VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 31631

Last change on this file since 31631 was 31569, checked in by vboxsync, 14 years ago

HWACCM: burn fix / VBOXSTRICTRC cleanup - a bit risky...

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 106.4 KB
Line 
1/* $Id: EMAll.cpp 31569 2010-08-11 13:41:52Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_EM
22#include <VBox/em.h>
23#include <VBox/mm.h>
24#include <VBox/selm.h>
25#include <VBox/patm.h>
26#include <VBox/csam.h>
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/stam.h>
30#include "EMInternal.h"
31#include <VBox/vm.h>
32#include <VBox/vmm.h>
33#include <VBox/hwaccm.h>
34#include <VBox/tm.h>
35#include <VBox/pdmapi.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/dis.h>
39#include <VBox/disopcode.h>
40#include <VBox/log.h>
41#include <include/internal/pgm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** @def EM_ASSERT_FAULT_RETURN
51 * Safety check.
52 *
53 * Could in theory misfire on a cross page boundary access...
54 *
55 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
56 * turns up an alias page instead of the original faulting one and annoying the
57 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
58 */
59#if 0
60# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
61#else
62# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
63#endif
64
65/* Used to pass information during instruction disassembly. */
66typedef struct
67{
68 PVM pVM;
69 PVMCPU pVCpu;
70 RTGCPTR GCPtr;
71 uint8_t aOpcode[8];
72} EMDISSTATE, *PEMDISSTATE;
73
74/*******************************************************************************
75* Internal Functions *
76*******************************************************************************/
77DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize, EMCODETYPE enmCodeType = EMCODETYPE_SUPERVISOR);
78
79
80
81/**
82 * Get the current execution manager status.
83 *
84 * @returns Current status.
85 * @param pVCpu The VMCPU to operate on.
86 */
87VMMDECL(EMSTATE) EMGetState(PVMCPU pVCpu)
88{
89 return pVCpu->em.s.enmState;
90}
91
92/**
93 * Sets the current execution manager status. (use only when you know what you're doing!)
94 *
95 * @param pVCpu The VMCPU to operate on.
96 */
97VMMDECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
98{
99 /* Only allowed combination: */
100 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
101 pVCpu->em.s.enmState = enmNewState;
102}
103
104
105/**
106 * Read callback for disassembly function; supports reading bytes that cross a page boundary
107 *
108 * @returns VBox status code.
109 * @param pSrc GC source pointer
110 * @param pDest HC destination pointer
111 * @param cb Number of bytes to read
112 * @param dwUserdata Callback specific user data (pDis)
113 *
114 */
115DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
116{
117 PDISCPUSTATE pDis = (PDISCPUSTATE)pvUserdata;
118 PEMDISSTATE pState = (PEMDISSTATE)pDis->apvUserData[0];
119 PVM pVM = pState->pVM;
120 PVMCPU pVCpu = pState->pVCpu;
121
122# ifdef IN_RING0
123 int rc;
124
125 if ( pState->GCPtr
126 && pSrc + cb <= pState->GCPtr + sizeof(pState->aOpcode))
127 {
128 unsigned offset = pSrc - pState->GCPtr;
129
130 Assert(pSrc >= pState->GCPtr);
131
132 for (unsigned i=0; i<cb; i++)
133 {
134 pDest[i] = pState->aOpcode[offset + i];
135 }
136 return VINF_SUCCESS;
137 }
138
139 rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
140 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x rc=%d\n", pSrc, cb, rc));
141# elif defined(IN_RING3)
142 if (!PATMIsPatchGCAddr(pVM, pSrc))
143 {
144 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
145 AssertRC(rc);
146 }
147 else
148 memcpy(pDest, PATMR3GCPtrToHCPtr(pVM, pSrc), cb);
149
150# elif defined(IN_RC)
151 if (!PATMIsPatchGCAddr(pVM, pSrc))
152 {
153 int rc = MMGCRamRead(pVM, pDest, (void *)(uintptr_t)pSrc, cb);
154 if (rc == VERR_ACCESS_DENIED)
155 {
156 /* Recently flushed; access the data manually. */
157 rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
158 AssertRC(rc);
159 }
160 }
161 else /* the hypervisor region is always present. */
162 memcpy(pDest, (RTRCPTR)(uintptr_t)pSrc, cb);
163
164# endif /* IN_RING3 */
165 return VINF_SUCCESS;
166}
167
168
169#ifndef IN_RC
170DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
171{
172 EMDISSTATE State;
173
174 State.pVM = pVM;
175 State.pVCpu = pVCpu;
176 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, InstrGC, sizeof(State.aOpcode));
177 if (RT_SUCCESS(rc))
178 {
179 State.GCPtr = InstrGC;
180 }
181 else
182 {
183 if (PAGE_ADDRESS(InstrGC) == PAGE_ADDRESS(InstrGC + sizeof(State.aOpcode) - 1))
184 {
185 if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
186 HWACCMInvalidatePage(pVCpu, InstrGC);
187
188 Log(("emDisCoreOne: read failed with %d\n", rc));
189 return rc;
190 }
191 State.GCPtr = NIL_RTGCPTR;
192 }
193 return DISCoreOneEx(InstrGC, pDis->mode, EMReadBytes, &State, pDis, pOpsize);
194}
195
196#else /* IN_RC */
197
198DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
199{
200 EMDISSTATE State;
201
202 State.pVM = pVM;
203 State.pVCpu = pVCpu;
204 State.GCPtr = InstrGC;
205
206 return DISCoreOneEx(InstrGC, pDis->mode, EMReadBytes, &State, pDis, pOpsize);
207}
208
209#endif /* IN_RC */
210
211
212/**
213 * Disassembles one instruction.
214 *
215 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
216 * details.
217 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
218 *
219 * @param pVM The VM handle.
220 * @param pVCpu The VMCPU handle.
221 * @param pCtxCore The context core (used for both the mode and instruction).
222 * @param pDis Where to return the parsed instruction info.
223 * @param pcbInstr Where to return the instruction size. (optional)
224 */
225VMMDECL(int) EMInterpretDisasOne(PVM pVM, PVMCPU pVCpu, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
226{
227 RTGCPTR GCPtrInstr;
228 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
229 if (RT_FAILURE(rc))
230 {
231 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
232 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
233 return rc;
234 }
235 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
236}
237
238
239/**
240 * Disassembles one instruction.
241 *
242 * This is used by internally by the interpreter and by trap/access handlers.
243 *
244 * @returns VBox status code.
245 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
246 *
247 * @param pVM The VM handle.
248 * @param pVCpu The VMCPU handle.
249 * @param GCPtrInstr The flat address of the instruction.
250 * @param pCtxCore The context core (used to determine the cpu mode).
251 * @param pDis Where to return the parsed instruction info.
252 * @param pcbInstr Where to return the instruction size. (optional)
253 */
254VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
255{
256 int rc;
257 EMDISSTATE State;
258
259 State.pVM = pVM;
260 State.pVCpu = pVCpu;
261
262#ifdef IN_RC
263 State.GCPtr = GCPtrInstr;
264#else /* ring 0/3 */
265 rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, GCPtrInstr, sizeof(State.aOpcode));
266 if (RT_SUCCESS(rc))
267 {
268 State.GCPtr = GCPtrInstr;
269 }
270 else
271 {
272 if (PAGE_ADDRESS(GCPtrInstr) == PAGE_ADDRESS(GCPtrInstr + sizeof(State.aOpcode) - 1))
273 {
274 if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
275 HWACCMInvalidatePage(pVCpu, GCPtrInstr);
276
277 Log(("EMInterpretDisasOneEx: read failed with %d\n", rc));
278 return rc;
279 }
280 State.GCPtr = NIL_RTGCPTR;
281 }
282#endif
283
284 rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
285 EMReadBytes, &State,
286 pDis, pcbInstr);
287 if (RT_SUCCESS(rc))
288 return VINF_SUCCESS;
289 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
290 return VERR_INTERNAL_ERROR;
291}
292
293
294/**
295 * Interprets the current instruction.
296 *
297 * @returns VBox status code.
298 * @retval VINF_* Scheduling instructions.
299 * @retval VERR_EM_INTERPRETER Something we can't cope with.
300 * @retval VERR_* Fatal errors.
301 *
302 * @param pVM The VM handle.
303 * @param pVCpu The VMCPU handle.
304 * @param pRegFrame The register frame.
305 * Updates the EIP if an instruction was executed successfully.
306 * @param pvFault The fault address (CR2).
307 * @param pcbSize Size of the write (if applicable).
308 *
309 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
310 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
311 * to worry about e.g. invalid modrm combinations (!)
312 */
313VMMDECL(int) EMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
314{
315 RTGCPTR pbCode;
316
317 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
318 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
319 if (RT_SUCCESS(rc))
320 {
321 uint32_t cbOp;
322 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
323 pDis->mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
324 rc = emDisCoreOne(pVM, pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
325 if (RT_SUCCESS(rc))
326 {
327 Assert(cbOp == pDis->opsize);
328 rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize);
329 if (RT_SUCCESS(rc))
330 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
331
332 return rc;
333 }
334 }
335 return VERR_EM_INTERPRETER;
336}
337
338
339/**
340 * Interprets the current instruction using the supplied DISCPUSTATE structure.
341 *
342 * EIP is *NOT* updated!
343 *
344 * @returns VBox status code.
345 * @retval VINF_* Scheduling instructions. When these are returned, it
346 * starts to get a bit tricky to know whether code was
347 * executed or not... We'll address this when it becomes a problem.
348 * @retval VERR_EM_INTERPRETER Something we can't cope with.
349 * @retval VERR_* Fatal errors.
350 *
351 * @param pVM The VM handle.
352 * @param pVCpu The VMCPU handle.
353 * @param pDis The disassembler cpu state for the instruction to be
354 * interpreted.
355 * @param pRegFrame The register frame. EIP is *NOT* changed!
356 * @param pvFault The fault address (CR2).
357 * @param pcbSize Size of the write (if applicable).
358 * @param enmCodeType Code type (user/supervisor)
359 *
360 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
361 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
362 * to worry about e.g. invalid modrm combinations (!)
363 *
364 * @todo At this time we do NOT check if the instruction overwrites vital information.
365 * Make sure this can't happen!! (will add some assertions/checks later)
366 */
367VMMDECL(int) EMInterpretInstructionCPUEx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize, EMCODETYPE enmCodeType)
368{
369 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
370 int rc = emInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, enmCodeType);
371 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
372 if (RT_SUCCESS(rc))
373 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
374 else
375 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
376 return rc;
377}
378
379
380/**
381 * Interpret a port I/O instruction.
382 *
383 * @returns VBox status code suitable for scheduling.
384 * @param pVM The VM handle.
385 * @param pVCpu The VMCPU handle.
386 * @param pCtxCore The context core. This will be updated on successful return.
387 * @param pDis The instruction to interpret.
388 * @param cbOp The size of the instruction.
389 * @remark This may raise exceptions.
390 */
391VMMDECL(VBOXSTRICTRC) EMInterpretPortIO(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, uint32_t cbOp)
392{
393 /*
394 * Hand it on to IOM.
395 */
396#ifdef IN_RC
397 VBOXSTRICTRC rcStrict = IOMGCIOPortHandler(pVM, pCtxCore, pDis);
398 if (IOM_SUCCESS(rcStrict))
399 pCtxCore->rip += cbOp;
400 return rcStrict;
401#else
402 AssertReleaseMsgFailed(("not implemented\n"));
403 return VERR_NOT_IMPLEMENTED;
404#endif
405}
406
407
408DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
409{
410#ifdef IN_RC
411 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
412 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
413 return rc;
414 /*
415 * The page pool cache may end up here in some cases because it
416 * flushed one of the shadow mappings used by the trapping
417 * instruction and it either flushed the TLB or the CPU reused it.
418 */
419#endif
420 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
421}
422
423
424DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
425{
426 /* Don't use MMGCRamWrite here as it does not respect zero pages, shared
427 pages or write monitored pages. */
428 return PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
429}
430
431
432/** Convert sel:addr to a flat GC address. */
433DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, POP_PARAMETER pParam, RTGCPTR pvAddr)
434{
435 DIS_SELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
436 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
437}
438
439
440#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
441/**
442 * Get the mnemonic for the disassembled instruction.
443 *
444 * GC/R0 doesn't include the strings in the DIS tables because
445 * of limited space.
446 */
447static const char *emGetMnemonic(PDISCPUSTATE pDis)
448{
449 switch (pDis->pCurInstr->opcode)
450 {
451 case OP_XCHG: return "Xchg";
452 case OP_DEC: return "Dec";
453 case OP_INC: return "Inc";
454 case OP_POP: return "Pop";
455 case OP_OR: return "Or";
456 case OP_AND: return "And";
457 case OP_MOV: return "Mov";
458 case OP_INVLPG: return "InvlPg";
459 case OP_CPUID: return "CpuId";
460 case OP_MOV_CR: return "MovCRx";
461 case OP_MOV_DR: return "MovDRx";
462 case OP_LLDT: return "LLdt";
463 case OP_LGDT: return "LGdt";
464 case OP_LIDT: return "LIdt";
465 case OP_CLTS: return "Clts";
466 case OP_MONITOR: return "Monitor";
467 case OP_MWAIT: return "MWait";
468 case OP_RDMSR: return "Rdmsr";
469 case OP_WRMSR: return "Wrmsr";
470 case OP_ADD: return "Add";
471 case OP_ADC: return "Adc";
472 case OP_SUB: return "Sub";
473 case OP_SBB: return "Sbb";
474 case OP_RDTSC: return "Rdtsc";
475 case OP_STI: return "Sti";
476 case OP_CLI: return "Cli";
477 case OP_XADD: return "XAdd";
478 case OP_HLT: return "Hlt";
479 case OP_IRET: return "Iret";
480 case OP_MOVNTPS: return "MovNTPS";
481 case OP_STOSWD: return "StosWD";
482 case OP_WBINVD: return "WbInvd";
483 case OP_XOR: return "Xor";
484 case OP_BTR: return "Btr";
485 case OP_BTS: return "Bts";
486 case OP_BTC: return "Btc";
487 case OP_LMSW: return "Lmsw";
488 case OP_SMSW: return "Smsw";
489 case OP_CMPXCHG: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
490 case OP_CMPXCHG8B: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
491
492 default:
493 Log(("Unknown opcode %d\n", pDis->pCurInstr->opcode));
494 return "???";
495 }
496}
497#endif /* VBOX_STRICT || LOG_ENABLED */
498
499
500/**
501 * XCHG instruction emulation.
502 */
503static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
504{
505 OP_PARAMVAL param1, param2;
506
507 /* Source to make DISQueryParamVal read the register value - ugly hack */
508 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
509 if(RT_FAILURE(rc))
510 return VERR_EM_INTERPRETER;
511
512 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
513 if(RT_FAILURE(rc))
514 return VERR_EM_INTERPRETER;
515
516#ifdef IN_RC
517 if (TRPMHasTrap(pVCpu))
518 {
519 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
520 {
521#endif
522 RTGCPTR pParam1 = 0, pParam2 = 0;
523 uint64_t valpar1, valpar2;
524
525 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
526 switch(param1.type)
527 {
528 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
529 valpar1 = param1.val.val64;
530 break;
531
532 case PARMTYPE_ADDRESS:
533 pParam1 = (RTGCPTR)param1.val.val64;
534 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
535 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
536 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
537 if (RT_FAILURE(rc))
538 {
539 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
540 return VERR_EM_INTERPRETER;
541 }
542 break;
543
544 default:
545 AssertFailed();
546 return VERR_EM_INTERPRETER;
547 }
548
549 switch(param2.type)
550 {
551 case PARMTYPE_ADDRESS:
552 pParam2 = (RTGCPTR)param2.val.val64;
553 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pParam2);
554 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
555 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
556 if (RT_FAILURE(rc))
557 {
558 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
559 }
560 break;
561
562 case PARMTYPE_IMMEDIATE:
563 valpar2 = param2.val.val64;
564 break;
565
566 default:
567 AssertFailed();
568 return VERR_EM_INTERPRETER;
569 }
570
571 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
572 if (pParam1 == 0)
573 {
574 Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
575 switch(param1.size)
576 {
577 case 1: //special case for AH etc
578 rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t )valpar2); break;
579 case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)valpar2); break;
580 case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)valpar2); break;
581 case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, valpar2); break;
582 default: AssertFailedReturn(VERR_EM_INTERPRETER);
583 }
584 if (RT_FAILURE(rc))
585 return VERR_EM_INTERPRETER;
586 }
587 else
588 {
589 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
590 if (RT_FAILURE(rc))
591 {
592 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
593 return VERR_EM_INTERPRETER;
594 }
595 }
596
597 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
598 if (pParam2 == 0)
599 {
600 Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
601 switch(param2.size)
602 {
603 case 1: //special case for AH etc
604 rc = DISWriteReg8(pRegFrame, pDis->param2.base.reg_gen, (uint8_t )valpar1); break;
605 case 2: rc = DISWriteReg16(pRegFrame, pDis->param2.base.reg_gen, (uint16_t)valpar1); break;
606 case 4: rc = DISWriteReg32(pRegFrame, pDis->param2.base.reg_gen, (uint32_t)valpar1); break;
607 case 8: rc = DISWriteReg64(pRegFrame, pDis->param2.base.reg_gen, valpar1); break;
608 default: AssertFailedReturn(VERR_EM_INTERPRETER);
609 }
610 if (RT_FAILURE(rc))
611 return VERR_EM_INTERPRETER;
612 }
613 else
614 {
615 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
616 if (RT_FAILURE(rc))
617 {
618 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
619 return VERR_EM_INTERPRETER;
620 }
621 }
622
623 *pcbSize = param2.size;
624 return VINF_SUCCESS;
625#ifdef IN_RC
626 }
627 }
628#endif
629 return VERR_EM_INTERPRETER;
630}
631
632
633/**
634 * INC and DEC emulation.
635 */
636static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
637 PFNEMULATEPARAM2 pfnEmulate)
638{
639 OP_PARAMVAL param1;
640
641 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
642 if(RT_FAILURE(rc))
643 return VERR_EM_INTERPRETER;
644
645#ifdef IN_RC
646 if (TRPMHasTrap(pVCpu))
647 {
648 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
649 {
650#endif
651 RTGCPTR pParam1 = 0;
652 uint64_t valpar1;
653
654 if (param1.type == PARMTYPE_ADDRESS)
655 {
656 pParam1 = (RTGCPTR)param1.val.val64;
657 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
658#ifdef IN_RC
659 /* Safety check (in theory it could cross a page boundary and fault there though) */
660 AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
661#endif
662 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
663 if (RT_FAILURE(rc))
664 {
665 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
666 return VERR_EM_INTERPRETER;
667 }
668 }
669 else
670 {
671 AssertFailed();
672 return VERR_EM_INTERPRETER;
673 }
674
675 uint32_t eflags;
676
677 eflags = pfnEmulate(&valpar1, param1.size);
678
679 /* Write result back */
680 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
681 if (RT_FAILURE(rc))
682 {
683 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
684 return VERR_EM_INTERPRETER;
685 }
686
687 /* Update guest's eflags and finish. */
688 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
689 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
690
691 /* All done! */
692 *pcbSize = param1.size;
693 return VINF_SUCCESS;
694#ifdef IN_RC
695 }
696 }
697#endif
698 return VERR_EM_INTERPRETER;
699}
700
701
702/**
703 * POP Emulation.
704 */
705static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
706{
707 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
708 OP_PARAMVAL param1;
709 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
710 if(RT_FAILURE(rc))
711 return VERR_EM_INTERPRETER;
712
713#ifdef IN_RC
714 if (TRPMHasTrap(pVCpu))
715 {
716 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
717 {
718#endif
719 RTGCPTR pParam1 = 0;
720 uint32_t valpar1;
721 RTGCPTR pStackVal;
722
723 /* Read stack value first */
724 if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
725 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
726
727 /* Convert address; don't bother checking limits etc, as we only read here */
728 pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
729 if (pStackVal == 0)
730 return VERR_EM_INTERPRETER;
731
732 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
733 if (RT_FAILURE(rc))
734 {
735 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
736 return VERR_EM_INTERPRETER;
737 }
738
739 if (param1.type == PARMTYPE_ADDRESS)
740 {
741 pParam1 = (RTGCPTR)param1.val.val64;
742
743 /* pop [esp+xx] uses esp after the actual pop! */
744 AssertCompile(USE_REG_ESP == USE_REG_SP);
745 if ( (pDis->param1.flags & USE_BASE)
746 && (pDis->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
747 && pDis->param1.base.reg_gen == USE_REG_ESP
748 )
749 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
750
751 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
752 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
753 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
754 if (RT_FAILURE(rc))
755 {
756 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
757 return VERR_EM_INTERPRETER;
758 }
759
760 /* Update ESP as the last step */
761 pRegFrame->esp += param1.size;
762 }
763 else
764 {
765#ifndef DEBUG_bird // annoying assertion.
766 AssertFailed();
767#endif
768 return VERR_EM_INTERPRETER;
769 }
770
771 /* All done! */
772 *pcbSize = param1.size;
773 return VINF_SUCCESS;
774#ifdef IN_RC
775 }
776 }
777#endif
778 return VERR_EM_INTERPRETER;
779}
780
781
782/**
783 * XOR/OR/AND Emulation.
784 */
785static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
786 PFNEMULATEPARAM3 pfnEmulate)
787{
788 OP_PARAMVAL param1, param2;
789
790 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
791 if(RT_FAILURE(rc))
792 return VERR_EM_INTERPRETER;
793
794 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
795 if(RT_FAILURE(rc))
796 return VERR_EM_INTERPRETER;
797
798#ifdef IN_RC
799 if (TRPMHasTrap(pVCpu))
800 {
801 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
802 {
803#endif
804 RTGCPTR pParam1;
805 uint64_t valpar1, valpar2;
806
807 if (pDis->param1.size != pDis->param2.size)
808 {
809 if (pDis->param1.size < pDis->param2.size)
810 {
811 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
812 return VERR_EM_INTERPRETER;
813 }
814 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
815 pDis->param2.size = pDis->param1.size;
816 param2.size = param1.size;
817 }
818
819 /* The destination is always a virtual address */
820 if (param1.type == PARMTYPE_ADDRESS)
821 {
822 pParam1 = (RTGCPTR)param1.val.val64;
823 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
824 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
825 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
826 if (RT_FAILURE(rc))
827 {
828 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
829 return VERR_EM_INTERPRETER;
830 }
831 }
832 else
833 {
834 AssertFailed();
835 return VERR_EM_INTERPRETER;
836 }
837
838 /* Register or immediate data */
839 switch(param2.type)
840 {
841 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
842 valpar2 = param2.val.val64;
843 break;
844
845 default:
846 AssertFailed();
847 return VERR_EM_INTERPRETER;
848 }
849
850 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
851
852 /* Data read, emulate instruction. */
853 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
854
855 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
856
857 /* Update guest's eflags and finish. */
858 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
859 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
860
861 /* And write it back */
862 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
863 if (RT_SUCCESS(rc))
864 {
865 /* All done! */
866 *pcbSize = param2.size;
867 return VINF_SUCCESS;
868 }
869#ifdef IN_RC
870 }
871 }
872#endif
873 return VERR_EM_INTERPRETER;
874}
875
876
877/**
878 * LOCK XOR/OR/AND Emulation.
879 */
880static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
881 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
882{
883 void *pvParam1;
884 OP_PARAMVAL param1, param2;
885
886#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
887 Assert(pDis->param1.size <= 4);
888#endif
889
890 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
891 if(RT_FAILURE(rc))
892 return VERR_EM_INTERPRETER;
893
894 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
895 if(RT_FAILURE(rc))
896 return VERR_EM_INTERPRETER;
897
898 if (pDis->param1.size != pDis->param2.size)
899 {
900 AssertMsgReturn(pDis->param1.size >= pDis->param2.size, /* should never happen! */
901 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size),
902 VERR_EM_INTERPRETER);
903
904 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
905 pDis->param2.size = pDis->param1.size;
906 param2.size = param1.size;
907 }
908
909#ifdef IN_RC
910 /* Safety check (in theory it could cross a page boundary and fault there though) */
911 Assert( TRPMHasTrap(pVCpu)
912 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
913 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
914#endif
915
916 /* Register and immediate data == PARMTYPE_IMMEDIATE */
917 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
918 RTGCUINTREG ValPar2 = param2.val.val64;
919
920 /* The destination is always a virtual address */
921 AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
922
923 RTGCPTR GCPtrPar1 = param1.val.val64;
924 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
925 PGMPAGEMAPLOCK Lock;
926 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
927 AssertRCReturn(rc, VERR_EM_INTERPRETER);
928
929 /* Try emulate it with a one-shot #PF handler in place. (RC) */
930 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
931
932 RTGCUINTREG32 eflags = 0;
933 rc = pfnEmulate(pvParam1, ValPar2, pDis->param2.size, &eflags);
934 PGMPhysReleasePageMappingLock(pVM, &Lock);
935 if (RT_FAILURE(rc))
936 {
937 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
938 return VERR_EM_INTERPRETER;
939 }
940
941 /* Update guest's eflags and finish. */
942 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
943 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
944
945 *pcbSize = param2.size;
946 return VINF_SUCCESS;
947}
948
949
950/**
951 * ADD, ADC & SUB Emulation.
952 */
953static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
954 PFNEMULATEPARAM3 pfnEmulate)
955{
956 OP_PARAMVAL param1, param2;
957 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
958 if(RT_FAILURE(rc))
959 return VERR_EM_INTERPRETER;
960
961 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
962 if(RT_FAILURE(rc))
963 return VERR_EM_INTERPRETER;
964
965#ifdef IN_RC
966 if (TRPMHasTrap(pVCpu))
967 {
968 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
969 {
970#endif
971 RTGCPTR pParam1;
972 uint64_t valpar1, valpar2;
973
974 if (pDis->param1.size != pDis->param2.size)
975 {
976 if (pDis->param1.size < pDis->param2.size)
977 {
978 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
979 return VERR_EM_INTERPRETER;
980 }
981 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
982 pDis->param2.size = pDis->param1.size;
983 param2.size = param1.size;
984 }
985
986 /* The destination is always a virtual address */
987 if (param1.type == PARMTYPE_ADDRESS)
988 {
989 pParam1 = (RTGCPTR)param1.val.val64;
990 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
991 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
992 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
993 if (RT_FAILURE(rc))
994 {
995 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
996 return VERR_EM_INTERPRETER;
997 }
998 }
999 else
1000 {
1001#ifndef DEBUG_bird
1002 AssertFailed();
1003#endif
1004 return VERR_EM_INTERPRETER;
1005 }
1006
1007 /* Register or immediate data */
1008 switch(param2.type)
1009 {
1010 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1011 valpar2 = param2.val.val64;
1012 break;
1013
1014 default:
1015 AssertFailed();
1016 return VERR_EM_INTERPRETER;
1017 }
1018
1019 /* Data read, emulate instruction. */
1020 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
1021
1022 /* Update guest's eflags and finish. */
1023 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1024 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1025
1026 /* And write it back */
1027 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
1028 if (RT_SUCCESS(rc))
1029 {
1030 /* All done! */
1031 *pcbSize = param2.size;
1032 return VINF_SUCCESS;
1033 }
1034#ifdef IN_RC
1035 }
1036 }
1037#endif
1038 return VERR_EM_INTERPRETER;
1039}
1040
1041
1042/**
1043 * ADC Emulation.
1044 */
1045static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1046{
1047 if (pRegFrame->eflags.Bits.u1CF)
1048 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
1049 else
1050 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
1051}
1052
1053
1054/**
1055 * BTR/C/S Emulation.
1056 */
1057static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1058 PFNEMULATEPARAM2UINT32 pfnEmulate)
1059{
1060 OP_PARAMVAL param1, param2;
1061 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1062 if(RT_FAILURE(rc))
1063 return VERR_EM_INTERPRETER;
1064
1065 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1066 if(RT_FAILURE(rc))
1067 return VERR_EM_INTERPRETER;
1068
1069#ifdef IN_RC
1070 if (TRPMHasTrap(pVCpu))
1071 {
1072 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1073 {
1074#endif
1075 RTGCPTR pParam1;
1076 uint64_t valpar1 = 0, valpar2;
1077 uint32_t eflags;
1078
1079 /* The destination is always a virtual address */
1080 if (param1.type != PARMTYPE_ADDRESS)
1081 return VERR_EM_INTERPRETER;
1082
1083 pParam1 = (RTGCPTR)param1.val.val64;
1084 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
1085
1086 /* Register or immediate data */
1087 switch(param2.type)
1088 {
1089 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1090 valpar2 = param2.val.val64;
1091 break;
1092
1093 default:
1094 AssertFailed();
1095 return VERR_EM_INTERPRETER;
1096 }
1097
1098 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
1099 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1100 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1101 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
1102 if (RT_FAILURE(rc))
1103 {
1104 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1105 return VERR_EM_INTERPRETER;
1106 }
1107
1108 Log2(("emInterpretBtx: val=%x\n", valpar1));
1109 /* Data read, emulate bit test instruction. */
1110 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1111
1112 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1113
1114 /* Update guest's eflags and finish. */
1115 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1116 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1117
1118 /* And write it back */
1119 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
1120 if (RT_SUCCESS(rc))
1121 {
1122 /* All done! */
1123 *pcbSize = 1;
1124 return VINF_SUCCESS;
1125 }
1126#ifdef IN_RC
1127 }
1128 }
1129#endif
1130 return VERR_EM_INTERPRETER;
1131}
1132
1133
1134/**
1135 * LOCK BTR/C/S Emulation.
1136 */
1137static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1138 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1139{
1140 void *pvParam1;
1141
1142 OP_PARAMVAL param1, param2;
1143 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1144 if(RT_FAILURE(rc))
1145 return VERR_EM_INTERPRETER;
1146
1147 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1148 if(RT_FAILURE(rc))
1149 return VERR_EM_INTERPRETER;
1150
1151 /* The destination is always a virtual address */
1152 if (param1.type != PARMTYPE_ADDRESS)
1153 return VERR_EM_INTERPRETER;
1154
1155 /* Register and immediate data == PARMTYPE_IMMEDIATE */
1156 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1157 uint64_t ValPar2 = param2.val.val64;
1158
1159 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1160 RTGCPTR GCPtrPar1 = param1.val.val64;
1161 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1162 ValPar2 &= 7;
1163
1164 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1165#ifdef IN_RC
1166 Assert(TRPMHasTrap(pVCpu));
1167 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1168#endif
1169
1170 PGMPAGEMAPLOCK Lock;
1171 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1172 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1173
1174 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
1175
1176 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1177 RTGCUINTREG32 eflags = 0;
1178 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1179 PGMPhysReleasePageMappingLock(pVM, &Lock);
1180 if (RT_FAILURE(rc))
1181 {
1182 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1183 emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
1184 return VERR_EM_INTERPRETER;
1185 }
1186
1187 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1188
1189 /* Update guest's eflags and finish. */
1190 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1191 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1192
1193 *pcbSize = 1;
1194 return VINF_SUCCESS;
1195}
1196
1197
1198/**
1199 * MOV emulation.
1200 */
1201static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1202{
1203 OP_PARAMVAL param1, param2;
1204 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1205 if(RT_FAILURE(rc))
1206 return VERR_EM_INTERPRETER;
1207
1208 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1209 if(RT_FAILURE(rc))
1210 return VERR_EM_INTERPRETER;
1211
1212#ifdef IN_RC
1213 if (TRPMHasTrap(pVCpu))
1214 {
1215 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1216 {
1217#else
1218 /** @todo Make this the default and don't rely on TRPM information. */
1219 if (param1.type == PARMTYPE_ADDRESS)
1220 {
1221#endif
1222 RTGCPTR pDest;
1223 uint64_t val64;
1224
1225 switch(param1.type)
1226 {
1227 case PARMTYPE_IMMEDIATE:
1228 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1229 return VERR_EM_INTERPRETER;
1230 /* fallthru */
1231
1232 case PARMTYPE_ADDRESS:
1233 pDest = (RTGCPTR)param1.val.val64;
1234 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pDest);
1235 break;
1236
1237 default:
1238 AssertFailed();
1239 return VERR_EM_INTERPRETER;
1240 }
1241
1242 switch(param2.type)
1243 {
1244 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
1245 val64 = param2.val.val64;
1246 break;
1247
1248 default:
1249 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1250 return VERR_EM_INTERPRETER;
1251 }
1252#ifdef LOG_ENABLED
1253 if (pDis->mode == CPUMODE_64BIT)
1254 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1255 else
1256 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1257#endif
1258
1259 Assert(param2.size <= 8 && param2.size > 0);
1260 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1261 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
1262 if (RT_FAILURE(rc))
1263 return VERR_EM_INTERPRETER;
1264
1265 *pcbSize = param2.size;
1266 }
1267 else
1268 { /* read fault */
1269 RTGCPTR pSrc;
1270 uint64_t val64;
1271
1272 /* Source */
1273 switch(param2.type)
1274 {
1275 case PARMTYPE_IMMEDIATE:
1276 if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
1277 return VERR_EM_INTERPRETER;
1278 /* fallthru */
1279
1280 case PARMTYPE_ADDRESS:
1281 pSrc = (RTGCPTR)param2.val.val64;
1282 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pSrc);
1283 break;
1284
1285 default:
1286 return VERR_EM_INTERPRETER;
1287 }
1288
1289 Assert(param1.size <= 8 && param1.size > 0);
1290 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1291 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
1292 if (RT_FAILURE(rc))
1293 return VERR_EM_INTERPRETER;
1294
1295 /* Destination */
1296 switch(param1.type)
1297 {
1298 case PARMTYPE_REGISTER:
1299 switch(param1.size)
1300 {
1301 case 1: rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t) val64); break;
1302 case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)val64); break;
1303 case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)val64); break;
1304 case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, val64); break;
1305 default:
1306 return VERR_EM_INTERPRETER;
1307 }
1308 if (RT_FAILURE(rc))
1309 return rc;
1310 break;
1311
1312 default:
1313 return VERR_EM_INTERPRETER;
1314 }
1315#ifdef LOG_ENABLED
1316 if (pDis->mode == CPUMODE_64BIT)
1317 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1318 else
1319 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1320#endif
1321 }
1322 return VINF_SUCCESS;
1323#ifdef IN_RC
1324 }
1325#endif
1326 return VERR_EM_INTERPRETER;
1327}
1328
1329
1330#ifndef IN_RC
1331/**
1332 * [REP] STOSWD emulation
1333 */
1334static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1335{
1336 int rc;
1337 RTGCPTR GCDest, GCOffset;
1338 uint32_t cbSize;
1339 uint64_t cTransfers;
1340 int offIncrement;
1341
1342 /* Don't support any but these three prefix bytes. */
1343 if ((pDis->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
1344 return VERR_EM_INTERPRETER;
1345
1346 switch (pDis->addrmode)
1347 {
1348 case CPUMODE_16BIT:
1349 GCOffset = pRegFrame->di;
1350 cTransfers = pRegFrame->cx;
1351 break;
1352 case CPUMODE_32BIT:
1353 GCOffset = pRegFrame->edi;
1354 cTransfers = pRegFrame->ecx;
1355 break;
1356 case CPUMODE_64BIT:
1357 GCOffset = pRegFrame->rdi;
1358 cTransfers = pRegFrame->rcx;
1359 break;
1360 default:
1361 AssertFailed();
1362 return VERR_EM_INTERPRETER;
1363 }
1364
1365 GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
1366 switch (pDis->opmode)
1367 {
1368 case CPUMODE_16BIT:
1369 cbSize = 2;
1370 break;
1371 case CPUMODE_32BIT:
1372 cbSize = 4;
1373 break;
1374 case CPUMODE_64BIT:
1375 cbSize = 8;
1376 break;
1377 default:
1378 AssertFailed();
1379 return VERR_EM_INTERPRETER;
1380 }
1381
1382 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1383
1384 if (!(pDis->prefix & PREFIX_REP))
1385 {
1386 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1387
1388 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1389 if (RT_FAILURE(rc))
1390 return VERR_EM_INTERPRETER;
1391 Assert(rc == VINF_SUCCESS);
1392
1393 /* Update (e/r)di. */
1394 switch (pDis->addrmode)
1395 {
1396 case CPUMODE_16BIT:
1397 pRegFrame->di += offIncrement;
1398 break;
1399 case CPUMODE_32BIT:
1400 pRegFrame->edi += offIncrement;
1401 break;
1402 case CPUMODE_64BIT:
1403 pRegFrame->rdi += offIncrement;
1404 break;
1405 default:
1406 AssertFailed();
1407 return VERR_EM_INTERPRETER;
1408 }
1409
1410 }
1411 else
1412 {
1413 if (!cTransfers)
1414 return VINF_SUCCESS;
1415
1416 /*
1417 * Do *not* try emulate cross page stuff here because we don't know what might
1418 * be waiting for us on the subsequent pages. The caller has only asked us to
1419 * ignore access handlers fro the current page.
1420 * This also fends off big stores which would quickly kill PGMR0DynMap.
1421 */
1422 if ( cbSize > PAGE_SIZE
1423 || cTransfers > PAGE_SIZE
1424 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
1425 {
1426 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
1427 GCDest, cbSize, offIncrement, cTransfers));
1428 return VERR_EM_INTERPRETER;
1429 }
1430
1431 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1432 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1433 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
1434 cTransfers * cbSize,
1435 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu, pRegFrame) == 3 ? X86_PTE_US : 0));
1436 if (rc != VINF_SUCCESS)
1437 {
1438 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1439 return VERR_EM_INTERPRETER;
1440 }
1441
1442 /* REP case */
1443 while (cTransfers)
1444 {
1445 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1446 if (RT_FAILURE(rc))
1447 {
1448 rc = VERR_EM_INTERPRETER;
1449 break;
1450 }
1451
1452 Assert(rc == VINF_SUCCESS);
1453 GCOffset += offIncrement;
1454 GCDest += offIncrement;
1455 cTransfers--;
1456 }
1457
1458 /* Update the registers. */
1459 switch (pDis->addrmode)
1460 {
1461 case CPUMODE_16BIT:
1462 pRegFrame->di = GCOffset;
1463 pRegFrame->cx = cTransfers;
1464 break;
1465 case CPUMODE_32BIT:
1466 pRegFrame->edi = GCOffset;
1467 pRegFrame->ecx = cTransfers;
1468 break;
1469 case CPUMODE_64BIT:
1470 pRegFrame->rdi = GCOffset;
1471 pRegFrame->rcx = cTransfers;
1472 break;
1473 default:
1474 AssertFailed();
1475 return VERR_EM_INTERPRETER;
1476 }
1477 }
1478
1479 *pcbSize = cbSize;
1480 return rc;
1481}
1482#endif /* !IN_RC */
1483
1484
1485/**
1486 * [LOCK] CMPXCHG emulation.
1487 */
1488static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1489{
1490 OP_PARAMVAL param1, param2;
1491
1492#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1493 Assert(pDis->param1.size <= 4);
1494#endif
1495
1496 /* Source to make DISQueryParamVal read the register value - ugly hack */
1497 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1498 if(RT_FAILURE(rc))
1499 return VERR_EM_INTERPRETER;
1500
1501 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1502 if(RT_FAILURE(rc))
1503 return VERR_EM_INTERPRETER;
1504
1505 uint64_t valpar;
1506 switch(param2.type)
1507 {
1508 case PARMTYPE_IMMEDIATE: /* register actually */
1509 valpar = param2.val.val64;
1510 break;
1511
1512 default:
1513 return VERR_EM_INTERPRETER;
1514 }
1515
1516 PGMPAGEMAPLOCK Lock;
1517 RTGCPTR GCPtrPar1;
1518 void *pvParam1;
1519 uint64_t eflags;
1520
1521 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
1522 switch(param1.type)
1523 {
1524 case PARMTYPE_ADDRESS:
1525 GCPtrPar1 = param1.val.val64;
1526 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1527
1528 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1529 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1530 break;
1531
1532 default:
1533 return VERR_EM_INTERPRETER;
1534 }
1535
1536 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
1537
1538 if (pDis->prefix & PREFIX_LOCK)
1539 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
1540 else
1541 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
1542
1543 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1544
1545 /* Update guest's eflags and finish. */
1546 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1547 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1548
1549 *pcbSize = param2.size;
1550 PGMPhysReleasePageMappingLock(pVM, &Lock);
1551 return VINF_SUCCESS;
1552}
1553
1554
1555/**
1556 * [LOCK] CMPXCHG8B emulation.
1557 */
1558static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1559{
1560 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1561 OP_PARAMVAL param1;
1562
1563 /* Source to make DISQueryParamVal read the register value - ugly hack */
1564 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1565 if(RT_FAILURE(rc))
1566 return VERR_EM_INTERPRETER;
1567
1568 RTGCPTR GCPtrPar1;
1569 void *pvParam1;
1570 uint64_t eflags;
1571 PGMPAGEMAPLOCK Lock;
1572
1573 AssertReturn(pDis->param1.size == 8, VERR_EM_INTERPRETER);
1574 switch(param1.type)
1575 {
1576 case PARMTYPE_ADDRESS:
1577 GCPtrPar1 = param1.val.val64;
1578 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1579
1580 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1581 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1582 break;
1583
1584 default:
1585 return VERR_EM_INTERPRETER;
1586 }
1587
1588 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax));
1589
1590 if (pDis->prefix & PREFIX_LOCK)
1591 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1592 else
1593 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1594
1595 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1596
1597 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1598 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1599 | (eflags & (X86_EFL_ZF));
1600
1601 *pcbSize = 8;
1602 PGMPhysReleasePageMappingLock(pVM, &Lock);
1603 return VINF_SUCCESS;
1604}
1605
1606
1607#ifdef IN_RC /** @todo test+enable for HWACCM as well. */
1608/**
1609 * [LOCK] XADD emulation.
1610 */
1611static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1612{
1613 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1614 OP_PARAMVAL param1;
1615 void *pvParamReg2;
1616 size_t cbParamReg2;
1617
1618 /* Source to make DISQueryParamVal read the register value - ugly hack */
1619 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1620 if(RT_FAILURE(rc))
1621 return VERR_EM_INTERPRETER;
1622
1623 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->param2, &pvParamReg2, &cbParamReg2);
1624 Assert(cbParamReg2 <= 4);
1625 if(RT_FAILURE(rc))
1626 return VERR_EM_INTERPRETER;
1627
1628#ifdef IN_RC
1629 if (TRPMHasTrap(pVCpu))
1630 {
1631 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1632 {
1633#endif
1634 RTGCPTR GCPtrPar1;
1635 void *pvParam1;
1636 uint32_t eflags;
1637 PGMPAGEMAPLOCK Lock;
1638
1639 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
1640 switch(param1.type)
1641 {
1642 case PARMTYPE_ADDRESS:
1643 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, (RTRCUINTPTR)param1.val.val64);
1644#ifdef IN_RC
1645 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
1646#endif
1647
1648 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1649 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1650 break;
1651
1652 default:
1653 return VERR_EM_INTERPRETER;
1654 }
1655
1656 LogFlow(("XAdd %RGv=%p reg=%08llx\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
1657
1658 if (pDis->prefix & PREFIX_LOCK)
1659 eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
1660 else
1661 eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
1662
1663 LogFlow(("XAdd %RGv=%p reg=%08llx ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
1664
1665 /* Update guest's eflags and finish. */
1666 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1667 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1668
1669 *pcbSize = cbParamReg2;
1670 PGMPhysReleasePageMappingLock(pVM, &Lock);
1671 return VINF_SUCCESS;
1672#ifdef IN_RC
1673 }
1674 }
1675
1676 return VERR_EM_INTERPRETER;
1677#endif
1678}
1679#endif /* IN_RC */
1680
1681
1682#ifdef IN_RC
1683/**
1684 * Interpret IRET (currently only to V86 code)
1685 *
1686 * @returns VBox status code.
1687 * @param pVM The VM handle.
1688 * @param pVCpu The VMCPU handle.
1689 * @param pRegFrame The register frame.
1690 *
1691 */
1692VMMDECL(int) EMInterpretIret(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1693{
1694 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1695 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1696 int rc;
1697
1698 Assert(!CPUMIsGuestIn64BitCode(pVCpu, pRegFrame));
1699
1700 rc = emRamRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1701 rc |= emRamRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1702 rc |= emRamRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1703 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1704 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1705
1706 rc |= emRamRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1707 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1708 rc |= emRamRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1709 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1710 rc |= emRamRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1711 rc |= emRamRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1712 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1713
1714 pRegFrame->eip = eip & 0xffff;
1715 pRegFrame->cs = cs;
1716
1717 /* Mask away all reserved bits */
1718 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1719 eflags &= uMask;
1720
1721#ifndef IN_RING0
1722 CPUMRawSetEFlags(pVCpu, pRegFrame, eflags);
1723#endif
1724 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1725
1726 pRegFrame->esp = esp;
1727 pRegFrame->ss = ss;
1728 pRegFrame->ds = ds;
1729 pRegFrame->es = es;
1730 pRegFrame->fs = fs;
1731 pRegFrame->gs = gs;
1732
1733 return VINF_SUCCESS;
1734}
1735#endif /* IN_RC */
1736
1737
1738/**
1739 * IRET Emulation.
1740 */
1741static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1742{
1743 /* only allow direct calls to EMInterpretIret for now */
1744 return VERR_EM_INTERPRETER;
1745}
1746
1747/**
1748 * WBINVD Emulation.
1749 */
1750static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1751{
1752 /* Nothing to do. */
1753 return VINF_SUCCESS;
1754}
1755
1756
1757/**
1758 * Interpret INVLPG
1759 *
1760 * @returns VBox status code.
1761 * @param pVM The VM handle.
1762 * @param pVCpu The VMCPU handle.
1763 * @param pRegFrame The register frame.
1764 * @param pAddrGC Operand address
1765 *
1766 */
1767VMMDECL(int) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1768{
1769 int rc;
1770
1771 /** @todo is addr always a flat linear address or ds based
1772 * (in absence of segment override prefixes)????
1773 */
1774#ifdef IN_RC
1775 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1776#endif
1777 rc = PGMInvalidatePage(pVCpu, pAddrGC);
1778 if ( rc == VINF_SUCCESS
1779 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1780 return VINF_SUCCESS;
1781 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1782 ("%Rrc addr=%RGv\n", rc, pAddrGC),
1783 VERR_EM_INTERPRETER);
1784 return rc;
1785}
1786
1787
1788/**
1789 * INVLPG Emulation.
1790 */
1791static int emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1792{
1793 OP_PARAMVAL param1;
1794 RTGCPTR addr;
1795
1796 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1797 if(RT_FAILURE(rc))
1798 return VERR_EM_INTERPRETER;
1799
1800 switch(param1.type)
1801 {
1802 case PARMTYPE_IMMEDIATE:
1803 case PARMTYPE_ADDRESS:
1804 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1805 return VERR_EM_INTERPRETER;
1806 addr = (RTGCPTR)param1.val.val64;
1807 break;
1808
1809 default:
1810 return VERR_EM_INTERPRETER;
1811 }
1812
1813 /** @todo is addr always a flat linear address or ds based
1814 * (in absence of segment override prefixes)????
1815 */
1816#ifdef IN_RC
1817 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
1818#endif
1819 rc = PGMInvalidatePage(pVCpu, addr);
1820 if ( rc == VINF_SUCCESS
1821 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1822 return VINF_SUCCESS;
1823 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1824 ("%Rrc addr=%RGv\n", rc, addr),
1825 VERR_EM_INTERPRETER);
1826 return rc;
1827}
1828
1829/** @todo change all these EMInterpretXXX methods to VBOXSTRICTRC. */
1830
1831/**
1832 * Interpret CPUID given the parameters in the CPU context
1833 *
1834 * @returns VBox status code.
1835 * @param pVM The VM handle.
1836 * @param pVCpu The VMCPU handle.
1837 * @param pRegFrame The register frame.
1838 *
1839 */
1840VMMDECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1841{
1842 uint32_t iLeaf = pRegFrame->eax;
1843
1844 /* cpuid clears the high dwords of the affected 64 bits registers. */
1845 pRegFrame->rax = 0;
1846 pRegFrame->rbx = 0;
1847 pRegFrame->rcx &= UINT64_C(0x00000000ffffffff);
1848 pRegFrame->rdx = 0;
1849
1850 /* Note: operates the same in 64 and non-64 bits mode. */
1851 CPUMGetGuestCpuId(pVCpu, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1852 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1853 return VINF_SUCCESS;
1854}
1855
1856
1857/**
1858 * CPUID Emulation.
1859 */
1860static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1861{
1862 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
1863 return rc;
1864}
1865
1866
1867/**
1868 * Interpret CRx read
1869 *
1870 * @returns VBox status code.
1871 * @param pVM The VM handle.
1872 * @param pVCpu The VMCPU handle.
1873 * @param pRegFrame The register frame.
1874 * @param DestRegGen General purpose register index (USE_REG_E**))
1875 * @param SrcRegCRx CRx register index (USE_REG_CR*)
1876 *
1877 */
1878VMMDECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1879{
1880 uint64_t val64;
1881 int rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
1882 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1883
1884 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
1885 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1886 else
1887 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1888
1889 if (RT_SUCCESS(rc))
1890 {
1891 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1892 return VINF_SUCCESS;
1893 }
1894 return VERR_EM_INTERPRETER;
1895}
1896
1897
1898
1899/**
1900 * Interpret CLTS
1901 *
1902 * @returns VBox status code.
1903 * @param pVM The VM handle.
1904 * @param pVCpu The VMCPU handle.
1905 *
1906 */
1907VMMDECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
1908{
1909 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
1910 if (!(cr0 & X86_CR0_TS))
1911 return VINF_SUCCESS;
1912 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
1913}
1914
1915/**
1916 * CLTS Emulation.
1917 */
1918static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1919{
1920 return EMInterpretCLTS(pVM, pVCpu);
1921}
1922
1923
1924/**
1925 * Update CRx
1926 *
1927 * @returns VBox status code.
1928 * @param pVM The VM handle.
1929 * @param pVCpu The VMCPU handle.
1930 * @param pRegFrame The register frame.
1931 * @param DestRegCRx CRx register index (USE_REG_CR*)
1932 * @param val New CRx value
1933 *
1934 */
1935static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
1936{
1937 uint64_t oldval;
1938 uint64_t msrEFER;
1939 int rc, rc2;
1940
1941 /** @todo Clean up this mess. */
1942 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
1943 switch (DestRegCrx)
1944 {
1945 case USE_REG_CR0:
1946 oldval = CPUMGetGuestCR0(pVCpu);
1947#ifdef IN_RC
1948 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
1949 if ( (val & (X86_CR0_WP | X86_CR0_AM))
1950 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
1951 return VERR_EM_INTERPRETER;
1952#endif
1953 rc = VINF_SUCCESS;
1954 CPUMSetGuestCR0(pVCpu, val);
1955 val = CPUMGetGuestCR0(pVCpu);
1956 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
1957 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
1958 {
1959 /* global flush */
1960 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1961 AssertRCReturn(rc, rc);
1962 }
1963
1964 /* Deal with long mode enabling/disabling. */
1965 msrEFER = CPUMGetGuestEFER(pVCpu);
1966 if (msrEFER & MSR_K6_EFER_LME)
1967 {
1968 if ( !(oldval & X86_CR0_PG)
1969 && (val & X86_CR0_PG))
1970 {
1971 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1972 if (pRegFrame->csHid.Attr.n.u1Long)
1973 {
1974 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
1975 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
1976 }
1977
1978 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1979 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
1980 {
1981 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
1982 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
1983 }
1984 msrEFER |= MSR_K6_EFER_LMA;
1985 }
1986 else
1987 if ( (oldval & X86_CR0_PG)
1988 && !(val & X86_CR0_PG))
1989 {
1990 msrEFER &= ~MSR_K6_EFER_LMA;
1991 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
1992 }
1993 CPUMSetGuestEFER(pVCpu, msrEFER);
1994 }
1995 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
1996 return rc2 == VINF_SUCCESS ? rc : rc2;
1997
1998 case USE_REG_CR2:
1999 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
2000 return VINF_SUCCESS;
2001
2002 case USE_REG_CR3:
2003 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2004 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
2005 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
2006 {
2007 /* flush */
2008 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
2009 AssertRC(rc);
2010 }
2011 return rc;
2012
2013 case USE_REG_CR4:
2014 oldval = CPUMGetGuestCR4(pVCpu);
2015 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
2016 val = CPUMGetGuestCR4(pVCpu);
2017
2018 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2019 msrEFER = CPUMGetGuestEFER(pVCpu);
2020 if ( (msrEFER & MSR_K6_EFER_LMA)
2021 && (oldval & X86_CR4_PAE)
2022 && !(val & X86_CR4_PAE))
2023 {
2024 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
2025 }
2026
2027 rc = VINF_SUCCESS;
2028 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2029 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2030 {
2031 /* global flush */
2032 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2033 AssertRCReturn(rc, rc);
2034 }
2035
2036 /* Feeling extremely lazy. */
2037# ifdef IN_RC
2038 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2039 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2040 {
2041 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2042 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
2043 }
2044# endif
2045 if ((val ^ oldval) & X86_CR4_VME)
2046 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2047
2048 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2049 return rc2 == VINF_SUCCESS ? rc : rc2;
2050
2051 case USE_REG_CR8:
2052 return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
2053
2054 default:
2055 AssertFailed();
2056 case USE_REG_CR1: /* illegal op */
2057 break;
2058 }
2059 return VERR_EM_INTERPRETER;
2060}
2061
2062/**
2063 * Interpret CRx write
2064 *
2065 * @returns VBox status code.
2066 * @param pVM The VM handle.
2067 * @param pVCpu The VMCPU handle.
2068 * @param pRegFrame The register frame.
2069 * @param DestRegCRx CRx register index (USE_REG_CR*)
2070 * @param SrcRegGen General purpose register index (USE_REG_E**))
2071 *
2072 */
2073VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2074{
2075 uint64_t val;
2076 int rc;
2077
2078 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2079 {
2080 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2081 }
2082 else
2083 {
2084 uint32_t val32;
2085 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2086 val = val32;
2087 }
2088
2089 if (RT_SUCCESS(rc))
2090 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
2091
2092 return VERR_EM_INTERPRETER;
2093}
2094
2095/**
2096 * Interpret LMSW
2097 *
2098 * @returns VBox status code.
2099 * @param pVM The VM handle.
2100 * @param pVCpu The VMCPU handle.
2101 * @param pRegFrame The register frame.
2102 * @param u16Data LMSW source data.
2103 *
2104 */
2105VMMDECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2106{
2107 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
2108
2109 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2110 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2111 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2112
2113 return emUpdateCRx(pVM, pVCpu, pRegFrame, USE_REG_CR0, NewCr0);
2114}
2115
2116/**
2117 * LMSW Emulation.
2118 */
2119static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2120{
2121 OP_PARAMVAL param1;
2122 uint32_t val;
2123
2124 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2125 if(RT_FAILURE(rc))
2126 return VERR_EM_INTERPRETER;
2127
2128 switch(param1.type)
2129 {
2130 case PARMTYPE_IMMEDIATE:
2131 case PARMTYPE_ADDRESS:
2132 if(!(param1.flags & PARAM_VAL16))
2133 return VERR_EM_INTERPRETER;
2134 val = param1.val.val32;
2135 break;
2136
2137 default:
2138 return VERR_EM_INTERPRETER;
2139 }
2140
2141 LogFlow(("emInterpretLmsw %x\n", val));
2142 return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
2143}
2144
2145#ifdef EM_EMULATE_SMSW
2146/**
2147 * SMSW Emulation.
2148 */
2149static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2150{
2151 OP_PARAMVAL param1;
2152 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2153
2154 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2155 if(RT_FAILURE(rc))
2156 return VERR_EM_INTERPRETER;
2157
2158 switch(param1.type)
2159 {
2160 case PARMTYPE_IMMEDIATE:
2161 if(param1.size != sizeof(uint16_t))
2162 return VERR_EM_INTERPRETER;
2163 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->param1.base.reg_gen, cr0));
2164 rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, cr0);
2165 break;
2166
2167 case PARMTYPE_ADDRESS:
2168 {
2169 RTGCPTR pParam1;
2170
2171 /* Actually forced to 16 bits regardless of the operand size. */
2172 if(param1.size != sizeof(uint16_t))
2173 return VERR_EM_INTERPRETER;
2174
2175 pParam1 = (RTGCPTR)param1.val.val64;
2176 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
2177 LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
2178
2179 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
2180 if (RT_FAILURE(rc))
2181 {
2182 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2183 return VERR_EM_INTERPRETER;
2184 }
2185 break;
2186 }
2187
2188 default:
2189 return VERR_EM_INTERPRETER;
2190 }
2191
2192 LogFlow(("emInterpretSmsw %x\n", cr0));
2193 return rc;
2194}
2195#endif
2196
2197/**
2198 * MOV CRx
2199 */
2200static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2201{
2202 if ((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_CR)
2203 return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_ctrl);
2204
2205 if (pDis->param1.flags == USE_REG_CR && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
2206 return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_ctrl, pDis->param2.base.reg_gen);
2207
2208 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2209 return VERR_EM_INTERPRETER;
2210}
2211
2212
2213/**
2214 * Interpret DRx write
2215 *
2216 * @returns VBox status code.
2217 * @param pVM The VM handle.
2218 * @param pVCpu The VMCPU handle.
2219 * @param pRegFrame The register frame.
2220 * @param DestRegDRx DRx register index (USE_REG_DR*)
2221 * @param SrcRegGen General purpose register index (USE_REG_E**))
2222 *
2223 */
2224VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2225{
2226 uint64_t val;
2227 int rc;
2228
2229 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2230 {
2231 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2232 }
2233 else
2234 {
2235 uint32_t val32;
2236 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2237 val = val32;
2238 }
2239
2240 if (RT_SUCCESS(rc))
2241 {
2242 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2243 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, val);
2244 if (RT_SUCCESS(rc))
2245 return rc;
2246 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2247 }
2248 return VERR_EM_INTERPRETER;
2249}
2250
2251
2252/**
2253 * Interpret DRx read
2254 *
2255 * @returns VBox status code.
2256 * @param pVM The VM handle.
2257 * @param pVCpu The VMCPU handle.
2258 * @param pRegFrame The register frame.
2259 * @param DestRegGen General purpose register index (USE_REG_E**))
2260 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2261 *
2262 */
2263VMMDECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2264{
2265 uint64_t val64;
2266
2267 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
2268 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2269 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2270 {
2271 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2272 }
2273 else
2274 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2275
2276 if (RT_SUCCESS(rc))
2277 return VINF_SUCCESS;
2278
2279 return VERR_EM_INTERPRETER;
2280}
2281
2282
2283/**
2284 * MOV DRx
2285 */
2286static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2287{
2288 int rc = VERR_EM_INTERPRETER;
2289
2290 if((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_DBG)
2291 {
2292 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_dbg);
2293 }
2294 else
2295 if(pDis->param1.flags == USE_REG_DBG && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
2296 {
2297 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_dbg, pDis->param2.base.reg_gen);
2298 }
2299 else
2300 AssertMsgFailed(("Unexpected debug register move\n"));
2301
2302 return rc;
2303}
2304
2305
2306/**
2307 * LLDT Emulation.
2308 */
2309static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2310{
2311 OP_PARAMVAL param1;
2312 RTSEL sel;
2313
2314 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2315 if(RT_FAILURE(rc))
2316 return VERR_EM_INTERPRETER;
2317
2318 switch(param1.type)
2319 {
2320 case PARMTYPE_ADDRESS:
2321 return VERR_EM_INTERPRETER; //feeling lazy right now
2322
2323 case PARMTYPE_IMMEDIATE:
2324 if(!(param1.flags & PARAM_VAL16))
2325 return VERR_EM_INTERPRETER;
2326 sel = (RTSEL)param1.val.val16;
2327 break;
2328
2329 default:
2330 return VERR_EM_INTERPRETER;
2331 }
2332
2333#ifdef IN_RING0
2334 /* Only for the VT-x real-mode emulation case. */
2335 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2336 CPUMSetGuestLDTR(pVCpu, sel);
2337 return VINF_SUCCESS;
2338#else
2339 if (sel == 0)
2340 {
2341 if (CPUMGetHyperLDTR(pVCpu) == 0)
2342 {
2343 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2344 return VINF_SUCCESS;
2345 }
2346 }
2347 //still feeling lazy
2348 return VERR_EM_INTERPRETER;
2349#endif
2350}
2351
2352#ifdef IN_RING0
2353/**
2354 * LIDT/LGDT Emulation.
2355 */
2356static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2357{
2358 OP_PARAMVAL param1;
2359 RTGCPTR pParam1;
2360 X86XDTR32 dtr32;
2361
2362 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
2363
2364 /* Only for the VT-x real-mode emulation case. */
2365 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2366
2367 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2368 if(RT_FAILURE(rc))
2369 return VERR_EM_INTERPRETER;
2370
2371 switch(param1.type)
2372 {
2373 case PARMTYPE_ADDRESS:
2374 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, param1.val.val16);
2375 break;
2376
2377 default:
2378 return VERR_EM_INTERPRETER;
2379 }
2380
2381 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
2382 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2383
2384 if (!(pDis->prefix & PREFIX_OPSIZE))
2385 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2386
2387 if (pDis->pCurInstr->opcode == OP_LIDT)
2388 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2389 else
2390 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2391
2392 return VINF_SUCCESS;
2393}
2394#endif
2395
2396
2397#ifdef IN_RC
2398/**
2399 * STI Emulation.
2400 *
2401 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2402 */
2403static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2404{
2405 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2406
2407 if(!pGCState)
2408 {
2409 Assert(pGCState);
2410 return VERR_EM_INTERPRETER;
2411 }
2412 pGCState->uVMFlags |= X86_EFL_IF;
2413
2414 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2415 Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2416
2417 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->opsize;
2418 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2419
2420 return VINF_SUCCESS;
2421}
2422#endif /* IN_RC */
2423
2424
2425/**
2426 * HLT Emulation.
2427 */
2428static int emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2429{
2430 return VINF_EM_HALT;
2431}
2432
2433
2434/**
2435 * Interpret RDTSC
2436 *
2437 * @returns VBox status code.
2438 * @param pVM The VM handle.
2439 * @param pVCpu The VMCPU handle.
2440 * @param pRegFrame The register frame.
2441 *
2442 */
2443VMMDECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2444{
2445 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2446
2447 if (uCR4 & X86_CR4_TSD)
2448 return VERR_EM_INTERPRETER; /* genuine #GP */
2449
2450 uint64_t uTicks = TMCpuTickGet(pVCpu);
2451
2452 /* Same behaviour in 32 & 64 bits mode */
2453 pRegFrame->rax = (uint32_t)uTicks;
2454 pRegFrame->rdx = (uTicks >> 32ULL);
2455
2456 return VINF_SUCCESS;
2457}
2458
2459/**
2460 * Interpret RDTSCP
2461 *
2462 * @returns VBox status code.
2463 * @param pVM The VM handle.
2464 * @param pVCpu The VMCPU handle.
2465 * @param pCtx The CPU context.
2466 *
2467 */
2468VMMDECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2469{
2470 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2471
2472 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2473 {
2474 AssertFailed();
2475 return VERR_EM_INTERPRETER; /* genuine #UD */
2476 }
2477
2478 if (uCR4 & X86_CR4_TSD)
2479 return VERR_EM_INTERPRETER; /* genuine #GP */
2480
2481 uint64_t uTicks = TMCpuTickGet(pVCpu);
2482
2483 /* Same behaviour in 32 & 64 bits mode */
2484 pCtx->rax = (uint32_t)uTicks;
2485 pCtx->rdx = (uTicks >> 32ULL);
2486 /* Low dword of the TSC_AUX msr only. */
2487 CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx);
2488 pCtx->rcx &= UINT32_C(0xffffffff);
2489
2490 return VINF_SUCCESS;
2491}
2492
2493/**
2494 * RDTSC Emulation.
2495 */
2496static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2497{
2498 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
2499}
2500
2501/**
2502 * Interpret RDPMC
2503 *
2504 * @returns VBox status code.
2505 * @param pVM The VM handle.
2506 * @param pVCpu The VMCPU handle.
2507 * @param pRegFrame The register frame.
2508 *
2509 */
2510VMMDECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2511{
2512 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2513
2514 /* If X86_CR4_PCE is not set, then CPL must be zero. */
2515 if ( !(uCR4 & X86_CR4_PCE)
2516 && CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
2517 {
2518 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
2519 return VERR_EM_INTERPRETER; /* genuine #GP */
2520 }
2521
2522 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
2523 pRegFrame->rax = 0;
2524 pRegFrame->rdx = 0;
2525 /** @todo We should trigger a #GP here if the cpu doesn't support the index in ecx. */
2526 return VINF_SUCCESS;
2527}
2528
2529/**
2530 * RDPMC Emulation
2531 */
2532static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2533{
2534 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
2535}
2536
2537/**
2538 * MONITOR Emulation.
2539 */
2540VMMDECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2541{
2542 uint32_t u32Dummy, u32ExtFeatures, cpl;
2543
2544 if (pRegFrame->ecx != 0)
2545 {
2546 Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
2547 return VERR_EM_INTERPRETER; /* illegal value. */
2548 }
2549
2550 /* Get the current privilege level. */
2551 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2552 if (cpl != 0)
2553 return VERR_EM_INTERPRETER; /* supervisor only */
2554
2555 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2556 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2557 return VERR_EM_INTERPRETER; /* not supported */
2558
2559 pVCpu->em.s.mwait.uMonitorEAX = pRegFrame->rax;
2560 pVCpu->em.s.mwait.uMonitorECX = pRegFrame->rcx;
2561 pVCpu->em.s.mwait.uMonitorEDX = pRegFrame->rdx;
2562 pVCpu->em.s.mwait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
2563 return VINF_SUCCESS;
2564}
2565
2566static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2567{
2568 return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
2569}
2570
2571
2572/**
2573 * MWAIT Emulation.
2574 */
2575VMMDECL(int) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2576{
2577 uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
2578
2579 /* Get the current privilege level. */
2580 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2581 if (cpl != 0)
2582 return VERR_EM_INTERPRETER; /* supervisor only */
2583
2584 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2585 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2586 return VERR_EM_INTERPRETER; /* not supported */
2587
2588 /*
2589 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
2590 * CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
2591 */
2592 CPUMGetGuestCpuId(pVCpu, 5, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
2593 if (pRegFrame->ecx > 1)
2594 {
2595 Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
2596 return VERR_EM_INTERPRETER; /* illegal value. */
2597 }
2598
2599 if (pRegFrame->ecx)
2600 {
2601 if (!(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
2602 {
2603 Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
2604 return VERR_EM_INTERPRETER; /* illegal value. */
2605 }
2606
2607 pVCpu->em.s.mwait.fWait = EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0;
2608 }
2609 else
2610 pVCpu->em.s.mwait.fWait = EMMWAIT_FLAG_ACTIVE;
2611
2612 pVCpu->em.s.mwait.uMWaitEAX = pRegFrame->rax;
2613 pVCpu->em.s.mwait.uMWaitECX = pRegFrame->rcx;
2614
2615 /** @todo not completely correct */
2616 return VINF_EM_HALT;
2617}
2618
2619static int emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2620{
2621 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
2622}
2623
2624
2625#ifdef LOG_ENABLED
2626static const char *emMSRtoString(uint32_t uMsr)
2627{
2628 switch (uMsr)
2629 {
2630 case MSR_IA32_APICBASE:
2631 return "MSR_IA32_APICBASE";
2632 case MSR_IA32_CR_PAT:
2633 return "MSR_IA32_CR_PAT";
2634 case MSR_IA32_SYSENTER_CS:
2635 return "MSR_IA32_SYSENTER_CS";
2636 case MSR_IA32_SYSENTER_EIP:
2637 return "MSR_IA32_SYSENTER_EIP";
2638 case MSR_IA32_SYSENTER_ESP:
2639 return "MSR_IA32_SYSENTER_ESP";
2640 case MSR_K6_EFER:
2641 return "MSR_K6_EFER";
2642 case MSR_K8_SF_MASK:
2643 return "MSR_K8_SF_MASK";
2644 case MSR_K6_STAR:
2645 return "MSR_K6_STAR";
2646 case MSR_K8_LSTAR:
2647 return "MSR_K8_LSTAR";
2648 case MSR_K8_CSTAR:
2649 return "MSR_K8_CSTAR";
2650 case MSR_K8_FS_BASE:
2651 return "MSR_K8_FS_BASE";
2652 case MSR_K8_GS_BASE:
2653 return "MSR_K8_GS_BASE";
2654 case MSR_K8_KERNEL_GS_BASE:
2655 return "MSR_K8_KERNEL_GS_BASE";
2656 case MSR_K8_TSC_AUX:
2657 return "MSR_K8_TSC_AUX";
2658 case MSR_IA32_BIOS_SIGN_ID:
2659 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2660 case MSR_IA32_PLATFORM_ID:
2661 return "Unsupported MSR_IA32_PLATFORM_ID";
2662 case MSR_IA32_BIOS_UPDT_TRIG:
2663 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2664 case MSR_IA32_TSC:
2665 return "MSR_IA32_TSC";
2666 case MSR_IA32_MISC_ENABLE:
2667 return "Unsupported MSR_IA32_MISC_ENABLE";
2668 case MSR_IA32_MTRR_CAP:
2669 return "Unsupported MSR_IA32_MTRR_CAP";
2670 case MSR_IA32_MCP_CAP:
2671 return "Unsupported MSR_IA32_MCP_CAP";
2672 case MSR_IA32_MCP_STATUS:
2673 return "Unsupported MSR_IA32_MCP_STATUS";
2674 case MSR_IA32_MCP_CTRL:
2675 return "Unsupported MSR_IA32_MCP_CTRL";
2676 case MSR_IA32_MTRR_DEF_TYPE:
2677 return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
2678 case MSR_K7_EVNTSEL0:
2679 return "Unsupported MSR_K7_EVNTSEL0";
2680 case MSR_K7_EVNTSEL1:
2681 return "Unsupported MSR_K7_EVNTSEL1";
2682 case MSR_K7_EVNTSEL2:
2683 return "Unsupported MSR_K7_EVNTSEL2";
2684 case MSR_K7_EVNTSEL3:
2685 return "Unsupported MSR_K7_EVNTSEL3";
2686 case MSR_IA32_MC0_CTL:
2687 return "Unsupported MSR_IA32_MC0_CTL";
2688 case MSR_IA32_MC0_STATUS:
2689 return "Unsupported MSR_IA32_MC0_STATUS";
2690 case MSR_IA32_PERFEVTSEL0:
2691 return "Unsupported MSR_IA32_PERFEVTSEL0";
2692 case MSR_IA32_PERFEVTSEL1:
2693 return "Unsupported MSR_IA32_PERFEVTSEL1";
2694 case MSR_IA32_PERF_STATUS:
2695 return "MSR_IA32_PERF_STATUS";
2696 case MSR_IA32_PLATFORM_INFO:
2697 return "MSR_IA32_PLATFORM_INFO";
2698 case MSR_IA32_PERF_CTL:
2699 return "Unsupported MSR_IA32_PERF_CTL";
2700 case MSR_K7_PERFCTR0:
2701 return "Unsupported MSR_K7_PERFCTR0";
2702 case MSR_K7_PERFCTR1:
2703 return "Unsupported MSR_K7_PERFCTR1";
2704 case MSR_K7_PERFCTR2:
2705 return "Unsupported MSR_K7_PERFCTR2";
2706 case MSR_K7_PERFCTR3:
2707 return "Unsupported MSR_K7_PERFCTR3";
2708 case MSR_IA32_PMC0:
2709 return "Unsupported MSR_IA32_PMC0";
2710 case MSR_IA32_PMC1:
2711 return "Unsupported MSR_IA32_PMC1";
2712 case MSR_IA32_PMC2:
2713 return "Unsupported MSR_IA32_PMC2";
2714 case MSR_IA32_PMC3:
2715 return "Unsupported MSR_IA32_PMC3";
2716 }
2717 return "Unknown MSR";
2718}
2719#endif /* LOG_ENABLED */
2720
2721
2722/**
2723 * Interpret RDMSR
2724 *
2725 * @returns VBox status code.
2726 * @param pVM The VM handle.
2727 * @param pVCpu The VMCPU handle.
2728 * @param pRegFrame The register frame.
2729 */
2730VMMDECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2731{
2732 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
2733 * That version clears the high dwords of both RDX & RAX */
2734
2735 /* Get the current privilege level. */
2736 if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
2737 return VERR_EM_INTERPRETER; /* supervisor only */
2738
2739 uint64_t uValue;
2740 int rc = CPUMQueryGuestMsr(pVCpu, pRegFrame->ecx, &uValue);
2741 if (RT_UNLIKELY(rc != VINF_SUCCESS))
2742 {
2743 Assert(rc == VERR_CPUM_RAISE_GP_0);
2744 return VERR_EM_INTERPRETER;
2745 }
2746 pRegFrame->rax = (uint32_t) uValue;
2747 pRegFrame->rdx = (uint32_t)(uValue >> 32);
2748 LogFlow(("EMInterpretRdmsr %s (%x) -> %RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, uValue));
2749 return rc;
2750}
2751
2752
2753/**
2754 * RDMSR Emulation.
2755 */
2756static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2757{
2758 /* Note: The Intel manual claims there's a REX version of RDMSR that's slightly
2759 different, so we play safe by completely disassembling the instruction. */
2760 Assert(!(pDis->prefix & PREFIX_REX));
2761 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
2762}
2763
2764
2765/**
2766 * Interpret WRMSR
2767 *
2768 * @returns VBox status code.
2769 * @param pVM The VM handle.
2770 * @param pVCpu The VMCPU handle.
2771 * @param pRegFrame The register frame.
2772 */
2773VMMDECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2774{
2775 /* Check the current privilege level, this instruction is supervisor only. */
2776 if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
2777 return VERR_EM_INTERPRETER; /** @todo raise \#GP(0) */
2778
2779 int rc = CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx));
2780 if (rc != VINF_SUCCESS)
2781 {
2782 Assert(rc == VERR_CPUM_RAISE_GP_0);
2783 return VERR_EM_INTERPRETER;
2784 }
2785 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx,
2786 RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx)));
2787 return rc;
2788}
2789
2790
2791/**
2792 * WRMSR Emulation.
2793 */
2794static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2795{
2796 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
2797}
2798
2799
2800/**
2801 * Internal worker.
2802 * @copydoc EMInterpretInstructionCPU
2803 */
2804DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2805 uint32_t *pcbSize, EMCODETYPE enmCodeType)
2806{
2807 Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
2808 Assert(pcbSize);
2809 *pcbSize = 0;
2810
2811 if (enmCodeType == EMCODETYPE_SUPERVISOR)
2812 {
2813 /*
2814 * Only supervisor guest code!!
2815 * And no complicated prefixes.
2816 */
2817 /* Get the current privilege level. */
2818 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2819 if ( cpl != 0
2820 && pDis->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
2821 {
2822 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
2823 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
2824 return VERR_EM_INTERPRETER;
2825 }
2826 }
2827 else
2828 Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
2829
2830#ifdef IN_RC
2831 if ( (pDis->prefix & (PREFIX_REPNE | PREFIX_REP))
2832 || ( (pDis->prefix & PREFIX_LOCK)
2833 && pDis->pCurInstr->opcode != OP_CMPXCHG
2834 && pDis->pCurInstr->opcode != OP_CMPXCHG8B
2835 && pDis->pCurInstr->opcode != OP_XADD
2836 && pDis->pCurInstr->opcode != OP_OR
2837 && pDis->pCurInstr->opcode != OP_AND
2838 && pDis->pCurInstr->opcode != OP_XOR
2839 && pDis->pCurInstr->opcode != OP_BTR
2840 )
2841 )
2842#else
2843 if ( (pDis->prefix & PREFIX_REPNE)
2844 || ( (pDis->prefix & PREFIX_REP)
2845 && pDis->pCurInstr->opcode != OP_STOSWD
2846 )
2847 || ( (pDis->prefix & PREFIX_LOCK)
2848 && pDis->pCurInstr->opcode != OP_OR
2849 && pDis->pCurInstr->opcode != OP_AND
2850 && pDis->pCurInstr->opcode != OP_XOR
2851 && pDis->pCurInstr->opcode != OP_BTR
2852 && pDis->pCurInstr->opcode != OP_CMPXCHG
2853 && pDis->pCurInstr->opcode != OP_CMPXCHG8B
2854 )
2855 )
2856#endif
2857 {
2858 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
2859 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
2860 return VERR_EM_INTERPRETER;
2861 }
2862
2863#if HC_ARCH_BITS == 32
2864 /*
2865 * Unable to emulate most >4 bytes accesses in 32 bits mode.
2866 * Whitelisted instructions are safe.
2867 */
2868 if ( pDis->param1.size > 4
2869 && CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2870 {
2871 uint32_t uOpCode = pDis->pCurInstr->opcode;
2872 if ( uOpCode != OP_STOSWD
2873 && uOpCode != OP_MOV
2874 && uOpCode != OP_CMPXCHG8B
2875 && uOpCode != OP_XCHG
2876 && uOpCode != OP_BTS
2877 && uOpCode != OP_BTR
2878 && uOpCode != OP_BTC
2879# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
2880 && uOpCode != OP_CMPXCHG /* solaris */
2881 && uOpCode != OP_AND /* windows */
2882 && uOpCode != OP_OR /* windows */
2883 && uOpCode != OP_XOR /* because we can */
2884 && uOpCode != OP_ADD /* windows (dripple) */
2885 && uOpCode != OP_ADC /* because we can */
2886 && uOpCode != OP_SUB /* because we can */
2887 /** @todo OP_BTS or is that a different kind of failure? */
2888# endif
2889 )
2890 {
2891# ifdef VBOX_WITH_STATISTICS
2892 switch (pDis->pCurInstr->opcode)
2893 {
2894# define INTERPRET_FAILED_CASE(opcode, Instr) \
2895 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
2896 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
2897 INTERPRET_FAILED_CASE(OP_DEC,Dec);
2898 INTERPRET_FAILED_CASE(OP_INC,Inc);
2899 INTERPRET_FAILED_CASE(OP_POP,Pop);
2900 INTERPRET_FAILED_CASE(OP_OR, Or);
2901 INTERPRET_FAILED_CASE(OP_XOR,Xor);
2902 INTERPRET_FAILED_CASE(OP_AND,And);
2903 INTERPRET_FAILED_CASE(OP_MOV,Mov);
2904 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
2905 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
2906 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
2907 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
2908 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
2909 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
2910 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
2911 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
2912 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
2913 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
2914 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
2915 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
2916 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
2917 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
2918 INTERPRET_FAILED_CASE(OP_ADD,Add);
2919 INTERPRET_FAILED_CASE(OP_SUB,Sub);
2920 INTERPRET_FAILED_CASE(OP_ADC,Adc);
2921 INTERPRET_FAILED_CASE(OP_BTR,Btr);
2922 INTERPRET_FAILED_CASE(OP_BTS,Bts);
2923 INTERPRET_FAILED_CASE(OP_BTC,Btc);
2924 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
2925 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
2926 INTERPRET_FAILED_CASE(OP_STI, Sti);
2927 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
2928 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
2929 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
2930 INTERPRET_FAILED_CASE(OP_IRET,Iret);
2931 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
2932 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
2933# undef INTERPRET_FAILED_CASE
2934 default:
2935 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
2936 break;
2937 }
2938# endif /* VBOX_WITH_STATISTICS */
2939 return VERR_EM_INTERPRETER;
2940 }
2941 }
2942#endif
2943
2944 int rc;
2945#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
2946 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
2947#endif
2948 switch (pDis->pCurInstr->opcode)
2949 {
2950 /*
2951 * Macros for generating the right case statements.
2952 */
2953# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
2954 case opcode:\
2955 if (pDis->prefix & PREFIX_LOCK) \
2956 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
2957 else \
2958 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
2959 if (RT_SUCCESS(rc)) \
2960 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2961 else \
2962 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2963 return rc
2964#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
2965 case opcode:\
2966 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
2967 if (RT_SUCCESS(rc)) \
2968 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2969 else \
2970 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2971 return rc
2972
2973#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
2974 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
2975#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
2976 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
2977
2978#define INTERPRET_CASE(opcode, Instr) \
2979 case opcode:\
2980 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
2981 if (RT_SUCCESS(rc)) \
2982 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2983 else \
2984 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2985 return rc
2986
2987#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
2988 case opcode:\
2989 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
2990 if (RT_SUCCESS(rc)) \
2991 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2992 else \
2993 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2994 return rc
2995
2996#define INTERPRET_STAT_CASE(opcode, Instr) \
2997 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
2998
2999 /*
3000 * The actual case statements.
3001 */
3002 INTERPRET_CASE(OP_XCHG,Xchg);
3003 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3004 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3005 INTERPRET_CASE(OP_POP,Pop);
3006 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3007 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3008 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3009 INTERPRET_CASE(OP_MOV,Mov);
3010#ifndef IN_RC
3011 INTERPRET_CASE(OP_STOSWD,StosWD);
3012#endif
3013 INTERPRET_CASE(OP_INVLPG,InvlPg);
3014 INTERPRET_CASE(OP_CPUID,CpuId);
3015 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3016 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3017#ifdef IN_RING0
3018 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3019 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3020#endif
3021 INTERPRET_CASE(OP_LLDT,LLdt);
3022 INTERPRET_CASE(OP_LMSW,Lmsw);
3023#ifdef EM_EMULATE_SMSW
3024 INTERPRET_CASE(OP_SMSW,Smsw);
3025#endif
3026 INTERPRET_CASE(OP_CLTS,Clts);
3027 INTERPRET_CASE(OP_MONITOR, Monitor);
3028 INTERPRET_CASE(OP_MWAIT, MWait);
3029 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3030 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3031 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3032 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3033 INTERPRET_CASE(OP_ADC,Adc);
3034 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3035 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3036 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3037 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3038 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3039 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3040#ifdef IN_RC
3041 INTERPRET_CASE(OP_STI,Sti);
3042 INTERPRET_CASE(OP_XADD, XAdd);
3043#endif
3044 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3045 INTERPRET_CASE(OP_HLT,Hlt);
3046 INTERPRET_CASE(OP_IRET,Iret);
3047 INTERPRET_CASE(OP_WBINVD,WbInvd);
3048#ifdef VBOX_WITH_STATISTICS
3049# ifndef IN_RC
3050 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3051# endif
3052 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3053#endif
3054
3055 default:
3056 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->opcode));
3057 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3058 return VERR_EM_INTERPRETER;
3059
3060#undef INTERPRET_CASE_EX_PARAM2
3061#undef INTERPRET_STAT_CASE
3062#undef INTERPRET_CASE_EX
3063#undef INTERPRET_CASE
3064 } /* switch (opcode) */
3065 AssertFailed();
3066 return VERR_INTERNAL_ERROR;
3067}
3068
3069
3070/**
3071 * Sets the PC for which interrupts should be inhibited.
3072 *
3073 * @param pVCpu The VMCPU handle.
3074 * @param PC The PC.
3075 */
3076VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
3077{
3078 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
3079 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3080}
3081
3082
3083/**
3084 * Gets the PC for which interrupts should be inhibited.
3085 *
3086 * There are a few instructions which inhibits or delays interrupts
3087 * for the instruction following them. These instructions are:
3088 * - STI
3089 * - MOV SS, r/m16
3090 * - POP SS
3091 *
3092 * @returns The PC for which interrupts should be inhibited.
3093 * @param pVCpu The VMCPU handle.
3094 *
3095 */
3096VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
3097{
3098 return pVCpu->em.s.GCPtrInhibitInterrupts;
3099}
3100
3101/**
3102 * Locks REM execution to a single VCpu
3103 *
3104 * @param pVM VM handle.
3105 */
3106VMMDECL(void) EMRemLock(PVM pVM)
3107{
3108 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
3109 return; /* early init */
3110
3111 Assert(!PGMIsLockOwner(pVM) && !IOMIsLockOwner(pVM));
3112 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
3113 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3114}
3115
3116/**
3117 * Unlocks REM execution
3118 *
3119 * @param pVM VM handle.
3120 */
3121VMMDECL(void) EMRemUnlock(PVM pVM)
3122{
3123 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
3124 return; /* early init */
3125
3126 PDMCritSectLeave(&pVM->em.s.CritSectREM);
3127}
3128
3129/**
3130 * Check if this VCPU currently owns the REM lock.
3131 *
3132 * @returns bool owner/not owner
3133 * @param pVM The VM to operate on.
3134 */
3135VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
3136{
3137 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
3138}
3139
3140/**
3141 * Try to acquire the REM lock.
3142 *
3143 * @returns VBox status code
3144 * @param pVM The VM to operate on.
3145 */
3146VMMDECL(int) EMTryEnterRemLock(PVM pVM)
3147{
3148 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
3149}
3150
3151/**
3152 * Determine if we should continue after encountering a hlt or mwait instruction
3153 *
3154 * @returns boolean
3155 * @param pVCpu The VMCPU to operate on.
3156 * @param pCtx Current CPU context
3157 */
3158VMMDECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
3159{
3160 if ( pCtx->eflags.Bits.u1IF
3161 || ((pVCpu->em.s.mwait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)))
3162 {
3163 pVCpu->em.s.mwait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
3164 return !!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC));
3165 }
3166
3167 return false;
3168}
3169
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette