VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 30493

Last change on this file since 30493 was 30493, checked in by vboxsync, 14 years ago

Demoted some PGM apis to internal only.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 112.6 KB
Line 
1/* $Id: EMAll.cpp 30493 2010-06-29 11:59:47Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_EM
22#include <VBox/em.h>
23#include <VBox/mm.h>
24#include <VBox/selm.h>
25#include <VBox/patm.h>
26#include <VBox/csam.h>
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/stam.h>
30#include "EMInternal.h"
31#include <VBox/vm.h>
32#include <VBox/vmm.h>
33#include <VBox/hwaccm.h>
34#include <VBox/tm.h>
35#include <VBox/pdmapi.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/dis.h>
39#include <VBox/disopcode.h>
40#include <VBox/log.h>
41#include <include/internal/pgm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** @def EM_ASSERT_FAULT_RETURN
51 * Safety check.
52 *
53 * Could in theory misfire on a cross page boundary access...
54 *
55 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
56 * turns up an alias page instead of the original faulting one and annoying the
57 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
58 */
59#if 0
60# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
61#else
62# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
63#endif
64
65/* Used to pass information during instruction disassembly. */
66typedef struct
67{
68 PVM pVM;
69 PVMCPU pVCpu;
70 RTGCPTR GCPtr;
71 uint8_t aOpcode[8];
72} EMDISSTATE, *PEMDISSTATE;
73
74/*******************************************************************************
75* Internal Functions *
76*******************************************************************************/
77DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize, EMCODETYPE enmCodeType = EMCODETYPE_SUPERVISOR);
78
79
80
81/**
82 * Get the current execution manager status.
83 *
84 * @returns Current status.
85 * @param pVCpu The VMCPU to operate on.
86 */
87VMMDECL(EMSTATE) EMGetState(PVMCPU pVCpu)
88{
89 return pVCpu->em.s.enmState;
90}
91
92/**
93 * Sets the current execution manager status. (use only when you know what you're doing!)
94 *
95 * @param pVCpu The VMCPU to operate on.
96 */
97VMMDECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
98{
99 /* Only allowed combination: */
100 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
101 pVCpu->em.s.enmState = enmNewState;
102}
103
104
105/**
106 * Read callback for disassembly function; supports reading bytes that cross a page boundary
107 *
108 * @returns VBox status code.
109 * @param pSrc GC source pointer
110 * @param pDest HC destination pointer
111 * @param cb Number of bytes to read
112 * @param dwUserdata Callback specific user data (pDis)
113 *
114 */
115DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
116{
117 PDISCPUSTATE pDis = (PDISCPUSTATE)pvUserdata;
118 PEMDISSTATE pState = (PEMDISSTATE)pDis->apvUserData[0];
119 PVM pVM = pState->pVM;
120 PVMCPU pVCpu = pState->pVCpu;
121
122# ifdef IN_RING0
123 int rc;
124
125 if ( pState->GCPtr
126 && pSrc + cb <= pState->GCPtr + sizeof(pState->aOpcode))
127 {
128 unsigned offset = pSrc - pState->GCPtr;
129
130 Assert(pSrc >= pState->GCPtr);
131
132 for (unsigned i=0; i<cb; i++)
133 {
134 pDest[i] = pState->aOpcode[offset + i];
135 }
136 return VINF_SUCCESS;
137 }
138
139 rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
140 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x rc=%d\n", pSrc, cb, rc));
141# elif defined(IN_RING3)
142 if (!PATMIsPatchGCAddr(pVM, pSrc))
143 {
144 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
145 AssertRC(rc);
146 }
147 else
148 memcpy(pDest, PATMR3GCPtrToHCPtr(pVM, pSrc), cb);
149
150# elif defined(IN_RC)
151 if (!PATMIsPatchGCAddr(pVM, pSrc))
152 {
153 int rc = MMGCRamRead(pVM, pDest, (void *)(uintptr_t)pSrc, cb);
154 if (rc == VERR_ACCESS_DENIED)
155 {
156 /* Recently flushed; access the data manually. */
157 rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
158 AssertRC(rc);
159 }
160 }
161 else /* the hypervisor region is always present. */
162 memcpy(pDest, (RTRCPTR)(uintptr_t)pSrc, cb);
163
164# endif /* IN_RING3 */
165 return VINF_SUCCESS;
166}
167
168
169#ifndef IN_RC
170DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
171{
172 EMDISSTATE State;
173
174 State.pVM = pVM;
175 State.pVCpu = pVCpu;
176 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, InstrGC, sizeof(State.aOpcode));
177 if (RT_SUCCESS(rc))
178 {
179 State.GCPtr = InstrGC;
180 }
181 else
182 {
183 if (PAGE_ADDRESS(InstrGC) == PAGE_ADDRESS(InstrGC + sizeof(State.aOpcode) - 1))
184 {
185 if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
186 HWACCMInvalidatePage(pVCpu, InstrGC);
187
188 Log(("emDisCoreOne: read failed with %d\n", rc));
189 return rc;
190 }
191 State.GCPtr = NIL_RTGCPTR;
192 }
193 return DISCoreOneEx(InstrGC, pDis->mode, EMReadBytes, &State, pDis, pOpsize);
194}
195
196#else /* IN_RC */
197
198DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
199{
200 EMDISSTATE State;
201
202 State.pVM = pVM;
203 State.pVCpu = pVCpu;
204 State.GCPtr = InstrGC;
205
206 return DISCoreOneEx(InstrGC, pDis->mode, EMReadBytes, &State, pDis, pOpsize);
207}
208
209#endif /* IN_RC */
210
211
212/**
213 * Disassembles one instruction.
214 *
215 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
216 * details.
217 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
218 *
219 * @param pVM The VM handle.
220 * @param pVCpu The VMCPU handle.
221 * @param pCtxCore The context core (used for both the mode and instruction).
222 * @param pDis Where to return the parsed instruction info.
223 * @param pcbInstr Where to return the instruction size. (optional)
224 */
225VMMDECL(int) EMInterpretDisasOne(PVM pVM, PVMCPU pVCpu, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
226{
227 RTGCPTR GCPtrInstr;
228 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
229 if (RT_FAILURE(rc))
230 {
231 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
232 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
233 return rc;
234 }
235 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
236}
237
238
239/**
240 * Disassembles one instruction.
241 *
242 * This is used by internally by the interpreter and by trap/access handlers.
243 *
244 * @returns VBox status code.
245 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
246 *
247 * @param pVM The VM handle.
248 * @param pVCpu The VMCPU handle.
249 * @param GCPtrInstr The flat address of the instruction.
250 * @param pCtxCore The context core (used to determine the cpu mode).
251 * @param pDis Where to return the parsed instruction info.
252 * @param pcbInstr Where to return the instruction size. (optional)
253 */
254VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
255{
256 int rc;
257 EMDISSTATE State;
258
259 State.pVM = pVM;
260 State.pVCpu = pVCpu;
261
262#ifdef IN_RC
263 State.GCPtr = GCPtrInstr;
264#else /* ring 0/3 */
265 rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, GCPtrInstr, sizeof(State.aOpcode));
266 if (RT_SUCCESS(rc))
267 {
268 State.GCPtr = GCPtrInstr;
269 }
270 else
271 {
272 if (PAGE_ADDRESS(GCPtrInstr) == PAGE_ADDRESS(GCPtrInstr + sizeof(State.aOpcode) - 1))
273 {
274 if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
275 HWACCMInvalidatePage(pVCpu, GCPtrInstr);
276
277 Log(("EMInterpretDisasOneEx: read failed with %d\n", rc));
278 return rc;
279 }
280 State.GCPtr = NIL_RTGCPTR;
281 }
282#endif
283
284 rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
285 EMReadBytes, &State,
286 pDis, pcbInstr);
287 if (RT_SUCCESS(rc))
288 return VINF_SUCCESS;
289 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
290 return VERR_INTERNAL_ERROR;
291}
292
293
294/**
295 * Interprets the current instruction.
296 *
297 * @returns VBox status code.
298 * @retval VINF_* Scheduling instructions.
299 * @retval VERR_EM_INTERPRETER Something we can't cope with.
300 * @retval VERR_* Fatal errors.
301 *
302 * @param pVM The VM handle.
303 * @param pVCpu The VMCPU handle.
304 * @param pRegFrame The register frame.
305 * Updates the EIP if an instruction was executed successfully.
306 * @param pvFault The fault address (CR2).
307 * @param pcbSize Size of the write (if applicable).
308 *
309 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
310 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
311 * to worry about e.g. invalid modrm combinations (!)
312 */
313VMMDECL(int) EMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
314{
315 RTGCPTR pbCode;
316
317 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
318 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
319 if (RT_SUCCESS(rc))
320 {
321 uint32_t cbOp;
322 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
323 pDis->mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
324 rc = emDisCoreOne(pVM, pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
325 if (RT_SUCCESS(rc))
326 {
327 Assert(cbOp == pDis->opsize);
328 rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize);
329 if (RT_SUCCESS(rc))
330 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
331
332 return rc;
333 }
334 }
335 return VERR_EM_INTERPRETER;
336}
337
338
339/**
340 * Interprets the current instruction using the supplied DISCPUSTATE structure.
341 *
342 * EIP is *NOT* updated!
343 *
344 * @returns VBox status code.
345 * @retval VINF_* Scheduling instructions. When these are returned, it
346 * starts to get a bit tricky to know whether code was
347 * executed or not... We'll address this when it becomes a problem.
348 * @retval VERR_EM_INTERPRETER Something we can't cope with.
349 * @retval VERR_* Fatal errors.
350 *
351 * @param pVM The VM handle.
352 * @param pVCpu The VMCPU handle.
353 * @param pDis The disassembler cpu state for the instruction to be
354 * interpreted.
355 * @param pRegFrame The register frame. EIP is *NOT* changed!
356 * @param pvFault The fault address (CR2).
357 * @param pcbSize Size of the write (if applicable).
358 * @param enmCodeType Code type (user/supervisor)
359 *
360 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
361 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
362 * to worry about e.g. invalid modrm combinations (!)
363 *
364 * @todo At this time we do NOT check if the instruction overwrites vital information.
365 * Make sure this can't happen!! (will add some assertions/checks later)
366 */
367VMMDECL(int) EMInterpretInstructionCPUEx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize, EMCODETYPE enmCodeType)
368{
369 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
370 int rc = emInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, enmCodeType);
371 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
372 if (RT_SUCCESS(rc))
373 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
374 else
375 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
376 return rc;
377}
378
379
380/**
381 * Interpret a port I/O instruction.
382 *
383 * @returns VBox status code suitable for scheduling.
384 * @param pVM The VM handle.
385 * @param pVCpu The VMCPU handle.
386 * @param pCtxCore The context core. This will be updated on successful return.
387 * @param pDis The instruction to interpret.
388 * @param cbOp The size of the instruction.
389 * @remark This may raise exceptions.
390 */
391VMMDECL(VBOXSTRICTRC) EMInterpretPortIO(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, uint32_t cbOp)
392{
393 /*
394 * Hand it on to IOM.
395 */
396#ifdef IN_RC
397 VBOXSTRICTRC rcStrict = IOMGCIOPortHandler(pVM, pCtxCore, pDis);
398 if (IOM_SUCCESS(rcStrict))
399 pCtxCore->rip += cbOp;
400 return rcStrict;
401#else
402 AssertReleaseMsgFailed(("not implemented\n"));
403 return VERR_NOT_IMPLEMENTED;
404#endif
405}
406
407
408DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
409{
410#ifdef IN_RC
411 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
412 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
413 return rc;
414 /*
415 * The page pool cache may end up here in some cases because it
416 * flushed one of the shadow mappings used by the trapping
417 * instruction and it either flushed the TLB or the CPU reused it.
418 */
419#endif
420 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
421}
422
423
424DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
425{
426 /* Don't use MMGCRamWrite here as it does not respect zero pages, shared
427 pages or write monitored pages. */
428 return PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
429}
430
431
432/** Convert sel:addr to a flat GC address. */
433DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, POP_PARAMETER pParam, RTGCPTR pvAddr)
434{
435 DIS_SELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
436 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
437}
438
439
440#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
441/**
442 * Get the mnemonic for the disassembled instruction.
443 *
444 * GC/R0 doesn't include the strings in the DIS tables because
445 * of limited space.
446 */
447static const char *emGetMnemonic(PDISCPUSTATE pDis)
448{
449 switch (pDis->pCurInstr->opcode)
450 {
451 case OP_XCHG: return "Xchg";
452 case OP_DEC: return "Dec";
453 case OP_INC: return "Inc";
454 case OP_POP: return "Pop";
455 case OP_OR: return "Or";
456 case OP_AND: return "And";
457 case OP_MOV: return "Mov";
458 case OP_INVLPG: return "InvlPg";
459 case OP_CPUID: return "CpuId";
460 case OP_MOV_CR: return "MovCRx";
461 case OP_MOV_DR: return "MovDRx";
462 case OP_LLDT: return "LLdt";
463 case OP_LGDT: return "LGdt";
464 case OP_LIDT: return "LIdt";
465 case OP_CLTS: return "Clts";
466 case OP_MONITOR: return "Monitor";
467 case OP_MWAIT: return "MWait";
468 case OP_RDMSR: return "Rdmsr";
469 case OP_WRMSR: return "Wrmsr";
470 case OP_ADD: return "Add";
471 case OP_ADC: return "Adc";
472 case OP_SUB: return "Sub";
473 case OP_SBB: return "Sbb";
474 case OP_RDTSC: return "Rdtsc";
475 case OP_STI: return "Sti";
476 case OP_CLI: return "Cli";
477 case OP_XADD: return "XAdd";
478 case OP_HLT: return "Hlt";
479 case OP_IRET: return "Iret";
480 case OP_MOVNTPS: return "MovNTPS";
481 case OP_STOSWD: return "StosWD";
482 case OP_WBINVD: return "WbInvd";
483 case OP_XOR: return "Xor";
484 case OP_BTR: return "Btr";
485 case OP_BTS: return "Bts";
486 case OP_BTC: return "Btc";
487 case OP_LMSW: return "Lmsw";
488 case OP_SMSW: return "Smsw";
489 case OP_CMPXCHG: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
490 case OP_CMPXCHG8B: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
491
492 default:
493 Log(("Unknown opcode %d\n", pDis->pCurInstr->opcode));
494 return "???";
495 }
496}
497#endif /* VBOX_STRICT || LOG_ENABLED */
498
499
500/**
501 * XCHG instruction emulation.
502 */
503static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
504{
505 OP_PARAMVAL param1, param2;
506
507 /* Source to make DISQueryParamVal read the register value - ugly hack */
508 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
509 if(RT_FAILURE(rc))
510 return VERR_EM_INTERPRETER;
511
512 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
513 if(RT_FAILURE(rc))
514 return VERR_EM_INTERPRETER;
515
516#ifdef IN_RC
517 if (TRPMHasTrap(pVCpu))
518 {
519 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
520 {
521#endif
522 RTGCPTR pParam1 = 0, pParam2 = 0;
523 uint64_t valpar1, valpar2;
524
525 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
526 switch(param1.type)
527 {
528 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
529 valpar1 = param1.val.val64;
530 break;
531
532 case PARMTYPE_ADDRESS:
533 pParam1 = (RTGCPTR)param1.val.val64;
534 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
535 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
536 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
537 if (RT_FAILURE(rc))
538 {
539 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
540 return VERR_EM_INTERPRETER;
541 }
542 break;
543
544 default:
545 AssertFailed();
546 return VERR_EM_INTERPRETER;
547 }
548
549 switch(param2.type)
550 {
551 case PARMTYPE_ADDRESS:
552 pParam2 = (RTGCPTR)param2.val.val64;
553 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pParam2);
554 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
555 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
556 if (RT_FAILURE(rc))
557 {
558 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
559 }
560 break;
561
562 case PARMTYPE_IMMEDIATE:
563 valpar2 = param2.val.val64;
564 break;
565
566 default:
567 AssertFailed();
568 return VERR_EM_INTERPRETER;
569 }
570
571 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
572 if (pParam1 == 0)
573 {
574 Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
575 switch(param1.size)
576 {
577 case 1: //special case for AH etc
578 rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t )valpar2); break;
579 case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)valpar2); break;
580 case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)valpar2); break;
581 case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, valpar2); break;
582 default: AssertFailedReturn(VERR_EM_INTERPRETER);
583 }
584 if (RT_FAILURE(rc))
585 return VERR_EM_INTERPRETER;
586 }
587 else
588 {
589 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
590 if (RT_FAILURE(rc))
591 {
592 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
593 return VERR_EM_INTERPRETER;
594 }
595 }
596
597 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
598 if (pParam2 == 0)
599 {
600 Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
601 switch(param2.size)
602 {
603 case 1: //special case for AH etc
604 rc = DISWriteReg8(pRegFrame, pDis->param2.base.reg_gen, (uint8_t )valpar1); break;
605 case 2: rc = DISWriteReg16(pRegFrame, pDis->param2.base.reg_gen, (uint16_t)valpar1); break;
606 case 4: rc = DISWriteReg32(pRegFrame, pDis->param2.base.reg_gen, (uint32_t)valpar1); break;
607 case 8: rc = DISWriteReg64(pRegFrame, pDis->param2.base.reg_gen, valpar1); break;
608 default: AssertFailedReturn(VERR_EM_INTERPRETER);
609 }
610 if (RT_FAILURE(rc))
611 return VERR_EM_INTERPRETER;
612 }
613 else
614 {
615 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
616 if (RT_FAILURE(rc))
617 {
618 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
619 return VERR_EM_INTERPRETER;
620 }
621 }
622
623 *pcbSize = param2.size;
624 return VINF_SUCCESS;
625#ifdef IN_RC
626 }
627 }
628#endif
629 return VERR_EM_INTERPRETER;
630}
631
632
633/**
634 * INC and DEC emulation.
635 */
636static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
637 PFNEMULATEPARAM2 pfnEmulate)
638{
639 OP_PARAMVAL param1;
640
641 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
642 if(RT_FAILURE(rc))
643 return VERR_EM_INTERPRETER;
644
645#ifdef IN_RC
646 if (TRPMHasTrap(pVCpu))
647 {
648 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
649 {
650#endif
651 RTGCPTR pParam1 = 0;
652 uint64_t valpar1;
653
654 if (param1.type == PARMTYPE_ADDRESS)
655 {
656 pParam1 = (RTGCPTR)param1.val.val64;
657 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
658#ifdef IN_RC
659 /* Safety check (in theory it could cross a page boundary and fault there though) */
660 AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
661#endif
662 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
663 if (RT_FAILURE(rc))
664 {
665 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
666 return VERR_EM_INTERPRETER;
667 }
668 }
669 else
670 {
671 AssertFailed();
672 return VERR_EM_INTERPRETER;
673 }
674
675 uint32_t eflags;
676
677 eflags = pfnEmulate(&valpar1, param1.size);
678
679 /* Write result back */
680 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
681 if (RT_FAILURE(rc))
682 {
683 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
684 return VERR_EM_INTERPRETER;
685 }
686
687 /* Update guest's eflags and finish. */
688 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
689 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
690
691 /* All done! */
692 *pcbSize = param1.size;
693 return VINF_SUCCESS;
694#ifdef IN_RC
695 }
696 }
697#endif
698 return VERR_EM_INTERPRETER;
699}
700
701
702/**
703 * POP Emulation.
704 */
705static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
706{
707 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
708 OP_PARAMVAL param1;
709 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
710 if(RT_FAILURE(rc))
711 return VERR_EM_INTERPRETER;
712
713#ifdef IN_RC
714 if (TRPMHasTrap(pVCpu))
715 {
716 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
717 {
718#endif
719 RTGCPTR pParam1 = 0;
720 uint32_t valpar1;
721 RTGCPTR pStackVal;
722
723 /* Read stack value first */
724 if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
725 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
726
727 /* Convert address; don't bother checking limits etc, as we only read here */
728 pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
729 if (pStackVal == 0)
730 return VERR_EM_INTERPRETER;
731
732 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
733 if (RT_FAILURE(rc))
734 {
735 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
736 return VERR_EM_INTERPRETER;
737 }
738
739 if (param1.type == PARMTYPE_ADDRESS)
740 {
741 pParam1 = (RTGCPTR)param1.val.val64;
742
743 /* pop [esp+xx] uses esp after the actual pop! */
744 AssertCompile(USE_REG_ESP == USE_REG_SP);
745 if ( (pDis->param1.flags & USE_BASE)
746 && (pDis->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
747 && pDis->param1.base.reg_gen == USE_REG_ESP
748 )
749 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
750
751 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
752 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
753 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
754 if (RT_FAILURE(rc))
755 {
756 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
757 return VERR_EM_INTERPRETER;
758 }
759
760 /* Update ESP as the last step */
761 pRegFrame->esp += param1.size;
762 }
763 else
764 {
765#ifndef DEBUG_bird // annoying assertion.
766 AssertFailed();
767#endif
768 return VERR_EM_INTERPRETER;
769 }
770
771 /* All done! */
772 *pcbSize = param1.size;
773 return VINF_SUCCESS;
774#ifdef IN_RC
775 }
776 }
777#endif
778 return VERR_EM_INTERPRETER;
779}
780
781
782/**
783 * XOR/OR/AND Emulation.
784 */
785static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
786 PFNEMULATEPARAM3 pfnEmulate)
787{
788 OP_PARAMVAL param1, param2;
789
790 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
791 if(RT_FAILURE(rc))
792 return VERR_EM_INTERPRETER;
793
794 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
795 if(RT_FAILURE(rc))
796 return VERR_EM_INTERPRETER;
797
798#ifdef IN_RC
799 if (TRPMHasTrap(pVCpu))
800 {
801 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
802 {
803#endif
804 RTGCPTR pParam1;
805 uint64_t valpar1, valpar2;
806
807 if (pDis->param1.size != pDis->param2.size)
808 {
809 if (pDis->param1.size < pDis->param2.size)
810 {
811 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
812 return VERR_EM_INTERPRETER;
813 }
814 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
815 pDis->param2.size = pDis->param1.size;
816 param2.size = param1.size;
817 }
818
819 /* The destination is always a virtual address */
820 if (param1.type == PARMTYPE_ADDRESS)
821 {
822 pParam1 = (RTGCPTR)param1.val.val64;
823 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
824 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
825 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
826 if (RT_FAILURE(rc))
827 {
828 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
829 return VERR_EM_INTERPRETER;
830 }
831 }
832 else
833 {
834 AssertFailed();
835 return VERR_EM_INTERPRETER;
836 }
837
838 /* Register or immediate data */
839 switch(param2.type)
840 {
841 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
842 valpar2 = param2.val.val64;
843 break;
844
845 default:
846 AssertFailed();
847 return VERR_EM_INTERPRETER;
848 }
849
850 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
851
852 /* Data read, emulate instruction. */
853 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
854
855 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
856
857 /* Update guest's eflags and finish. */
858 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
859 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
860
861 /* And write it back */
862 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
863 if (RT_SUCCESS(rc))
864 {
865 /* All done! */
866 *pcbSize = param2.size;
867 return VINF_SUCCESS;
868 }
869#ifdef IN_RC
870 }
871 }
872#endif
873 return VERR_EM_INTERPRETER;
874}
875
876
877/**
878 * LOCK XOR/OR/AND Emulation.
879 */
880static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
881 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
882{
883 void *pvParam1;
884 OP_PARAMVAL param1, param2;
885
886#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
887 Assert(pDis->param1.size <= 4);
888#endif
889
890 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
891 if(RT_FAILURE(rc))
892 return VERR_EM_INTERPRETER;
893
894 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
895 if(RT_FAILURE(rc))
896 return VERR_EM_INTERPRETER;
897
898 if (pDis->param1.size != pDis->param2.size)
899 {
900 AssertMsgReturn(pDis->param1.size >= pDis->param2.size, /* should never happen! */
901 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size),
902 VERR_EM_INTERPRETER);
903
904 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
905 pDis->param2.size = pDis->param1.size;
906 param2.size = param1.size;
907 }
908
909#ifdef IN_RC
910 /* Safety check (in theory it could cross a page boundary and fault there though) */
911 Assert( TRPMHasTrap(pVCpu)
912 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
913 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
914#endif
915
916 /* Register and immediate data == PARMTYPE_IMMEDIATE */
917 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
918 RTGCUINTREG ValPar2 = param2.val.val64;
919
920 /* The destination is always a virtual address */
921 AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
922
923 RTGCPTR GCPtrPar1 = param1.val.val64;
924 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
925 PGMPAGEMAPLOCK Lock;
926 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
927 AssertRCReturn(rc, VERR_EM_INTERPRETER);
928
929 /* Try emulate it with a one-shot #PF handler in place. (RC) */
930 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
931
932 RTGCUINTREG32 eflags = 0;
933 rc = pfnEmulate(pvParam1, ValPar2, pDis->param2.size, &eflags);
934 PGMPhysReleasePageMappingLock(pVM, &Lock);
935 if (RT_FAILURE(rc))
936 {
937 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
938 return VERR_EM_INTERPRETER;
939 }
940
941 /* Update guest's eflags and finish. */
942 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
943 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
944
945 *pcbSize = param2.size;
946 return VINF_SUCCESS;
947}
948
949
950/**
951 * ADD, ADC & SUB Emulation.
952 */
953static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
954 PFNEMULATEPARAM3 pfnEmulate)
955{
956 OP_PARAMVAL param1, param2;
957 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
958 if(RT_FAILURE(rc))
959 return VERR_EM_INTERPRETER;
960
961 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
962 if(RT_FAILURE(rc))
963 return VERR_EM_INTERPRETER;
964
965#ifdef IN_RC
966 if (TRPMHasTrap(pVCpu))
967 {
968 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
969 {
970#endif
971 RTGCPTR pParam1;
972 uint64_t valpar1, valpar2;
973
974 if (pDis->param1.size != pDis->param2.size)
975 {
976 if (pDis->param1.size < pDis->param2.size)
977 {
978 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
979 return VERR_EM_INTERPRETER;
980 }
981 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
982 pDis->param2.size = pDis->param1.size;
983 param2.size = param1.size;
984 }
985
986 /* The destination is always a virtual address */
987 if (param1.type == PARMTYPE_ADDRESS)
988 {
989 pParam1 = (RTGCPTR)param1.val.val64;
990 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
991 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
992 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
993 if (RT_FAILURE(rc))
994 {
995 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
996 return VERR_EM_INTERPRETER;
997 }
998 }
999 else
1000 {
1001#ifndef DEBUG_bird
1002 AssertFailed();
1003#endif
1004 return VERR_EM_INTERPRETER;
1005 }
1006
1007 /* Register or immediate data */
1008 switch(param2.type)
1009 {
1010 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1011 valpar2 = param2.val.val64;
1012 break;
1013
1014 default:
1015 AssertFailed();
1016 return VERR_EM_INTERPRETER;
1017 }
1018
1019 /* Data read, emulate instruction. */
1020 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
1021
1022 /* Update guest's eflags and finish. */
1023 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1024 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1025
1026 /* And write it back */
1027 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
1028 if (RT_SUCCESS(rc))
1029 {
1030 /* All done! */
1031 *pcbSize = param2.size;
1032 return VINF_SUCCESS;
1033 }
1034#ifdef IN_RC
1035 }
1036 }
1037#endif
1038 return VERR_EM_INTERPRETER;
1039}
1040
1041
1042/**
1043 * ADC Emulation.
1044 */
1045static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1046{
1047 if (pRegFrame->eflags.Bits.u1CF)
1048 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
1049 else
1050 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
1051}
1052
1053
1054/**
1055 * BTR/C/S Emulation.
1056 */
1057static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1058 PFNEMULATEPARAM2UINT32 pfnEmulate)
1059{
1060 OP_PARAMVAL param1, param2;
1061 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1062 if(RT_FAILURE(rc))
1063 return VERR_EM_INTERPRETER;
1064
1065 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1066 if(RT_FAILURE(rc))
1067 return VERR_EM_INTERPRETER;
1068
1069#ifdef IN_RC
1070 if (TRPMHasTrap(pVCpu))
1071 {
1072 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1073 {
1074#endif
1075 RTGCPTR pParam1;
1076 uint64_t valpar1 = 0, valpar2;
1077 uint32_t eflags;
1078
1079 /* The destination is always a virtual address */
1080 if (param1.type != PARMTYPE_ADDRESS)
1081 return VERR_EM_INTERPRETER;
1082
1083 pParam1 = (RTGCPTR)param1.val.val64;
1084 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
1085
1086 /* Register or immediate data */
1087 switch(param2.type)
1088 {
1089 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1090 valpar2 = param2.val.val64;
1091 break;
1092
1093 default:
1094 AssertFailed();
1095 return VERR_EM_INTERPRETER;
1096 }
1097
1098 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
1099 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1100 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1101 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
1102 if (RT_FAILURE(rc))
1103 {
1104 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1105 return VERR_EM_INTERPRETER;
1106 }
1107
1108 Log2(("emInterpretBtx: val=%x\n", valpar1));
1109 /* Data read, emulate bit test instruction. */
1110 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1111
1112 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1113
1114 /* Update guest's eflags and finish. */
1115 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1116 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1117
1118 /* And write it back */
1119 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
1120 if (RT_SUCCESS(rc))
1121 {
1122 /* All done! */
1123 *pcbSize = 1;
1124 return VINF_SUCCESS;
1125 }
1126#ifdef IN_RC
1127 }
1128 }
1129#endif
1130 return VERR_EM_INTERPRETER;
1131}
1132
1133
1134/**
1135 * LOCK BTR/C/S Emulation.
1136 */
1137static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1138 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1139{
1140 void *pvParam1;
1141
1142 OP_PARAMVAL param1, param2;
1143 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1144 if(RT_FAILURE(rc))
1145 return VERR_EM_INTERPRETER;
1146
1147 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1148 if(RT_FAILURE(rc))
1149 return VERR_EM_INTERPRETER;
1150
1151 /* The destination is always a virtual address */
1152 if (param1.type != PARMTYPE_ADDRESS)
1153 return VERR_EM_INTERPRETER;
1154
1155 /* Register and immediate data == PARMTYPE_IMMEDIATE */
1156 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1157 uint64_t ValPar2 = param2.val.val64;
1158
1159 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1160 RTGCPTR GCPtrPar1 = param1.val.val64;
1161 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1162 ValPar2 &= 7;
1163
1164 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1165#ifdef IN_RC
1166 Assert(TRPMHasTrap(pVCpu));
1167 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1168#endif
1169
1170 PGMPAGEMAPLOCK Lock;
1171 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1172 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1173
1174 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
1175
1176 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1177 RTGCUINTREG32 eflags = 0;
1178 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1179 PGMPhysReleasePageMappingLock(pVM, &Lock);
1180 if (RT_FAILURE(rc))
1181 {
1182 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1183 emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
1184 return VERR_EM_INTERPRETER;
1185 }
1186
1187 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1188
1189 /* Update guest's eflags and finish. */
1190 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1191 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1192
1193 *pcbSize = 1;
1194 return VINF_SUCCESS;
1195}
1196
1197
1198/**
1199 * MOV emulation.
1200 */
1201static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1202{
1203 OP_PARAMVAL param1, param2;
1204 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1205 if(RT_FAILURE(rc))
1206 return VERR_EM_INTERPRETER;
1207
1208 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1209 if(RT_FAILURE(rc))
1210 return VERR_EM_INTERPRETER;
1211
1212#ifdef IN_RC
1213 if (TRPMHasTrap(pVCpu))
1214 {
1215 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1216 {
1217#else
1218 /** @todo Make this the default and don't rely on TRPM information. */
1219 if (param1.type == PARMTYPE_ADDRESS)
1220 {
1221#endif
1222 RTGCPTR pDest;
1223 uint64_t val64;
1224
1225 switch(param1.type)
1226 {
1227 case PARMTYPE_IMMEDIATE:
1228 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1229 return VERR_EM_INTERPRETER;
1230 /* fallthru */
1231
1232 case PARMTYPE_ADDRESS:
1233 pDest = (RTGCPTR)param1.val.val64;
1234 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pDest);
1235 break;
1236
1237 default:
1238 AssertFailed();
1239 return VERR_EM_INTERPRETER;
1240 }
1241
1242 switch(param2.type)
1243 {
1244 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
1245 val64 = param2.val.val64;
1246 break;
1247
1248 default:
1249 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1250 return VERR_EM_INTERPRETER;
1251 }
1252#ifdef LOG_ENABLED
1253 if (pDis->mode == CPUMODE_64BIT)
1254 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1255 else
1256 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1257#endif
1258
1259 Assert(param2.size <= 8 && param2.size > 0);
1260 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1261 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
1262 if (RT_FAILURE(rc))
1263 return VERR_EM_INTERPRETER;
1264
1265 *pcbSize = param2.size;
1266 }
1267 else
1268 { /* read fault */
1269 RTGCPTR pSrc;
1270 uint64_t val64;
1271
1272 /* Source */
1273 switch(param2.type)
1274 {
1275 case PARMTYPE_IMMEDIATE:
1276 if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
1277 return VERR_EM_INTERPRETER;
1278 /* fallthru */
1279
1280 case PARMTYPE_ADDRESS:
1281 pSrc = (RTGCPTR)param2.val.val64;
1282 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pSrc);
1283 break;
1284
1285 default:
1286 return VERR_EM_INTERPRETER;
1287 }
1288
1289 Assert(param1.size <= 8 && param1.size > 0);
1290 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1291 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
1292 if (RT_FAILURE(rc))
1293 return VERR_EM_INTERPRETER;
1294
1295 /* Destination */
1296 switch(param1.type)
1297 {
1298 case PARMTYPE_REGISTER:
1299 switch(param1.size)
1300 {
1301 case 1: rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t) val64); break;
1302 case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)val64); break;
1303 case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)val64); break;
1304 case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, val64); break;
1305 default:
1306 return VERR_EM_INTERPRETER;
1307 }
1308 if (RT_FAILURE(rc))
1309 return rc;
1310 break;
1311
1312 default:
1313 return VERR_EM_INTERPRETER;
1314 }
1315#ifdef LOG_ENABLED
1316 if (pDis->mode == CPUMODE_64BIT)
1317 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1318 else
1319 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1320#endif
1321 }
1322 return VINF_SUCCESS;
1323#ifdef IN_RC
1324 }
1325#endif
1326 return VERR_EM_INTERPRETER;
1327}
1328
1329
1330#ifndef IN_RC
1331/**
1332 * [REP] STOSWD emulation
1333 */
1334static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1335{
1336 int rc;
1337 RTGCPTR GCDest, GCOffset;
1338 uint32_t cbSize;
1339 uint64_t cTransfers;
1340 int offIncrement;
1341
1342 /* Don't support any but these three prefix bytes. */
1343 if ((pDis->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
1344 return VERR_EM_INTERPRETER;
1345
1346 switch (pDis->addrmode)
1347 {
1348 case CPUMODE_16BIT:
1349 GCOffset = pRegFrame->di;
1350 cTransfers = pRegFrame->cx;
1351 break;
1352 case CPUMODE_32BIT:
1353 GCOffset = pRegFrame->edi;
1354 cTransfers = pRegFrame->ecx;
1355 break;
1356 case CPUMODE_64BIT:
1357 GCOffset = pRegFrame->rdi;
1358 cTransfers = pRegFrame->rcx;
1359 break;
1360 default:
1361 AssertFailed();
1362 return VERR_EM_INTERPRETER;
1363 }
1364
1365 GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
1366 switch (pDis->opmode)
1367 {
1368 case CPUMODE_16BIT:
1369 cbSize = 2;
1370 break;
1371 case CPUMODE_32BIT:
1372 cbSize = 4;
1373 break;
1374 case CPUMODE_64BIT:
1375 cbSize = 8;
1376 break;
1377 default:
1378 AssertFailed();
1379 return VERR_EM_INTERPRETER;
1380 }
1381
1382 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1383
1384 if (!(pDis->prefix & PREFIX_REP))
1385 {
1386 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1387
1388 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1389 if (RT_FAILURE(rc))
1390 return VERR_EM_INTERPRETER;
1391 Assert(rc == VINF_SUCCESS);
1392
1393 /* Update (e/r)di. */
1394 switch (pDis->addrmode)
1395 {
1396 case CPUMODE_16BIT:
1397 pRegFrame->di += offIncrement;
1398 break;
1399 case CPUMODE_32BIT:
1400 pRegFrame->edi += offIncrement;
1401 break;
1402 case CPUMODE_64BIT:
1403 pRegFrame->rdi += offIncrement;
1404 break;
1405 default:
1406 AssertFailed();
1407 return VERR_EM_INTERPRETER;
1408 }
1409
1410 }
1411 else
1412 {
1413 if (!cTransfers)
1414 return VINF_SUCCESS;
1415
1416 /*
1417 * Do *not* try emulate cross page stuff here because we don't know what might
1418 * be waiting for us on the subsequent pages. The caller has only asked us to
1419 * ignore access handlers fro the current page.
1420 * This also fends off big stores which would quickly kill PGMR0DynMap.
1421 */
1422 if ( cbSize > PAGE_SIZE
1423 || cTransfers > PAGE_SIZE
1424 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
1425 {
1426 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
1427 GCDest, cbSize, offIncrement, cTransfers));
1428 return VERR_EM_INTERPRETER;
1429 }
1430
1431 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1432 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1433 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
1434 cTransfers * cbSize,
1435 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu, pRegFrame) == 3 ? X86_PTE_US : 0));
1436 if (rc != VINF_SUCCESS)
1437 {
1438 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1439 return VERR_EM_INTERPRETER;
1440 }
1441
1442 /* REP case */
1443 while (cTransfers)
1444 {
1445 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1446 if (RT_FAILURE(rc))
1447 {
1448 rc = VERR_EM_INTERPRETER;
1449 break;
1450 }
1451
1452 Assert(rc == VINF_SUCCESS);
1453 GCOffset += offIncrement;
1454 GCDest += offIncrement;
1455 cTransfers--;
1456 }
1457
1458 /* Update the registers. */
1459 switch (pDis->addrmode)
1460 {
1461 case CPUMODE_16BIT:
1462 pRegFrame->di = GCOffset;
1463 pRegFrame->cx = cTransfers;
1464 break;
1465 case CPUMODE_32BIT:
1466 pRegFrame->edi = GCOffset;
1467 pRegFrame->ecx = cTransfers;
1468 break;
1469 case CPUMODE_64BIT:
1470 pRegFrame->rdi = GCOffset;
1471 pRegFrame->rcx = cTransfers;
1472 break;
1473 default:
1474 AssertFailed();
1475 return VERR_EM_INTERPRETER;
1476 }
1477 }
1478
1479 *pcbSize = cbSize;
1480 return rc;
1481}
1482#endif /* !IN_RC */
1483
1484
1485/**
1486 * [LOCK] CMPXCHG emulation.
1487 */
1488static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1489{
1490 OP_PARAMVAL param1, param2;
1491
1492#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1493 Assert(pDis->param1.size <= 4);
1494#endif
1495
1496 /* Source to make DISQueryParamVal read the register value - ugly hack */
1497 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1498 if(RT_FAILURE(rc))
1499 return VERR_EM_INTERPRETER;
1500
1501 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1502 if(RT_FAILURE(rc))
1503 return VERR_EM_INTERPRETER;
1504
1505 uint64_t valpar;
1506 switch(param2.type)
1507 {
1508 case PARMTYPE_IMMEDIATE: /* register actually */
1509 valpar = param2.val.val64;
1510 break;
1511
1512 default:
1513 return VERR_EM_INTERPRETER;
1514 }
1515
1516 PGMPAGEMAPLOCK Lock;
1517 RTGCPTR GCPtrPar1;
1518 void *pvParam1;
1519 uint64_t eflags;
1520
1521 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
1522 switch(param1.type)
1523 {
1524 case PARMTYPE_ADDRESS:
1525 GCPtrPar1 = param1.val.val64;
1526 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1527
1528 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1529 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1530 break;
1531
1532 default:
1533 return VERR_EM_INTERPRETER;
1534 }
1535
1536 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
1537
1538 if (pDis->prefix & PREFIX_LOCK)
1539 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
1540 else
1541 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
1542
1543 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1544
1545 /* Update guest's eflags and finish. */
1546 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1547 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1548
1549 *pcbSize = param2.size;
1550 PGMPhysReleasePageMappingLock(pVM, &Lock);
1551 return VINF_SUCCESS;
1552}
1553
1554
1555/**
1556 * [LOCK] CMPXCHG8B emulation.
1557 */
1558static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1559{
1560 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1561 OP_PARAMVAL param1;
1562
1563 /* Source to make DISQueryParamVal read the register value - ugly hack */
1564 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1565 if(RT_FAILURE(rc))
1566 return VERR_EM_INTERPRETER;
1567
1568 RTGCPTR GCPtrPar1;
1569 void *pvParam1;
1570 uint64_t eflags;
1571 PGMPAGEMAPLOCK Lock;
1572
1573 AssertReturn(pDis->param1.size == 8, VERR_EM_INTERPRETER);
1574 switch(param1.type)
1575 {
1576 case PARMTYPE_ADDRESS:
1577 GCPtrPar1 = param1.val.val64;
1578 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1579
1580 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1581 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1582 break;
1583
1584 default:
1585 return VERR_EM_INTERPRETER;
1586 }
1587
1588 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax));
1589
1590 if (pDis->prefix & PREFIX_LOCK)
1591 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1592 else
1593 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1594
1595 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1596
1597 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1598 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1599 | (eflags & (X86_EFL_ZF));
1600
1601 *pcbSize = 8;
1602 PGMPhysReleasePageMappingLock(pVM, &Lock);
1603 return VINF_SUCCESS;
1604}
1605
1606
1607#ifdef IN_RC /** @todo test+enable for HWACCM as well. */
1608/**
1609 * [LOCK] XADD emulation.
1610 */
1611static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1612{
1613 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1614 OP_PARAMVAL param1;
1615 void *pvParamReg2;
1616 size_t cbParamReg2;
1617
1618 /* Source to make DISQueryParamVal read the register value - ugly hack */
1619 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1620 if(RT_FAILURE(rc))
1621 return VERR_EM_INTERPRETER;
1622
1623 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->param2, &pvParamReg2, &cbParamReg2);
1624 Assert(cbParamReg2 <= 4);
1625 if(RT_FAILURE(rc))
1626 return VERR_EM_INTERPRETER;
1627
1628#ifdef IN_RC
1629 if (TRPMHasTrap(pVCpu))
1630 {
1631 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1632 {
1633#endif
1634 RTGCPTR GCPtrPar1;
1635 void *pvParam1;
1636 uint32_t eflags;
1637 PGMPAGEMAPLOCK Lock;
1638
1639 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
1640 switch(param1.type)
1641 {
1642 case PARMTYPE_ADDRESS:
1643 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, (RTRCUINTPTR)param1.val.val64);
1644#ifdef IN_RC
1645 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
1646#endif
1647
1648 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1649 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1650 break;
1651
1652 default:
1653 return VERR_EM_INTERPRETER;
1654 }
1655
1656 LogFlow(("XAdd %RGv=%p reg=%ll08x\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
1657
1658 if (pDis->prefix & PREFIX_LOCK)
1659 eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
1660 else
1661 eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
1662
1663 LogFlow(("XAdd %RGv=%p reg=%ll08x ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
1664
1665 /* Update guest's eflags and finish. */
1666 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1667 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1668
1669 *pcbSize = cbParamReg2;
1670 PGMPhysReleasePageMappingLock(pVM, &Lock);
1671 return VINF_SUCCESS;
1672#ifdef IN_RC
1673 }
1674 }
1675
1676 return VERR_EM_INTERPRETER;
1677#endif
1678}
1679#endif /* IN_RC */
1680
1681
1682#ifdef IN_RC
1683/**
1684 * Interpret IRET (currently only to V86 code)
1685 *
1686 * @returns VBox status code.
1687 * @param pVM The VM handle.
1688 * @param pVCpu The VMCPU handle.
1689 * @param pRegFrame The register frame.
1690 *
1691 */
1692VMMDECL(int) EMInterpretIret(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1693{
1694 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1695 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1696 int rc;
1697
1698 Assert(!CPUMIsGuestIn64BitCode(pVCpu, pRegFrame));
1699
1700 rc = emRamRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1701 rc |= emRamRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1702 rc |= emRamRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1703 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1704 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1705
1706 rc |= emRamRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1707 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1708 rc |= emRamRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1709 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1710 rc |= emRamRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1711 rc |= emRamRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1712 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1713
1714 pRegFrame->eip = eip & 0xffff;
1715 pRegFrame->cs = cs;
1716
1717 /* Mask away all reserved bits */
1718 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1719 eflags &= uMask;
1720
1721#ifndef IN_RING0
1722 CPUMRawSetEFlags(pVCpu, pRegFrame, eflags);
1723#endif
1724 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1725
1726 pRegFrame->esp = esp;
1727 pRegFrame->ss = ss;
1728 pRegFrame->ds = ds;
1729 pRegFrame->es = es;
1730 pRegFrame->fs = fs;
1731 pRegFrame->gs = gs;
1732
1733 return VINF_SUCCESS;
1734}
1735#endif /* IN_RC */
1736
1737
1738/**
1739 * IRET Emulation.
1740 */
1741static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1742{
1743 /* only allow direct calls to EMInterpretIret for now */
1744 return VERR_EM_INTERPRETER;
1745}
1746
1747/**
1748 * WBINVD Emulation.
1749 */
1750static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1751{
1752 /* Nothing to do. */
1753 return VINF_SUCCESS;
1754}
1755
1756
1757/**
1758 * Interpret INVLPG
1759 *
1760 * @returns VBox status code.
1761 * @param pVM The VM handle.
1762 * @param pVCpu The VMCPU handle.
1763 * @param pRegFrame The register frame.
1764 * @param pAddrGC Operand address
1765 *
1766 */
1767VMMDECL(int) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1768{
1769 int rc;
1770
1771 /** @todo is addr always a flat linear address or ds based
1772 * (in absence of segment override prefixes)????
1773 */
1774#ifdef IN_RC
1775 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1776#endif
1777 rc = PGMInvalidatePage(pVCpu, pAddrGC);
1778 if ( rc == VINF_SUCCESS
1779 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1780 return VINF_SUCCESS;
1781 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1782 ("%Rrc addr=%RGv\n", rc, pAddrGC),
1783 VERR_EM_INTERPRETER);
1784 return rc;
1785}
1786
1787
1788/**
1789 * INVLPG Emulation.
1790 */
1791static int emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1792{
1793 OP_PARAMVAL param1;
1794 RTGCPTR addr;
1795
1796 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1797 if(RT_FAILURE(rc))
1798 return VERR_EM_INTERPRETER;
1799
1800 switch(param1.type)
1801 {
1802 case PARMTYPE_IMMEDIATE:
1803 case PARMTYPE_ADDRESS:
1804 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1805 return VERR_EM_INTERPRETER;
1806 addr = (RTGCPTR)param1.val.val64;
1807 break;
1808
1809 default:
1810 return VERR_EM_INTERPRETER;
1811 }
1812
1813 /** @todo is addr always a flat linear address or ds based
1814 * (in absence of segment override prefixes)????
1815 */
1816#ifdef IN_RC
1817 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
1818#endif
1819 rc = PGMInvalidatePage(pVCpu, addr);
1820 if ( rc == VINF_SUCCESS
1821 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1822 return VINF_SUCCESS;
1823 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1824 ("%Rrc addr=%RGv\n", rc, addr),
1825 VERR_EM_INTERPRETER);
1826 return rc;
1827}
1828
1829
1830/**
1831 * Interpret CPUID given the parameters in the CPU context
1832 *
1833 * @returns VBox status code.
1834 * @param pVM The VM handle.
1835 * @param pVCpu The VMCPU handle.
1836 * @param pRegFrame The register frame.
1837 *
1838 */
1839VMMDECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1840{
1841 uint32_t iLeaf = pRegFrame->eax;
1842
1843 /* cpuid clears the high dwords of the affected 64 bits registers. */
1844 pRegFrame->rax = 0;
1845 pRegFrame->rbx = 0;
1846 pRegFrame->rcx &= UINT64_C(0x00000000ffffffff);
1847 pRegFrame->rdx = 0;
1848
1849 /* Note: operates the same in 64 and non-64 bits mode. */
1850 CPUMGetGuestCpuId(pVCpu, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1851 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1852 return VINF_SUCCESS;
1853}
1854
1855
1856/**
1857 * CPUID Emulation.
1858 */
1859static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1860{
1861 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
1862 return rc;
1863}
1864
1865
1866/**
1867 * Interpret CRx read
1868 *
1869 * @returns VBox status code.
1870 * @param pVM The VM handle.
1871 * @param pVCpu The VMCPU handle.
1872 * @param pRegFrame The register frame.
1873 * @param DestRegGen General purpose register index (USE_REG_E**))
1874 * @param SrcRegCRx CRx register index (USE_REG_CR*)
1875 *
1876 */
1877VMMDECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1878{
1879 int rc;
1880 uint64_t val64;
1881
1882 if (SrcRegCrx == USE_REG_CR8)
1883 {
1884 val64 = 0;
1885 rc = PDMApicGetTPR(pVCpu, (uint8_t *)&val64, NULL);
1886 AssertMsgRCReturn(rc, ("PDMApicGetTPR failed\n"), VERR_EM_INTERPRETER);
1887 val64 >>= 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0*/
1888 }
1889 else
1890 {
1891 rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
1892 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1893 }
1894
1895 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
1896 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1897 else
1898 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1899
1900 if(RT_SUCCESS(rc))
1901 {
1902 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1903 return VINF_SUCCESS;
1904 }
1905 return VERR_EM_INTERPRETER;
1906}
1907
1908
1909
1910/**
1911 * Interpret CLTS
1912 *
1913 * @returns VBox status code.
1914 * @param pVM The VM handle.
1915 * @param pVCpu The VMCPU handle.
1916 *
1917 */
1918VMMDECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
1919{
1920 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
1921 if (!(cr0 & X86_CR0_TS))
1922 return VINF_SUCCESS;
1923 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
1924}
1925
1926/**
1927 * CLTS Emulation.
1928 */
1929static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1930{
1931 return EMInterpretCLTS(pVM, pVCpu);
1932}
1933
1934
1935/**
1936 * Update CRx
1937 *
1938 * @returns VBox status code.
1939 * @param pVM The VM handle.
1940 * @param pVCpu The VMCPU handle.
1941 * @param pRegFrame The register frame.
1942 * @param DestRegCRx CRx register index (USE_REG_CR*)
1943 * @param val New CRx value
1944 *
1945 */
1946static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
1947{
1948 uint64_t oldval;
1949 uint64_t msrEFER;
1950 int rc, rc2;
1951
1952 /** @todo Clean up this mess. */
1953 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
1954 switch (DestRegCrx)
1955 {
1956 case USE_REG_CR0:
1957 oldval = CPUMGetGuestCR0(pVCpu);
1958#ifdef IN_RC
1959 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
1960 if ( (val & (X86_CR0_WP | X86_CR0_AM))
1961 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
1962 return VERR_EM_INTERPRETER;
1963#endif
1964 rc = VINF_SUCCESS;
1965 CPUMSetGuestCR0(pVCpu, val);
1966 val = CPUMGetGuestCR0(pVCpu);
1967 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
1968 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
1969 {
1970 /* global flush */
1971 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1972 AssertRCReturn(rc, rc);
1973 }
1974
1975 /* Deal with long mode enabling/disabling. */
1976 msrEFER = CPUMGetGuestEFER(pVCpu);
1977 if (msrEFER & MSR_K6_EFER_LME)
1978 {
1979 if ( !(oldval & X86_CR0_PG)
1980 && (val & X86_CR0_PG))
1981 {
1982 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1983 if (pRegFrame->csHid.Attr.n.u1Long)
1984 {
1985 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
1986 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
1987 }
1988
1989 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1990 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
1991 {
1992 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
1993 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
1994 }
1995 msrEFER |= MSR_K6_EFER_LMA;
1996 }
1997 else
1998 if ( (oldval & X86_CR0_PG)
1999 && !(val & X86_CR0_PG))
2000 {
2001 msrEFER &= ~MSR_K6_EFER_LMA;
2002 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
2003 }
2004 CPUMSetGuestEFER(pVCpu, msrEFER);
2005 }
2006 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2007 return rc2 == VINF_SUCCESS ? rc : rc2;
2008
2009 case USE_REG_CR2:
2010 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
2011 return VINF_SUCCESS;
2012
2013 case USE_REG_CR3:
2014 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2015 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
2016 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
2017 {
2018 /* flush */
2019 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
2020 AssertRC(rc);
2021 }
2022 return rc;
2023
2024 case USE_REG_CR4:
2025 oldval = CPUMGetGuestCR4(pVCpu);
2026 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
2027 val = CPUMGetGuestCR4(pVCpu);
2028
2029 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2030 msrEFER = CPUMGetGuestEFER(pVCpu);
2031 if ( (msrEFER & MSR_K6_EFER_LMA)
2032 && (oldval & X86_CR4_PAE)
2033 && !(val & X86_CR4_PAE))
2034 {
2035 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
2036 }
2037
2038 rc = VINF_SUCCESS;
2039 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2040 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2041 {
2042 /* global flush */
2043 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2044 AssertRCReturn(rc, rc);
2045 }
2046
2047 /* Feeling extremely lazy. */
2048# ifdef IN_RC
2049 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2050 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2051 {
2052 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2053 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
2054 }
2055# endif
2056 if ((val ^ oldval) & X86_CR4_VME)
2057 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2058
2059 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2060 return rc2 == VINF_SUCCESS ? rc : rc2;
2061
2062 case USE_REG_CR8:
2063 return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
2064
2065 default:
2066 AssertFailed();
2067 case USE_REG_CR1: /* illegal op */
2068 break;
2069 }
2070 return VERR_EM_INTERPRETER;
2071}
2072
2073/**
2074 * Interpret CRx write
2075 *
2076 * @returns VBox status code.
2077 * @param pVM The VM handle.
2078 * @param pVCpu The VMCPU handle.
2079 * @param pRegFrame The register frame.
2080 * @param DestRegCRx CRx register index (USE_REG_CR*)
2081 * @param SrcRegGen General purpose register index (USE_REG_E**))
2082 *
2083 */
2084VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2085{
2086 uint64_t val;
2087 int rc;
2088
2089 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2090 {
2091 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2092 }
2093 else
2094 {
2095 uint32_t val32;
2096 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2097 val = val32;
2098 }
2099
2100 if (RT_SUCCESS(rc))
2101 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
2102
2103 return VERR_EM_INTERPRETER;
2104}
2105
2106/**
2107 * Interpret LMSW
2108 *
2109 * @returns VBox status code.
2110 * @param pVM The VM handle.
2111 * @param pVCpu The VMCPU handle.
2112 * @param pRegFrame The register frame.
2113 * @param u16Data LMSW source data.
2114 *
2115 */
2116VMMDECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2117{
2118 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
2119
2120 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2121 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2122 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2123
2124 return emUpdateCRx(pVM, pVCpu, pRegFrame, USE_REG_CR0, NewCr0);
2125}
2126
2127/**
2128 * LMSW Emulation.
2129 */
2130static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2131{
2132 OP_PARAMVAL param1;
2133 uint32_t val;
2134
2135 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2136 if(RT_FAILURE(rc))
2137 return VERR_EM_INTERPRETER;
2138
2139 switch(param1.type)
2140 {
2141 case PARMTYPE_IMMEDIATE:
2142 case PARMTYPE_ADDRESS:
2143 if(!(param1.flags & PARAM_VAL16))
2144 return VERR_EM_INTERPRETER;
2145 val = param1.val.val32;
2146 break;
2147
2148 default:
2149 return VERR_EM_INTERPRETER;
2150 }
2151
2152 LogFlow(("emInterpretLmsw %x\n", val));
2153 return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
2154}
2155
2156#ifdef EM_EMULATE_SMSW
2157/**
2158 * SMSW Emulation.
2159 */
2160static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2161{
2162 OP_PARAMVAL param1;
2163 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2164
2165 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2166 if(RT_FAILURE(rc))
2167 return VERR_EM_INTERPRETER;
2168
2169 switch(param1.type)
2170 {
2171 case PARMTYPE_IMMEDIATE:
2172 if(param1.size != sizeof(uint16_t))
2173 return VERR_EM_INTERPRETER;
2174 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->param1.base.reg_gen, cr0));
2175 rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, cr0);
2176 break;
2177
2178 case PARMTYPE_ADDRESS:
2179 {
2180 RTGCPTR pParam1;
2181
2182 /* Actually forced to 16 bits regardless of the operand size. */
2183 if(param1.size != sizeof(uint16_t))
2184 return VERR_EM_INTERPRETER;
2185
2186 pParam1 = (RTGCPTR)param1.val.val64;
2187 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
2188 LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
2189
2190 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
2191 if (RT_FAILURE(rc))
2192 {
2193 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2194 return VERR_EM_INTERPRETER;
2195 }
2196 break;
2197 }
2198
2199 default:
2200 return VERR_EM_INTERPRETER;
2201 }
2202
2203 LogFlow(("emInterpretSmsw %x\n", cr0));
2204 return rc;
2205}
2206#endif
2207
2208/**
2209 * MOV CRx
2210 */
2211static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2212{
2213 if ((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_CR)
2214 return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_ctrl);
2215
2216 if (pDis->param1.flags == USE_REG_CR && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
2217 return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_ctrl, pDis->param2.base.reg_gen);
2218
2219 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2220 return VERR_EM_INTERPRETER;
2221}
2222
2223
2224/**
2225 * Interpret DRx write
2226 *
2227 * @returns VBox status code.
2228 * @param pVM The VM handle.
2229 * @param pVCpu The VMCPU handle.
2230 * @param pRegFrame The register frame.
2231 * @param DestRegDRx DRx register index (USE_REG_DR*)
2232 * @param SrcRegGen General purpose register index (USE_REG_E**))
2233 *
2234 */
2235VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2236{
2237 uint64_t val;
2238 int rc;
2239
2240 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2241 {
2242 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2243 }
2244 else
2245 {
2246 uint32_t val32;
2247 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2248 val = val32;
2249 }
2250
2251 if (RT_SUCCESS(rc))
2252 {
2253 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2254 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, val);
2255 if (RT_SUCCESS(rc))
2256 return rc;
2257 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2258 }
2259 return VERR_EM_INTERPRETER;
2260}
2261
2262
2263/**
2264 * Interpret DRx read
2265 *
2266 * @returns VBox status code.
2267 * @param pVM The VM handle.
2268 * @param pVCpu The VMCPU handle.
2269 * @param pRegFrame The register frame.
2270 * @param DestRegGen General purpose register index (USE_REG_E**))
2271 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2272 *
2273 */
2274VMMDECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2275{
2276 uint64_t val64;
2277
2278 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
2279 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2280 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2281 {
2282 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2283 }
2284 else
2285 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2286
2287 if (RT_SUCCESS(rc))
2288 return VINF_SUCCESS;
2289
2290 return VERR_EM_INTERPRETER;
2291}
2292
2293
2294/**
2295 * MOV DRx
2296 */
2297static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2298{
2299 int rc = VERR_EM_INTERPRETER;
2300
2301 if((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_DBG)
2302 {
2303 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_dbg);
2304 }
2305 else
2306 if(pDis->param1.flags == USE_REG_DBG && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
2307 {
2308 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_dbg, pDis->param2.base.reg_gen);
2309 }
2310 else
2311 AssertMsgFailed(("Unexpected debug register move\n"));
2312
2313 return rc;
2314}
2315
2316
2317/**
2318 * LLDT Emulation.
2319 */
2320static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2321{
2322 OP_PARAMVAL param1;
2323 RTSEL sel;
2324
2325 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2326 if(RT_FAILURE(rc))
2327 return VERR_EM_INTERPRETER;
2328
2329 switch(param1.type)
2330 {
2331 case PARMTYPE_ADDRESS:
2332 return VERR_EM_INTERPRETER; //feeling lazy right now
2333
2334 case PARMTYPE_IMMEDIATE:
2335 if(!(param1.flags & PARAM_VAL16))
2336 return VERR_EM_INTERPRETER;
2337 sel = (RTSEL)param1.val.val16;
2338 break;
2339
2340 default:
2341 return VERR_EM_INTERPRETER;
2342 }
2343
2344#ifdef IN_RING0
2345 /* Only for the VT-x real-mode emulation case. */
2346 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2347 CPUMSetGuestLDTR(pVCpu, sel);
2348 return VINF_SUCCESS;
2349#else
2350 if (sel == 0)
2351 {
2352 if (CPUMGetHyperLDTR(pVCpu) == 0)
2353 {
2354 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2355 return VINF_SUCCESS;
2356 }
2357 }
2358 //still feeling lazy
2359 return VERR_EM_INTERPRETER;
2360#endif
2361}
2362
2363#ifdef IN_RING0
2364/**
2365 * LIDT/LGDT Emulation.
2366 */
2367static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2368{
2369 OP_PARAMVAL param1;
2370 RTGCPTR pParam1;
2371 X86XDTR32 dtr32;
2372
2373 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
2374
2375 /* Only for the VT-x real-mode emulation case. */
2376 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2377
2378 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2379 if(RT_FAILURE(rc))
2380 return VERR_EM_INTERPRETER;
2381
2382 switch(param1.type)
2383 {
2384 case PARMTYPE_ADDRESS:
2385 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, param1.val.val16);
2386 break;
2387
2388 default:
2389 return VERR_EM_INTERPRETER;
2390 }
2391
2392 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
2393 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2394
2395 if (!(pDis->prefix & PREFIX_OPSIZE))
2396 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2397
2398 if (pDis->pCurInstr->opcode == OP_LIDT)
2399 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2400 else
2401 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2402
2403 return VINF_SUCCESS;
2404}
2405#endif
2406
2407
2408#ifdef IN_RC
2409/**
2410 * STI Emulation.
2411 *
2412 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2413 */
2414static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2415{
2416 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2417
2418 if(!pGCState)
2419 {
2420 Assert(pGCState);
2421 return VERR_EM_INTERPRETER;
2422 }
2423 pGCState->uVMFlags |= X86_EFL_IF;
2424
2425 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2426 Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2427
2428 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->opsize;
2429 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2430
2431 return VINF_SUCCESS;
2432}
2433#endif /* IN_RC */
2434
2435
2436/**
2437 * HLT Emulation.
2438 */
2439static int emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2440{
2441 return VINF_EM_HALT;
2442}
2443
2444
2445/**
2446 * Interpret RDTSC
2447 *
2448 * @returns VBox status code.
2449 * @param pVM The VM handle.
2450 * @param pVCpu The VMCPU handle.
2451 * @param pRegFrame The register frame.
2452 *
2453 */
2454VMMDECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2455{
2456 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2457
2458 if (uCR4 & X86_CR4_TSD)
2459 return VERR_EM_INTERPRETER; /* genuine #GP */
2460
2461 uint64_t uTicks = TMCpuTickGet(pVCpu);
2462
2463 /* Same behaviour in 32 & 64 bits mode */
2464 pRegFrame->rax = (uint32_t)uTicks;
2465 pRegFrame->rdx = (uTicks >> 32ULL);
2466
2467 return VINF_SUCCESS;
2468}
2469
2470/**
2471 * Interpret RDTSCP
2472 *
2473 * @returns VBox status code.
2474 * @param pVM The VM handle.
2475 * @param pVCpu The VMCPU handle.
2476 * @param pCtx The CPU context.
2477 *
2478 */
2479VMMDECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2480{
2481 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2482
2483 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2484 {
2485 AssertFailed();
2486 return VERR_EM_INTERPRETER; /* genuine #UD */
2487 }
2488
2489 if (uCR4 & X86_CR4_TSD)
2490 return VERR_EM_INTERPRETER; /* genuine #GP */
2491
2492 uint64_t uTicks = TMCpuTickGet(pVCpu);
2493
2494 /* Same behaviour in 32 & 64 bits mode */
2495 pCtx->rax = (uint32_t)uTicks;
2496 pCtx->rdx = (uTicks >> 32ULL);
2497 /* Low dword of the TSC_AUX msr only. */
2498 pCtx->rcx = (uint32_t)CPUMGetGuestMsr(pVCpu, MSR_K8_TSC_AUX);
2499
2500 return VINF_SUCCESS;
2501}
2502
2503/**
2504 * RDTSC Emulation.
2505 */
2506static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2507{
2508 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
2509}
2510
2511/**
2512 * Interpret RDPMC
2513 *
2514 * @returns VBox status code.
2515 * @param pVM The VM handle.
2516 * @param pVCpu The VMCPU handle.
2517 * @param pRegFrame The register frame.
2518 *
2519 */
2520VMMDECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2521{
2522 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2523
2524 /* If X86_CR4_PCE is not set, then CPL must be zero. */
2525 if ( !(uCR4 & X86_CR4_PCE)
2526 && CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
2527 {
2528 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
2529 return VERR_EM_INTERPRETER; /* genuine #GP */
2530 }
2531
2532 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
2533 pRegFrame->rax = 0;
2534 pRegFrame->rdx = 0;
2535 /* @todo We should trigger a #GP here if the cpu doesn't support the index in ecx. */
2536 return VINF_SUCCESS;
2537}
2538
2539/**
2540 * RDPMC Emulation
2541 */
2542static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2543{
2544 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
2545}
2546
2547/**
2548 * MONITOR Emulation.
2549 */
2550VMMDECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2551{
2552 uint32_t u32Dummy, u32ExtFeatures, cpl;
2553
2554 if (pRegFrame->ecx != 0)
2555 {
2556 Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
2557 return VERR_EM_INTERPRETER; /* illegal value. */
2558 }
2559
2560 /* Get the current privilege level. */
2561 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2562 if (cpl != 0)
2563 return VERR_EM_INTERPRETER; /* supervisor only */
2564
2565 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2566 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2567 return VERR_EM_INTERPRETER; /* not supported */
2568
2569 pVCpu->em.s.mwait.uMonitorEAX = pRegFrame->rax;
2570 pVCpu->em.s.mwait.uMonitorECX = pRegFrame->rcx;
2571 pVCpu->em.s.mwait.uMonitorEDX = pRegFrame->rdx;
2572 pVCpu->em.s.mwait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
2573 return VINF_SUCCESS;
2574}
2575
2576static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2577{
2578 return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
2579}
2580
2581
2582/**
2583 * MWAIT Emulation.
2584 */
2585VMMDECL(int) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2586{
2587 uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
2588
2589 /* Get the current privilege level. */
2590 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2591 if (cpl != 0)
2592 return VERR_EM_INTERPRETER; /* supervisor only */
2593
2594 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2595 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2596 return VERR_EM_INTERPRETER; /* not supported */
2597
2598 /*
2599 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
2600 * CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
2601 */
2602 CPUMGetGuestCpuId(pVCpu, 5, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
2603 if (pRegFrame->ecx > 1)
2604 {
2605 Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
2606 return VERR_EM_INTERPRETER; /* illegal value. */
2607 }
2608
2609 if (pRegFrame->ecx)
2610 {
2611 if (!(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
2612 {
2613 Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
2614 return VERR_EM_INTERPRETER; /* illegal value. */
2615 }
2616
2617 pVCpu->em.s.mwait.fWait = EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0;
2618 }
2619 else
2620 pVCpu->em.s.mwait.fWait = EMMWAIT_FLAG_ACTIVE;
2621
2622 pVCpu->em.s.mwait.uMWaitEAX = pRegFrame->rax;
2623 pVCpu->em.s.mwait.uMWaitECX = pRegFrame->rcx;
2624
2625 /** @todo not completely correct */
2626 return VINF_EM_HALT;
2627}
2628
2629static int emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2630{
2631 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
2632}
2633
2634
2635#ifdef LOG_ENABLED
2636static const char *emMSRtoString(uint32_t uMsr)
2637{
2638 switch (uMsr)
2639 {
2640 case MSR_IA32_APICBASE:
2641 return "MSR_IA32_APICBASE";
2642 case MSR_IA32_CR_PAT:
2643 return "MSR_IA32_CR_PAT";
2644 case MSR_IA32_SYSENTER_CS:
2645 return "MSR_IA32_SYSENTER_CS";
2646 case MSR_IA32_SYSENTER_EIP:
2647 return "MSR_IA32_SYSENTER_EIP";
2648 case MSR_IA32_SYSENTER_ESP:
2649 return "MSR_IA32_SYSENTER_ESP";
2650 case MSR_K6_EFER:
2651 return "MSR_K6_EFER";
2652 case MSR_K8_SF_MASK:
2653 return "MSR_K8_SF_MASK";
2654 case MSR_K6_STAR:
2655 return "MSR_K6_STAR";
2656 case MSR_K8_LSTAR:
2657 return "MSR_K8_LSTAR";
2658 case MSR_K8_CSTAR:
2659 return "MSR_K8_CSTAR";
2660 case MSR_K8_FS_BASE:
2661 return "MSR_K8_FS_BASE";
2662 case MSR_K8_GS_BASE:
2663 return "MSR_K8_GS_BASE";
2664 case MSR_K8_KERNEL_GS_BASE:
2665 return "MSR_K8_KERNEL_GS_BASE";
2666 case MSR_K8_TSC_AUX:
2667 return "MSR_K8_TSC_AUX";
2668 case MSR_IA32_BIOS_SIGN_ID:
2669 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2670 case MSR_IA32_PLATFORM_ID:
2671 return "Unsupported MSR_IA32_PLATFORM_ID";
2672 case MSR_IA32_BIOS_UPDT_TRIG:
2673 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2674 case MSR_IA32_TSC:
2675 return "MSR_IA32_TSC";
2676 case MSR_IA32_MISC_ENABLE:
2677 return "Unsupported MSR_IA32_MISC_ENABLE";
2678 case MSR_IA32_MTRR_CAP:
2679 return "Unsupported MSR_IA32_MTRR_CAP";
2680 case MSR_IA32_MCP_CAP:
2681 return "Unsupported MSR_IA32_MCP_CAP";
2682 case MSR_IA32_MCP_STATUS:
2683 return "Unsupported MSR_IA32_MCP_STATUS";
2684 case MSR_IA32_MCP_CTRL:
2685 return "Unsupported MSR_IA32_MCP_CTRL";
2686 case MSR_IA32_MTRR_DEF_TYPE:
2687 return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
2688 case MSR_K7_EVNTSEL0:
2689 return "Unsupported MSR_K7_EVNTSEL0";
2690 case MSR_K7_EVNTSEL1:
2691 return "Unsupported MSR_K7_EVNTSEL1";
2692 case MSR_K7_EVNTSEL2:
2693 return "Unsupported MSR_K7_EVNTSEL2";
2694 case MSR_K7_EVNTSEL3:
2695 return "Unsupported MSR_K7_EVNTSEL3";
2696 case MSR_IA32_MC0_CTL:
2697 return "Unsupported MSR_IA32_MC0_CTL";
2698 case MSR_IA32_MC0_STATUS:
2699 return "Unsupported MSR_IA32_MC0_STATUS";
2700 case MSR_IA32_PERFEVTSEL0:
2701 return "Unsupported MSR_IA32_PERFEVTSEL0";
2702 case MSR_IA32_PERFEVTSEL1:
2703 return "Unsupported MSR_IA32_PERFEVTSEL1";
2704 case MSR_IA32_PERF_STATUS:
2705 return "MSR_IA32_PERF_STATUS";
2706 case MSR_IA32_PLATFORM_INFO:
2707 return "MSR_IA32_PLATFORM_INFO";
2708 case MSR_IA32_PERF_CTL:
2709 return "Unsupported MSR_IA32_PERF_CTL";
2710 case MSR_K7_PERFCTR0:
2711 return "Unsupported MSR_K7_PERFCTR0";
2712 case MSR_K7_PERFCTR1:
2713 return "Unsupported MSR_K7_PERFCTR1";
2714 case MSR_K7_PERFCTR2:
2715 return "Unsupported MSR_K7_PERFCTR2";
2716 case MSR_K7_PERFCTR3:
2717 return "Unsupported MSR_K7_PERFCTR3";
2718 case MSR_IA32_PMC0:
2719 return "Unsupported MSR_IA32_PMC0";
2720 case MSR_IA32_PMC1:
2721 return "Unsupported MSR_IA32_PMC1";
2722 case MSR_IA32_PMC2:
2723 return "Unsupported MSR_IA32_PMC2";
2724 case MSR_IA32_PMC3:
2725 return "Unsupported MSR_IA32_PMC3";
2726 }
2727 return "Unknown MSR";
2728}
2729#endif /* LOG_ENABLED */
2730
2731
2732/**
2733 * Interpret RDMSR
2734 *
2735 * @returns VBox status code.
2736 * @param pVM The VM handle.
2737 * @param pVCpu The VMCPU handle.
2738 * @param pRegFrame The register frame.
2739 *
2740 */
2741VMMDECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2742{
2743 uint32_t u32Dummy, u32Features, cpl;
2744 uint64_t val;
2745 CPUMCTX *pCtx;
2746 int rc = VINF_SUCCESS;
2747
2748 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
2749 * That version clears the high dwords of both RDX & RAX */
2750 pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2751
2752 /* Get the current privilege level. */
2753 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2754 if (cpl != 0)
2755 return VERR_EM_INTERPRETER; /* supervisor only */
2756
2757 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2758 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2759 return VERR_EM_INTERPRETER; /* not supported */
2760
2761 switch (pRegFrame->ecx)
2762 {
2763 case MSR_IA32_TSC:
2764 val = TMCpuTickGet(pVCpu);
2765 break;
2766
2767 case MSR_IA32_APICBASE:
2768 rc = PDMApicGetBase(pVM, &val);
2769 AssertRC(rc);
2770 break;
2771
2772 case MSR_IA32_CR_PAT:
2773 val = pCtx->msrPAT;
2774 break;
2775
2776 case MSR_IA32_SYSENTER_CS:
2777 val = pCtx->SysEnter.cs;
2778 break;
2779
2780 case MSR_IA32_SYSENTER_EIP:
2781 val = pCtx->SysEnter.eip;
2782 break;
2783
2784 case MSR_IA32_SYSENTER_ESP:
2785 val = pCtx->SysEnter.esp;
2786 break;
2787
2788 case MSR_K6_EFER:
2789 val = pCtx->msrEFER;
2790 break;
2791
2792 case MSR_K8_SF_MASK:
2793 val = pCtx->msrSFMASK;
2794 break;
2795
2796 case MSR_K6_STAR:
2797 val = pCtx->msrSTAR;
2798 break;
2799
2800 case MSR_K8_LSTAR:
2801 val = pCtx->msrLSTAR;
2802 break;
2803
2804 case MSR_K8_CSTAR:
2805 val = pCtx->msrCSTAR;
2806 break;
2807
2808 case MSR_K8_FS_BASE:
2809 val = pCtx->fsHid.u64Base;
2810 break;
2811
2812 case MSR_K8_GS_BASE:
2813 val = pCtx->gsHid.u64Base;
2814 break;
2815
2816 case MSR_K8_KERNEL_GS_BASE:
2817 val = pCtx->msrKERNELGSBASE;
2818 break;
2819
2820 case MSR_K8_TSC_AUX:
2821 val = CPUMGetGuestMsr(pVCpu, MSR_K8_TSC_AUX);
2822 break;
2823
2824 case MSR_IA32_PERF_STATUS:
2825 case MSR_IA32_PLATFORM_INFO:
2826 case MSR_IA32_MISC_ENABLE:
2827 case MSR_IA32_FSB_CLOCK_STS:
2828 case MSR_IA32_THERM_STATUS:
2829 val = CPUMGetGuestMsr(pVCpu, pRegFrame->ecx);
2830 break;
2831
2832#if 0 /*def IN_RING0 */
2833 case MSR_IA32_PLATFORM_ID:
2834 case MSR_IA32_BIOS_SIGN_ID:
2835 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
2836 {
2837 /* Available since the P6 family. VT-x implies that this feature is present. */
2838 if (pRegFrame->ecx == MSR_IA32_PLATFORM_ID)
2839 val = ASMRdMsr(MSR_IA32_PLATFORM_ID);
2840 else
2841 if (pRegFrame->ecx == MSR_IA32_BIOS_SIGN_ID)
2842 val = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
2843 break;
2844 }
2845 /* no break */
2846#endif
2847 default:
2848 /* In X2APIC specification this range is reserved for APIC control. */
2849 if ( pRegFrame->ecx >= MSR_IA32_APIC_START
2850 && pRegFrame->ecx < MSR_IA32_APIC_END)
2851 rc = PDMApicReadMSR(pVM, pVCpu->idCpu, pRegFrame->ecx, &val);
2852 else
2853 /* We should actually trigger a #GP here, but don't as that will cause more trouble. */
2854 val = 0;
2855 break;
2856 }
2857 LogFlow(("EMInterpretRdmsr %s (%x) -> val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2858 if (rc == VINF_SUCCESS)
2859 {
2860 pRegFrame->rax = (uint32_t) val;
2861 pRegFrame->rdx = (uint32_t)(val >> 32);
2862 }
2863 return rc;
2864}
2865
2866
2867/**
2868 * RDMSR Emulation.
2869 */
2870static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2871{
2872 /* Note: the Intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2873 Assert(!(pDis->prefix & PREFIX_REX));
2874 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
2875}
2876
2877
2878/**
2879 * Interpret WRMSR
2880 *
2881 * @returns VBox status code.
2882 * @param pVM The VM handle.
2883 * @param pVCpu The VMCPU handle.
2884 * @param pRegFrame The register frame.
2885 */
2886VMMDECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2887{
2888 uint32_t u32Dummy, u32Features, cpl;
2889 uint64_t val;
2890 CPUMCTX *pCtx;
2891
2892 /* Note: works the same in 32 and 64 bits modes. */
2893 pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2894
2895 /* Get the current privilege level. */
2896 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2897 if (cpl != 0)
2898 return VERR_EM_INTERPRETER; /* supervisor only */
2899
2900 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2901 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2902 return VERR_EM_INTERPRETER; /* not supported */
2903
2904 val = RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx);
2905 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2906 switch (pRegFrame->ecx)
2907 {
2908 case MSR_IA32_TSC:
2909 TMCpuTickSet(pVM, pVCpu, val);
2910 break;
2911
2912 case MSR_IA32_APICBASE:
2913 {
2914 int rc = PDMApicSetBase(pVM, val);
2915 AssertRC(rc);
2916 break;
2917 }
2918
2919 case MSR_IA32_CR_PAT:
2920 pCtx->msrPAT = val;
2921 break;
2922
2923 case MSR_IA32_SYSENTER_CS:
2924 pCtx->SysEnter.cs = val & 0xffff; /* 16 bits selector */
2925 break;
2926
2927 case MSR_IA32_SYSENTER_EIP:
2928 pCtx->SysEnter.eip = val;
2929 break;
2930
2931 case MSR_IA32_SYSENTER_ESP:
2932 pCtx->SysEnter.esp = val;
2933 break;
2934
2935 case MSR_K6_EFER:
2936 {
2937 uint64_t uMask = 0;
2938 uint64_t oldval = pCtx->msrEFER;
2939
2940 /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
2941 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2942 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_NX)
2943 uMask |= MSR_K6_EFER_NXE;
2944 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
2945 uMask |= MSR_K6_EFER_LME;
2946 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_SEP)
2947 uMask |= MSR_K6_EFER_SCE;
2948 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
2949 uMask |= MSR_K6_EFER_FFXSR;
2950
2951 /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2952 if ( ((pCtx->msrEFER & MSR_K6_EFER_LME) != (val & uMask & MSR_K6_EFER_LME))
2953 && (pCtx->cr0 & X86_CR0_PG))
2954 {
2955 AssertMsgFailed(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
2956 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2957 }
2958
2959 /* There are a few more: e.g. MSR_K6_EFER_LMSLE */
2960 AssertMsg(!(val & ~(MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA /* ignored anyway */ |MSR_K6_EFER_SCE|MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", val));
2961 pCtx->msrEFER = (pCtx->msrEFER & ~uMask) | (val & uMask);
2962
2963 /* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
2964 if ((oldval & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)) != (pCtx->msrEFER & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)))
2965 HWACCMFlushTLB(pVCpu);
2966
2967 break;
2968 }
2969
2970 case MSR_K8_SF_MASK:
2971 pCtx->msrSFMASK = val;
2972 break;
2973
2974 case MSR_K6_STAR:
2975 pCtx->msrSTAR = val;
2976 break;
2977
2978 case MSR_K8_LSTAR:
2979 pCtx->msrLSTAR = val;
2980 break;
2981
2982 case MSR_K8_CSTAR:
2983 pCtx->msrCSTAR = val;
2984 break;
2985
2986 case MSR_K8_FS_BASE:
2987 pCtx->fsHid.u64Base = val;
2988 break;
2989
2990 case MSR_K8_GS_BASE:
2991 pCtx->gsHid.u64Base = val;
2992 break;
2993
2994 case MSR_K8_KERNEL_GS_BASE:
2995 pCtx->msrKERNELGSBASE = val;
2996 break;
2997
2998 case MSR_K8_TSC_AUX:
2999 case MSR_IA32_MISC_ENABLE:
3000 CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, val);
3001 break;
3002
3003 default:
3004 /* In X2APIC specification this range is reserved for APIC control. */
3005 if ( pRegFrame->ecx >= MSR_IA32_APIC_START
3006 && pRegFrame->ecx < MSR_IA32_APIC_END)
3007 return PDMApicWriteMSR(pVM, pVCpu->idCpu, pRegFrame->ecx, val);
3008
3009 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
3010 break;
3011 }
3012 return VINF_SUCCESS;
3013}
3014
3015
3016/**
3017 * WRMSR Emulation.
3018 */
3019static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3020{
3021 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3022}
3023
3024
3025/**
3026 * Internal worker.
3027 * @copydoc EMInterpretInstructionCPU
3028 */
3029DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
3030 uint32_t *pcbSize, EMCODETYPE enmCodeType)
3031{
3032 Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
3033 Assert(pcbSize);
3034 *pcbSize = 0;
3035
3036 if (enmCodeType == EMCODETYPE_SUPERVISOR)
3037 {
3038 /*
3039 * Only supervisor guest code!!
3040 * And no complicated prefixes.
3041 */
3042 /* Get the current privilege level. */
3043 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
3044 if ( cpl != 0
3045 && pDis->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3046 {
3047 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3048 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3049 return VERR_EM_INTERPRETER;
3050 }
3051 }
3052 else
3053 Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
3054
3055#ifdef IN_RC
3056 if ( (pDis->prefix & (PREFIX_REPNE | PREFIX_REP))
3057 || ( (pDis->prefix & PREFIX_LOCK)
3058 && pDis->pCurInstr->opcode != OP_CMPXCHG
3059 && pDis->pCurInstr->opcode != OP_CMPXCHG8B
3060 && pDis->pCurInstr->opcode != OP_XADD
3061 && pDis->pCurInstr->opcode != OP_OR
3062 && pDis->pCurInstr->opcode != OP_AND
3063 && pDis->pCurInstr->opcode != OP_XOR
3064 && pDis->pCurInstr->opcode != OP_BTR
3065 )
3066 )
3067#else
3068 if ( (pDis->prefix & PREFIX_REPNE)
3069 || ( (pDis->prefix & PREFIX_REP)
3070 && pDis->pCurInstr->opcode != OP_STOSWD
3071 )
3072 || ( (pDis->prefix & PREFIX_LOCK)
3073 && pDis->pCurInstr->opcode != OP_OR
3074 && pDis->pCurInstr->opcode != OP_AND
3075 && pDis->pCurInstr->opcode != OP_XOR
3076 && pDis->pCurInstr->opcode != OP_BTR
3077 && pDis->pCurInstr->opcode != OP_CMPXCHG
3078 && pDis->pCurInstr->opcode != OP_CMPXCHG8B
3079 )
3080 )
3081#endif
3082 {
3083 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3084 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3085 return VERR_EM_INTERPRETER;
3086 }
3087
3088#if HC_ARCH_BITS == 32
3089 /*
3090 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3091 * Whitelisted instructions are safe.
3092 */
3093 if ( pDis->param1.size > 4
3094 && CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
3095 {
3096 uint32_t uOpCode = pDis->pCurInstr->opcode;
3097 if ( uOpCode != OP_STOSWD
3098 && uOpCode != OP_MOV
3099 && uOpCode != OP_CMPXCHG8B
3100 && uOpCode != OP_XCHG
3101 && uOpCode != OP_BTS
3102 && uOpCode != OP_BTR
3103 && uOpCode != OP_BTC
3104# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
3105 && uOpCode != OP_CMPXCHG /* solaris */
3106 && uOpCode != OP_AND /* windows */
3107 && uOpCode != OP_OR /* windows */
3108 && uOpCode != OP_XOR /* because we can */
3109 && uOpCode != OP_ADD /* windows (dripple) */
3110 && uOpCode != OP_ADC /* because we can */
3111 && uOpCode != OP_SUB /* because we can */
3112 /** @todo OP_BTS or is that a different kind of failure? */
3113# endif
3114 )
3115 {
3116# ifdef VBOX_WITH_STATISTICS
3117 switch (pDis->pCurInstr->opcode)
3118 {
3119# define INTERPRET_FAILED_CASE(opcode, Instr) \
3120 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3121 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3122 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3123 INTERPRET_FAILED_CASE(OP_INC,Inc);
3124 INTERPRET_FAILED_CASE(OP_POP,Pop);
3125 INTERPRET_FAILED_CASE(OP_OR, Or);
3126 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3127 INTERPRET_FAILED_CASE(OP_AND,And);
3128 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3129 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3130 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3131 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3132 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3133 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3134 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3135 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3136 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3137 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3138 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3139 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3140 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3141 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3142 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3143 INTERPRET_FAILED_CASE(OP_ADD,Add);
3144 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3145 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3146 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3147 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3148 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3149 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3150 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3151 INTERPRET_FAILED_CASE(OP_STI, Sti);
3152 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3153 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3154 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3155 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3156 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3157 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3158# undef INTERPRET_FAILED_CASE
3159 default:
3160 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3161 break;
3162 }
3163# endif /* VBOX_WITH_STATISTICS */
3164 return VERR_EM_INTERPRETER;
3165 }
3166 }
3167#endif
3168
3169 int rc;
3170#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3171 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
3172#endif
3173 switch (pDis->pCurInstr->opcode)
3174 {
3175 /*
3176 * Macros for generating the right case statements.
3177 */
3178# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3179 case opcode:\
3180 if (pDis->prefix & PREFIX_LOCK) \
3181 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3182 else \
3183 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3184 if (RT_SUCCESS(rc)) \
3185 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3186 else \
3187 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3188 return rc
3189#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3190 case opcode:\
3191 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3192 if (RT_SUCCESS(rc)) \
3193 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3194 else \
3195 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3196 return rc
3197
3198#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3199 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3200#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3201 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3202
3203#define INTERPRET_CASE(opcode, Instr) \
3204 case opcode:\
3205 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3206 if (RT_SUCCESS(rc)) \
3207 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3208 else \
3209 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3210 return rc
3211
3212#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3213 case opcode:\
3214 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3215 if (RT_SUCCESS(rc)) \
3216 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3217 else \
3218 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3219 return rc
3220
3221#define INTERPRET_STAT_CASE(opcode, Instr) \
3222 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3223
3224 /*
3225 * The actual case statements.
3226 */
3227 INTERPRET_CASE(OP_XCHG,Xchg);
3228 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3229 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3230 INTERPRET_CASE(OP_POP,Pop);
3231 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3232 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3233 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3234 INTERPRET_CASE(OP_MOV,Mov);
3235#ifndef IN_RC
3236 INTERPRET_CASE(OP_STOSWD,StosWD);
3237#endif
3238 INTERPRET_CASE(OP_INVLPG,InvlPg);
3239 INTERPRET_CASE(OP_CPUID,CpuId);
3240 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3241 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3242#ifdef IN_RING0
3243 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3244 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3245#endif
3246 INTERPRET_CASE(OP_LLDT,LLdt);
3247 INTERPRET_CASE(OP_LMSW,Lmsw);
3248#ifdef EM_EMULATE_SMSW
3249 INTERPRET_CASE(OP_SMSW,Smsw);
3250#endif
3251 INTERPRET_CASE(OP_CLTS,Clts);
3252 INTERPRET_CASE(OP_MONITOR, Monitor);
3253 INTERPRET_CASE(OP_MWAIT, MWait);
3254 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3255 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3256 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3257 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3258 INTERPRET_CASE(OP_ADC,Adc);
3259 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3260 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3261 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3262 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3263 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3264 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3265#ifdef IN_RC
3266 INTERPRET_CASE(OP_STI,Sti);
3267 INTERPRET_CASE(OP_XADD, XAdd);
3268#endif
3269 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3270 INTERPRET_CASE(OP_HLT,Hlt);
3271 INTERPRET_CASE(OP_IRET,Iret);
3272 INTERPRET_CASE(OP_WBINVD,WbInvd);
3273#ifdef VBOX_WITH_STATISTICS
3274# ifndef IN_RC
3275 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3276# endif
3277 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3278#endif
3279
3280 default:
3281 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->opcode));
3282 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3283 return VERR_EM_INTERPRETER;
3284
3285#undef INTERPRET_CASE_EX_PARAM2
3286#undef INTERPRET_STAT_CASE
3287#undef INTERPRET_CASE_EX
3288#undef INTERPRET_CASE
3289 } /* switch (opcode) */
3290 AssertFailed();
3291 return VERR_INTERNAL_ERROR;
3292}
3293
3294
3295/**
3296 * Sets the PC for which interrupts should be inhibited.
3297 *
3298 * @param pVCpu The VMCPU handle.
3299 * @param PC The PC.
3300 */
3301VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
3302{
3303 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
3304 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3305}
3306
3307
3308/**
3309 * Gets the PC for which interrupts should be inhibited.
3310 *
3311 * There are a few instructions which inhibits or delays interrupts
3312 * for the instruction following them. These instructions are:
3313 * - STI
3314 * - MOV SS, r/m16
3315 * - POP SS
3316 *
3317 * @returns The PC for which interrupts should be inhibited.
3318 * @param pVCpu The VMCPU handle.
3319 *
3320 */
3321VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
3322{
3323 return pVCpu->em.s.GCPtrInhibitInterrupts;
3324}
3325
3326/**
3327 * Locks REM execution to a single VCpu
3328 *
3329 * @param pVM VM handle.
3330 */
3331VMMDECL(void) EMRemLock(PVM pVM)
3332{
3333 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
3334 return; /* early init */
3335
3336 Assert(!PGMIsLockOwner(pVM) && !IOMIsLockOwner(pVM));
3337 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
3338 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3339}
3340
3341/**
3342 * Unlocks REM execution
3343 *
3344 * @param pVM VM handle.
3345 */
3346VMMDECL(void) EMRemUnlock(PVM pVM)
3347{
3348 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
3349 return; /* early init */
3350
3351 PDMCritSectLeave(&pVM->em.s.CritSectREM);
3352}
3353
3354/**
3355 * Check if this VCPU currently owns the REM lock.
3356 *
3357 * @returns bool owner/not owner
3358 * @param pVM The VM to operate on.
3359 */
3360VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
3361{
3362 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
3363}
3364
3365/**
3366 * Try to acquire the REM lock.
3367 *
3368 * @returns VBox status code
3369 * @param pVM The VM to operate on.
3370 */
3371VMMDECL(int) EMTryEnterRemLock(PVM pVM)
3372{
3373 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
3374}
3375
3376/**
3377 * Determine if we should continue after encountering a hlt or mwait instruction
3378 *
3379 * @returns boolean
3380 * @param pVCpu The VMCPU to operate on.
3381 * @param pCtx Current CPU context
3382 */
3383VMMDECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
3384{
3385 if ( pCtx->eflags.Bits.u1IF
3386 || ((pVCpu->em.s.mwait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)))
3387 {
3388 pVCpu->em.s.mwait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
3389 return !!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC));
3390 }
3391
3392 return false;
3393}
3394
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette