668 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
5669 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
5670 | #endif
|
---|
5671 | return iemRaisePageFault(pVCpu, GCPtrMem, cbAccess, fAccess & ~IEM_ACCESS_TYPE_READ, VERR_ACCESS_DENIED);
|
---|
5672 | }
|
---|
5673 |
|
---|
5674 | /* Kernel memory accessed by userland? */
|
---|
5675 | if ( !(Walk.fEffective & X86_PTE_US)
|
---|
5676 | && IEM_GET_CPL(pVCpu) == 3
|
---|
5677 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
5678 | {
|
---|
5679 | LogEx(LOG_GROUP_IEM,("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - user access to kernel page -> #PF\n", GCPtrMem));
|
---|
5680 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
5681 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
5682 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
5683 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
5684 | #endif
|
---|
5685 | return iemRaisePageFault(pVCpu, GCPtrMem, cbAccess, fAccess, VERR_ACCESS_DENIED);
|
---|
5686 | }
|
---|
5687 |
|
---|
5688 | /* Executing non-executable memory? */
|
---|
5689 | if ( (fAccess & IEM_ACCESS_TYPE_EXEC)
|
---|
5690 | && (Walk.fEffective & X86_PTE_PAE_NX)
|
---|
5691 | && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE) )
|
---|
5692 | {
|
---|
5693 | LogEx(LOG_GROUP_IEM,("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - NX -> #PF\n", GCPtrMem));
|
---|
5694 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
5695 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
5696 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
5697 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
5698 | #endif
|
---|
5699 | return iemRaisePageFault(pVCpu, GCPtrMem, cbAccess, fAccess & ~(IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE),
|
---|
5700 | VERR_ACCESS_DENIED);
|
---|
5701 | }
|
---|
5702 | }
|
---|
5703 |
|
---|
5704 | /*
|
---|
5705 | * Set the dirty / access flags.
|
---|
5706 | * ASSUMES this is set when the address is translated rather than on committ...
|
---|
5707 | */
|
---|
5708 | /** @todo testcase: check when A and D bits are actually set by the CPU. */
|
---|
5709 | uint32_t fAccessedDirty = fAccess & IEM_ACCESS_TYPE_WRITE ? X86_PTE_D | X86_PTE_A : X86_PTE_A;
|
---|
5710 | if ((Walk.fEffective & fAccessedDirty) != fAccessedDirty)
|
---|
5711 | {
|
---|
5712 | int rc2 = PGMGstModifyPage(pVCpu, GCPtrMem, 1, fAccessedDirty, ~(uint64_t)fAccessedDirty);
|
---|
5713 | AssertRC(rc2);
|
---|
5714 | /** @todo Nested VMX: Accessed/dirty bit currently not supported, asserted below. */
|
---|
5715 | Assert(!(CPUMGetGuestIa32VmxEptVpidCap(pVCpu) & VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY_MASK));
|
---|
5716 | }
|
---|
5717 |
|
---|
5718 | RTGCPHYS const GCPhys = Walk.GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
5719 | *pGCPhysMem = GCPhys;
|
---|
5720 | return VINF_SUCCESS;
|
---|
5721 | }
|
---|
5722 |
|
---|
5723 |
|
---|
5724 | /**
|
---|
5725 | * Looks up a memory mapping entry.
|
---|
5726 | *
|
---|
5727 | * @returns The mapping index (positive) or VERR_NOT_FOUND (negative).
|
---|
5728 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5729 | * @param pvMem The memory address.
|
---|
5730 | * @param fAccess The access to.
|
---|
5731 | */
|
---|
5732 | DECLINLINE(int) iemMapLookup(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess)
|
---|
5733 | {
|
---|
5734 | Assert(pVCpu->iem.s.cActiveMappings <= RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
5735 | fAccess &= IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK;
|
---|
5736 | if ( pVCpu->iem.s.aMemMappings[0].pv == pvMem
|
---|
5737 | && (pVCpu->iem.s.aMemMappings[0].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
5738 | return 0;
|
---|
5739 | if ( pVCpu->iem.s.aMemMappings[1].pv == pvMem
|
---|
5740 | && (pVCpu->iem.s.aMemMappings[1].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
5741 | return 1;
|
---|
5742 | if ( pVCpu->iem.s.aMemMappings[2].pv == pvMem
|
---|
5743 | && (pVCpu->iem.s.aMemMappings[2].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
5744 | return 2;
|
---|
5745 | return VERR_NOT_FOUND;
|
---|
5746 | }
|
---|
5747 |
|
---|
5748 |
|
---|
5749 | /**
|
---|
5750 | * Finds a free memmap entry when using iNextMapping doesn't work.
|
---|
5751 | *
|
---|
5752 | * @returns Memory mapping index, 1024 on failure.
|
---|
5753 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5754 | */
|
---|
5755 | static unsigned iemMemMapFindFree(PVMCPUCC pVCpu)
|
---|
5756 | {
|
---|
5757 | /*
|
---|
5758 | * The easy case.
|
---|
5759 | */
|
---|
5760 | if (pVCpu->iem.s.cActiveMappings == 0)
|
---|
5761 | {
|
---|
5762 | pVCpu->iem.s.iNextMapping = 1;
|
---|
5763 | return 0;
|
---|
5764 | }
|
---|
5765 |
|
---|
5766 | /* There should be enough mappings for all instructions. */
|
---|
5767 | AssertReturn(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings), 1024);
|
---|
5768 |
|
---|
5769 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->iem.s.aMemMappings); i++)
|
---|
5770 | if (pVCpu->iem.s.aMemMappings[i].fAccess == IEM_ACCESS_INVALID)
|
---|
5771 | return i;
|
---|
5772 |
|
---|
5773 | AssertFailedReturn(1024);
|
---|
5774 | }
|
---|
5775 |
|
---|
5776 |
|
---|
5777 | /**
|
---|
5778 | * Commits a bounce buffer that needs writing back and unmaps it.
|
---|
5779 | *
|
---|
5780 | * @returns Strict VBox status code.
|
---|
5781 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5782 | * @param iMemMap The index of the buffer to commit.
|
---|
5783 | * @param fPostponeFail Whether we can postpone writer failures to ring-3.
|
---|
5784 | * Always false in ring-3, obviously.
|
---|
5785 | */
|
---|
5786 | static VBOXSTRICTRC iemMemBounceBufferCommitAndUnmap(PVMCPUCC pVCpu, unsigned iMemMap, bool fPostponeFail)
|
---|
5787 | {
|
---|
5788 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
5789 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
5790 | #ifdef IN_RING3
|
---|
5791 | Assert(!fPostponeFail);
|
---|
5792 | RT_NOREF_PV(fPostponeFail);
|
---|
5793 | #endif
|
---|
5794 |
|
---|
5795 | /*
|
---|
5796 | * Do the writing.
|
---|
5797 | */
|
---|
5798 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5799 | if (!pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned)
|
---|
5800 | {
|
---|
5801 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
5802 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
5803 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
5804 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
5805 | {
|
---|
5806 | /*
|
---|
5807 | * Carefully and efficiently dealing with access handler return
|
---|
5808 | * codes make this a little bloated.
|
---|
5809 | */
|
---|
5810 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM,
|
---|
5811 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
5812 | pbBuf,
|
---|
5813 | cbFirst,
|
---|
5814 | PGMACCESSORIGIN_IEM);
|
---|
5815 | if (rcStrict == VINF_SUCCESS)
|
---|
5816 | {
|
---|
5817 | if (cbSecond)
|
---|
5818 | {
|
---|
5819 | rcStrict = PGMPhysWrite(pVM,
|
---|
5820 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
5821 | pbBuf + cbFirst,
|
---|
5822 | cbSecond,
|
---|
5823 | PGMACCESSORIGIN_IEM);
|
---|
5824 | if (rcStrict == VINF_SUCCESS)
|
---|
5825 | { /* nothing */ }
|
---|
5826 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
5827 | {
|
---|
5828 | LogEx(LOG_GROUP_IEM,
|
---|
5829 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
5830 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
5831 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
5832 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5833 | }
|
---|
5834 | #ifndef IN_RING3
|
---|
5835 | else if (fPostponeFail)
|
---|
5836 | {
|
---|
5837 | LogEx(LOG_GROUP_IEM,
|
---|
5838 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
5839 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
5840 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
5841 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
5842 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
5843 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5844 | }
|
---|
5845 | #endif
|
---|
5846 | else
|
---|
5847 | {
|
---|
5848 | LogEx(LOG_GROUP_IEM,
|
---|
5849 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
5850 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
5851 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
5852 | return rcStrict;
|
---|
5853 | }
|
---|
5854 | }
|
---|
5855 | }
|
---|
5856 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
5857 | {
|
---|
5858 | if (!cbSecond)
|
---|
5859 | {
|
---|
5860 | LogEx(LOG_GROUP_IEM,
|
---|
5861 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc\n",
|
---|
5862 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
5863 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5864 | }
|
---|
5865 | else
|
---|
5866 | {
|
---|
5867 | VBOXSTRICTRC rcStrict2 = PGMPhysWrite(pVM,
|
---|
5868 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
5869 | pbBuf + cbFirst,
|
---|
5870 | cbSecond,
|
---|
5871 | PGMACCESSORIGIN_IEM);
|
---|
5872 | if (rcStrict2 == VINF_SUCCESS)
|
---|
5873 | {
|
---|
5874 | LogEx(LOG_GROUP_IEM,
|
---|
5875 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x\n",
|
---|
5876 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
5877 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
5878 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5879 | }
|
---|
5880 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
5881 | {
|
---|
5882 | LogEx(LOG_GROUP_IEM,
|
---|
5883 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
5884 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
5885 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
5886 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
5887 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5888 | }
|
---|
5889 | #ifndef IN_RING3
|
---|
5890 | else if (fPostponeFail)
|
---|
5891 | {
|
---|
5892 | LogEx(LOG_GROUP_IEM,
|
---|
5893 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
5894 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
5895 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
5896 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
5897 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
5898 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5899 | }
|
---|
5900 | #endif
|
---|
5901 | else
|
---|
5902 | {
|
---|
5903 | LogEx(LOG_GROUP_IEM,
|
---|
5904 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
5905 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
5906 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
5907 | return rcStrict2;
|
---|
5908 | }
|
---|
5909 | }
|
---|
5910 | }
|
---|
5911 | #ifndef IN_RING3
|
---|
5912 | else if (fPostponeFail)
|
---|
5913 | {
|
---|
5914 | LogEx(LOG_GROUP_IEM,
|
---|
5915 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
5916 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
5917 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
5918 | if (!cbSecond)
|
---|
5919 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST;
|
---|
5920 | else
|
---|
5921 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
5922 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
5923 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5924 | }
|
---|
5925 | #endif
|
---|
5926 | else
|
---|
5927 | {
|
---|
5928 | LogEx(LOG_GROUP_IEM,
|
---|
5929 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
5930 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
5931 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
5932 | return rcStrict;
|
---|
5933 | }
|
---|
5934 | }
|
---|
5935 | else
|
---|
5936 | {
|
---|
5937 | /*
|
---|
5938 | * No access handlers, much simpler.
|
---|
5939 | */
|
---|
5940 | int rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pbBuf, cbFirst);
|
---|
5941 | if (RT_SUCCESS(rc))
|
---|
5942 | {
|
---|
5943 | if (cbSecond)
|
---|
5944 | {
|
---|
5945 | rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pbBuf + cbFirst, cbSecond);
|
---|
5946 | if (RT_SUCCESS(rc))
|
---|
5947 | { /* likely */ }
|
---|
5948 | else
|
---|
5949 | {
|
---|
5950 | LogEx(LOG_GROUP_IEM,
|
---|
5951 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
5952 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
5953 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, rc));
|
---|
5954 | return rc;
|
---|
5955 | }
|
---|
5956 | }
|
---|
5957 | }
|
---|
5958 | else
|
---|
5959 | {
|
---|
5960 | LogEx(LOG_GROUP_IEM,
|
---|
5961 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
5962 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, rc,
|
---|
5963 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
5964 | return rc;
|
---|
5965 | }
|
---|
5966 | }
|
---|
5967 | }
|
---|
5968 |
|
---|
5969 | #if defined(IEM_LOG_MEMORY_WRITES)
|
---|
5970 | Log5(("IEM Wrote %RGp: %.*Rhxs\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
5971 | RT_MAX(RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst, 64), 1), &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0]));
|
---|
5972 | if (pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond)
|
---|
5973 | Log5(("IEM Wrote %RGp: %.*Rhxs [2nd page]\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
5974 | RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond, 64),
|
---|
5975 | &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst]));
|
---|
5976 |
|
---|
5977 | size_t cbWrote = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst + pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
5978 | g_cbIemWrote = cbWrote;
|
---|
5979 | memcpy(g_abIemWrote, &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0], RT_MIN(cbWrote, sizeof(g_abIemWrote)));
|
---|
5980 | #endif
|
---|
5981 |
|
---|
5982 | /*
|
---|
5983 | * Free the mapping entry.
|
---|
5984 | */
|
---|
5985 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
5986 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
5987 | pVCpu->iem.s.cActiveMappings--;
|
---|
5988 | return VINF_SUCCESS;
|
---|
5989 | }
|
---|
5990 |
|
---|
5991 |
|
---|
5992 | /**
|
---|
5993 | * iemMemMap worker that deals with a request crossing pages.
|
---|
5994 | */
|
---|
5995 | static VBOXSTRICTRC
|
---|
5996 | iemMemBounceBufferMapCrossPage(PVMCPUCC pVCpu, int iMemMap, void **ppvMem, size_t cbMem, RTGCPTR GCPtrFirst, uint32_t fAccess)
|
---|
5997 | {
|
---|
5998 | Assert(cbMem <= GUEST_PAGE_SIZE);
|
---|
5999 |
|
---|
6000 | /*
|
---|
6001 | * Do the address translations.
|
---|
6002 | */
|
---|
6003 | uint32_t const cbFirstPage = GUEST_PAGE_SIZE - (uint32_t)(GCPtrFirst & GUEST_PAGE_OFFSET_MASK);
|
---|
6004 | RTGCPHYS GCPhysFirst;
|
---|
6005 | VBOXSTRICTRC rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrFirst, cbFirstPage, fAccess, &GCPhysFirst);
|
---|
6006 | if (rcStrict != VINF_SUCCESS)
|
---|
6007 | return rcStrict;
|
---|
6008 | Assert((GCPhysFirst & GUEST_PAGE_OFFSET_MASK) == (GCPtrFirst & GUEST_PAGE_OFFSET_MASK));
|
---|
6009 |
|
---|
6010 | uint32_t const cbSecondPage = (uint32_t)cbMem - cbFirstPage;
|
---|
6011 | RTGCPHYS GCPhysSecond;
|
---|
6012 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, (GCPtrFirst + (cbMem - 1)) & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK,
|
---|
6013 | cbSecondPage, fAccess, &GCPhysSecond);
|
---|
6014 | if (rcStrict != VINF_SUCCESS)
|
---|
6015 | return rcStrict;
|
---|
6016 | Assert((GCPhysSecond & GUEST_PAGE_OFFSET_MASK) == 0);
|
---|
6017 | GCPhysSecond &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; /** @todo why? */
|
---|
6018 |
|
---|
6019 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6020 |
|
---|
6021 | /*
|
---|
6022 | * Read in the current memory content if it's a read, execute or partial
|
---|
6023 | * write access.
|
---|
6024 | */
|
---|
6025 | uint8_t * const pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
6026 |
|
---|
6027 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
6028 | {
|
---|
6029 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
6030 | {
|
---|
6031 | /*
|
---|
6032 | * Must carefully deal with access handler status codes here,
|
---|
6033 | * makes the code a bit bloated.
|
---|
6034 | */
|
---|
6035 | rcStrict = PGMPhysRead(pVM, GCPhysFirst, pbBuf, cbFirstPage, PGMACCESSORIGIN_IEM);
|
---|
6036 | if (rcStrict == VINF_SUCCESS)
|
---|
6037 | {
|
---|
6038 | rcStrict = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
6039 | if (rcStrict == VINF_SUCCESS)
|
---|
6040 | { /*likely */ }
|
---|
6041 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6042 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6043 | else
|
---|
6044 | {
|
---|
6045 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (!!)\n",
|
---|
6046 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6047 | return rcStrict;
|
---|
6048 | }
|
---|
6049 | }
|
---|
6050 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6051 | {
|
---|
6052 | VBOXSTRICTRC rcStrict2 = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
6053 | if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
6054 | {
|
---|
6055 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
6056 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6057 | }
|
---|
6058 | else
|
---|
6059 | {
|
---|
6060 | LogEx(LOG_GROUP_IEM,
|
---|
6061 | ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (rcStrict=%Rrc) (!!)\n",
|
---|
6062 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
6063 | return rcStrict2;
|
---|
6064 | }
|
---|
6065 | }
|
---|
6066 | else
|
---|
6067 | {
|
---|
6068 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
6069 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6070 | return rcStrict;
|
---|
6071 | }
|
---|
6072 | }
|
---|
6073 | else
|
---|
6074 | {
|
---|
6075 | /*
|
---|
6076 | * No informational status codes here, much more straight forward.
|
---|
6077 | */
|
---|
6078 | int rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf, GCPhysFirst, cbFirstPage);
|
---|
6079 | if (RT_SUCCESS(rc))
|
---|
6080 | {
|
---|
6081 | Assert(rc == VINF_SUCCESS);
|
---|
6082 | rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf + cbFirstPage, GCPhysSecond, cbSecondPage);
|
---|
6083 | if (RT_SUCCESS(rc))
|
---|
6084 | Assert(rc == VINF_SUCCESS);
|
---|
6085 | else
|
---|
6086 | {
|
---|
6087 | LogEx(LOG_GROUP_IEM,
|
---|
6088 | ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysSecond=%RGp rc=%Rrc (!!)\n", GCPhysSecond, rc));
|
---|
6089 | return rc;
|
---|
6090 | }
|
---|
6091 | }
|
---|
6092 | else
|
---|
6093 | {
|
---|
6094 | LogEx(LOG_GROUP_IEM,
|
---|
6095 | ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rc=%Rrc (!!)\n", GCPhysFirst, rc));
|
---|
6096 | return rc;
|
---|
6097 | }
|
---|
6098 | }
|
---|
6099 | }
|
---|
6100 | #ifdef VBOX_STRICT
|
---|
6101 | else
|
---|
6102 | memset(pbBuf, 0xcc, cbMem);
|
---|
6103 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
6104 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
6105 | #endif
|
---|
6106 | AssertCompileMemberAlignment(VMCPU, iem.s.aBounceBuffers, 64);
|
---|
6107 |
|
---|
6108 | /*
|
---|
6109 | * Commit the bounce buffer entry.
|
---|
6110 | */
|
---|
6111 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
6112 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = GCPhysSecond;
|
---|
6113 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbFirstPage;
|
---|
6114 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = (uint16_t)cbSecondPage;
|
---|
6115 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = false;
|
---|
6116 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
6117 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
6118 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
6119 | pVCpu->iem.s.cActiveMappings++;
|
---|
6120 |
|
---|
6121 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
6122 | *ppvMem = pbBuf;
|
---|
6123 | return VINF_SUCCESS;
|
---|
6124 | }
|
---|
6125 |
|
---|
6126 |
|
---|
6127 | /**
|
---|
6128 | * iemMemMap woker that deals with iemMemPageMap failures.
|
---|
6129 | */
|
---|
6130 | static VBOXSTRICTRC iemMemBounceBufferMapPhys(PVMCPUCC pVCpu, unsigned iMemMap, void **ppvMem, size_t cbMem,
|
---|
6131 | RTGCPHYS GCPhysFirst, uint32_t fAccess, VBOXSTRICTRC rcMap)
|
---|
6132 | {
|
---|
6133 | /*
|
---|
6134 | * Filter out conditions we can handle and the ones which shouldn't happen.
|
---|
6135 | */
|
---|
6136 | if ( rcMap != VERR_PGM_PHYS_TLB_CATCH_WRITE
|
---|
6137 | && rcMap != VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
6138 | && rcMap != VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
6139 | {
|
---|
6140 | AssertReturn(RT_FAILURE_NP(rcMap), VERR_IEM_IPE_8);
|
---|
6141 | return rcMap;
|
---|
6142 | }
|
---|
6143 | pVCpu->iem.s.cPotentialExits++;
|
---|
6144 |
|
---|
6145 | /*
|
---|
6146 | * Read in the current memory content if it's a read, execute or partial
|
---|
6147 | * write access.
|
---|
6148 | */
|
---|
6149 | uint8_t *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
6150 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
6151 | {
|
---|
6152 | if (rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
6153 | memset(pbBuf, 0xff, cbMem);
|
---|
6154 | else
|
---|
6155 | {
|
---|
6156 | int rc;
|
---|
6157 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
6158 | {
|
---|
6159 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhysFirst, pbBuf, cbMem, PGMACCESSORIGIN_IEM);
|
---|
6160 | if (rcStrict == VINF_SUCCESS)
|
---|
6161 | { /* nothing */ }
|
---|
6162 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6163 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6164 | else
|
---|
6165 | {
|
---|
6166 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
6167 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6168 | return rcStrict;
|
---|
6169 | }
|
---|
6170 | }
|
---|
6171 | else
|
---|
6172 | {
|
---|
6173 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pbBuf, GCPhysFirst, cbMem);
|
---|
6174 | if (RT_SUCCESS(rc))
|
---|
6175 | { /* likely */ }
|
---|
6176 | else
|
---|
6177 | {
|
---|
6178 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
6179 | GCPhysFirst, rc));
|
---|
6180 | return rc;
|
---|
6181 | }
|
---|
6182 | }
|
---|
6183 | }
|
---|
6184 | }
|
---|
6185 | #ifdef VBOX_STRICT
|
---|
6186 | else
|
---|
6187 | memset(pbBuf, 0xcc, cbMem);
|
---|
6188 | #endif
|
---|
6189 | #ifdef VBOX_STRICT
|
---|
6190 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
6191 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
6192 | #endif
|
---|
6193 |
|
---|
6194 | /*
|
---|
6195 | * Commit the bounce buffer entry.
|
---|
6196 | */
|
---|
6197 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
6198 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = NIL_RTGCPHYS;
|
---|
6199 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbMem;
|
---|
6200 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = 0;
|
---|
6201 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
6202 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
6203 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
6204 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
6205 | pVCpu->iem.s.cActiveMappings++;
|
---|
6206 |
|
---|
6207 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
6208 | *ppvMem = pbBuf;
|
---|
6209 | return VINF_SUCCESS;
|
---|
6210 | }
|
---|
6211 |
|
---|
6212 |
|
---|
6213 |
|
---|
6214 | /**
|
---|
6215 | * Maps the specified guest memory for the given kind of access.
|
---|
6216 | *
|
---|
6217 | * This may be using bounce buffering of the memory if it's crossing a page
|
---|
6218 | * boundary or if there is an access handler installed for any of it. Because
|
---|
6219 | * of lock prefix guarantees, we're in for some extra clutter when this
|
---|
6220 | * happens.
|
---|
6221 | *
|
---|
6222 | * This may raise a \#GP, \#SS, \#PF or \#AC.
|
---|
6223 | *
|
---|
6224 | * @returns VBox strict status code.
|
---|
6225 | *
|
---|
6226 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6227 | * @param ppvMem Where to return the pointer to the mapped memory.
|
---|
6228 | * @param cbMem The number of bytes to map. This is usually 1, 2, 4, 6,
|
---|
6229 | * 8, 12, 16, 32 or 512. When used by string operations
|
---|
6230 | * it can be up to a page.
|
---|
6231 | * @param iSegReg The index of the segment register to use for this
|
---|
6232 | * access. The base and limits are checked. Use UINT8_MAX
|
---|
6233 | * to indicate that no segmentation is required (for IDT,
|
---|
6234 | * GDT and LDT accesses).
|
---|
6235 | * @param GCPtrMem The address of the guest memory.
|
---|
6236 | * @param fAccess How the memory is being accessed. The
|
---|
6237 | * IEM_ACCESS_TYPE_XXX bit is used to figure out how to map
|
---|
6238 | * the memory, while the IEM_ACCESS_WHAT_XXX bit is used
|
---|
6239 | * when raising exceptions.
|
---|
6240 | * @param uAlignCtl Alignment control:
|
---|
6241 | * - Bits 15:0 is the alignment mask.
|
---|
6242 | * - Bits 31:16 for flags like IEM_MEMMAP_F_ALIGN_GP,
|
---|
6243 | * IEM_MEMMAP_F_ALIGN_SSE, and
|
---|
6244 | * IEM_MEMMAP_F_ALIGN_GP_OR_AC.
|
---|
6245 | * Pass zero to skip alignment.
|
---|
6246 | */
|
---|
6247 | VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
|
---|
6248 | uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT
|
---|
6249 | {
|
---|
6250 | /*
|
---|
6251 | * Check the input and figure out which mapping entry to use.
|
---|
6252 | */
|
---|
6253 | Assert(cbMem <= sizeof(pVCpu->iem.s.aBounceBuffers[0]));
|
---|
6254 | Assert( cbMem <= 64 || cbMem == 512 || cbMem == 256 || cbMem == 108 || cbMem == 104 || cbMem == 102 || cbMem == 94
|
---|
6255 | || (iSegReg == UINT8_MAX && uAlignCtl == 0 && fAccess == IEM_ACCESS_DATA_R /* for the CPUID logging interface */) );
|
---|
6256 | Assert(~(fAccess & ~(IEM_ACCESS_TYPE_MASK | IEM_ACCESS_WHAT_MASK)));
|
---|
6257 | Assert(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
6258 |
|
---|
6259 | unsigned iMemMap = pVCpu->iem.s.iNextMapping;
|
---|
6260 | if ( iMemMap >= RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
6261 | || pVCpu->iem.s.aMemMappings[iMemMap].fAccess != IEM_ACCESS_INVALID)
|
---|
6262 | {
|
---|
6263 | iMemMap = iemMemMapFindFree(pVCpu);
|
---|
6264 | AssertLogRelMsgReturn(iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings),
|
---|
6265 | ("active=%d fAccess[0] = {%#x, %#x, %#x}\n", pVCpu->iem.s.cActiveMappings,
|
---|
6266 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess,
|
---|
6267 | pVCpu->iem.s.aMemMappings[2].fAccess),
|
---|
6268 | VERR_IEM_IPE_9);
|
---|
6269 | }
|
---|
6270 |
|
---|
6271 | /*
|
---|
6272 | * Map the memory, checking that we can actually access it. If something
|
---|
6273 | * slightly complicated happens, fall back on bounce buffering.
|
---|
6274 | */
|
---|
6275 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, fAccess, iSegReg, cbMem, &GCPtrMem);
|
---|
6276 | if (rcStrict == VINF_SUCCESS)
|
---|
6277 | { /* likely */ }
|
---|
6278 | else
|
---|
6279 | return rcStrict;
|
---|
6280 |
|
---|
6281 | if ((GCPtrMem & GUEST_PAGE_OFFSET_MASK) + cbMem <= GUEST_PAGE_SIZE) /* Crossing a page boundary? */
|
---|
6282 | { /* likely */ }
|
---|
6283 | else
|
---|
6284 | return iemMemBounceBufferMapCrossPage(pVCpu, iMemMap, ppvMem, cbMem, GCPtrMem, fAccess);
|
---|
6285 |
|
---|
6286 | /*
|
---|
6287 | * Alignment check.
|
---|
6288 | */
|
---|
6289 | if ( (GCPtrMem & (uAlignCtl & UINT16_MAX)) == 0 )
|
---|
6290 | { /* likelyish */ }
|
---|
6291 | else
|
---|
6292 | {
|
---|
6293 | /* Misaligned access. */
|
---|
6294 | if ((fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS)
|
---|
6295 | {
|
---|
6296 | if ( !(uAlignCtl & IEM_MEMMAP_F_ALIGN_GP)
|
---|
6297 | || ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_SSE)
|
---|
6298 | && (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_MM)) )
|
---|
6299 | {
|
---|
6300 | AssertCompile(X86_CR0_AM == X86_EFL_AC);
|
---|
6301 |
|
---|
6302 | if (iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
6303 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
6304 | }
|
---|
6305 | else if ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_GP_OR_AC)
|
---|
6306 | && (GCPtrMem & 3) /* The value 4 matches 10980xe's FXSAVE and helps make bs3-cpu-basic2 work. */
|
---|
6307 | /** @todo may only apply to 2, 4 or 8 byte misalignments depending on the CPU
|
---|
6308 | * implementation. See FXSAVE/FRSTOR/XSAVE/XRSTOR/++. Using 4 for now as
|
---|
6309 | * that's what FXSAVE does on a 10980xe. */
|
---|
6310 | && iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
6311 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
6312 | else
|
---|
6313 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6314 | }
|
---|
6315 | }
|
---|
6316 |
|
---|
6317 | #ifdef IEM_WITH_DATA_TLB
|
---|
6318 | Assert(!(fAccess & IEM_ACCESS_TYPE_EXEC));
|
---|
6319 |
|
---|
6320 | /*
|
---|
6321 | * Get the TLB entry for this page.
|
---|
6322 | */
|
---|
6323 | uint64_t const uTag = IEMTLB_CALC_TAG( &pVCpu->iem.s.DataTlb, GCPtrMem);
|
---|
6324 | PIEMTLBENTRY const pTlbe = IEMTLB_TAG_TO_ENTRY(&pVCpu->iem.s.DataTlb, uTag);
|
---|
6325 | if (pTlbe->uTag == uTag)
|
---|
6326 | {
|
---|
6327 | # ifdef VBOX_WITH_STATISTICS
|
---|
6328 | pVCpu->iem.s.DataTlb.cTlbHits++;
|
---|
6329 | # endif
|
---|
6330 | }
|
---|
6331 | else
|
---|
6332 | {
|
---|
6333 | pVCpu->iem.s.DataTlb.cTlbMisses++;
|
---|
6334 | PGMPTWALK Walk;
|
---|
6335 | int rc = PGMGstGetPage(pVCpu, GCPtrMem, &Walk);
|
---|
6336 | if (RT_FAILURE(rc))
|
---|
6337 | {
|
---|
6338 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - failed to fetch page -> #PF\n", GCPtrMem));
|
---|
6339 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6340 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
6341 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
6342 | # endif
|
---|
6343 | return iemRaisePageFault(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, rc);
|
---|
6344 | }
|
---|
6345 |
|
---|
6346 | Assert(Walk.fSucceeded);
|
---|
6347 | pTlbe->uTag = uTag;
|
---|
6348 | pTlbe->fFlagsAndPhysRev = ~Walk.fEffective & (X86_PTE_US | X86_PTE_RW | X86_PTE_D | X86_PTE_A); /* skipping NX */
|
---|
6349 | pTlbe->GCPhys = Walk.GCPhys;
|
---|
6350 | pTlbe->pbMappingR3 = NULL;
|
---|
6351 | }
|
---|
6352 |
|
---|
6353 | /*
|
---|
6354 | * Check TLB page table level access flags.
|
---|
6355 | */
|
---|
6356 | /* If the page is either supervisor only or non-writable, we need to do
|
---|
6357 | more careful access checks. */
|
---|
6358 | if (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PT_NO_USER | IEMTLBE_F_PT_NO_WRITE))
|
---|
6359 | {
|
---|
6360 | /* Write to read only memory? */
|
---|
6361 | if ( (pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_WRITE)
|
---|
6362 | && (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6363 | && ( ( IEM_GET_CPL(pVCpu) == 3
|
---|
6364 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6365 | || (pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP)))
|
---|
6366 | {
|
---|
6367 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - read-only page -> #PF\n", GCPtrMem));
|
---|
6368 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6369 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
6370 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
6371 | # endif
|
---|
6372 | return iemRaisePageFault(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess & ~IEM_ACCESS_TYPE_READ, VERR_ACCESS_DENIED);
|
---|
6373 | }
|
---|
6374 |
|
---|
6375 | /* Kernel memory accessed by userland? */
|
---|
6376 | if ( (pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER)
|
---|
6377 | && IEM_GET_CPL(pVCpu) == 3
|
---|
6378 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6379 | {
|
---|
6380 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - user access to kernel page -> #PF\n", GCPtrMem));
|
---|
6381 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6382 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
6383 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
6384 | # endif
|
---|
6385 | return iemRaisePageFault(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, VERR_ACCESS_DENIED);
|
---|
6386 | }
|
---|
6387 | }
|
---|
6388 |
|
---|
6389 | /*
|
---|
6390 | * Set the dirty / access flags.
|
---|
6391 | * ASSUMES this is set when the address is translated rather than on commit...
|
---|
6392 | */
|
---|
6393 | /** @todo testcase: check when A and D bits are actually set by the CPU. */
|
---|
6394 | uint64_t const fTlbAccessedDirty = (fAccess & IEM_ACCESS_TYPE_WRITE ? IEMTLBE_F_PT_NO_DIRTY : 0) | IEMTLBE_F_PT_NO_ACCESSED;
|
---|
6395 | if (pTlbe->fFlagsAndPhysRev & fTlbAccessedDirty)
|
---|
6396 | {
|
---|
6397 | uint32_t const fAccessedDirty = fAccess & IEM_ACCESS_TYPE_WRITE ? X86_PTE_D | X86_PTE_A : X86_PTE_A;
|
---|
6398 | int rc2 = PGMGstModifyPage(pVCpu, GCPtrMem, 1, fAccessedDirty, ~(uint64_t)fAccessedDirty);
|
---|
6399 | AssertRC(rc2);
|
---|
6400 | /** @todo Nested VMX: Accessed/dirty bit currently not supported, asserted below. */
|
---|
6401 | Assert(!(CPUMGetGuestIa32VmxEptVpidCap(pVCpu) & VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY_MASK));
|
---|
6402 | pTlbe->fFlagsAndPhysRev &= ~fTlbAccessedDirty;
|
---|
6403 | }
|
---|
6404 |
|
---|
6405 | /*
|
---|
6406 | * Look up the physical page info if necessary.
|
---|
6407 | */
|
---|
6408 | uint8_t *pbMem = NULL;
|
---|
6409 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pVCpu->iem.s.DataTlb.uTlbPhysRev)
|
---|
6410 | # ifdef IN_RING3
|
---|
6411 | pbMem = pTlbe->pbMappingR3;
|
---|
6412 | # else
|
---|
6413 | pbMem = NULL;
|
---|
6414 | # endif
|
---|
6415 | else
|
---|
6416 | {
|
---|
6417 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
|
---|
6418 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
|
---|
6419 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
|
---|
6420 | AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
|
---|
6421 | AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
|
---|
6422 | if (RT_LIKELY(pVCpu->iem.s.CodeTlb.uTlbPhysRev > IEMTLB_PHYS_REV_INCR))
|
---|
6423 | { /* likely */ }
|
---|
6424 | else
|
---|
6425 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
6426 | pTlbe->pbMappingR3 = NULL;
|
---|
6427 | pTlbe->fFlagsAndPhysRev &= ~( IEMTLBE_F_PHYS_REV
|
---|
6428 | | IEMTLBE_F_NO_MAPPINGR3
|
---|
6429 | | IEMTLBE_F_PG_NO_READ
|
---|
6430 | | IEMTLBE_F_PG_NO_WRITE
|
---|
6431 | | IEMTLBE_F_PG_UNASSIGNED
|
---|
6432 | | IEMTLBE_F_PG_CODE_PAGE);
|
---|
6433 | int rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, pTlbe->GCPhys, &pVCpu->iem.s.DataTlb.uTlbPhysRev,
|
---|
6434 | &pbMem, &pTlbe->fFlagsAndPhysRev);
|
---|
6435 | AssertRCReturn(rc, rc);
|
---|
6436 | # ifdef IN_RING3
|
---|
6437 | pTlbe->pbMappingR3 = pbMem;
|
---|
6438 | # endif
|
---|
6439 | }
|
---|
6440 |
|
---|
6441 | /*
|
---|
6442 | * Check the physical page level access and mapping.
|
---|
6443 | */
|
---|
6444 | if ( !(pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ))
|
---|
6445 | || !(pTlbe->fFlagsAndPhysRev & ( (fAccess & IEM_ACCESS_TYPE_WRITE ? IEMTLBE_F_PG_NO_WRITE : 0)
|
---|
6446 | | (fAccess & IEM_ACCESS_TYPE_READ ? IEMTLBE_F_PG_NO_READ : 0))) )
|
---|
6447 | { /* probably likely */ }
|
---|
6448 | else
|
---|
6449 | return iemMemBounceBufferMapPhys(pVCpu, iMemMap, ppvMem, cbMem,
|
---|
6450 | pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), fAccess,
|
---|
6451 | pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_UNASSIGNED ? VERR_PGM_PHYS_TLB_UNASSIGNED
|
---|
6452 | : pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_NO_READ ? VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
6453 | : VERR_PGM_PHYS_TLB_CATCH_WRITE);
|
---|
6454 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_NO_MAPPINGR3)); /* ASSUMPTIONS about PGMPhysIemGCPhys2PtrNoLock behaviour. */
|
---|
6455 |
|
---|
6456 | if (pbMem)
|
---|
6457 | {
|
---|
6458 | Assert(!((uintptr_t)pbMem & GUEST_PAGE_OFFSET_MASK));
|
---|
6459 | pbMem = pbMem + (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
6460 | fAccess |= IEM_ACCESS_NOT_LOCKED;
|
---|
6461 | }
|
---|
6462 | else
|
---|
6463 | {
|
---|
6464 | Assert(!(fAccess & IEM_ACCESS_NOT_LOCKED));
|
---|
6465 | RTGCPHYS const GCPhysFirst = pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
6466 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, (void **)&pbMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6467 | if (rcStrict != VINF_SUCCESS)
|
---|
6468 | return iemMemBounceBufferMapPhys(pVCpu, iMemMap, ppvMem, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
6469 | }
|
---|
6470 |
|
---|
6471 | void * const pvMem = pbMem;
|
---|
6472 |
|
---|
6473 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6474 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
6475 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
6476 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
6477 |
|
---|
6478 | #else /* !IEM_WITH_DATA_TLB */
|
---|
6479 |
|
---|
6480 | RTGCPHYS GCPhysFirst;
|
---|
6481 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, &GCPhysFirst);
|
---|
6482 | if (rcStrict != VINF_SUCCESS)
|
---|
6483 | return rcStrict;
|
---|
6484 |
|
---|
6485 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6486 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
6487 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
6488 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
6489 |
|
---|
6490 | void *pvMem;
|
---|
6491 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, &pvMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6492 | if (rcStrict != VINF_SUCCESS)
|
---|
6493 | return iemMemBounceBufferMapPhys(pVCpu, iMemMap, ppvMem, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
6494 |
|
---|
6495 | #endif /* !IEM_WITH_DATA_TLB */
|
---|
6496 |
|
---|
6497 | /*
|
---|
6498 | * Fill in the mapping table entry.
|
---|
6499 | */
|
---|
6500 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pvMem;
|
---|
6501 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess;
|
---|
6502 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
6503 | pVCpu->iem.s.cActiveMappings += 1;
|
---|
6504 |
|
---|
6505 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
6506 | *ppvMem = pvMem;
|
---|
6507 |
|
---|
6508 | return VINF_SUCCESS;
|
---|
6509 | }
|
---|
6510 |
|
---|
6511 |
|
---|
6512 | /**
|
---|
6513 | * Commits the guest memory if bounce buffered and unmaps it.
|
---|
6514 | *
|
---|
6515 | * @returns Strict VBox status code.
|
---|
6516 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6517 | * @param pvMem The mapping.
|
---|
6518 | * @param fAccess The kind of access.
|
---|
6519 | */
|
---|
6520 | VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT
|
---|
6521 | {
|
---|
6522 | int iMemMap = iemMapLookup(pVCpu, pvMem, fAccess);
|
---|
6523 | AssertReturn(iMemMap >= 0, iMemMap);
|
---|
6524 |
|
---|
6525 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
6526 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
6527 | {
|
---|
6528 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6529 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
6530 | }
|
---|
6531 | /* Otherwise unlock it. */
|
---|
6532 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
6533 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6534 |
|
---|
6535 | /* Free the entry. */
|
---|
6536 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
6537 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
6538 | pVCpu->iem.s.cActiveMappings--;
|
---|
6539 | return VINF_SUCCESS;
|
---|
6540 | }
|
---|
6541 |
|
---|
6542 | #ifdef IEM_WITH_SETJMP
|
---|
6543 |
|
---|
6544 | /**
|
---|
6545 | * Maps the specified guest memory for the given kind of access, longjmp on
|
---|
6546 | * error.
|
---|
6547 | *
|
---|
6548 | * This may be using bounce buffering of the memory if it's crossing a page
|
---|
6549 | * boundary or if there is an access handler installed for any of it. Because
|
---|
6550 | * of lock prefix guarantees, we're in for some extra clutter when this
|
---|
6551 | * happens.
|
---|
6552 | *
|
---|
6553 | * This may raise a \#GP, \#SS, \#PF or \#AC.
|
---|
6554 | *
|
---|
6555 | * @returns Pointer to the mapped memory.
|
---|
6556 | *
|
---|
6557 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6558 | * @param cbMem The number of bytes to map. This is usually 1,
|
---|
6559 | * 2, 4, 6, 8, 12, 16, 32 or 512. When used by
|
---|
6560 | * string operations it can be up to a page.
|
---|
6561 | * @param iSegReg The index of the segment register to use for
|
---|
6562 | * this access. The base and limits are checked.
|
---|
6563 | * Use UINT8_MAX to indicate that no segmentation
|
---|
6564 | * is required (for IDT, GDT and LDT accesses).
|
---|
6565 | * @param GCPtrMem The address of the guest memory.
|
---|
6566 | * @param fAccess How the memory is being accessed. The
|
---|
6567 | * IEM_ACCESS_TYPE_XXX bit is used to figure out
|
---|
6568 | * how to map the memory, while the
|
---|
6569 | * IEM_ACCESS_WHAT_XXX bit is used when raising
|
---|
6570 | * exceptions.
|
---|
6571 | * @param uAlignCtl Alignment control:
|
---|
6572 | * - Bits 15:0 is the alignment mask.
|
---|
6573 | * - Bits 31:16 for flags like IEM_MEMMAP_F_ALIGN_GP,
|
---|
6574 | * IEM_MEMMAP_F_ALIGN_SSE, and
|
---|
6575 | * IEM_MEMMAP_F_ALIGN_GP_OR_AC.
|
---|
6576 | * Pass zero to skip alignment.
|
---|
6577 | */
|
---|
6578 | void *iemMemMapJmp(PVMCPUCC pVCpu, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess,
|
---|
6579 | uint32_t uAlignCtl) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
6580 | {
|
---|
6581 | /*
|
---|
6582 | * Check the input, check segment access and adjust address
|
---|
6583 | * with segment base.
|
---|
6584 | */
|
---|
6585 | Assert(cbMem <= 64 || cbMem == 512 || cbMem == 108 || cbMem == 104 || cbMem == 94); /* 512 is the max! */
|
---|
6586 | Assert(~(fAccess & ~(IEM_ACCESS_TYPE_MASK | IEM_ACCESS_WHAT_MASK)));
|
---|
6587 | Assert(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
6588 |
|
---|
6589 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, fAccess, iSegReg, cbMem, &GCPtrMem);
|
---|
6590 | if (rcStrict == VINF_SUCCESS) { /*likely*/ }
|
---|
6591 | else IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
6592 |
|
---|
6593 | /*
|
---|
6594 | * Alignment check.
|
---|
6595 | */
|
---|
6596 | if ( (GCPtrMem & (uAlignCtl & UINT16_MAX)) == 0 )
|
---|
6597 | { /* likelyish */ }
|
---|
6598 | else
|
---|
6599 | {
|
---|
6600 | /* Misaligned access. */
|
---|
6601 | if ((fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS)
|
---|
6602 | {
|
---|
6603 | if ( !(uAlignCtl & IEM_MEMMAP_F_ALIGN_GP)
|
---|
6604 | || ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_SSE)
|
---|
6605 | && (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_MM)) )
|
---|
6606 | {
|
---|
6607 | AssertCompile(X86_CR0_AM == X86_EFL_AC);
|
---|
6608 |
|
---|
6609 | if (iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
6610 | iemRaiseAlignmentCheckExceptionJmp(pVCpu);
|
---|
6611 | }
|
---|
6612 | else if ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_GP_OR_AC)
|
---|
6613 | && (GCPtrMem & 3) /* The value 4 matches 10980xe's FXSAVE and helps make bs3-cpu-basic2 work. */
|
---|
6614 | /** @todo may only apply to 2, 4 or 8 byte misalignments depending on the CPU
|
---|
6615 | * implementation. See FXSAVE/FRSTOR/XSAVE/XRSTOR/++. Using 4 for now as
|
---|
6616 | * that's what FXSAVE does on a 10980xe. */
|
---|
6617 | && iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
6618 | iemRaiseAlignmentCheckExceptionJmp(pVCpu);
|
---|
6619 | else
|
---|
6620 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
6621 | }
|
---|
6622 | }
|
---|
6623 |
|
---|
6624 | /*
|
---|
6625 | * Figure out which mapping entry to use.
|
---|
6626 | */
|
---|
6627 | unsigned iMemMap = pVCpu->iem.s.iNextMapping;
|
---|
6628 | if ( iMemMap >= RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
6629 | || pVCpu->iem.s.aMemMappings[iMemMap].fAccess != IEM_ACCESS_INVALID)
|
---|
6630 | {
|
---|
6631 | iMemMap = iemMemMapFindFree(pVCpu);
|
---|
6632 | AssertLogRelMsgStmt(iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings),
|
---|
6633 | ("active=%d fAccess[0] = {%#x, %#x, %#x}\n", pVCpu->iem.s.cActiveMappings,
|
---|
6634 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess,
|
---|
6635 | pVCpu->iem.s.aMemMappings[2].fAccess),
|
---|
6636 | IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_9));
|
---|
6637 | }
|
---|
6638 |
|
---|
6639 | /*
|
---|
6640 | * Crossing a page boundary?
|
---|
6641 | */
|
---|
6642 | if ((GCPtrMem & GUEST_PAGE_OFFSET_MASK) + cbMem <= GUEST_PAGE_SIZE)
|
---|
6643 | { /* No (likely). */ }
|
---|
6644 | else
|
---|
6645 | {
|
---|
6646 | void *pvMem;
|
---|
6647 | rcStrict = iemMemBounceBufferMapCrossPage(pVCpu, iMemMap, &pvMem, cbMem, GCPtrMem, fAccess);
|
---|
6648 | if (rcStrict == VINF_SUCCESS)
|
---|
6649 | return pvMem;
|
---|
6650 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
6651 | }
|
---|
6652 |
|
---|
6653 | #ifdef IEM_WITH_DATA_TLB
|
---|
6654 | Assert(!(fAccess & IEM_ACCESS_TYPE_EXEC));
|
---|
6655 |
|
---|
6656 | /*
|
---|
6657 | * Get the TLB entry for this page.
|
---|
6658 | */
|
---|
6659 | uint64_t const uTag = IEMTLB_CALC_TAG( &pVCpu->iem.s.DataTlb, GCPtrMem);
|
---|
6660 | PIEMTLBENTRY const pTlbe = IEMTLB_TAG_TO_ENTRY(&pVCpu->iem.s.DataTlb, uTag);
|
---|
6661 | if (pTlbe->uTag == uTag)
|
---|
6662 | STAM_STATS({pVCpu->iem.s.DataTlb.cTlbHits++;});
|
---|
6663 | else
|
---|
6664 | {
|
---|
6665 | pVCpu->iem.s.DataTlb.cTlbMisses++;
|
---|
6666 | PGMPTWALK Walk;
|
---|
6667 | int rc = PGMGstGetPage(pVCpu, GCPtrMem, &Walk);
|
---|
6668 | if (RT_FAILURE(rc))
|
---|
6669 | {
|
---|
6670 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - failed to fetch page -> #PF\n", GCPtrMem));
|
---|
6671 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6672 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
6673 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
6674 | # endif
|
---|
6675 | iemRaisePageFaultJmp(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, rc);
|
---|
6676 | }
|
---|
6677 |
|
---|
6678 | Assert(Walk.fSucceeded);
|
---|
6679 | pTlbe->uTag = uTag;
|
---|
6680 | pTlbe->fFlagsAndPhysRev = ~Walk.fEffective & (X86_PTE_US | X86_PTE_RW | X86_PTE_D | X86_PTE_A); /* skipping NX */
|
---|
6681 | pTlbe->GCPhys = Walk.GCPhys;
|
---|
6682 | pTlbe->pbMappingR3 = NULL;
|
---|
6683 | }
|
---|
6684 |
|
---|
6685 | /*
|
---|
6686 | * Check the flags and physical revision.
|
---|
6687 | */
|
---|
6688 | /** @todo make the caller pass these in with fAccess. */
|
---|
6689 | uint64_t const fNoUser = (fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS && IEM_GET_CPL(pVCpu) == 3
|
---|
6690 | ? IEMTLBE_F_PT_NO_USER : 0;
|
---|
6691 | uint64_t const fNoWriteNoDirty = fAccess & IEM_ACCESS_TYPE_WRITE
|
---|
6692 | ? IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PT_NO_DIRTY
|
---|
6693 | | ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP)
|
---|
6694 | || (IEM_GET_CPL(pVCpu) == 3 && (fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS)
|
---|
6695 | ? IEMTLBE_F_PT_NO_WRITE : 0)
|
---|
6696 | : 0;
|
---|
6697 | uint64_t const fNoRead = fAccess & IEM_ACCESS_TYPE_READ ? IEMTLBE_F_PG_NO_READ : 0;
|
---|
6698 | uint8_t *pbMem = NULL;
|
---|
6699 | if ( (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PHYS_REV | IEMTLBE_F_PT_NO_ACCESSED | fNoRead | fNoWriteNoDirty | fNoUser))
|
---|
6700 | == pVCpu->iem.s.DataTlb.uTlbPhysRev)
|
---|
6701 | # ifdef IN_RING3
|
---|
6702 | pbMem = pTlbe->pbMappingR3;
|
---|
6703 | # else
|
---|
6704 | pbMem = NULL;
|
---|
6705 | # endif
|
---|
6706 | else
|
---|
6707 | {
|
---|
6708 | /*
|
---|
6709 | * Okay, something isn't quite right or needs refreshing.
|
---|
6710 | */
|
---|
6711 | /* Write to read only memory? */
|
---|
6712 | if (pTlbe->fFlagsAndPhysRev & fNoWriteNoDirty & IEMTLBE_F_PT_NO_WRITE)
|
---|
6713 | {
|
---|
6714 | LogEx(LOG_GROUP_IEM, ("iemMemMapJmp: GCPtrMem=%RGv - read-only page -> #PF\n", GCPtrMem));
|
---|
6715 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6716 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
6717 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
6718 | # endif
|
---|
6719 | iemRaisePageFaultJmp(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess & ~IEM_ACCESS_TYPE_READ, VERR_ACCESS_DENIED);
|
---|
6720 | }
|
---|
6721 |
|
---|
6722 | /* Kernel memory accessed by userland? */
|
---|
6723 | if (pTlbe->fFlagsAndPhysRev & fNoUser & IEMTLBE_F_PT_NO_USER)
|
---|
6724 | {
|
---|
6725 | LogEx(LOG_GROUP_IEM, ("iemMemMapJmp: GCPtrMem=%RGv - user access to kernel page -> #PF\n", GCPtrMem));
|
---|
6726 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6727 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
6728 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
6729 | # endif
|
---|
6730 | iemRaisePageFaultJmp(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, VERR_ACCESS_DENIED);
|
---|
6731 | }
|
---|
6732 |
|
---|
6733 | /* Set the dirty / access flags.
|
---|
6734 | ASSUMES this is set when the address is translated rather than on commit... */
|
---|
6735 | /** @todo testcase: check when A and D bits are actually set by the CPU. */
|
---|
6736 | if (pTlbe->fFlagsAndPhysRev & ((fNoWriteNoDirty & IEMTLBE_F_PT_NO_DIRTY) | IEMTLBE_F_PT_NO_ACCESSED))
|
---|
6737 | {
|
---|
6738 | uint32_t const fAccessedDirty = fAccess & IEM_ACCESS_TYPE_WRITE ? X86_PTE_D | X86_PTE_A : X86_PTE_A;
|
---|
6739 | int rc2 = PGMGstModifyPage(pVCpu, GCPtrMem, 1, fAccessedDirty, ~(uint64_t)fAccessedDirty);
|
---|
6740 | AssertRC(rc2);
|
---|
6741 | /** @todo Nested VMX: Accessed/dirty bit currently not supported, asserted below. */
|
---|
6742 | Assert(!(CPUMGetGuestIa32VmxEptVpidCap(pVCpu) & VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY_MASK));
|
---|
6743 | pTlbe->fFlagsAndPhysRev &= ~((fNoWriteNoDirty & IEMTLBE_F_PT_NO_DIRTY) | IEMTLBE_F_PT_NO_ACCESSED);
|
---|
6744 | }
|
---|
6745 |
|
---|
6746 | /*
|
---|
6747 | * Check if the physical page info needs updating.
|
---|
6748 | */
|
---|
6749 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pVCpu->iem.s.DataTlb.uTlbPhysRev)
|
---|
6750 | # ifdef IN_RING3
|
---|
6751 | pbMem = pTlbe->pbMappingR3;
|
---|
6752 | # else
|
---|
6753 | pbMem = NULL;
|
---|
6754 | # endif
|
---|
6755 | else
|
---|
6756 | {
|
---|
6757 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
|
---|
6758 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
|
---|
6759 | AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
|
---|
6760 | AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
|
---|
6761 | AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
|
---|
6762 | pTlbe->pbMappingR3 = NULL;
|
---|
6763 | pTlbe->fFlagsAndPhysRev &= ~( IEMTLBE_F_PHYS_REV
|
---|
6764 | | IEMTLBE_F_NO_MAPPINGR3
|
---|
6765 | | IEMTLBE_F_PG_NO_READ
|
---|
6766 | | IEMTLBE_F_PG_NO_WRITE
|
---|
6767 | | IEMTLBE_F_PG_UNASSIGNED
|
---|
6768 | | IEMTLBE_F_PG_CODE_PAGE);
|
---|
6769 | int rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, pTlbe->GCPhys, &pVCpu->iem.s.DataTlb.uTlbPhysRev,
|
---|
6770 | &pbMem, &pTlbe->fFlagsAndPhysRev);
|
---|
6771 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
6772 | # ifdef IN_RING3
|
---|
6773 | pTlbe->pbMappingR3 = pbMem;
|
---|
6774 | # endif
|
---|
6775 | }
|
---|
6776 |
|
---|
6777 | /*
|
---|
6778 | * Check the physical page level access and mapping.
|
---|
6779 | */
|
---|
6780 | if (!(pTlbe->fFlagsAndPhysRev & ((fNoWriteNoDirty | fNoRead) & (IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ))))
|
---|
6781 | { /* probably likely */ }
|
---|
6782 | else
|
---|
6783 | {
|
---|
6784 | rcStrict = iemMemBounceBufferMapPhys(pVCpu, iMemMap, (void **)&pbMem, cbMem,
|
---|
6785 | pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), fAccess,
|
---|
6786 | pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_UNASSIGNED ? VERR_PGM_PHYS_TLB_UNASSIGNED
|
---|
6787 | : pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_NO_READ ? VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
6788 | : VERR_PGM_PHYS_TLB_CATCH_WRITE);
|
---|
6789 | if (rcStrict == VINF_SUCCESS)
|
---|
6790 | return pbMem;
|
---|
6791 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
6792 | }
|
---|
6793 | }
|
---|
6794 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_NO_MAPPINGR3)); /* ASSUMPTIONS about PGMPhysIemGCPhys2PtrNoLock behaviour. */
|
---|
6795 |
|
---|
6796 | if (pbMem)
|
---|
6797 | {
|
---|
6798 | Assert(!((uintptr_t)pbMem & GUEST_PAGE_OFFSET_MASK));
|
---|
6799 | pbMem = pbMem + (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
6800 | fAccess |= IEM_ACCESS_NOT_LOCKED;
|
---|
6801 | }
|
---|
6802 | else
|
---|
6803 | {
|
---|
6804 | Assert(!(fAccess & IEM_ACCESS_NOT_LOCKED));
|
---|
6805 | RTGCPHYS const GCPhysFirst = pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
6806 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, (void **)&pbMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6807 | if (rcStrict == VINF_SUCCESS)
|
---|
6808 | return pbMem;
|
---|
6809 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
6810 | }
|
---|
6811 |
|
---|
6812 | void * const pvMem = pbMem;
|
---|
6813 |
|
---|
6814 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6815 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
6816 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
6817 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
6818 |
|
---|
6819 | #else /* !IEM_WITH_DATA_TLB */
|
---|
6820 |
|
---|
6821 |
|
---|
6822 | RTGCPHYS GCPhysFirst;
|
---|
6823 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, &GCPhysFirst);
|
---|
6824 | if (rcStrict == VINF_SUCCESS) { /*likely*/ }
|
---|
6825 | else IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
6826 |
|
---|
6827 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6828 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
6829 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
6830 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
6831 |
|
---|
6832 | void *pvMem;
|
---|
6833 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, &pvMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6834 | if (rcStrict == VINF_SUCCESS)
|
---|
6835 | { /* likely */ }
|
---|
6836 | else
|
---|
6837 | {
|
---|
6838 | rcStrict = iemMemBounceBufferMapPhys(pVCpu, iMemMap, &pvMem, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
6839 | if (rcStrict == VINF_SUCCESS)
|
---|
6840 | return pvMem;
|
---|
6841 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
6842 | }
|
---|
6843 |
|
---|
6844 | #endif /* !IEM_WITH_DATA_TLB */
|
---|
6845 |
|
---|
6846 | /*
|
---|
6847 | * Fill in the mapping table entry.
|
---|
6848 | */
|
---|
6849 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pvMem;
|
---|
6850 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess;
|
---|
6851 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
6852 | pVCpu->iem.s.cActiveMappings++;
|
---|
6853 |
|
---|
6854 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
6855 | return pvMem;
|
---|
6856 | }
|
---|
6857 |
|
---|
6858 |
|
---|
6859 | /**
|
---|
6860 | * Commits the guest memory if bounce buffered and unmaps it, longjmp on error.
|
---|
6861 | *
|
---|
6862 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6863 | * @param pvMem The mapping.
|
---|
6864 | * @param fAccess The kind of access.
|
---|
6865 | */
|
---|
6866 | void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
6867 | {
|
---|
6868 | int iMemMap = iemMapLookup(pVCpu, pvMem, fAccess);
|
---|
6869 | AssertStmt(iMemMap >= 0, IEM_DO_LONGJMP(pVCpu, iMemMap));
|
---|
6870 |
|
---|
6871 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
6872 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
6873 | {
|
---|
6874 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6875 | {
|
---|
6876 | VBOXSTRICTRC rcStrict = iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
6877 | if (rcStrict == VINF_SUCCESS)
|
---|
6878 | return;
|
---|
6879 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
6880 | }
|
---|
6881 | }
|
---|
6882 | /* Otherwise unlock it. */
|
---|
6883 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
6884 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6885 |
|
---|
6886 | /* Free the entry. */
|
---|
6887 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
6888 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
6889 | pVCpu->iem.s.cActiveMappings--;
|
---|
6890 | }
|
---|
6891 |
|
---|
6892 |
|
---|
6893 | /** Fallback for iemMemCommitAndUnmapRwJmp. */
|
---|
6894 | void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
6895 | {
|
---|
6896 | Assert(bMapInfo == (1 | ((IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE) << 4)) ); RT_NOREF_PV(bMapInfo);
|
---|
6897 | iemMemCommitAndUnmapJmp(pVCpu, pvMem, IEM_ACCESS_DATA_RW);
|
---|
6898 | }
|
---|
6899 |
|
---|
6900 |
|
---|
6901 | /** Fallback for iemMemCommitAndUnmapWoJmp. */
|
---|
6902 | void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
6903 | {
|
---|
6904 | Assert(bMapInfo == (1 | (IEM_ACCESS_TYPE_WRITE << 4)) ); RT_NOREF_PV(bMapInfo);
|
---|
6905 | iemMemCommitAndUnmapJmp(pVCpu, pvMem, IEM_ACCESS_DATA_W);
|
---|
6906 | }
|
---|
6907 |
|
---|
6908 |
|
---|
6909 | /** Fallback for iemMemCommitAndUnmapRoJmp. */
|
---|
6910 | void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, const void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
6911 | {
|
---|
6912 | Assert(bMapInfo == (1 | (IEM_ACCESS_TYPE_READ << 4)) ); RT_NOREF_PV(bMapInfo);
|
---|
6913 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pvMem, IEM_ACCESS_DATA_R);
|
---|
6914 | }
|
---|
6915 |
|
---|
6916 | #endif /* IEM_WITH_SETJMP */
|
---|
6917 |
|
---|
6918 | #ifndef IN_RING3
|
---|
6919 | /**
|
---|
6920 | * Commits the guest memory if bounce buffered and unmaps it, if any bounce
|
---|
6921 | * buffer part shows trouble it will be postponed to ring-3 (sets FF and stuff).
|
---|
6922 | *
|
---|
6923 | * Allows the instruction to be completed and retired, while the IEM user will
|
---|
6924 | * return to ring-3 immediately afterwards and do the postponed writes there.
|
---|
6925 | *
|
---|
6926 | * @returns VBox status code (no strict statuses). Caller must check
|
---|
6927 | * VMCPU_FF_IEM before repeating string instructions and similar stuff.
|
---|
6928 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6929 | * @param pvMem The mapping.
|
---|
6930 | * @param fAccess The kind of access.
|
---|
6931 | */
|
---|
6932 | VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT
|
---|
6933 | {
|
---|
6934 | int iMemMap = iemMapLookup(pVCpu, pvMem, fAccess);
|
---|
6935 | AssertReturn(iMemMap >= 0, iMemMap);
|
---|
6936 |
|
---|
6937 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
6938 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
6939 | {
|
---|
6940 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6941 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, true /*fPostponeFail*/);
|
---|
6942 | }
|
---|
6943 | /* Otherwise unlock it. */
|
---|
6944 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
6945 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6946 |
|
---|
6947 | /* Free the entry. */
|
---|
6948 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
6949 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
6950 | pVCpu->iem.s.cActiveMappings--;
|
---|
6951 | return VINF_SUCCESS;
|
---|
6952 | }
|
---|
6953 | #endif
|
---|
6954 |
|
---|
6955 |
|
---|
6956 | /**
|
---|
6957 | * Rollbacks mappings, releasing page locks and such.
|
---|
6958 | *
|
---|
6959 | * The caller shall only call this after checking cActiveMappings.
|
---|
6960 | *
|
---|
6961 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6962 | */
|
---|
6963 | void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
6964 | {
|
---|
6965 | Assert(pVCpu->iem.s.cActiveMappings > 0);
|
---|
6966 |
|
---|
6967 | uint32_t iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
6968 | while (iMemMap-- > 0)
|
---|
6969 | {
|
---|
6970 | uint32_t const fAccess = pVCpu->iem.s.aMemMappings[iMemMap].fAccess;
|
---|
6971 | if (fAccess != IEM_ACCESS_INVALID)
|
---|
6972 | {
|
---|
6973 | AssertMsg(!(fAccess & ~IEM_ACCESS_VALID_MASK) && fAccess != 0, ("%#x\n", fAccess));
|
---|
6974 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
6975 | if (!(fAccess & (IEM_ACCESS_BOUNCE_BUFFERED | IEM_ACCESS_NOT_LOCKED)))
|
---|
6976 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6977 | AssertMsg(pVCpu->iem.s.cActiveMappings > 0,
|
---|
6978 | ("iMemMap=%u fAccess=%#x pv=%p GCPhysFirst=%RGp GCPhysSecond=%RGp\n",
|
---|
6979 | iMemMap, fAccess, pVCpu->iem.s.aMemMappings[iMemMap].pv,
|
---|
6980 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond));
|
---|
6981 | pVCpu->iem.s.cActiveMappings--;
|
---|
6982 | }
|
---|
6983 | }
|
---|
6984 | }
|
---|
6985 |
|
---|
6986 |
|
---|
6987 | /*
|
---|
6988 | * Instantiate R/W templates.
|
---|
6989 | */
|
---|
6990 | #define TMPL_MEM_WITH_STACK
|
---|
6991 |
|
---|
6992 | #define TMPL_MEM_TYPE uint8_t
|
---|
6993 | #define TMPL_MEM_FN_SUFF U8
|
---|
6994 | #define TMPL_MEM_FMT_TYPE "%#04x"
|
---|
6995 | #define TMPL_MEM_FMT_DESC "byte"
|
---|
6996 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
6997 |
|
---|
6998 | #define TMPL_MEM_TYPE uint16_t
|
---|
6999 | #define TMPL_MEM_FN_SUFF U16
|
---|
7000 | #define TMPL_MEM_FMT_TYPE "%#06x"
|
---|
7001 | #define TMPL_MEM_FMT_DESC "word"
|
---|
7002 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7003 |
|
---|
7004 | #define TMPL_WITH_PUSH_SREG
|
---|
7005 | #define TMPL_MEM_TYPE uint32_t
|
---|
7006 | #define TMPL_MEM_FN_SUFF U32
|
---|
7007 | #define TMPL_MEM_FMT_TYPE "%#010x"
|
---|
7008 | #define TMPL_MEM_FMT_DESC "dword"
|
---|
7009 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7010 | #undef TMPL_WITH_PUSH_SREG
|
---|
7011 |
|
---|
7012 | #define TMPL_MEM_TYPE uint64_t
|
---|
7013 | #define TMPL_MEM_FN_SUFF U64
|
---|
7014 | #define TMPL_MEM_FMT_TYPE "%#018RX64"
|
---|
7015 | #define TMPL_MEM_FMT_DESC "qword"
|
---|
7016 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7017 |
|
---|
7018 | #undef TMPL_MEM_WITH_STACK
|
---|
7019 |
|
---|
7020 | #define TMPL_MEM_TYPE uint64_t
|
---|
7021 | #define TMPL_MEM_TYPE_ALIGN (sizeof(uint64_t) * 2 - 1)
|
---|
7022 | #define TMPL_MEM_FN_SUFF U64AlignedU128
|
---|
7023 | #define TMPL_MEM_FMT_TYPE "%#018RX64"
|
---|
7024 | #define TMPL_MEM_FMT_DESC "qword"
|
---|
7025 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7026 |
|
---|
7027 |
|
---|
7028 | /**
|
---|
7029 | * Fetches a data dword and zero extends it to a qword.
|
---|
7030 | *
|
---|
7031 | * @returns Strict VBox status code.
|
---|
7032 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7033 | * @param pu64Dst Where to return the qword.
|
---|
7034 | * @param iSegReg The index of the segment register to use for
|
---|
7035 | * this access. The base and limits are checked.
|
---|
7036 | * @param GCPtrMem The address of the guest memory.
|
---|
7037 | */
|
---|
7038 | VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7039 | {
|
---|
7040 | /* The lazy approach for now... */
|
---|
7041 | uint32_t const *pu32Src;
|
---|
7042 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, sizeof(*pu32Src), iSegReg, GCPtrMem,
|
---|
7043 | IEM_ACCESS_DATA_R, sizeof(*pu32Src) - 1);
|
---|
7044 | if (rc == VINF_SUCCESS)
|
---|
7045 | {
|
---|
7046 | *pu64Dst = *pu32Src;
|
---|
7047 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu32Src, IEM_ACCESS_DATA_R);
|
---|
7048 | Log(("IEM RD dword %d|%RGv: %#010RX64\n", iSegReg, GCPtrMem, *pu64Dst));
|
---|
7049 | }
|
---|
7050 | return rc;
|
---|
7051 | }
|
---|
7052 |
|
---|
7053 |
|
---|
7054 | #ifdef SOME_UNUSED_FUNCTION
|
---|
7055 | /**
|
---|
7056 | * Fetches a data dword and sign extends it to a qword.
|
---|
7057 | *
|
---|
7058 | * @returns Strict VBox status code.
|
---|
7059 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7060 | * @param pu64Dst Where to return the sign extended value.
|
---|
7061 | * @param iSegReg The index of the segment register to use for
|
---|
7062 | * this access. The base and limits are checked.
|
---|
7063 | * @param GCPtrMem The address of the guest memory.
|
---|
7064 | */
|
---|
7065 | VBOXSTRICTRC iemMemFetchDataS32SxU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7066 | {
|
---|
7067 | /* The lazy approach for now... */
|
---|
7068 | int32_t const *pi32Src;
|
---|
7069 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pi32Src, sizeof(*pi32Src), iSegReg, GCPtrMem,
|
---|
7070 | IEM_ACCESS_DATA_R, sizeof(*pi32Src) - 1);
|
---|
7071 | if (rc == VINF_SUCCESS)
|
---|
7072 | {
|
---|
7073 | *pu64Dst = *pi32Src;
|
---|
7074 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pi32Src, IEM_ACCESS_DATA_R);
|
---|
7075 | Log(("IEM RD dword %d|%RGv: %#010x\n", iSegReg, GCPtrMem, (uint32_t)*pu64Dst));
|
---|
7076 | }
|
---|
7077 | #ifdef __GNUC__ /* warning: GCC may be a royal pain */
|
---|
7078 | else
|
---|
7079 | *pu64Dst = 0;
|
---|
7080 | #endif
|
---|
7081 | return rc;
|
---|
7082 | }
|
---|
7083 | #endif
|
---|
7084 |
|
---|
7085 |
|
---|
7086 | /**
|
---|
7087 | * Fetches a data tword.
|
---|
7088 | *
|
---|
7089 | * @returns Strict VBox status code.
|
---|
7090 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7091 | * @param pr80Dst Where to return the tword.
|
---|
7092 | * @param iSegReg The index of the segment register to use for
|
---|
7093 | * this access. The base and limits are checked.
|
---|
7094 | * @param GCPtrMem The address of the guest memory.
|
---|
7095 | */
|
---|
7096 | VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7097 | {
|
---|
7098 | /* The lazy approach for now... */
|
---|
7099 | PCRTFLOAT80U pr80Src;
|
---|
7100 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pr80Src, sizeof(*pr80Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R, 7);
|
---|
7101 | if (rc == VINF_SUCCESS)
|
---|
7102 | {
|
---|
7103 | *pr80Dst = *pr80Src;
|
---|
7104 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pr80Src, IEM_ACCESS_DATA_R);
|
---|
7105 | Log(("IEM RD tword %d|%RGv: %.10Rhxs\n", iSegReg, GCPtrMem, pr80Dst));
|
---|
7106 | }
|
---|
7107 | return rc;
|
---|
7108 | }
|
---|
7109 |
|
---|
7110 |
|
---|
7111 | #ifdef IEM_WITH_SETJMP
|
---|
7112 | /**
|
---|
7113 | * Fetches a data tword, longjmp on error.
|
---|
7114 | *
|
---|
7115 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7116 | * @param pr80Dst Where to return the tword.
|
---|
7117 | * @param iSegReg The index of the segment register to use for
|
---|
7118 | * this access. The base and limits are checked.
|
---|
7119 | * @param GCPtrMem The address of the guest memory.
|
---|
7120 | */
|
---|
7121 | void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7122 | {
|
---|
7123 | /* The lazy approach for now... */
|
---|
7124 | PCRTFLOAT80U pr80Src = (PCRTFLOAT80U)iemMemMapJmp(pVCpu, sizeof(*pr80Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R, 7);
|
---|
7125 | *pr80Dst = *pr80Src;
|
---|
7126 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pr80Src, IEM_ACCESS_DATA_R);
|
---|
7127 | Log(("IEM RD tword %d|%RGv: %.10Rhxs\n", iSegReg, GCPtrMem, pr80Dst));
|
---|
7128 | }
|
---|
7129 | #endif
|
---|
7130 |
|
---|
7131 |
|
---|
7132 | /**
|
---|
7133 | * Fetches a data decimal tword.
|
---|
7134 | *
|
---|
7135 | * @returns Strict VBox status code.
|
---|
7136 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7137 | * @param pd80Dst Where to return the tword.
|
---|
7138 | * @param iSegReg The index of the segment register to use for
|
---|
7139 | * this access. The base and limits are checked.
|
---|
7140 | * @param GCPtrMem The address of the guest memory.
|
---|
7141 | */
|
---|
7142 | VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7143 | {
|
---|
7144 | /* The lazy approach for now... */
|
---|
7145 | PCRTPBCD80U pd80Src;
|
---|
7146 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pd80Src, sizeof(*pd80Src), iSegReg, GCPtrMem,
|
---|
7147 | IEM_ACCESS_DATA_R, 7 /** @todo FBLD alignment check */);
|
---|
7148 | if (rc == VINF_SUCCESS)
|
---|
7149 | {
|
---|
7150 | *pd80Dst = *pd80Src;
|
---|
7151 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pd80Src, IEM_ACCESS_DATA_R);
|
---|
7152 | Log(("IEM RD tword %d|%RGv: %.10Rhxs\n", iSegReg, GCPtrMem, pd80Dst));
|
---|
7153 | }
|
---|
7154 | return rc;
|
---|
7155 | }
|
---|
7156 |
|
---|
7157 |
|
---|
7158 | #ifdef IEM_WITH_SETJMP
|
---|
7159 | /**
|
---|
7160 | * Fetches a data decimal tword, longjmp on error.
|
---|
7161 | *
|
---|
7162 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7163 | * @param pd80Dst Where to return the tword.
|
---|
7164 | * @param iSegReg The index of the segment register to use for
|
---|
7165 | * this access. The base and limits are checked.
|
---|
7166 | * @param GCPtrMem The address of the guest memory.
|
---|
7167 | */
|
---|
7168 | void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7169 | {
|
---|
7170 | /* The lazy approach for now... */
|
---|
7171 | PCRTPBCD80U pd80Src = (PCRTPBCD80U)iemMemMapJmp(pVCpu, sizeof(*pd80Src), iSegReg, GCPtrMem,
|
---|
7172 | IEM_ACCESS_DATA_R, 7 /** @todo FBSTP alignment check */);
|
---|
7173 | *pd80Dst = *pd80Src;
|
---|
7174 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pd80Src, IEM_ACCESS_DATA_R);
|
---|
7175 | Log(("IEM RD tword %d|%RGv: %.10Rhxs\n", iSegReg, GCPtrMem, pd80Dst));
|
---|
7176 | }
|
---|
7177 | #endif
|
---|
7178 |
|
---|
7179 |
|
---|
7180 | /**
|
---|
7181 | * Fetches a data dqword (double qword), generally SSE related.
|
---|
7182 | *
|
---|
7183 | * @returns Strict VBox status code.
|
---|
7184 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7185 | * @param pu128Dst Where to return the qword.
|
---|
7186 | * @param iSegReg The index of the segment register to use for
|
---|
7187 | * this access. The base and limits are checked.
|
---|
7188 | * @param GCPtrMem The address of the guest memory.
|
---|
7189 | */
|
---|
7190 | VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7191 | {
|
---|
7192 | /* The lazy approach for now... */
|
---|
7193 | PCRTUINT128U pu128Src;
|
---|
7194 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Src, sizeof(*pu128Src), iSegReg, GCPtrMem,
|
---|
7195 | IEM_ACCESS_DATA_R, 0 /* NO_AC variant */);
|
---|
7196 | if (rc == VINF_SUCCESS)
|
---|
7197 | {
|
---|
7198 | pu128Dst->au64[0] = pu128Src->au64[0];
|
---|
7199 | pu128Dst->au64[1] = pu128Src->au64[1];
|
---|
7200 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
7201 | Log(("IEM RD dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7202 | }
|
---|
7203 | return rc;
|
---|
7204 | }
|
---|
7205 |
|
---|
7206 |
|
---|
7207 | #ifdef IEM_WITH_SETJMP
|
---|
7208 | /**
|
---|
7209 | * Fetches a data dqword (double qword), generally SSE related.
|
---|
7210 | *
|
---|
7211 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7212 | * @param pu128Dst Where to return the qword.
|
---|
7213 | * @param iSegReg The index of the segment register to use for
|
---|
7214 | * this access. The base and limits are checked.
|
---|
7215 | * @param GCPtrMem The address of the guest memory.
|
---|
7216 | */
|
---|
7217 | void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7218 | {
|
---|
7219 | /* The lazy approach for now... */
|
---|
7220 | PCRTUINT128U pu128Src = (PCRTUINT128U)iemMemMapJmp(pVCpu, sizeof(*pu128Src), iSegReg, GCPtrMem,
|
---|
7221 | IEM_ACCESS_DATA_R, 0 /* NO_AC variant */);
|
---|
7222 | pu128Dst->au64[0] = pu128Src->au64[0];
|
---|
7223 | pu128Dst->au64[1] = pu128Src->au64[1];
|
---|
7224 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
7225 | Log(("IEM RD dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7226 | }
|
---|
7227 | #endif
|
---|
7228 |
|
---|
7229 |
|
---|
7230 | /**
|
---|
7231 | * Fetches a data dqword (double qword) at an aligned address, generally SSE
|
---|
7232 | * related.
|
---|
7233 | *
|
---|
7234 | * Raises \#GP(0) if not aligned.
|
---|
7235 | *
|
---|
7236 | * @returns Strict VBox status code.
|
---|
7237 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7238 | * @param pu128Dst Where to return the qword.
|
---|
7239 | * @param iSegReg The index of the segment register to use for
|
---|
7240 | * this access. The base and limits are checked.
|
---|
7241 | * @param GCPtrMem The address of the guest memory.
|
---|
7242 | */
|
---|
7243 | VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7244 | {
|
---|
7245 | /* The lazy approach for now... */
|
---|
7246 | PCRTUINT128U pu128Src;
|
---|
7247 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Src, sizeof(*pu128Src), iSegReg, GCPtrMem,
|
---|
7248 | IEM_ACCESS_DATA_R, (sizeof(*pu128Src) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7249 | if (rc == VINF_SUCCESS)
|
---|
7250 | {
|
---|
7251 | pu128Dst->au64[0] = pu128Src->au64[0];
|
---|
7252 | pu128Dst->au64[1] = pu128Src->au64[1];
|
---|
7253 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
7254 | Log(("IEM RD dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7255 | }
|
---|
7256 | return rc;
|
---|
7257 | }
|
---|
7258 |
|
---|
7259 |
|
---|
7260 | #ifdef IEM_WITH_SETJMP
|
---|
7261 | /**
|
---|
7262 | * Fetches a data dqword (double qword) at an aligned address, generally SSE
|
---|
7263 | * related, longjmp on error.
|
---|
7264 | *
|
---|
7265 | * Raises \#GP(0) if not aligned.
|
---|
7266 | *
|
---|
7267 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7268 | * @param pu128Dst Where to return the qword.
|
---|
7269 | * @param iSegReg The index of the segment register to use for
|
---|
7270 | * this access. The base and limits are checked.
|
---|
7271 | * @param GCPtrMem The address of the guest memory.
|
---|
7272 | */
|
---|
7273 | void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg,
|
---|
7274 | RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7275 | {
|
---|
7276 | /* The lazy approach for now... */
|
---|
7277 | PCRTUINT128U pu128Src = (PCRTUINT128U)iemMemMapJmp(pVCpu, sizeof(*pu128Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R,
|
---|
7278 | (sizeof(*pu128Src) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7279 | pu128Dst->au64[0] = pu128Src->au64[0];
|
---|
7280 | pu128Dst->au64[1] = pu128Src->au64[1];
|
---|
7281 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
7282 | Log(("IEM RD dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7283 | }
|
---|
7284 | #endif
|
---|
7285 |
|
---|
7286 |
|
---|
7287 | /**
|
---|
7288 | * Fetches a data oword (octo word), generally AVX related.
|
---|
7289 | *
|
---|
7290 | * @returns Strict VBox status code.
|
---|
7291 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7292 | * @param pu256Dst Where to return the qword.
|
---|
7293 | * @param iSegReg The index of the segment register to use for
|
---|
7294 | * this access. The base and limits are checked.
|
---|
7295 | * @param GCPtrMem The address of the guest memory.
|
---|
7296 | */
|
---|
7297 | VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7298 | {
|
---|
7299 | /* The lazy approach for now... */
|
---|
7300 | PCRTUINT256U pu256Src;
|
---|
7301 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu256Src, sizeof(*pu256Src), iSegReg, GCPtrMem,
|
---|
7302 | IEM_ACCESS_DATA_R, 0 /* NO_AC variant */);
|
---|
7303 | if (rc == VINF_SUCCESS)
|
---|
7304 | {
|
---|
7305 | pu256Dst->au64[0] = pu256Src->au64[0];
|
---|
7306 | pu256Dst->au64[1] = pu256Src->au64[1];
|
---|
7307 | pu256Dst->au64[2] = pu256Src->au64[2];
|
---|
7308 | pu256Dst->au64[3] = pu256Src->au64[3];
|
---|
7309 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu256Src, IEM_ACCESS_DATA_R);
|
---|
7310 | Log(("IEM RD qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7311 | }
|
---|
7312 | return rc;
|
---|
7313 | }
|
---|
7314 |
|
---|
7315 |
|
---|
7316 | #ifdef IEM_WITH_SETJMP
|
---|
7317 | /**
|
---|
7318 | * Fetches a data oword (octo word), generally AVX related.
|
---|
7319 | *
|
---|
7320 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7321 | * @param pu256Dst Where to return the qword.
|
---|
7322 | * @param iSegReg The index of the segment register to use for
|
---|
7323 | * this access. The base and limits are checked.
|
---|
7324 | * @param GCPtrMem The address of the guest memory.
|
---|
7325 | */
|
---|
7326 | void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7327 | {
|
---|
7328 | /* The lazy approach for now... */
|
---|
7329 | PCRTUINT256U pu256Src = (PCRTUINT256U)iemMemMapJmp(pVCpu, sizeof(*pu256Src), iSegReg, GCPtrMem,
|
---|
7330 | IEM_ACCESS_DATA_R, 0 /* NO_AC variant */);
|
---|
7331 | pu256Dst->au64[0] = pu256Src->au64[0];
|
---|
7332 | pu256Dst->au64[1] = pu256Src->au64[1];
|
---|
7333 | pu256Dst->au64[2] = pu256Src->au64[2];
|
---|
7334 | pu256Dst->au64[3] = pu256Src->au64[3];
|
---|
7335 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu256Src, IEM_ACCESS_DATA_R);
|
---|
7336 | Log(("IEM RD qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7337 | }
|
---|
7338 | #endif
|
---|
7339 |
|
---|
7340 |
|
---|
7341 | /**
|
---|
7342 | * Fetches a data oword (octo word) at an aligned address, generally AVX
|
---|
7343 | * related.
|
---|
7344 | *
|
---|
7345 | * Raises \#GP(0) if not aligned.
|
---|
7346 | *
|
---|
7347 | * @returns Strict VBox status code.
|
---|
7348 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7349 | * @param pu256Dst Where to return the qword.
|
---|
7350 | * @param iSegReg The index of the segment register to use for
|
---|
7351 | * this access. The base and limits are checked.
|
---|
7352 | * @param GCPtrMem The address of the guest memory.
|
---|
7353 | */
|
---|
7354 | VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7355 | {
|
---|
7356 | /* The lazy approach for now... */
|
---|
7357 | PCRTUINT256U pu256Src;
|
---|
7358 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu256Src, sizeof(*pu256Src), iSegReg, GCPtrMem,
|
---|
7359 | IEM_ACCESS_DATA_R, (sizeof(*pu256Src) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7360 | if (rc == VINF_SUCCESS)
|
---|
7361 | {
|
---|
7362 | pu256Dst->au64[0] = pu256Src->au64[0];
|
---|
7363 | pu256Dst->au64[1] = pu256Src->au64[1];
|
---|
7364 | pu256Dst->au64[2] = pu256Src->au64[2];
|
---|
7365 | pu256Dst->au64[3] = pu256Src->au64[3];
|
---|
7366 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu256Src, IEM_ACCESS_DATA_R);
|
---|
7367 | Log(("IEM RD qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7368 | }
|
---|
7369 | return rc;
|
---|
7370 | }
|
---|
7371 |
|
---|
7372 |
|
---|
7373 | #ifdef IEM_WITH_SETJMP
|
---|
7374 | /**
|
---|
7375 | * Fetches a data oword (octo word) at an aligned address, generally AVX
|
---|
7376 | * related, longjmp on error.
|
---|
7377 | *
|
---|
7378 | * Raises \#GP(0) if not aligned.
|
---|
7379 | *
|
---|
7380 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7381 | * @param pu256Dst Where to return the qword.
|
---|
7382 | * @param iSegReg The index of the segment register to use for
|
---|
7383 | * this access. The base and limits are checked.
|
---|
7384 | * @param GCPtrMem The address of the guest memory.
|
---|
7385 | */
|
---|
7386 | void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg,
|
---|
7387 | RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7388 | {
|
---|
7389 | /* The lazy approach for now... */
|
---|
7390 | PCRTUINT256U pu256Src = (PCRTUINT256U)iemMemMapJmp(pVCpu, sizeof(*pu256Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R,
|
---|
7391 | (sizeof(*pu256Src) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7392 | pu256Dst->au64[0] = pu256Src->au64[0];
|
---|
7393 | pu256Dst->au64[1] = pu256Src->au64[1];
|
---|
7394 | pu256Dst->au64[2] = pu256Src->au64[2];
|
---|
7395 | pu256Dst->au64[3] = pu256Src->au64[3];
|
---|
7396 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu256Src, IEM_ACCESS_DATA_R);
|
---|
7397 | Log(("IEM RD qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7398 | }
|
---|
7399 | #endif
|
---|
7400 |
|
---|
7401 |
|
---|
7402 |
|
---|
7403 | /**
|
---|
7404 | * Fetches a descriptor register (lgdt, lidt).
|
---|
7405 | *
|
---|
7406 | * @returns Strict VBox status code.
|
---|
7407 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7408 | * @param pcbLimit Where to return the limit.
|
---|
7409 | * @param pGCPtrBase Where to return the base.
|
---|
7410 | * @param iSegReg The index of the segment register to use for
|
---|
7411 | * this access. The base and limits are checked.
|
---|
7412 | * @param GCPtrMem The address of the guest memory.
|
---|
7413 | * @param enmOpSize The effective operand size.
|
---|
7414 | */
|
---|
7415 | VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
|
---|
7416 | RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT
|
---|
7417 | {
|
---|
7418 | /*
|
---|
7419 | * Just like SIDT and SGDT, the LIDT and LGDT instructions are a
|
---|
7420 | * little special:
|
---|
7421 | * - The two reads are done separately.
|
---|
7422 | * - Operand size override works in 16-bit and 32-bit code, but 64-bit.
|
---|
7423 | * - We suspect the 386 to actually commit the limit before the base in
|
---|
7424 | * some cases (search for 386 in bs3CpuBasic2_lidt_lgdt_One). We
|
---|
7425 | * don't try emulate this eccentric behavior, because it's not well
|
---|
7426 | * enough understood and rather hard to trigger.
|
---|
7427 | * - The 486 seems to do a dword limit read when the operand size is 32-bit.
|
---|
7428 | */
|
---|
7429 | VBOXSTRICTRC rcStrict;
|
---|
7430 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
7431 | {
|
---|
7432 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7433 | if (rcStrict == VINF_SUCCESS)
|
---|
7434 | rcStrict = iemMemFetchDataU64(pVCpu, pGCPtrBase, iSegReg, GCPtrMem + 2);
|
---|
7435 | }
|
---|
7436 | else
|
---|
7437 | {
|
---|
7438 | uint32_t uTmp = 0; /* (Visual C++ maybe used uninitialized) */
|
---|
7439 | if (enmOpSize == IEMMODE_32BIT)
|
---|
7440 | {
|
---|
7441 | if (IEM_GET_TARGET_CPU(pVCpu) != IEMTARGETCPU_486)
|
---|
7442 | {
|
---|
7443 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7444 | if (rcStrict == VINF_SUCCESS)
|
---|
7445 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7446 | }
|
---|
7447 | else
|
---|
7448 | {
|
---|
7449 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem);
|
---|
7450 | if (rcStrict == VINF_SUCCESS)
|
---|
7451 | {
|
---|
7452 | *pcbLimit = (uint16_t)uTmp;
|
---|
7453 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7454 | }
|
---|
7455 | }
|
---|
7456 | if (rcStrict == VINF_SUCCESS)
|
---|
7457 | *pGCPtrBase = uTmp;
|
---|
7458 | }
|
---|
7459 | else
|
---|
7460 | {
|
---|
7461 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7462 | if (rcStrict == VINF_SUCCESS)
|
---|
7463 | {
|
---|
7464 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7465 | if (rcStrict == VINF_SUCCESS)
|
---|
7466 | *pGCPtrBase = uTmp & UINT32_C(0x00ffffff);
|
---|
7467 | }
|
---|
7468 | }
|
---|
7469 | }
|
---|
7470 | return rcStrict;
|
---|
7471 | }
|
---|
7472 |
|
---|
7473 |
|
---|
7474 | /**
|
---|
7475 | * Stores a data dqword.
|
---|
7476 | *
|
---|
7477 | * @returns Strict VBox status code.
|
---|
7478 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7479 | * @param iSegReg The index of the segment register to use for
|
---|
7480 | * this access. The base and limits are checked.
|
---|
7481 | * @param GCPtrMem The address of the guest memory.
|
---|
7482 | * @param u128Value The value to store.
|
---|
7483 | */
|
---|
7484 | VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT
|
---|
7485 | {
|
---|
7486 | /* The lazy approach for now... */
|
---|
7487 | PRTUINT128U pu128Dst;
|
---|
7488 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Dst, sizeof(*pu128Dst), iSegReg, GCPtrMem,
|
---|
7489 | IEM_ACCESS_DATA_W, 0 /* NO_AC variant */);
|
---|
7490 | if (rc == VINF_SUCCESS)
|
---|
7491 | {
|
---|
7492 | pu128Dst->au64[0] = u128Value.au64[0];
|
---|
7493 | pu128Dst->au64[1] = u128Value.au64[1];
|
---|
7494 | rc = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
7495 | Log5(("IEM WR dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7496 | }
|
---|
7497 | return rc;
|
---|
7498 | }
|
---|
7499 |
|
---|
7500 |
|
---|
7501 | #ifdef IEM_WITH_SETJMP
|
---|
7502 | /**
|
---|
7503 | * Stores a data dqword, longjmp on error.
|
---|
7504 | *
|
---|
7505 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7506 | * @param iSegReg The index of the segment register to use for
|
---|
7507 | * this access. The base and limits are checked.
|
---|
7508 | * @param GCPtrMem The address of the guest memory.
|
---|
7509 | * @param u128Value The value to store.
|
---|
7510 | */
|
---|
7511 | void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7512 | {
|
---|
7513 | /* The lazy approach for now... */
|
---|
7514 | PRTUINT128U pu128Dst = (PRTUINT128U)iemMemMapJmp(pVCpu, sizeof(*pu128Dst), iSegReg, GCPtrMem,
|
---|
7515 | IEM_ACCESS_DATA_W, 0 /* NO_AC variant */);
|
---|
7516 | pu128Dst->au64[0] = u128Value.au64[0];
|
---|
7517 | pu128Dst->au64[1] = u128Value.au64[1];
|
---|
7518 | iemMemCommitAndUnmapJmp(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
7519 | Log5(("IEM WR dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7520 | }
|
---|
7521 | #endif
|
---|
7522 |
|
---|
7523 |
|
---|
7524 | /**
|
---|
7525 | * Stores a data dqword, SSE aligned.
|
---|
7526 | *
|
---|
7527 | * @returns Strict VBox status code.
|
---|
7528 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7529 | * @param iSegReg The index of the segment register to use for
|
---|
7530 | * this access. The base and limits are checked.
|
---|
7531 | * @param GCPtrMem The address of the guest memory.
|
---|
7532 | * @param u128Value The value to store.
|
---|
7533 | */
|
---|
7534 | VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT
|
---|
7535 | {
|
---|
7536 | /* The lazy approach for now... */
|
---|
7537 | PRTUINT128U pu128Dst;
|
---|
7538 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Dst, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W,
|
---|
7539 | (sizeof(*pu128Dst) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7540 | if (rc == VINF_SUCCESS)
|
---|
7541 | {
|
---|
7542 | pu128Dst->au64[0] = u128Value.au64[0];
|
---|
7543 | pu128Dst->au64[1] = u128Value.au64[1];
|
---|
7544 | rc = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
7545 | Log5(("IEM WR dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7546 | }
|
---|
7547 | return rc;
|
---|
7548 | }
|
---|
7549 |
|
---|
7550 |
|
---|
7551 | #ifdef IEM_WITH_SETJMP
|
---|
7552 | /**
|
---|
7553 | * Stores a data dqword, SSE aligned.
|
---|
7554 | *
|
---|
7555 | * @returns Strict VBox status code.
|
---|
7556 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7557 | * @param iSegReg The index of the segment register to use for
|
---|
7558 | * this access. The base and limits are checked.
|
---|
7559 | * @param GCPtrMem The address of the guest memory.
|
---|
7560 | * @param u128Value The value to store.
|
---|
7561 | */
|
---|
7562 | void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem,
|
---|
7563 | RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7564 | {
|
---|
7565 | /* The lazy approach for now... */
|
---|
7566 | PRTUINT128U pu128Dst = (PRTUINT128U)iemMemMapJmp(pVCpu, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W,
|
---|
7567 | (sizeof(*pu128Dst) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7568 | pu128Dst->au64[0] = u128Value.au64[0];
|
---|
7569 | pu128Dst->au64[1] = u128Value.au64[1];
|
---|
7570 | iemMemCommitAndUnmapJmp(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
7571 | Log5(("IEM WR dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7572 | }
|
---|
7573 | #endif
|
---|
7574 |
|
---|
7575 |
|
---|
7576 | /**
|
---|
7577 | * Stores a data dqword.
|
---|
7578 | *
|
---|
7579 | * @returns Strict VBox status code.
|
---|
7580 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7581 | * @param iSegReg The index of the segment register to use for
|
---|
7582 | * this access. The base and limits are checked.
|
---|
7583 | * @param GCPtrMem The address of the guest memory.
|
---|
7584 | * @param pu256Value Pointer to the value to store.
|
---|
7585 | */
|
---|
7586 | VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT
|
---|
7587 | {
|
---|
7588 | /* The lazy approach for now... */
|
---|
7589 | PRTUINT256U pu256Dst;
|
---|
7590 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu256Dst, sizeof(*pu256Dst), iSegReg, GCPtrMem,
|
---|
7591 | IEM_ACCESS_DATA_W, 0 /* NO_AC variant */);
|
---|
7592 | if (rc == VINF_SUCCESS)
|
---|
7593 | {
|
---|
7594 | pu256Dst->au64[0] = pu256Value->au64[0];
|
---|
7595 | pu256Dst->au64[1] = pu256Value->au64[1];
|
---|
7596 | pu256Dst->au64[2] = pu256Value->au64[2];
|
---|
7597 | pu256Dst->au64[3] = pu256Value->au64[3];
|
---|
7598 | rc = iemMemCommitAndUnmap(pVCpu, pu256Dst, IEM_ACCESS_DATA_W);
|
---|
7599 | Log5(("IEM WR qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7600 | }
|
---|
7601 | return rc;
|
---|
7602 | }
|
---|
7603 |
|
---|
7604 |
|
---|
7605 | #ifdef IEM_WITH_SETJMP
|
---|
7606 | /**
|
---|
7607 | * Stores a data dqword, longjmp on error.
|
---|
7608 | *
|
---|
7609 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7610 | * @param iSegReg The index of the segment register to use for
|
---|
7611 | * this access. The base and limits are checked.
|
---|
7612 | * @param GCPtrMem The address of the guest memory.
|
---|
7613 | * @param pu256Value Pointer to the value to store.
|
---|
7614 | */
|
---|
7615 | void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7616 | {
|
---|
7617 | /* The lazy approach for now... */
|
---|
7618 | PRTUINT256U pu256Dst = (PRTUINT256U)iemMemMapJmp(pVCpu, sizeof(*pu256Dst), iSegReg, GCPtrMem,
|
---|
7619 | IEM_ACCESS_DATA_W, 0 /* NO_AC variant */);
|
---|
7620 | pu256Dst->au64[0] = pu256Value->au64[0];
|
---|
7621 | pu256Dst->au64[1] = pu256Value->au64[1];
|
---|
7622 | pu256Dst->au64[2] = pu256Value->au64[2];
|
---|
7623 | pu256Dst->au64[3] = pu256Value->au64[3];
|
---|
7624 | iemMemCommitAndUnmapJmp(pVCpu, pu256Dst, IEM_ACCESS_DATA_W);
|
---|
7625 | Log5(("IEM WR qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7626 | }
|
---|
7627 | #endif
|
---|
7628 |
|
---|
7629 |
|
---|
7630 | /**
|
---|
7631 | * Stores a data dqword, AVX \#GP(0) aligned.
|
---|
7632 | *
|
---|
7633 | * @returns Strict VBox status code.
|
---|
7634 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7635 | * @param iSegReg The index of the segment register to use for
|
---|
7636 | * this access. The base and limits are checked.
|
---|
7637 | * @param GCPtrMem The address of the guest memory.
|
---|
7638 | * @param pu256Value Pointer to the value to store.
|
---|
7639 | */
|
---|
7640 | VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT
|
---|
7641 | {
|
---|
7642 | /* The lazy approach for now... */
|
---|
7643 | PRTUINT256U pu256Dst;
|
---|
7644 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu256Dst, sizeof(*pu256Dst), iSegReg, GCPtrMem,
|
---|
7645 | IEM_ACCESS_DATA_W, (sizeof(*pu256Dst) - 1) | IEM_MEMMAP_F_ALIGN_GP);
|
---|
7646 | if (rc == VINF_SUCCESS)
|
---|
7647 | {
|
---|
7648 | pu256Dst->au64[0] = pu256Value->au64[0];
|
---|
7649 | pu256Dst->au64[1] = pu256Value->au64[1];
|
---|
7650 | pu256Dst->au64[2] = pu256Value->au64[2];
|
---|
7651 | pu256Dst->au64[3] = pu256Value->au64[3];
|
---|
7652 | rc = iemMemCommitAndUnmap(pVCpu, pu256Dst, IEM_ACCESS_DATA_W);
|
---|
7653 | Log5(("IEM WR qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7654 | }
|
---|
7655 | return rc;
|
---|
7656 | }
|
---|
7657 |
|
---|
7658 |
|
---|
7659 | #ifdef IEM_WITH_SETJMP
|
---|
7660 | /**
|
---|
7661 | * Stores a data dqword, AVX aligned.
|
---|
7662 | *
|
---|
7663 | * @returns Strict VBox status code.
|
---|
7664 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7665 | * @param iSegReg The index of the segment register to use for
|
---|
7666 | * this access. The base and limits are checked.
|
---|
7667 | * @param GCPtrMem The address of the guest memory.
|
---|
7668 | * @param pu256Value Pointer to the value to store.
|
---|
7669 | */
|
---|
7670 | void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem,
|
---|
7671 | PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7672 | {
|
---|
7673 | /* The lazy approach for now... */
|
---|
7674 | PRTUINT256U pu256Dst = (PRTUINT256U)iemMemMapJmp(pVCpu, sizeof(*pu256Dst), iSegReg, GCPtrMem,
|
---|
7675 | IEM_ACCESS_DATA_W, (sizeof(*pu256Dst) - 1) | IEM_MEMMAP_F_ALIGN_GP);
|
---|
7676 | pu256Dst->au64[0] = pu256Value->au64[0];
|
---|
7677 | pu256Dst->au64[1] = pu256Value->au64[1];
|
---|
7678 | pu256Dst->au64[2] = pu256Value->au64[2];
|
---|
7679 | pu256Dst->au64[3] = pu256Value->au64[3];
|
---|
7680 | iemMemCommitAndUnmapJmp(pVCpu, pu256Dst, IEM_ACCESS_DATA_W);
|
---|
7681 | Log5(("IEM WR qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7682 | }
|
---|
7683 | #endif
|
---|
7684 |
|
---|
7685 |
|
---|
7686 | /**
|
---|
7687 | * Stores a descriptor register (sgdt, sidt).
|
---|
7688 | *
|
---|
7689 | * @returns Strict VBox status code.
|
---|
7690 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7691 | * @param cbLimit The limit.
|
---|
7692 | * @param GCPtrBase The base address.
|
---|
7693 | * @param iSegReg The index of the segment register to use for
|
---|
7694 | * this access. The base and limits are checked.
|
---|
7695 | * @param GCPtrMem The address of the guest memory.
|
---|
7696 | */
|
---|
7697 | VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7698 | {
|
---|
7699 | /*
|
---|
7700 | * The SIDT and SGDT instructions actually stores the data using two
|
---|
7701 | * independent writes (see bs3CpuBasic2_sidt_sgdt_One). The instructions
|
---|
7702 | * does not respond to opsize prefixes.
|
---|
7703 | */
|
---|
7704 | VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iSegReg, GCPtrMem, cbLimit);
|
---|
7705 | if (rcStrict == VINF_SUCCESS)
|
---|
7706 | {
|
---|
7707 | if (IEM_IS_16BIT_CODE(pVCpu))
|
---|
7708 | rcStrict = iemMemStoreDataU32(pVCpu, iSegReg, GCPtrMem + 2,
|
---|
7709 | IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_286
|
---|
7710 | ? (uint32_t)GCPtrBase | UINT32_C(0xff000000) : (uint32_t)GCPtrBase);
|
---|
7711 | else if (IEM_IS_32BIT_CODE(pVCpu))
|
---|
7712 | rcStrict = iemMemStoreDataU32(pVCpu, iSegReg, GCPtrMem + 2, (uint32_t)GCPtrBase);
|
---|
7713 | else
|
---|
7714 | rcStrict = iemMemStoreDataU64(pVCpu, iSegReg, GCPtrMem + 2, GCPtrBase);
|
---|
7715 | }
|
---|
7716 | return rcStrict;
|
---|
7717 | }
|
---|
7718 |
|
---|
7719 |
|
---|
7720 | /**
|
---|
7721 | * Begin a special stack push (used by interrupt, exceptions and such).
|
---|
7722 | *
|
---|
7723 | * This will raise \#SS or \#PF if appropriate.
|
---|
7724 | *
|
---|
7725 | * @returns Strict VBox status code.
|
---|
7726 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7727 | * @param cbMem The number of bytes to push onto the stack.
|
---|
7728 | * @param cbAlign The alignment mask (7, 3, 1).
|
---|
7729 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
7730 | * As with the other memory functions this could be
|
---|
7731 | * direct access or bounce buffered access, so
|
---|
7732 | * don't commit register until the commit call
|
---|
7733 | * succeeds.
|
---|
7734 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
7735 | * passed unchanged to
|
---|
7736 | * iemMemStackPushCommitSpecial().
|
---|
7737 | */
|
---|
7738 | VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
|
---|
7739 | void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
7740 | {
|
---|
7741 | Assert(cbMem < UINT8_MAX);
|
---|
7742 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pVCpu, (uint8_t)cbMem, puNewRsp);
|
---|
7743 | return iemMemMap(pVCpu, ppvMem, cbMem, X86_SREG_SS, GCPtrTop,
|
---|
7744 | IEM_ACCESS_STACK_W, cbAlign);
|
---|
7745 | }
|
---|
7746 |
|
---|
7747 |
|
---|
7748 | /**
|
---|
7749 | * Commits a special stack push (started by iemMemStackPushBeginSpecial).
|
---|
7750 | *
|
---|
7751 | * This will update the rSP.
|
---|
7752 | *
|
---|
7753 | * @returns Strict VBox status code.
|
---|
7754 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7755 | * @param pvMem The pointer returned by
|
---|
7756 | * iemMemStackPushBeginSpecial().
|
---|
7757 | * @param uNewRsp The new RSP value returned by
|
---|
7758 | * iemMemStackPushBeginSpecial().
|
---|
7759 | */
|
---|
7760 | VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT
|
---|
7761 | {
|
---|
7762 | VBOXSTRICTRC rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem, IEM_ACCESS_STACK_W);
|
---|
7763 | if (rcStrict == VINF_SUCCESS)
|
---|
7764 | pVCpu->cpum.GstCtx.rsp = uNewRsp;
|
---|
7765 | return rcStrict;
|
---|
7766 | }
|
---|
7767 |
|
---|
7768 |
|
---|
7769 | /**
|
---|
7770 | * Begin a special stack pop (used by iret, retf and such).
|
---|
7771 | *
|
---|
7772 | * This will raise \#SS or \#PF if appropriate.
|
---|
7773 | *
|
---|
7774 | * @returns Strict VBox status code.
|
---|
7775 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7776 | * @param cbMem The number of bytes to pop from the stack.
|
---|
7777 | * @param cbAlign The alignment mask (7, 3, 1).
|
---|
7778 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
7779 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
7780 | * assigned to CPUMCTX::rsp manually some time
|
---|
7781 | * after iemMemStackPopDoneSpecial() has been
|
---|
7782 | * called.
|
---|
7783 | */
|
---|
7784 | VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
|
---|
7785 | void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
7786 | {
|
---|
7787 | Assert(cbMem < UINT8_MAX);
|
---|
7788 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pVCpu, (uint8_t)cbMem, puNewRsp);
|
---|
7789 | return iemMemMap(pVCpu, (void **)ppvMem, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R, cbAlign);
|
---|
7790 | }
|
---|
7791 |
|
---|
7792 |
|
---|
7793 | /**
|
---|
7794 | * Continue a special stack pop (used by iret and retf), for the purpose of
|
---|
7795 | * retrieving a new stack pointer.
|
---|
7796 | *
|
---|
7797 | * This will raise \#SS or \#PF if appropriate.
|
---|
7798 | *
|
---|
7799 | * @returns Strict VBox status code.
|
---|
7800 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7801 | * @param off Offset from the top of the stack. This is zero
|
---|
7802 | * except in the retf case.
|
---|
7803 | * @param cbMem The number of bytes to pop from the stack.
|
---|
7804 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
7805 | * @param uCurNewRsp The current uncommitted RSP value. (No need to
|
---|
7806 | * return this because all use of this function is
|
---|
7807 | * to retrieve a new value and anything we return
|
---|
7808 | * here would be discarded.)
|
---|
7809 | */
|
---|
7810 | VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
|
---|
7811 | void const **ppvMem, uint64_t uCurNewRsp) RT_NOEXCEPT
|
---|
7812 | {
|
---|
7813 | Assert(cbMem < UINT8_MAX);
|
---|
7814 |
|
---|
7815 | /* The essense of iemRegGetRspForPopEx and friends: */ /** @todo put this into a inlined function? */
|
---|
7816 | RTGCPTR GCPtrTop;
|
---|
7817 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
7818 | GCPtrTop = uCurNewRsp;
|
---|
7819 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
7820 | GCPtrTop = (uint32_t)uCurNewRsp;
|
---|
7821 | else
|
---|
7822 | GCPtrTop = (uint16_t)uCurNewRsp;
|
---|
7823 |
|
---|
7824 | return iemMemMap(pVCpu, (void **)ppvMem, cbMem, X86_SREG_SS, GCPtrTop + off, IEM_ACCESS_STACK_R,
|
---|
7825 | 0 /* checked in iemMemStackPopBeginSpecial */);
|
---|
7826 | }
|
---|
7827 |
|
---|
7828 |
|
---|
7829 | /**
|
---|
7830 | * Done with a special stack pop (started by iemMemStackPopBeginSpecial or
|
---|
7831 | * iemMemStackPopContinueSpecial).
|
---|
7832 | *
|
---|
7833 | * The caller will manually commit the rSP.
|
---|
7834 | *
|
---|
7835 | * @returns Strict VBox status code.
|
---|
7836 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7837 | * @param pvMem The pointer returned by
|
---|
7838 | * iemMemStackPopBeginSpecial() or
|
---|
7839 | * iemMemStackPopContinueSpecial().
|
---|
7840 | */
|
---|
7841 | VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT
|
---|
7842 | {
|
---|
7843 | return iemMemCommitAndUnmap(pVCpu, (void *)pvMem, IEM_ACCESS_STACK_R);
|
---|
7844 | }
|
---|
7845 |
|
---|
7846 |
|
---|
7847 | /**
|
---|
7848 | * Fetches a system table byte.
|
---|
7849 | *
|
---|
7850 | * @returns Strict VBox status code.
|
---|
7851 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7852 | * @param pbDst Where to return the byte.
|
---|
7853 | * @param iSegReg The index of the segment register to use for
|
---|
7854 | * this access. The base and limits are checked.
|
---|
7855 | * @param GCPtrMem The address of the guest memory.
|
---|
7856 | */
|
---|
7857 | VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pbDst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7858 | {
|
---|
7859 | /* The lazy approach for now... */
|
---|
7860 | uint8_t const *pbSrc;
|
---|
7861 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pbSrc, sizeof(*pbSrc), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
7862 | if (rc == VINF_SUCCESS)
|
---|
7863 | {
|
---|
7864 | *pbDst = *pbSrc;
|
---|
7865 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pbSrc, IEM_ACCESS_SYS_R);
|
---|
7866 | }
|
---|
7867 | return rc;
|
---|
7868 | }
|
---|
7869 |
|
---|
7870 |
|
---|
7871 | /**
|
---|
7872 | * Fetches a system table word.
|
---|
7873 | *
|
---|
7874 | * @returns Strict VBox status code.
|
---|
7875 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7876 | * @param pu16Dst Where to return the word.
|
---|
7877 | * @param iSegReg The index of the segment register to use for
|
---|
7878 | * this access. The base and limits are checked.
|
---|
7879 | * @param GCPtrMem The address of the guest memory.
|
---|
7880 | */
|
---|
7881 | VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7882 | {
|
---|
7883 | /* The lazy approach for now... */
|
---|
7884 | uint16_t const *pu16Src;
|
---|
7885 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Src, sizeof(*pu16Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
7886 | if (rc == VINF_SUCCESS)
|
---|
7887 | {
|
---|
7888 | *pu16Dst = *pu16Src;
|
---|
7889 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu16Src, IEM_ACCESS_SYS_R);
|
---|
7890 | }
|
---|
7891 | return rc;
|
---|
7892 | }
|
---|
7893 |
|
---|
7894 |
|
---|
7895 | /**
|
---|
7896 | * Fetches a system table dword.
|
---|
7897 | *
|
---|
7898 | * @returns Strict VBox status code.
|
---|
7899 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7900 | * @param pu32Dst Where to return the dword.
|
---|
7901 | * @param iSegReg The index of the segment register to use for
|
---|
7902 | * this access. The base and limits are checked.
|
---|
7903 | * @param GCPtrMem The address of the guest memory.
|
---|
7904 | */
|
---|
7905 | VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7906 | {
|
---|
7907 | /* The lazy approach for now... */
|
---|
7908 | uint32_t const *pu32Src;
|
---|
7909 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
7910 | if (rc == VINF_SUCCESS)
|
---|
7911 | {
|
---|
7912 | *pu32Dst = *pu32Src;
|
---|
7913 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu32Src, IEM_ACCESS_SYS_R);
|
---|
7914 | }
|
---|
7915 | return rc;
|
---|
7916 | }
|
---|
7917 |
|
---|
7918 |
|
---|
7919 | /**
|
---|
7920 | * Fetches a system table qword.
|
---|
7921 | *
|
---|
7922 | * @returns Strict VBox status code.
|
---|
7923 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7924 | * @param pu64Dst Where to return the qword.
|
---|
7925 | * @param iSegReg The index of the segment register to use for
|
---|
7926 | * this access. The base and limits are checked.
|
---|
7927 | * @param GCPtrMem The address of the guest memory.
|
---|
7928 | */
|
---|
7929 | VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7930 | {
|
---|
7931 | /* The lazy approach for now... */
|
---|
7932 | uint64_t const *pu64Src;
|
---|
7933 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Src, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
7934 | if (rc == VINF_SUCCESS)
|
---|
7935 | {
|
---|
7936 | *pu64Dst = *pu64Src;
|
---|
7937 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu64Src, IEM_ACCESS_SYS_R);
|
---|
7938 | }
|
---|
7939 | return rc;
|
---|
7940 | }
|
---|
7941 |
|
---|
7942 |
|
---|
7943 | /**
|
---|
7944 | * Fetches a descriptor table entry with caller specified error code.
|
---|
7945 | *
|
---|
7946 | * @returns Strict VBox status code.
|
---|
7947 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7948 | * @param pDesc Where to return the descriptor table entry.
|
---|
7949 | * @param uSel The selector which table entry to fetch.
|
---|
7950 | * @param uXcpt The exception to raise on table lookup error.
|
---|
7951 | * @param uErrorCode The error code associated with the exception.
|
---|
7952 | */
|
---|
7953 | static VBOXSTRICTRC iemMemFetchSelDescWithErr(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel,
|
---|
7954 | uint8_t uXcpt, uint16_t uErrorCode) RT_NOEXCEPT
|
---|
7955 | {
|
---|
7956 | AssertPtr(pDesc);
|
---|
7957 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
|
---|
7958 |
|
---|
7959 | /** @todo did the 286 require all 8 bytes to be accessible? */
|
---|
7960 | /*
|
---|
7961 | * Get the selector table base and check bounds.
|
---|
7962 | */
|
---|
7963 | RTGCPTR GCPtrBase;
|
---|
7964 | if (uSel & X86_SEL_LDT)
|
---|
7965 | {
|
---|
7966 | if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
|
---|
7967 | || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
|
---|
7968 | {
|
---|
7969 | LogEx(LOG_GROUP_IEM, ("iemMemFetchSelDesc: LDT selector %#x is out of bounds (%3x) or ldtr is NP (%#x)\n",
|
---|
7970 | uSel, pVCpu->cpum.GstCtx.ldtr.u32Limit, pVCpu->cpum.GstCtx.ldtr.Sel));
|
---|
7971 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
7972 | uErrorCode, 0);
|
---|
7973 | }
|
---|
7974 |
|
---|
7975 | Assert(pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present);
|
---|
7976 | GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
|
---|
7977 | }
|
---|
7978 | else
|
---|
7979 | {
|
---|
7980 | if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
|
---|
7981 | {
|
---|
7982 | LogEx(LOG_GROUP_IEM, ("iemMemFetchSelDesc: GDT selector %#x is out of bounds (%3x)\n", uSel, pVCpu->cpum.GstCtx.gdtr.cbGdt));
|
---|
7983 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
7984 | uErrorCode, 0);
|
---|
7985 | }
|
---|
7986 | GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
|
---|
7987 | }
|
---|
7988 |
|
---|
7989 | /*
|
---|
7990 | * Read the legacy descriptor and maybe the long mode extensions if
|
---|
7991 | * required.
|
---|
7992 | */
|
---|
7993 | VBOXSTRICTRC rcStrict;
|
---|
7994 | if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_286)
|
---|
7995 | rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
|
---|
7996 | else
|
---|
7997 | {
|
---|
7998 | rcStrict = iemMemFetchSysU16(pVCpu, &pDesc->Legacy.au16[0], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 0);
|
---|
7999 | if (rcStrict == VINF_SUCCESS)
|
---|
8000 | rcStrict = iemMemFetchSysU16(pVCpu, &pDesc->Legacy.au16[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 2);
|
---|
8001 | if (rcStrict == VINF_SUCCESS)
|
---|
8002 | rcStrict = iemMemFetchSysU16(pVCpu, &pDesc->Legacy.au16[2], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 4);
|
---|
8003 | if (rcStrict == VINF_SUCCESS)
|
---|
8004 | pDesc->Legacy.au16[3] = 0;
|
---|
8005 | else
|
---|
8006 | return rcStrict;
|
---|
8007 | }
|
---|
8008 |
|
---|
8009 | if (rcStrict == VINF_SUCCESS)
|
---|
8010 | {
|
---|
8011 | if ( !IEM_IS_LONG_MODE(pVCpu)
|
---|
8012 | || pDesc->Legacy.Gen.u1DescType)
|
---|
8013 | pDesc->Long.au64[1] = 0;
|
---|
8014 | else if ( (uint32_t)(uSel | X86_SEL_RPL_LDT) + 8
|
---|
8015 | <= (uSel & X86_SEL_LDT ? pVCpu->cpum.GstCtx.ldtr.u32Limit : pVCpu->cpum.GstCtx.gdtr.cbGdt))
|
---|
8016 | rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel | X86_SEL_RPL_LDT) + 1);
|
---|
8017 | else
|
---|
8018 | {
|
---|
8019 | LogEx(LOG_GROUP_IEM,("iemMemFetchSelDesc: system selector %#x is out of bounds\n", uSel));
|
---|
8020 | /** @todo is this the right exception? */
|
---|
8021 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErrorCode, 0);
|
---|
8022 | }
|
---|
8023 | }
|
---|
8024 | return rcStrict;
|
---|
8025 | }
|
---|
8026 |
|
---|
8027 |
|
---|
8028 | /**
|
---|
8029 | * Fetches a descriptor table entry.
|
---|
8030 | *
|
---|
8031 | * @returns Strict VBox status code.
|
---|
8032 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8033 | * @param pDesc Where to return the descriptor table entry.
|
---|
8034 | * @param uSel The selector which table entry to fetch.
|
---|
8035 | * @param uXcpt The exception to raise on table lookup error.
|
---|
8036 | */
|
---|
8037 | VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT
|
---|
8038 | {
|
---|
8039 | return iemMemFetchSelDescWithErr(pVCpu, pDesc, uSel, uXcpt, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
8040 | }
|
---|
8041 |
|
---|
8042 |
|
---|
8043 | /**
|
---|
8044 | * Marks the selector descriptor as accessed (only non-system descriptors).
|
---|
8045 | *
|
---|
8046 | * This function ASSUMES that iemMemFetchSelDesc has be called previously and
|
---|
8047 | * will therefore skip the limit checks.
|
---|
8048 | *
|
---|
8049 | * @returns Strict VBox status code.
|
---|
8050 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8051 | * @param uSel The selector.
|
---|
8052 | */
|
---|
8053 | VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
8054 | {
|
---|
8055 | /*
|
---|
8056 | * Get the selector table base and calculate the entry address.
|
---|
8057 | */
|
---|
8058 | RTGCPTR GCPtr = uSel & X86_SEL_LDT
|
---|
8059 | ? pVCpu->cpum.GstCtx.ldtr.u64Base
|
---|
8060 | : pVCpu->cpum.GstCtx.gdtr.pGdt;
|
---|
8061 | GCPtr += uSel & X86_SEL_MASK;
|
---|
8062 |
|
---|
8063 | /*
|
---|
8064 | * ASMAtomicBitSet will assert if the address is misaligned, so do some
|
---|
8065 | * ugly stuff to avoid this. This will make sure it's an atomic access
|
---|
8066 | * as well more or less remove any question about 8-bit or 32-bit accesss.
|
---|
8067 | */
|
---|
8068 | VBOXSTRICTRC rcStrict;
|
---|
8069 | uint32_t volatile *pu32;
|
---|
8070 | if ((GCPtr & 3) == 0)
|
---|
8071 | {
|
---|
8072 | /* The normal case, map the 32-bit bits around the accessed bit (40). */
|
---|
8073 | GCPtr += 2 + 2;
|
---|
8074 | rcStrict = iemMemMap(pVCpu, (void **)&pu32, 4, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW, 0);
|
---|
8075 | if (rcStrict != VINF_SUCCESS)
|
---|
8076 | return rcStrict;
|
---|
8077 | ASMAtomicBitSet(pu32, 8); /* X86_SEL_TYPE_ACCESSED is 1, but it is preceeded by u8BaseHigh1. */
|
---|
8078 | }
|
---|
8079 | else
|
---|
8080 | {
|
---|
8081 | /* The misaligned GDT/LDT case, map the whole thing. */
|
---|
8082 | rcStrict = iemMemMap(pVCpu, (void **)&pu32, 8, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW, 0);
|
---|
8083 | if (rcStrict != VINF_SUCCESS)
|
---|
8084 | return rcStrict;
|
---|
8085 | switch ((uintptr_t)pu32 & 3)
|
---|
8086 | {
|
---|
8087 | case 0: ASMAtomicBitSet(pu32, 40 + 0 - 0); break;
|
---|
8088 | case 1: ASMAtomicBitSet((uint8_t volatile *)pu32 + 3, 40 + 0 - 24); break;
|
---|
8089 | case 2: ASMAtomicBitSet((uint8_t volatile *)pu32 + 2, 40 + 0 - 16); break;
|
---|
8090 | case 3: ASMAtomicBitSet((uint8_t volatile *)pu32 + 1, 40 + 0 - 8); break;
|
---|
8091 | }
|
---|
8092 | }
|
---|
8093 |
|
---|
8094 | return iemMemCommitAndUnmap(pVCpu, (void *)pu32, IEM_ACCESS_SYS_RW);
|
---|
8095 | }
|
---|
8096 |
|
---|
8097 |
|
---|
8098 | #undef LOG_GROUP
|
---|
8099 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
8100 |
|
---|
8101 | /** @} */
|
---|
8102 |
|
---|
8103 | /** @name Opcode Helpers.
|
---|
8104 | * @{
|
---|
8105 | */
|
---|
8106 |
|
---|
8107 | /**
|
---|
8108 | * Calculates the effective address of a ModR/M memory operand.
|
---|
8109 | *
|
---|
8110 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
8111 | *
|
---|
8112 | * @return Strict VBox status code.
|
---|
8113 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8114 | * @param bRm The ModRM byte.
|
---|
8115 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
8116 | * following the effective address opcode bytes
|
---|
8117 | * (only for RIP relative addressing).
|
---|
8118 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
8119 | * @param pGCPtrEff Where to return the effective address.
|
---|
8120 | */
|
---|
8121 | VBOXSTRICTRC iemOpHlpCalcRmEffAddr(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, PRTGCPTR pGCPtrEff) RT_NOEXCEPT
|
---|
8122 | {
|
---|
8123 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
8124 | # define SET_SS_DEF() \
|
---|
8125 | do \
|
---|
8126 | { \
|
---|
8127 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
8128 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
8129 | } while (0)
|
---|
8130 |
|
---|
8131 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
8132 | {
|
---|
8133 | /** @todo Check the effective address size crap! */
|
---|
8134 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
8135 | {
|
---|
8136 | uint16_t u16EffAddr;
|
---|
8137 |
|
---|
8138 | /* Handle the disp16 form with no registers first. */
|
---|
8139 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
8140 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
8141 | else
|
---|
8142 | {
|
---|
8143 | /* Get the displacment. */
|
---|
8144 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8145 | {
|
---|
8146 | case 0: u16EffAddr = 0; break;
|
---|
8147 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
8148 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
8149 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
8150 | }
|
---|
8151 |
|
---|
8152 | /* Add the base and index registers to the disp. */
|
---|
8153 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
8154 | {
|
---|
8155 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
8156 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
8157 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
8158 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
8159 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
8160 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
8161 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
8162 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
8163 | }
|
---|
8164 | }
|
---|
8165 |
|
---|
8166 | *pGCPtrEff = u16EffAddr;
|
---|
8167 | }
|
---|
8168 | else
|
---|
8169 | {
|
---|
8170 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8171 | uint32_t u32EffAddr;
|
---|
8172 |
|
---|
8173 | /* Handle the disp32 form with no registers first. */
|
---|
8174 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8175 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
8176 | else
|
---|
8177 | {
|
---|
8178 | /* Get the register (or SIB) value. */
|
---|
8179 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
8180 | {
|
---|
8181 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8182 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8183 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8184 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8185 | case 4: /* SIB */
|
---|
8186 | {
|
---|
8187 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8188 |
|
---|
8189 | /* Get the index and scale it. */
|
---|
8190 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
8191 | {
|
---|
8192 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8193 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8194 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8195 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8196 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
8197 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
8198 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8199 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8200 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8201 | }
|
---|
8202 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8203 |
|
---|
8204 | /* add base */
|
---|
8205 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
8206 | {
|
---|
8207 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
8208 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
8209 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
8210 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
8211 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8212 | case 5:
|
---|
8213 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8214 | {
|
---|
8215 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
8216 | SET_SS_DEF();
|
---|
8217 | }
|
---|
8218 | else
|
---|
8219 | {
|
---|
8220 | uint32_t u32Disp;
|
---|
8221 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8222 | u32EffAddr += u32Disp;
|
---|
8223 | }
|
---|
8224 | break;
|
---|
8225 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
8226 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
8227 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8228 | }
|
---|
8229 | break;
|
---|
8230 | }
|
---|
8231 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
8232 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8233 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8234 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8235 | }
|
---|
8236 |
|
---|
8237 | /* Get and add the displacement. */
|
---|
8238 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8239 | {
|
---|
8240 | case 0:
|
---|
8241 | break;
|
---|
8242 | case 1:
|
---|
8243 | {
|
---|
8244 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8245 | u32EffAddr += i8Disp;
|
---|
8246 | break;
|
---|
8247 | }
|
---|
8248 | case 2:
|
---|
8249 | {
|
---|
8250 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8251 | u32EffAddr += u32Disp;
|
---|
8252 | break;
|
---|
8253 | }
|
---|
8254 | default:
|
---|
8255 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
8256 | }
|
---|
8257 |
|
---|
8258 | }
|
---|
8259 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
8260 | *pGCPtrEff = u32EffAddr;
|
---|
8261 | else
|
---|
8262 | {
|
---|
8263 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT);
|
---|
8264 | *pGCPtrEff = u32EffAddr & UINT16_MAX;
|
---|
8265 | }
|
---|
8266 | }
|
---|
8267 | }
|
---|
8268 | else
|
---|
8269 | {
|
---|
8270 | uint64_t u64EffAddr;
|
---|
8271 |
|
---|
8272 | /* Handle the rip+disp32 form with no registers first. */
|
---|
8273 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8274 | {
|
---|
8275 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
8276 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
8277 | }
|
---|
8278 | else
|
---|
8279 | {
|
---|
8280 | /* Get the register (or SIB) value. */
|
---|
8281 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
8282 | {
|
---|
8283 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8284 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8285 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8286 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8287 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
8288 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8289 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8290 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8291 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8292 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8293 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8294 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8295 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8296 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8297 | /* SIB */
|
---|
8298 | case 4:
|
---|
8299 | case 12:
|
---|
8300 | {
|
---|
8301 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8302 |
|
---|
8303 | /* Get the index and scale it. */
|
---|
8304 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
8305 | {
|
---|
8306 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8307 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8308 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8309 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8310 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
8311 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
8312 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8313 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8314 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8315 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8316 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8317 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8318 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
8319 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8320 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8321 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8322 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8323 | }
|
---|
8324 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8325 |
|
---|
8326 | /* add base */
|
---|
8327 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
8328 | {
|
---|
8329 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
8330 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
8331 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
8332 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
8333 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8334 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
8335 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
8336 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
8337 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
8338 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
8339 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
8340 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
8341 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
8342 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
8343 | /* complicated encodings */
|
---|
8344 | case 5:
|
---|
8345 | case 13:
|
---|
8346 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8347 | {
|
---|
8348 | if (!pVCpu->iem.s.uRexB)
|
---|
8349 | {
|
---|
8350 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
8351 | SET_SS_DEF();
|
---|
8352 | }
|
---|
8353 | else
|
---|
8354 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
8355 | }
|
---|
8356 | else
|
---|
8357 | {
|
---|
8358 | uint32_t u32Disp;
|
---|
8359 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8360 | u64EffAddr += (int32_t)u32Disp;
|
---|
8361 | }
|
---|
8362 | break;
|
---|
8363 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8364 | }
|
---|
8365 | break;
|
---|
8366 | }
|
---|
8367 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8368 | }
|
---|
8369 |
|
---|
8370 | /* Get and add the displacement. */
|
---|
8371 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8372 | {
|
---|
8373 | case 0:
|
---|
8374 | break;
|
---|
8375 | case 1:
|
---|
8376 | {
|
---|
8377 | int8_t i8Disp;
|
---|
8378 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8379 | u64EffAddr += i8Disp;
|
---|
8380 | break;
|
---|
8381 | }
|
---|
8382 | case 2:
|
---|
8383 | {
|
---|
8384 | uint32_t u32Disp;
|
---|
8385 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8386 | u64EffAddr += (int32_t)u32Disp;
|
---|
8387 | break;
|
---|
8388 | }
|
---|
8389 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
8390 | }
|
---|
8391 |
|
---|
8392 | }
|
---|
8393 |
|
---|
8394 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
8395 | *pGCPtrEff = u64EffAddr;
|
---|
8396 | else
|
---|
8397 | {
|
---|
8398 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8399 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
8400 | }
|
---|
8401 | }
|
---|
8402 |
|
---|
8403 | Log5(("iemOpHlpCalcRmEffAddr: EffAddr=%#010RGv\n", *pGCPtrEff));
|
---|
8404 | return VINF_SUCCESS;
|
---|
8405 | }
|
---|
8406 |
|
---|
8407 |
|
---|
8408 | #ifdef IEM_WITH_SETJMP
|
---|
8409 | /**
|
---|
8410 | * Calculates the effective address of a ModR/M memory operand.
|
---|
8411 | *
|
---|
8412 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
8413 | *
|
---|
8414 | * May longjmp on internal error.
|
---|
8415 | *
|
---|
8416 | * @return The effective address.
|
---|
8417 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8418 | * @param bRm The ModRM byte.
|
---|
8419 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
8420 | * following the effective address opcode bytes
|
---|
8421 | * (only for RIP relative addressing).
|
---|
8422 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
8423 | */
|
---|
8424 | RTGCPTR iemOpHlpCalcRmEffAddrJmp(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
8425 | {
|
---|
8426 | Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm));
|
---|
8427 | # define SET_SS_DEF() \
|
---|
8428 | do \
|
---|
8429 | { \
|
---|
8430 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
8431 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
8432 | } while (0)
|
---|
8433 |
|
---|
8434 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
8435 | {
|
---|
8436 | /** @todo Check the effective address size crap! */
|
---|
8437 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
8438 | {
|
---|
8439 | uint16_t u16EffAddr;
|
---|
8440 |
|
---|
8441 | /* Handle the disp16 form with no registers first. */
|
---|
8442 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
8443 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
8444 | else
|
---|
8445 | {
|
---|
8446 | /* Get the displacment. */
|
---|
8447 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8448 | {
|
---|
8449 | case 0: u16EffAddr = 0; break;
|
---|
8450 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
8451 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
8452 | default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_1)); /* (caller checked for these) */
|
---|
8453 | }
|
---|
8454 |
|
---|
8455 | /* Add the base and index registers to the disp. */
|
---|
8456 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
8457 | {
|
---|
8458 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
8459 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
8460 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
8461 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
8462 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
8463 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
8464 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
8465 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
8466 | }
|
---|
8467 | }
|
---|
8468 |
|
---|
8469 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16\n", u16EffAddr));
|
---|
8470 | return u16EffAddr;
|
---|
8471 | }
|
---|
8472 |
|
---|
8473 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8474 | uint32_t u32EffAddr;
|
---|
8475 |
|
---|
8476 | /* Handle the disp32 form with no registers first. */
|
---|
8477 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8478 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
8479 | else
|
---|
8480 | {
|
---|
8481 | /* Get the register (or SIB) value. */
|
---|
8482 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
8483 | {
|
---|
8484 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8485 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8486 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8487 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8488 | case 4: /* SIB */
|
---|
8489 | {
|
---|
8490 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8491 |
|
---|
8492 | /* Get the index and scale it. */
|
---|
8493 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
8494 | {
|
---|
8495 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8496 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8497 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8498 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8499 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
8500 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
8501 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8502 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8503 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8504 | }
|
---|
8505 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8506 |
|
---|
8507 | /* add base */
|
---|
8508 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
8509 | {
|
---|
8510 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
8511 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
8512 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
8513 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
8514 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8515 | case 5:
|
---|
8516 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8517 | {
|
---|
8518 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
8519 | SET_SS_DEF();
|
---|
8520 | }
|
---|
8521 | else
|
---|
8522 | {
|
---|
8523 | uint32_t u32Disp;
|
---|
8524 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8525 | u32EffAddr += u32Disp;
|
---|
8526 | }
|
---|
8527 | break;
|
---|
8528 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
8529 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
8530 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8531 | }
|
---|
8532 | break;
|
---|
8533 | }
|
---|
8534 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
8535 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8536 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8537 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8538 | }
|
---|
8539 |
|
---|
8540 | /* Get and add the displacement. */
|
---|
8541 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8542 | {
|
---|
8543 | case 0:
|
---|
8544 | break;
|
---|
8545 | case 1:
|
---|
8546 | {
|
---|
8547 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8548 | u32EffAddr += i8Disp;
|
---|
8549 | break;
|
---|
8550 | }
|
---|
8551 | case 2:
|
---|
8552 | {
|
---|
8553 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8554 | u32EffAddr += u32Disp;
|
---|
8555 | break;
|
---|
8556 | }
|
---|
8557 | default:
|
---|
8558 | AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_2)); /* (caller checked for these) */
|
---|
8559 | }
|
---|
8560 | }
|
---|
8561 |
|
---|
8562 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
8563 | {
|
---|
8564 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32\n", u32EffAddr));
|
---|
8565 | return u32EffAddr;
|
---|
8566 | }
|
---|
8567 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT);
|
---|
8568 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX32\n", u32EffAddr & UINT16_MAX));
|
---|
8569 | return u32EffAddr & UINT16_MAX;
|
---|
8570 | }
|
---|
8571 |
|
---|
8572 | uint64_t u64EffAddr;
|
---|
8573 |
|
---|
8574 | /* Handle the rip+disp32 form with no registers first. */
|
---|
8575 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8576 | {
|
---|
8577 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
8578 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
8579 | }
|
---|
8580 | else
|
---|
8581 | {
|
---|
8582 | /* Get the register (or SIB) value. */
|
---|
8583 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
8584 | {
|
---|
8585 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8586 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8587 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8588 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8589 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
8590 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8591 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8592 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8593 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8594 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8595 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8596 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8597 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8598 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8599 | /* SIB */
|
---|
8600 | case 4:
|
---|
8601 | case 12:
|
---|
8602 | {
|
---|
8603 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8604 |
|
---|
8605 | /* Get the index and scale it. */
|
---|
8606 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
8607 | {
|
---|
8608 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8609 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8610 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8611 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8612 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
8613 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
8614 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8615 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8616 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8617 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8618 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8619 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8620 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
8621 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8622 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8623 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8624 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8625 | }
|
---|
8626 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8627 |
|
---|
8628 | /* add base */
|
---|
8629 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
8630 | {
|
---|
8631 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
8632 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
8633 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
8634 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
8635 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8636 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
8637 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
8638 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
8639 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
8640 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
8641 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
8642 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
8643 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
8644 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
8645 | /* complicated encodings */
|
---|
8646 | case 5:
|
---|
8647 | case 13:
|
---|
8648 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8649 | {
|
---|
8650 | if (!pVCpu->iem.s.uRexB)
|
---|
8651 | {
|
---|
8652 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
8653 | SET_SS_DEF();
|
---|
8654 | }
|
---|
8655 | else
|
---|
8656 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
8657 | }
|
---|
8658 | else
|
---|
8659 | {
|
---|
8660 | uint32_t u32Disp;
|
---|
8661 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8662 | u64EffAddr += (int32_t)u32Disp;
|
---|
8663 | }
|
---|
8664 | break;
|
---|
8665 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8666 | }
|
---|
8667 | break;
|
---|
8668 | }
|
---|
8669 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8670 | }
|
---|
8671 |
|
---|
8672 | /* Get and add the displacement. */
|
---|
8673 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8674 | {
|
---|
8675 | case 0:
|
---|
8676 | break;
|
---|
8677 | case 1:
|
---|
8678 | {
|
---|
8679 | int8_t i8Disp;
|
---|
8680 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8681 | u64EffAddr += i8Disp;
|
---|
8682 | break;
|
---|
8683 | }
|
---|
8684 | case 2:
|
---|
8685 | {
|
---|
8686 | uint32_t u32Disp;
|
---|
8687 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8688 | u64EffAddr += (int32_t)u32Disp;
|
---|
8689 | break;
|
---|
8690 | }
|
---|
8691 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); /* (caller checked for these) */
|
---|
8692 | }
|
---|
8693 |
|
---|
8694 | }
|
---|
8695 |
|
---|
8696 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
8697 | {
|
---|
8698 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr));
|
---|
8699 | return u64EffAddr;
|
---|
8700 | }
|
---|
8701 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8702 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr & UINT32_MAX));
|
---|
8703 | return u64EffAddr & UINT32_MAX;
|
---|
8704 | }
|
---|
8705 | #endif /* IEM_WITH_SETJMP */
|
---|
8706 |
|
---|
8707 |
|
---|
8708 | /**
|
---|
8709 | * Calculates the effective address of a ModR/M memory operand, extended version
|
---|
8710 | * for use in the recompilers.
|
---|
8711 | *
|
---|
8712 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
8713 | *
|
---|
8714 | * @return Strict VBox status code.
|
---|
8715 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8716 | * @param bRm The ModRM byte.
|
---|
8717 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
8718 | * following the effective address opcode bytes
|
---|
8719 | * (only for RIP relative addressing).
|
---|
8720 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
8721 | * @param pGCPtrEff Where to return the effective address.
|
---|
8722 | * @param puInfo Extra info: 32-bit displacement (bits 31:0) and
|
---|
8723 | * SIB byte (bits 39:32).
|
---|
8724 | */
|
---|
8725 | VBOXSTRICTRC iemOpHlpCalcRmEffAddrEx(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, PRTGCPTR pGCPtrEff, uint64_t *puInfo) RT_NOEXCEPT
|
---|
8726 | {
|
---|
8727 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
8728 | # define SET_SS_DEF() \
|
---|
8729 | do \
|
---|
8730 | { \
|
---|
8731 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
8732 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
8733 | } while (0)
|
---|
8734 |
|
---|
8735 | uint64_t uInfo;
|
---|
8736 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
8737 | {
|
---|
8738 | /** @todo Check the effective address size crap! */
|
---|
8739 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
8740 | {
|
---|
8741 | uint16_t u16EffAddr;
|
---|
8742 |
|
---|
8743 | /* Handle the disp16 form with no registers first. */
|
---|
8744 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
8745 | {
|
---|
8746 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
8747 | uInfo = u16EffAddr;
|
---|
8748 | }
|
---|
8749 | else
|
---|
8750 | {
|
---|
8751 | /* Get the displacment. */
|
---|
8752 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8753 | {
|
---|
8754 | case 0: u16EffAddr = 0; break;
|
---|
8755 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
8756 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
8757 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
8758 | }
|
---|
8759 | uInfo = u16EffAddr;
|
---|
8760 |
|
---|
8761 | /* Add the base and index registers to the disp. */
|
---|
8762 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
8763 | {
|
---|
8764 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
8765 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
8766 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
8767 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
8768 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
8769 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
8770 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
8771 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
8772 | }
|
---|
8773 | }
|
---|
8774 |
|
---|
8775 | *pGCPtrEff = u16EffAddr;
|
---|
8776 | }
|
---|
8777 | else
|
---|
8778 | {
|
---|
8779 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8780 | uint32_t u32EffAddr;
|
---|
8781 |
|
---|
8782 | /* Handle the disp32 form with no registers first. */
|
---|
8783 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8784 | {
|
---|
8785 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
8786 | uInfo = u32EffAddr;
|
---|
8787 | }
|
---|
8788 | else
|
---|
8789 | {
|
---|
8790 | /* Get the register (or SIB) value. */
|
---|
8791 | uInfo = 0;
|
---|
8792 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
8793 | {
|
---|
8794 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8795 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8796 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8797 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8798 | case 4: /* SIB */
|
---|
8799 | {
|
---|
8800 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8801 | uInfo = (uint64_t)bSib << 32;
|
---|
8802 |
|
---|
8803 | /* Get the index and scale it. */
|
---|
8804 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
8805 | {
|
---|
8806 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8807 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8808 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8809 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8810 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
8811 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
8812 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8813 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8814 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8815 | }
|
---|
8816 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8817 |
|
---|
8818 | /* add base */
|
---|
8819 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
8820 | {
|
---|
8821 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
8822 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
8823 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
8824 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
8825 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8826 | case 5:
|
---|
8827 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8828 | {
|
---|
8829 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
8830 | SET_SS_DEF();
|
---|
8831 | }
|
---|
8832 | else
|
---|
8833 | {
|
---|
8834 | uint32_t u32Disp;
|
---|
8835 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8836 | u32EffAddr += u32Disp;
|
---|
8837 | uInfo |= u32Disp;
|
---|
8838 | }
|
---|
8839 | break;
|
---|
8840 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
8841 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
8842 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8843 | }
|
---|
8844 | break;
|
---|
8845 | }
|
---|
8846 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
8847 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8848 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8849 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8850 | }
|
---|
8851 |
|
---|
8852 | /* Get and add the displacement. */
|
---|
8853 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8854 | {
|
---|
8855 | case 0:
|
---|
8856 | break;
|
---|
8857 | case 1:
|
---|
8858 | {
|
---|
8859 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8860 | u32EffAddr += i8Disp;
|
---|
8861 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
8862 | break;
|
---|
8863 | }
|
---|
8864 | case 2:
|
---|
8865 | {
|
---|
8866 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8867 | u32EffAddr += u32Disp;
|
---|
8868 | uInfo |= (uint32_t)u32Disp;
|
---|
8869 | break;
|
---|
8870 | }
|
---|
8871 | default:
|
---|
8872 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
8873 | }
|
---|
8874 |
|
---|
8875 | }
|
---|
8876 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
8877 | *pGCPtrEff = u32EffAddr;
|
---|
8878 | else
|
---|
8879 | {
|
---|
8880 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT);
|
---|
8881 | *pGCPtrEff = u32EffAddr & UINT16_MAX;
|
---|
8882 | }
|
---|
8883 | }
|
---|
8884 | }
|
---|
8885 | else
|
---|
8886 | {
|
---|
8887 | uint64_t u64EffAddr;
|
---|
8888 |
|
---|
8889 | /* Handle the rip+disp32 form with no registers first. */
|
---|
8890 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8891 | {
|
---|
8892 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
8893 | uInfo = (uint32_t)u64EffAddr;
|
---|
8894 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
8895 | }
|
---|
8896 | else
|
---|
8897 | {
|
---|
8898 | /* Get the register (or SIB) value. */
|
---|
8899 | uInfo = 0;
|
---|
8900 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
8901 | {
|
---|
8902 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8903 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8904 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8905 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8906 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
8907 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8908 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8909 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8910 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8911 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8912 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8913 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8914 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8915 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8916 | /* SIB */
|
---|
8917 | case 4:
|
---|
8918 | case 12:
|
---|
8919 | {
|
---|
8920 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8921 | uInfo = (uint64_t)bSib << 32;
|
---|
8922 |
|
---|
8923 | /* Get the index and scale it. */
|
---|
8924 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
8925 | {
|
---|
8926 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8927 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8928 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8929 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8930 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
8931 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
8932 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8933 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8934 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8935 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8936 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8937 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8938 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
8939 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8940 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8941 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8942 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8943 | }
|
---|
8944 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8945 |
|
---|
8946 | /* add base */
|
---|
8947 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
8948 | {
|
---|
8949 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
8950 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
8951 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
8952 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
8953 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8954 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
8955 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
8956 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
8957 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
8958 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
8959 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
8960 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
8961 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
8962 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
8963 | /* complicated encodings */
|
---|
8964 | case 5:
|
---|
8965 | case 13:
|
---|
8966 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8967 | {
|
---|
8968 | if (!pVCpu->iem.s.uRexB)
|
---|
8969 | {
|
---|
8970 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
8971 | SET_SS_DEF();
|
---|
8972 | }
|
---|
8973 | else
|
---|
8974 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
8975 | }
|
---|
8976 | else
|
---|
8977 | {
|
---|
8978 | uint32_t u32Disp;
|
---|
8979 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8980 | u64EffAddr += (int32_t)u32Disp;
|
---|
8981 | uInfo |= u32Disp;
|
---|
8982 | }
|
---|
8983 | break;
|
---|
8984 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8985 | }
|
---|
8986 | break;
|
---|
8987 | }
|
---|
8988 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8989 | }
|
---|
8990 |
|
---|
8991 | /* Get and add the displacement. */
|
---|
8992 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8993 | {
|
---|
8994 | case 0:
|
---|
8995 | break;
|
---|
8996 | case 1:
|
---|
8997 | {
|
---|
8998 | int8_t i8Disp;
|
---|
8999 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
9000 | u64EffAddr += i8Disp;
|
---|
9001 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
9002 | break;
|
---|
9003 | }
|
---|
9004 | case 2:
|
---|
9005 | {
|
---|
9006 | uint32_t u32Disp;
|
---|
9007 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
9008 | u64EffAddr += (int32_t)u32Disp;
|
---|
9009 | uInfo |= u32Disp;
|
---|
9010 | break;
|
---|
9011 | }
|
---|
9012 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
9013 | }
|
---|
9014 |
|
---|
9015 | }
|
---|
9016 |
|
---|
9017 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
9018 | *pGCPtrEff = u64EffAddr;
|
---|
9019 | else
|
---|
9020 | {
|
---|
9021 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
9022 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
9023 | }
|
---|
9024 | }
|
---|
9025 | *puInfo = uInfo;
|
---|
9026 |
|
---|
9027 | Log5(("iemOpHlpCalcRmEffAddrEx: EffAddr=%#010RGv uInfo=%RX64\n", *pGCPtrEff, uInfo));
|
---|
9028 | return VINF_SUCCESS;
|
---|
9029 | }
|
---|
9030 |
|
---|
9031 | /** @} */
|
---|
9032 |
|
---|
9033 |
|
---|
9034 | #ifdef LOG_ENABLED
|
---|
9035 | /**
|
---|
9036 | * Logs the current instruction.
|
---|
9037 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9038 | * @param fSameCtx Set if we have the same context information as the VMM,
|
---|
9039 | * clear if we may have already executed an instruction in
|
---|
9040 | * our debug context. When clear, we assume IEMCPU holds
|
---|
9041 | * valid CPU mode info.
|
---|
9042 | *
|
---|
9043 | * The @a fSameCtx parameter is now misleading and obsolete.
|
---|
9044 | * @param pszFunction The IEM function doing the execution.
|
---|
9045 | */
|
---|
9046 | static void iemLogCurInstr(PVMCPUCC pVCpu, bool fSameCtx, const char *pszFunction) RT_NOEXCEPT
|
---|
9047 | {
|
---|
9048 | # ifdef IN_RING3
|
---|
9049 | if (LogIs2Enabled())
|
---|
9050 | {
|
---|
9051 | char szInstr[256];
|
---|
9052 | uint32_t cbInstr = 0;
|
---|
9053 | if (fSameCtx)
|
---|
9054 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
9055 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
9056 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
9057 | else
|
---|
9058 | {
|
---|
9059 | uint32_t fFlags = 0;
|
---|
9060 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
9061 | {
|
---|
9062 | case IEMMODE_64BIT: fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
|
---|
9063 | case IEMMODE_32BIT: fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
|
---|
9064 | case IEMMODE_16BIT:
|
---|
9065 | if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) || pVCpu->cpum.GstCtx.eflags.Bits.u1VM)
|
---|
9066 | fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
|
---|
9067 | else
|
---|
9068 | fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE;
|
---|
9069 | break;
|
---|
9070 | }
|
---|
9071 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fFlags,
|
---|
9072 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
9073 | }
|
---|
9074 |
|
---|
9075 | PCX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
9076 | Log2(("**** %s fExec=%x\n"
|
---|
9077 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
9078 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
9079 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
9080 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
9081 | " %s\n"
|
---|
9082 | , pszFunction, pVCpu->iem.s.fExec,
|
---|
9083 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ebx, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.esi, pVCpu->cpum.GstCtx.edi,
|
---|
9084 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL, pVCpu->cpum.GstCtx.tr.Sel,
|
---|
9085 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.es.Sel,
|
---|
9086 | pVCpu->cpum.GstCtx.fs.Sel, pVCpu->cpum.GstCtx.gs.Sel, pVCpu->cpum.GstCtx.eflags.u,
|
---|
9087 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
9088 | szInstr));
|
---|
9089 |
|
---|
9090 | if (LogIs3Enabled())
|
---|
9091 | DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL);
|
---|
9092 | }
|
---|
9093 | else
|
---|
9094 | # endif
|
---|
9095 | LogFlow(("%s: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n", pszFunction, pVCpu->cpum.GstCtx.cs.Sel,
|
---|
9096 | pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u));
|
---|
9097 | RT_NOREF_PV(pVCpu); RT_NOREF_PV(fSameCtx);
|
---|
9098 | }
|
---|
9099 | #endif /* LOG_ENABLED */
|
---|
9100 |
|
---|
9101 |
|
---|
9102 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9103 | /**
|
---|
9104 | * Deals with VMCPU_FF_VMX_APIC_WRITE, VMCPU_FF_VMX_MTF, VMCPU_FF_VMX_NMI_WINDOW,
|
---|
9105 | * VMCPU_FF_VMX_PREEMPT_TIMER and VMCPU_FF_VMX_INT_WINDOW.
|
---|
9106 | *
|
---|
9107 | * @returns Modified rcStrict.
|
---|
9108 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9109 | * @param rcStrict The instruction execution status.
|
---|
9110 | */
|
---|
9111 | static VBOXSTRICTRC iemHandleNestedInstructionBoundaryFFs(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) RT_NOEXCEPT
|
---|
9112 | {
|
---|
9113 | Assert(CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)));
|
---|
9114 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF))
|
---|
9115 | {
|
---|
9116 | /* VMX preemption timer takes priority over NMI-window exits. */
|
---|
9117 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
|
---|
9118 | {
|
---|
9119 | rcStrict = iemVmxVmexitPreemptTimer(pVCpu);
|
---|
9120 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
|
---|
9121 | }
|
---|
9122 | /*
|
---|
9123 | * Check remaining intercepts.
|
---|
9124 | *
|
---|
9125 | * NMI-window and Interrupt-window VM-exits.
|
---|
9126 | * Interrupt shadow (block-by-STI and Mov SS) inhibits interrupts and may also block NMIs.
|
---|
9127 | * Event injection during VM-entry takes priority over NMI-window and interrupt-window VM-exits.
|
---|
9128 | *
|
---|
9129 | * See Intel spec. 26.7.6 "NMI-Window Exiting".
|
---|
9130 | * See Intel spec. 26.7.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
|
---|
9131 | */
|
---|
9132 | else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW | VMCPU_FF_VMX_INT_WINDOW)
|
---|
9133 | && !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
|
---|
9134 | && !TRPMHasTrap(pVCpu))
|
---|
9135 | {
|
---|
9136 | Assert(CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx));
|
---|
9137 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW)
|
---|
9138 | && CPUMIsGuestVmxVirtNmiBlocking(&pVCpu->cpum.GstCtx))
|
---|
9139 | {
|
---|
9140 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_NMI_WINDOW, 0 /* u64ExitQual */);
|
---|
9141 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
|
---|
9142 | }
|
---|
9143 | else if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW)
|
---|
9144 | && CPUMIsGuestVmxVirtIntrEnabled(&pVCpu->cpum.GstCtx))
|
---|
9145 | {
|
---|
9146 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_INT_WINDOW, 0 /* u64ExitQual */);
|
---|
9147 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
|
---|
9148 | }
|
---|
9149 | }
|
---|
9150 | }
|
---|
9151 | /* TPR-below threshold/APIC write has the highest priority. */
|
---|
9152 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
9153 | {
|
---|
9154 | rcStrict = iemVmxApicWriteEmulation(pVCpu);
|
---|
9155 | Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
|
---|
9156 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
|
---|
9157 | }
|
---|
9158 | /* MTF takes priority over VMX-preemption timer. */
|
---|
9159 | else
|
---|
9160 | {
|
---|
9161 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* u64ExitQual */);
|
---|
9162 | Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
|
---|
9163 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
|
---|
9164 | }
|
---|
9165 | return rcStrict;
|
---|
9166 | }
|
---|
9167 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
9168 |
|
---|
9169 |
|
---|
9170 | /**
|
---|
9171 | * The actual code execution bits of IEMExecOne, IEMExecOneEx, and
|
---|
9172 | * IEMExecOneWithPrefetchedByPC.
|
---|
9173 | *
|
---|
9174 | * Similar code is found in IEMExecLots.
|
---|
9175 | *
|
---|
9176 | * @return Strict VBox status code.
|
---|
9177 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9178 | * @param fExecuteInhibit If set, execute the instruction following CLI,
|
---|
9179 | * POP SS and MOV SS,GR.
|
---|
9180 | * @param pszFunction The calling function name.
|
---|
9181 | */
|
---|
9182 | DECLINLINE(VBOXSTRICTRC) iemExecOneInner(PVMCPUCC pVCpu, bool fExecuteInhibit, const char *pszFunction)
|
---|
9183 | {
|
---|
9184 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
9185 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
9186 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
9187 | RT_NOREF_PV(pszFunction);
|
---|
9188 |
|
---|
9189 | #ifdef IEM_WITH_SETJMP
|
---|
9190 | VBOXSTRICTRC rcStrict;
|
---|
9191 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
9192 | {
|
---|
9193 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9194 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9195 | }
|
---|
9196 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
9197 | {
|
---|
9198 | pVCpu->iem.s.cLongJumps++;
|
---|
9199 | }
|
---|
9200 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
9201 | #else
|
---|
9202 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9203 | VBOXSTRICTRC rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9204 | #endif
|
---|
9205 | if (rcStrict == VINF_SUCCESS)
|
---|
9206 | pVCpu->iem.s.cInstructions++;
|
---|
9207 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9208 | {
|
---|
9209 | Assert(rcStrict != VINF_SUCCESS);
|
---|
9210 | iemMemRollback(pVCpu);
|
---|
9211 | }
|
---|
9212 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
9213 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
9214 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
9215 |
|
---|
9216 | //#ifdef DEBUG
|
---|
9217 | // AssertMsg(IEM_GET_INSTR_LEN(pVCpu) == cbInstr || rcStrict != VINF_SUCCESS, ("%u %u\n", IEM_GET_INSTR_LEN(pVCpu), cbInstr));
|
---|
9218 | //#endif
|
---|
9219 |
|
---|
9220 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9221 | /*
|
---|
9222 | * Perform any VMX nested-guest instruction boundary actions.
|
---|
9223 | *
|
---|
9224 | * If any of these causes a VM-exit, we must skip executing the next
|
---|
9225 | * instruction (would run into stale page tables). A VM-exit makes sure
|
---|
9226 | * there is no interrupt-inhibition, so that should ensure we don't go
|
---|
9227 | * to try execute the next instruction. Clearing fExecuteInhibit is
|
---|
9228 | * problematic because of the setjmp/longjmp clobbering above.
|
---|
9229 | */
|
---|
9230 | if ( !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
9231 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)
|
---|
9232 | || rcStrict != VINF_SUCCESS)
|
---|
9233 | { /* likely */ }
|
---|
9234 | else
|
---|
9235 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
9236 | #endif
|
---|
9237 |
|
---|
9238 | /* Execute the next instruction as well if a cli, pop ss or
|
---|
9239 | mov ss, Gr has just completed successfully. */
|
---|
9240 | if ( fExecuteInhibit
|
---|
9241 | && rcStrict == VINF_SUCCESS
|
---|
9242 | && CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
|
---|
9243 | {
|
---|
9244 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, pVCpu->iem.s.fExec & (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK));
|
---|
9245 | if (rcStrict == VINF_SUCCESS)
|
---|
9246 | {
|
---|
9247 | #ifdef LOG_ENABLED
|
---|
9248 | iemLogCurInstr(pVCpu, false, pszFunction);
|
---|
9249 | #endif
|
---|
9250 | #ifdef IEM_WITH_SETJMP
|
---|
9251 | IEM_TRY_SETJMP_AGAIN(pVCpu, rcStrict)
|
---|
9252 | {
|
---|
9253 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9254 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9255 | }
|
---|
9256 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
9257 | {
|
---|
9258 | pVCpu->iem.s.cLongJumps++;
|
---|
9259 | }
|
---|
9260 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
9261 | #else
|
---|
9262 | IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9263 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9264 | #endif
|
---|
9265 | if (rcStrict == VINF_SUCCESS)
|
---|
9266 | {
|
---|
9267 | pVCpu->iem.s.cInstructions++;
|
---|
9268 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9269 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
9270 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW))
|
---|
9271 | { /* likely */ }
|
---|
9272 | else
|
---|
9273 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
9274 | #endif
|
---|
9275 | }
|
---|
9276 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9277 | {
|
---|
9278 | Assert(rcStrict != VINF_SUCCESS);
|
---|
9279 | iemMemRollback(pVCpu);
|
---|
9280 | }
|
---|
9281 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
9282 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
9283 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
9284 | }
|
---|
9285 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9286 | iemMemRollback(pVCpu);
|
---|
9287 | /** @todo drop this after we bake this change into RIP advancing. */
|
---|
9288 | CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); /* hope this is correct for all exceptional cases... */
|
---|
9289 | }
|
---|
9290 |
|
---|
9291 | /*
|
---|
9292 | * Return value fiddling, statistics and sanity assertions.
|
---|
9293 | */
|
---|
9294 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9295 |
|
---|
9296 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
9297 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
9298 | return rcStrict;
|
---|
9299 | }
|
---|
9300 |
|
---|
9301 |
|
---|
9302 | /**
|
---|
9303 | * Execute one instruction.
|
---|
9304 | *
|
---|
9305 | * @return Strict VBox status code.
|
---|
9306 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9307 | */
|
---|
9308 | VMMDECL(VBOXSTRICTRC) IEMExecOne(PVMCPUCC pVCpu)
|
---|
9309 | {
|
---|
9310 | AssertCompile(sizeof(pVCpu->iem.s) <= sizeof(pVCpu->iem.padding)); /* (tstVMStruct can't do it's job w/o instruction stats) */
|
---|
9311 | #ifdef LOG_ENABLED
|
---|
9312 | iemLogCurInstr(pVCpu, true, "IEMExecOne");
|
---|
9313 | #endif
|
---|
9314 |
|
---|
9315 | /*
|
---|
9316 | * Do the decoding and emulation.
|
---|
9317 | */
|
---|
9318 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9319 | if (rcStrict == VINF_SUCCESS)
|
---|
9320 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOne");
|
---|
9321 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9322 | iemMemRollback(pVCpu);
|
---|
9323 |
|
---|
9324 | if (rcStrict != VINF_SUCCESS)
|
---|
9325 | LogFlow(("IEMExecOne: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
9326 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9327 | return rcStrict;
|
---|
9328 | }
|
---|
9329 |
|
---|
9330 |
|
---|
9331 | VMMDECL(VBOXSTRICTRC) IEMExecOneEx(PVMCPUCC pVCpu, uint32_t *pcbWritten)
|
---|
9332 | {
|
---|
9333 | uint32_t const cbOldWritten = pVCpu->iem.s.cbWritten;
|
---|
9334 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9335 | if (rcStrict == VINF_SUCCESS)
|
---|
9336 | {
|
---|
9337 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneEx");
|
---|
9338 | if (pcbWritten)
|
---|
9339 | *pcbWritten = pVCpu->iem.s.cbWritten - cbOldWritten;
|
---|
9340 | }
|
---|
9341 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9342 | iemMemRollback(pVCpu);
|
---|
9343 |
|
---|
9344 | return rcStrict;
|
---|
9345 | }
|
---|
9346 |
|
---|
9347 |
|
---|
9348 | VMMDECL(VBOXSTRICTRC) IEMExecOneWithPrefetchedByPC(PVMCPUCC pVCpu, uint64_t OpcodeBytesPC,
|
---|
9349 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
9350 | {
|
---|
9351 | VBOXSTRICTRC rcStrict;
|
---|
9352 | if ( cbOpcodeBytes
|
---|
9353 | && pVCpu->cpum.GstCtx.rip == OpcodeBytesPC)
|
---|
9354 | {
|
---|
9355 | iemInitDecoder(pVCpu, 0 /*fExecOpts*/);
|
---|
9356 | #ifdef IEM_WITH_CODE_TLB
|
---|
9357 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
9358 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
9359 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
9360 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
9361 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
9362 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
9363 | #else
|
---|
9364 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
9365 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
9366 | #endif
|
---|
9367 | rcStrict = VINF_SUCCESS;
|
---|
9368 | }
|
---|
9369 | else
|
---|
9370 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9371 | if (rcStrict == VINF_SUCCESS)
|
---|
9372 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneWithPrefetchedByPC");
|
---|
9373 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9374 | iemMemRollback(pVCpu);
|
---|
9375 |
|
---|
9376 | return rcStrict;
|
---|
9377 | }
|
---|
9378 |
|
---|
9379 |
|
---|
9380 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassEx(PVMCPUCC pVCpu, uint32_t *pcbWritten)
|
---|
9381 | {
|
---|
9382 | uint32_t const cbOldWritten = pVCpu->iem.s.cbWritten;
|
---|
9383 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
9384 | if (rcStrict == VINF_SUCCESS)
|
---|
9385 | {
|
---|
9386 | rcStrict = iemExecOneInner(pVCpu, false, "IEMExecOneBypassEx");
|
---|
9387 | if (pcbWritten)
|
---|
9388 | *pcbWritten = pVCpu->iem.s.cbWritten - cbOldWritten;
|
---|
9389 | }
|
---|
9390 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9391 | iemMemRollback(pVCpu);
|
---|
9392 |
|
---|
9393 | return rcStrict;
|
---|
9394 | }
|
---|
9395 |
|
---|
9396 |
|
---|
9397 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassWithPrefetchedByPC(PVMCPUCC pVCpu, uint64_t OpcodeBytesPC,
|
---|
9398 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
9399 | {
|
---|
9400 | VBOXSTRICTRC rcStrict;
|
---|
9401 | if ( cbOpcodeBytes
|
---|
9402 | && pVCpu->cpum.GstCtx.rip == OpcodeBytesPC)
|
---|
9403 | {
|
---|
9404 | iemInitDecoder(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
9405 | #ifdef IEM_WITH_CODE_TLB
|
---|
9406 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
9407 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
9408 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
9409 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
9410 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
9411 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
9412 | #else
|
---|
9413 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
9414 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
9415 | #endif
|
---|
9416 | rcStrict = VINF_SUCCESS;
|
---|
9417 | }
|
---|
9418 | else
|
---|
9419 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
9420 | if (rcStrict == VINF_SUCCESS)
|
---|
9421 | rcStrict = iemExecOneInner(pVCpu, false, "IEMExecOneBypassWithPrefetchedByPC");
|
---|
9422 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9423 | iemMemRollback(pVCpu);
|
---|
9424 |
|
---|
9425 | return rcStrict;
|
---|
9426 | }
|
---|
9427 |
|
---|
9428 |
|
---|
9429 | /**
|
---|
9430 | * For handling split cacheline lock operations when the host has split-lock
|
---|
9431 | * detection enabled.
|
---|
9432 | *
|
---|
9433 | * This will cause the interpreter to disregard the lock prefix and implicit
|
---|
9434 | * locking (xchg).
|
---|
9435 | *
|
---|
9436 | * @returns Strict VBox status code.
|
---|
9437 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9438 | */
|
---|
9439 | VMMDECL(VBOXSTRICTRC) IEMExecOneIgnoreLock(PVMCPUCC pVCpu)
|
---|
9440 | {
|
---|
9441 | /*
|
---|
9442 | * Do the decoding and emulation.
|
---|
9443 | */
|
---|
9444 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_X86_DISREGARD_LOCK);
|
---|
9445 | if (rcStrict == VINF_SUCCESS)
|
---|
9446 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneIgnoreLock");
|
---|
9447 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9448 | iemMemRollback(pVCpu);
|
---|
9449 |
|
---|
9450 | if (rcStrict != VINF_SUCCESS)
|
---|
9451 | LogFlow(("IEMExecOneIgnoreLock: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
9452 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9453 | return rcStrict;
|
---|
9454 | }
|
---|
9455 |
|
---|
9456 |
|
---|
9457 | /**
|
---|
9458 | * Code common to IEMExecLots and IEMExecRecompilerThreaded that attempts to
|
---|
9459 | * inject a pending TRPM trap.
|
---|
9460 | */
|
---|
9461 | VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu)
|
---|
9462 | {
|
---|
9463 | Assert(TRPMHasTrap(pVCpu));
|
---|
9464 |
|
---|
9465 | if ( !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
|
---|
9466 | && !CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
|
---|
9467 | {
|
---|
9468 | /** @todo Can we centralize this under CPUMCanInjectInterrupt()? */
|
---|
9469 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9470 | bool fIntrEnabled = CPUMGetGuestGif(&pVCpu->cpum.GstCtx);
|
---|
9471 | if (fIntrEnabled)
|
---|
9472 | {
|
---|
9473 | if (!CPUMIsGuestInNestedHwvirtMode(IEM_GET_CTX(pVCpu)))
|
---|
9474 | fIntrEnabled = pVCpu->cpum.GstCtx.eflags.Bits.u1IF;
|
---|
9475 | else if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
|
---|
9476 | fIntrEnabled = CPUMIsGuestVmxPhysIntrEnabled(IEM_GET_CTX(pVCpu));
|
---|
9477 | else
|
---|
9478 | {
|
---|
9479 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
|
---|
9480 | fIntrEnabled = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, IEM_GET_CTX(pVCpu));
|
---|
9481 | }
|
---|
9482 | }
|
---|
9483 | #else
|
---|
9484 | bool fIntrEnabled = pVCpu->cpum.GstCtx.eflags.Bits.u1IF;
|
---|
9485 | #endif
|
---|
9486 | if (fIntrEnabled)
|
---|
9487 | {
|
---|
9488 | uint8_t u8TrapNo;
|
---|
9489 | TRPMEVENT enmType;
|
---|
9490 | uint32_t uErrCode;
|
---|
9491 | RTGCPTR uCr2;
|
---|
9492 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /*pu8InstLen*/, NULL /*fIcebp*/);
|
---|
9493 | AssertRC(rc2);
|
---|
9494 | Assert(enmType == TRPM_HARDWARE_INT);
|
---|
9495 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /*cbInstr*/);
|
---|
9496 |
|
---|
9497 | TRPMResetTrap(pVCpu);
|
---|
9498 |
|
---|
9499 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9500 | /* Injecting an event may cause a VM-exit. */
|
---|
9501 | if ( rcStrict != VINF_SUCCESS
|
---|
9502 | && rcStrict != VINF_IEM_RAISED_XCPT)
|
---|
9503 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9504 | #else
|
---|
9505 | NOREF(rcStrict);
|
---|
9506 | #endif
|
---|
9507 | }
|
---|
9508 | }
|
---|
9509 |
|
---|
9510 | return VINF_SUCCESS;
|
---|
9511 | }
|
---|
9512 |
|
---|
9513 |
|
---|
9514 | VMMDECL(VBOXSTRICTRC) IEMExecLots(PVMCPUCC pVCpu, uint32_t cMaxInstructions, uint32_t cPollRate, uint32_t *pcInstructions)
|
---|
9515 | {
|
---|
9516 | uint32_t const cInstructionsAtStart = pVCpu->iem.s.cInstructions;
|
---|
9517 | AssertMsg(RT_IS_POWER_OF_TWO(cPollRate + 1), ("%#x\n", cPollRate));
|
---|
9518 | Assert(cMaxInstructions > 0);
|
---|
9519 |
|
---|
9520 | /*
|
---|
9521 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
9522 | */
|
---|
9523 | /** @todo What if we are injecting an exception and not an interrupt? Is that
|
---|
9524 | * possible here? For now we assert it is indeed only an interrupt. */
|
---|
9525 | if (!TRPMHasTrap(pVCpu))
|
---|
9526 | { /* likely */ }
|
---|
9527 | else
|
---|
9528 | {
|
---|
9529 | VBOXSTRICTRC rcStrict = iemExecInjectPendingTrap(pVCpu);
|
---|
9530 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9531 | { /*likely */ }
|
---|
9532 | else
|
---|
9533 | return rcStrict;
|
---|
9534 | }
|
---|
9535 |
|
---|
9536 | /*
|
---|
9537 | * Initial decoder init w/ prefetch, then setup setjmp.
|
---|
9538 | */
|
---|
9539 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9540 | if (rcStrict == VINF_SUCCESS)
|
---|
9541 | {
|
---|
9542 | #ifdef IEM_WITH_SETJMP
|
---|
9543 | pVCpu->iem.s.cActiveMappings = 0; /** @todo wtf? */
|
---|
9544 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
9545 | #endif
|
---|
9546 | {
|
---|
9547 | /*
|
---|
9548 | * The run loop. We limit ourselves to 4096 instructions right now.
|
---|
9549 | */
|
---|
9550 | uint32_t cMaxInstructionsGccStupidity = cMaxInstructions;
|
---|
9551 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9552 | for (;;)
|
---|
9553 | {
|
---|
9554 | /*
|
---|
9555 | * Log the state.
|
---|
9556 | */
|
---|
9557 | #ifdef LOG_ENABLED
|
---|
9558 | iemLogCurInstr(pVCpu, true, "IEMExecLots");
|
---|
9559 | #endif
|
---|
9560 |
|
---|
9561 | /*
|
---|
9562 | * Do the decoding and emulation.
|
---|
9563 | */
|
---|
9564 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9565 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9566 | #ifdef VBOX_STRICT
|
---|
9567 | CPUMAssertGuestRFlagsCookie(pVM, pVCpu);
|
---|
9568 | #endif
|
---|
9569 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9570 | {
|
---|
9571 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9572 | pVCpu->iem.s.cInstructions++;
|
---|
9573 |
|
---|
9574 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9575 | /* Perform any VMX nested-guest instruction boundary actions. */
|
---|
9576 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
9577 | if (!(fCpu & ( VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
9578 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)))
|
---|
9579 | { /* likely */ }
|
---|
9580 | else
|
---|
9581 | {
|
---|
9582 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
9583 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9584 | fCpu = pVCpu->fLocalForcedActions;
|
---|
9585 | else
|
---|
9586 | {
|
---|
9587 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9588 | break;
|
---|
9589 | }
|
---|
9590 | }
|
---|
9591 | #endif
|
---|
9592 | if (RT_LIKELY(pVCpu->iem.s.rcPassUp == VINF_SUCCESS))
|
---|
9593 | {
|
---|
9594 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9595 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
9596 | #endif
|
---|
9597 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
9598 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
9599 | | VMCPU_FF_TLB_FLUSH
|
---|
9600 | | VMCPU_FF_UNHALT );
|
---|
9601 |
|
---|
9602 | if (RT_LIKELY( ( !fCpu
|
---|
9603 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
9604 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF) )
|
---|
9605 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) ))
|
---|
9606 | {
|
---|
9607 | if (--cMaxInstructionsGccStupidity > 0)
|
---|
9608 | {
|
---|
9609 | /* Poll timers every now an then according to the caller's specs. */
|
---|
9610 | if ( (cMaxInstructionsGccStupidity & cPollRate) != 0
|
---|
9611 | || !TMTimerPollBool(pVM, pVCpu))
|
---|
9612 | {
|
---|
9613 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9614 | iemReInitDecoder(pVCpu);
|
---|
9615 | continue;
|
---|
9616 | }
|
---|
9617 | }
|
---|
9618 | }
|
---|
9619 | }
|
---|
9620 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9621 | }
|
---|
9622 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9623 | iemMemRollback(pVCpu);
|
---|
9624 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9625 | break;
|
---|
9626 | }
|
---|
9627 | }
|
---|
9628 | #ifdef IEM_WITH_SETJMP
|
---|
9629 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
9630 | {
|
---|
9631 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9632 | iemMemRollback(pVCpu);
|
---|
9633 | # if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9634 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9635 | # endif
|
---|
9636 | pVCpu->iem.s.cLongJumps++;
|
---|
9637 | }
|
---|
9638 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
9639 | #endif
|
---|
9640 |
|
---|
9641 | /*
|
---|
9642 | * Assert hidden register sanity (also done in iemInitDecoder and iemReInitDecoder).
|
---|
9643 | */
|
---|
9644 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
9645 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
9646 | }
|
---|
9647 | else
|
---|
9648 | {
|
---|
9649 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9650 | iemMemRollback(pVCpu);
|
---|
9651 |
|
---|
9652 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9653 | /*
|
---|
9654 | * When a nested-guest causes an exception intercept (e.g. #PF) when fetching
|
---|
9655 | * code as part of instruction execution, we need this to fix-up VINF_SVM_VMEXIT.
|
---|
9656 | */
|
---|
9657 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9658 | #endif
|
---|
9659 | }
|
---|
9660 |
|
---|
9661 | /*
|
---|
9662 | * Maybe re-enter raw-mode and log.
|
---|
9663 | */
|
---|
9664 | if (rcStrict != VINF_SUCCESS)
|
---|
9665 | LogFlow(("IEMExecLots: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
9666 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9667 | if (pcInstructions)
|
---|
9668 | *pcInstructions = pVCpu->iem.s.cInstructions - cInstructionsAtStart;
|
---|
9669 | return rcStrict;
|
---|
9670 | }
|
---|
9671 |
|
---|
9672 |
|
---|
9673 | /**
|
---|
9674 | * Interface used by EMExecuteExec, does exit statistics and limits.
|
---|
9675 | *
|
---|
9676 | * @returns Strict VBox status code.
|
---|
9677 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9678 | * @param fWillExit To be defined.
|
---|
9679 | * @param cMinInstructions Minimum number of instructions to execute before checking for FFs.
|
---|
9680 | * @param cMaxInstructions Maximum number of instructions to execute.
|
---|
9681 | * @param cMaxInstructionsWithoutExits
|
---|
9682 | * The max number of instructions without exits.
|
---|
9683 | * @param pStats Where to return statistics.
|
---|
9684 | */
|
---|
9685 | VMMDECL(VBOXSTRICTRC) IEMExecForExits(PVMCPUCC pVCpu, uint32_t fWillExit, uint32_t cMinInstructions, uint32_t cMaxInstructions,
|
---|
9686 | uint32_t cMaxInstructionsWithoutExits, PIEMEXECFOREXITSTATS pStats)
|
---|
9687 | {
|
---|
9688 | NOREF(fWillExit); /** @todo define flexible exit crits */
|
---|
9689 |
|
---|
9690 | /*
|
---|
9691 | * Initialize return stats.
|
---|
9692 | */
|
---|
9693 | pStats->cInstructions = 0;
|
---|
9694 | pStats->cExits = 0;
|
---|
9695 | pStats->cMaxExitDistance = 0;
|
---|
9696 | pStats->cReserved = 0;
|
---|
9697 |
|
---|
9698 | /*
|
---|
9699 | * Initial decoder init w/ prefetch, then setup setjmp.
|
---|
9700 | */
|
---|
9701 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9702 | if (rcStrict == VINF_SUCCESS)
|
---|
9703 | {
|
---|
9704 | #ifdef IEM_WITH_SETJMP
|
---|
9705 | pVCpu->iem.s.cActiveMappings = 0; /** @todo wtf?!? */
|
---|
9706 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
9707 | #endif
|
---|
9708 | {
|
---|
9709 | #ifdef IN_RING0
|
---|
9710 | bool const fCheckPreemptionPending = !RTThreadPreemptIsPossible() || !RTThreadPreemptIsEnabled(NIL_RTTHREAD);
|
---|
9711 | #endif
|
---|
9712 | uint32_t cInstructionSinceLastExit = 0;
|
---|
9713 |
|
---|
9714 | /*
|
---|
9715 | * The run loop. We limit ourselves to 4096 instructions right now.
|
---|
9716 | */
|
---|
9717 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9718 | for (;;)
|
---|
9719 | {
|
---|
9720 | /*
|
---|
9721 | * Log the state.
|
---|
9722 | */
|
---|
9723 | #ifdef LOG_ENABLED
|
---|
9724 | iemLogCurInstr(pVCpu, true, "IEMExecForExits");
|
---|
9725 | #endif
|
---|
9726 |
|
---|
9727 | /*
|
---|
9728 | * Do the decoding and emulation.
|
---|
9729 | */
|
---|
9730 | uint32_t const cPotentialExits = pVCpu->iem.s.cPotentialExits;
|
---|
9731 |
|
---|
9732 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9733 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9734 |
|
---|
9735 | if ( cPotentialExits != pVCpu->iem.s.cPotentialExits
|
---|
9736 | && cInstructionSinceLastExit > 0 /* don't count the first */ )
|
---|
9737 | {
|
---|
9738 | pStats->cExits += 1;
|
---|
9739 | if (cInstructionSinceLastExit > pStats->cMaxExitDistance)
|
---|
9740 | pStats->cMaxExitDistance = cInstructionSinceLastExit;
|
---|
9741 | cInstructionSinceLastExit = 0;
|
---|
9742 | }
|
---|
9743 |
|
---|
9744 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9745 | {
|
---|
9746 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9747 | pVCpu->iem.s.cInstructions++;
|
---|
9748 | pStats->cInstructions++;
|
---|
9749 | cInstructionSinceLastExit++;
|
---|
9750 |
|
---|
9751 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9752 | /* Perform any VMX nested-guest instruction boundary actions. */
|
---|
9753 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
9754 | if (!(fCpu & ( VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
9755 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)))
|
---|
9756 | { /* likely */ }
|
---|
9757 | else
|
---|
9758 | {
|
---|
9759 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
9760 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9761 | fCpu = pVCpu->fLocalForcedActions;
|
---|
9762 | else
|
---|
9763 | {
|
---|
9764 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9765 | break;
|
---|
9766 | }
|
---|
9767 | }
|
---|
9768 | #endif
|
---|
9769 | if (RT_LIKELY(pVCpu->iem.s.rcPassUp == VINF_SUCCESS))
|
---|
9770 | {
|
---|
9771 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9772 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
9773 | #endif
|
---|
9774 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
9775 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
9776 | | VMCPU_FF_TLB_FLUSH
|
---|
9777 | | VMCPU_FF_UNHALT );
|
---|
9778 | if (RT_LIKELY( ( ( !fCpu
|
---|
9779 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
9780 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF))
|
---|
9781 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) )
|
---|
9782 | || pStats->cInstructions < cMinInstructions))
|
---|
9783 | {
|
---|
9784 | if (pStats->cInstructions < cMaxInstructions)
|
---|
9785 | {
|
---|
9786 | if (cInstructionSinceLastExit <= cMaxInstructionsWithoutExits)
|
---|
9787 | {
|
---|
9788 | #ifdef IN_RING0
|
---|
9789 | if ( !fCheckPreemptionPending
|
---|
9790 | || !RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
9791 | #endif
|
---|
9792 | {
|
---|
9793 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9794 | iemReInitDecoder(pVCpu);
|
---|
9795 | continue;
|
---|
9796 | }
|
---|
9797 | #ifdef IN_RING0
|
---|
9798 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
9799 | break;
|
---|
9800 | #endif
|
---|
9801 | }
|
---|
9802 | }
|
---|
9803 | }
|
---|
9804 | Assert(!(fCpu & VMCPU_FF_IEM));
|
---|
9805 | }
|
---|
9806 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9807 | }
|
---|
9808 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9809 | iemMemRollback(pVCpu);
|
---|
9810 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9811 | break;
|
---|
9812 | }
|
---|
9813 | }
|
---|
9814 | #ifdef IEM_WITH_SETJMP
|
---|
9815 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
9816 | {
|
---|
9817 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9818 | iemMemRollback(pVCpu);
|
---|
9819 | pVCpu->iem.s.cLongJumps++;
|
---|
9820 | }
|
---|
9821 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
9822 | #endif
|
---|
9823 |
|
---|
9824 | /*
|
---|
9825 | * Assert hidden register sanity (also done in iemInitDecoder and iemReInitDecoder).
|
---|
9826 | */
|
---|
9827 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
9828 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
9829 | }
|
---|
9830 | else
|
---|
9831 | {
|
---|
9832 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9833 | iemMemRollback(pVCpu);
|
---|
9834 |
|
---|
9835 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9836 | /*
|
---|
9837 | * When a nested-guest causes an exception intercept (e.g. #PF) when fetching
|
---|
9838 | * code as part of instruction execution, we need this to fix-up VINF_SVM_VMEXIT.
|
---|
9839 | */
|
---|
9840 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9841 | #endif
|
---|
9842 | }
|
---|
9843 |
|
---|
9844 | /*
|
---|
9845 | * Maybe re-enter raw-mode and log.
|
---|
9846 | */
|
---|
9847 | if (rcStrict != VINF_SUCCESS)
|
---|
9848 | LogFlow(("IEMExecForExits: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc; ins=%u exits=%u maxdist=%u\n",
|
---|
9849 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp,
|
---|
9850 | pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict), pStats->cInstructions, pStats->cExits, pStats->cMaxExitDistance));
|
---|
9851 | return rcStrict;
|
---|
9852 | }
|
---|
9853 |
|
---|
9854 |
|
---|
9855 | /**
|
---|
9856 | * Injects a trap, fault, abort, software interrupt or external interrupt.
|
---|
9857 | *
|
---|
9858 | * The parameter list matches TRPMQueryTrapAll pretty closely.
|
---|
9859 | *
|
---|
9860 | * @returns Strict VBox status code.
|
---|
9861 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9862 | * @param u8TrapNo The trap number.
|
---|
9863 | * @param enmType What type is it (trap/fault/abort), software
|
---|
9864 | * interrupt or hardware interrupt.
|
---|
9865 | * @param uErrCode The error code if applicable.
|
---|
9866 | * @param uCr2 The CR2 value if applicable.
|
---|
9867 | * @param cbInstr The instruction length (only relevant for
|
---|
9868 | * software interrupts).
|
---|
9869 | */
|
---|
9870 | VMM_INT_DECL(VBOXSTRICTRC) IEMInjectTrap(PVMCPUCC pVCpu, uint8_t u8TrapNo, TRPMEVENT enmType, uint16_t uErrCode, RTGCPTR uCr2,
|
---|
9871 | uint8_t cbInstr)
|
---|
9872 | {
|
---|
9873 | iemInitDecoder(pVCpu, 0 /*fExecOpts*/); /** @todo wrong init function! */
|
---|
9874 | #ifdef DBGFTRACE_ENABLED
|
---|
9875 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "IEMInjectTrap: %x %d %x %llx",
|
---|
9876 | u8TrapNo, enmType, uErrCode, uCr2);
|
---|
9877 | #endif
|
---|
9878 |
|
---|
9879 | uint32_t fFlags;
|
---|
9880 | switch (enmType)
|
---|
9881 | {
|
---|
9882 | case TRPM_HARDWARE_INT:
|
---|
9883 | Log(("IEMInjectTrap: %#4x ext\n", u8TrapNo));
|
---|
9884 | fFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
9885 | uErrCode = uCr2 = 0;
|
---|
9886 | break;
|
---|
9887 |
|
---|
9888 | case TRPM_SOFTWARE_INT:
|
---|
9889 | Log(("IEMInjectTrap: %#4x soft\n", u8TrapNo));
|
---|
9890 | fFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
9891 | uErrCode = uCr2 = 0;
|
---|
9892 | break;
|
---|
9893 |
|
---|
9894 | case TRPM_TRAP:
|
---|
9895 | Log(("IEMInjectTrap: %#4x trap err=%#x cr2=%#RGv\n", u8TrapNo, uErrCode, uCr2));
|
---|
9896 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
9897 | if (u8TrapNo == X86_XCPT_PF)
|
---|
9898 | fFlags |= IEM_XCPT_FLAGS_CR2;
|
---|
9899 | switch (u8TrapNo)
|
---|
9900 | {
|
---|
9901 | case X86_XCPT_DF:
|
---|
9902 | case X86_XCPT_TS:
|
---|
9903 | case X86_XCPT_NP:
|
---|
9904 | case X86_XCPT_SS:
|
---|
9905 | case X86_XCPT_PF:
|
---|
9906 | case X86_XCPT_AC:
|
---|
9907 | case X86_XCPT_GP:
|
---|
9908 | fFlags |= IEM_XCPT_FLAGS_ERR;
|
---|
9909 | break;
|
---|
9910 | }
|
---|
9911 | break;
|
---|
9912 |
|
---|
9913 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9914 | }
|
---|
9915 |
|
---|
9916 | VBOXSTRICTRC rcStrict = iemRaiseXcptOrInt(pVCpu, cbInstr, u8TrapNo, fFlags, uErrCode, uCr2);
|
---|
9917 |
|
---|
9918 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9919 | iemMemRollback(pVCpu);
|
---|
9920 |
|
---|
9921 | return rcStrict;
|
---|
9922 | }
|
---|
9923 |
|
---|
9924 |
|
---|
9925 | /**
|
---|
9926 | * Injects the active TRPM event.
|
---|
9927 | *
|
---|
9928 | * @returns Strict VBox status code.
|
---|
9929 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9930 | */
|
---|
9931 | VMMDECL(VBOXSTRICTRC) IEMInjectTrpmEvent(PVMCPUCC pVCpu)
|
---|
9932 | {
|
---|
9933 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
9934 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Event injection\n"));
|
---|
9935 | #else
|
---|
9936 | uint8_t u8TrapNo;
|
---|
9937 | TRPMEVENT enmType;
|
---|
9938 | uint32_t uErrCode;
|
---|
9939 | RTGCUINTPTR uCr2;
|
---|
9940 | uint8_t cbInstr;
|
---|
9941 | int rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, &cbInstr, NULL /* fIcebp */);
|
---|
9942 | if (RT_FAILURE(rc))
|
---|
9943 | return rc;
|
---|
9944 |
|
---|
9945 | /** @todo r=ramshankar: Pass ICEBP info. to IEMInjectTrap() below and handle
|
---|
9946 | * ICEBP \#DB injection as a special case. */
|
---|
9947 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, uErrCode, uCr2, cbInstr);
|
---|
9948 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
9949 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
9950 | rcStrict = VINF_SUCCESS;
|
---|
9951 | #endif
|
---|
9952 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9953 | if (rcStrict == VINF_VMX_VMEXIT)
|
---|
9954 | rcStrict = VINF_SUCCESS;
|
---|
9955 | #endif
|
---|
9956 | /** @todo Are there any other codes that imply the event was successfully
|
---|
9957 | * delivered to the guest? See @bugref{6607}. */
|
---|
9958 | if ( rcStrict == VINF_SUCCESS
|
---|
9959 | || rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9960 | TRPMResetTrap(pVCpu);
|
---|
9961 |
|
---|
9962 | return rcStrict;
|
---|
9963 | #endif
|
---|
9964 | }
|
---|
9965 |
|
---|
9966 |
|
---|
9967 | VMM_INT_DECL(int) IEMBreakpointSet(PVM pVM, RTGCPTR GCPtrBp)
|
---|
9968 | {
|
---|
9969 | RT_NOREF_PV(pVM); RT_NOREF_PV(GCPtrBp);
|
---|
9970 | return VERR_NOT_IMPLEMENTED;
|
---|
9971 | }
|
---|
9972 |
|
---|
9973 |
|
---|
9974 | VMM_INT_DECL(int) IEMBreakpointClear(PVM pVM, RTGCPTR GCPtrBp)
|
---|
9975 | {
|
---|
9976 | RT_NOREF_PV(pVM); RT_NOREF_PV(GCPtrBp);
|
---|
9977 | return VERR_NOT_IMPLEMENTED;
|
---|
9978 | }
|
---|
9979 |
|
---|
9980 |
|
---|
9981 | /**
|
---|
9982 | * Interface for HM and EM for executing string I/O OUT (write) instructions.
|
---|
9983 | *
|
---|
9984 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
9985 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
9986 | * guest state.)
|
---|
9987 | *
|
---|
9988 | * @returns Strict VBox status code.
|
---|
9989 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9990 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
9991 | * @param enmAddrMode The addressing mode.
|
---|
9992 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
9993 | * (doesn't matter which for this instruction).
|
---|
9994 | * @param cbInstr The instruction length in bytes.
|
---|
9995 | * @param iEffSeg The effective segment address.
|
---|
9996 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
9997 | * checked or not. It's typically checked in the
|
---|
9998 | * HM scenario.
|
---|
9999 | */
|
---|
10000 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoWrite(PVMCPUCC pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
10001 | bool fRepPrefix, uint8_t cbInstr, uint8_t iEffSeg, bool fIoChecked)
|
---|
10002 | {
|
---|
10003 | AssertMsgReturn(iEffSeg < X86_SREG_COUNT, ("%#x\n", iEffSeg), VERR_IEM_INVALID_EFF_SEG);
|
---|
10004 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10005 |
|
---|
10006 | /*
|
---|
10007 | * State init.
|
---|
10008 | */
|
---|
10009 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10010 |
|
---|
10011 | /*
|
---|
10012 | * Switch orgy for getting to the right handler.
|
---|
10013 | */
|
---|
10014 | VBOXSTRICTRC rcStrict;
|
---|
10015 | if (fRepPrefix)
|
---|
10016 | {
|
---|
10017 | switch (enmAddrMode)
|
---|
10018 | {
|
---|
10019 | case IEMMODE_16BIT:
|
---|
10020 | switch (cbValue)
|
---|
10021 | {
|
---|
10022 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10023 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10024 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10025 | default:
|
---|
10026 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10027 | }
|
---|
10028 | break;
|
---|
10029 |
|
---|
10030 | case IEMMODE_32BIT:
|
---|
10031 | switch (cbValue)
|
---|
10032 | {
|
---|
10033 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10034 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10035 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10036 | default:
|
---|
10037 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10038 | }
|
---|
10039 | break;
|
---|
10040 |
|
---|
10041 | case IEMMODE_64BIT:
|
---|
10042 | switch (cbValue)
|
---|
10043 | {
|
---|
10044 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10045 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10046 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10047 | default:
|
---|
10048 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10049 | }
|
---|
10050 | break;
|
---|
10051 |
|
---|
10052 | default:
|
---|
10053 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10054 | }
|
---|
10055 | }
|
---|
10056 | else
|
---|
10057 | {
|
---|
10058 | switch (enmAddrMode)
|
---|
10059 | {
|
---|
10060 | case IEMMODE_16BIT:
|
---|
10061 | switch (cbValue)
|
---|
10062 | {
|
---|
10063 | case 1: rcStrict = iemCImpl_outs_op8_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10064 | case 2: rcStrict = iemCImpl_outs_op16_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10065 | case 4: rcStrict = iemCImpl_outs_op32_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10066 | default:
|
---|
10067 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10068 | }
|
---|
10069 | break;
|
---|
10070 |
|
---|
10071 | case IEMMODE_32BIT:
|
---|
10072 | switch (cbValue)
|
---|
10073 | {
|
---|
10074 | case 1: rcStrict = iemCImpl_outs_op8_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10075 | case 2: rcStrict = iemCImpl_outs_op16_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10076 | case 4: rcStrict = iemCImpl_outs_op32_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10077 | default:
|
---|
10078 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10079 | }
|
---|
10080 | break;
|
---|
10081 |
|
---|
10082 | case IEMMODE_64BIT:
|
---|
10083 | switch (cbValue)
|
---|
10084 | {
|
---|
10085 | case 1: rcStrict = iemCImpl_outs_op8_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10086 | case 2: rcStrict = iemCImpl_outs_op16_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10087 | case 4: rcStrict = iemCImpl_outs_op32_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10088 | default:
|
---|
10089 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10090 | }
|
---|
10091 | break;
|
---|
10092 |
|
---|
10093 | default:
|
---|
10094 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10095 | }
|
---|
10096 | }
|
---|
10097 |
|
---|
10098 | if (pVCpu->iem.s.cActiveMappings)
|
---|
10099 | iemMemRollback(pVCpu);
|
---|
10100 |
|
---|
10101 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10102 | }
|
---|
10103 |
|
---|
10104 |
|
---|
10105 | /**
|
---|
10106 | * Interface for HM and EM for executing string I/O IN (read) instructions.
|
---|
10107 | *
|
---|
10108 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
10109 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
10110 | * guest state.)
|
---|
10111 | *
|
---|
10112 | * @returns Strict VBox status code.
|
---|
10113 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10114 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
10115 | * @param enmAddrMode The addressing mode.
|
---|
10116 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
10117 | * (doesn't matter which for this instruction).
|
---|
10118 | * @param cbInstr The instruction length in bytes.
|
---|
10119 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
10120 | * checked or not. It's typically checked in the
|
---|
10121 | * HM scenario.
|
---|
10122 | */
|
---|
10123 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoRead(PVMCPUCC pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
10124 | bool fRepPrefix, uint8_t cbInstr, bool fIoChecked)
|
---|
10125 | {
|
---|
10126 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10127 |
|
---|
10128 | /*
|
---|
10129 | * State init.
|
---|
10130 | */
|
---|
10131 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10132 |
|
---|
10133 | /*
|
---|
10134 | * Switch orgy for getting to the right handler.
|
---|
10135 | */
|
---|
10136 | VBOXSTRICTRC rcStrict;
|
---|
10137 | if (fRepPrefix)
|
---|
10138 | {
|
---|
10139 | switch (enmAddrMode)
|
---|
10140 | {
|
---|
10141 | case IEMMODE_16BIT:
|
---|
10142 | switch (cbValue)
|
---|
10143 | {
|
---|
10144 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10145 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10146 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10147 | default:
|
---|
10148 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10149 | }
|
---|
10150 | break;
|
---|
10151 |
|
---|
10152 | case IEMMODE_32BIT:
|
---|
10153 | switch (cbValue)
|
---|
10154 | {
|
---|
10155 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10156 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10157 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10158 | default:
|
---|
10159 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10160 | }
|
---|
10161 | break;
|
---|
10162 |
|
---|
10163 | case IEMMODE_64BIT:
|
---|
10164 | switch (cbValue)
|
---|
10165 | {
|
---|
10166 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10167 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10168 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10169 | default:
|
---|
10170 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10171 | }
|
---|
10172 | break;
|
---|
10173 |
|
---|
10174 | default:
|
---|
10175 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10176 | }
|
---|
10177 | }
|
---|
10178 | else
|
---|
10179 | {
|
---|
10180 | switch (enmAddrMode)
|
---|
10181 | {
|
---|
10182 | case IEMMODE_16BIT:
|
---|
10183 | switch (cbValue)
|
---|
10184 | {
|
---|
10185 | case 1: rcStrict = iemCImpl_ins_op8_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10186 | case 2: rcStrict = iemCImpl_ins_op16_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10187 | case 4: rcStrict = iemCImpl_ins_op32_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10188 | default:
|
---|
10189 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10190 | }
|
---|
10191 | break;
|
---|
10192 |
|
---|
10193 | case IEMMODE_32BIT:
|
---|
10194 | switch (cbValue)
|
---|
10195 | {
|
---|
10196 | case 1: rcStrict = iemCImpl_ins_op8_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10197 | case 2: rcStrict = iemCImpl_ins_op16_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10198 | case 4: rcStrict = iemCImpl_ins_op32_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10199 | default:
|
---|
10200 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10201 | }
|
---|
10202 | break;
|
---|
10203 |
|
---|
10204 | case IEMMODE_64BIT:
|
---|
10205 | switch (cbValue)
|
---|
10206 | {
|
---|
10207 | case 1: rcStrict = iemCImpl_ins_op8_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10208 | case 2: rcStrict = iemCImpl_ins_op16_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10209 | case 4: rcStrict = iemCImpl_ins_op32_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10210 | default:
|
---|
10211 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10212 | }
|
---|
10213 | break;
|
---|
10214 |
|
---|
10215 | default:
|
---|
10216 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10217 | }
|
---|
10218 | }
|
---|
10219 |
|
---|
10220 | if ( pVCpu->iem.s.cActiveMappings == 0
|
---|
10221 | || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM))
|
---|
10222 | { /* likely */ }
|
---|
10223 | else
|
---|
10224 | {
|
---|
10225 | AssertMsg(!IOM_SUCCESS(rcStrict), ("%#x\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
10226 | iemMemRollback(pVCpu);
|
---|
10227 | }
|
---|
10228 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10229 | }
|
---|
10230 |
|
---|
10231 |
|
---|
10232 | /**
|
---|
10233 | * Interface for rawmode to write execute an OUT instruction.
|
---|
10234 | *
|
---|
10235 | * @returns Strict VBox status code.
|
---|
10236 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10237 | * @param cbInstr The instruction length in bytes.
|
---|
10238 | * @param u16Port The port to read.
|
---|
10239 | * @param fImm Whether the port is specified using an immediate operand or
|
---|
10240 | * using the implicit DX register.
|
---|
10241 | * @param cbReg The register size.
|
---|
10242 | *
|
---|
10243 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10244 | */
|
---|
10245 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedOut(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t u16Port, bool fImm, uint8_t cbReg)
|
---|
10246 | {
|
---|
10247 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10248 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
10249 |
|
---|
10250 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10251 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_3(iemCImpl_out, u16Port, cbReg,
|
---|
10252 | ((uint8_t)fImm << 7) | 0xf /** @todo never worked with intercepts */);
|
---|
10253 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10254 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10255 | }
|
---|
10256 |
|
---|
10257 |
|
---|
10258 | /**
|
---|
10259 | * Interface for rawmode to write execute an IN instruction.
|
---|
10260 | *
|
---|
10261 | * @returns Strict VBox status code.
|
---|
10262 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10263 | * @param cbInstr The instruction length in bytes.
|
---|
10264 | * @param u16Port The port to read.
|
---|
10265 | * @param fImm Whether the port is specified using an immediate operand or
|
---|
10266 | * using the implicit DX.
|
---|
10267 | * @param cbReg The register size.
|
---|
10268 | */
|
---|
10269 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedIn(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t u16Port, bool fImm, uint8_t cbReg)
|
---|
10270 | {
|
---|
10271 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10272 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
10273 |
|
---|
10274 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10275 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_3(iemCImpl_in, u16Port, cbReg,
|
---|
10276 | ((uint8_t)fImm << 7) | 0xf /** @todo never worked with intercepts */);
|
---|
10277 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10278 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10279 | }
|
---|
10280 |
|
---|
10281 |
|
---|
10282 | /**
|
---|
10283 | * Interface for HM and EM to write to a CRx register.
|
---|
10284 | *
|
---|
10285 | * @returns Strict VBox status code.
|
---|
10286 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10287 | * @param cbInstr The instruction length in bytes.
|
---|
10288 | * @param iCrReg The control register number (destination).
|
---|
10289 | * @param iGReg The general purpose register number (source).
|
---|
10290 | *
|
---|
10291 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10292 | */
|
---|
10293 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxWrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iCrReg, uint8_t iGReg)
|
---|
10294 | {
|
---|
10295 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10296 | Assert(iCrReg < 16);
|
---|
10297 | Assert(iGReg < 16);
|
---|
10298 |
|
---|
10299 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10300 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Cd_Rd, iCrReg, iGReg);
|
---|
10301 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10302 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10303 | }
|
---|
10304 |
|
---|
10305 |
|
---|
10306 | /**
|
---|
10307 | * Interface for HM and EM to read from a CRx register.
|
---|
10308 | *
|
---|
10309 | * @returns Strict VBox status code.
|
---|
10310 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10311 | * @param cbInstr The instruction length in bytes.
|
---|
10312 | * @param iGReg The general purpose register number (destination).
|
---|
10313 | * @param iCrReg The control register number (source).
|
---|
10314 | *
|
---|
10315 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10316 | */
|
---|
10317 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxRead(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
|
---|
10318 | {
|
---|
10319 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10320 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
|
---|
10321 | | CPUMCTX_EXTRN_APIC_TPR);
|
---|
10322 | Assert(iCrReg < 16);
|
---|
10323 | Assert(iGReg < 16);
|
---|
10324 |
|
---|
10325 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10326 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Rd_Cd, iGReg, iCrReg);
|
---|
10327 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10328 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10329 | }
|
---|
10330 |
|
---|
10331 |
|
---|
10332 | /**
|
---|
10333 | * Interface for HM and EM to write to a DRx register.
|
---|
10334 | *
|
---|
10335 | * @returns Strict VBox status code.
|
---|
10336 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10337 | * @param cbInstr The instruction length in bytes.
|
---|
10338 | * @param iDrReg The debug register number (destination).
|
---|
10339 | * @param iGReg The general purpose register number (source).
|
---|
10340 | *
|
---|
10341 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10342 | */
|
---|
10343 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovDRxWrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iDrReg, uint8_t iGReg)
|
---|
10344 | {
|
---|
10345 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10346 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_DR7);
|
---|
10347 | Assert(iDrReg < 8);
|
---|
10348 | Assert(iGReg < 16);
|
---|
10349 |
|
---|
10350 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10351 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Dd_Rd, iDrReg, iGReg);
|
---|
10352 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10353 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10354 | }
|
---|
10355 |
|
---|
10356 |
|
---|
10357 | /**
|
---|
10358 | * Interface for HM and EM to read from a DRx register.
|
---|
10359 | *
|
---|
10360 | * @returns Strict VBox status code.
|
---|
10361 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10362 | * @param cbInstr The instruction length in bytes.
|
---|
10363 | * @param iGReg The general purpose register number (destination).
|
---|
10364 | * @param iDrReg The debug register number (source).
|
---|
10365 | *
|
---|
10366 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10367 | */
|
---|
10368 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovDRxRead(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iDrReg)
|
---|
10369 | {
|
---|
10370 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10371 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_DR7);
|
---|
10372 | Assert(iDrReg < 8);
|
---|
10373 | Assert(iGReg < 16);
|
---|
10374 |
|
---|
10375 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10376 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Rd_Dd, iGReg, iDrReg);
|
---|
10377 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10378 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10379 | }
|
---|
10380 |
|
---|
10381 |
|
---|
10382 | /**
|
---|
10383 | * Interface for HM and EM to clear the CR0[TS] bit.
|
---|
10384 | *
|
---|
10385 | * @returns Strict VBox status code.
|
---|
10386 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10387 | * @param cbInstr The instruction length in bytes.
|
---|
10388 | *
|
---|
10389 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10390 | */
|
---|
10391 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedClts(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10392 | {
|
---|
10393 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10394 |
|
---|
10395 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10396 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_clts);
|
---|
10397 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10398 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10399 | }
|
---|
10400 |
|
---|
10401 |
|
---|
10402 | /**
|
---|
10403 | * Interface for HM and EM to emulate the LMSW instruction (loads CR0).
|
---|
10404 | *
|
---|
10405 | * @returns Strict VBox status code.
|
---|
10406 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10407 | * @param cbInstr The instruction length in bytes.
|
---|
10408 | * @param uValue The value to load into CR0.
|
---|
10409 | * @param GCPtrEffDst The guest-linear address if the LMSW instruction has a
|
---|
10410 | * memory operand. Otherwise pass NIL_RTGCPTR.
|
---|
10411 | *
|
---|
10412 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10413 | */
|
---|
10414 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedLmsw(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t uValue, RTGCPTR GCPtrEffDst)
|
---|
10415 | {
|
---|
10416 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10417 |
|
---|
10418 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10419 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_lmsw, uValue, GCPtrEffDst);
|
---|
10420 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10421 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10422 | }
|
---|
10423 |
|
---|
10424 |
|
---|
10425 | /**
|
---|
10426 | * Interface for HM and EM to emulate the XSETBV instruction (loads XCRx).
|
---|
10427 | *
|
---|
10428 | * Takes input values in ecx and edx:eax of the CPU context of the calling EMT.
|
---|
10429 | *
|
---|
10430 | * @returns Strict VBox status code.
|
---|
10431 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
10432 | * @param cbInstr The instruction length in bytes.
|
---|
10433 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10434 | * @thread EMT(pVCpu)
|
---|
10435 | */
|
---|
10436 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedXsetbv(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10437 | {
|
---|
10438 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10439 |
|
---|
10440 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10441 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_xsetbv);
|
---|
10442 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10443 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10444 | }
|
---|
10445 |
|
---|
10446 |
|
---|
10447 | /**
|
---|
10448 | * Interface for HM and EM to emulate the WBINVD instruction.
|
---|
10449 | *
|
---|
10450 | * @returns Strict VBox status code.
|
---|
10451 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10452 | * @param cbInstr The instruction length in bytes.
|
---|
10453 | *
|
---|
10454 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10455 | */
|
---|
10456 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedWbinvd(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10457 | {
|
---|
10458 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10459 |
|
---|
10460 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10461 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_wbinvd);
|
---|
10462 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10463 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10464 | }
|
---|
10465 |
|
---|
10466 |
|
---|
10467 | /**
|
---|
10468 | * Interface for HM and EM to emulate the INVD instruction.
|
---|
10469 | *
|
---|
10470 | * @returns Strict VBox status code.
|
---|
10471 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10472 | * @param cbInstr The instruction length in bytes.
|
---|
10473 | *
|
---|
10474 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10475 | */
|
---|
10476 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvd(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10477 | {
|
---|
10478 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10479 |
|
---|
10480 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10481 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_invd);
|
---|
10482 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10483 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10484 | }
|
---|
10485 |
|
---|
10486 |
|
---|
10487 | /**
|
---|
10488 | * Interface for HM and EM to emulate the INVLPG instruction.
|
---|
10489 | *
|
---|
10490 | * @returns Strict VBox status code.
|
---|
10491 | * @retval VINF_PGM_SYNC_CR3
|
---|
10492 | *
|
---|
10493 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10494 | * @param cbInstr The instruction length in bytes.
|
---|
10495 | * @param GCPtrPage The effective address of the page to invalidate.
|
---|
10496 | *
|
---|
10497 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10498 | */
|
---|
10499 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvlpg(PVMCPUCC pVCpu, uint8_t cbInstr, RTGCPTR GCPtrPage)
|
---|
10500 | {
|
---|
10501 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10502 |
|
---|
10503 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10504 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_1(iemCImpl_invlpg, GCPtrPage);
|
---|
10505 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10506 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10507 | }
|
---|
10508 |
|
---|
10509 |
|
---|
10510 | /**
|
---|
10511 | * Interface for HM and EM to emulate the INVPCID instruction.
|
---|
10512 | *
|
---|
10513 | * @returns Strict VBox status code.
|
---|
10514 | * @retval VINF_PGM_SYNC_CR3
|
---|
10515 | *
|
---|
10516 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10517 | * @param cbInstr The instruction length in bytes.
|
---|
10518 | * @param iEffSeg The effective segment register.
|
---|
10519 | * @param GCPtrDesc The effective address of the INVPCID descriptor.
|
---|
10520 | * @param uType The invalidation type.
|
---|
10521 | *
|
---|
10522 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10523 | */
|
---|
10524 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvpcid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDesc,
|
---|
10525 | uint64_t uType)
|
---|
10526 | {
|
---|
10527 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 4);
|
---|
10528 |
|
---|
10529 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10530 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_3(iemCImpl_invpcid, iEffSeg, GCPtrDesc, uType);
|
---|
10531 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10532 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10533 | }
|
---|
10534 |
|
---|
10535 |
|
---|
10536 | /**
|
---|
10537 | * Interface for HM and EM to emulate the CPUID instruction.
|
---|
10538 | *
|
---|
10539 | * @returns Strict VBox status code.
|
---|
10540 | *
|
---|
10541 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10542 | * @param cbInstr The instruction length in bytes.
|
---|
10543 | *
|
---|
10544 | * @remarks Not all of the state needs to be synced in, the usual pluss RAX and RCX.
|
---|
10545 | */
|
---|
10546 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedCpuid(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10547 | {
|
---|
10548 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10549 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
|
---|
10550 |
|
---|
10551 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10552 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_cpuid);
|
---|
10553 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10554 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10555 | }
|
---|
10556 |
|
---|
10557 |
|
---|
10558 | /**
|
---|
10559 | * Interface for HM and EM to emulate the RDPMC instruction.
|
---|
10560 | *
|
---|
10561 | * @returns Strict VBox status code.
|
---|
10562 | *
|
---|
10563 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10564 | * @param cbInstr The instruction length in bytes.
|
---|
10565 | *
|
---|
10566 | * @remarks Not all of the state needs to be synced in.
|
---|
10567 | */
|
---|
10568 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdpmc(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10569 | {
|
---|
10570 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10571 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
|
---|
10572 |
|
---|
10573 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10574 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdpmc);
|
---|
10575 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10576 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10577 | }
|
---|
10578 |
|
---|
10579 |
|
---|
10580 | /**
|
---|
10581 | * Interface for HM and EM to emulate the RDTSC instruction.
|
---|
10582 | *
|
---|
10583 | * @returns Strict VBox status code.
|
---|
10584 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10585 | *
|
---|
10586 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10587 | * @param cbInstr The instruction length in bytes.
|
---|
10588 | *
|
---|
10589 | * @remarks Not all of the state needs to be synced in.
|
---|
10590 | */
|
---|
10591 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdtsc(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10592 | {
|
---|
10593 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10594 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
|
---|
10595 |
|
---|
10596 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10597 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdtsc);
|
---|
10598 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10599 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10600 | }
|
---|
10601 |
|
---|
10602 |
|
---|
10603 | /**
|
---|
10604 | * Interface for HM and EM to emulate the RDTSCP instruction.
|
---|
10605 | *
|
---|
10606 | * @returns Strict VBox status code.
|
---|
10607 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10608 | *
|
---|
10609 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10610 | * @param cbInstr The instruction length in bytes.
|
---|
10611 | *
|
---|
10612 | * @remarks Not all of the state needs to be synced in. Recommended
|
---|
10613 | * to include CPUMCTX_EXTRN_TSC_AUX, to avoid extra fetch call.
|
---|
10614 | */
|
---|
10615 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdtscp(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10616 | {
|
---|
10617 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10618 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
|
---|
10619 |
|
---|
10620 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10621 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdtscp);
|
---|
10622 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10623 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10624 | }
|
---|
10625 |
|
---|
10626 |
|
---|
10627 | /**
|
---|
10628 | * Interface for HM and EM to emulate the RDMSR instruction.
|
---|
10629 | *
|
---|
10630 | * @returns Strict VBox status code.
|
---|
10631 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10632 | *
|
---|
10633 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10634 | * @param cbInstr The instruction length in bytes.
|
---|
10635 | *
|
---|
10636 | * @remarks Not all of the state needs to be synced in. Requires RCX and
|
---|
10637 | * (currently) all MSRs.
|
---|
10638 | */
|
---|
10639 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdmsr(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10640 | {
|
---|
10641 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10642 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_ALL_MSRS);
|
---|
10643 |
|
---|
10644 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10645 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdmsr);
|
---|
10646 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10647 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10648 | }
|
---|
10649 |
|
---|
10650 |
|
---|
10651 | /**
|
---|
10652 | * Interface for HM and EM to emulate the WRMSR instruction.
|
---|
10653 | *
|
---|
10654 | * @returns Strict VBox status code.
|
---|
10655 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10656 | *
|
---|
10657 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10658 | * @param cbInstr The instruction length in bytes.
|
---|
10659 | *
|
---|
10660 | * @remarks Not all of the state needs to be synced in. Requires RCX, RAX, RDX,
|
---|
10661 | * and (currently) all MSRs.
|
---|
10662 | */
|
---|
10663 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedWrmsr(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10664 | {
|
---|
10665 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10666 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
|
---|
10667 | | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_ALL_MSRS);
|
---|
10668 |
|
---|
10669 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10670 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_wrmsr);
|
---|
10671 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10672 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10673 | }
|
---|
10674 |
|
---|
10675 |
|
---|
10676 | /**
|
---|
10677 | * Interface for HM and EM to emulate the MONITOR instruction.
|
---|
10678 | *
|
---|
10679 | * @returns Strict VBox status code.
|
---|
10680 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10681 | *
|
---|
10682 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10683 | * @param cbInstr The instruction length in bytes.
|
---|
10684 | *
|
---|
10685 | * @remarks Not all of the state needs to be synced in.
|
---|
10686 | * @remarks ASSUMES the default segment of DS and no segment override prefixes
|
---|
10687 | * are used.
|
---|
10688 | */
|
---|
10689 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMonitor(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10690 | {
|
---|
10691 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10692 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
|
---|
10693 |
|
---|
10694 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10695 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_1(iemCImpl_monitor, X86_SREG_DS);
|
---|
10696 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10697 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10698 | }
|
---|
10699 |
|
---|
10700 |
|
---|
10701 | /**
|
---|
10702 | * Interface for HM and EM to emulate the MWAIT instruction.
|
---|
10703 | *
|
---|
10704 | * @returns Strict VBox status code.
|
---|
10705 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10706 | *
|
---|
10707 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10708 | * @param cbInstr The instruction length in bytes.
|
---|
10709 | *
|
---|
10710 | * @remarks Not all of the state needs to be synced in.
|
---|
10711 | */
|
---|
10712 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMwait(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10713 | {
|
---|
10714 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10715 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RAX);
|
---|
10716 |
|
---|
10717 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10718 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_mwait);
|
---|
10719 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10720 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10721 | }
|
---|
10722 |
|
---|
10723 |
|
---|
10724 | /**
|
---|
10725 | * Interface for HM and EM to emulate the HLT instruction.
|
---|
10726 | *
|
---|
10727 | * @returns Strict VBox status code.
|
---|
10728 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10729 | *
|
---|
10730 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10731 | * @param cbInstr The instruction length in bytes.
|
---|
10732 | *
|
---|
10733 | * @remarks Not all of the state needs to be synced in.
|
---|
10734 | */
|
---|
10735 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedHlt(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10736 | {
|
---|
10737 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10738 |
|
---|
10739 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10740 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_hlt);
|
---|
10741 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10742 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10743 | }
|
---|
10744 |
|
---|
10745 |
|
---|
10746 | /**
|
---|
10747 | * Checks if IEM is in the process of delivering an event (interrupt or
|
---|
10748 | * exception).
|
---|
10749 | *
|
---|
10750 | * @returns true if we're in the process of raising an interrupt or exception,
|
---|
10751 | * false otherwise.
|
---|
10752 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10753 | * @param puVector Where to store the vector associated with the
|
---|
10754 | * currently delivered event, optional.
|
---|
10755 | * @param pfFlags Where to store th event delivery flags (see
|
---|
10756 | * IEM_XCPT_FLAGS_XXX), optional.
|
---|
10757 | * @param puErr Where to store the error code associated with the
|
---|
10758 | * event, optional.
|
---|
10759 | * @param puCr2 Where to store the CR2 associated with the event,
|
---|
10760 | * optional.
|
---|
10761 | * @remarks The caller should check the flags to determine if the error code and
|
---|
10762 | * CR2 are valid for the event.
|
---|
10763 | */
|
---|
10764 | VMM_INT_DECL(bool) IEMGetCurrentXcpt(PVMCPUCC pVCpu, uint8_t *puVector, uint32_t *pfFlags, uint32_t *puErr, uint64_t *puCr2)
|
---|
10765 | {
|
---|
10766 | bool const fRaisingXcpt = pVCpu->iem.s.cXcptRecursions > 0;
|
---|
10767 | if (fRaisingXcpt)
|
---|
10768 | {
|
---|
10769 | if (puVector)
|
---|
10770 | *puVector = pVCpu->iem.s.uCurXcpt;
|
---|
10771 | if (pfFlags)
|
---|
10772 | *pfFlags = pVCpu->iem.s.fCurXcpt;
|
---|
10773 | if (puErr)
|
---|
10774 | *puErr = pVCpu->iem.s.uCurXcptErr;
|
---|
10775 | if (puCr2)
|
---|
10776 | *puCr2 = pVCpu->iem.s.uCurXcptCr2;
|
---|
10777 | }
|
---|
10778 | return fRaisingXcpt;
|
---|
10779 | }
|
---|
10780 |
|
---|
10781 | #ifdef IN_RING3
|
---|
10782 |
|
---|
10783 | /**
|
---|
10784 | * Handles the unlikely and probably fatal merge cases.
|
---|
10785 | *
|
---|
10786 | * @returns Merged status code.
|
---|
10787 | * @param rcStrict Current EM status code.
|
---|
10788 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
10789 | * with @a rcStrict.
|
---|
10790 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
10791 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
10792 | * thread, for error reporting only.
|
---|
10793 | */
|
---|
10794 | DECL_NO_INLINE(static, VBOXSTRICTRC) iemR3MergeStatusSlow(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit,
|
---|
10795 | unsigned iMemMap, PVMCPUCC pVCpu)
|
---|
10796 | {
|
---|
10797 | if (RT_FAILURE_NP(rcStrict))
|
---|
10798 | return rcStrict;
|
---|
10799 |
|
---|
10800 | if (RT_FAILURE_NP(rcStrictCommit))
|
---|
10801 | return rcStrictCommit;
|
---|
10802 |
|
---|
10803 | if (rcStrict == rcStrictCommit)
|
---|
10804 | return rcStrictCommit;
|
---|
10805 |
|
---|
10806 | AssertLogRelMsgFailed(("rcStrictCommit=%Rrc rcStrict=%Rrc iMemMap=%u fAccess=%#x FirstPg=%RGp LB %u SecondPg=%RGp LB %u\n",
|
---|
10807 | VBOXSTRICTRC_VAL(rcStrictCommit), VBOXSTRICTRC_VAL(rcStrict), iMemMap,
|
---|
10808 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess,
|
---|
10809 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst,
|
---|
10810 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond));
|
---|
10811 | return VERR_IOM_FF_STATUS_IPE;
|
---|
10812 | }
|
---|
10813 |
|
---|
10814 |
|
---|
10815 | /**
|
---|
10816 | * Helper for IOMR3ProcessForceFlag.
|
---|
10817 | *
|
---|
10818 | * @returns Merged status code.
|
---|
10819 | * @param rcStrict Current EM status code.
|
---|
10820 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
10821 | * with @a rcStrict.
|
---|
10822 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
10823 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
10824 | * thread, for error reporting only.
|
---|
10825 | */
|
---|
10826 | DECLINLINE(VBOXSTRICTRC) iemR3MergeStatus(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit, unsigned iMemMap, PVMCPUCC pVCpu)
|
---|
10827 | {
|
---|
10828 | /* Simple. */
|
---|
10829 | if (RT_LIKELY(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RAW_TO_R3))
|
---|
10830 | return rcStrictCommit;
|
---|
10831 |
|
---|
10832 | if (RT_LIKELY(rcStrictCommit == VINF_SUCCESS))
|
---|
10833 | return rcStrict;
|
---|
10834 |
|
---|
10835 | /* EM scheduling status codes. */
|
---|
10836 | if (RT_LIKELY( rcStrict >= VINF_EM_FIRST
|
---|
10837 | && rcStrict <= VINF_EM_LAST))
|
---|
10838 | {
|
---|
10839 | if (RT_LIKELY( rcStrictCommit >= VINF_EM_FIRST
|
---|
10840 | && rcStrictCommit <= VINF_EM_LAST))
|
---|
10841 | return rcStrict < rcStrictCommit ? rcStrict : rcStrictCommit;
|
---|
10842 | }
|
---|
10843 |
|
---|
10844 | /* Unlikely */
|
---|
10845 | return iemR3MergeStatusSlow(rcStrict, rcStrictCommit, iMemMap, pVCpu);
|
---|
10846 | }
|
---|
10847 |
|
---|
10848 |
|
---|
10849 | /**
|
---|
10850 | * Called by force-flag handling code when VMCPU_FF_IEM is set.
|
---|
10851 | *
|
---|
10852 | * @returns Merge between @a rcStrict and what the commit operation returned.
|
---|
10853 | * @param pVM The cross context VM structure.
|
---|
10854 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
10855 | * @param rcStrict The status code returned by ring-0 or raw-mode.
|
---|
10856 | */
|
---|
10857 | VMMR3_INT_DECL(VBOXSTRICTRC) IEMR3ProcessForceFlag(PVM pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
|
---|
10858 | {
|
---|
10859 | /*
|
---|
10860 | * Reset the pending commit.
|
---|
10861 | */
|
---|
10862 | AssertMsg( (pVCpu->iem.s.aMemMappings[0].fAccess | pVCpu->iem.s.aMemMappings[1].fAccess | pVCpu->iem.s.aMemMappings[2].fAccess)
|
---|
10863 | & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND),
|
---|
10864 | ("%#x %#x %#x\n",
|
---|
10865 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
10866 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_IEM);
|
---|
10867 |
|
---|
10868 | /*
|
---|
10869 | * Commit the pending bounce buffers (usually just one).
|
---|
10870 | */
|
---|
10871 | unsigned cBufs = 0;
|
---|
10872 | unsigned iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
10873 | while (iMemMap-- > 0)
|
---|
10874 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND))
|
---|
10875 | {
|
---|
10876 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
10877 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
10878 | Assert(!pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned);
|
---|
10879 |
|
---|
10880 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
10881 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
10882 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
10883 |
|
---|
10884 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_1ST)
|
---|
10885 | {
|
---|
10886 | VBOXSTRICTRC rcStrictCommit1 = PGMPhysWrite(pVM,
|
---|
10887 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
10888 | pbBuf,
|
---|
10889 | cbFirst,
|
---|
10890 | PGMACCESSORIGIN_IEM);
|
---|
10891 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit1, iMemMap, pVCpu);
|
---|
10892 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysFirst=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
10893 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
10894 | VBOXSTRICTRC_VAL(rcStrictCommit1), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
10895 | }
|
---|
10896 |
|
---|
10897 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_2ND)
|
---|
10898 | {
|
---|
10899 | VBOXSTRICTRC rcStrictCommit2 = PGMPhysWrite(pVM,
|
---|
10900 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
10901 | pbBuf + cbFirst,
|
---|
10902 | cbSecond,
|
---|
10903 | PGMACCESSORIGIN_IEM);
|
---|
10904 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit2, iMemMap, pVCpu);
|
---|
10905 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysSecond=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
10906 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond,
|
---|
10907 | VBOXSTRICTRC_VAL(rcStrictCommit2), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
10908 | }
|
---|
10909 | cBufs++;
|
---|
10910 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
10911 | }
|
---|
10912 |
|
---|
10913 | AssertMsg(cBufs > 0 && cBufs == pVCpu->iem.s.cActiveMappings,
|
---|
10914 | ("cBufs=%u cActiveMappings=%u - %#x %#x %#x\n", cBufs, pVCpu->iem.s.cActiveMappings,
|
---|
10915 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
10916 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
10917 | return rcStrict;
|
---|
10918 | }
|
---|
10919 |
|
---|
10920 | #endif /* IN_RING3 */
|
---|
10921 |
|
---|