VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 44760

Last change on this file since 44760 was 44528, checked in by vboxsync, 12 years ago

header (C) fixes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 135.8 KB
Line 
1/* $Id: EMAll.cpp 44528 2013-02-04 14:27:54Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_EM
22#include <VBox/vmm/em.h>
23#include <VBox/vmm/mm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/patm.h>
26#include <VBox/vmm/csam.h>
27#include <VBox/vmm/pgm.h>
28#ifdef VBOX_WITH_IEM
29# include <VBox/vmm/iem.h>
30#endif
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/stam.h>
33#include "EMInternal.h"
34#include <VBox/vmm/vm.h>
35#include <VBox/vmm/vmm.h>
36#include <VBox/vmm/hm.h>
37#include <VBox/vmm/tm.h>
38#include <VBox/vmm/pdmapi.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/dis.h>
42#include <VBox/disopcode.h>
43#include <VBox/log.h>
44#include "internal/pgm.h"
45#include <iprt/assert.h>
46#include <iprt/asm.h>
47#include <iprt/string.h>
48
49#ifndef IN_RC
50#undef VBOX_WITH_IEM
51#endif
52#ifdef VBOX_WITH_IEM
53//# define VBOX_COMPARE_IEM_AND_EM /* debugging... */
54//# define VBOX_SAME_AS_EM
55//# define VBOX_COMPARE_IEM_LAST
56#endif
57
58/*******************************************************************************
59* Defined Constants And Macros *
60*******************************************************************************/
61/** @def EM_ASSERT_FAULT_RETURN
62 * Safety check.
63 *
64 * Could in theory misfire on a cross page boundary access...
65 *
66 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
67 * turns up an alias page instead of the original faulting one and annoying the
68 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
69 */
70#if 0
71# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
72#else
73# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
74#endif
75
76
77/*******************************************************************************
78* Internal Functions *
79*******************************************************************************/
80#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
81DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
82 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize);
83#endif
84
85
86/*******************************************************************************
87* Global Variables *
88*******************************************************************************/
89#ifdef VBOX_COMPARE_IEM_AND_EM
90static const uint32_t g_fInterestingFFs = VMCPU_FF_TO_R3
91 | VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE | VMCPU_FF_INHIBIT_INTERRUPTS
92 | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_TRPM_SYNC_IDT
93 | VMCPU_FF_TLB_FLUSH | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL;
94static uint32_t g_fIncomingFFs;
95static CPUMCTX g_IncomingCtx;
96static bool g_fIgnoreRaxRdx = false;
97
98static uint32_t g_fEmFFs;
99static CPUMCTX g_EmCtx;
100static uint8_t g_abEmWrote[256];
101static size_t g_cbEmWrote;
102
103static uint32_t g_fIemFFs;
104static CPUMCTX g_IemCtx;
105extern uint8_t g_abIemWrote[256];
106#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
107extern size_t g_cbIemWrote;
108#else
109static size_t g_cbIemWrote;
110#endif
111#endif
112
113
114/**
115 * Get the current execution manager status.
116 *
117 * @returns Current status.
118 * @param pVCpu Pointer to the VMCPU.
119 */
120VMM_INT_DECL(EMSTATE) EMGetState(PVMCPU pVCpu)
121{
122 return pVCpu->em.s.enmState;
123}
124
125/**
126 * Sets the current execution manager status. (use only when you know what you're doing!)
127 *
128 * @param pVCpu Pointer to the VMCPU.
129 */
130VMM_INT_DECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
131{
132 /* Only allowed combination: */
133 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
134 pVCpu->em.s.enmState = enmNewState;
135}
136
137
138/**
139 * Sets the PC for which interrupts should be inhibited.
140 *
141 * @param pVCpu Pointer to the VMCPU.
142 * @param PC The PC.
143 */
144VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
145{
146 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
147 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
148}
149
150
151/**
152 * Gets the PC for which interrupts should be inhibited.
153 *
154 * There are a few instructions which inhibits or delays interrupts
155 * for the instruction following them. These instructions are:
156 * - STI
157 * - MOV SS, r/m16
158 * - POP SS
159 *
160 * @returns The PC for which interrupts should be inhibited.
161 * @param pVCpu Pointer to the VMCPU.
162 *
163 */
164VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
165{
166 return pVCpu->em.s.GCPtrInhibitInterrupts;
167}
168
169
170/**
171 * Prepare an MWAIT - essentials of the MONITOR instruction.
172 *
173 * @returns VINF_SUCCESS
174 * @param pVCpu The current CPU.
175 * @param rax The content of RAX.
176 * @param rcx The content of RCX.
177 * @param rdx The content of RDX.
178 */
179VMM_INT_DECL(int) EMMonitorWaitPrepare(PVMCPU pVCpu, uint64_t rax, uint64_t rcx, uint64_t rdx)
180{
181 pVCpu->em.s.MWait.uMonitorRAX = rax;
182 pVCpu->em.s.MWait.uMonitorRCX = rcx;
183 pVCpu->em.s.MWait.uMonitorRDX = rdx;
184 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
185 /** @todo Complete MONITOR implementation. */
186 return VINF_SUCCESS;
187}
188
189
190/**
191 * Performs an MWAIT.
192 *
193 * @returns VINF_SUCCESS
194 * @param pVCpu The current CPU.
195 * @param rax The content of RAX.
196 * @param rcx The content of RCX.
197 */
198VMM_INT_DECL(int) EMMonitorWaitPerform(PVMCPU pVCpu, uint64_t rax, uint64_t rcx)
199{
200 pVCpu->em.s.MWait.uMWaitRAX = rax;
201 pVCpu->em.s.MWait.uMWaitRCX = rcx;
202 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_ACTIVE;
203 if (rcx)
204 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_BREAKIRQIF0;
205 else
206 pVCpu->em.s.MWait.fWait &= ~EMMWAIT_FLAG_BREAKIRQIF0;
207 /** @todo not completely correct?? */
208 return VINF_EM_HALT;
209}
210
211
212
213/**
214 * Determine if we should continue after encountering a hlt or mwait
215 * instruction.
216 *
217 * Clears MWAIT flags if returning @c true.
218 *
219 * @returns boolean
220 * @param pVCpu Pointer to the VMCPU.
221 * @param pCtx Current CPU context.
222 */
223VMM_INT_DECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
224{
225 if ( pCtx->eflags.Bits.u1IF
226 || ( (pVCpu->em.s.MWait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0))
227 == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) )
228 {
229 pVCpu->em.s.MWait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
230 return !!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC));
231 }
232
233 return false;
234}
235
236
237/**
238 * Locks REM execution to a single VCPU.
239 *
240 * @param pVM Pointer to the VM.
241 */
242VMMDECL(void) EMRemLock(PVM pVM)
243{
244#ifdef VBOX_WITH_REM
245 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
246 return; /* early init */
247
248 Assert(!PGMIsLockOwner(pVM));
249 Assert(!IOMIsLockOwner(pVM));
250 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
251 AssertRCSuccess(rc);
252#endif
253}
254
255
256/**
257 * Unlocks REM execution
258 *
259 * @param pVM Pointer to the VM.
260 */
261VMMDECL(void) EMRemUnlock(PVM pVM)
262{
263#ifdef VBOX_WITH_REM
264 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
265 return; /* early init */
266
267 PDMCritSectLeave(&pVM->em.s.CritSectREM);
268#endif
269}
270
271
272/**
273 * Check if this VCPU currently owns the REM lock.
274 *
275 * @returns bool owner/not owner
276 * @param pVM Pointer to the VM.
277 */
278VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
279{
280#ifdef VBOX_WITH_REM
281 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
282 return true; /* early init */
283
284 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
285#else
286 return true;
287#endif
288}
289
290
291/**
292 * Try to acquire the REM lock.
293 *
294 * @returns VBox status code
295 * @param pVM Pointer to the VM.
296 */
297VMM_INT_DECL(int) EMRemTryLock(PVM pVM)
298{
299#ifdef VBOX_WITH_REM
300 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
301 return VINF_SUCCESS; /* early init */
302
303 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
304#else
305 return VINF_SUCCESS;
306#endif
307}
308
309
310/**
311 * @callback_method_impl{FNDISREADBYTES}
312 */
313static DECLCALLBACK(int) emReadBytes(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
314{
315 PVMCPU pVCpu = (PVMCPU)pDis->pvUser;
316#if defined(IN_RC) || defined(IN_RING3)
317 PVM pVM = pVCpu->CTX_SUFF(pVM);
318#endif
319 RTUINTPTR uSrcAddr = pDis->uInstrAddr + offInstr;
320 int rc;
321
322 /*
323 * Figure how much we can or must read.
324 */
325 size_t cbToRead = PAGE_SIZE - (uSrcAddr & PAGE_OFFSET_MASK);
326 if (cbToRead > cbMaxRead)
327 cbToRead = cbMaxRead;
328 else if (cbToRead < cbMinRead)
329 cbToRead = cbMinRead;
330
331#if defined(IN_RC) || defined(IN_RING3)
332 /*
333 * We might be called upon to interpret an instruction in a patch.
334 */
335 if (PATMIsPatchGCAddr(pVCpu->CTX_SUFF(pVM), uSrcAddr))
336 {
337# ifdef IN_RC
338 memcpy(&pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
339# else
340 memcpy(&pDis->abInstr[offInstr], PATMR3GCPtrToHCPtr(pVCpu->CTX_SUFF(pVM), uSrcAddr), cbToRead);
341# endif
342 rc = VINF_SUCCESS;
343 }
344 else
345#endif
346 {
347# ifdef IN_RC
348 /*
349 * Try access it thru the shadow page tables first. Fall back on the
350 * slower PGM method if it fails because the TLB or page table was
351 * modified recently.
352 */
353 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
354 if (rc == VERR_ACCESS_DENIED && cbToRead > cbMinRead)
355 {
356 cbToRead = cbMinRead;
357 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
358 }
359 if (rc == VERR_ACCESS_DENIED)
360#endif
361 {
362 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
363 if (RT_FAILURE(rc))
364 {
365 if (cbToRead > cbMinRead)
366 {
367 cbToRead = cbMinRead;
368 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
369 }
370 if (RT_FAILURE(rc))
371 {
372#ifndef IN_RC
373 /*
374 * If we fail to find the page via the guest's page tables
375 * we invalidate the page in the host TLB (pertaining to
376 * the guest in the NestedPaging case). See @bugref{6043}.
377 */
378 if (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
379 {
380 HMInvalidatePage(pVCpu, uSrcAddr);
381 if (((uSrcAddr + cbToRead - 1) >> PAGE_SHIFT) != (uSrcAddr >> PAGE_SHIFT))
382 HMInvalidatePage(pVCpu, uSrcAddr + cbToRead - 1);
383 }
384#endif
385 }
386 }
387 }
388 }
389
390 pDis->cbCachedInstr = offInstr + (uint8_t)cbToRead;
391 return rc;
392}
393
394
395DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
396{
397 return DISInstrWithReader(InstrGC, (DISCPUMODE)pDis->uCpuMode, emReadBytes, pVCpu, pDis, pOpsize);
398}
399
400
401/**
402 * Disassembles the current instruction.
403 *
404 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
405 * details.
406 * @retval VERR_EM_INTERNAL_DISAS_ERROR on DISCoreOneEx failure.
407 *
408 * @param pVM Pointer to the VM.
409 * @param pVCpu Pointer to the VMCPU.
410 * @param pDis Where to return the parsed instruction info.
411 * @param pcbInstr Where to return the instruction size. (optional)
412 */
413VMM_INT_DECL(int) EMInterpretDisasCurrent(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, unsigned *pcbInstr)
414{
415 PCPUMCTXCORE pCtxCore = CPUMCTX2CORE(CPUMQueryGuestCtxPtr(pVCpu));
416 RTGCPTR GCPtrInstr;
417#if 0
418 int rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
419#else
420/** @todo Get the CPU mode as well while we're at it! */
421 int rc = SELMValidateAndConvertCSAddr(pVCpu, pCtxCore->eflags, pCtxCore->ss.Sel, pCtxCore->cs.Sel, &pCtxCore->cs,
422 pCtxCore->rip, &GCPtrInstr);
423#endif
424 if (RT_FAILURE(rc))
425 {
426 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
427 pCtxCore->cs.Sel, (RTGCPTR)pCtxCore->rip, pCtxCore->ss.Sel & X86_SEL_RPL, rc));
428 return rc;
429 }
430 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
431}
432
433
434/**
435 * Disassembles one instruction.
436 *
437 * This is used by internally by the interpreter and by trap/access handlers.
438 *
439 * @returns VBox status code.
440 * @retval VERR_EM_INTERNAL_DISAS_ERROR on DISCoreOneEx failure.
441 *
442 * @param pVM Pointer to the VM.
443 * @param pVCpu Pointer to the VMCPU.
444 * @param GCPtrInstr The flat address of the instruction.
445 * @param pCtxCore The context core (used to determine the cpu mode).
446 * @param pDis Where to return the parsed instruction info.
447 * @param pcbInstr Where to return the instruction size. (optional)
448 */
449VMM_INT_DECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore,
450 PDISCPUSTATE pDis, unsigned *pcbInstr)
451{
452 Assert(pCtxCore == CPUMGetGuestCtxCore(pVCpu));
453 DISCPUMODE enmCpuMode = CPUMGetGuestDisMode(pVCpu);
454 /** @todo Deal with too long instruction (=> \#GP), opcode read errors (=>
455 * \#PF, \#GP, \#??), undefined opcodes (=> \#UD), and such. */
456 int rc = DISInstrWithReader(GCPtrInstr, enmCpuMode, emReadBytes, pVCpu, pDis, pcbInstr);
457 if (RT_SUCCESS(rc))
458 return VINF_SUCCESS;
459 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
460 return VERR_EM_INTERNAL_DISAS_ERROR;
461}
462
463
464#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
465static void emCompareWithIem(PVMCPU pVCpu, PCCPUMCTX pEmCtx, PCCPUMCTX pIemCtx,
466 VBOXSTRICTRC rcEm, VBOXSTRICTRC rcIem,
467 uint32_t cbEm, uint32_t cbIem)
468{
469 /* Quick compare. */
470 if ( rcEm == rcIem
471 && cbEm == cbIem
472 && g_cbEmWrote == g_cbIemWrote
473 && memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote) == 0
474 && memcmp(pIemCtx, pEmCtx, sizeof(*pIemCtx)) == 0
475 && (g_fEmFFs & g_fInterestingFFs) == (g_fIemFFs & g_fInterestingFFs)
476 )
477 return;
478
479 /* Report exact differences. */
480 RTLogPrintf("! EM and IEM differs at %04x:%08RGv !\n", g_IncomingCtx.cs.Sel, g_IncomingCtx.rip);
481 if (rcEm != rcIem)
482 RTLogPrintf(" * rcIem=%Rrc rcEm=%Rrc\n", VBOXSTRICTRC_VAL(rcIem), VBOXSTRICTRC_VAL(rcEm));
483 else if (cbEm != cbIem)
484 RTLogPrintf(" * cbIem=%#x cbEm=%#x\n", cbIem, cbEm);
485
486 if (RT_SUCCESS(rcEm) && RT_SUCCESS(rcIem))
487 {
488 if (g_cbIemWrote != g_cbEmWrote)
489 RTLogPrintf("!! g_cbIemWrote=%#x g_cbEmWrote=%#x\n", g_cbIemWrote, g_cbEmWrote);
490 else if (memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote))
491 {
492 RTLogPrintf("!! IemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
493 RTLogPrintf("!! EemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
494 }
495
496 if ((g_fEmFFs & g_fInterestingFFs) != (g_fIemFFs & g_fInterestingFFs))
497 RTLogPrintf("!! g_fIemFFs=%#x g_fEmFFs=%#x (diff=%#x)\n", g_fIemFFs & g_fInterestingFFs,
498 g_fEmFFs & g_fInterestingFFs, (g_fIemFFs ^ g_fEmFFs) & g_fInterestingFFs);
499
500# define CHECK_FIELD(a_Field) \
501 do \
502 { \
503 if (pEmCtx->a_Field != pIemCtx->a_Field) \
504 { \
505 switch (sizeof(pEmCtx->a_Field)) \
506 { \
507 case 1: RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
508 case 2: RTLogPrintf("!! %8s differs - iem=%04x - em=%04x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
509 case 4: RTLogPrintf("!! %8s differs - iem=%08x - em=%08x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
510 case 8: RTLogPrintf("!! %8s differs - iem=%016llx - em=%016llx\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
511 default: RTLogPrintf("!! %8s differs\n", #a_Field); break; \
512 } \
513 cDiffs++; \
514 } \
515 } while (0)
516
517# define CHECK_BIT_FIELD(a_Field) \
518 do \
519 { \
520 if (pEmCtx->a_Field != pIemCtx->a_Field) \
521 { \
522 RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); \
523 cDiffs++; \
524 } \
525 } while (0)
526
527# define CHECK_SEL(a_Sel) \
528 do \
529 { \
530 CHECK_FIELD(a_Sel.Sel); \
531 CHECK_FIELD(a_Sel.Attr.u); \
532 CHECK_FIELD(a_Sel.u64Base); \
533 CHECK_FIELD(a_Sel.u32Limit); \
534 CHECK_FIELD(a_Sel.fFlags); \
535 } while (0)
536
537 unsigned cDiffs = 0;
538 if (memcmp(&pEmCtx->fpu, &pIemCtx->fpu, sizeof(pIemCtx->fpu)))
539 {
540 RTLogPrintf(" the FPU state differs\n");
541 cDiffs++;
542 CHECK_FIELD(fpu.FCW);
543 CHECK_FIELD(fpu.FSW);
544 CHECK_FIELD(fpu.FTW);
545 CHECK_FIELD(fpu.FOP);
546 CHECK_FIELD(fpu.FPUIP);
547 CHECK_FIELD(fpu.CS);
548 CHECK_FIELD(fpu.Rsrvd1);
549 CHECK_FIELD(fpu.FPUDP);
550 CHECK_FIELD(fpu.DS);
551 CHECK_FIELD(fpu.Rsrvd2);
552 CHECK_FIELD(fpu.MXCSR);
553 CHECK_FIELD(fpu.MXCSR_MASK);
554 CHECK_FIELD(fpu.aRegs[0].au64[0]); CHECK_FIELD(fpu.aRegs[0].au64[1]);
555 CHECK_FIELD(fpu.aRegs[1].au64[0]); CHECK_FIELD(fpu.aRegs[1].au64[1]);
556 CHECK_FIELD(fpu.aRegs[2].au64[0]); CHECK_FIELD(fpu.aRegs[2].au64[1]);
557 CHECK_FIELD(fpu.aRegs[3].au64[0]); CHECK_FIELD(fpu.aRegs[3].au64[1]);
558 CHECK_FIELD(fpu.aRegs[4].au64[0]); CHECK_FIELD(fpu.aRegs[4].au64[1]);
559 CHECK_FIELD(fpu.aRegs[5].au64[0]); CHECK_FIELD(fpu.aRegs[5].au64[1]);
560 CHECK_FIELD(fpu.aRegs[6].au64[0]); CHECK_FIELD(fpu.aRegs[6].au64[1]);
561 CHECK_FIELD(fpu.aRegs[7].au64[0]); CHECK_FIELD(fpu.aRegs[7].au64[1]);
562 CHECK_FIELD(fpu.aXMM[ 0].au64[0]); CHECK_FIELD(fpu.aXMM[ 0].au64[1]);
563 CHECK_FIELD(fpu.aXMM[ 1].au64[0]); CHECK_FIELD(fpu.aXMM[ 1].au64[1]);
564 CHECK_FIELD(fpu.aXMM[ 2].au64[0]); CHECK_FIELD(fpu.aXMM[ 2].au64[1]);
565 CHECK_FIELD(fpu.aXMM[ 3].au64[0]); CHECK_FIELD(fpu.aXMM[ 3].au64[1]);
566 CHECK_FIELD(fpu.aXMM[ 4].au64[0]); CHECK_FIELD(fpu.aXMM[ 4].au64[1]);
567 CHECK_FIELD(fpu.aXMM[ 5].au64[0]); CHECK_FIELD(fpu.aXMM[ 5].au64[1]);
568 CHECK_FIELD(fpu.aXMM[ 6].au64[0]); CHECK_FIELD(fpu.aXMM[ 6].au64[1]);
569 CHECK_FIELD(fpu.aXMM[ 7].au64[0]); CHECK_FIELD(fpu.aXMM[ 7].au64[1]);
570 CHECK_FIELD(fpu.aXMM[ 8].au64[0]); CHECK_FIELD(fpu.aXMM[ 8].au64[1]);
571 CHECK_FIELD(fpu.aXMM[ 9].au64[0]); CHECK_FIELD(fpu.aXMM[ 9].au64[1]);
572 CHECK_FIELD(fpu.aXMM[10].au64[0]); CHECK_FIELD(fpu.aXMM[10].au64[1]);
573 CHECK_FIELD(fpu.aXMM[11].au64[0]); CHECK_FIELD(fpu.aXMM[11].au64[1]);
574 CHECK_FIELD(fpu.aXMM[12].au64[0]); CHECK_FIELD(fpu.aXMM[12].au64[1]);
575 CHECK_FIELD(fpu.aXMM[13].au64[0]); CHECK_FIELD(fpu.aXMM[13].au64[1]);
576 CHECK_FIELD(fpu.aXMM[14].au64[0]); CHECK_FIELD(fpu.aXMM[14].au64[1]);
577 CHECK_FIELD(fpu.aXMM[15].au64[0]); CHECK_FIELD(fpu.aXMM[15].au64[1]);
578 for (unsigned i = 0; i < RT_ELEMENTS(pEmCtx->fpu.au32RsrvdRest); i++)
579 CHECK_FIELD(fpu.au32RsrvdRest[i]);
580 }
581 CHECK_FIELD(rip);
582 if (pEmCtx->rflags.u != pIemCtx->rflags.u)
583 {
584 RTLogPrintf("!! rflags differs - iem=%08llx em=%08llx\n", pIemCtx->rflags.u, pEmCtx->rflags.u);
585 CHECK_BIT_FIELD(rflags.Bits.u1CF);
586 CHECK_BIT_FIELD(rflags.Bits.u1Reserved0);
587 CHECK_BIT_FIELD(rflags.Bits.u1PF);
588 CHECK_BIT_FIELD(rflags.Bits.u1Reserved1);
589 CHECK_BIT_FIELD(rflags.Bits.u1AF);
590 CHECK_BIT_FIELD(rflags.Bits.u1Reserved2);
591 CHECK_BIT_FIELD(rflags.Bits.u1ZF);
592 CHECK_BIT_FIELD(rflags.Bits.u1SF);
593 CHECK_BIT_FIELD(rflags.Bits.u1TF);
594 CHECK_BIT_FIELD(rflags.Bits.u1IF);
595 CHECK_BIT_FIELD(rflags.Bits.u1DF);
596 CHECK_BIT_FIELD(rflags.Bits.u1OF);
597 CHECK_BIT_FIELD(rflags.Bits.u2IOPL);
598 CHECK_BIT_FIELD(rflags.Bits.u1NT);
599 CHECK_BIT_FIELD(rflags.Bits.u1Reserved3);
600 CHECK_BIT_FIELD(rflags.Bits.u1RF);
601 CHECK_BIT_FIELD(rflags.Bits.u1VM);
602 CHECK_BIT_FIELD(rflags.Bits.u1AC);
603 CHECK_BIT_FIELD(rflags.Bits.u1VIF);
604 CHECK_BIT_FIELD(rflags.Bits.u1VIP);
605 CHECK_BIT_FIELD(rflags.Bits.u1ID);
606 }
607
608 if (!g_fIgnoreRaxRdx)
609 CHECK_FIELD(rax);
610 CHECK_FIELD(rcx);
611 if (!g_fIgnoreRaxRdx)
612 CHECK_FIELD(rdx);
613 CHECK_FIELD(rbx);
614 CHECK_FIELD(rsp);
615 CHECK_FIELD(rbp);
616 CHECK_FIELD(rsi);
617 CHECK_FIELD(rdi);
618 CHECK_FIELD(r8);
619 CHECK_FIELD(r9);
620 CHECK_FIELD(r10);
621 CHECK_FIELD(r11);
622 CHECK_FIELD(r12);
623 CHECK_FIELD(r13);
624 CHECK_SEL(cs);
625 CHECK_SEL(ss);
626 CHECK_SEL(ds);
627 CHECK_SEL(es);
628 CHECK_SEL(fs);
629 CHECK_SEL(gs);
630 CHECK_FIELD(cr0);
631 CHECK_FIELD(cr2);
632 CHECK_FIELD(cr3);
633 CHECK_FIELD(cr4);
634 CHECK_FIELD(dr[0]);
635 CHECK_FIELD(dr[1]);
636 CHECK_FIELD(dr[2]);
637 CHECK_FIELD(dr[3]);
638 CHECK_FIELD(dr[6]);
639 CHECK_FIELD(dr[7]);
640 CHECK_FIELD(gdtr.cbGdt);
641 CHECK_FIELD(gdtr.pGdt);
642 CHECK_FIELD(idtr.cbIdt);
643 CHECK_FIELD(idtr.pIdt);
644 CHECK_SEL(ldtr);
645 CHECK_SEL(tr);
646 CHECK_FIELD(SysEnter.cs);
647 CHECK_FIELD(SysEnter.eip);
648 CHECK_FIELD(SysEnter.esp);
649 CHECK_FIELD(msrEFER);
650 CHECK_FIELD(msrSTAR);
651 CHECK_FIELD(msrPAT);
652 CHECK_FIELD(msrLSTAR);
653 CHECK_FIELD(msrCSTAR);
654 CHECK_FIELD(msrSFMASK);
655 CHECK_FIELD(msrKERNELGSBASE);
656
657# undef CHECK_FIELD
658# undef CHECK_BIT_FIELD
659 }
660}
661#endif /* VBOX_COMPARE_IEM_AND_EM */
662
663
664/**
665 * Interprets the current instruction.
666 *
667 * @returns VBox status code.
668 * @retval VINF_* Scheduling instructions.
669 * @retval VERR_EM_INTERPRETER Something we can't cope with.
670 * @retval VERR_* Fatal errors.
671 *
672 * @param pVCpu Pointer to the VMCPU.
673 * @param pRegFrame The register frame.
674 * Updates the EIP if an instruction was executed successfully.
675 * @param pvFault The fault address (CR2).
676 * @param pcbSize Size of the write (if applicable).
677 *
678 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
679 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
680 * to worry about e.g. invalid modrm combinations (!)
681 */
682VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstruction(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
683{
684 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
685 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
686#ifdef VBOX_WITH_IEM
687 NOREF(pvFault);
688
689# ifdef VBOX_COMPARE_IEM_AND_EM
690 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
691 g_IncomingCtx = *pCtx;
692 g_fIncomingFFs = pVCpu->fLocalForcedActions;
693 g_cbEmWrote = g_cbIemWrote = 0;
694
695# ifdef VBOX_COMPARE_IEM_FIRST
696 /* IEM */
697 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
698 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
699 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
700 rcIem = VERR_EM_INTERPRETER;
701 g_IemCtx = *pCtx;
702 g_fIemFFs = pVCpu->fLocalForcedActions;
703 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
704 *pCtx = g_IncomingCtx;
705# endif
706
707 /* EM */
708 RTGCPTR pbCode;
709 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
710 if (RT_SUCCESS(rcEm))
711 {
712 uint32_t cbOp;
713 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
714 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
715 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
716 if (RT_SUCCESS(rcEm))
717 {
718 Assert(cbOp == pDis->cbInstr);
719 uint32_t cbIgnored;
720 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
721 if (RT_SUCCESS(rcEm))
722 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
723
724 }
725 rcEm = VERR_EM_INTERPRETER;
726 }
727 else
728 rcEm = VERR_EM_INTERPRETER;
729# ifdef VBOX_SAME_AS_EM
730 if (rcEm == VERR_EM_INTERPRETER)
731 {
732 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
733 return rcEm;
734 }
735# endif
736 g_EmCtx = *pCtx;
737 g_fEmFFs = pVCpu->fLocalForcedActions;
738 VBOXSTRICTRC rc = rcEm;
739
740# ifdef VBOX_COMPARE_IEM_LAST
741 /* IEM */
742 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
743 *pCtx = g_IncomingCtx;
744 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
745 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
746 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
747 rcIem = VERR_EM_INTERPRETER;
748 g_IemCtx = *pCtx;
749 g_fIemFFs = pVCpu->fLocalForcedActions;
750 rc = rcIem;
751# endif
752
753# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
754 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
755# endif
756
757# else
758 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
759 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
760 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
761 rc = VERR_EM_INTERPRETER;
762# endif
763 if (rc != VINF_SUCCESS)
764 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
765
766 return rc;
767#else
768 RTGCPTR pbCode;
769 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
770 if (RT_SUCCESS(rc))
771 {
772 uint32_t cbOp;
773 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
774 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
775 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
776 if (RT_SUCCESS(rc))
777 {
778 Assert(cbOp == pDis->cbInstr);
779 uint32_t cbIgnored;
780 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
781 if (RT_SUCCESS(rc))
782 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
783
784 return rc;
785 }
786 }
787 return VERR_EM_INTERPRETER;
788#endif
789}
790
791
792/**
793 * Interprets the current instruction.
794 *
795 * @returns VBox status code.
796 * @retval VINF_* Scheduling instructions.
797 * @retval VERR_EM_INTERPRETER Something we can't cope with.
798 * @retval VERR_* Fatal errors.
799 *
800 * @param pVM Pointer to the VM.
801 * @param pVCpu Pointer to the VMCPU.
802 * @param pRegFrame The register frame.
803 * Updates the EIP if an instruction was executed successfully.
804 * @param pvFault The fault address (CR2).
805 * @param pcbWritten Size of the write (if applicable).
806 *
807 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
808 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
809 * to worry about e.g. invalid modrm combinations (!)
810 */
811VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionEx(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbWritten)
812{
813 LogFlow(("EMInterpretInstructionEx %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
814 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
815#ifdef VBOX_WITH_IEM
816 NOREF(pvFault);
817
818# ifdef VBOX_COMPARE_IEM_AND_EM
819 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
820 g_IncomingCtx = *pCtx;
821 g_fIncomingFFs = pVCpu->fLocalForcedActions;
822 g_cbEmWrote = g_cbIemWrote = 0;
823
824# ifdef VBOX_COMPARE_IEM_FIRST
825 /* IEM */
826 uint32_t cbIemWritten = 0;
827 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
828 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
829 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
830 rcIem = VERR_EM_INTERPRETER;
831 g_IemCtx = *pCtx;
832 g_fIemFFs = pVCpu->fLocalForcedActions;
833 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
834 *pCtx = g_IncomingCtx;
835# endif
836
837 /* EM */
838 uint32_t cbEmWritten = 0;
839 RTGCPTR pbCode;
840 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
841 if (RT_SUCCESS(rcEm))
842 {
843 uint32_t cbOp;
844 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
845 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
846 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
847 if (RT_SUCCESS(rcEm))
848 {
849 Assert(cbOp == pDis->cbInstr);
850 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbEmWritten);
851 if (RT_SUCCESS(rcEm))
852 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
853
854 }
855 else
856 rcEm = VERR_EM_INTERPRETER;
857 }
858 else
859 rcEm = VERR_EM_INTERPRETER;
860# ifdef VBOX_SAME_AS_EM
861 if (rcEm == VERR_EM_INTERPRETER)
862 {
863 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
864 return rcEm;
865 }
866# endif
867 g_EmCtx = *pCtx;
868 g_fEmFFs = pVCpu->fLocalForcedActions;
869 *pcbWritten = cbEmWritten;
870 VBOXSTRICTRC rc = rcEm;
871
872# ifdef VBOX_COMPARE_IEM_LAST
873 /* IEM */
874 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
875 *pCtx = g_IncomingCtx;
876 uint32_t cbIemWritten = 0;
877 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
878 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
879 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
880 rcIem = VERR_EM_INTERPRETER;
881 g_IemCtx = *pCtx;
882 g_fIemFFs = pVCpu->fLocalForcedActions;
883 *pcbWritten = cbIemWritten;
884 rc = rcIem;
885# endif
886
887# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
888 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, cbEmWritten, cbIemWritten);
889# endif
890
891# else
892 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, pcbWritten);
893 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
894 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
895 rc = VERR_EM_INTERPRETER;
896# endif
897 if (rc != VINF_SUCCESS)
898 Log(("EMInterpretInstructionEx: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
899
900 return rc;
901#else
902 RTGCPTR pbCode;
903 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
904 if (RT_SUCCESS(rc))
905 {
906 uint32_t cbOp;
907 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
908 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
909 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
910 if (RT_SUCCESS(rc))
911 {
912 Assert(cbOp == pDis->cbInstr);
913 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, pcbWritten);
914 if (RT_SUCCESS(rc))
915 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
916
917 return rc;
918 }
919 }
920 return VERR_EM_INTERPRETER;
921#endif
922}
923
924
925/**
926 * Interprets the current instruction using the supplied DISCPUSTATE structure.
927 *
928 * IP/EIP/RIP *IS* updated!
929 *
930 * @returns VBox strict status code.
931 * @retval VINF_* Scheduling instructions. When these are returned, it
932 * starts to get a bit tricky to know whether code was
933 * executed or not... We'll address this when it becomes a problem.
934 * @retval VERR_EM_INTERPRETER Something we can't cope with.
935 * @retval VERR_* Fatal errors.
936 *
937 * @param pVM Pointer to the VM.
938 * @param pVCpu Pointer to the VMCPU.
939 * @param pDis The disassembler cpu state for the instruction to be
940 * interpreted.
941 * @param pRegFrame The register frame. IP/EIP/RIP *IS* changed!
942 * @param pvFault The fault address (CR2).
943 * @param pcbSize Size of the write (if applicable).
944 * @param enmCodeType Code type (user/supervisor)
945 *
946 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
947 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
948 * to worry about e.g. invalid modrm combinations (!)
949 *
950 * @todo At this time we do NOT check if the instruction overwrites vital information.
951 * Make sure this can't happen!! (will add some assertions/checks later)
952 */
953VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionDisasState(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
954 RTGCPTR pvFault, EMCODETYPE enmCodeType)
955{
956 LogFlow(("EMInterpretInstructionDisasState %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
957 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
958#ifdef VBOX_WITH_IEM
959 NOREF(pDis); NOREF(pvFault); NOREF(enmCodeType);
960
961# ifdef VBOX_COMPARE_IEM_AND_EM
962 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
963 g_IncomingCtx = *pCtx;
964 g_fIncomingFFs = pVCpu->fLocalForcedActions;
965 g_cbEmWrote = g_cbIemWrote = 0;
966
967# ifdef VBOX_COMPARE_IEM_FIRST
968 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
969 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
970 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
971 rcIem = VERR_EM_INTERPRETER;
972 g_IemCtx = *pCtx;
973 g_fIemFFs = pVCpu->fLocalForcedActions;
974 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
975 *pCtx = g_IncomingCtx;
976# endif
977
978 /* EM */
979 uint32_t cbIgnored;
980 VBOXSTRICTRC rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
981 if (RT_SUCCESS(rcEm))
982 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
983# ifdef VBOX_SAME_AS_EM
984 if (rcEm == VERR_EM_INTERPRETER)
985 {
986 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
987 return rcEm;
988 }
989# endif
990 g_EmCtx = *pCtx;
991 g_fEmFFs = pVCpu->fLocalForcedActions;
992 VBOXSTRICTRC rc = rcEm;
993
994# ifdef VBOX_COMPARE_IEM_LAST
995 /* IEM */
996 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
997 *pCtx = g_IncomingCtx;
998 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
999 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1000 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1001 rcIem = VERR_EM_INTERPRETER;
1002 g_IemCtx = *pCtx;
1003 g_fIemFFs = pVCpu->fLocalForcedActions;
1004 rc = rcIem;
1005# endif
1006
1007# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
1008 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
1009# endif
1010
1011# else
1012 VBOXSTRICTRC rc = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1013 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1014 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1015 rc = VERR_EM_INTERPRETER;
1016# endif
1017
1018 if (rc != VINF_SUCCESS)
1019 Log(("EMInterpretInstructionDisasState: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1020
1021 return rc;
1022#else
1023 uint32_t cbIgnored;
1024 VBOXSTRICTRC rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
1025 if (RT_SUCCESS(rc))
1026 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
1027 return rc;
1028#endif
1029}
1030
1031#if defined(IN_RC) /*&& defined(VBOX_WITH_PATM)*/
1032
1033DECLINLINE(int) emRCStackRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1034{
1035 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1036 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1037 return rc;
1038 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1039}
1040
1041
1042/**
1043 * Interpret IRET (currently only to V86 code) - PATM only.
1044 *
1045 * @returns VBox status code.
1046 * @param pVM Pointer to the VM.
1047 * @param pVCpu Pointer to the VMCPU.
1048 * @param pRegFrame The register frame.
1049 *
1050 */
1051VMM_INT_DECL(int) EMInterpretIretV86ForPatm(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1052{
1053 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1054 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1055 int rc;
1056
1057 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1058 Assert(!CPUMIsGuestIn64BitCode(pVCpu));
1059 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
1060 * this function. Fear that it may guru on us, thus not converted to
1061 * IEM. */
1062
1063 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1064 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1065 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1066 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1067 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1068
1069 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1070 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1071 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1072 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1073 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1074 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1075 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1076
1077 pRegFrame->eip = eip & 0xffff;
1078 pRegFrame->cs.Sel = cs;
1079
1080 /* Mask away all reserved bits */
1081 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1082 eflags &= uMask;
1083
1084 CPUMRawSetEFlags(pVCpu, eflags);
1085 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1086
1087 pRegFrame->esp = esp;
1088 pRegFrame->ss.Sel = ss;
1089 pRegFrame->ds.Sel = ds;
1090 pRegFrame->es.Sel = es;
1091 pRegFrame->fs.Sel = fs;
1092 pRegFrame->gs.Sel = gs;
1093
1094 return VINF_SUCCESS;
1095}
1096
1097#endif /* IN_RC && VBOX_WITH_PATM */
1098
1099
1100
1101/*
1102 *
1103 * Old interpreter primitives used by HM, move/eliminate later.
1104 * Old interpreter primitives used by HM, move/eliminate later.
1105 * Old interpreter primitives used by HM, move/eliminate later.
1106 * Old interpreter primitives used by HM, move/eliminate later.
1107 * Old interpreter primitives used by HM, move/eliminate later.
1108 *
1109 */
1110
1111
1112/**
1113 * Interpret CPUID given the parameters in the CPU context.
1114 *
1115 * @returns VBox status code.
1116 * @param pVM Pointer to the VM.
1117 * @param pVCpu Pointer to the VMCPU.
1118 * @param pRegFrame The register frame.
1119 *
1120 */
1121VMM_INT_DECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1122{
1123 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1124 uint32_t iLeaf = pRegFrame->eax;
1125 NOREF(pVM);
1126
1127 /* cpuid clears the high dwords of the affected 64 bits registers. */
1128 pRegFrame->rax = 0;
1129 pRegFrame->rbx = 0;
1130 pRegFrame->rcx &= UINT64_C(0x00000000ffffffff);
1131 pRegFrame->rdx = 0;
1132
1133 /* Note: operates the same in 64 and non-64 bits mode. */
1134 CPUMGetGuestCpuId(pVCpu, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1135 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1136 return VINF_SUCCESS;
1137}
1138
1139
1140/**
1141 * Interpret RDTSC.
1142 *
1143 * @returns VBox status code.
1144 * @param pVM Pointer to the VM.
1145 * @param pVCpu Pointer to the VMCPU.
1146 * @param pRegFrame The register frame.
1147 *
1148 */
1149VMM_INT_DECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1150{
1151 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1152 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
1153
1154 if (uCR4 & X86_CR4_TSD)
1155 return VERR_EM_INTERPRETER; /* genuine #GP */
1156
1157 uint64_t uTicks = TMCpuTickGet(pVCpu);
1158
1159 /* Same behaviour in 32 & 64 bits mode */
1160 pRegFrame->rax = (uint32_t)uTicks;
1161 pRegFrame->rdx = (uTicks >> 32ULL);
1162#ifdef VBOX_COMPARE_IEM_AND_EM
1163 g_fIgnoreRaxRdx = true;
1164#endif
1165
1166 NOREF(pVM);
1167 return VINF_SUCCESS;
1168}
1169
1170/**
1171 * Interpret RDTSCP.
1172 *
1173 * @returns VBox status code.
1174 * @param pVM Pointer to the VM.
1175 * @param pVCpu Pointer to the VMCPU.
1176 * @param pCtx The CPU context.
1177 *
1178 */
1179VMM_INT_DECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1180{
1181 Assert(pCtx == CPUMQueryGuestCtxPtr(pVCpu));
1182 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1183
1184 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1185 {
1186 AssertFailed();
1187 return VERR_EM_INTERPRETER; /* genuine #UD */
1188 }
1189
1190 if (uCR4 & X86_CR4_TSD)
1191 return VERR_EM_INTERPRETER; /* genuine #GP */
1192
1193 uint64_t uTicks = TMCpuTickGet(pVCpu);
1194
1195 /* Same behaviour in 32 & 64 bits mode */
1196 pCtx->rax = (uint32_t)uTicks;
1197 pCtx->rdx = (uTicks >> 32ULL);
1198#ifdef VBOX_COMPARE_IEM_AND_EM
1199 g_fIgnoreRaxRdx = true;
1200#endif
1201 /* Low dword of the TSC_AUX msr only. */
1202 CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx);
1203 pCtx->rcx &= UINT32_C(0xffffffff);
1204
1205 return VINF_SUCCESS;
1206}
1207
1208/**
1209 * Interpret RDPMC.
1210 *
1211 * @returns VBox status code.
1212 * @param pVM Pointer to the VM.
1213 * @param pVCpu Pointer to the VMCPU.
1214 * @param pRegFrame The register frame.
1215 *
1216 */
1217VMM_INT_DECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1218{
1219 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1220 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1221
1222 /* If X86_CR4_PCE is not set, then CPL must be zero. */
1223 if ( !(uCR4 & X86_CR4_PCE)
1224 && CPUMGetGuestCPL(pVCpu) != 0)
1225 {
1226 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
1227 return VERR_EM_INTERPRETER; /* genuine #GP */
1228 }
1229
1230 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
1231 pRegFrame->rax = 0;
1232 pRegFrame->rdx = 0;
1233 /** @todo We should trigger a #GP here if the CPU doesn't support the index in ecx
1234 * but see @bugref{3472}! */
1235
1236 NOREF(pVM);
1237 return VINF_SUCCESS;
1238}
1239
1240
1241/**
1242 * MWAIT Emulation.
1243 */
1244VMM_INT_DECL(VBOXSTRICTRC) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1245{
1246 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1247 uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
1248 NOREF(pVM);
1249
1250 /* Get the current privilege level. */
1251 cpl = CPUMGetGuestCPL(pVCpu);
1252 if (cpl != 0)
1253 return VERR_EM_INTERPRETER; /* supervisor only */
1254
1255 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1256 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1257 return VERR_EM_INTERPRETER; /* not supported */
1258
1259 /*
1260 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
1261 * CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
1262 */
1263 CPUMGetGuestCpuId(pVCpu, 5, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
1264 if (pRegFrame->ecx > 1)
1265 {
1266 Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
1267 return VERR_EM_INTERPRETER; /* illegal value. */
1268 }
1269
1270 if (pRegFrame->ecx && !(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
1271 {
1272 Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
1273 return VERR_EM_INTERPRETER; /* illegal value. */
1274 }
1275
1276 return EMMonitorWaitPerform(pVCpu, pRegFrame->rax, pRegFrame->rcx);
1277}
1278
1279
1280/**
1281 * MONITOR Emulation.
1282 */
1283VMM_INT_DECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1284{
1285 uint32_t u32Dummy, u32ExtFeatures, cpl;
1286 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1287 NOREF(pVM);
1288
1289 if (pRegFrame->ecx != 0)
1290 {
1291 Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
1292 return VERR_EM_INTERPRETER; /* illegal value. */
1293 }
1294
1295 /* Get the current privilege level. */
1296 cpl = CPUMGetGuestCPL(pVCpu);
1297 if (cpl != 0)
1298 return VERR_EM_INTERPRETER; /* supervisor only */
1299
1300 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1301 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1302 return VERR_EM_INTERPRETER; /* not supported */
1303
1304 EMMonitorWaitPrepare(pVCpu, pRegFrame->rax, pRegFrame->rcx, pRegFrame->rdx);
1305 return VINF_SUCCESS;
1306}
1307
1308
1309/* VT-x only: */
1310
1311/**
1312 * Interpret INVLPG.
1313 *
1314 * @returns VBox status code.
1315 * @param pVM Pointer to the VM.
1316 * @param pVCpu Pointer to the VMCPU.
1317 * @param pRegFrame The register frame.
1318 * @param pAddrGC Operand address.
1319 *
1320 */
1321VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1322{
1323 /** @todo is addr always a flat linear address or ds based
1324 * (in absence of segment override prefixes)????
1325 */
1326 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1327 NOREF(pVM); NOREF(pRegFrame);
1328#ifdef IN_RC
1329 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1330#endif
1331 VBOXSTRICTRC rc = PGMInvalidatePage(pVCpu, pAddrGC);
1332 if ( rc == VINF_SUCCESS
1333 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1334 return VINF_SUCCESS;
1335 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1336 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), pAddrGC),
1337 VERR_EM_INTERPRETER);
1338 return rc;
1339}
1340
1341
1342/**
1343 * Update CRx.
1344 *
1345 * @returns VBox status code.
1346 * @param pVM Pointer to the VM.
1347 * @param pVCpu Pointer to the VMCPU.
1348 * @param pRegFrame The register frame.
1349 * @param DestRegCRx CRx register index (DISUSE_REG_CR*)
1350 * @param val New CRx value
1351 *
1352 */
1353static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
1354{
1355 uint64_t oldval;
1356 uint64_t msrEFER;
1357 int rc, rc2;
1358 NOREF(pVM);
1359
1360 /** @todo Clean up this mess. */
1361 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
1362 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1363 switch (DestRegCrx)
1364 {
1365 case DISCREG_CR0:
1366 oldval = CPUMGetGuestCR0(pVCpu);
1367#ifdef IN_RC
1368 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
1369 if ( (val & (X86_CR0_WP | X86_CR0_AM))
1370 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
1371 return VERR_EM_INTERPRETER;
1372#endif
1373 rc = VINF_SUCCESS;
1374#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
1375 CPUMSetGuestCR0(pVCpu, val);
1376#else
1377 CPUMQueryGuestCtxPtr(pVCpu)->cr0 = val | X86_CR0_ET;
1378#endif
1379 val = CPUMGetGuestCR0(pVCpu);
1380 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
1381 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
1382 {
1383 /* global flush */
1384 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1385 AssertRCReturn(rc, rc);
1386 }
1387
1388 /* Deal with long mode enabling/disabling. */
1389 msrEFER = CPUMGetGuestEFER(pVCpu);
1390 if (msrEFER & MSR_K6_EFER_LME)
1391 {
1392 if ( !(oldval & X86_CR0_PG)
1393 && (val & X86_CR0_PG))
1394 {
1395 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1396 if (pRegFrame->cs.Attr.n.u1Long)
1397 {
1398 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
1399 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
1400 }
1401
1402 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1403 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
1404 {
1405 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
1406 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
1407 }
1408 msrEFER |= MSR_K6_EFER_LMA;
1409 }
1410 else
1411 if ( (oldval & X86_CR0_PG)
1412 && !(val & X86_CR0_PG))
1413 {
1414 msrEFER &= ~MSR_K6_EFER_LMA;
1415 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
1416 }
1417 CPUMSetGuestEFER(pVCpu, msrEFER);
1418 }
1419 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
1420 return rc2 == VINF_SUCCESS ? rc : rc2;
1421
1422 case DISCREG_CR2:
1423 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
1424 return VINF_SUCCESS;
1425
1426 case DISCREG_CR3:
1427 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
1428 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
1429 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
1430 {
1431 /* flush */
1432 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
1433 AssertRC(rc);
1434 }
1435 return rc;
1436
1437 case DISCREG_CR4:
1438 oldval = CPUMGetGuestCR4(pVCpu);
1439 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
1440 val = CPUMGetGuestCR4(pVCpu);
1441
1442 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1443 msrEFER = CPUMGetGuestEFER(pVCpu);
1444 if ( (msrEFER & MSR_K6_EFER_LMA)
1445 && (oldval & X86_CR4_PAE)
1446 && !(val & X86_CR4_PAE))
1447 {
1448 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
1449 }
1450
1451 rc = VINF_SUCCESS;
1452 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
1453 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
1454 {
1455 /* global flush */
1456 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1457 AssertRCReturn(rc, rc);
1458 }
1459
1460 /* Feeling extremely lazy. */
1461# ifdef IN_RC
1462 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
1463 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
1464 {
1465 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
1466 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
1467 }
1468# endif
1469 if ((val ^ oldval) & X86_CR4_VME)
1470 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1471
1472 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
1473 return rc2 == VINF_SUCCESS ? rc : rc2;
1474
1475 case DISCREG_CR8:
1476 return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1477
1478 default:
1479 AssertFailed();
1480 case DISCREG_CR1: /* illegal op */
1481 break;
1482 }
1483 return VERR_EM_INTERPRETER;
1484}
1485
1486
1487/**
1488 * Interpret CRx write.
1489 *
1490 * @returns VBox status code.
1491 * @param pVM Pointer to the VM.
1492 * @param pVCpu Pointer to the VMCPU.
1493 * @param pRegFrame The register frame.
1494 * @param DestRegCRx CRx register index (DISUSE_REG_CR*)
1495 * @param SrcRegGen General purpose register index (USE_REG_E**))
1496 *
1497 */
1498VMM_INT_DECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
1499{
1500 uint64_t val;
1501 int rc;
1502 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1503
1504 if (CPUMIsGuestIn64BitCode(pVCpu))
1505 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
1506 else
1507 {
1508 uint32_t val32;
1509 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1510 val = val32;
1511 }
1512
1513 if (RT_SUCCESS(rc))
1514 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
1515
1516 return VERR_EM_INTERPRETER;
1517}
1518
1519/**
1520 * Interpret LMSW.
1521 *
1522 * @returns VBox status code.
1523 * @param pVM Pointer to the VM.
1524 * @param pVCpu Pointer to the VMCPU.
1525 * @param pRegFrame The register frame.
1526 * @param u16Data LMSW source data.
1527 *
1528 */
1529VMM_INT_DECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
1530{
1531 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1532 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
1533
1534 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
1535 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
1536 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
1537
1538 return emUpdateCRx(pVM, pVCpu, pRegFrame, DISCREG_CR0, NewCr0);
1539}
1540
1541
1542/**
1543 * Interpret CLTS.
1544 *
1545 * @returns VBox status code.
1546 * @param pVM Pointer to the VM.
1547 * @param pVCpu Pointer to the VMCPU.
1548 *
1549 */
1550VMM_INT_DECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
1551{
1552 NOREF(pVM);
1553
1554 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
1555 if (!(cr0 & X86_CR0_TS))
1556 return VINF_SUCCESS;
1557 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
1558}
1559
1560
1561/**
1562 * Interpret CRx read.
1563 *
1564 * @returns VBox status code.
1565 * @param pVM Pointer to the VM.
1566 * @param pVCpu Pointer to the VMCPU.
1567 * @param pRegFrame The register frame.
1568 * @param DestRegGen General purpose register index (USE_REG_E**))
1569 * @param SrcRegCRx CRx register index (DISUSE_REG_CR*)
1570 *
1571 */
1572VMM_INT_DECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1573{
1574 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1575 uint64_t val64;
1576 int rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
1577 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1578 NOREF(pVM);
1579
1580 if (CPUMIsGuestIn64BitCode(pVCpu))
1581 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1582 else
1583 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1584
1585 if (RT_SUCCESS(rc))
1586 {
1587 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1588 return VINF_SUCCESS;
1589 }
1590 return VERR_EM_INTERPRETER;
1591}
1592
1593
1594/**
1595 * Interpret DRx write.
1596 *
1597 * @returns VBox status code.
1598 * @param pVM Pointer to the VM.
1599 * @param pVCpu Pointer to the VMCPU.
1600 * @param pRegFrame The register frame.
1601 * @param DestRegDRx DRx register index (USE_REG_DR*)
1602 * @param SrcRegGen General purpose register index (USE_REG_E**))
1603 *
1604 */
1605VMM_INT_DECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
1606{
1607 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1608 uint64_t val;
1609 int rc;
1610 NOREF(pVM);
1611
1612 if (CPUMIsGuestIn64BitCode(pVCpu))
1613 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
1614 else
1615 {
1616 uint32_t val32;
1617 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1618 val = val32;
1619 }
1620
1621 if (RT_SUCCESS(rc))
1622 {
1623 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
1624 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, val);
1625 if (RT_SUCCESS(rc))
1626 return rc;
1627 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
1628 }
1629 return VERR_EM_INTERPRETER;
1630}
1631
1632
1633/**
1634 * Interpret DRx read.
1635 *
1636 * @returns VBox status code.
1637 * @param pVM Pointer to the VM.
1638 * @param pVCpu Pointer to the VMCPU.
1639 * @param pRegFrame The register frame.
1640 * @param DestRegGen General purpose register index (USE_REG_E**))
1641 * @param SrcRegDRx DRx register index (USE_REG_DR*)
1642 *
1643 */
1644VMM_INT_DECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
1645{
1646 uint64_t val64;
1647 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1648 NOREF(pVM);
1649
1650 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
1651 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
1652 if (CPUMIsGuestIn64BitCode(pVCpu))
1653 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1654 else
1655 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
1656
1657 if (RT_SUCCESS(rc))
1658 return VINF_SUCCESS;
1659
1660 return VERR_EM_INTERPRETER;
1661}
1662
1663
1664#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
1665
1666
1667
1668
1669
1670
1671/*
1672 *
1673 * The old interpreter.
1674 * The old interpreter.
1675 * The old interpreter.
1676 * The old interpreter.
1677 * The old interpreter.
1678 *
1679 */
1680
1681DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1682{
1683#ifdef IN_RC
1684 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1685 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1686 return rc;
1687 /*
1688 * The page pool cache may end up here in some cases because it
1689 * flushed one of the shadow mappings used by the trapping
1690 * instruction and it either flushed the TLB or the CPU reused it.
1691 */
1692#else
1693 NOREF(pVM);
1694#endif
1695 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1696}
1697
1698
1699DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
1700{
1701 /* Don't use MMGCRamWrite here as it does not respect zero pages, shared
1702 pages or write monitored pages. */
1703 NOREF(pVM);
1704#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
1705 int rc = PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
1706#else
1707 int rc = VINF_SUCCESS;
1708#endif
1709#ifdef VBOX_COMPARE_IEM_AND_EM
1710 Log(("EM Wrote: %RGv %.*Rhxs rc=%Rrc\n", GCPtrDst, RT_MAX(RT_MIN(cb, 64), 1), pvSrc, rc));
1711 g_cbEmWrote = cb;
1712 memcpy(g_abEmWrote, pvSrc, RT_MIN(cb, sizeof(g_abEmWrote)));
1713#endif
1714 return rc;
1715}
1716
1717
1718/** Convert sel:addr to a flat GC address. */
1719DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, PDISOPPARAM pParam, RTGCPTR pvAddr)
1720{
1721 DISSELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
1722 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
1723}
1724
1725
1726#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
1727/**
1728 * Get the mnemonic for the disassembled instruction.
1729 *
1730 * GC/R0 doesn't include the strings in the DIS tables because
1731 * of limited space.
1732 */
1733static const char *emGetMnemonic(PDISCPUSTATE pDis)
1734{
1735 switch (pDis->pCurInstr->uOpcode)
1736 {
1737 case OP_XCHG: return "Xchg";
1738 case OP_DEC: return "Dec";
1739 case OP_INC: return "Inc";
1740 case OP_POP: return "Pop";
1741 case OP_OR: return "Or";
1742 case OP_AND: return "And";
1743 case OP_MOV: return "Mov";
1744 case OP_INVLPG: return "InvlPg";
1745 case OP_CPUID: return "CpuId";
1746 case OP_MOV_CR: return "MovCRx";
1747 case OP_MOV_DR: return "MovDRx";
1748 case OP_LLDT: return "LLdt";
1749 case OP_LGDT: return "LGdt";
1750 case OP_LIDT: return "LIdt";
1751 case OP_CLTS: return "Clts";
1752 case OP_MONITOR: return "Monitor";
1753 case OP_MWAIT: return "MWait";
1754 case OP_RDMSR: return "Rdmsr";
1755 case OP_WRMSR: return "Wrmsr";
1756 case OP_ADD: return "Add";
1757 case OP_ADC: return "Adc";
1758 case OP_SUB: return "Sub";
1759 case OP_SBB: return "Sbb";
1760 case OP_RDTSC: return "Rdtsc";
1761 case OP_STI: return "Sti";
1762 case OP_CLI: return "Cli";
1763 case OP_XADD: return "XAdd";
1764 case OP_HLT: return "Hlt";
1765 case OP_IRET: return "Iret";
1766 case OP_MOVNTPS: return "MovNTPS";
1767 case OP_STOSWD: return "StosWD";
1768 case OP_WBINVD: return "WbInvd";
1769 case OP_XOR: return "Xor";
1770 case OP_BTR: return "Btr";
1771 case OP_BTS: return "Bts";
1772 case OP_BTC: return "Btc";
1773 case OP_LMSW: return "Lmsw";
1774 case OP_SMSW: return "Smsw";
1775 case OP_CMPXCHG: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
1776 case OP_CMPXCHG8B: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
1777
1778 default:
1779 Log(("Unknown opcode %d\n", pDis->pCurInstr->uOpcode));
1780 return "???";
1781 }
1782}
1783#endif /* VBOX_STRICT || LOG_ENABLED */
1784
1785
1786/**
1787 * XCHG instruction emulation.
1788 */
1789static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1790{
1791 DISQPVPARAMVAL param1, param2;
1792 NOREF(pvFault);
1793
1794 /* Source to make DISQueryParamVal read the register value - ugly hack */
1795 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
1796 if(RT_FAILURE(rc))
1797 return VERR_EM_INTERPRETER;
1798
1799 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1800 if(RT_FAILURE(rc))
1801 return VERR_EM_INTERPRETER;
1802
1803#ifdef IN_RC
1804 if (TRPMHasTrap(pVCpu))
1805 {
1806 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1807 {
1808#endif
1809 RTGCPTR pParam1 = 0, pParam2 = 0;
1810 uint64_t valpar1, valpar2;
1811
1812 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
1813 switch(param1.type)
1814 {
1815 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
1816 valpar1 = param1.val.val64;
1817 break;
1818
1819 case DISQPV_TYPE_ADDRESS:
1820 pParam1 = (RTGCPTR)param1.val.val64;
1821 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1822 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
1823 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
1824 if (RT_FAILURE(rc))
1825 {
1826 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1827 return VERR_EM_INTERPRETER;
1828 }
1829 break;
1830
1831 default:
1832 AssertFailed();
1833 return VERR_EM_INTERPRETER;
1834 }
1835
1836 switch(param2.type)
1837 {
1838 case DISQPV_TYPE_ADDRESS:
1839 pParam2 = (RTGCPTR)param2.val.val64;
1840 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pParam2);
1841 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
1842 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
1843 if (RT_FAILURE(rc))
1844 {
1845 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1846 }
1847 break;
1848
1849 case DISQPV_TYPE_IMMEDIATE:
1850 valpar2 = param2.val.val64;
1851 break;
1852
1853 default:
1854 AssertFailed();
1855 return VERR_EM_INTERPRETER;
1856 }
1857
1858 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
1859 if (pParam1 == 0)
1860 {
1861 Assert(param1.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
1862 switch(param1.size)
1863 {
1864 case 1: //special case for AH etc
1865 rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t )valpar2); break;
1866 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)valpar2); break;
1867 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)valpar2); break;
1868 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, valpar2); break;
1869 default: AssertFailedReturn(VERR_EM_INTERPRETER);
1870 }
1871 if (RT_FAILURE(rc))
1872 return VERR_EM_INTERPRETER;
1873 }
1874 else
1875 {
1876 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
1877 if (RT_FAILURE(rc))
1878 {
1879 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1880 return VERR_EM_INTERPRETER;
1881 }
1882 }
1883
1884 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
1885 if (pParam2 == 0)
1886 {
1887 Assert(param2.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
1888 switch(param2.size)
1889 {
1890 case 1: //special case for AH etc
1891 rc = DISWriteReg8(pRegFrame, pDis->Param2.Base.idxGenReg, (uint8_t )valpar1); break;
1892 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param2.Base.idxGenReg, (uint16_t)valpar1); break;
1893 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param2.Base.idxGenReg, (uint32_t)valpar1); break;
1894 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param2.Base.idxGenReg, valpar1); break;
1895 default: AssertFailedReturn(VERR_EM_INTERPRETER);
1896 }
1897 if (RT_FAILURE(rc))
1898 return VERR_EM_INTERPRETER;
1899 }
1900 else
1901 {
1902 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
1903 if (RT_FAILURE(rc))
1904 {
1905 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1906 return VERR_EM_INTERPRETER;
1907 }
1908 }
1909
1910 *pcbSize = param2.size;
1911 return VINF_SUCCESS;
1912#ifdef IN_RC
1913 }
1914 }
1915 return VERR_EM_INTERPRETER;
1916#endif
1917}
1918
1919
1920/**
1921 * INC and DEC emulation.
1922 */
1923static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1924 PFNEMULATEPARAM2 pfnEmulate)
1925{
1926 DISQPVPARAMVAL param1;
1927 NOREF(pvFault);
1928
1929 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1930 if(RT_FAILURE(rc))
1931 return VERR_EM_INTERPRETER;
1932
1933#ifdef IN_RC
1934 if (TRPMHasTrap(pVCpu))
1935 {
1936 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1937 {
1938#endif
1939 RTGCPTR pParam1 = 0;
1940 uint64_t valpar1;
1941
1942 if (param1.type == DISQPV_TYPE_ADDRESS)
1943 {
1944 pParam1 = (RTGCPTR)param1.val.val64;
1945 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1946#ifdef IN_RC
1947 /* Safety check (in theory it could cross a page boundary and fault there though) */
1948 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
1949#endif
1950 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
1951 if (RT_FAILURE(rc))
1952 {
1953 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1954 return VERR_EM_INTERPRETER;
1955 }
1956 }
1957 else
1958 {
1959 AssertFailed();
1960 return VERR_EM_INTERPRETER;
1961 }
1962
1963 uint32_t eflags;
1964
1965 eflags = pfnEmulate(&valpar1, param1.size);
1966
1967 /* Write result back */
1968 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
1969 if (RT_FAILURE(rc))
1970 {
1971 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1972 return VERR_EM_INTERPRETER;
1973 }
1974
1975 /* Update guest's eflags and finish. */
1976 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1977 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1978
1979 /* All done! */
1980 *pcbSize = param1.size;
1981 return VINF_SUCCESS;
1982#ifdef IN_RC
1983 }
1984 }
1985 return VERR_EM_INTERPRETER;
1986#endif
1987}
1988
1989
1990/**
1991 * POP Emulation.
1992 */
1993static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1994{
1995 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
1996 DISQPVPARAMVAL param1;
1997 NOREF(pvFault);
1998
1999 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2000 if(RT_FAILURE(rc))
2001 return VERR_EM_INTERPRETER;
2002
2003#ifdef IN_RC
2004 if (TRPMHasTrap(pVCpu))
2005 {
2006 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2007 {
2008#endif
2009 RTGCPTR pParam1 = 0;
2010 uint32_t valpar1;
2011 RTGCPTR pStackVal;
2012
2013 /* Read stack value first */
2014 if (CPUMGetGuestCodeBits(pVCpu) == 16)
2015 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
2016
2017 /* Convert address; don't bother checking limits etc, as we only read here */
2018 pStackVal = SELMToFlat(pVM, DISSELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
2019 if (pStackVal == 0)
2020 return VERR_EM_INTERPRETER;
2021
2022 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
2023 if (RT_FAILURE(rc))
2024 {
2025 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2026 return VERR_EM_INTERPRETER;
2027 }
2028
2029 if (param1.type == DISQPV_TYPE_ADDRESS)
2030 {
2031 pParam1 = (RTGCPTR)param1.val.val64;
2032
2033 /* pop [esp+xx] uses esp after the actual pop! */
2034 AssertCompile(DISGREG_ESP == DISGREG_SP);
2035 if ( (pDis->Param1.fUse & DISUSE_BASE)
2036 && (pDis->Param1.fUse & (DISUSE_REG_GEN16|DISUSE_REG_GEN32))
2037 && pDis->Param1.Base.idxGenReg == DISGREG_ESP
2038 )
2039 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
2040
2041 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2042 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
2043 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2044 if (RT_FAILURE(rc))
2045 {
2046 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2047 return VERR_EM_INTERPRETER;
2048 }
2049
2050 /* Update ESP as the last step */
2051 pRegFrame->esp += param1.size;
2052 }
2053 else
2054 {
2055#ifndef DEBUG_bird // annoying assertion.
2056 AssertFailed();
2057#endif
2058 return VERR_EM_INTERPRETER;
2059 }
2060
2061 /* All done! */
2062 *pcbSize = param1.size;
2063 return VINF_SUCCESS;
2064#ifdef IN_RC
2065 }
2066 }
2067 return VERR_EM_INTERPRETER;
2068#endif
2069}
2070
2071
2072/**
2073 * XOR/OR/AND Emulation.
2074 */
2075static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2076 PFNEMULATEPARAM3 pfnEmulate)
2077{
2078 DISQPVPARAMVAL param1, param2;
2079 NOREF(pvFault);
2080
2081 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2082 if(RT_FAILURE(rc))
2083 return VERR_EM_INTERPRETER;
2084
2085 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2086 if(RT_FAILURE(rc))
2087 return VERR_EM_INTERPRETER;
2088
2089#ifdef IN_RC
2090 if (TRPMHasTrap(pVCpu))
2091 {
2092 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2093 {
2094#endif
2095 RTGCPTR pParam1;
2096 uint64_t valpar1, valpar2;
2097
2098 if (pDis->Param1.cb != pDis->Param2.cb)
2099 {
2100 if (pDis->Param1.cb < pDis->Param2.cb)
2101 {
2102 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2103 return VERR_EM_INTERPRETER;
2104 }
2105 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2106 pDis->Param2.cb = pDis->Param1.cb;
2107 param2.size = param1.size;
2108 }
2109
2110 /* The destination is always a virtual address */
2111 if (param1.type == DISQPV_TYPE_ADDRESS)
2112 {
2113 pParam1 = (RTGCPTR)param1.val.val64;
2114 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2115 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2116 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2117 if (RT_FAILURE(rc))
2118 {
2119 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2120 return VERR_EM_INTERPRETER;
2121 }
2122 }
2123 else
2124 {
2125 AssertFailed();
2126 return VERR_EM_INTERPRETER;
2127 }
2128
2129 /* Register or immediate data */
2130 switch(param2.type)
2131 {
2132 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2133 valpar2 = param2.val.val64;
2134 break;
2135
2136 default:
2137 AssertFailed();
2138 return VERR_EM_INTERPRETER;
2139 }
2140
2141 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
2142
2143 /* Data read, emulate instruction. */
2144 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2145
2146 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
2147
2148 /* Update guest's eflags and finish. */
2149 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2150 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2151
2152 /* And write it back */
2153 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2154 if (RT_SUCCESS(rc))
2155 {
2156 /* All done! */
2157 *pcbSize = param2.size;
2158 return VINF_SUCCESS;
2159 }
2160#ifdef IN_RC
2161 }
2162 }
2163#endif
2164 return VERR_EM_INTERPRETER;
2165}
2166
2167
2168#ifndef VBOX_COMPARE_IEM_AND_EM
2169/**
2170 * LOCK XOR/OR/AND Emulation.
2171 */
2172static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2173 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
2174{
2175 void *pvParam1;
2176 DISQPVPARAMVAL param1, param2;
2177 NOREF(pvFault);
2178
2179#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
2180 Assert(pDis->Param1.cb <= 4);
2181#endif
2182
2183 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2184 if(RT_FAILURE(rc))
2185 return VERR_EM_INTERPRETER;
2186
2187 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2188 if(RT_FAILURE(rc))
2189 return VERR_EM_INTERPRETER;
2190
2191 if (pDis->Param1.cb != pDis->Param2.cb)
2192 {
2193 AssertMsgReturn(pDis->Param1.cb >= pDis->Param2.cb, /* should never happen! */
2194 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb),
2195 VERR_EM_INTERPRETER);
2196
2197 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2198 pDis->Param2.cb = pDis->Param1.cb;
2199 param2.size = param1.size;
2200 }
2201
2202#ifdef IN_RC
2203 /* Safety check (in theory it could cross a page boundary and fault there though) */
2204 Assert( TRPMHasTrap(pVCpu)
2205 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
2206 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
2207#endif
2208
2209 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2210 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2211 RTGCUINTREG ValPar2 = param2.val.val64;
2212
2213 /* The destination is always a virtual address */
2214 AssertReturn(param1.type == DISQPV_TYPE_ADDRESS, VERR_EM_INTERPRETER);
2215
2216 RTGCPTR GCPtrPar1 = param1.val.val64;
2217 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2218 PGMPAGEMAPLOCK Lock;
2219 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2220 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2221
2222 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2223 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2224
2225 RTGCUINTREG32 eflags = 0;
2226 rc = pfnEmulate(pvParam1, ValPar2, pDis->Param2.cb, &eflags);
2227 PGMPhysReleasePageMappingLock(pVM, &Lock);
2228 if (RT_FAILURE(rc))
2229 {
2230 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2231 return VERR_EM_INTERPRETER;
2232 }
2233
2234 /* Update guest's eflags and finish. */
2235 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2236 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2237
2238 *pcbSize = param2.size;
2239 return VINF_SUCCESS;
2240}
2241#endif /* !VBOX_COMPARE_IEM_AND_EM */
2242
2243
2244/**
2245 * ADD, ADC & SUB Emulation.
2246 */
2247static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2248 PFNEMULATEPARAM3 pfnEmulate)
2249{
2250 NOREF(pvFault);
2251 DISQPVPARAMVAL param1, param2;
2252 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2253 if(RT_FAILURE(rc))
2254 return VERR_EM_INTERPRETER;
2255
2256 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2257 if(RT_FAILURE(rc))
2258 return VERR_EM_INTERPRETER;
2259
2260#ifdef IN_RC
2261 if (TRPMHasTrap(pVCpu))
2262 {
2263 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2264 {
2265#endif
2266 RTGCPTR pParam1;
2267 uint64_t valpar1, valpar2;
2268
2269 if (pDis->Param1.cb != pDis->Param2.cb)
2270 {
2271 if (pDis->Param1.cb < pDis->Param2.cb)
2272 {
2273 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2274 return VERR_EM_INTERPRETER;
2275 }
2276 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2277 pDis->Param2.cb = pDis->Param1.cb;
2278 param2.size = param1.size;
2279 }
2280
2281 /* The destination is always a virtual address */
2282 if (param1.type == DISQPV_TYPE_ADDRESS)
2283 {
2284 pParam1 = (RTGCPTR)param1.val.val64;
2285 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2286 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2287 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2288 if (RT_FAILURE(rc))
2289 {
2290 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2291 return VERR_EM_INTERPRETER;
2292 }
2293 }
2294 else
2295 {
2296#ifndef DEBUG_bird
2297 AssertFailed();
2298#endif
2299 return VERR_EM_INTERPRETER;
2300 }
2301
2302 /* Register or immediate data */
2303 switch(param2.type)
2304 {
2305 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2306 valpar2 = param2.val.val64;
2307 break;
2308
2309 default:
2310 AssertFailed();
2311 return VERR_EM_INTERPRETER;
2312 }
2313
2314 /* Data read, emulate instruction. */
2315 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2316
2317 /* Update guest's eflags and finish. */
2318 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2319 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2320
2321 /* And write it back */
2322 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2323 if (RT_SUCCESS(rc))
2324 {
2325 /* All done! */
2326 *pcbSize = param2.size;
2327 return VINF_SUCCESS;
2328 }
2329#ifdef IN_RC
2330 }
2331 }
2332#endif
2333 return VERR_EM_INTERPRETER;
2334}
2335
2336
2337/**
2338 * ADC Emulation.
2339 */
2340static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2341{
2342 if (pRegFrame->eflags.Bits.u1CF)
2343 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
2344 else
2345 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
2346}
2347
2348
2349/**
2350 * BTR/C/S Emulation.
2351 */
2352static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2353 PFNEMULATEPARAM2UINT32 pfnEmulate)
2354{
2355 DISQPVPARAMVAL param1, param2;
2356 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2357 if(RT_FAILURE(rc))
2358 return VERR_EM_INTERPRETER;
2359
2360 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2361 if(RT_FAILURE(rc))
2362 return VERR_EM_INTERPRETER;
2363
2364#ifdef IN_RC
2365 if (TRPMHasTrap(pVCpu))
2366 {
2367 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2368 {
2369#endif
2370 RTGCPTR pParam1;
2371 uint64_t valpar1 = 0, valpar2;
2372 uint32_t eflags;
2373
2374 /* The destination is always a virtual address */
2375 if (param1.type != DISQPV_TYPE_ADDRESS)
2376 return VERR_EM_INTERPRETER;
2377
2378 pParam1 = (RTGCPTR)param1.val.val64;
2379 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2380
2381 /* Register or immediate data */
2382 switch(param2.type)
2383 {
2384 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2385 valpar2 = param2.val.val64;
2386 break;
2387
2388 default:
2389 AssertFailed();
2390 return VERR_EM_INTERPRETER;
2391 }
2392
2393 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
2394 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
2395 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
2396 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
2397 if (RT_FAILURE(rc))
2398 {
2399 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2400 return VERR_EM_INTERPRETER;
2401 }
2402
2403 Log2(("emInterpretBtx: val=%x\n", valpar1));
2404 /* Data read, emulate bit test instruction. */
2405 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
2406
2407 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
2408
2409 /* Update guest's eflags and finish. */
2410 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2411 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2412
2413 /* And write it back */
2414 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
2415 if (RT_SUCCESS(rc))
2416 {
2417 /* All done! */
2418 *pcbSize = 1;
2419 return VINF_SUCCESS;
2420 }
2421#ifdef IN_RC
2422 }
2423 }
2424#endif
2425 return VERR_EM_INTERPRETER;
2426}
2427
2428
2429#ifndef VBOX_COMPARE_IEM_AND_EM
2430/**
2431 * LOCK BTR/C/S Emulation.
2432 */
2433static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2434 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
2435{
2436 void *pvParam1;
2437
2438 DISQPVPARAMVAL param1, param2;
2439 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2440 if(RT_FAILURE(rc))
2441 return VERR_EM_INTERPRETER;
2442
2443 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2444 if(RT_FAILURE(rc))
2445 return VERR_EM_INTERPRETER;
2446
2447 /* The destination is always a virtual address */
2448 if (param1.type != DISQPV_TYPE_ADDRESS)
2449 return VERR_EM_INTERPRETER;
2450
2451 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2452 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2453 uint64_t ValPar2 = param2.val.val64;
2454
2455 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
2456 RTGCPTR GCPtrPar1 = param1.val.val64;
2457 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
2458 ValPar2 &= 7;
2459
2460 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2461#ifdef IN_RC
2462 Assert(TRPMHasTrap(pVCpu));
2463 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
2464#endif
2465
2466 PGMPAGEMAPLOCK Lock;
2467 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2468 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2469
2470 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
2471
2472 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2473 RTGCUINTREG32 eflags = 0;
2474 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
2475 PGMPhysReleasePageMappingLock(pVM, &Lock);
2476 if (RT_FAILURE(rc))
2477 {
2478 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
2479 emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2480 return VERR_EM_INTERPRETER;
2481 }
2482
2483 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
2484
2485 /* Update guest's eflags and finish. */
2486 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2487 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2488
2489 *pcbSize = 1;
2490 return VINF_SUCCESS;
2491}
2492#endif /* !VBOX_COMPARE_IEM_AND_EM */
2493
2494
2495/**
2496 * MOV emulation.
2497 */
2498static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2499{
2500 NOREF(pvFault);
2501 DISQPVPARAMVAL param1, param2;
2502 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2503 if(RT_FAILURE(rc))
2504 return VERR_EM_INTERPRETER;
2505
2506 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2507 if(RT_FAILURE(rc))
2508 return VERR_EM_INTERPRETER;
2509
2510#ifdef IN_RC
2511 if (TRPMHasTrap(pVCpu))
2512 {
2513 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2514 {
2515#else
2516 /** @todo Make this the default and don't rely on TRPM information. */
2517 if (param1.type == DISQPV_TYPE_ADDRESS)
2518 {
2519#endif
2520 RTGCPTR pDest;
2521 uint64_t val64;
2522
2523 switch(param1.type)
2524 {
2525 case DISQPV_TYPE_IMMEDIATE:
2526 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2527 return VERR_EM_INTERPRETER;
2528 /* fallthru */
2529
2530 case DISQPV_TYPE_ADDRESS:
2531 pDest = (RTGCPTR)param1.val.val64;
2532 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pDest);
2533 break;
2534
2535 default:
2536 AssertFailed();
2537 return VERR_EM_INTERPRETER;
2538 }
2539
2540 switch(param2.type)
2541 {
2542 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
2543 val64 = param2.val.val64;
2544 break;
2545
2546 default:
2547 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
2548 return VERR_EM_INTERPRETER;
2549 }
2550#ifdef LOG_ENABLED
2551 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2552 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
2553 else
2554 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
2555#endif
2556
2557 Assert(param2.size <= 8 && param2.size > 0);
2558 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
2559 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
2560 if (RT_FAILURE(rc))
2561 return VERR_EM_INTERPRETER;
2562
2563 *pcbSize = param2.size;
2564 }
2565 else
2566 { /* read fault */
2567 RTGCPTR pSrc;
2568 uint64_t val64;
2569
2570 /* Source */
2571 switch(param2.type)
2572 {
2573 case DISQPV_TYPE_IMMEDIATE:
2574 if(!(param2.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2575 return VERR_EM_INTERPRETER;
2576 /* fallthru */
2577
2578 case DISQPV_TYPE_ADDRESS:
2579 pSrc = (RTGCPTR)param2.val.val64;
2580 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pSrc);
2581 break;
2582
2583 default:
2584 return VERR_EM_INTERPRETER;
2585 }
2586
2587 Assert(param1.size <= 8 && param1.size > 0);
2588 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
2589 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
2590 if (RT_FAILURE(rc))
2591 return VERR_EM_INTERPRETER;
2592
2593 /* Destination */
2594 switch(param1.type)
2595 {
2596 case DISQPV_TYPE_REGISTER:
2597 switch(param1.size)
2598 {
2599 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) val64); break;
2600 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)val64); break;
2601 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)val64); break;
2602 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, val64); break;
2603 default:
2604 return VERR_EM_INTERPRETER;
2605 }
2606 if (RT_FAILURE(rc))
2607 return rc;
2608 break;
2609
2610 default:
2611 return VERR_EM_INTERPRETER;
2612 }
2613#ifdef LOG_ENABLED
2614 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2615 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
2616 else
2617 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
2618#endif
2619 }
2620 return VINF_SUCCESS;
2621#ifdef IN_RC
2622 }
2623 return VERR_EM_INTERPRETER;
2624#endif
2625}
2626
2627
2628#ifndef IN_RC
2629/**
2630 * [REP] STOSWD emulation
2631 */
2632static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2633{
2634 int rc;
2635 RTGCPTR GCDest, GCOffset;
2636 uint32_t cbSize;
2637 uint64_t cTransfers;
2638 int offIncrement;
2639 NOREF(pvFault);
2640
2641 /* Don't support any but these three prefix bytes. */
2642 if ((pDis->fPrefix & ~(DISPREFIX_ADDRSIZE|DISPREFIX_OPSIZE|DISPREFIX_REP|DISPREFIX_REX)))
2643 return VERR_EM_INTERPRETER;
2644
2645 switch (pDis->uAddrMode)
2646 {
2647 case DISCPUMODE_16BIT:
2648 GCOffset = pRegFrame->di;
2649 cTransfers = pRegFrame->cx;
2650 break;
2651 case DISCPUMODE_32BIT:
2652 GCOffset = pRegFrame->edi;
2653 cTransfers = pRegFrame->ecx;
2654 break;
2655 case DISCPUMODE_64BIT:
2656 GCOffset = pRegFrame->rdi;
2657 cTransfers = pRegFrame->rcx;
2658 break;
2659 default:
2660 AssertFailed();
2661 return VERR_EM_INTERPRETER;
2662 }
2663
2664 GCDest = SELMToFlat(pVM, DISSELREG_ES, pRegFrame, GCOffset);
2665 switch (pDis->uOpMode)
2666 {
2667 case DISCPUMODE_16BIT:
2668 cbSize = 2;
2669 break;
2670 case DISCPUMODE_32BIT:
2671 cbSize = 4;
2672 break;
2673 case DISCPUMODE_64BIT:
2674 cbSize = 8;
2675 break;
2676 default:
2677 AssertFailed();
2678 return VERR_EM_INTERPRETER;
2679 }
2680
2681 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
2682
2683 if (!(pDis->fPrefix & DISPREFIX_REP))
2684 {
2685 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize));
2686
2687 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
2688 if (RT_FAILURE(rc))
2689 return VERR_EM_INTERPRETER;
2690 Assert(rc == VINF_SUCCESS);
2691
2692 /* Update (e/r)di. */
2693 switch (pDis->uAddrMode)
2694 {
2695 case DISCPUMODE_16BIT:
2696 pRegFrame->di += offIncrement;
2697 break;
2698 case DISCPUMODE_32BIT:
2699 pRegFrame->edi += offIncrement;
2700 break;
2701 case DISCPUMODE_64BIT:
2702 pRegFrame->rdi += offIncrement;
2703 break;
2704 default:
2705 AssertFailed();
2706 return VERR_EM_INTERPRETER;
2707 }
2708
2709 }
2710 else
2711 {
2712 if (!cTransfers)
2713 return VINF_SUCCESS;
2714
2715 /*
2716 * Do *not* try emulate cross page stuff here because we don't know what might
2717 * be waiting for us on the subsequent pages. The caller has only asked us to
2718 * ignore access handlers fro the current page.
2719 * This also fends off big stores which would quickly kill PGMR0DynMap.
2720 */
2721 if ( cbSize > PAGE_SIZE
2722 || cTransfers > PAGE_SIZE
2723 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
2724 {
2725 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
2726 GCDest, cbSize, offIncrement, cTransfers));
2727 return VERR_EM_INTERPRETER;
2728 }
2729
2730 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
2731 /* Access verification first; we currently can't recover properly from traps inside this instruction */
2732 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
2733 cTransfers * cbSize,
2734 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu) == 3 ? X86_PTE_US : 0));
2735 if (rc != VINF_SUCCESS)
2736 {
2737 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
2738 return VERR_EM_INTERPRETER;
2739 }
2740
2741 /* REP case */
2742 while (cTransfers)
2743 {
2744 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
2745 if (RT_FAILURE(rc))
2746 {
2747 rc = VERR_EM_INTERPRETER;
2748 break;
2749 }
2750
2751 Assert(rc == VINF_SUCCESS);
2752 GCOffset += offIncrement;
2753 GCDest += offIncrement;
2754 cTransfers--;
2755 }
2756
2757 /* Update the registers. */
2758 switch (pDis->uAddrMode)
2759 {
2760 case DISCPUMODE_16BIT:
2761 pRegFrame->di = GCOffset;
2762 pRegFrame->cx = cTransfers;
2763 break;
2764 case DISCPUMODE_32BIT:
2765 pRegFrame->edi = GCOffset;
2766 pRegFrame->ecx = cTransfers;
2767 break;
2768 case DISCPUMODE_64BIT:
2769 pRegFrame->rdi = GCOffset;
2770 pRegFrame->rcx = cTransfers;
2771 break;
2772 default:
2773 AssertFailed();
2774 return VERR_EM_INTERPRETER;
2775 }
2776 }
2777
2778 *pcbSize = cbSize;
2779 return rc;
2780}
2781#endif /* !IN_RC */
2782
2783
2784/**
2785 * [LOCK] CMPXCHG emulation.
2786 */
2787static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2788{
2789 DISQPVPARAMVAL param1, param2;
2790 NOREF(pvFault);
2791
2792#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
2793 Assert(pDis->Param1.cb <= 4);
2794#endif
2795
2796 /* Source to make DISQueryParamVal read the register value - ugly hack */
2797 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2798 if(RT_FAILURE(rc))
2799 return VERR_EM_INTERPRETER;
2800
2801 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2802 if(RT_FAILURE(rc))
2803 return VERR_EM_INTERPRETER;
2804
2805 uint64_t valpar;
2806 switch(param2.type)
2807 {
2808 case DISQPV_TYPE_IMMEDIATE: /* register actually */
2809 valpar = param2.val.val64;
2810 break;
2811
2812 default:
2813 return VERR_EM_INTERPRETER;
2814 }
2815
2816 PGMPAGEMAPLOCK Lock;
2817 RTGCPTR GCPtrPar1;
2818 void *pvParam1;
2819 uint64_t eflags;
2820
2821 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
2822 switch(param1.type)
2823 {
2824 case DISQPV_TYPE_ADDRESS:
2825 GCPtrPar1 = param1.val.val64;
2826 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2827
2828 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2829 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2830 break;
2831
2832 default:
2833 return VERR_EM_INTERPRETER;
2834 }
2835
2836 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
2837
2838#ifndef VBOX_COMPARE_IEM_AND_EM
2839 if (pDis->fPrefix & DISPREFIX_LOCK)
2840 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
2841 else
2842 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
2843#else /* VBOX_COMPARE_IEM_AND_EM */
2844 uint64_t u64;
2845 switch (pDis->Param2.cb)
2846 {
2847 case 1: u64 = *(uint8_t *)pvParam1; break;
2848 case 2: u64 = *(uint16_t *)pvParam1; break;
2849 case 4: u64 = *(uint32_t *)pvParam1; break;
2850 default:
2851 case 8: u64 = *(uint64_t *)pvParam1; break;
2852 }
2853 eflags = EMEmulateCmpXchg(&u64, &pRegFrame->rax, valpar, pDis->Param2.cb);
2854 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
2855#endif /* VBOX_COMPARE_IEM_AND_EM */
2856
2857 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
2858
2859 /* Update guest's eflags and finish. */
2860 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2861 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2862
2863 *pcbSize = param2.size;
2864 PGMPhysReleasePageMappingLock(pVM, &Lock);
2865 return VINF_SUCCESS;
2866}
2867
2868
2869/**
2870 * [LOCK] CMPXCHG8B emulation.
2871 */
2872static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2873{
2874 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
2875 DISQPVPARAMVAL param1;
2876 NOREF(pvFault);
2877
2878 /* Source to make DISQueryParamVal read the register value - ugly hack */
2879 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2880 if(RT_FAILURE(rc))
2881 return VERR_EM_INTERPRETER;
2882
2883 RTGCPTR GCPtrPar1;
2884 void *pvParam1;
2885 uint64_t eflags;
2886 PGMPAGEMAPLOCK Lock;
2887
2888 AssertReturn(pDis->Param1.cb == 8, VERR_EM_INTERPRETER);
2889 switch(param1.type)
2890 {
2891 case DISQPV_TYPE_ADDRESS:
2892 GCPtrPar1 = param1.val.val64;
2893 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2894
2895 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2896 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2897 break;
2898
2899 default:
2900 return VERR_EM_INTERPRETER;
2901 }
2902
2903 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax));
2904
2905#ifndef VBOX_COMPARE_IEM_AND_EM
2906 if (pDis->fPrefix & DISPREFIX_LOCK)
2907 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
2908 else
2909 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
2910#else /* VBOX_COMPARE_IEM_AND_EM */
2911 uint64_t u64 = *(uint64_t *)pvParam1;
2912 eflags = EMEmulateCmpXchg8b(&u64, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
2913 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, sizeof(u64)); AssertRCSuccess(rc2);
2914#endif /* VBOX_COMPARE_IEM_AND_EM */
2915
2916 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
2917
2918 /* Update guest's eflags and finish; note that *only* ZF is affected. */
2919 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
2920 | (eflags & (X86_EFL_ZF));
2921
2922 *pcbSize = 8;
2923 PGMPhysReleasePageMappingLock(pVM, &Lock);
2924 return VINF_SUCCESS;
2925}
2926
2927
2928#ifdef IN_RC /** @todo test+enable for HM as well. */
2929/**
2930 * [LOCK] XADD emulation.
2931 */
2932static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2933{
2934 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
2935 DISQPVPARAMVAL param1;
2936 void *pvParamReg2;
2937 size_t cbParamReg2;
2938 NOREF(pvFault);
2939
2940 /* Source to make DISQueryParamVal read the register value - ugly hack */
2941 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2942 if(RT_FAILURE(rc))
2943 return VERR_EM_INTERPRETER;
2944
2945 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->Param2, &pvParamReg2, &cbParamReg2);
2946 Assert(cbParamReg2 <= 4);
2947 if(RT_FAILURE(rc))
2948 return VERR_EM_INTERPRETER;
2949
2950#ifdef IN_RC
2951 if (TRPMHasTrap(pVCpu))
2952 {
2953 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2954 {
2955#endif
2956 RTGCPTR GCPtrPar1;
2957 void *pvParam1;
2958 uint32_t eflags;
2959 PGMPAGEMAPLOCK Lock;
2960
2961 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
2962 switch(param1.type)
2963 {
2964 case DISQPV_TYPE_ADDRESS:
2965 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, (RTRCUINTPTR)param1.val.val64);
2966#ifdef IN_RC
2967 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
2968#endif
2969
2970 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2971 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2972 break;
2973
2974 default:
2975 return VERR_EM_INTERPRETER;
2976 }
2977
2978 LogFlow(("XAdd %RGv=%p reg=%08llx\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
2979
2980#ifndef VBOX_COMPARE_IEM_AND_EM
2981 if (pDis->fPrefix & DISPREFIX_LOCK)
2982 eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
2983 else
2984 eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
2985#else /* VBOX_COMPARE_IEM_AND_EM */
2986 uint64_t u64;
2987 switch (cbParamReg2)
2988 {
2989 case 1: u64 = *(uint8_t *)pvParam1; break;
2990 case 2: u64 = *(uint16_t *)pvParam1; break;
2991 case 4: u64 = *(uint32_t *)pvParam1; break;
2992 default:
2993 case 8: u64 = *(uint64_t *)pvParam1; break;
2994 }
2995 eflags = EMEmulateXAdd(&u64, pvParamReg2, cbParamReg2);
2996 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
2997#endif /* VBOX_COMPARE_IEM_AND_EM */
2998
2999 LogFlow(("XAdd %RGv=%p reg=%08llx ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
3000
3001 /* Update guest's eflags and finish. */
3002 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
3003 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
3004
3005 *pcbSize = cbParamReg2;
3006 PGMPhysReleasePageMappingLock(pVM, &Lock);
3007 return VINF_SUCCESS;
3008#ifdef IN_RC
3009 }
3010 }
3011
3012 return VERR_EM_INTERPRETER;
3013#endif
3014}
3015#endif /* IN_RC */
3016
3017
3018/**
3019 * IRET Emulation.
3020 */
3021static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3022{
3023 /* only allow direct calls to EMInterpretIret for now */
3024 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3025 return VERR_EM_INTERPRETER;
3026}
3027
3028/**
3029 * WBINVD Emulation.
3030 */
3031static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3032{
3033 /* Nothing to do. */
3034 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3035 return VINF_SUCCESS;
3036}
3037
3038
3039/**
3040 * INVLPG Emulation.
3041 */
3042static VBOXSTRICTRC emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3043{
3044 DISQPVPARAMVAL param1;
3045 RTGCPTR addr;
3046 NOREF(pvFault); NOREF(pVM); NOREF(pcbSize);
3047
3048 VBOXSTRICTRC rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3049 if(RT_FAILURE(rc))
3050 return VERR_EM_INTERPRETER;
3051
3052 switch(param1.type)
3053 {
3054 case DISQPV_TYPE_IMMEDIATE:
3055 case DISQPV_TYPE_ADDRESS:
3056 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
3057 return VERR_EM_INTERPRETER;
3058 addr = (RTGCPTR)param1.val.val64;
3059 break;
3060
3061 default:
3062 return VERR_EM_INTERPRETER;
3063 }
3064
3065 /** @todo is addr always a flat linear address or ds based
3066 * (in absence of segment override prefixes)????
3067 */
3068#ifdef IN_RC
3069 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
3070#endif
3071 rc = PGMInvalidatePage(pVCpu, addr);
3072 if ( rc == VINF_SUCCESS
3073 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
3074 return VINF_SUCCESS;
3075 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
3076 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), addr),
3077 VERR_EM_INTERPRETER);
3078 return rc;
3079}
3080
3081/** @todo change all these EMInterpretXXX methods to VBOXSTRICTRC. */
3082
3083/**
3084 * CPUID Emulation.
3085 */
3086static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3087{
3088 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3089 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
3090 return rc;
3091}
3092
3093
3094/**
3095 * CLTS Emulation.
3096 */
3097static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3098{
3099 NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3100 return EMInterpretCLTS(pVM, pVCpu);
3101}
3102
3103
3104/**
3105 * LMSW Emulation.
3106 */
3107static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3108{
3109 DISQPVPARAMVAL param1;
3110 uint32_t val;
3111 NOREF(pvFault); NOREF(pcbSize);
3112
3113 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3114 if(RT_FAILURE(rc))
3115 return VERR_EM_INTERPRETER;
3116
3117 switch(param1.type)
3118 {
3119 case DISQPV_TYPE_IMMEDIATE:
3120 case DISQPV_TYPE_ADDRESS:
3121 if(!(param1.flags & DISQPV_FLAG_16))
3122 return VERR_EM_INTERPRETER;
3123 val = param1.val.val32;
3124 break;
3125
3126 default:
3127 return VERR_EM_INTERPRETER;
3128 }
3129
3130 LogFlow(("emInterpretLmsw %x\n", val));
3131 return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
3132}
3133
3134#ifdef EM_EMULATE_SMSW
3135/**
3136 * SMSW Emulation.
3137 */
3138static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3139{
3140 DISQPVPARAMVAL param1;
3141 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
3142
3143 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3144 if(RT_FAILURE(rc))
3145 return VERR_EM_INTERPRETER;
3146
3147 switch(param1.type)
3148 {
3149 case DISQPV_TYPE_IMMEDIATE:
3150 if(param1.size != sizeof(uint16_t))
3151 return VERR_EM_INTERPRETER;
3152 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->Param1.Base.idxGenReg, cr0));
3153 rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, cr0);
3154 break;
3155
3156 case DISQPV_TYPE_ADDRESS:
3157 {
3158 RTGCPTR pParam1;
3159
3160 /* Actually forced to 16 bits regardless of the operand size. */
3161 if(param1.size != sizeof(uint16_t))
3162 return VERR_EM_INTERPRETER;
3163
3164 pParam1 = (RTGCPTR)param1.val.val64;
3165 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
3166 LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
3167
3168 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
3169 if (RT_FAILURE(rc))
3170 {
3171 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
3172 return VERR_EM_INTERPRETER;
3173 }
3174 break;
3175 }
3176
3177 default:
3178 return VERR_EM_INTERPRETER;
3179 }
3180
3181 LogFlow(("emInterpretSmsw %x\n", cr0));
3182 return rc;
3183}
3184#endif
3185
3186/**
3187 * MOV CRx
3188 */
3189static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3190{
3191 NOREF(pvFault); NOREF(pcbSize);
3192 if ((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_CR)
3193 return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxCtrlReg);
3194
3195 if (pDis->Param1.fUse == DISUSE_REG_CR && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3196 return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxCtrlReg, pDis->Param2.Base.idxGenReg);
3197
3198 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
3199}
3200
3201
3202/**
3203 * MOV DRx
3204 */
3205static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3206{
3207 int rc = VERR_EM_INTERPRETER;
3208 NOREF(pvFault); NOREF(pcbSize);
3209
3210 if((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_DBG)
3211 {
3212 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxDbgReg);
3213 }
3214 else
3215 if(pDis->Param1.fUse == DISUSE_REG_DBG && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3216 {
3217 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxDbgReg, pDis->Param2.Base.idxGenReg);
3218 }
3219 else
3220 AssertMsgFailed(("Unexpected debug register move\n"));
3221
3222 return rc;
3223}
3224
3225
3226/**
3227 * LLDT Emulation.
3228 */
3229static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3230{
3231 DISQPVPARAMVAL param1;
3232 RTSEL sel;
3233 NOREF(pVM); NOREF(pvFault); NOREF(pcbSize);
3234
3235 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3236 if(RT_FAILURE(rc))
3237 return VERR_EM_INTERPRETER;
3238
3239 switch(param1.type)
3240 {
3241 case DISQPV_TYPE_ADDRESS:
3242 return VERR_EM_INTERPRETER; //feeling lazy right now
3243
3244 case DISQPV_TYPE_IMMEDIATE:
3245 if(!(param1.flags & DISQPV_FLAG_16))
3246 return VERR_EM_INTERPRETER;
3247 sel = (RTSEL)param1.val.val16;
3248 break;
3249
3250 default:
3251 return VERR_EM_INTERPRETER;
3252 }
3253
3254#ifdef IN_RING0
3255 /* Only for the VT-x real-mode emulation case. */
3256 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3257 CPUMSetGuestLDTR(pVCpu, sel);
3258 return VINF_SUCCESS;
3259#else
3260 if (sel == 0)
3261 {
3262 if (CPUMGetHyperLDTR(pVCpu) == 0)
3263 {
3264 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
3265 return VINF_SUCCESS;
3266 }
3267 }
3268 //still feeling lazy
3269 return VERR_EM_INTERPRETER;
3270#endif
3271}
3272
3273#ifdef IN_RING0
3274/**
3275 * LIDT/LGDT Emulation.
3276 */
3277static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3278{
3279 DISQPVPARAMVAL param1;
3280 RTGCPTR pParam1;
3281 X86XDTR32 dtr32;
3282 NOREF(pvFault); NOREF(pcbSize);
3283
3284 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
3285
3286 /* Only for the VT-x real-mode emulation case. */
3287 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3288
3289 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3290 if(RT_FAILURE(rc))
3291 return VERR_EM_INTERPRETER;
3292
3293 switch(param1.type)
3294 {
3295 case DISQPV_TYPE_ADDRESS:
3296 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, param1.val.val16);
3297 break;
3298
3299 default:
3300 return VERR_EM_INTERPRETER;
3301 }
3302
3303 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
3304 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3305
3306 if (!(pDis->fPrefix & DISPREFIX_OPSIZE))
3307 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
3308
3309 if (pDis->pCurInstr->uOpcode == OP_LIDT)
3310 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3311 else
3312 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3313
3314 return VINF_SUCCESS;
3315}
3316#endif
3317
3318
3319#ifdef IN_RC
3320/**
3321 * STI Emulation.
3322 *
3323 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
3324 */
3325static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3326{
3327 NOREF(pcbSize);
3328 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
3329
3330 if(!pGCState)
3331 {
3332 Assert(pGCState);
3333 return VERR_EM_INTERPRETER;
3334 }
3335 pGCState->uVMFlags |= X86_EFL_IF;
3336
3337 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
3338 Assert(pvFault == SELMToFlat(pVM, DISSELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
3339
3340 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->cbInstr;
3341 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3342
3343 return VINF_SUCCESS;
3344}
3345#endif /* IN_RC */
3346
3347
3348/**
3349 * HLT Emulation.
3350 */
3351static VBOXSTRICTRC
3352emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3353{
3354 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3355 return VINF_EM_HALT;
3356}
3357
3358
3359/**
3360 * RDTSC Emulation.
3361 */
3362static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3363{
3364 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3365 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
3366}
3367
3368/**
3369 * RDPMC Emulation
3370 */
3371static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3372{
3373 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3374 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
3375}
3376
3377
3378static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3379{
3380 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3381 return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
3382}
3383
3384
3385static VBOXSTRICTRC emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3386{
3387 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3388 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
3389}
3390
3391
3392#ifdef LOG_ENABLED
3393static const char *emMSRtoString(uint32_t uMsr)
3394{
3395 switch (uMsr)
3396 {
3397 case MSR_IA32_APICBASE:
3398 return "MSR_IA32_APICBASE";
3399 case MSR_IA32_CR_PAT:
3400 return "MSR_IA32_CR_PAT";
3401 case MSR_IA32_SYSENTER_CS:
3402 return "MSR_IA32_SYSENTER_CS";
3403 case MSR_IA32_SYSENTER_EIP:
3404 return "MSR_IA32_SYSENTER_EIP";
3405 case MSR_IA32_SYSENTER_ESP:
3406 return "MSR_IA32_SYSENTER_ESP";
3407 case MSR_K6_EFER:
3408 return "MSR_K6_EFER";
3409 case MSR_K8_SF_MASK:
3410 return "MSR_K8_SF_MASK";
3411 case MSR_K6_STAR:
3412 return "MSR_K6_STAR";
3413 case MSR_K8_LSTAR:
3414 return "MSR_K8_LSTAR";
3415 case MSR_K8_CSTAR:
3416 return "MSR_K8_CSTAR";
3417 case MSR_K8_FS_BASE:
3418 return "MSR_K8_FS_BASE";
3419 case MSR_K8_GS_BASE:
3420 return "MSR_K8_GS_BASE";
3421 case MSR_K8_KERNEL_GS_BASE:
3422 return "MSR_K8_KERNEL_GS_BASE";
3423 case MSR_K8_TSC_AUX:
3424 return "MSR_K8_TSC_AUX";
3425 case MSR_IA32_BIOS_SIGN_ID:
3426 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
3427 case MSR_IA32_PLATFORM_ID:
3428 return "Unsupported MSR_IA32_PLATFORM_ID";
3429 case MSR_IA32_BIOS_UPDT_TRIG:
3430 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
3431 case MSR_IA32_TSC:
3432 return "MSR_IA32_TSC";
3433 case MSR_IA32_MISC_ENABLE:
3434 return "MSR_IA32_MISC_ENABLE";
3435 case MSR_IA32_MTRR_CAP:
3436 return "MSR_IA32_MTRR_CAP";
3437 case MSR_IA32_MCP_CAP:
3438 return "Unsupported MSR_IA32_MCP_CAP";
3439 case MSR_IA32_MCP_STATUS:
3440 return "Unsupported MSR_IA32_MCP_STATUS";
3441 case MSR_IA32_MCP_CTRL:
3442 return "Unsupported MSR_IA32_MCP_CTRL";
3443 case MSR_IA32_MTRR_DEF_TYPE:
3444 return "MSR_IA32_MTRR_DEF_TYPE";
3445 case MSR_K7_EVNTSEL0:
3446 return "Unsupported MSR_K7_EVNTSEL0";
3447 case MSR_K7_EVNTSEL1:
3448 return "Unsupported MSR_K7_EVNTSEL1";
3449 case MSR_K7_EVNTSEL2:
3450 return "Unsupported MSR_K7_EVNTSEL2";
3451 case MSR_K7_EVNTSEL3:
3452 return "Unsupported MSR_K7_EVNTSEL3";
3453 case MSR_IA32_MC0_CTL:
3454 return "Unsupported MSR_IA32_MC0_CTL";
3455 case MSR_IA32_MC0_STATUS:
3456 return "Unsupported MSR_IA32_MC0_STATUS";
3457 case MSR_IA32_PERFEVTSEL0:
3458 return "Unsupported MSR_IA32_PERFEVTSEL0";
3459 case MSR_IA32_PERFEVTSEL1:
3460 return "Unsupported MSR_IA32_PERFEVTSEL1";
3461 case MSR_IA32_PERF_STATUS:
3462 return "MSR_IA32_PERF_STATUS";
3463 case MSR_IA32_PLATFORM_INFO:
3464 return "MSR_IA32_PLATFORM_INFO";
3465 case MSR_IA32_PERF_CTL:
3466 return "Unsupported MSR_IA32_PERF_CTL";
3467 case MSR_K7_PERFCTR0:
3468 return "Unsupported MSR_K7_PERFCTR0";
3469 case MSR_K7_PERFCTR1:
3470 return "Unsupported MSR_K7_PERFCTR1";
3471 case MSR_K7_PERFCTR2:
3472 return "Unsupported MSR_K7_PERFCTR2";
3473 case MSR_K7_PERFCTR3:
3474 return "Unsupported MSR_K7_PERFCTR3";
3475 case MSR_IA32_PMC0:
3476 return "Unsupported MSR_IA32_PMC0";
3477 case MSR_IA32_PMC1:
3478 return "Unsupported MSR_IA32_PMC1";
3479 case MSR_IA32_PMC2:
3480 return "Unsupported MSR_IA32_PMC2";
3481 case MSR_IA32_PMC3:
3482 return "Unsupported MSR_IA32_PMC3";
3483 }
3484 return "Unknown MSR";
3485}
3486#endif /* LOG_ENABLED */
3487
3488
3489/**
3490 * Interpret RDMSR
3491 *
3492 * @returns VBox status code.
3493 * @param pVM Pointer to the VM.
3494 * @param pVCpu Pointer to the VMCPU.
3495 * @param pRegFrame The register frame.
3496 */
3497VMM_INT_DECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3498{
3499 NOREF(pVM);
3500
3501 /* Get the current privilege level. */
3502 if (CPUMGetGuestCPL(pVCpu) != 0)
3503 {
3504 Log4(("EM: Refuse RDMSR: CPL != 0\n"));
3505 return VERR_EM_INTERPRETER; /* supervisor only */
3506 }
3507
3508 uint64_t uValue;
3509 int rc = CPUMQueryGuestMsr(pVCpu, pRegFrame->ecx, &uValue);
3510 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3511 {
3512 Assert(rc == VERR_CPUM_RAISE_GP_0);
3513 Log4(("EM: Refuse RDMSR: rc=%Rrc\n", rc));
3514 return VERR_EM_INTERPRETER;
3515 }
3516 pRegFrame->rax = (uint32_t) uValue;
3517 pRegFrame->rdx = (uint32_t)(uValue >> 32);
3518 LogFlow(("EMInterpretRdmsr %s (%x) -> %RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, uValue));
3519 return rc;
3520}
3521
3522
3523/**
3524 * RDMSR Emulation.
3525 */
3526static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3527{
3528 /* Note: The Intel manual claims there's a REX version of RDMSR that's slightly
3529 different, so we play safe by completely disassembling the instruction. */
3530 Assert(!(pDis->fPrefix & DISPREFIX_REX));
3531 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3532 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
3533}
3534
3535
3536/**
3537 * Interpret WRMSR
3538 *
3539 * @returns VBox status code.
3540 * @param pVM Pointer to the VM.
3541 * @param pVCpu Pointer to the VMCPU.
3542 * @param pRegFrame The register frame.
3543 */
3544VMM_INT_DECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3545{
3546 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3547
3548 /* Check the current privilege level, this instruction is supervisor only. */
3549 if (CPUMGetGuestCPL(pVCpu) != 0)
3550 {
3551 Log4(("EM: Refuse WRMSR: CPL != 0\n"));
3552 return VERR_EM_INTERPRETER; /** @todo raise \#GP(0) */
3553 }
3554
3555 int rc = CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx));
3556 if (rc != VINF_SUCCESS)
3557 {
3558 Assert(rc == VERR_CPUM_RAISE_GP_0);
3559 Log4(("EM: Refuse WRMSR: rc=%d\n", rc));
3560 return VERR_EM_INTERPRETER;
3561 }
3562 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx,
3563 RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx)));
3564 NOREF(pVM);
3565 return rc;
3566}
3567
3568
3569/**
3570 * WRMSR Emulation.
3571 */
3572static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3573{
3574 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3575 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3576}
3577
3578
3579/**
3580 * Internal worker.
3581 * @copydoc emInterpretInstructionCPUOuter
3582 */
3583DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3584 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3585{
3586 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3587 Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
3588 Assert(pcbSize);
3589 *pcbSize = 0;
3590
3591 if (enmCodeType == EMCODETYPE_SUPERVISOR)
3592 {
3593 /*
3594 * Only supervisor guest code!!
3595 * And no complicated prefixes.
3596 */
3597 /* Get the current privilege level. */
3598 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
3599 if ( cpl != 0
3600 && pDis->pCurInstr->uOpcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3601 {
3602 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3603 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3604 return VERR_EM_INTERPRETER;
3605 }
3606 }
3607 else
3608 Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
3609
3610#ifdef IN_RC
3611 if ( (pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP))
3612 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3613 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3614 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3615 && pDis->pCurInstr->uOpcode != OP_XADD
3616 && pDis->pCurInstr->uOpcode != OP_OR
3617 && pDis->pCurInstr->uOpcode != OP_AND
3618 && pDis->pCurInstr->uOpcode != OP_XOR
3619 && pDis->pCurInstr->uOpcode != OP_BTR
3620 )
3621 )
3622#else
3623 if ( (pDis->fPrefix & DISPREFIX_REPNE)
3624 || ( (pDis->fPrefix & DISPREFIX_REP)
3625 && pDis->pCurInstr->uOpcode != OP_STOSWD
3626 )
3627 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3628 && pDis->pCurInstr->uOpcode != OP_OR
3629 && pDis->pCurInstr->uOpcode != OP_AND
3630 && pDis->pCurInstr->uOpcode != OP_XOR
3631 && pDis->pCurInstr->uOpcode != OP_BTR
3632 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3633 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3634 )
3635 )
3636#endif
3637 {
3638 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3639 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3640 Log4(("EM: Refuse %u on REP/REPNE/LOCK prefix grounds\n", pDis->pCurInstr->uOpcode));
3641 return VERR_EM_INTERPRETER;
3642 }
3643
3644#if HC_ARCH_BITS == 32
3645 /*
3646 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3647 * Whitelisted instructions are safe.
3648 */
3649 if ( pDis->Param1.cb > 4
3650 && CPUMIsGuestIn64BitCode(pVCpu))
3651 {
3652 uint32_t uOpCode = pDis->pCurInstr->uOpcode;
3653 if ( uOpCode != OP_STOSWD
3654 && uOpCode != OP_MOV
3655 && uOpCode != OP_CMPXCHG8B
3656 && uOpCode != OP_XCHG
3657 && uOpCode != OP_BTS
3658 && uOpCode != OP_BTR
3659 && uOpCode != OP_BTC
3660# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
3661 && uOpCode != OP_CMPXCHG /* solaris */
3662 && uOpCode != OP_AND /* windows */
3663 && uOpCode != OP_OR /* windows */
3664 && uOpCode != OP_XOR /* because we can */
3665 && uOpCode != OP_ADD /* windows (dripple) */
3666 && uOpCode != OP_ADC /* because we can */
3667 && uOpCode != OP_SUB /* because we can */
3668 /** @todo OP_BTS or is that a different kind of failure? */
3669# endif
3670 )
3671 {
3672# ifdef VBOX_WITH_STATISTICS
3673 switch (pDis->pCurInstr->uOpcode)
3674 {
3675# define INTERPRET_FAILED_CASE(opcode, Instr) \
3676 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3677 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3678 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3679 INTERPRET_FAILED_CASE(OP_INC,Inc);
3680 INTERPRET_FAILED_CASE(OP_POP,Pop);
3681 INTERPRET_FAILED_CASE(OP_OR, Or);
3682 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3683 INTERPRET_FAILED_CASE(OP_AND,And);
3684 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3685 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3686 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3687 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3688 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3689 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3690 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3691 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3692 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3693 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3694 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3695 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3696 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3697 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3698 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3699 INTERPRET_FAILED_CASE(OP_ADD,Add);
3700 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3701 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3702 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3703 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3704 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3705 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3706 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3707 INTERPRET_FAILED_CASE(OP_STI, Sti);
3708 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3709 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3710 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3711 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3712 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3713 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3714# undef INTERPRET_FAILED_CASE
3715 default:
3716 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3717 break;
3718 }
3719# endif /* VBOX_WITH_STATISTICS */
3720 Log4(("EM: Refuse %u on grounds of accessing %u bytes\n", pDis->pCurInstr->uOpcode, pDis->Param1.cb));
3721 return VERR_EM_INTERPRETER;
3722 }
3723 }
3724#endif
3725
3726 VBOXSTRICTRC rc;
3727#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3728 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
3729#endif
3730 switch (pDis->pCurInstr->uOpcode)
3731 {
3732 /*
3733 * Macros for generating the right case statements.
3734 */
3735# ifndef VBOX_COMPARE_IEM_AND_EM
3736# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3737 case opcode:\
3738 if (pDis->fPrefix & DISPREFIX_LOCK) \
3739 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3740 else \
3741 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3742 if (RT_SUCCESS(rc)) \
3743 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3744 else \
3745 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3746 return rc
3747# else /* VBOX_COMPARE_IEM_AND_EM */
3748# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3749 case opcode:\
3750 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3751 if (RT_SUCCESS(rc)) \
3752 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3753 else \
3754 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3755 return rc
3756# endif /* VBOX_COMPARE_IEM_AND_EM */
3757
3758#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3759 case opcode:\
3760 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3761 if (RT_SUCCESS(rc)) \
3762 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3763 else \
3764 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3765 return rc
3766
3767#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3768 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3769#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3770 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3771
3772#define INTERPRET_CASE(opcode, Instr) \
3773 case opcode:\
3774 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3775 if (RT_SUCCESS(rc)) \
3776 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3777 else \
3778 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3779 return rc
3780
3781#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3782 case opcode:\
3783 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3784 if (RT_SUCCESS(rc)) \
3785 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3786 else \
3787 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3788 return rc
3789
3790#define INTERPRET_STAT_CASE(opcode, Instr) \
3791 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3792
3793 /*
3794 * The actual case statements.
3795 */
3796 INTERPRET_CASE(OP_XCHG,Xchg);
3797 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3798 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3799 INTERPRET_CASE(OP_POP,Pop);
3800 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3801 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3802 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3803 INTERPRET_CASE(OP_MOV,Mov);
3804#ifndef IN_RC
3805 INTERPRET_CASE(OP_STOSWD,StosWD);
3806#endif
3807 INTERPRET_CASE(OP_INVLPG,InvlPg);
3808 INTERPRET_CASE(OP_CPUID,CpuId);
3809 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3810 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3811#ifdef IN_RING0
3812 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3813 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3814#endif
3815 INTERPRET_CASE(OP_LLDT,LLdt);
3816 INTERPRET_CASE(OP_LMSW,Lmsw);
3817#ifdef EM_EMULATE_SMSW
3818 INTERPRET_CASE(OP_SMSW,Smsw);
3819#endif
3820 INTERPRET_CASE(OP_CLTS,Clts);
3821 INTERPRET_CASE(OP_MONITOR, Monitor);
3822 INTERPRET_CASE(OP_MWAIT, MWait);
3823 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3824 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3825 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3826 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3827 INTERPRET_CASE(OP_ADC,Adc);
3828 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3829 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3830 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3831 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3832 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3833 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3834#ifdef IN_RC
3835 INTERPRET_CASE(OP_STI,Sti);
3836 INTERPRET_CASE(OP_XADD, XAdd);
3837#endif
3838 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3839 INTERPRET_CASE(OP_HLT,Hlt);
3840 INTERPRET_CASE(OP_IRET,Iret);
3841 INTERPRET_CASE(OP_WBINVD,WbInvd);
3842#ifdef VBOX_WITH_STATISTICS
3843# ifndef IN_RC
3844 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3845# endif
3846 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3847#endif
3848
3849 default:
3850 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->uOpcode));
3851 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3852 return VERR_EM_INTERPRETER;
3853
3854#undef INTERPRET_CASE_EX_PARAM2
3855#undef INTERPRET_STAT_CASE
3856#undef INTERPRET_CASE_EX
3857#undef INTERPRET_CASE
3858 } /* switch (opcode) */
3859 /* not reached */
3860}
3861
3862/**
3863 * Interprets the current instruction using the supplied DISCPUSTATE structure.
3864 *
3865 * EIP is *NOT* updated!
3866 *
3867 * @returns VBox strict status code.
3868 * @retval VINF_* Scheduling instructions. When these are returned, it
3869 * starts to get a bit tricky to know whether code was
3870 * executed or not... We'll address this when it becomes a problem.
3871 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3872 * @retval VERR_* Fatal errors.
3873 *
3874 * @param pVCpu Pointer to the VMCPU.
3875 * @param pDis The disassembler cpu state for the instruction to be
3876 * interpreted.
3877 * @param pRegFrame The register frame. EIP is *NOT* changed!
3878 * @param pvFault The fault address (CR2).
3879 * @param pcbSize Size of the write (if applicable).
3880 * @param enmCodeType Code type (user/supervisor)
3881 *
3882 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
3883 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
3884 * to worry about e.g. invalid modrm combinations (!)
3885 *
3886 * @todo At this time we do NOT check if the instruction overwrites vital information.
3887 * Make sure this can't happen!! (will add some assertions/checks later)
3888 */
3889DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3890 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3891{
3892 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3893 VBOXSTRICTRC rc = emInterpretInstructionCPU(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, pRegFrame, pvFault, enmCodeType, pcbSize);
3894 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3895 if (RT_SUCCESS(rc))
3896 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
3897 else
3898 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
3899 return rc;
3900}
3901
3902
3903#endif /* !VBOX_WITH_IEM */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette