VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/GIMAllHv.cpp@ 87778

Last change on this file since 87778 was 87766, checked in by vboxsync, 4 years ago

VMM/TM,VMM/*: Refactored the TM timer APIs to use 'handles' and take a pVM parameter. Only internal callbacks have been updated with a hTimer parameter, so far. bugref:9943

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 56.6 KB
Line 
1/* $Id: GIMAllHv.cpp 87766 2021-02-16 14:27:43Z vboxsync $ */
2/** @file
3 * GIM - Guest Interface Manager, Microsoft Hyper-V, All Contexts.
4 */
5
6/*
7 * Copyright (C) 2014-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_GIM
23#include <VBox/vmm/gim.h>
24#include <VBox/vmm/em.h>
25#include <VBox/vmm/hm.h>
26#include <VBox/vmm/tm.h>
27#include <VBox/vmm/dbgf.h>
28#include <VBox/vmm/pdmdev.h>
29#include <VBox/vmm/pdmapi.h>
30#include <VBox/vmm/pgm.h>
31#include <VBox/vmm/apic.h>
32#include <VBox/vmm/em.h>
33#include "GIMHvInternal.h"
34#include "GIMInternal.h"
35#include <VBox/vmm/vmcc.h>
36
37#include <VBox/err.h>
38
39#include <iprt/asm-amd64-x86.h>
40#ifdef IN_RING3
41# include <iprt/mem.h>
42#endif
43
44
45#ifdef IN_RING3
46/**
47 * Read and validate slow hypercall parameters.
48 *
49 * @returns VBox status code.
50 * @param pVM The cross context VM structure.
51 * @param pCtx Pointer to the guest-CPU context.
52 * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not.
53 * @param enmParam The hypercall parameter type.
54 * @param prcHv Where to store the Hyper-V status code. Only valid
55 * to the caller when this function returns
56 * VINF_SUCCESS.
57 */
58static int gimHvReadSlowHypercallParam(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, GIMHVHYPERCALLPARAM enmParam, int *prcHv)
59{
60 int rc = VINF_SUCCESS;
61 PGIMHV pHv = &pVM->gim.s.u.Hv;
62 RTGCPHYS GCPhysParam;
63 void *pvDst;
64 if (enmParam == GIMHVHYPERCALLPARAM_IN)
65 {
66 GCPhysParam = fIs64BitMode ? pCtx->rdx : (pCtx->rbx << 32) | pCtx->ecx;
67 pvDst = pHv->pbHypercallIn;
68 pHv->GCPhysHypercallIn = GCPhysParam;
69 }
70 else
71 {
72 GCPhysParam = fIs64BitMode ? pCtx->r8 : (pCtx->rdi << 32) | pCtx->esi;
73 pvDst = pHv->pbHypercallOut;
74 pHv->GCPhysHypercallOut = GCPhysParam;
75 Assert(enmParam == GIMHVHYPERCALLPARAM_OUT);
76 }
77
78 const char *pcszParam = enmParam == GIMHVHYPERCALLPARAM_IN ? "input" : "output"; NOREF(pcszParam);
79 if (RT_ALIGN_64(GCPhysParam, 8) == GCPhysParam)
80 {
81 if (PGMPhysIsGCPhysNormal(pVM, GCPhysParam))
82 {
83 rc = PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysParam, GIM_HV_PAGE_SIZE);
84 if (RT_SUCCESS(rc))
85 {
86 *prcHv = GIM_HV_STATUS_SUCCESS;
87 return VINF_SUCCESS;
88 }
89 LogRel(("GIM: HyperV: Failed reading %s param at %#RGp. rc=%Rrc\n", pcszParam, GCPhysParam, rc));
90 rc = VERR_GIM_HYPERCALL_MEMORY_READ_FAILED;
91 }
92 else
93 {
94 Log(("GIM: HyperV: Invalid %s param address %#RGp\n", pcszParam, GCPhysParam));
95 *prcHv = GIM_HV_STATUS_INVALID_PARAMETER;
96 }
97 }
98 else
99 {
100 Log(("GIM: HyperV: Misaligned %s param address %#RGp\n", pcszParam, GCPhysParam));
101 *prcHv = GIM_HV_STATUS_INVALID_ALIGNMENT;
102 }
103 return rc;
104}
105
106
107/**
108 * Helper for reading and validating slow hypercall input and output parameters.
109 *
110 * @returns VBox status code.
111 * @param pVM The cross context VM structure.
112 * @param pCtx Pointer to the guest-CPU context.
113 * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not.
114 * @param prcHv Where to store the Hyper-V status code. Only valid
115 * to the caller when this function returns
116 * VINF_SUCCESS.
117 */
118static int gimHvReadSlowHypercallParamsInOut(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, int *prcHv)
119{
120 int rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, prcHv);
121 if ( RT_SUCCESS(rc)
122 && *prcHv == GIM_HV_STATUS_SUCCESS)
123 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, prcHv);
124 return rc;
125}
126#endif
127
128
129/**
130 * Handles all Hyper-V hypercalls.
131 *
132 * @returns Strict VBox status code.
133 * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation
134 * failed).
135 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
136 * @retval VERR_GIM_HYPERCALLS_NOT_ENABLED hypercalls are disabled by the
137 * guest.
138 * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient.
139 * @retval VERR_GIM_HYPERCALL_MEMORY_READ_FAILED hypercall failed while reading
140 * memory.
141 * @retval VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED hypercall failed while
142 * writing memory.
143 *
144 * @param pVCpu The cross context virtual CPU structure.
145 * @param pCtx Pointer to the guest-CPU context.
146 *
147 * @thread EMT(pVCpu).
148 */
149VMM_INT_DECL(VBOXSTRICTRC) gimHvHypercall(PVMCPUCC pVCpu, PCPUMCTX pCtx)
150{
151 VMCPU_ASSERT_EMT(pVCpu);
152
153#ifndef IN_RING3
154 RT_NOREF_PV(pVCpu);
155 RT_NOREF_PV(pCtx);
156 return VINF_GIM_R3_HYPERCALL;
157#else
158 PVM pVM = pVCpu->CTX_SUFF(pVM);
159 STAM_REL_COUNTER_INC(&pVM->gim.s.StatHypercalls);
160
161 /*
162 * Verify that hypercalls are enabled by the guest.
163 */
164 if (!gimHvAreHypercallsEnabled(pVM))
165 return VERR_GIM_HYPERCALLS_NOT_ENABLED;
166
167 /*
168 * Verify guest is in ring-0 protected mode.
169 */
170 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
171 if ( uCpl
172 || CPUMIsGuestInRealModeEx(pCtx))
173 {
174 return VERR_GIM_HYPERCALL_ACCESS_DENIED;
175 }
176
177 /*
178 * Get the hypercall operation code and modes.
179 * Fast hypercalls have only two or fewer inputs but no output parameters.
180 */
181 const bool fIs64BitMode = CPUMIsGuestIn64BitCodeEx(pCtx);
182 const uint64_t uHyperIn = fIs64BitMode ? pCtx->rcx : (pCtx->rdx << 32) | pCtx->eax;
183 const uint16_t uHyperOp = GIM_HV_HYPERCALL_IN_CALL_CODE(uHyperIn);
184 const bool fHyperFast = GIM_HV_HYPERCALL_IN_IS_FAST(uHyperIn);
185 const uint16_t cHyperReps = GIM_HV_HYPERCALL_IN_REP_COUNT(uHyperIn);
186 const uint16_t idxHyperRepStart = GIM_HV_HYPERCALL_IN_REP_START_IDX(uHyperIn);
187 uint64_t cHyperRepsDone = 0;
188
189 /* Currently no repeating hypercalls are supported. */
190 RT_NOREF2(cHyperReps, idxHyperRepStart);
191
192 int rc = VINF_SUCCESS;
193 int rcHv = GIM_HV_STATUS_OPERATION_DENIED;
194 PGIMHV pHv = &pVM->gim.s.u.Hv;
195
196 /*
197 * Validate common hypercall input parameters.
198 */
199 if ( !GIM_HV_HYPERCALL_IN_RSVD_1(uHyperIn)
200 && !GIM_HV_HYPERCALL_IN_RSVD_2(uHyperIn)
201 && !GIM_HV_HYPERCALL_IN_RSVD_3(uHyperIn))
202 {
203 /*
204 * Perform the hypercall.
205 */
206 switch (uHyperOp)
207 {
208 case GIM_HV_HYPERCALL_OP_RETREIVE_DEBUG_DATA: /* Non-rep, memory IO. */
209 {
210 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
211 {
212 rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv);
213 if ( RT_SUCCESS(rc)
214 && rcHv == GIM_HV_STATUS_SUCCESS)
215 {
216 LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via hypercall\n"));
217 rc = gimR3HvHypercallRetrieveDebugData(pVM, &rcHv);
218 if (RT_FAILURE(rc))
219 LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallRetrieveDebugData failed. rc=%Rrc\n", rc));
220 }
221 }
222 else
223 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
224 break;
225 }
226
227 case GIM_HV_HYPERCALL_OP_POST_DEBUG_DATA: /* Non-rep, memory IO. */
228 {
229 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
230 {
231 rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv);
232 if ( RT_SUCCESS(rc)
233 && rcHv == GIM_HV_STATUS_SUCCESS)
234 {
235 LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via hypercall\n"));
236 rc = gimR3HvHypercallPostDebugData(pVM, &rcHv);
237 if (RT_FAILURE(rc))
238 LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallPostDebugData failed. rc=%Rrc\n", rc));
239 }
240 }
241 else
242 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
243 break;
244 }
245
246 case GIM_HV_HYPERCALL_OP_RESET_DEBUG_SESSION: /* Non-rep, fast (register IO). */
247 {
248 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
249 {
250 uint32_t fFlags = 0;
251 if (!fHyperFast)
252 {
253 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv);
254 if ( RT_SUCCESS(rc)
255 && rcHv == GIM_HV_STATUS_SUCCESS)
256 {
257 PGIMHVDEBUGRESETIN pIn = (PGIMHVDEBUGRESETIN)pHv->pbHypercallIn;
258 fFlags = pIn->fFlags;
259 }
260 }
261 else
262 {
263 rcHv = GIM_HV_STATUS_SUCCESS;
264 fFlags = fIs64BitMode ? pCtx->rdx : pCtx->ebx;
265 }
266
267 /*
268 * Nothing to flush on the sending side as we don't maintain our own buffers.
269 */
270 /** @todo We should probably ask the debug receive thread to flush it's buffer. */
271 if (rcHv == GIM_HV_STATUS_SUCCESS)
272 {
273 if (fFlags)
274 LogRel(("GIM: HyperV: Resetting debug session via hypercall\n"));
275 else
276 rcHv = GIM_HV_STATUS_INVALID_PARAMETER;
277 }
278 }
279 else
280 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
281 break;
282 }
283
284 case GIM_HV_HYPERCALL_OP_POST_MESSAGE: /* Non-rep, memory IO. */
285 {
286 if (pHv->fIsInterfaceVs)
287 {
288 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv);
289 if ( RT_SUCCESS(rc)
290 && rcHv == GIM_HV_STATUS_SUCCESS)
291 {
292 PGIMHVPOSTMESSAGEIN pMsgIn = (PGIMHVPOSTMESSAGEIN)pHv->pbHypercallIn;
293 PCGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
294 if ( pMsgIn->uConnectionId == GIM_HV_VMBUS_MSG_CONNECTION_ID
295 && pMsgIn->enmMessageType == GIMHVMSGTYPE_VMBUS
296 && !MSR_GIM_HV_SINT_IS_MASKED(pHvCpu->auSintMsrs[GIM_HV_VMBUS_MSG_SINT])
297 && MSR_GIM_HV_SIMP_IS_ENABLED(pHvCpu->uSimpMsr))
298 {
299 RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(pHvCpu->uSimpMsr);
300 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp))
301 {
302 /*
303 * The VMBus client (guest) expects to see 0xf at offsets 4 and 16 and 1 at offset 0.
304 */
305 GIMHVMSG HvMsg;
306 RT_ZERO(HvMsg);
307 HvMsg.MsgHdr.enmMessageType = GIMHVMSGTYPE_VMBUS;
308 HvMsg.MsgHdr.cbPayload = 0xf;
309 HvMsg.aPayload[0] = 0xf;
310 uint16_t const offMsg = GIM_HV_VMBUS_MSG_SINT * sizeof(GIMHVMSG);
311 int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp + offMsg, &HvMsg, sizeof(HvMsg));
312 if (RT_SUCCESS(rc2))
313 LogRel(("GIM: HyperV: SIMP hypercall faking message at %#RGp:%u\n", GCPhysSimp, offMsg));
314 else
315 {
316 LogRel(("GIM: HyperV: Failed to write SIMP message at %#RGp:%u, rc=%Rrc\n", GCPhysSimp,
317 offMsg, rc));
318 }
319 }
320 }
321
322 /*
323 * Make the call fail after updating the SIMP, so the guest can go back to using
324 * the Hyper-V debug MSR interface. Any error code below GIM_HV_STATUS_NOT_ACKNOWLEDGED
325 * and the guest tries to proceed with initializing VMBus which is totally unnecessary
326 * for what we're trying to accomplish, i.e. convince guest to use Hyper-V debugging. Also,
327 * we don't implement other VMBus/SynIC functionality so the guest would #GP and die.
328 */
329 rcHv = GIM_HV_STATUS_NOT_ACKNOWLEDGED;
330 }
331 else
332 rcHv = GIM_HV_STATUS_INVALID_PARAMETER;
333 }
334 else
335 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
336 break;
337 }
338
339 case GIM_HV_EXT_HYPERCALL_OP_QUERY_CAP: /* Non-rep, extended hypercall. */
340 {
341 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_EXTENDED_HYPERCALLS)
342 {
343 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, &rcHv);
344 if ( RT_SUCCESS(rc)
345 && rcHv == GIM_HV_STATUS_SUCCESS)
346 {
347 rc = gimR3HvHypercallExtQueryCap(pVM, &rcHv);
348 }
349 }
350 else
351 {
352 LogRel(("GIM: HyperV: Denied HvExtCallQueryCapabilities when the feature is not exposed\n"));
353 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
354 }
355 break;
356 }
357
358 case GIM_HV_EXT_HYPERCALL_OP_GET_BOOT_ZEROED_MEM: /* Non-rep, extended hypercall. */
359 {
360 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_EXTENDED_HYPERCALLS)
361 {
362 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, &rcHv);
363 if ( RT_SUCCESS(rc)
364 && rcHv == GIM_HV_STATUS_SUCCESS)
365 {
366 rc = gimR3HvHypercallExtGetBootZeroedMem(pVM, &rcHv);
367 }
368 }
369 else
370 {
371 LogRel(("GIM: HyperV: Denied HvExtCallGetBootZeroedMemory when the feature is not exposed\n"));
372 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
373 }
374 break;
375 }
376
377 default:
378 {
379 LogRel(("GIM: HyperV: Unknown/invalid hypercall opcode %#x (%u)\n", uHyperOp, uHyperOp));
380 rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_CODE;
381 break;
382 }
383 }
384 }
385 else
386 rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_INPUT;
387
388 /*
389 * Update the guest with results of the hypercall.
390 */
391 if (RT_SUCCESS(rc))
392 {
393 if (fIs64BitMode)
394 pCtx->rax = (cHyperRepsDone << 32) | rcHv;
395 else
396 {
397 pCtx->edx = cHyperRepsDone;
398 pCtx->eax = rcHv;
399 }
400 }
401
402 return rc;
403#endif
404}
405
406
407/**
408 * Returns a pointer to the MMIO2 regions supported by Hyper-V.
409 *
410 * @returns Pointer to an array of MMIO2 regions.
411 * @param pVM The cross context VM structure.
412 * @param pcRegions Where to store the number of regions in the array.
413 */
414VMM_INT_DECL(PGIMMMIO2REGION) gimHvGetMmio2Regions(PVM pVM, uint32_t *pcRegions)
415{
416 Assert(GIMIsEnabled(pVM));
417 PGIMHV pHv = &pVM->gim.s.u.Hv;
418
419 AssertCompile(RT_ELEMENTS(pHv->aMmio2Regions) <= 8);
420 *pcRegions = RT_ELEMENTS(pHv->aMmio2Regions);
421 return pHv->aMmio2Regions;
422}
423
424
425/**
426 * Returns whether the guest has configured and enabled the use of Hyper-V's
427 * hypercall interface.
428 *
429 * @returns true if hypercalls are enabled, false otherwise.
430 * @param pVM The cross context VM structure.
431 */
432VMM_INT_DECL(bool) gimHvAreHypercallsEnabled(PCVM pVM)
433{
434 return RT_BOOL(pVM->gim.s.u.Hv.u64GuestOsIdMsr != 0);
435}
436
437
438/**
439 * Returns whether the guest has configured and enabled the use of Hyper-V's
440 * paravirtualized TSC.
441 *
442 * @returns true if paravirt. TSC is enabled, false otherwise.
443 * @param pVM The cross context VM structure.
444 */
445VMM_INT_DECL(bool) gimHvIsParavirtTscEnabled(PVM pVM)
446{
447 return MSR_GIM_HV_REF_TSC_IS_ENABLED(pVM->gim.s.u.Hv.u64TscPageMsr);
448}
449
450
451#ifdef IN_RING3
452/**
453 * Gets the descriptive OS ID variant as identified via the
454 * MSR_GIM_HV_GUEST_OS_ID MSR.
455 *
456 * @returns The name.
457 * @param uGuestOsIdMsr The MSR_GIM_HV_GUEST_OS_ID MSR.
458 */
459static const char *gimHvGetGuestOsIdVariantName(uint64_t uGuestOsIdMsr)
460{
461 /* Refer the Hyper-V spec, section 3.6 "Reporting the Guest OS Identity". */
462 uint32_t uVendor = MSR_GIM_HV_GUEST_OS_ID_VENDOR(uGuestOsIdMsr);
463 if (uVendor == 1 /* Microsoft */)
464 {
465 uint32_t uOsVariant = MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uGuestOsIdMsr);
466 switch (uOsVariant)
467 {
468 case 0: return "Undefined";
469 case 1: return "MS-DOS";
470 case 2: return "Windows 3.x";
471 case 3: return "Windows 9x";
472 case 4: return "Windows NT or derivative";
473 case 5: return "Windows CE";
474 default: return "Unknown";
475 }
476 }
477 return "Unknown";
478}
479#endif
480
481/**
482 * Gets the time reference count for the current VM.
483 *
484 * @returns The time reference count.
485 * @param pVCpu The cross context virtual CPU structure.
486 */
487DECLINLINE(uint64_t) gimHvGetTimeRefCount(PVMCPUCC pVCpu)
488{
489 /* Hyper-V reports the time in 100 ns units (10 MHz). */
490 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
491 PCGIMHV pHv = &pVCpu->CTX_SUFF(pVM)->gim.s.u.Hv;
492 uint64_t const u64Tsc = TMCpuTickGet(pVCpu); /** @todo should we be passing VCPU0 always? */
493 uint64_t const u64TscHz = pHv->cTscTicksPerSecond;
494 uint64_t const u64Tsc100NS = u64TscHz / UINT64_C(10000000); /* 100 ns */
495 uint64_t const uTimeRefCount = (u64Tsc / u64Tsc100NS);
496 return uTimeRefCount;
497}
498
499
500/**
501 * Starts the synthetic timer.
502 *
503 * @param pVCpu The cross context virtual CPU structure.
504 * @param pHvStimer Pointer to the Hyper-V synthetic timer.
505 *
506 * @remarks Caller needs to hold the timer critical section.
507 * @thread Any.
508 */
509VMM_INT_DECL(void) gimHvStartStimer(PVMCPUCC pVCpu, PCGIMHVSTIMER pHvStimer)
510{
511 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
512 TMTIMERHANDLE hTimer = pHvStimer->hTimer;
513 Assert(TMTimerIsLockOwner(pVM, hTimer));
514
515 uint64_t const uTimerCount = pHvStimer->uStimerCountMsr;
516 if (uTimerCount)
517 {
518 uint64_t const uTimerCountNS = uTimerCount * 100;
519
520 /* For periodic timers, 'uTimerCountNS' represents the relative interval. */
521 if (MSR_GIM_HV_STIMER_IS_PERIODIC(pHvStimer->uStimerConfigMsr))
522 {
523 TMTimerSetNano(pVM, hTimer, uTimerCountNS);
524 LogFlow(("GIM%u: HyperV: Started relative periodic STIMER%u with uTimerCountNS=%RU64\n", pVCpu->idCpu,
525 pHvStimer->idxStimer, uTimerCountNS));
526 }
527 else
528 {
529 /* For one-shot timers, 'uTimerCountNS' represents an absolute expiration wrt to Hyper-V reference time,
530 we convert it to a relative time and program the timer. */
531 uint64_t const uCurRefTimeNS = gimHvGetTimeRefCount(pVCpu) * 100;
532 if (uTimerCountNS > uCurRefTimeNS)
533 {
534 uint64_t const uRelativeNS = uTimerCountNS - uCurRefTimeNS;
535 TMTimerSetNano(pVM, hTimer, uRelativeNS);
536 LogFlow(("GIM%u: HyperV: Started one-shot relative STIMER%u with uRelativeNS=%RU64\n", pVCpu->idCpu,
537 pHvStimer->idxStimer, uRelativeNS));
538 }
539 }
540 /** @todo frequency hinting? */
541 }
542}
543
544
545/**
546 * Stops the synthetic timer for the given VCPU.
547 *
548 * @param pVCpu The cross context virtual CPU structure.
549 * @param pHvStimer Pointer to the Hyper-V synthetic timer.
550 *
551 * @remarks Caller needs to the hold the timer critical section.
552 * @thread EMT(pVCpu).
553 */
554static void gimHvStopStimer(PVMCPUCC pVCpu, PGIMHVSTIMER pHvStimer)
555{
556 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
557 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
558
559 TMTIMERHANDLE hTimer = pHvStimer->hTimer;
560 Assert(TMTimerIsLockOwner(pVM, hTimer));
561
562 if (TMTimerIsActive(pVM, hTimer))
563 TMTimerStop(pVM, hTimer);
564}
565
566
567/**
568 * MSR read handler for Hyper-V.
569 *
570 * @returns Strict VBox status code like CPUMQueryGuestMsr().
571 * @retval VINF_CPUM_R3_MSR_READ
572 * @retval VERR_CPUM_RAISE_GP_0
573 *
574 * @param pVCpu The cross context virtual CPU structure.
575 * @param idMsr The MSR being read.
576 * @param pRange The range this MSR belongs to.
577 * @param puValue Where to store the MSR value read.
578 *
579 * @thread EMT.
580 */
581VMM_INT_DECL(VBOXSTRICTRC) gimHvReadMsr(PVMCPUCC pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t *puValue)
582{
583 NOREF(pRange);
584 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
585 PCGIMHV pHv = &pVM->gim.s.u.Hv;
586
587 switch (idMsr)
588 {
589 case MSR_GIM_HV_TIME_REF_COUNT:
590 *puValue = gimHvGetTimeRefCount(pVCpu);
591 return VINF_SUCCESS;
592
593 case MSR_GIM_HV_VP_INDEX:
594 *puValue = pVCpu->idCpu;
595 return VINF_SUCCESS;
596
597 case MSR_GIM_HV_TPR:
598 *puValue = APICHvGetTpr(pVCpu);
599 return VINF_SUCCESS;
600
601 case MSR_GIM_HV_ICR:
602 *puValue = APICHvGetIcr(pVCpu);
603 return VINF_SUCCESS;
604
605 case MSR_GIM_HV_GUEST_OS_ID:
606 *puValue = pHv->u64GuestOsIdMsr;
607 return VINF_SUCCESS;
608
609 case MSR_GIM_HV_HYPERCALL:
610 *puValue = pHv->u64HypercallMsr;
611 return VINF_SUCCESS;
612
613 case MSR_GIM_HV_REF_TSC:
614 *puValue = pHv->u64TscPageMsr;
615 return VINF_SUCCESS;
616
617 case MSR_GIM_HV_TSC_FREQ:
618 *puValue = TMCpuTicksPerSecond(pVM);
619 return VINF_SUCCESS;
620
621 case MSR_GIM_HV_APIC_FREQ:
622 {
623 int rc = APICGetTimerFreq(pVM, puValue);
624 if (RT_FAILURE(rc))
625 return VERR_CPUM_RAISE_GP_0;
626 return VINF_SUCCESS;
627 }
628
629 case MSR_GIM_HV_SYNTH_DEBUG_STATUS:
630 *puValue = pHv->uDbgStatusMsr;
631 return VINF_SUCCESS;
632
633 case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3:
634 case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7:
635 case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11:
636 case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15:
637 {
638 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
639 *puValue = pHvCpu->auSintMsrs[idMsr - MSR_GIM_HV_SINT0];
640 return VINF_SUCCESS;
641 }
642
643 case MSR_GIM_HV_STIMER0_CONFIG:
644 case MSR_GIM_HV_STIMER1_CONFIG:
645 case MSR_GIM_HV_STIMER2_CONFIG:
646 case MSR_GIM_HV_STIMER3_CONFIG:
647 {
648 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
649 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
650 PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer];
651 *puValue = pcHvStimer->uStimerConfigMsr;
652 return VINF_SUCCESS;
653 }
654
655 case MSR_GIM_HV_STIMER0_COUNT:
656 case MSR_GIM_HV_STIMER1_COUNT:
657 case MSR_GIM_HV_STIMER2_COUNT:
658 case MSR_GIM_HV_STIMER3_COUNT:
659 {
660 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
661 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_COUNT) >> 1;
662 PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer];
663 *puValue = pcHvStimer->uStimerCountMsr;
664 return VINF_SUCCESS;
665 }
666
667 case MSR_GIM_HV_EOM:
668 {
669 *puValue = 0;
670 return VINF_SUCCESS;
671 }
672
673 case MSR_GIM_HV_SCONTROL:
674 {
675 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
676 *puValue = pHvCpu->uSControlMsr;
677 return VINF_SUCCESS;
678 }
679
680 case MSR_GIM_HV_SIMP:
681 {
682 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
683 *puValue = pHvCpu->uSimpMsr;
684 return VINF_SUCCESS;
685 }
686
687 case MSR_GIM_HV_SVERSION:
688 *puValue = GIM_HV_SVERSION;
689 return VINF_SUCCESS;
690
691 case MSR_GIM_HV_RESET:
692 *puValue = 0;
693 return VINF_SUCCESS;
694
695 case MSR_GIM_HV_CRASH_CTL:
696 *puValue = pHv->uCrashCtlMsr;
697 return VINF_SUCCESS;
698
699 case MSR_GIM_HV_CRASH_P0: *puValue = pHv->uCrashP0Msr; return VINF_SUCCESS;
700 case MSR_GIM_HV_CRASH_P1: *puValue = pHv->uCrashP1Msr; return VINF_SUCCESS;
701 case MSR_GIM_HV_CRASH_P2: *puValue = pHv->uCrashP2Msr; return VINF_SUCCESS;
702 case MSR_GIM_HV_CRASH_P3: *puValue = pHv->uCrashP3Msr; return VINF_SUCCESS;
703 case MSR_GIM_HV_CRASH_P4: *puValue = pHv->uCrashP4Msr; return VINF_SUCCESS;
704
705 case MSR_GIM_HV_DEBUG_OPTIONS_MSR:
706 {
707 if (pHv->fIsVendorMsHv)
708 {
709#ifndef IN_RING3
710 return VINF_CPUM_R3_MSR_READ;
711#else
712 LogRelMax(1, ("GIM: HyperV: Guest querying debug options, suggesting %s interface\n",
713 pHv->fDbgHypercallInterface ? "hypercall" : "MSR"));
714 *puValue = pHv->fDbgHypercallInterface ? GIM_HV_DEBUG_OPTIONS_USE_HYPERCALLS : 0;
715 return VINF_SUCCESS;
716#endif
717 }
718 break;
719 }
720
721 /* Write-only MSRs: */
722 case MSR_GIM_HV_EOI:
723 /* Reserved/unknown MSRs: */
724 default:
725 {
726#ifdef IN_RING3
727 static uint32_t s_cTimes = 0;
728 if (s_cTimes++ < 20)
729 LogRel(("GIM: HyperV: Unknown/invalid RdMsr (%#x) -> #GP(0)\n", idMsr));
730 LogFunc(("Unknown/invalid RdMsr (%#RX32) -> #GP(0)\n", idMsr));
731 break;
732#else
733 return VINF_CPUM_R3_MSR_READ;
734#endif
735 }
736 }
737
738 return VERR_CPUM_RAISE_GP_0;
739}
740
741
742/**
743 * MSR write handler for Hyper-V.
744 *
745 * @returns Strict VBox status code like CPUMSetGuestMsr().
746 * @retval VINF_CPUM_R3_MSR_WRITE
747 * @retval VERR_CPUM_RAISE_GP_0
748 *
749 * @param pVCpu The cross context virtual CPU structure.
750 * @param idMsr The MSR being written.
751 * @param pRange The range this MSR belongs to.
752 * @param uRawValue The raw value with the ignored bits not masked.
753 *
754 * @thread EMT.
755 */
756VMM_INT_DECL(VBOXSTRICTRC) gimHvWriteMsr(PVMCPUCC pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t uRawValue)
757{
758 NOREF(pRange);
759 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
760 PGIMHV pHv = &pVM->gim.s.u.Hv;
761
762 switch (idMsr)
763 {
764 case MSR_GIM_HV_TPR:
765 return APICHvSetTpr(pVCpu, uRawValue);
766
767 case MSR_GIM_HV_EOI:
768 return APICHvSetEoi(pVCpu, uRawValue);
769
770 case MSR_GIM_HV_ICR:
771 return APICHvSetIcr(pVCpu, uRawValue);
772
773 case MSR_GIM_HV_GUEST_OS_ID:
774 {
775#ifndef IN_RING3
776 return VINF_CPUM_R3_MSR_WRITE;
777#else
778 /* Disable the hypercall-page and hypercalls if 0 is written to this MSR. */
779 if (!uRawValue)
780 {
781 if (MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(pHv->u64HypercallMsr))
782 {
783 gimR3HvDisableHypercallPage(pVM);
784 pHv->u64HypercallMsr &= ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE;
785 LogRel(("GIM: HyperV: Hypercall page disabled via Guest OS ID MSR\n"));
786 }
787 }
788 else
789 {
790 LogRel(("GIM: HyperV: Guest OS reported ID %#RX64\n", uRawValue));
791 LogRel(("GIM: HyperV: Open-source=%RTbool Vendor=%#x OS=%#x (%s) Major=%u Minor=%u ServicePack=%u Build=%u\n",
792 MSR_GIM_HV_GUEST_OS_ID_IS_OPENSOURCE(uRawValue), MSR_GIM_HV_GUEST_OS_ID_VENDOR(uRawValue),
793 MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uRawValue), gimHvGetGuestOsIdVariantName(uRawValue),
794 MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue),
795 MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue)));
796
797 /* Update the CPUID leaf, see Hyper-V spec. "Microsoft Hypervisor CPUID Leaves". */
798 CPUMCPUIDLEAF HyperLeaf;
799 RT_ZERO(HyperLeaf);
800 HyperLeaf.uLeaf = UINT32_C(0x40000002);
801 HyperLeaf.uEax = MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue);
802 HyperLeaf.uEbx = MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue)
803 | (MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue) << 16);
804 HyperLeaf.uEcx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue);
805 HyperLeaf.uEdx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue)
806 | (MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue) << 24);
807 int rc2 = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
808 AssertRC(rc2);
809 }
810
811 pHv->u64GuestOsIdMsr = uRawValue;
812
813 /*
814 * Update EM on hypercall instruction enabled state.
815 */
816 if (uRawValue)
817 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
818 EMSetHypercallInstructionsEnabled(pVM->CTX_SUFF(apCpus)[idCpu], true);
819 else
820 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
821 EMSetHypercallInstructionsEnabled(pVM->CTX_SUFF(apCpus)[idCpu], false);
822
823 return VINF_SUCCESS;
824#endif /* IN_RING3 */
825 }
826
827 case MSR_GIM_HV_HYPERCALL:
828 {
829#ifndef IN_RING3
830 return VINF_CPUM_R3_MSR_WRITE;
831#else
832 /** @todo There is/was a problem with hypercalls for FreeBSD 10.1 guests,
833 * see @bugref{7270#c116}. */
834 /* First, update all but the hypercall page enable bit. */
835 pHv->u64HypercallMsr = (uRawValue & ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE);
836
837 /* Hypercall page can only be enabled when the guest has enabled hypercalls. */
838 bool fEnable = MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(uRawValue);
839 if ( fEnable
840 && !gimHvAreHypercallsEnabled(pVM))
841 {
842 return VINF_SUCCESS;
843 }
844
845 /* Is the guest disabling the hypercall-page? Allow it regardless of the Guest-OS Id Msr. */
846 if (!fEnable)
847 {
848 gimR3HvDisableHypercallPage(pVM);
849 pHv->u64HypercallMsr = uRawValue;
850 return VINF_SUCCESS;
851 }
852
853 /* Enable the hypercall-page. */
854 RTGCPHYS GCPhysHypercallPage = MSR_GIM_HV_HYPERCALL_GUEST_PFN(uRawValue) << PAGE_SHIFT;
855 int rc = gimR3HvEnableHypercallPage(pVM, GCPhysHypercallPage);
856 if (RT_SUCCESS(rc))
857 {
858 pHv->u64HypercallMsr = uRawValue;
859 return VINF_SUCCESS;
860 }
861
862 return VERR_CPUM_RAISE_GP_0;
863#endif
864 }
865
866 case MSR_GIM_HV_REF_TSC:
867 {
868#ifndef IN_RING3
869 return VINF_CPUM_R3_MSR_WRITE;
870#else /* IN_RING3 */
871 /* First, update all but the TSC page enable bit. */
872 pHv->u64TscPageMsr = (uRawValue & ~MSR_GIM_HV_REF_TSC_ENABLE);
873
874 /* Is the guest disabling the TSC page? */
875 bool fEnable = MSR_GIM_HV_REF_TSC_IS_ENABLED(uRawValue);
876 if (!fEnable)
877 {
878 gimR3HvDisableTscPage(pVM);
879 pHv->u64TscPageMsr = uRawValue;
880 return VINF_SUCCESS;
881 }
882
883 /* Enable the TSC page. */
884 RTGCPHYS GCPhysTscPage = MSR_GIM_HV_REF_TSC_GUEST_PFN(uRawValue) << PAGE_SHIFT;
885 int rc = gimR3HvEnableTscPage(pVM, GCPhysTscPage, false /* fUseThisTscSequence */, 0 /* uTscSequence */);
886 if (RT_SUCCESS(rc))
887 {
888 pHv->u64TscPageMsr = uRawValue;
889 return VINF_SUCCESS;
890 }
891
892 return VERR_CPUM_RAISE_GP_0;
893#endif /* IN_RING3 */
894 }
895
896 case MSR_GIM_HV_APIC_ASSIST_PAGE:
897 {
898#ifndef IN_RING3
899 return VINF_CPUM_R3_MSR_WRITE;
900#else /* IN_RING3 */
901 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
902 pHvCpu->uApicAssistPageMsr = uRawValue;
903
904 if (MSR_GIM_HV_APICASSIST_PAGE_IS_ENABLED(uRawValue))
905 {
906 RTGCPHYS GCPhysApicAssistPage = MSR_GIM_HV_APICASSIST_GUEST_PFN(uRawValue) << PAGE_SHIFT;
907 if (PGMPhysIsGCPhysNormal(pVM, GCPhysApicAssistPage))
908 {
909 int rc = gimR3HvEnableApicAssistPage(pVCpu, GCPhysApicAssistPage);
910 if (RT_SUCCESS(rc))
911 {
912 pHvCpu->uApicAssistPageMsr = uRawValue;
913 return VINF_SUCCESS;
914 }
915 }
916 else
917 {
918 LogRelMax(5, ("GIM%u: HyperV: APIC-assist page address %#RGp invalid!\n", pVCpu->idCpu,
919 GCPhysApicAssistPage));
920 }
921 }
922 else
923 gimR3HvDisableApicAssistPage(pVCpu);
924
925 return VERR_CPUM_RAISE_GP_0;
926#endif /* IN_RING3 */
927 }
928
929 case MSR_GIM_HV_RESET:
930 {
931#ifndef IN_RING3
932 return VINF_CPUM_R3_MSR_WRITE;
933#else
934 if (MSR_GIM_HV_RESET_IS_ENABLED(uRawValue))
935 {
936 LogRel(("GIM: HyperV: Reset initiated through MSR\n"));
937 int rc = PDMDevHlpVMReset(pVM->gim.s.pDevInsR3, PDMVMRESET_F_GIM);
938 AssertRC(rc); /* Note! Not allowed to return VINF_EM_RESET / VINF_EM_HALT here, so ignore them. */
939 }
940 /* else: Ignore writes to other bits. */
941 return VINF_SUCCESS;
942#endif /* IN_RING3 */
943 }
944
945 case MSR_GIM_HV_CRASH_CTL:
946 {
947#ifndef IN_RING3
948 return VINF_CPUM_R3_MSR_WRITE;
949#else
950 if (uRawValue & MSR_GIM_HV_CRASH_CTL_NOTIFY)
951 {
952 LogRel(("GIM: HyperV: Guest indicates a fatal condition! P0=%#RX64 P1=%#RX64 P2=%#RX64 P3=%#RX64 P4=%#RX64\n",
953 pHv->uCrashP0Msr, pHv->uCrashP1Msr, pHv->uCrashP2Msr, pHv->uCrashP3Msr, pHv->uCrashP4Msr));
954 DBGFR3ReportBugCheck(pVM, pVCpu, DBGFEVENT_BSOD_MSR, pHv->uCrashP0Msr, pHv->uCrashP1Msr,
955 pHv->uCrashP2Msr, pHv->uCrashP3Msr, pHv->uCrashP4Msr);
956 /* (Do not try pass VINF_EM_DBG_EVENT, doesn't work from here!) */
957 }
958 return VINF_SUCCESS;
959#endif
960 }
961
962 case MSR_GIM_HV_SYNTH_DEBUG_SEND_BUFFER:
963 {
964 if (!pHv->fDbgEnabled)
965 return VERR_CPUM_RAISE_GP_0;
966#ifndef IN_RING3
967 return VINF_CPUM_R3_MSR_WRITE;
968#else
969 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
970 pHv->uDbgSendBufferMsr = GCPhysBuffer;
971 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
972 LogRel(("GIM: HyperV: Set up debug send buffer at %#RGp\n", GCPhysBuffer));
973 else
974 LogRel(("GIM: HyperV: Destroyed debug send buffer\n"));
975 pHv->uDbgSendBufferMsr = uRawValue;
976 return VINF_SUCCESS;
977#endif
978 }
979
980 case MSR_GIM_HV_SYNTH_DEBUG_RECEIVE_BUFFER:
981 {
982 if (!pHv->fDbgEnabled)
983 return VERR_CPUM_RAISE_GP_0;
984#ifndef IN_RING3
985 return VINF_CPUM_R3_MSR_WRITE;
986#else
987 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
988 pHv->uDbgRecvBufferMsr = GCPhysBuffer;
989 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
990 LogRel(("GIM: HyperV: Set up debug receive buffer at %#RGp\n", GCPhysBuffer));
991 else
992 LogRel(("GIM: HyperV: Destroyed debug receive buffer\n"));
993 return VINF_SUCCESS;
994#endif
995 }
996
997 case MSR_GIM_HV_SYNTH_DEBUG_PENDING_BUFFER:
998 {
999 if (!pHv->fDbgEnabled)
1000 return VERR_CPUM_RAISE_GP_0;
1001#ifndef IN_RING3
1002 return VINF_CPUM_R3_MSR_WRITE;
1003#else
1004 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
1005 pHv->uDbgPendingBufferMsr = GCPhysBuffer;
1006 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
1007 LogRel(("GIM: HyperV: Set up debug pending buffer at %#RGp\n", uRawValue));
1008 else
1009 LogRel(("GIM: HyperV: Destroyed debug pending buffer\n"));
1010 return VINF_SUCCESS;
1011#endif
1012 }
1013
1014 case MSR_GIM_HV_SYNTH_DEBUG_CONTROL:
1015 {
1016 if (!pHv->fDbgEnabled)
1017 return VERR_CPUM_RAISE_GP_0;
1018#ifndef IN_RING3
1019 return VINF_CPUM_R3_MSR_WRITE;
1020#else
1021 if ( MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue)
1022 && MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue))
1023 {
1024 LogRel(("GIM: HyperV: Requesting both read and write through debug control MSR -> #GP(0)\n"));
1025 return VERR_CPUM_RAISE_GP_0;
1026 }
1027
1028 if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue))
1029 {
1030 uint32_t cbWrite = MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue);
1031 if ( cbWrite > 0
1032 && cbWrite < GIM_HV_PAGE_SIZE)
1033 {
1034 if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgSendBufferMsr))
1035 {
1036 Assert(pHv->pvDbgBuffer);
1037 int rc = PGMPhysSimpleReadGCPhys(pVM, pHv->pvDbgBuffer, (RTGCPHYS)pHv->uDbgSendBufferMsr, cbWrite);
1038 if (RT_SUCCESS(rc))
1039 {
1040 LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via MSR\n"));
1041 uint32_t cbWritten = 0;
1042 rc = gimR3HvDebugWrite(pVM, pHv->pvDbgBuffer, cbWrite, &cbWritten, false /*fUdpPkt*/);
1043 if ( RT_SUCCESS(rc)
1044 && cbWrite == cbWritten)
1045 pHv->uDbgStatusMsr = MSR_GIM_HV_SYNTH_DEBUG_STATUS_W_SUCCESS;
1046 else
1047 pHv->uDbgStatusMsr = 0;
1048 }
1049 else
1050 LogRelMax(5, ("GIM: HyperV: Failed to read debug send buffer at %#RGp, rc=%Rrc\n",
1051 (RTGCPHYS)pHv->uDbgSendBufferMsr, rc));
1052 }
1053 else
1054 LogRelMax(5, ("GIM: HyperV: Debug send buffer address %#RGp invalid! Ignoring debug write!\n",
1055 (RTGCPHYS)pHv->uDbgSendBufferMsr));
1056 }
1057 else
1058 LogRelMax(5, ("GIM: HyperV: Invalid write size %u specified in MSR, ignoring debug write!\n",
1059 MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue)));
1060 }
1061 else if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue))
1062 {
1063 if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr))
1064 {
1065 LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via MSR\n"));
1066 uint32_t cbReallyRead;
1067 Assert(pHv->pvDbgBuffer);
1068 int rc = gimR3HvDebugRead(pVM, pHv->pvDbgBuffer, PAGE_SIZE, PAGE_SIZE, &cbReallyRead, 0, false /*fUdpPkt*/);
1069 if ( RT_SUCCESS(rc)
1070 && cbReallyRead > 0)
1071 {
1072 rc = PGMPhysSimpleWriteGCPhys(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr, pHv->pvDbgBuffer, cbReallyRead);
1073 if (RT_SUCCESS(rc))
1074 {
1075 pHv->uDbgStatusMsr = ((uint16_t)cbReallyRead) << 16;
1076 pHv->uDbgStatusMsr |= MSR_GIM_HV_SYNTH_DEBUG_STATUS_R_SUCCESS;
1077 }
1078 else
1079 {
1080 pHv->uDbgStatusMsr = 0;
1081 LogRelMax(5, ("GIM: HyperV: PGMPhysSimpleWriteGCPhys failed. rc=%Rrc\n", rc));
1082 }
1083 }
1084 else
1085 pHv->uDbgStatusMsr = 0;
1086 }
1087 else
1088 {
1089 LogRelMax(5, ("GIM: HyperV: Debug receive buffer address %#RGp invalid! Ignoring debug read!\n",
1090 (RTGCPHYS)pHv->uDbgRecvBufferMsr));
1091 }
1092 }
1093 return VINF_SUCCESS;
1094#endif
1095 }
1096
1097 case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3:
1098 case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7:
1099 case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11:
1100 case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15:
1101 {
1102 uint8_t uVector = MSR_GIM_HV_SINT_GET_VECTOR(uRawValue);
1103 bool const fVMBusMsg = RT_BOOL(idMsr == GIM_HV_VMBUS_MSG_SINT);
1104 size_t const idxSintMsr = idMsr - MSR_GIM_HV_SINT0;
1105 const char *pszDesc = fVMBusMsg ? "VMBus Message" : "Generic";
1106 if (uVector < GIM_HV_SINT_VECTOR_VALID_MIN)
1107 {
1108 LogRel(("GIM%u: HyperV: Programmed an invalid vector in SINT%u (%s), uVector=%u -> #GP(0)\n", pVCpu->idCpu,
1109 idxSintMsr, pszDesc, uVector));
1110 return VERR_CPUM_RAISE_GP_0;
1111 }
1112
1113 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1114 pHvCpu->auSintMsrs[idxSintMsr] = uRawValue;
1115 if (fVMBusMsg)
1116 {
1117 if (MSR_GIM_HV_SINT_IS_MASKED(uRawValue))
1118 Log(("GIM%u: HyperV: Masked SINT%u (%s)\n", pVCpu->idCpu, idxSintMsr, pszDesc));
1119 else
1120 Log(("GIM%u: HyperV: Unmasked SINT%u (%s), uVector=%u\n", pVCpu->idCpu, idxSintMsr, pszDesc, uVector));
1121 }
1122 Log(("GIM%u: HyperV: Written SINT%u=%#RX64\n", pVCpu->idCpu, idxSintMsr, uRawValue));
1123 return VINF_SUCCESS;
1124 }
1125
1126 case MSR_GIM_HV_SCONTROL:
1127 {
1128#ifndef IN_RING3
1129 /** @todo make this RZ later? */
1130 return VINF_CPUM_R3_MSR_WRITE;
1131#else
1132 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1133 pHvCpu->uSControlMsr = uRawValue;
1134 if (MSR_GIM_HV_SCONTROL_IS_ENABLED(uRawValue))
1135 LogRel(("GIM%u: HyperV: Synthetic interrupt control enabled\n", pVCpu->idCpu));
1136 else
1137 LogRel(("GIM%u: HyperV: Synthetic interrupt control disabled\n", pVCpu->idCpu));
1138 return VINF_SUCCESS;
1139#endif
1140 }
1141
1142 case MSR_GIM_HV_STIMER0_CONFIG:
1143 case MSR_GIM_HV_STIMER1_CONFIG:
1144 case MSR_GIM_HV_STIMER2_CONFIG:
1145 case MSR_GIM_HV_STIMER3_CONFIG:
1146 {
1147 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1148 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
1149
1150 /* Validate the writable bits. */
1151 if (RT_LIKELY(!(uRawValue & ~MSR_GIM_HV_STIMER_RW_VALID)))
1152 {
1153 Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers));
1154 PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer];
1155
1156 /* Lock to prevent concurrent access from the timer callback. */
1157 int rc = TMTimerLock(pVM, pHvStimer->hTimer, VERR_IGNORED);
1158 if (rc == VINF_SUCCESS)
1159 {
1160 /* Update the MSR value. */
1161 pHvStimer->uStimerConfigMsr = uRawValue;
1162 Log(("GIM%u: HyperV: Set STIMER_CONFIG%u=%#RX64\n", pVCpu->idCpu, idxStimer, uRawValue));
1163
1164 /* Process the MSR bits. */
1165 if ( !MSR_GIM_HV_STIMER_GET_SINTX(uRawValue) /* Writing SINTx as 0 causes the timer to be disabled. */
1166 || !MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue))
1167 {
1168 pHvStimer->uStimerConfigMsr &= ~MSR_GIM_HV_STIMER_ENABLE;
1169 gimHvStopStimer(pVCpu, pHvStimer);
1170 Log(("GIM%u: HyperV: Disabled STIMER_CONFIG%u\n", pVCpu->idCpu, idxStimer));
1171 }
1172 else if (MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue))
1173 {
1174 /* Auto-enable implies writing to the STIMERx_COUNT MSR is what starts the timer. */
1175 if (!MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(uRawValue))
1176 {
1177 if (!TMTimerIsActive(pVM, pHvStimer->hTimer))
1178 {
1179 gimHvStartStimer(pVCpu, pHvStimer);
1180 Log(("GIM%u: HyperV: Started STIMER%u\n", pVCpu->idCpu, idxStimer));
1181 }
1182 else
1183 {
1184 /*
1185 * Enabling a timer that's already enabled is undefined behaviour,
1186 * see Hyper-V spec. 15.3.1 "Synthetic Timer Configuration Register".
1187 *
1188 * Our implementation just re-starts the timer. Guests that comform to
1189 * the Hyper-V specs. should not be doing this anyway.
1190 */
1191 AssertFailed();
1192 gimHvStopStimer(pVCpu, pHvStimer);
1193 gimHvStartStimer(pVCpu, pHvStimer);
1194 }
1195 }
1196 }
1197
1198 TMTimerUnlock(pVM, pHvStimer->hTimer);
1199 }
1200 return rc;
1201 }
1202#ifndef IN_RING3
1203 return VINF_CPUM_R3_MSR_WRITE;
1204#else
1205 LogRel(("GIM%u: HyperV: Setting reserved bits of STIMER%u MSR (uRawValue=%#RX64) -> #GP(0)\n", pVCpu->idCpu,
1206 idxStimer, uRawValue));
1207 return VERR_CPUM_RAISE_GP_0;
1208#endif
1209 }
1210
1211 case MSR_GIM_HV_STIMER0_COUNT:
1212 case MSR_GIM_HV_STIMER1_COUNT:
1213 case MSR_GIM_HV_STIMER2_COUNT:
1214 case MSR_GIM_HV_STIMER3_COUNT:
1215 {
1216 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1217 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
1218 Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers));
1219 PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer];
1220 int const rcBusy = VINF_CPUM_R3_MSR_WRITE;
1221
1222 /*
1223 * Writing zero to this MSR disables the timer regardless of whether the auto-enable
1224 * flag is set in the config MSR corresponding to the timer.
1225 */
1226 if (!uRawValue)
1227 {
1228 gimHvStopStimer(pVCpu, pHvStimer);
1229 pHvStimer->uStimerCountMsr = 0;
1230 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64, stopped timer\n", pVCpu->idCpu, idxStimer, uRawValue));
1231 return VINF_SUCCESS;
1232 }
1233
1234 /*
1235 * Concurrent writes to the config. MSR can't happen as it's serialized by way
1236 * of being done on the same EMT as this.
1237 */
1238 if (MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(pHvStimer->uStimerConfigMsr))
1239 {
1240 int rc = TMTimerLock(pVM, pHvStimer->hTimer, rcBusy);
1241 if (rc == VINF_SUCCESS)
1242 {
1243 pHvStimer->uStimerCountMsr = uRawValue;
1244 gimHvStartStimer(pVCpu, pHvStimer);
1245 TMTimerUnlock(pVM, pHvStimer->hTimer);
1246 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64 %RU64 msec, auto-started timer\n", pVCpu->idCpu, idxStimer,
1247 uRawValue, (uRawValue * 100) / RT_NS_1MS_64));
1248 }
1249 return rc;
1250 }
1251
1252 /* Simple update of the counter without any timer start/stop side-effects. */
1253 pHvStimer->uStimerCountMsr = uRawValue;
1254 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64\n", pVCpu->idCpu, idxStimer, uRawValue));
1255 return VINF_SUCCESS;
1256 }
1257
1258 case MSR_GIM_HV_EOM:
1259 {
1260 /** @todo implement EOM. */
1261 Log(("GIM%u: HyperV: EOM\n", pVCpu->idCpu));
1262 return VINF_SUCCESS;
1263 }
1264
1265 case MSR_GIM_HV_SIEFP:
1266 {
1267#ifndef IN_RING3
1268 return VINF_CPUM_R3_MSR_WRITE;
1269#else
1270 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1271 pHvCpu->uSiefpMsr = uRawValue;
1272 if (MSR_GIM_HV_SIEF_PAGE_IS_ENABLED(uRawValue))
1273 {
1274 RTGCPHYS GCPhysSiefPage = MSR_GIM_HV_SIEF_GUEST_PFN(uRawValue) << PAGE_SHIFT;
1275 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSiefPage))
1276 {
1277 int rc = gimR3HvEnableSiefPage(pVCpu, GCPhysSiefPage);
1278 if (RT_SUCCESS(rc))
1279 {
1280 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt event flags page at %#RGp\n", pVCpu->idCpu,
1281 GCPhysSiefPage));
1282 /** @todo SIEF setup. */
1283 return VINF_SUCCESS;
1284 }
1285 }
1286 else
1287 LogRelMax(5, ("GIM%u: HyperV: SIEF page address %#RGp invalid!\n", pVCpu->idCpu, GCPhysSiefPage));
1288 }
1289 else
1290 gimR3HvDisableSiefPage(pVCpu);
1291
1292 return VERR_CPUM_RAISE_GP_0;
1293#endif
1294 break;
1295 }
1296
1297 case MSR_GIM_HV_SIMP:
1298 {
1299#ifndef IN_RING3
1300 return VINF_CPUM_R3_MSR_WRITE;
1301#else
1302 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1303 pHvCpu->uSimpMsr = uRawValue;
1304 if (MSR_GIM_HV_SIMP_IS_ENABLED(uRawValue))
1305 {
1306 RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(uRawValue);
1307 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp))
1308 {
1309 uint8_t abSimp[PAGE_SIZE];
1310 RT_ZERO(abSimp);
1311 int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp, &abSimp[0], sizeof(abSimp));
1312 if (RT_SUCCESS(rc2))
1313 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at %#RGp\n", pVCpu->idCpu, GCPhysSimp));
1314 else
1315 {
1316 LogRel(("GIM%u: HyperV: Failed to update synthetic interrupt message page at %#RGp. uSimpMsr=%#RX64 rc=%Rrc\n",
1317 pVCpu->idCpu, pHvCpu->uSimpMsr, GCPhysSimp, rc2));
1318 return VERR_CPUM_RAISE_GP_0;
1319 }
1320 }
1321 else
1322 {
1323 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at invalid address %#RGp\n", pVCpu->idCpu,
1324 GCPhysSimp));
1325 }
1326 }
1327 else
1328 LogRel(("GIM%u: HyperV: Disabled synthetic interrupt message page\n", pVCpu->idCpu));
1329 return VINF_SUCCESS;
1330#endif
1331 }
1332
1333 case MSR_GIM_HV_CRASH_P0: pHv->uCrashP0Msr = uRawValue; return VINF_SUCCESS;
1334 case MSR_GIM_HV_CRASH_P1: pHv->uCrashP1Msr = uRawValue; return VINF_SUCCESS;
1335 case MSR_GIM_HV_CRASH_P2: pHv->uCrashP2Msr = uRawValue; return VINF_SUCCESS;
1336 case MSR_GIM_HV_CRASH_P3: pHv->uCrashP3Msr = uRawValue; return VINF_SUCCESS;
1337 case MSR_GIM_HV_CRASH_P4: pHv->uCrashP4Msr = uRawValue; return VINF_SUCCESS;
1338
1339 case MSR_GIM_HV_TIME_REF_COUNT: /* Read-only MSRs. */
1340 case MSR_GIM_HV_VP_INDEX:
1341 case MSR_GIM_HV_TSC_FREQ:
1342 case MSR_GIM_HV_APIC_FREQ:
1343 LogFunc(("WrMsr on read-only MSR %#RX32 -> #GP(0)\n", idMsr));
1344 break;
1345
1346 case MSR_GIM_HV_DEBUG_OPTIONS_MSR:
1347 {
1348 if (pHv->fIsVendorMsHv)
1349 {
1350#ifndef IN_RING3
1351 return VINF_CPUM_R3_MSR_WRITE;
1352#else
1353 LogRelMax(5, ("GIM: HyperV: Write debug options MSR with %#RX64 ignored\n", uRawValue));
1354 return VINF_SUCCESS;
1355#endif
1356 }
1357 return VERR_CPUM_RAISE_GP_0;
1358 }
1359
1360 default:
1361 {
1362#ifdef IN_RING3
1363 static uint32_t s_cTimes = 0;
1364 if (s_cTimes++ < 20)
1365 LogRel(("GIM: HyperV: Unknown/invalid WrMsr (%#x,%#x`%08x) -> #GP(0)\n", idMsr,
1366 uRawValue & UINT64_C(0xffffffff00000000), uRawValue & UINT64_C(0xffffffff)));
1367 LogFunc(("Unknown/invalid WrMsr (%#RX32,%#RX64) -> #GP(0)\n", idMsr, uRawValue));
1368 break;
1369#else
1370 return VINF_CPUM_R3_MSR_WRITE;
1371#endif
1372 }
1373 }
1374
1375 return VERR_CPUM_RAISE_GP_0;
1376}
1377
1378
1379/**
1380 * Whether we need to trap \#UD exceptions in the guest.
1381 *
1382 * We only needed to trap \#UD exceptions for the old raw-mode guests when
1383 * hypercalls are enabled. For HM VMs, the hypercall would be handled via the
1384 * VMCALL/VMMCALL VM-exit.
1385 *
1386 * @param pVCpu The cross context virtual CPU structure.
1387 */
1388VMM_INT_DECL(bool) gimHvShouldTrapXcptUD(PVMCPU pVCpu)
1389{
1390 RT_NOREF(pVCpu);
1391 return false;
1392}
1393
1394
1395/**
1396 * Checks the instruction and executes the hypercall if it's a valid hypercall
1397 * instruction.
1398 *
1399 * This interface is used by \#UD handlers and IEM.
1400 *
1401 * @returns Strict VBox status code.
1402 * @param pVCpu The cross context virtual CPU structure.
1403 * @param pCtx Pointer to the guest-CPU context.
1404 * @param uDisOpcode The disassembler opcode.
1405 * @param cbInstr The instruction length.
1406 *
1407 * @thread EMT(pVCpu).
1408 */
1409VMM_INT_DECL(VBOXSTRICTRC) gimHvHypercallEx(PVMCPUCC pVCpu, PCPUMCTX pCtx, unsigned uDisOpcode, uint8_t cbInstr)
1410{
1411 Assert(pVCpu);
1412 Assert(pCtx);
1413 VMCPU_ASSERT_EMT(pVCpu);
1414
1415 PVM pVM = pVCpu->CTX_SUFF(pVM);
1416 CPUMCPUVENDOR const enmGuestCpuVendor = (CPUMCPUVENDOR)pVM->cpum.ro.GuestFeatures.enmCpuVendor;
1417 if ( ( uDisOpcode == OP_VMCALL
1418 && ( enmGuestCpuVendor == CPUMCPUVENDOR_INTEL
1419 || enmGuestCpuVendor == CPUMCPUVENDOR_VIA
1420 || enmGuestCpuVendor == CPUMCPUVENDOR_SHANGHAI))
1421 || ( uDisOpcode == OP_VMMCALL
1422 && ( enmGuestCpuVendor == CPUMCPUVENDOR_AMD
1423 || enmGuestCpuVendor == CPUMCPUVENDOR_HYGON)) )
1424 return gimHvHypercall(pVCpu, pCtx);
1425
1426 RT_NOREF_PV(cbInstr);
1427 return VERR_GIM_INVALID_HYPERCALL_INSTR;
1428}
1429
1430
1431/**
1432 * Exception handler for \#UD.
1433 *
1434 * @returns Strict VBox status code.
1435 * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation
1436 * failed).
1437 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
1438 * @retval VINF_GIM_HYPERCALL_CONTINUING continue hypercall without updating
1439 * RIP.
1440 * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient.
1441 * @retval VERR_GIM_INVALID_HYPERCALL_INSTR instruction at RIP is not a valid
1442 * hypercall instruction.
1443 *
1444 * @param pVCpu The cross context virtual CPU structure.
1445 * @param pCtx Pointer to the guest-CPU context.
1446 * @param pDis Pointer to the disassembled instruction state at RIP.
1447 * Optional, can be NULL.
1448 * @param pcbInstr Where to store the instruction length of the hypercall
1449 * instruction. Optional, can be NULL.
1450 *
1451 * @thread EMT(pVCpu).
1452 */
1453VMM_INT_DECL(VBOXSTRICTRC) gimHvXcptUD(PVMCPUCC pVCpu, PCPUMCTX pCtx, PDISCPUSTATE pDis, uint8_t *pcbInstr)
1454{
1455 VMCPU_ASSERT_EMT(pVCpu);
1456
1457 /*
1458 * If we didn't ask for #UD to be trapped, bail.
1459 */
1460 if (!gimHvShouldTrapXcptUD(pVCpu))
1461 return VERR_GIM_IPE_1;
1462
1463 if (!pDis)
1464 {
1465 /*
1466 * Disassemble the instruction at RIP to figure out if it's the Intel VMCALL instruction
1467 * or the AMD VMMCALL instruction and if so, handle it as a hypercall.
1468 */
1469 unsigned cbInstr;
1470 DISCPUSTATE Dis;
1471 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, &Dis, &cbInstr);
1472 if (RT_SUCCESS(rc))
1473 {
1474 if (pcbInstr)
1475 *pcbInstr = (uint8_t)cbInstr;
1476 return gimHvHypercallEx(pVCpu, pCtx, Dis.pCurInstr->uOpcode, Dis.cbInstr);
1477 }
1478
1479 Log(("GIM: HyperV: Failed to disassemble instruction at CS:RIP=%04x:%08RX64. rc=%Rrc\n", pCtx->cs.Sel, pCtx->rip, rc));
1480 return rc;
1481 }
1482
1483 return gimHvHypercallEx(pVCpu, pCtx, pDis->pCurInstr->uOpcode, pDis->cbInstr);
1484}
1485
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette