1 | /* $Id: GIMAllKvm.cpp 58123 2015-10-08 18:09:45Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * GIM - Guest Interface Manager, KVM, All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2015 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_GIM
|
---|
23 | #include "GIMKvmInternal.h"
|
---|
24 | #include "GIMInternal.h"
|
---|
25 |
|
---|
26 | #include <VBox/err.h>
|
---|
27 | #include <VBox/dis.h>
|
---|
28 | #include <VBox/vmm/hm.h>
|
---|
29 | #include <VBox/vmm/em.h>
|
---|
30 | #include <VBox/vmm/tm.h>
|
---|
31 | #include <VBox/vmm/vm.h>
|
---|
32 | #include <VBox/vmm/pgm.h>
|
---|
33 | #include <VBox/vmm/pdmdev.h>
|
---|
34 | #include <VBox/vmm/pdmapi.h>
|
---|
35 | #include <VBox/sup.h>
|
---|
36 |
|
---|
37 | #include <iprt/asm-amd64-x86.h>
|
---|
38 | #include <iprt/time.h>
|
---|
39 |
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Handles the KVM hypercall.
|
---|
43 | *
|
---|
44 | * @returns VBox status code.
|
---|
45 | * @param pVCpu The cross context virtual CPU structure.
|
---|
46 | * @param pCtx Pointer to the guest-CPU context.
|
---|
47 | *
|
---|
48 | * @thread EMT.
|
---|
49 | */
|
---|
50 | VMM_INT_DECL(int) gimKvmHypercall(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
51 | {
|
---|
52 | /*
|
---|
53 | * Get the hypercall operation and arguments.
|
---|
54 | */
|
---|
55 | bool const fIs64BitMode = CPUMIsGuestIn64BitCodeEx(pCtx);
|
---|
56 | uint64_t uHyperOp = pCtx->rax;
|
---|
57 | uint64_t uHyperArg0 = pCtx->rbx;
|
---|
58 | uint64_t uHyperArg1 = pCtx->rcx;
|
---|
59 | uint64_t uHyperArg2 = pCtx->rdi;
|
---|
60 | uint64_t uHyperArg3 = pCtx->rsi;
|
---|
61 | uint64_t uHyperRet = KVM_HYPERCALL_RET_ENOSYS;
|
---|
62 | uint64_t uAndMask = UINT64_C(0xffffffffffffffff);
|
---|
63 | if (!fIs64BitMode)
|
---|
64 | {
|
---|
65 | uAndMask = UINT64_C(0xffffffff);
|
---|
66 | uHyperOp &= UINT64_C(0xffffffff);
|
---|
67 | uHyperArg0 &= UINT64_C(0xffffffff);
|
---|
68 | uHyperArg1 &= UINT64_C(0xffffffff);
|
---|
69 | uHyperArg2 &= UINT64_C(0xffffffff);
|
---|
70 | uHyperArg3 &= UINT64_C(0xffffffff);
|
---|
71 | uHyperRet &= UINT64_C(0xffffffff);
|
---|
72 | }
|
---|
73 |
|
---|
74 | /*
|
---|
75 | * Verify that guest ring-0 is the one making the hypercall.
|
---|
76 | */
|
---|
77 | uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
|
---|
78 | if (uCpl)
|
---|
79 | {
|
---|
80 | pCtx->rax = KVM_HYPERCALL_RET_EPERM & uAndMask;
|
---|
81 | return VINF_SUCCESS;
|
---|
82 | }
|
---|
83 |
|
---|
84 | /*
|
---|
85 | * Do the work.
|
---|
86 | */
|
---|
87 | switch (uHyperOp)
|
---|
88 | {
|
---|
89 | case KVM_HYPERCALL_OP_KICK_CPU:
|
---|
90 | {
|
---|
91 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
92 | if (uHyperArg1 < pVM->cCpus)
|
---|
93 | {
|
---|
94 | PVMCPU pVCpuTarget = &pVM->aCpus[uHyperArg1]; /** ASSUMES pVCpu index == ApicId of the VCPU. */
|
---|
95 | VMCPU_FF_SET(pVCpuTarget, VMCPU_FF_UNHALT);
|
---|
96 | #ifdef IN_RING0
|
---|
97 | /*
|
---|
98 | * We might be here with preemption disabled or enabled (i.e. depending on thread-context hooks
|
---|
99 | * being used), so don't try obtaining the GVMMR0 used lock here. See @bugref{7270#c148}.
|
---|
100 | */
|
---|
101 | GVMMR0SchedWakeUpEx(pVM, pVCpuTarget->idCpu, false /* fTakeUsedLock */);
|
---|
102 | #elif defined(IN_RING3)
|
---|
103 | int rc2 = SUPR3CallVMMR0(pVM->pVMR0, pVCpuTarget->idCpu, VMMR0_DO_GVMM_SCHED_WAKE_UP, NULL);
|
---|
104 | AssertRC(rc2);
|
---|
105 | #elif defined(IN_RC)
|
---|
106 | /* Nothing to do for raw-mode, shouldn't really be used by raw-mode guests anyway. */
|
---|
107 | Assert(pVM->cCpus == 1);
|
---|
108 | #endif
|
---|
109 | uHyperRet = KVM_HYPERCALL_RET_SUCCESS;
|
---|
110 | }
|
---|
111 | break;
|
---|
112 | }
|
---|
113 |
|
---|
114 | case KVM_HYPERCALL_OP_VAPIC_POLL_IRQ:
|
---|
115 | uHyperRet = KVM_HYPERCALL_RET_SUCCESS;
|
---|
116 | break;
|
---|
117 |
|
---|
118 | default:
|
---|
119 | break;
|
---|
120 | }
|
---|
121 |
|
---|
122 | /*
|
---|
123 | * Place the result in rax/eax.
|
---|
124 | */
|
---|
125 | pCtx->rax = uHyperRet & uAndMask;
|
---|
126 | return VINF_SUCCESS;
|
---|
127 | }
|
---|
128 |
|
---|
129 |
|
---|
130 | /**
|
---|
131 | * Returns whether the guest has configured and enabled the use of KVM's
|
---|
132 | * hypercall interface.
|
---|
133 | *
|
---|
134 | * @returns true if hypercalls are enabled, false otherwise.
|
---|
135 | * @param pVCpu The cross context virtual CPU structure.
|
---|
136 | */
|
---|
137 | VMM_INT_DECL(bool) gimKvmAreHypercallsEnabled(PVMCPU pVCpu)
|
---|
138 | {
|
---|
139 | NOREF(pVCpu);
|
---|
140 | /* KVM paravirt interface doesn't have hypercall control bits (like Hyper-V does)
|
---|
141 | that guests can control, i.e. hypercalls are always enabled. */
|
---|
142 | return true;
|
---|
143 | }
|
---|
144 |
|
---|
145 |
|
---|
146 | /**
|
---|
147 | * Returns whether the guest has configured and enabled the use of KVM's
|
---|
148 | * paravirtualized TSC.
|
---|
149 | *
|
---|
150 | * @returns true if paravirt. TSC is enabled, false otherwise.
|
---|
151 | * @param pVM The cross context VM structure.
|
---|
152 | */
|
---|
153 | VMM_INT_DECL(bool) gimKvmIsParavirtTscEnabled(PVM pVM)
|
---|
154 | {
|
---|
155 | uint32_t cCpus = pVM->cCpus;
|
---|
156 | for (uint32_t i = 0; i < cCpus; i++)
|
---|
157 | {
|
---|
158 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
159 | PGIMKVMCPU pGimKvmCpu = &pVCpu->gim.s.u.KvmCpu;
|
---|
160 | if (MSR_GIM_KVM_SYSTEM_TIME_IS_ENABLED(pGimKvmCpu->u64SystemTimeMsr))
|
---|
161 | return true;
|
---|
162 | }
|
---|
163 | return false;
|
---|
164 | }
|
---|
165 |
|
---|
166 |
|
---|
167 | /**
|
---|
168 | * MSR read handler for KVM.
|
---|
169 | *
|
---|
170 | * @returns Strict VBox status code like CPUMQueryGuestMsr().
|
---|
171 | * @retval VINF_CPUM_R3_MSR_READ
|
---|
172 | * @retval VERR_CPUM_RAISE_GP_0
|
---|
173 | *
|
---|
174 | * @param pVCpu The cross context virtual CPU structure.
|
---|
175 | * @param idMsr The MSR being read.
|
---|
176 | * @param pRange The range this MSR belongs to.
|
---|
177 | * @param puValue Where to store the MSR value read.
|
---|
178 | */
|
---|
179 | VMM_INT_DECL(VBOXSTRICTRC) gimKvmReadMsr(PVMCPU pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t *puValue)
|
---|
180 | {
|
---|
181 | NOREF(pRange);
|
---|
182 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
183 | PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
|
---|
184 | PGIMKVMCPU pKvmCpu = &pVCpu->gim.s.u.KvmCpu;
|
---|
185 |
|
---|
186 | switch (idMsr)
|
---|
187 | {
|
---|
188 | case MSR_GIM_KVM_SYSTEM_TIME:
|
---|
189 | case MSR_GIM_KVM_SYSTEM_TIME_OLD:
|
---|
190 | *puValue = pKvmCpu->u64SystemTimeMsr;
|
---|
191 | return VINF_SUCCESS;
|
---|
192 |
|
---|
193 | case MSR_GIM_KVM_WALL_CLOCK:
|
---|
194 | case MSR_GIM_KVM_WALL_CLOCK_OLD:
|
---|
195 | *puValue = pKvm->u64WallClockMsr;
|
---|
196 | return VINF_SUCCESS;
|
---|
197 |
|
---|
198 | default:
|
---|
199 | {
|
---|
200 | #ifdef IN_RING3
|
---|
201 | static uint32_t s_cTimes = 0;
|
---|
202 | if (s_cTimes++ < 20)
|
---|
203 | LogRel(("GIM: KVM: Unknown/invalid RdMsr (%#x) -> #GP(0)\n", idMsr));
|
---|
204 | #endif
|
---|
205 | LogFunc(("Unknown/invalid RdMsr (%#RX32) -> #GP(0)\n", idMsr));
|
---|
206 | break;
|
---|
207 | }
|
---|
208 | }
|
---|
209 |
|
---|
210 | return VERR_CPUM_RAISE_GP_0;
|
---|
211 | }
|
---|
212 |
|
---|
213 |
|
---|
214 | /**
|
---|
215 | * MSR write handler for KVM.
|
---|
216 | *
|
---|
217 | * @returns Strict VBox status code like CPUMSetGuestMsr().
|
---|
218 | * @retval VINF_CPUM_R3_MSR_WRITE
|
---|
219 | * @retval VERR_CPUM_RAISE_GP_0
|
---|
220 | *
|
---|
221 | * @param pVCpu The cross context virtual CPU structure.
|
---|
222 | * @param idMsr The MSR being written.
|
---|
223 | * @param pRange The range this MSR belongs to.
|
---|
224 | * @param uRawValue The raw value with the ignored bits not masked.
|
---|
225 | */
|
---|
226 | VMM_INT_DECL(VBOXSTRICTRC) gimKvmWriteMsr(PVMCPU pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t uRawValue)
|
---|
227 | {
|
---|
228 | NOREF(pRange);
|
---|
229 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
230 | PGIMKVMCPU pKvmCpu = &pVCpu->gim.s.u.KvmCpu;
|
---|
231 |
|
---|
232 | switch (idMsr)
|
---|
233 | {
|
---|
234 | case MSR_GIM_KVM_SYSTEM_TIME:
|
---|
235 | case MSR_GIM_KVM_SYSTEM_TIME_OLD:
|
---|
236 | {
|
---|
237 | bool fEnable = RT_BOOL(uRawValue & MSR_GIM_KVM_SYSTEM_TIME_ENABLE_BIT);
|
---|
238 | #ifdef IN_RING0
|
---|
239 | NOREF(fEnable); NOREF(pKvmCpu);
|
---|
240 | gimR0KvmUpdateSystemTime(pVM, pVCpu);
|
---|
241 | return VINF_CPUM_R3_MSR_WRITE;
|
---|
242 | #elif defined(IN_RC)
|
---|
243 | Assert(pVM->cCpus == 1);
|
---|
244 | if (fEnable)
|
---|
245 | {
|
---|
246 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
247 | pKvmCpu->uTsc = TMCpuTickGetNoCheck(pVCpu) | UINT64_C(1);
|
---|
248 | pKvmCpu->uVirtNanoTS = TMVirtualGetNoCheck(pVM) | UINT64_C(1);
|
---|
249 | ASMSetFlags(fEFlags);
|
---|
250 | }
|
---|
251 | return VINF_CPUM_R3_MSR_WRITE;
|
---|
252 | #else /* IN_RING3 */
|
---|
253 | if (!fEnable)
|
---|
254 | {
|
---|
255 | gimR3KvmDisableSystemTime(pVM);
|
---|
256 | pKvmCpu->u64SystemTimeMsr = uRawValue;
|
---|
257 | return VINF_SUCCESS;
|
---|
258 | }
|
---|
259 |
|
---|
260 | /* Is the system-time struct. already enabled? If so, get flags that need preserving. */
|
---|
261 | uint8_t fFlags = 0;
|
---|
262 | GIMKVMSYSTEMTIME SystemTime;
|
---|
263 | RT_ZERO(SystemTime);
|
---|
264 | if ( MSR_GIM_KVM_SYSTEM_TIME_IS_ENABLED(pKvmCpu->u64SystemTimeMsr)
|
---|
265 | && MSR_GIM_KVM_SYSTEM_TIME_GUEST_GPA(uRawValue) == pKvmCpu->GCPhysSystemTime)
|
---|
266 | {
|
---|
267 | int rc2 = PGMPhysSimpleReadGCPhys(pVM, &SystemTime, pKvmCpu->GCPhysSystemTime, sizeof(GIMKVMSYSTEMTIME));
|
---|
268 | if (RT_SUCCESS(rc2))
|
---|
269 | pKvmCpu->fSystemTimeFlags = (SystemTime.fFlags & GIM_KVM_SYSTEM_TIME_FLAGS_GUEST_PAUSED);
|
---|
270 | }
|
---|
271 |
|
---|
272 | /* Enable and populate the system-time struct. */
|
---|
273 | pKvmCpu->u64SystemTimeMsr = uRawValue;
|
---|
274 | pKvmCpu->GCPhysSystemTime = MSR_GIM_KVM_SYSTEM_TIME_GUEST_GPA(uRawValue);
|
---|
275 | pKvmCpu->u32SystemTimeVersion += 2;
|
---|
276 | int rc = gimR3KvmEnableSystemTime(pVM, pVCpu);
|
---|
277 | if (RT_FAILURE(rc))
|
---|
278 | {
|
---|
279 | pKvmCpu->u64SystemTimeMsr = 0;
|
---|
280 | return VERR_CPUM_RAISE_GP_0;
|
---|
281 | }
|
---|
282 | return VINF_SUCCESS;
|
---|
283 | #endif
|
---|
284 | }
|
---|
285 |
|
---|
286 | case MSR_GIM_KVM_WALL_CLOCK:
|
---|
287 | case MSR_GIM_KVM_WALL_CLOCK_OLD:
|
---|
288 | {
|
---|
289 | #ifndef IN_RING3
|
---|
290 | return VINF_CPUM_R3_MSR_WRITE;
|
---|
291 | #else
|
---|
292 | /* Enable the wall-clock struct. */
|
---|
293 | RTGCPHYS GCPhysWallClock = MSR_GIM_KVM_WALL_CLOCK_GUEST_GPA(uRawValue);
|
---|
294 | if (RT_LIKELY(RT_ALIGN_64(GCPhysWallClock, 4) == GCPhysWallClock))
|
---|
295 | {
|
---|
296 | int rc = gimR3KvmEnableWallClock(pVM, GCPhysWallClock);
|
---|
297 | if (RT_SUCCESS(rc))
|
---|
298 | {
|
---|
299 | PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
|
---|
300 | pKvm->u64WallClockMsr = uRawValue;
|
---|
301 | return VINF_SUCCESS;
|
---|
302 | }
|
---|
303 | }
|
---|
304 | return VERR_CPUM_RAISE_GP_0;
|
---|
305 | #endif /* IN_RING3 */
|
---|
306 | }
|
---|
307 |
|
---|
308 | default:
|
---|
309 | {
|
---|
310 | #ifdef IN_RING3
|
---|
311 | static uint32_t s_cTimes = 0;
|
---|
312 | if (s_cTimes++ < 20)
|
---|
313 | LogRel(("GIM: KVM: Unknown/invalid WrMsr (%#x,%#x`%08x) -> #GP(0)\n", idMsr,
|
---|
314 | uRawValue & UINT64_C(0xffffffff00000000), uRawValue & UINT64_C(0xffffffff)));
|
---|
315 | #endif
|
---|
316 | LogFunc(("Unknown/invalid WrMsr (%#RX32,%#RX64) -> #GP(0)\n", idMsr, uRawValue));
|
---|
317 | break;
|
---|
318 | }
|
---|
319 | }
|
---|
320 |
|
---|
321 | return VERR_CPUM_RAISE_GP_0;
|
---|
322 | }
|
---|
323 |
|
---|
324 |
|
---|
325 | /**
|
---|
326 | * Whether we need to trap \#UD exceptions in the guest.
|
---|
327 | *
|
---|
328 | * On AMD-V we need to trap them because paravirtualized Linux/KVM guests use
|
---|
329 | * the Intel VMCALL instruction to make hypercalls and we need to trap and
|
---|
330 | * optionally patch them to the AMD-V VMMCALL instruction and handle the
|
---|
331 | * hypercall.
|
---|
332 | *
|
---|
333 | * I guess this was done so that guest teleporation between an AMD and an Intel
|
---|
334 | * machine would working without any changes at the time of teleporation.
|
---|
335 | * However, this also means we -always- need to intercept \#UD exceptions on one
|
---|
336 | * of the two CPU models (Intel or AMD). Hyper-V solves this problem more
|
---|
337 | * elegantly by letting the hypervisor supply an opaque hypercall page.
|
---|
338 | *
|
---|
339 | * For raw-mode VMs, this function will always return true. See gimR3KvmInit().
|
---|
340 | *
|
---|
341 | * @param pVCpu The cross context virtual CPU structure.
|
---|
342 | */
|
---|
343 | VMM_INT_DECL(bool) gimKvmShouldTrapXcptUD(PVMCPU pVCpu)
|
---|
344 | {
|
---|
345 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
346 | return pVM->gim.s.u.Kvm.fTrapXcptUD;
|
---|
347 | }
|
---|
348 |
|
---|
349 |
|
---|
350 | /**
|
---|
351 | * Exception handler for \#UD.
|
---|
352 | *
|
---|
353 | * @param pVCpu The cross context virtual CPU structure.
|
---|
354 | * @param pCtx Pointer to the guest-CPU context.
|
---|
355 | * @param pDis Pointer to the disassembled instruction state at RIP.
|
---|
356 | * Optional, can be NULL.
|
---|
357 | *
|
---|
358 | * @thread EMT.
|
---|
359 | */
|
---|
360 | VMM_INT_DECL(int) gimKvmXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PDISCPUSTATE pDis)
|
---|
361 | {
|
---|
362 | /*
|
---|
363 | * If we didn't ask for #UD to be trapped, bail.
|
---|
364 | */
|
---|
365 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
366 | PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
|
---|
367 | if (RT_UNLIKELY(!pVM->gim.s.u.Kvm.fTrapXcptUD))
|
---|
368 | return VERR_GIM_OPERATION_FAILED;
|
---|
369 |
|
---|
370 | int rc = VINF_SUCCESS;
|
---|
371 | if (!pDis)
|
---|
372 | {
|
---|
373 | /*
|
---|
374 | * Disassemble the instruction at RIP to figure out if it's the Intel VMCALL instruction
|
---|
375 | * or the AMD VMMCALL instruction and if so, handle it as a hypercall.
|
---|
376 | */
|
---|
377 | DISCPUSTATE Dis;
|
---|
378 | rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, NULL /* pcbInstr */);
|
---|
379 | pDis = &Dis;
|
---|
380 | }
|
---|
381 |
|
---|
382 | if (RT_SUCCESS(rc))
|
---|
383 | {
|
---|
384 | /*
|
---|
385 | * Patch the instruction to so we don't have to spend time disassembling it each time.
|
---|
386 | * Makes sense only for HM as with raw-mode we will be getting a #UD regardless.
|
---|
387 | */
|
---|
388 | if ( pDis->pCurInstr->uOpcode == OP_VMCALL
|
---|
389 | || pDis->pCurInstr->uOpcode == OP_VMMCALL)
|
---|
390 | {
|
---|
391 | /*
|
---|
392 | * Make sure guest ring-0 is the one making the hypercall.
|
---|
393 | */
|
---|
394 | if (CPUMGetGuestCPL(pVCpu))
|
---|
395 | return VERR_GIM_HYPERCALL_ACCESS_DENIED;
|
---|
396 |
|
---|
397 | if ( pDis->pCurInstr->uOpcode != pKvm->uOpCodeNative
|
---|
398 | && HMIsEnabled(pVM))
|
---|
399 | {
|
---|
400 | uint8_t abHypercall[3];
|
---|
401 | size_t cbWritten = 0;
|
---|
402 | rc = VMMPatchHypercall(pVM, &abHypercall, sizeof(abHypercall), &cbWritten);
|
---|
403 | AssertRC(rc);
|
---|
404 | Assert(sizeof(abHypercall) == pDis->cbInstr);
|
---|
405 | Assert(sizeof(abHypercall) == cbWritten);
|
---|
406 |
|
---|
407 | rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, &abHypercall, sizeof(abHypercall));
|
---|
408 | }
|
---|
409 |
|
---|
410 | /*
|
---|
411 | * Update RIP and perform the hypercall.
|
---|
412 | *
|
---|
413 | * For HM, we can simply resume guest execution without performing the hypercall now and
|
---|
414 | * do it on the next VMCALL/VMMCALL exit handler on the patched instruction.
|
---|
415 | *
|
---|
416 | * For raw-mode we need to do this now anyway. So we do it here regardless with an added
|
---|
417 | * advantage is that it saves one world-switch for the HM case.
|
---|
418 | */
|
---|
419 | if (RT_SUCCESS(rc))
|
---|
420 | {
|
---|
421 | pCtx->rip += pDis->cbInstr;
|
---|
422 | rc = gimKvmHypercall(pVCpu, pCtx);
|
---|
423 | }
|
---|
424 | }
|
---|
425 | else
|
---|
426 | rc = VERR_GIM_OPERATION_FAILED;
|
---|
427 | }
|
---|
428 | return rc;
|
---|
429 | }
|
---|
430 |
|
---|