VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 22309

Last change on this file since 22309 was 22121, checked in by vboxsync, 15 years ago

VMM: gcc warnings and a todo.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 114.8 KB
Line 
1/* $Id: EMAll.cpp 22121 2009-08-10 09:53:53Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_EM
26#include <VBox/em.h>
27#include <VBox/mm.h>
28#include <VBox/selm.h>
29#include <VBox/patm.h>
30#include <VBox/csam.h>
31#include <VBox/pgm.h>
32#include <VBox/iom.h>
33#include <VBox/stam.h>
34#include "EMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/vmm.h>
37#include <VBox/hwaccm.h>
38#include <VBox/tm.h>
39#include <VBox/pdmapi.h>
40
41#include <VBox/param.h>
42#include <VBox/err.h>
43#include <VBox/dis.h>
44#include <VBox/disopcode.h>
45#include <VBox/log.h>
46#include <iprt/assert.h>
47#include <iprt/asm.h>
48#include <iprt/string.h>
49
50
51/*******************************************************************************
52* Defined Constants And Macros *
53*******************************************************************************/
54/** @def EM_ASSERT_FAULT_RETURN
55 * Safety check.
56 *
57 * Could in theory misfire on a cross page boundary access...
58 *
59 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
60 * turns up an alias page instead of the original faulting one and annoying the
61 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
62 */
63#if 0
64# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
65#else
66# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
67#endif
68
69/* Used to pass information during instruction disassembly. */
70typedef struct
71{
72 PVM pVM;
73 PVMCPU pVCpu;
74 RTGCPTR GCPtr;
75 uint8_t aOpcode[8];
76} EMDISSTATE, *PEMDISSTATE;
77
78/*******************************************************************************
79* Internal Functions *
80*******************************************************************************/
81DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize);
82
83
84
85/**
86 * Get the current execution manager status.
87 *
88 * @returns Current status.
89 * @param pVCpu The VMCPU to operate on.
90 */
91VMMDECL(EMSTATE) EMGetState(PVMCPU pVCpu)
92{
93 return pVCpu->em.s.enmState;
94}
95
96/**
97 * Sets the current execution manager status. (use only when you know what you're doing!)
98 *
99 * @param pVCpu The VMCPU to operate on.
100 */
101VMMDECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
102{
103 /* Only allowed combination: */
104 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
105 pVCpu->em.s.enmState = enmNewState;
106}
107
108
109#ifndef IN_RC
110
111/**
112 * Read callback for disassembly function; supports reading bytes that cross a page boundary
113 *
114 * @returns VBox status code.
115 * @param pSrc GC source pointer
116 * @param pDest HC destination pointer
117 * @param cb Number of bytes to read
118 * @param dwUserdata Callback specific user data (pDis)
119 *
120 */
121DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
122{
123 PDISCPUSTATE pDis = (PDISCPUSTATE)pvUserdata;
124 PEMDISSTATE pState = (PEMDISSTATE)pDis->apvUserData[0];
125 PVM pVM = pState->pVM;
126 PVMCPU pVCpu = pState->pVCpu;
127
128# ifdef IN_RING0
129 int rc;
130
131 if ( pState->GCPtr
132 && pSrc + cb <= pState->GCPtr + sizeof(pState->aOpcode))
133 {
134 unsigned offset = pSrc - pState->GCPtr;
135
136 Assert(pSrc >= pState->GCPtr);
137
138 for (unsigned i=0; i<cb; i++)
139 {
140 pDest[i] = pState->aOpcode[offset + i];
141 }
142 return VINF_SUCCESS;
143 }
144
145 rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
146 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x rc=%d\n", pSrc, cb, rc));
147# else /* IN_RING3 */
148 if (!PATMIsPatchGCAddr(pVM, pSrc))
149 {
150 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
151 AssertRC(rc);
152 }
153 else
154 {
155 for (unsigned i = 0; i < cb; i++)
156 {
157 uint8_t opcode;
158 if (RT_SUCCESS(PATMR3QueryOpcode(pVM, (RTGCPTR)pSrc + i, &opcode)))
159 *(pDest+i) = opcode;
160
161 }
162 }
163# endif /* IN_RING3 */
164 return VINF_SUCCESS;
165}
166
167DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
168{
169 EMDISSTATE State;
170
171 State.pVM = pVM;
172 State.pVCpu = pVCpu;
173 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, InstrGC, sizeof(State.aOpcode));
174 if (RT_SUCCESS(rc))
175 State.GCPtr = InstrGC;
176 else
177 State.GCPtr = NIL_RTGCPTR;
178
179 return DISCoreOneEx(InstrGC, pDis->mode, EMReadBytes, &State, pDis, pOpsize);
180}
181
182#else /* IN_RC */
183
184DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
185{
186 NOREF(pVCpu);
187 NOREF(pVM);
188 return DISCoreOne(pDis, InstrGC, pOpsize);
189}
190
191#endif /* IN_RC */
192
193
194/**
195 * Disassembles one instruction.
196 *
197 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
198 * details.
199 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
200 *
201 * @param pVM The VM handle.
202 * @param pVCpu The VMCPU handle.
203 * @param pCtxCore The context core (used for both the mode and instruction).
204 * @param pDis Where to return the parsed instruction info.
205 * @param pcbInstr Where to return the instruction size. (optional)
206 */
207VMMDECL(int) EMInterpretDisasOne(PVM pVM, PVMCPU pVCpu, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
208{
209 RTGCPTR GCPtrInstr;
210 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
211 if (RT_FAILURE(rc))
212 {
213 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
214 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
215 return rc;
216 }
217 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
218}
219
220
221/**
222 * Disassembles one instruction.
223 *
224 * This is used by internally by the interpreter and by trap/access handlers.
225 *
226 * @returns VBox status code.
227 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
228 *
229 * @param pVM The VM handle.
230 * @param pVCpu The VMCPU handle.
231 * @param GCPtrInstr The flat address of the instruction.
232 * @param pCtxCore The context core (used to determine the cpu mode).
233 * @param pDis Where to return the parsed instruction info.
234 * @param pcbInstr Where to return the instruction size. (optional)
235 */
236VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
237{
238 int rc;
239
240#ifndef IN_RC
241 EMDISSTATE State;
242
243 State.pVM = pVM;
244 State.pVCpu = pVCpu;
245
246 rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, GCPtrInstr, sizeof(State.aOpcode));
247 if (RT_SUCCESS(rc))
248 State.GCPtr = GCPtrInstr;
249 else
250 State.GCPtr = NIL_RTGCPTR;
251#endif
252
253 rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
254#ifdef IN_RC
255 NULL, NULL,
256#else
257 EMReadBytes, &State,
258#endif
259 pDis, pcbInstr);
260 if (RT_SUCCESS(rc))
261 return VINF_SUCCESS;
262 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
263 return VERR_INTERNAL_ERROR;
264}
265
266
267/**
268 * Interprets the current instruction.
269 *
270 * @returns VBox status code.
271 * @retval VINF_* Scheduling instructions.
272 * @retval VERR_EM_INTERPRETER Something we can't cope with.
273 * @retval VERR_* Fatal errors.
274 *
275 * @param pVM The VM handle.
276 * @param pVCpu The VMCPU handle.
277 * @param pRegFrame The register frame.
278 * Updates the EIP if an instruction was executed successfully.
279 * @param pvFault The fault address (CR2).
280 * @param pcbSize Size of the write (if applicable).
281 *
282 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
283 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
284 * to worry about e.g. invalid modrm combinations (!)
285 */
286VMMDECL(int) EMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
287{
288 RTGCPTR pbCode;
289
290 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
291 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
292 if (RT_SUCCESS(rc))
293 {
294 uint32_t cbOp;
295 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
296 pDis->mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
297 rc = emDisCoreOne(pVM, pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
298 if (RT_SUCCESS(rc))
299 {
300 Assert(cbOp == pDis->opsize);
301 rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize);
302 if (RT_SUCCESS(rc))
303 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
304
305 return rc;
306 }
307 }
308 return VERR_EM_INTERPRETER;
309}
310
311
312/**
313 * Interprets the current instruction using the supplied DISCPUSTATE structure.
314 *
315 * EIP is *NOT* updated!
316 *
317 * @returns VBox status code.
318 * @retval VINF_* Scheduling instructions. When these are returned, it
319 * starts to get a bit tricky to know whether code was
320 * executed or not... We'll address this when it becomes a problem.
321 * @retval VERR_EM_INTERPRETER Something we can't cope with.
322 * @retval VERR_* Fatal errors.
323 *
324 * @param pVM The VM handle.
325 * @param pVCpu The VMCPU handle.
326 * @param pDis The disassembler cpu state for the instruction to be
327 * interpreted.
328 * @param pRegFrame The register frame. EIP is *NOT* changed!
329 * @param pvFault The fault address (CR2).
330 * @param pcbSize Size of the write (if applicable).
331 *
332 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
333 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
334 * to worry about e.g. invalid modrm combinations (!)
335 *
336 * @todo At this time we do NOT check if the instruction overwrites vital information.
337 * Make sure this can't happen!! (will add some assertions/checks later)
338 */
339VMMDECL(int) EMInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
340{
341 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
342 int rc = emInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize);
343 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
344 if (RT_SUCCESS(rc))
345 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
346 else
347 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
348 return rc;
349}
350
351
352/**
353 * Interpret a port I/O instruction.
354 *
355 * @returns VBox status code suitable for scheduling.
356 * @param pVM The VM handle.
357 * @param pVCpu The VMCPU handle.
358 * @param pCtxCore The context core. This will be updated on successful return.
359 * @param pDis The instruction to interpret.
360 * @param cbOp The size of the instruction.
361 * @remark This may raise exceptions.
362 */
363VMMDECL(int) EMInterpretPortIO(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, uint32_t cbOp)
364{
365 /*
366 * Hand it on to IOM.
367 */
368#ifdef IN_RC
369 int rc = IOMGCIOPortHandler(pVM, pCtxCore, pDis);
370 if (IOM_SUCCESS(rc))
371 pCtxCore->rip += cbOp;
372 return rc;
373#else
374 AssertReleaseMsgFailed(("not implemented\n"));
375 return VERR_NOT_IMPLEMENTED;
376#endif
377}
378
379
380DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
381{
382#ifdef IN_RC
383 int rc = MMGCRamRead(pVM, pvDst, (void *)GCPtrSrc, cb);
384 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
385 return rc;
386 /*
387 * The page pool cache may end up here in some cases because it
388 * flushed one of the shadow mappings used by the trapping
389 * instruction and it either flushed the TLB or the CPU reused it.
390 */
391#endif
392 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
393}
394
395
396DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
397{
398#ifdef IN_RC
399 int rc = MMGCRamWrite(pVM, (void *)(uintptr_t)GCPtrDst, (void *)pvSrc, cb);
400 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
401 return rc;
402 /*
403 * The page pool cache may end up here in some cases because it
404 * flushed one of the shadow mappings used by the trapping
405 * instruction and it either flushed the TLB or the CPU reused it.
406 * We want to play safe here, verifying that we've got write
407 * access doesn't cost us much (see PGMPhysGCPtr2GCPhys()).
408 */
409#endif
410 return PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
411}
412
413
414/** Convert sel:addr to a flat GC address. */
415DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, POP_PARAMETER pParam, RTGCPTR pvAddr)
416{
417 DIS_SELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
418 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
419}
420
421
422#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
423/**
424 * Get the mnemonic for the disassembled instruction.
425 *
426 * GC/R0 doesn't include the strings in the DIS tables because
427 * of limited space.
428 */
429static const char *emGetMnemonic(PDISCPUSTATE pDis)
430{
431 switch (pDis->pCurInstr->opcode)
432 {
433 case OP_XCHG: return "Xchg";
434 case OP_DEC: return "Dec";
435 case OP_INC: return "Inc";
436 case OP_POP: return "Pop";
437 case OP_OR: return "Or";
438 case OP_AND: return "And";
439 case OP_MOV: return "Mov";
440 case OP_INVLPG: return "InvlPg";
441 case OP_CPUID: return "CpuId";
442 case OP_MOV_CR: return "MovCRx";
443 case OP_MOV_DR: return "MovDRx";
444 case OP_LLDT: return "LLdt";
445 case OP_LGDT: return "LGdt";
446 case OP_LIDT: return "LGdt";
447 case OP_CLTS: return "Clts";
448 case OP_MONITOR: return "Monitor";
449 case OP_MWAIT: return "MWait";
450 case OP_RDMSR: return "Rdmsr";
451 case OP_WRMSR: return "Wrmsr";
452 case OP_ADD: return "Add";
453 case OP_ADC: return "Adc";
454 case OP_SUB: return "Sub";
455 case OP_SBB: return "Sbb";
456 case OP_RDTSC: return "Rdtsc";
457 case OP_STI: return "Sti";
458 case OP_CLI: return "Cli";
459 case OP_XADD: return "XAdd";
460 case OP_HLT: return "Hlt";
461 case OP_IRET: return "Iret";
462 case OP_MOVNTPS: return "MovNTPS";
463 case OP_STOSWD: return "StosWD";
464 case OP_WBINVD: return "WbInvd";
465 case OP_XOR: return "Xor";
466 case OP_BTR: return "Btr";
467 case OP_BTS: return "Bts";
468 case OP_BTC: return "Btc";
469 case OP_LMSW: return "Lmsw";
470 case OP_SMSW: return "Smsw";
471 case OP_CMPXCHG: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
472 case OP_CMPXCHG8B: return pDis->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
473
474 default:
475 Log(("Unknown opcode %d\n", pDis->pCurInstr->opcode));
476 return "???";
477 }
478}
479#endif /* VBOX_STRICT || LOG_ENABLED */
480
481
482/**
483 * XCHG instruction emulation.
484 */
485static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
486{
487 OP_PARAMVAL param1, param2;
488
489 /* Source to make DISQueryParamVal read the register value - ugly hack */
490 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
491 if(RT_FAILURE(rc))
492 return VERR_EM_INTERPRETER;
493
494 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
495 if(RT_FAILURE(rc))
496 return VERR_EM_INTERPRETER;
497
498#ifdef IN_RC
499 if (TRPMHasTrap(pVCpu))
500 {
501 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
502 {
503#endif
504 RTGCPTR pParam1 = 0, pParam2 = 0;
505 uint64_t valpar1, valpar2;
506
507 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
508 switch(param1.type)
509 {
510 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
511 valpar1 = param1.val.val64;
512 break;
513
514 case PARMTYPE_ADDRESS:
515 pParam1 = (RTGCPTR)param1.val.val64;
516 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
517 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
518 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
519 if (RT_FAILURE(rc))
520 {
521 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
522 return VERR_EM_INTERPRETER;
523 }
524 break;
525
526 default:
527 AssertFailed();
528 return VERR_EM_INTERPRETER;
529 }
530
531 switch(param2.type)
532 {
533 case PARMTYPE_ADDRESS:
534 pParam2 = (RTGCPTR)param2.val.val64;
535 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pParam2);
536 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
537 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
538 if (RT_FAILURE(rc))
539 {
540 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
541 }
542 break;
543
544 case PARMTYPE_IMMEDIATE:
545 valpar2 = param2.val.val64;
546 break;
547
548 default:
549 AssertFailed();
550 return VERR_EM_INTERPRETER;
551 }
552
553 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
554 if (pParam1 == 0)
555 {
556 Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
557 switch(param1.size)
558 {
559 case 1: //special case for AH etc
560 rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t )valpar2); break;
561 case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)valpar2); break;
562 case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)valpar2); break;
563 case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, valpar2); break;
564 default: AssertFailedReturn(VERR_EM_INTERPRETER);
565 }
566 if (RT_FAILURE(rc))
567 return VERR_EM_INTERPRETER;
568 }
569 else
570 {
571 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
572 if (RT_FAILURE(rc))
573 {
574 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
575 return VERR_EM_INTERPRETER;
576 }
577 }
578
579 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
580 if (pParam2 == 0)
581 {
582 Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
583 switch(param2.size)
584 {
585 case 1: //special case for AH etc
586 rc = DISWriteReg8(pRegFrame, pDis->param2.base.reg_gen, (uint8_t )valpar1); break;
587 case 2: rc = DISWriteReg16(pRegFrame, pDis->param2.base.reg_gen, (uint16_t)valpar1); break;
588 case 4: rc = DISWriteReg32(pRegFrame, pDis->param2.base.reg_gen, (uint32_t)valpar1); break;
589 case 8: rc = DISWriteReg64(pRegFrame, pDis->param2.base.reg_gen, valpar1); break;
590 default: AssertFailedReturn(VERR_EM_INTERPRETER);
591 }
592 if (RT_FAILURE(rc))
593 return VERR_EM_INTERPRETER;
594 }
595 else
596 {
597 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
598 if (RT_FAILURE(rc))
599 {
600 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
601 return VERR_EM_INTERPRETER;
602 }
603 }
604
605 *pcbSize = param2.size;
606 return VINF_SUCCESS;
607#ifdef IN_RC
608 }
609 }
610#endif
611 return VERR_EM_INTERPRETER;
612}
613
614
615/**
616 * INC and DEC emulation.
617 */
618static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
619 PFNEMULATEPARAM2 pfnEmulate)
620{
621 OP_PARAMVAL param1;
622
623 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
624 if(RT_FAILURE(rc))
625 return VERR_EM_INTERPRETER;
626
627#ifdef IN_RC
628 if (TRPMHasTrap(pVCpu))
629 {
630 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
631 {
632#endif
633 RTGCPTR pParam1 = 0;
634 uint64_t valpar1;
635
636 if (param1.type == PARMTYPE_ADDRESS)
637 {
638 pParam1 = (RTGCPTR)param1.val.val64;
639 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
640#ifdef IN_RC
641 /* Safety check (in theory it could cross a page boundary and fault there though) */
642 AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
643#endif
644 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
645 if (RT_FAILURE(rc))
646 {
647 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
648 return VERR_EM_INTERPRETER;
649 }
650 }
651 else
652 {
653 AssertFailed();
654 return VERR_EM_INTERPRETER;
655 }
656
657 uint32_t eflags;
658
659 eflags = pfnEmulate(&valpar1, param1.size);
660
661 /* Write result back */
662 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
663 if (RT_FAILURE(rc))
664 {
665 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
666 return VERR_EM_INTERPRETER;
667 }
668
669 /* Update guest's eflags and finish. */
670 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
671 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
672
673 /* All done! */
674 *pcbSize = param1.size;
675 return VINF_SUCCESS;
676#ifdef IN_RC
677 }
678 }
679#endif
680 return VERR_EM_INTERPRETER;
681}
682
683
684/**
685 * POP Emulation.
686 */
687static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
688{
689 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
690 OP_PARAMVAL param1;
691 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
692 if(RT_FAILURE(rc))
693 return VERR_EM_INTERPRETER;
694
695#ifdef IN_RC
696 if (TRPMHasTrap(pVCpu))
697 {
698 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
699 {
700#endif
701 RTGCPTR pParam1 = 0;
702 uint32_t valpar1;
703 RTGCPTR pStackVal;
704
705 /* Read stack value first */
706 if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
707 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
708
709 /* Convert address; don't bother checking limits etc, as we only read here */
710 pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
711 if (pStackVal == 0)
712 return VERR_EM_INTERPRETER;
713
714 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
715 if (RT_FAILURE(rc))
716 {
717 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
718 return VERR_EM_INTERPRETER;
719 }
720
721 if (param1.type == PARMTYPE_ADDRESS)
722 {
723 pParam1 = (RTGCPTR)param1.val.val64;
724
725 /* pop [esp+xx] uses esp after the actual pop! */
726 AssertCompile(USE_REG_ESP == USE_REG_SP);
727 if ( (pDis->param1.flags & USE_BASE)
728 && (pDis->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
729 && pDis->param1.base.reg_gen == USE_REG_ESP
730 )
731 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
732
733 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
734 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
735 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
736 if (RT_FAILURE(rc))
737 {
738 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
739 return VERR_EM_INTERPRETER;
740 }
741
742 /* Update ESP as the last step */
743 pRegFrame->esp += param1.size;
744 }
745 else
746 {
747#ifndef DEBUG_bird // annoying assertion.
748 AssertFailed();
749#endif
750 return VERR_EM_INTERPRETER;
751 }
752
753 /* All done! */
754 *pcbSize = param1.size;
755 return VINF_SUCCESS;
756#ifdef IN_RC
757 }
758 }
759#endif
760 return VERR_EM_INTERPRETER;
761}
762
763
764/**
765 * XOR/OR/AND Emulation.
766 */
767static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
768 PFNEMULATEPARAM3 pfnEmulate)
769{
770 OP_PARAMVAL param1, param2;
771
772 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
773 if(RT_FAILURE(rc))
774 return VERR_EM_INTERPRETER;
775
776 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
777 if(RT_FAILURE(rc))
778 return VERR_EM_INTERPRETER;
779
780#ifdef IN_RC
781 if (TRPMHasTrap(pVCpu))
782 {
783 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
784 {
785#endif
786 RTGCPTR pParam1;
787 uint64_t valpar1, valpar2;
788
789 if (pDis->param1.size != pDis->param2.size)
790 {
791 if (pDis->param1.size < pDis->param2.size)
792 {
793 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
794 return VERR_EM_INTERPRETER;
795 }
796 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
797 pDis->param2.size = pDis->param1.size;
798 param2.size = param1.size;
799 }
800
801 /* The destination is always a virtual address */
802 if (param1.type == PARMTYPE_ADDRESS)
803 {
804 pParam1 = (RTGCPTR)param1.val.val64;
805 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
806 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
807 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
808 if (RT_FAILURE(rc))
809 {
810 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
811 return VERR_EM_INTERPRETER;
812 }
813 }
814 else
815 {
816 AssertFailed();
817 return VERR_EM_INTERPRETER;
818 }
819
820 /* Register or immediate data */
821 switch(param2.type)
822 {
823 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
824 valpar2 = param2.val.val64;
825 break;
826
827 default:
828 AssertFailed();
829 return VERR_EM_INTERPRETER;
830 }
831
832 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
833
834 /* Data read, emulate instruction. */
835 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
836
837 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
838
839 /* Update guest's eflags and finish. */
840 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
841 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
842
843 /* And write it back */
844 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
845 if (RT_SUCCESS(rc))
846 {
847 /* All done! */
848 *pcbSize = param2.size;
849 return VINF_SUCCESS;
850 }
851#ifdef IN_RC
852 }
853 }
854#endif
855 return VERR_EM_INTERPRETER;
856}
857
858
859/**
860 * LOCK XOR/OR/AND Emulation.
861 */
862static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
863 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
864{
865 void *pvParam1;
866 OP_PARAMVAL param1, param2;
867
868#if HC_ARCH_BITS == 32
869 Assert(pDis->param1.size <= 4);
870#endif
871
872 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
873 if(RT_FAILURE(rc))
874 return VERR_EM_INTERPRETER;
875
876 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
877 if(RT_FAILURE(rc))
878 return VERR_EM_INTERPRETER;
879
880 if (pDis->param1.size != pDis->param2.size)
881 {
882 AssertMsgReturn(pDis->param1.size >= pDis->param2.size, /* should never happen! */
883 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size),
884 VERR_EM_INTERPRETER);
885
886 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
887 pDis->param2.size = pDis->param1.size;
888 param2.size = param1.size;
889 }
890
891#ifdef IN_RC
892 /* Safety check (in theory it could cross a page boundary and fault there though) */
893 Assert( TRPMHasTrap(pVCpu)
894 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
895 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
896#endif
897
898 /* Register and immediate data == PARMTYPE_IMMEDIATE */
899 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
900 RTGCUINTREG ValPar2 = param2.val.val64;
901
902 /* The destination is always a virtual address */
903 AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
904
905 RTGCPTR GCPtrPar1 = param1.val.val64;
906 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
907#ifdef IN_RC
908 pvParam1 = (void *)GCPtrPar1;
909#else
910 PGMPAGEMAPLOCK Lock;
911 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
912 AssertRCReturn(rc, VERR_EM_INTERPRETER);
913#endif
914
915 /* Try emulate it with a one-shot #PF handler in place. (RC) */
916 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
917
918 RTGCUINTREG32 eflags = 0;
919#ifdef IN_RC
920 MMGCRamRegisterTrapHandler(pVM);
921#endif
922 rc = pfnEmulate(pvParam1, ValPar2, pDis->param2.size, &eflags);
923#ifdef IN_RC
924 MMGCRamDeregisterTrapHandler(pVM);
925#else
926 PGMPhysReleasePageMappingLock(pVM, &Lock);
927#endif
928 if (RT_FAILURE(rc))
929 {
930 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
931 return VERR_EM_INTERPRETER;
932 }
933
934 /* Update guest's eflags and finish. */
935 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
936 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
937
938 *pcbSize = param2.size;
939 return VINF_SUCCESS;
940}
941
942
943/**
944 * ADD, ADC & SUB Emulation.
945 */
946static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
947 PFNEMULATEPARAM3 pfnEmulate)
948{
949 OP_PARAMVAL param1, param2;
950 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
951 if(RT_FAILURE(rc))
952 return VERR_EM_INTERPRETER;
953
954 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
955 if(RT_FAILURE(rc))
956 return VERR_EM_INTERPRETER;
957
958#ifdef IN_RC
959 if (TRPMHasTrap(pVCpu))
960 {
961 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
962 {
963#endif
964 RTGCPTR pParam1;
965 uint64_t valpar1, valpar2;
966
967 if (pDis->param1.size != pDis->param2.size)
968 {
969 if (pDis->param1.size < pDis->param2.size)
970 {
971 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->param1.size, pDis->param2.size)); /* should never happen! */
972 return VERR_EM_INTERPRETER;
973 }
974 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
975 pDis->param2.size = pDis->param1.size;
976 param2.size = param1.size;
977 }
978
979 /* The destination is always a virtual address */
980 if (param1.type == PARMTYPE_ADDRESS)
981 {
982 pParam1 = (RTGCPTR)param1.val.val64;
983 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
984 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
985 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
986 if (RT_FAILURE(rc))
987 {
988 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
989 return VERR_EM_INTERPRETER;
990 }
991 }
992 else
993 {
994#ifndef DEBUG_bird
995 AssertFailed();
996#endif
997 return VERR_EM_INTERPRETER;
998 }
999
1000 /* Register or immediate data */
1001 switch(param2.type)
1002 {
1003 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1004 valpar2 = param2.val.val64;
1005 break;
1006
1007 default:
1008 AssertFailed();
1009 return VERR_EM_INTERPRETER;
1010 }
1011
1012 /* Data read, emulate instruction. */
1013 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
1014
1015 /* Update guest's eflags and finish. */
1016 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1017 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1018
1019 /* And write it back */
1020 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
1021 if (RT_SUCCESS(rc))
1022 {
1023 /* All done! */
1024 *pcbSize = param2.size;
1025 return VINF_SUCCESS;
1026 }
1027#ifdef IN_RC
1028 }
1029 }
1030#endif
1031 return VERR_EM_INTERPRETER;
1032}
1033
1034
1035/**
1036 * ADC Emulation.
1037 */
1038static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1039{
1040 if (pRegFrame->eflags.Bits.u1CF)
1041 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
1042 else
1043 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
1044}
1045
1046
1047/**
1048 * BTR/C/S Emulation.
1049 */
1050static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1051 PFNEMULATEPARAM2UINT32 pfnEmulate)
1052{
1053 OP_PARAMVAL param1, param2;
1054 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1055 if(RT_FAILURE(rc))
1056 return VERR_EM_INTERPRETER;
1057
1058 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1059 if(RT_FAILURE(rc))
1060 return VERR_EM_INTERPRETER;
1061
1062#ifdef IN_RC
1063 if (TRPMHasTrap(pVCpu))
1064 {
1065 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1066 {
1067#endif
1068 RTGCPTR pParam1;
1069 uint64_t valpar1 = 0, valpar2;
1070 uint32_t eflags;
1071
1072 /* The destination is always a virtual address */
1073 if (param1.type != PARMTYPE_ADDRESS)
1074 return VERR_EM_INTERPRETER;
1075
1076 pParam1 = (RTGCPTR)param1.val.val64;
1077 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
1078
1079 /* Register or immediate data */
1080 switch(param2.type)
1081 {
1082 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1083 valpar2 = param2.val.val64;
1084 break;
1085
1086 default:
1087 AssertFailed();
1088 return VERR_EM_INTERPRETER;
1089 }
1090
1091 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
1092 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1093 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1094 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
1095 if (RT_FAILURE(rc))
1096 {
1097 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1098 return VERR_EM_INTERPRETER;
1099 }
1100
1101 Log2(("emInterpretBtx: val=%x\n", valpar1));
1102 /* Data read, emulate bit test instruction. */
1103 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1104
1105 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1106
1107 /* Update guest's eflags and finish. */
1108 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1109 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1110
1111 /* And write it back */
1112 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
1113 if (RT_SUCCESS(rc))
1114 {
1115 /* All done! */
1116 *pcbSize = 1;
1117 return VINF_SUCCESS;
1118 }
1119#ifdef IN_RC
1120 }
1121 }
1122#endif
1123 return VERR_EM_INTERPRETER;
1124}
1125
1126
1127/**
1128 * LOCK BTR/C/S Emulation.
1129 */
1130static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1131 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1132{
1133 void *pvParam1;
1134
1135 OP_PARAMVAL param1, param2;
1136 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1137 if(RT_FAILURE(rc))
1138 return VERR_EM_INTERPRETER;
1139
1140 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1141 if(RT_FAILURE(rc))
1142 return VERR_EM_INTERPRETER;
1143
1144 /* The destination is always a virtual address */
1145 if (param1.type != PARMTYPE_ADDRESS)
1146 return VERR_EM_INTERPRETER;
1147
1148 /* Register and immediate data == PARMTYPE_IMMEDIATE */
1149 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1150 uint64_t ValPar2 = param2.val.val64;
1151
1152 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1153 RTGCPTR GCPtrPar1 = param1.val.val64;
1154 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1155 ValPar2 &= 7;
1156
1157 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1158#ifdef IN_RC
1159 Assert(TRPMHasTrap(pVCpu));
1160 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1161#endif
1162
1163#ifdef IN_RC
1164 pvParam1 = (void *)GCPtrPar1;
1165#else
1166 PGMPAGEMAPLOCK Lock;
1167 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1168 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1169#endif
1170
1171 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
1172
1173 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1174 RTGCUINTREG32 eflags = 0;
1175#ifdef IN_RC
1176 MMGCRamRegisterTrapHandler(pVM);
1177#endif
1178 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1179#ifdef IN_RC
1180 MMGCRamDeregisterTrapHandler(pVM);
1181#else
1182 PGMPhysReleasePageMappingLock(pVM, &Lock);
1183#endif
1184 if (RT_FAILURE(rc))
1185 {
1186 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1187 emGetMnemonic(pDis), GCPtrPar1, pDis->param2.size*8, ValPar2));
1188 return VERR_EM_INTERPRETER;
1189 }
1190
1191 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1192
1193 /* Update guest's eflags and finish. */
1194 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1195 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1196
1197 *pcbSize = 1;
1198 return VINF_SUCCESS;
1199}
1200
1201
1202/**
1203 * MOV emulation.
1204 */
1205static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1206{
1207 OP_PARAMVAL param1, param2;
1208 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_DEST);
1209 if(RT_FAILURE(rc))
1210 return VERR_EM_INTERPRETER;
1211
1212 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1213 if(RT_FAILURE(rc))
1214 return VERR_EM_INTERPRETER;
1215
1216#ifdef IN_RC
1217 if (TRPMHasTrap(pVCpu))
1218 {
1219 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1220 {
1221#else
1222 /** @todo Make this the default and don't rely on TRPM information. */
1223 if (param1.type == PARMTYPE_ADDRESS)
1224 {
1225#endif
1226 RTGCPTR pDest;
1227 uint64_t val64;
1228
1229 switch(param1.type)
1230 {
1231 case PARMTYPE_IMMEDIATE:
1232 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1233 return VERR_EM_INTERPRETER;
1234 /* fallthru */
1235
1236 case PARMTYPE_ADDRESS:
1237 pDest = (RTGCPTR)param1.val.val64;
1238 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pDest);
1239 break;
1240
1241 default:
1242 AssertFailed();
1243 return VERR_EM_INTERPRETER;
1244 }
1245
1246 switch(param2.type)
1247 {
1248 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
1249 val64 = param2.val.val64;
1250 break;
1251
1252 default:
1253 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1254 return VERR_EM_INTERPRETER;
1255 }
1256#ifdef LOG_ENABLED
1257 if (pDis->mode == CPUMODE_64BIT)
1258 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1259 else
1260 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1261#endif
1262
1263 Assert(param2.size <= 8 && param2.size > 0);
1264 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1265 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
1266 if (RT_FAILURE(rc))
1267 return VERR_EM_INTERPRETER;
1268
1269 *pcbSize = param2.size;
1270 }
1271 else
1272 { /* read fault */
1273 RTGCPTR pSrc;
1274 uint64_t val64;
1275
1276 /* Source */
1277 switch(param2.type)
1278 {
1279 case PARMTYPE_IMMEDIATE:
1280 if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
1281 return VERR_EM_INTERPRETER;
1282 /* fallthru */
1283
1284 case PARMTYPE_ADDRESS:
1285 pSrc = (RTGCPTR)param2.val.val64;
1286 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param2, pSrc);
1287 break;
1288
1289 default:
1290 return VERR_EM_INTERPRETER;
1291 }
1292
1293 Assert(param1.size <= 8 && param1.size > 0);
1294 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1295 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
1296 if (RT_FAILURE(rc))
1297 return VERR_EM_INTERPRETER;
1298
1299 /* Destination */
1300 switch(param1.type)
1301 {
1302 case PARMTYPE_REGISTER:
1303 switch(param1.size)
1304 {
1305 case 1: rc = DISWriteReg8(pRegFrame, pDis->param1.base.reg_gen, (uint8_t) val64); break;
1306 case 2: rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, (uint16_t)val64); break;
1307 case 4: rc = DISWriteReg32(pRegFrame, pDis->param1.base.reg_gen, (uint32_t)val64); break;
1308 case 8: rc = DISWriteReg64(pRegFrame, pDis->param1.base.reg_gen, val64); break;
1309 default:
1310 return VERR_EM_INTERPRETER;
1311 }
1312 if (RT_FAILURE(rc))
1313 return rc;
1314 break;
1315
1316 default:
1317 return VERR_EM_INTERPRETER;
1318 }
1319#ifdef LOG_ENABLED
1320 if (pDis->mode == CPUMODE_64BIT)
1321 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1322 else
1323 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1324#endif
1325 }
1326 return VINF_SUCCESS;
1327#ifdef IN_RC
1328 }
1329#endif
1330 return VERR_EM_INTERPRETER;
1331}
1332
1333
1334#ifndef IN_RC
1335/**
1336 * [REP] STOSWD emulation
1337 */
1338static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1339{
1340 int rc;
1341 RTGCPTR GCDest, GCOffset;
1342 uint32_t cbSize;
1343 uint64_t cTransfers;
1344 int offIncrement;
1345
1346 /* Don't support any but these three prefix bytes. */
1347 if ((pDis->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
1348 return VERR_EM_INTERPRETER;
1349
1350 switch (pDis->addrmode)
1351 {
1352 case CPUMODE_16BIT:
1353 GCOffset = pRegFrame->di;
1354 cTransfers = pRegFrame->cx;
1355 break;
1356 case CPUMODE_32BIT:
1357 GCOffset = pRegFrame->edi;
1358 cTransfers = pRegFrame->ecx;
1359 break;
1360 case CPUMODE_64BIT:
1361 GCOffset = pRegFrame->rdi;
1362 cTransfers = pRegFrame->rcx;
1363 break;
1364 default:
1365 AssertFailed();
1366 return VERR_EM_INTERPRETER;
1367 }
1368
1369 GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
1370 switch (pDis->opmode)
1371 {
1372 case CPUMODE_16BIT:
1373 cbSize = 2;
1374 break;
1375 case CPUMODE_32BIT:
1376 cbSize = 4;
1377 break;
1378 case CPUMODE_64BIT:
1379 cbSize = 8;
1380 break;
1381 default:
1382 AssertFailed();
1383 return VERR_EM_INTERPRETER;
1384 }
1385
1386 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1387
1388 if (!(pDis->prefix & PREFIX_REP))
1389 {
1390 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1391
1392 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1393 if (RT_FAILURE(rc))
1394 return VERR_EM_INTERPRETER;
1395 Assert(rc == VINF_SUCCESS);
1396
1397 /* Update (e/r)di. */
1398 switch (pDis->addrmode)
1399 {
1400 case CPUMODE_16BIT:
1401 pRegFrame->di += offIncrement;
1402 break;
1403 case CPUMODE_32BIT:
1404 pRegFrame->edi += offIncrement;
1405 break;
1406 case CPUMODE_64BIT:
1407 pRegFrame->rdi += offIncrement;
1408 break;
1409 default:
1410 AssertFailed();
1411 return VERR_EM_INTERPRETER;
1412 }
1413
1414 }
1415 else
1416 {
1417 if (!cTransfers)
1418 return VINF_SUCCESS;
1419
1420 /*
1421 * Do *not* try emulate cross page stuff here because we don't know what might
1422 * be waiting for us on the subsequent pages. The caller has only asked us to
1423 * ignore access handlers fro the current page.
1424 * This also fends off big stores which would quickly kill PGMR0DynMap.
1425 */
1426 if ( cbSize > PAGE_SIZE
1427 || cTransfers > PAGE_SIZE
1428 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
1429 {
1430 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
1431 GCDest, cbSize, offIncrement, cTransfers));
1432 return VERR_EM_INTERPRETER;
1433 }
1434
1435 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1436 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1437 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
1438 cTransfers * cbSize,
1439 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu, pRegFrame) == 3 ? X86_PTE_US : 0));
1440 if (rc != VINF_SUCCESS)
1441 {
1442 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1443 return VERR_EM_INTERPRETER;
1444 }
1445
1446 /* REP case */
1447 while (cTransfers)
1448 {
1449 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1450 if (RT_FAILURE(rc))
1451 {
1452 rc = VERR_EM_INTERPRETER;
1453 break;
1454 }
1455
1456 Assert(rc == VINF_SUCCESS);
1457 GCOffset += offIncrement;
1458 GCDest += offIncrement;
1459 cTransfers--;
1460 }
1461
1462 /* Update the registers. */
1463 switch (pDis->addrmode)
1464 {
1465 case CPUMODE_16BIT:
1466 pRegFrame->di = GCOffset;
1467 pRegFrame->cx = cTransfers;
1468 break;
1469 case CPUMODE_32BIT:
1470 pRegFrame->edi = GCOffset;
1471 pRegFrame->ecx = cTransfers;
1472 break;
1473 case CPUMODE_64BIT:
1474 pRegFrame->rdi = GCOffset;
1475 pRegFrame->rcx = cTransfers;
1476 break;
1477 default:
1478 AssertFailed();
1479 return VERR_EM_INTERPRETER;
1480 }
1481 }
1482
1483 *pcbSize = cbSize;
1484 return rc;
1485}
1486#endif /* !IN_RC */
1487
1488#ifndef IN_RC
1489
1490/**
1491 * [LOCK] CMPXCHG emulation.
1492 */
1493static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1494{
1495 OP_PARAMVAL param1, param2;
1496
1497#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1498 Assert(pDis->param1.size <= 4);
1499#endif
1500
1501 /* Source to make DISQueryParamVal read the register value - ugly hack */
1502 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1503 if(RT_FAILURE(rc))
1504 return VERR_EM_INTERPRETER;
1505
1506 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1507 if(RT_FAILURE(rc))
1508 return VERR_EM_INTERPRETER;
1509
1510 uint64_t valpar;
1511 switch(param2.type)
1512 {
1513 case PARMTYPE_IMMEDIATE: /* register actually */
1514 valpar = param2.val.val64;
1515 break;
1516
1517 default:
1518 return VERR_EM_INTERPRETER;
1519 }
1520
1521 PGMPAGEMAPLOCK Lock;
1522 RTGCPTR GCPtrPar1;
1523 void *pvParam1;
1524 uint64_t eflags;
1525
1526 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
1527 switch(param1.type)
1528 {
1529 case PARMTYPE_ADDRESS:
1530 GCPtrPar1 = param1.val.val64;
1531 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1532
1533 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1534 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1535 break;
1536
1537 default:
1538 return VERR_EM_INTERPRETER;
1539 }
1540
1541 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
1542
1543 if (pDis->prefix & PREFIX_LOCK)
1544 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
1545 else
1546 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->param2.size);
1547
1548 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1549
1550 /* Update guest's eflags and finish. */
1551 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1552 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1553
1554 *pcbSize = param2.size;
1555 PGMPhysReleasePageMappingLock(pVM, &Lock);
1556 return VINF_SUCCESS;
1557}
1558
1559
1560/**
1561 * [LOCK] CMPXCHG8B emulation.
1562 */
1563static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1564{
1565 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1566 OP_PARAMVAL param1;
1567
1568 /* Source to make DISQueryParamVal read the register value - ugly hack */
1569 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1570 if(RT_FAILURE(rc))
1571 return VERR_EM_INTERPRETER;
1572
1573 RTGCPTR GCPtrPar1;
1574 void *pvParam1;
1575 uint64_t eflags;
1576 PGMPAGEMAPLOCK Lock;
1577
1578 AssertReturn(pDis->param1.size == 8, VERR_EM_INTERPRETER);
1579 switch(param1.type)
1580 {
1581 case PARMTYPE_ADDRESS:
1582 GCPtrPar1 = param1.val.val64;
1583 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, GCPtrPar1);
1584
1585 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1586 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1587 break;
1588
1589 default:
1590 return VERR_EM_INTERPRETER;
1591 }
1592
1593 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax));
1594
1595 if (pDis->prefix & PREFIX_LOCK)
1596 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1597 else
1598 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1599
1600 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1601
1602 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1603 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1604 | (eflags & (X86_EFL_ZF));
1605
1606 *pcbSize = 8;
1607 PGMPhysReleasePageMappingLock(pVM, &Lock);
1608 return VINF_SUCCESS;
1609}
1610
1611#else /* IN_RC */
1612
1613/**
1614 * [LOCK] CMPXCHG emulation.
1615 */
1616static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1617{
1618 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1619 OP_PARAMVAL param1, param2;
1620
1621 /* Source to make DISQueryParamVal read the register value - ugly hack */
1622 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1623 if(RT_FAILURE(rc))
1624 return VERR_EM_INTERPRETER;
1625
1626 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param2, &param2, PARAM_SOURCE);
1627 if(RT_FAILURE(rc))
1628 return VERR_EM_INTERPRETER;
1629
1630 if (TRPMHasTrap(pVCpu))
1631 {
1632 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1633 {
1634 RTRCPTR pParam1;
1635 uint32_t valpar, eflags;
1636
1637 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
1638 switch(param1.type)
1639 {
1640 case PARMTYPE_ADDRESS:
1641 pParam1 = (RTRCPTR)param1.val.val64;
1642 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1643 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1644 break;
1645
1646 default:
1647 return VERR_EM_INTERPRETER;
1648 }
1649
1650 switch(param2.type)
1651 {
1652 case PARMTYPE_IMMEDIATE: /* register actually */
1653 valpar = param2.val.val32;
1654 break;
1655
1656 default:
1657 return VERR_EM_INTERPRETER;
1658 }
1659
1660 LogFlow(("%s %RRv eax=%08x %08x\n", emGetMnemonic(pDis), pParam1, pRegFrame->eax, valpar));
1661
1662 MMGCRamRegisterTrapHandler(pVM);
1663 if (pDis->prefix & PREFIX_LOCK)
1664 rc = EMGCEmulateLockCmpXchg(pParam1, &pRegFrame->eax, valpar, pDis->param2.size, &eflags);
1665 else
1666 rc = EMGCEmulateCmpXchg(pParam1, &pRegFrame->eax, valpar, pDis->param2.size, &eflags);
1667 MMGCRamDeregisterTrapHandler(pVM);
1668
1669 if (RT_FAILURE(rc))
1670 {
1671 Log(("%s %RGv eax=%08x %08x -> emulation failed due to page fault!\n", emGetMnemonic(pDis), pParam1, pRegFrame->eax, valpar));
1672 return VERR_EM_INTERPRETER;
1673 }
1674
1675 LogFlow(("%s %RRv eax=%08x %08x ZF=%d\n", emGetMnemonic(pDis), pParam1, pRegFrame->eax, valpar, !!(eflags & X86_EFL_ZF)));
1676
1677 /* Update guest's eflags and finish. */
1678 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1679 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1680
1681 *pcbSize = param2.size;
1682 return VINF_SUCCESS;
1683 }
1684 }
1685 return VERR_EM_INTERPRETER;
1686}
1687
1688
1689/**
1690 * [LOCK] CMPXCHG8B emulation.
1691 */
1692static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1693{
1694 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1695 OP_PARAMVAL param1;
1696
1697 /* Source to make DISQueryParamVal read the register value - ugly hack */
1698 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1699 if(RT_FAILURE(rc))
1700 return VERR_EM_INTERPRETER;
1701
1702 if (TRPMHasTrap(pVCpu))
1703 {
1704 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1705 {
1706 RTRCPTR pParam1;
1707 uint32_t eflags;
1708
1709 AssertReturn(pDis->param1.size == 8, VERR_EM_INTERPRETER);
1710 switch(param1.type)
1711 {
1712 case PARMTYPE_ADDRESS:
1713 pParam1 = (RTRCPTR)param1.val.val64;
1714 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1715 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1716 break;
1717
1718 default:
1719 return VERR_EM_INTERPRETER;
1720 }
1721
1722 LogFlow(("%s %RRv=%08x eax=%08x\n", emGetMnemonic(pDis), pParam1, pRegFrame->eax));
1723
1724 MMGCRamRegisterTrapHandler(pVM);
1725 if (pDis->prefix & PREFIX_LOCK)
1726 rc = EMGCEmulateLockCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1727 else
1728 rc = EMGCEmulateCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1729 MMGCRamDeregisterTrapHandler(pVM);
1730
1731 if (RT_FAILURE(rc))
1732 {
1733 Log(("%s %RGv=%08x eax=%08x -> emulation failed due to page fault!\n", emGetMnemonic(pDis), pParam1, pRegFrame->eax));
1734 return VERR_EM_INTERPRETER;
1735 }
1736
1737 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1738
1739 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1740 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1741 | (eflags & (X86_EFL_ZF));
1742
1743 *pcbSize = 8;
1744 return VINF_SUCCESS;
1745 }
1746 }
1747 return VERR_EM_INTERPRETER;
1748}
1749
1750#endif /* IN_RC */
1751
1752#ifdef IN_RC
1753/**
1754 * [LOCK] XADD emulation.
1755 */
1756static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1757{
1758 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
1759 OP_PARAMVAL param1;
1760 uint32_t *pParamReg2;
1761 size_t cbSizeParamReg2;
1762
1763 /* Source to make DISQueryParamVal read the register value - ugly hack */
1764 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1765 if(RT_FAILURE(rc))
1766 return VERR_EM_INTERPRETER;
1767
1768 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->param2, (void **)&pParamReg2, &cbSizeParamReg2);
1769 Assert(cbSizeParamReg2 <= 4);
1770 if(RT_FAILURE(rc))
1771 return VERR_EM_INTERPRETER;
1772
1773 if (TRPMHasTrap(pVCpu))
1774 {
1775 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1776 {
1777 RTRCPTR pParam1;
1778 uint32_t eflags;
1779
1780 AssertReturn(pDis->param1.size == pDis->param2.size, VERR_EM_INTERPRETER);
1781 switch(param1.type)
1782 {
1783 case PARMTYPE_ADDRESS:
1784 pParam1 = (RTRCPTR)param1.val.val64;
1785 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1786 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1787 break;
1788
1789 default:
1790 return VERR_EM_INTERPRETER;
1791 }
1792
1793 LogFlow(("XAdd %RRv=%08x reg=%08x\n", pParam1, *pParamReg2));
1794
1795 MMGCRamRegisterTrapHandler(pVM);
1796 if (pDis->prefix & PREFIX_LOCK)
1797 rc = EMGCEmulateLockXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1798 else
1799 rc = EMGCEmulateXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1800 MMGCRamDeregisterTrapHandler(pVM);
1801
1802 if (RT_FAILURE(rc))
1803 {
1804 Log(("XAdd %RGv reg=%08x -> emulation failed due to page fault!\n", pParam1, *pParamReg2));
1805 return VERR_EM_INTERPRETER;
1806 }
1807
1808 LogFlow(("XAdd %RGv reg=%08x ZF=%d\n", pParam1, *pParamReg2, !!(eflags & X86_EFL_ZF)));
1809
1810 /* Update guest's eflags and finish. */
1811 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1812 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1813
1814 *pcbSize = cbSizeParamReg2;
1815 return VINF_SUCCESS;
1816 }
1817 }
1818 return VERR_EM_INTERPRETER;
1819}
1820#endif /* IN_RC */
1821
1822
1823#ifdef IN_RC
1824/**
1825 * Interpret IRET (currently only to V86 code)
1826 *
1827 * @returns VBox status code.
1828 * @param pVM The VM handle.
1829 * @param pVCpu The VMCPU handle.
1830 * @param pRegFrame The register frame.
1831 *
1832 */
1833VMMDECL(int) EMInterpretIret(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1834{
1835 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1836 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1837 int rc;
1838
1839 Assert(!CPUMIsGuestIn64BitCode(pVCpu, pRegFrame));
1840
1841 rc = emRamRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1842 rc |= emRamRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1843 rc |= emRamRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1844 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1845 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1846
1847 rc |= emRamRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1848 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1849 rc |= emRamRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1850 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1851 rc |= emRamRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1852 rc |= emRamRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1853 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1854
1855 pRegFrame->eip = eip & 0xffff;
1856 pRegFrame->cs = cs;
1857
1858 /* Mask away all reserved bits */
1859 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1860 eflags &= uMask;
1861
1862#ifndef IN_RING0
1863 CPUMRawSetEFlags(pVCpu, pRegFrame, eflags);
1864#endif
1865 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1866
1867 pRegFrame->esp = esp;
1868 pRegFrame->ss = ss;
1869 pRegFrame->ds = ds;
1870 pRegFrame->es = es;
1871 pRegFrame->fs = fs;
1872 pRegFrame->gs = gs;
1873
1874 return VINF_SUCCESS;
1875}
1876#endif /* IN_RC */
1877
1878
1879/**
1880 * IRET Emulation.
1881 */
1882static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1883{
1884 /* only allow direct calls to EMInterpretIret for now */
1885 return VERR_EM_INTERPRETER;
1886}
1887
1888/**
1889 * WBINVD Emulation.
1890 */
1891static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1892{
1893 /* Nothing to do. */
1894 return VINF_SUCCESS;
1895}
1896
1897
1898/**
1899 * Interpret INVLPG
1900 *
1901 * @returns VBox status code.
1902 * @param pVM The VM handle.
1903 * @param pVCpu The VMCPU handle.
1904 * @param pRegFrame The register frame.
1905 * @param pAddrGC Operand address
1906 *
1907 */
1908VMMDECL(int) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1909{
1910 int rc;
1911
1912 /** @todo is addr always a flat linear address or ds based
1913 * (in absence of segment override prefixes)????
1914 */
1915#ifdef IN_RC
1916 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1917#endif
1918 rc = PGMInvalidatePage(pVCpu, pAddrGC);
1919 if ( rc == VINF_SUCCESS
1920 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1921 return VINF_SUCCESS;
1922 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1923 ("%Rrc addr=%RGv\n", rc, pAddrGC),
1924 VERR_EM_INTERPRETER);
1925 return rc;
1926}
1927
1928
1929/**
1930 * INVLPG Emulation.
1931 */
1932static int emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1933{
1934 OP_PARAMVAL param1;
1935 RTGCPTR addr;
1936
1937 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
1938 if(RT_FAILURE(rc))
1939 return VERR_EM_INTERPRETER;
1940
1941 switch(param1.type)
1942 {
1943 case PARMTYPE_IMMEDIATE:
1944 case PARMTYPE_ADDRESS:
1945 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1946 return VERR_EM_INTERPRETER;
1947 addr = (RTGCPTR)param1.val.val64;
1948 break;
1949
1950 default:
1951 return VERR_EM_INTERPRETER;
1952 }
1953
1954 /** @todo is addr always a flat linear address or ds based
1955 * (in absence of segment override prefixes)????
1956 */
1957#ifdef IN_RC
1958 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
1959#endif
1960 rc = PGMInvalidatePage(pVCpu, addr);
1961 if ( rc == VINF_SUCCESS
1962 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1963 return VINF_SUCCESS;
1964 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1965 ("%Rrc addr=%RGv\n", rc, addr),
1966 VERR_EM_INTERPRETER);
1967 return rc;
1968}
1969
1970
1971/**
1972 * Interpret CPUID given the parameters in the CPU context
1973 *
1974 * @returns VBox status code.
1975 * @param pVM The VM handle.
1976 * @param pVCpu The VMCPU handle.
1977 * @param pRegFrame The register frame.
1978 *
1979 */
1980VMMDECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1981{
1982 uint32_t iLeaf = pRegFrame->eax;
1983
1984 /* cpuid clears the high dwords of the affected 64 bits registers. */
1985 pRegFrame->rax = 0;
1986 pRegFrame->rbx = 0;
1987 pRegFrame->rcx &= UINT64_C(0x00000000ffffffff);
1988 pRegFrame->rdx = 0;
1989
1990 /* Note: operates the same in 64 and non-64 bits mode. */
1991 CPUMGetGuestCpuId(pVCpu, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1992 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1993 return VINF_SUCCESS;
1994}
1995
1996
1997/**
1998 * CPUID Emulation.
1999 */
2000static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2001{
2002 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
2003 return rc;
2004}
2005
2006
2007/**
2008 * Interpret CRx read
2009 *
2010 * @returns VBox status code.
2011 * @param pVM The VM handle.
2012 * @param pVCpu The VMCPU handle.
2013 * @param pRegFrame The register frame.
2014 * @param DestRegGen General purpose register index (USE_REG_E**))
2015 * @param SrcRegCRx CRx register index (USE_REG_CR*)
2016 *
2017 */
2018VMMDECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
2019{
2020 int rc;
2021 uint64_t val64;
2022
2023 if (SrcRegCrx == USE_REG_CR8)
2024 {
2025 val64 = 0;
2026 rc = PDMApicGetTPR(pVCpu, (uint8_t *)&val64, NULL);
2027 AssertMsgRCReturn(rc, ("PDMApicGetTPR failed\n"), VERR_EM_INTERPRETER);
2028 val64 >>= 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0*/
2029 }
2030 else
2031 {
2032 rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
2033 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
2034 }
2035
2036 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2037 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2038 else
2039 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
2040
2041 if(RT_SUCCESS(rc))
2042 {
2043 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
2044 return VINF_SUCCESS;
2045 }
2046 return VERR_EM_INTERPRETER;
2047}
2048
2049
2050
2051/**
2052 * Interpret CLTS
2053 *
2054 * @returns VBox status code.
2055 * @param pVM The VM handle.
2056 * @param pVCpu The VMCPU handle.
2057 *
2058 */
2059VMMDECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
2060{
2061 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2062 if (!(cr0 & X86_CR0_TS))
2063 return VINF_SUCCESS;
2064 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
2065}
2066
2067/**
2068 * CLTS Emulation.
2069 */
2070static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2071{
2072 return EMInterpretCLTS(pVM, pVCpu);
2073}
2074
2075
2076/**
2077 * Update CRx
2078 *
2079 * @returns VBox status code.
2080 * @param pVM The VM handle.
2081 * @param pVCpu The VMCPU handle.
2082 * @param pRegFrame The register frame.
2083 * @param DestRegCRx CRx register index (USE_REG_CR*)
2084 * @param val New CRx value
2085 *
2086 */
2087static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
2088{
2089 uint64_t oldval;
2090 uint64_t msrEFER;
2091 int rc, rc2;
2092
2093 /** @todo Clean up this mess. */
2094 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
2095 switch (DestRegCrx)
2096 {
2097 case USE_REG_CR0:
2098 oldval = CPUMGetGuestCR0(pVCpu);
2099#ifdef IN_RC
2100 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
2101 if ( (val & (X86_CR0_WP | X86_CR0_AM))
2102 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
2103 return VERR_EM_INTERPRETER;
2104#endif
2105 rc = VINF_SUCCESS;
2106 CPUMSetGuestCR0(pVCpu, val);
2107 val = CPUMGetGuestCR0(pVCpu);
2108 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
2109 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
2110 {
2111 /* global flush */
2112 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2113 AssertRCReturn(rc, rc);
2114 }
2115
2116 /* Deal with long mode enabling/disabling. */
2117 msrEFER = CPUMGetGuestEFER(pVCpu);
2118 if (msrEFER & MSR_K6_EFER_LME)
2119 {
2120 if ( !(oldval & X86_CR0_PG)
2121 && (val & X86_CR0_PG))
2122 {
2123 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2124 if (pRegFrame->csHid.Attr.n.u1Long)
2125 {
2126 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
2127 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2128 }
2129
2130 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2131 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
2132 {
2133 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
2134 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2135 }
2136 msrEFER |= MSR_K6_EFER_LMA;
2137 }
2138 else
2139 if ( (oldval & X86_CR0_PG)
2140 && !(val & X86_CR0_PG))
2141 {
2142 msrEFER &= ~MSR_K6_EFER_LMA;
2143 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
2144 }
2145 CPUMSetGuestEFER(pVCpu, msrEFER);
2146 }
2147 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2148 return rc2 == VINF_SUCCESS ? rc : rc2;
2149
2150 case USE_REG_CR2:
2151 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
2152 return VINF_SUCCESS;
2153
2154 case USE_REG_CR3:
2155 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2156 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
2157 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
2158 {
2159 /* flush */
2160 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
2161 AssertRCReturn(rc, rc);
2162 }
2163 return rc;
2164
2165 case USE_REG_CR4:
2166 oldval = CPUMGetGuestCR4(pVCpu);
2167 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
2168 val = CPUMGetGuestCR4(pVCpu);
2169
2170 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2171 msrEFER = CPUMGetGuestEFER(pVCpu);
2172 if ( (msrEFER & MSR_K6_EFER_LMA)
2173 && (oldval & X86_CR4_PAE)
2174 && !(val & X86_CR4_PAE))
2175 {
2176 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
2177 }
2178
2179 rc = VINF_SUCCESS;
2180 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2181 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2182 {
2183 /* global flush */
2184 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2185 AssertRCReturn(rc, rc);
2186 }
2187
2188 /* Feeling extremely lazy. */
2189# ifdef IN_RC
2190 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2191 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2192 {
2193 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2194 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
2195 }
2196# endif
2197 if ((val ^ oldval) & X86_CR4_VME)
2198 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2199
2200 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2201 return rc2 == VINF_SUCCESS ? rc : rc2;
2202
2203 case USE_REG_CR8:
2204 return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
2205
2206 default:
2207 AssertFailed();
2208 case USE_REG_CR1: /* illegal op */
2209 break;
2210 }
2211 return VERR_EM_INTERPRETER;
2212}
2213
2214/**
2215 * Interpret CRx write
2216 *
2217 * @returns VBox status code.
2218 * @param pVM The VM handle.
2219 * @param pVCpu The VMCPU handle.
2220 * @param pRegFrame The register frame.
2221 * @param DestRegCRx CRx register index (USE_REG_CR*)
2222 * @param SrcRegGen General purpose register index (USE_REG_E**))
2223 *
2224 */
2225VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2226{
2227 uint64_t val;
2228 int rc;
2229
2230 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2231 {
2232 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2233 }
2234 else
2235 {
2236 uint32_t val32;
2237 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2238 val = val32;
2239 }
2240
2241 if (RT_SUCCESS(rc))
2242 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
2243
2244 return VERR_EM_INTERPRETER;
2245}
2246
2247/**
2248 * Interpret LMSW
2249 *
2250 * @returns VBox status code.
2251 * @param pVM The VM handle.
2252 * @param pVCpu The VMCPU handle.
2253 * @param pRegFrame The register frame.
2254 * @param u16Data LMSW source data.
2255 *
2256 */
2257VMMDECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2258{
2259 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
2260
2261 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2262 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2263 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2264
2265 return emUpdateCRx(pVM, pVCpu, pRegFrame, USE_REG_CR0, NewCr0);
2266}
2267
2268/**
2269 * LMSW Emulation.
2270 */
2271static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2272{
2273 OP_PARAMVAL param1;
2274 uint32_t val;
2275
2276 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2277 if(RT_FAILURE(rc))
2278 return VERR_EM_INTERPRETER;
2279
2280 switch(param1.type)
2281 {
2282 case PARMTYPE_IMMEDIATE:
2283 case PARMTYPE_ADDRESS:
2284 if(!(param1.flags & PARAM_VAL16))
2285 return VERR_EM_INTERPRETER;
2286 val = param1.val.val32;
2287 break;
2288
2289 default:
2290 return VERR_EM_INTERPRETER;
2291 }
2292
2293 LogFlow(("emInterpretLmsw %x\n", val));
2294 return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
2295}
2296
2297#ifdef EM_EMULATE_SMSW
2298/**
2299 * SMSW Emulation.
2300 */
2301static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2302{
2303 OP_PARAMVAL param1;
2304 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2305
2306 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2307 if(RT_FAILURE(rc))
2308 return VERR_EM_INTERPRETER;
2309
2310 switch(param1.type)
2311 {
2312 case PARMTYPE_IMMEDIATE:
2313 if(param1.size != sizeof(uint16_t))
2314 return VERR_EM_INTERPRETER;
2315 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->param1.base.reg_gen, cr0));
2316 rc = DISWriteReg16(pRegFrame, pDis->param1.base.reg_gen, cr0);
2317 break;
2318
2319 case PARMTYPE_ADDRESS:
2320 {
2321 RTGCPTR pParam1;
2322
2323 /* Actually forced to 16 bits regardless of the operand size. */
2324 if(param1.size != sizeof(uint16_t))
2325 return VERR_EM_INTERPRETER;
2326
2327 pParam1 = (RTGCPTR)param1.val.val64;
2328 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, pParam1);
2329 LogFlow(("emInterpretSmsw %VGv <- cr0 (%x)\n", pParam1, cr0));
2330
2331 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
2332 if (RT_FAILURE(rc))
2333 {
2334 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2335 return VERR_EM_INTERPRETER;
2336 }
2337 break;
2338 }
2339
2340 default:
2341 return VERR_EM_INTERPRETER;
2342 }
2343
2344 LogFlow(("emInterpretSmsw %x\n", cr0));
2345 return rc;
2346}
2347#endif
2348
2349/**
2350 * MOV CRx
2351 */
2352static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2353{
2354 if ((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_CR)
2355 return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_ctrl);
2356
2357 if (pDis->param1.flags == USE_REG_CR && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
2358 return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_ctrl, pDis->param2.base.reg_gen);
2359
2360 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2361 return VERR_EM_INTERPRETER;
2362}
2363
2364
2365/**
2366 * Interpret DRx write
2367 *
2368 * @returns VBox status code.
2369 * @param pVM The VM handle.
2370 * @param pVCpu The VMCPU handle.
2371 * @param pRegFrame The register frame.
2372 * @param DestRegDRx DRx register index (USE_REG_DR*)
2373 * @param SrcRegGen General purpose register index (USE_REG_E**))
2374 *
2375 */
2376VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2377{
2378 uint64_t val;
2379 int rc;
2380
2381 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2382 {
2383 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2384 }
2385 else
2386 {
2387 uint32_t val32;
2388 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2389 val = val32;
2390 }
2391
2392 if (RT_SUCCESS(rc))
2393 {
2394 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2395 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, val);
2396 if (RT_SUCCESS(rc))
2397 return rc;
2398 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2399 }
2400 return VERR_EM_INTERPRETER;
2401}
2402
2403
2404/**
2405 * Interpret DRx read
2406 *
2407 * @returns VBox status code.
2408 * @param pVM The VM handle.
2409 * @param pVCpu The VMCPU handle.
2410 * @param pRegFrame The register frame.
2411 * @param DestRegGen General purpose register index (USE_REG_E**))
2412 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2413 *
2414 */
2415VMMDECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2416{
2417 uint64_t val64;
2418
2419 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
2420 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2421 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2422 {
2423 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2424 }
2425 else
2426 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2427
2428 if (RT_SUCCESS(rc))
2429 return VINF_SUCCESS;
2430
2431 return VERR_EM_INTERPRETER;
2432}
2433
2434
2435/**
2436 * MOV DRx
2437 */
2438static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2439{
2440 int rc = VERR_EM_INTERPRETER;
2441
2442 if((pDis->param1.flags == USE_REG_GEN32 || pDis->param1.flags == USE_REG_GEN64) && pDis->param2.flags == USE_REG_DBG)
2443 {
2444 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_gen, pDis->param2.base.reg_dbg);
2445 }
2446 else
2447 if(pDis->param1.flags == USE_REG_DBG && (pDis->param2.flags == USE_REG_GEN32 || pDis->param2.flags == USE_REG_GEN64))
2448 {
2449 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->param1.base.reg_dbg, pDis->param2.base.reg_gen);
2450 }
2451 else
2452 AssertMsgFailed(("Unexpected debug register move\n"));
2453
2454 return rc;
2455}
2456
2457
2458/**
2459 * LLDT Emulation.
2460 */
2461static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2462{
2463 OP_PARAMVAL param1;
2464 RTSEL sel;
2465
2466 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2467 if(RT_FAILURE(rc))
2468 return VERR_EM_INTERPRETER;
2469
2470 switch(param1.type)
2471 {
2472 case PARMTYPE_ADDRESS:
2473 return VERR_EM_INTERPRETER; //feeling lazy right now
2474
2475 case PARMTYPE_IMMEDIATE:
2476 if(!(param1.flags & PARAM_VAL16))
2477 return VERR_EM_INTERPRETER;
2478 sel = (RTSEL)param1.val.val16;
2479 break;
2480
2481 default:
2482 return VERR_EM_INTERPRETER;
2483 }
2484
2485#ifdef IN_RING0
2486 /* Only for the VT-x real-mode emulation case. */
2487 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2488 CPUMSetGuestLDTR(pVCpu, sel);
2489 return VINF_SUCCESS;
2490#else
2491 if (sel == 0)
2492 {
2493 if (CPUMGetHyperLDTR(pVCpu) == 0)
2494 {
2495 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2496 return VINF_SUCCESS;
2497 }
2498 }
2499 //still feeling lazy
2500 return VERR_EM_INTERPRETER;
2501#endif
2502}
2503
2504#ifdef IN_RING0
2505/**
2506 * LIDT/LGDT Emulation.
2507 */
2508static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2509{
2510 OP_PARAMVAL param1;
2511 RTGCPTR pParam1;
2512 X86XDTR32 dtr32;
2513
2514 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
2515
2516 /* Only for the VT-x real-mode emulation case. */
2517 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2518
2519 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->param1, &param1, PARAM_SOURCE);
2520 if(RT_FAILURE(rc))
2521 return VERR_EM_INTERPRETER;
2522
2523 switch(param1.type)
2524 {
2525 case PARMTYPE_ADDRESS:
2526 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->param1, param1.val.val16);
2527 break;
2528
2529 default:
2530 return VERR_EM_INTERPRETER;
2531 }
2532
2533 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
2534 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2535
2536 if (!(pDis->prefix & PREFIX_OPSIZE))
2537 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2538
2539 if (pDis->pCurInstr->opcode == OP_LIDT)
2540 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2541 else
2542 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2543
2544 return VINF_SUCCESS;
2545}
2546#endif
2547
2548
2549#ifdef IN_RC
2550/**
2551 * STI Emulation.
2552 *
2553 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2554 */
2555static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2556{
2557 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2558
2559 if(!pGCState)
2560 {
2561 Assert(pGCState);
2562 return VERR_EM_INTERPRETER;
2563 }
2564 pGCState->uVMFlags |= X86_EFL_IF;
2565
2566 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2567 Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2568
2569 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->opsize;
2570 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2571
2572 return VINF_SUCCESS;
2573}
2574#endif /* IN_RC */
2575
2576
2577/**
2578 * HLT Emulation.
2579 */
2580static int emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2581{
2582 return VINF_EM_HALT;
2583}
2584
2585
2586/**
2587 * Interpret RDTSC
2588 *
2589 * @returns VBox status code.
2590 * @param pVM The VM handle.
2591 * @param pVCpu The VMCPU handle.
2592 * @param pRegFrame The register frame.
2593 *
2594 */
2595VMMDECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2596{
2597 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2598
2599 if (uCR4 & X86_CR4_TSD)
2600 return VERR_EM_INTERPRETER; /* genuine #GP */
2601
2602 uint64_t uTicks = TMCpuTickGet(pVCpu);
2603
2604 /* Same behaviour in 32 & 64 bits mode */
2605 pRegFrame->rax = (uint32_t)uTicks;
2606 pRegFrame->rdx = (uTicks >> 32ULL);
2607
2608 return VINF_SUCCESS;
2609}
2610
2611/**
2612 * Interpret RDTSCP
2613 *
2614 * @returns VBox status code.
2615 * @param pVM The VM handle.
2616 * @param pVCpu The VMCPU handle.
2617 * @param pCtx The CPU context.
2618 *
2619 */
2620VMMDECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2621{
2622 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2623
2624 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2625 {
2626 AssertFailed();
2627 return VERR_EM_INTERPRETER; /* genuine #UD */
2628 }
2629
2630 if (uCR4 & X86_CR4_TSD)
2631 return VERR_EM_INTERPRETER; /* genuine #GP */
2632
2633 uint64_t uTicks = TMCpuTickGet(pVCpu);
2634
2635 /* Same behaviour in 32 & 64 bits mode */
2636 pCtx->rax = (uint32_t)uTicks;
2637 pCtx->rdx = (uTicks >> 32ULL);
2638 /* Low dword of the TSC_AUX msr only. */
2639 pCtx->rcx = (uint32_t)CPUMGetGuestMsr(pVCpu, MSR_K8_TSC_AUX);
2640
2641 return VINF_SUCCESS;
2642}
2643
2644/**
2645 * RDTSC Emulation.
2646 */
2647static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2648{
2649 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
2650}
2651
2652/**
2653 * Interpret RDPMC
2654 *
2655 * @returns VBox status code.
2656 * @param pVM The VM handle.
2657 * @param pVCpu The VMCPU handle.
2658 * @param pRegFrame The register frame.
2659 *
2660 */
2661VMMDECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2662{
2663 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2664
2665 /* If X86_CR4_PCE is not set, then CPL must be zero. */
2666 if ( !(uCR4 & X86_CR4_PCE)
2667 && CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
2668 {
2669 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
2670 return VERR_EM_INTERPRETER; /* genuine #GP */
2671 }
2672
2673 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
2674 pRegFrame->rax = 0;
2675 pRegFrame->rdx = 0;
2676 /* @todo We should trigger a #GP here if the cpu doesn't support the index in ecx. */
2677 return VINF_SUCCESS;
2678}
2679
2680/**
2681 * RDPMC Emulation
2682 */
2683static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2684{
2685 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
2686}
2687
2688/**
2689 * MONITOR Emulation.
2690 */
2691static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2692{
2693 uint32_t u32Dummy, u32ExtFeatures, cpl;
2694
2695 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
2696 if (pRegFrame->ecx != 0)
2697 return VERR_EM_INTERPRETER; /* illegal value. */
2698
2699 /* Get the current privilege level. */
2700 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2701 if (cpl != 0)
2702 return VERR_EM_INTERPRETER; /* supervisor only */
2703
2704 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2705 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2706 return VERR_EM_INTERPRETER; /* not supported */
2707
2708 return VINF_SUCCESS;
2709}
2710
2711
2712/**
2713 * MWAIT Emulation.
2714 */
2715VMMDECL(int) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2716{
2717 uint32_t u32Dummy, u32ExtFeatures, cpl;
2718
2719 /* @todo bit 1 is supposed to tell the cpu to wake us up on interrupts even if IF is cleared.
2720 * Not sure which models. Intel docs say ecx and eax must be zero for Pentium 4 CPUs
2721 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
2722 */
2723 if (pRegFrame->ecx != 0)
2724 return VERR_EM_INTERPRETER; /* illegal value. */
2725
2726 /* Get the current privilege level. */
2727 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2728 if (cpl != 0)
2729 return VERR_EM_INTERPRETER; /* supervisor only */
2730
2731 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2732 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2733 return VERR_EM_INTERPRETER; /* not supported */
2734
2735 /** @todo not completely correct */
2736 return VINF_EM_HALT;
2737}
2738
2739static int emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2740{
2741 Assert(pDis->mode != CPUMODE_64BIT); /** @todo check */
2742
2743 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
2744}
2745
2746
2747#ifdef LOG_ENABLED
2748static const char *emMSRtoString(uint32_t uMsr)
2749{
2750 switch (uMsr)
2751 {
2752 case MSR_IA32_APICBASE:
2753 return "MSR_IA32_APICBASE";
2754 case MSR_IA32_CR_PAT:
2755 return "MSR_IA32_CR_PAT";
2756 case MSR_IA32_SYSENTER_CS:
2757 return "MSR_IA32_SYSENTER_CS";
2758 case MSR_IA32_SYSENTER_EIP:
2759 return "MSR_IA32_SYSENTER_EIP";
2760 case MSR_IA32_SYSENTER_ESP:
2761 return "MSR_IA32_SYSENTER_ESP";
2762 case MSR_K6_EFER:
2763 return "MSR_K6_EFER";
2764 case MSR_K8_SF_MASK:
2765 return "MSR_K8_SF_MASK";
2766 case MSR_K6_STAR:
2767 return "MSR_K6_STAR";
2768 case MSR_K8_LSTAR:
2769 return "MSR_K8_LSTAR";
2770 case MSR_K8_CSTAR:
2771 return "MSR_K8_CSTAR";
2772 case MSR_K8_FS_BASE:
2773 return "MSR_K8_FS_BASE";
2774 case MSR_K8_GS_BASE:
2775 return "MSR_K8_GS_BASE";
2776 case MSR_K8_KERNEL_GS_BASE:
2777 return "MSR_K8_KERNEL_GS_BASE";
2778 case MSR_K8_TSC_AUX:
2779 return "MSR_K8_TSC_AUX";
2780 case MSR_IA32_BIOS_SIGN_ID:
2781 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2782 case MSR_IA32_PLATFORM_ID:
2783 return "Unsupported MSR_IA32_PLATFORM_ID";
2784 case MSR_IA32_BIOS_UPDT_TRIG:
2785 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2786 case MSR_IA32_TSC:
2787 return "MSR_IA32_TSC";
2788 case MSR_IA32_MTRR_CAP:
2789 return "Unsupported MSR_IA32_MTRR_CAP";
2790 case MSR_IA32_MCP_CAP:
2791 return "Unsupported MSR_IA32_MCP_CAP";
2792 case MSR_IA32_MCP_STATUS:
2793 return "Unsupported MSR_IA32_MCP_STATUS";
2794 case MSR_IA32_MCP_CTRL:
2795 return "Unsupported MSR_IA32_MCP_CTRL";
2796 case MSR_IA32_MTRR_DEF_TYPE:
2797 return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
2798 case MSR_K7_EVNTSEL0:
2799 return "Unsupported MSR_K7_EVNTSEL0";
2800 case MSR_K7_EVNTSEL1:
2801 return "Unsupported MSR_K7_EVNTSEL1";
2802 case MSR_K7_EVNTSEL2:
2803 return "Unsupported MSR_K7_EVNTSEL2";
2804 case MSR_K7_EVNTSEL3:
2805 return "Unsupported MSR_K7_EVNTSEL3";
2806 case MSR_IA32_MC0_CTL:
2807 return "Unsupported MSR_IA32_MC0_CTL";
2808 case MSR_IA32_MC0_STATUS:
2809 return "Unsupported MSR_IA32_MC0_STATUS";
2810 case MSR_IA32_PERFEVTSEL0:
2811 return "Unsupported MSR_IA32_PERFEVTSEL0";
2812 case MSR_IA32_PERFEVTSEL1:
2813 return "Unsupported MSR_IA32_PERFEVTSEL1";
2814 case MSR_IA32_PERF_STATUS:
2815 return "Unsupported MSR_IA32_PERF_STATUS";
2816 case MSR_IA32_PERF_CTL:
2817 return "Unsupported MSR_IA32_PERF_CTL";
2818 case MSR_K7_PERFCTR0:
2819 return "Unsupported MSR_K7_PERFCTR0";
2820 case MSR_K7_PERFCTR1:
2821 return "Unsupported MSR_K7_PERFCTR1";
2822 case MSR_K7_PERFCTR2:
2823 return "Unsupported MSR_K7_PERFCTR2";
2824 case MSR_K7_PERFCTR3:
2825 return "Unsupported MSR_K7_PERFCTR3";
2826 }
2827 return "Unknown MSR";
2828}
2829#endif /* LOG_ENABLED */
2830
2831
2832/**
2833 * Interpret RDMSR
2834 *
2835 * @returns VBox status code.
2836 * @param pVM The VM handle.
2837 * @param pVCpu The VMCPU handle.
2838 * @param pRegFrame The register frame.
2839 *
2840 */
2841VMMDECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2842{
2843 uint32_t u32Dummy, u32Features, cpl;
2844 uint64_t val;
2845 CPUMCTX *pCtx;
2846 int rc = VINF_SUCCESS;
2847
2848 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
2849 * That version clears the high dwords of both RDX & RAX */
2850 pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2851
2852 /* Get the current privilege level. */
2853 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2854 if (cpl != 0)
2855 return VERR_EM_INTERPRETER; /* supervisor only */
2856
2857 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2858 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2859 return VERR_EM_INTERPRETER; /* not supported */
2860
2861 switch (pRegFrame->ecx)
2862 {
2863 case MSR_IA32_TSC:
2864 val = TMCpuTickGet(pVCpu);
2865 break;
2866
2867 case MSR_IA32_APICBASE:
2868 rc = PDMApicGetBase(pVM, &val);
2869 AssertRC(rc);
2870 break;
2871
2872 case MSR_IA32_CR_PAT:
2873 val = pCtx->msrPAT;
2874 break;
2875
2876 case MSR_IA32_SYSENTER_CS:
2877 val = pCtx->SysEnter.cs;
2878 break;
2879
2880 case MSR_IA32_SYSENTER_EIP:
2881 val = pCtx->SysEnter.eip;
2882 break;
2883
2884 case MSR_IA32_SYSENTER_ESP:
2885 val = pCtx->SysEnter.esp;
2886 break;
2887
2888 case MSR_K6_EFER:
2889 val = pCtx->msrEFER;
2890 break;
2891
2892 case MSR_K8_SF_MASK:
2893 val = pCtx->msrSFMASK;
2894 break;
2895
2896 case MSR_K6_STAR:
2897 val = pCtx->msrSTAR;
2898 break;
2899
2900 case MSR_K8_LSTAR:
2901 val = pCtx->msrLSTAR;
2902 break;
2903
2904 case MSR_K8_CSTAR:
2905 val = pCtx->msrCSTAR;
2906 break;
2907
2908 case MSR_K8_FS_BASE:
2909 val = pCtx->fsHid.u64Base;
2910 break;
2911
2912 case MSR_K8_GS_BASE:
2913 val = pCtx->gsHid.u64Base;
2914 break;
2915
2916 case MSR_K8_KERNEL_GS_BASE:
2917 val = pCtx->msrKERNELGSBASE;
2918 break;
2919
2920 case MSR_K8_TSC_AUX:
2921 val = CPUMGetGuestMsr(pVCpu, MSR_K8_TSC_AUX);
2922 break;
2923
2924#if 0 /*def IN_RING0 */
2925 case MSR_IA32_PLATFORM_ID:
2926 case MSR_IA32_BIOS_SIGN_ID:
2927 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
2928 {
2929 /* Available since the P6 family. VT-x implies that this feature is present. */
2930 if (pRegFrame->ecx == MSR_IA32_PLATFORM_ID)
2931 val = ASMRdMsr(MSR_IA32_PLATFORM_ID);
2932 else
2933 if (pRegFrame->ecx == MSR_IA32_BIOS_SIGN_ID)
2934 val = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
2935 break;
2936 }
2937 /* no break */
2938#endif
2939 default:
2940 /* In X2APIC specification this range is reserved for APIC control. */
2941 if ( pRegFrame->ecx >= MSR_IA32_APIC_START
2942 && pRegFrame->ecx < MSR_IA32_APIC_END)
2943 rc = PDMApicReadMSR(pVM, pVCpu->idCpu, pRegFrame->ecx, &val);
2944 else
2945 /* We should actually trigger a #GP here, but don't as that will cause more trouble. */
2946 val = 0;
2947 break;
2948 }
2949 LogFlow(("EMInterpretRdmsr %s (%x) -> val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2950 if (rc == VINF_SUCCESS)
2951 {
2952 pRegFrame->rax = (uint32_t) val;
2953 pRegFrame->rdx = (uint32_t)(val >> 32);
2954 }
2955 return rc;
2956}
2957
2958
2959/**
2960 * RDMSR Emulation.
2961 */
2962static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2963{
2964 /* Note: the Intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2965 Assert(!(pDis->prefix & PREFIX_REX));
2966 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
2967}
2968
2969
2970/**
2971 * Interpret WRMSR
2972 *
2973 * @returns VBox status code.
2974 * @param pVM The VM handle.
2975 * @param pVCpu The VMCPU handle.
2976 * @param pRegFrame The register frame.
2977 */
2978VMMDECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2979{
2980 uint32_t u32Dummy, u32Features, cpl;
2981 uint64_t val;
2982 CPUMCTX *pCtx;
2983
2984 /* Note: works the same in 32 and 64 bits modes. */
2985 pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2986
2987 /* Get the current privilege level. */
2988 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2989 if (cpl != 0)
2990 return VERR_EM_INTERPRETER; /* supervisor only */
2991
2992 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2993 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2994 return VERR_EM_INTERPRETER; /* not supported */
2995
2996 val = RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx);
2997 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2998 switch (pRegFrame->ecx)
2999 {
3000 case MSR_IA32_TSC:
3001 TMCpuTickSet(pVM, pVCpu, val);
3002 break;
3003
3004 case MSR_IA32_APICBASE:
3005 {
3006 int rc = PDMApicSetBase(pVM, val);
3007 AssertRC(rc);
3008 break;
3009 }
3010
3011 case MSR_IA32_CR_PAT:
3012 pCtx->msrPAT = val;
3013 break;
3014
3015 case MSR_IA32_SYSENTER_CS:
3016 pCtx->SysEnter.cs = val & 0xffff; /* 16 bits selector */
3017 break;
3018
3019 case MSR_IA32_SYSENTER_EIP:
3020 pCtx->SysEnter.eip = val;
3021 break;
3022
3023 case MSR_IA32_SYSENTER_ESP:
3024 pCtx->SysEnter.esp = val;
3025 break;
3026
3027 case MSR_K6_EFER:
3028 {
3029 uint64_t uMask = 0;
3030 uint64_t oldval = pCtx->msrEFER;
3031
3032 /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
3033 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3034 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_NX)
3035 uMask |= MSR_K6_EFER_NXE;
3036 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
3037 uMask |= MSR_K6_EFER_LME;
3038 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_SEP)
3039 uMask |= MSR_K6_EFER_SCE;
3040 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
3041 uMask |= MSR_K6_EFER_FFXSR;
3042
3043 /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
3044 if ( ((pCtx->msrEFER & MSR_K6_EFER_LME) != (val & uMask & MSR_K6_EFER_LME))
3045 && (pCtx->cr0 & X86_CR0_PG))
3046 {
3047 AssertMsgFailed(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
3048 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
3049 }
3050
3051 /* There are a few more: e.g. MSR_K6_EFER_LMSLE */
3052 AssertMsg(!(val & ~(MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA /* ignored anyway */ |MSR_K6_EFER_SCE|MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", val));
3053 pCtx->msrEFER = (pCtx->msrEFER & ~uMask) | (val & uMask);
3054
3055 /* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
3056 if ((oldval & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)) != (pCtx->msrEFER & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)))
3057 HWACCMFlushTLB(pVCpu);
3058
3059 break;
3060 }
3061
3062 case MSR_K8_SF_MASK:
3063 pCtx->msrSFMASK = val;
3064 break;
3065
3066 case MSR_K6_STAR:
3067 pCtx->msrSTAR = val;
3068 break;
3069
3070 case MSR_K8_LSTAR:
3071 pCtx->msrLSTAR = val;
3072 break;
3073
3074 case MSR_K8_CSTAR:
3075 pCtx->msrCSTAR = val;
3076 break;
3077
3078 case MSR_K8_FS_BASE:
3079 pCtx->fsHid.u64Base = val;
3080 break;
3081
3082 case MSR_K8_GS_BASE:
3083 pCtx->gsHid.u64Base = val;
3084 break;
3085
3086 case MSR_K8_KERNEL_GS_BASE:
3087 pCtx->msrKERNELGSBASE = val;
3088 break;
3089
3090 case MSR_K8_TSC_AUX:
3091 CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, val);
3092 break;
3093
3094 default:
3095 /* In X2APIC specification this range is reserved for APIC control. */
3096 if ( pRegFrame->ecx >= MSR_IA32_APIC_START
3097 && pRegFrame->ecx < MSR_IA32_APIC_END)
3098 return PDMApicWriteMSR(pVM, pVCpu->idCpu, pRegFrame->ecx, val);
3099
3100 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
3101 break;
3102 }
3103 return VINF_SUCCESS;
3104}
3105
3106
3107/**
3108 * WRMSR Emulation.
3109 */
3110static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3111{
3112 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3113}
3114
3115
3116/**
3117 * Internal worker.
3118 * @copydoc EMInterpretInstructionCPU
3119 */
3120DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3121{
3122 Assert(pcbSize);
3123 *pcbSize = 0;
3124
3125 /*
3126 * Only supervisor guest code!!
3127 * And no complicated prefixes.
3128 */
3129 /* Get the current privilege level. */
3130 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
3131 if ( cpl != 0
3132 && pDis->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3133 {
3134 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3135 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3136 return VERR_EM_INTERPRETER;
3137 }
3138
3139#ifdef IN_RC
3140 if ( (pDis->prefix & (PREFIX_REPNE | PREFIX_REP))
3141 || ( (pDis->prefix & PREFIX_LOCK)
3142 && pDis->pCurInstr->opcode != OP_CMPXCHG
3143 && pDis->pCurInstr->opcode != OP_CMPXCHG8B
3144 && pDis->pCurInstr->opcode != OP_XADD
3145 && pDis->pCurInstr->opcode != OP_OR
3146 && pDis->pCurInstr->opcode != OP_AND
3147 && pDis->pCurInstr->opcode != OP_XOR
3148 && pDis->pCurInstr->opcode != OP_BTR
3149 )
3150 )
3151#else
3152 if ( (pDis->prefix & PREFIX_REPNE)
3153 || ( (pDis->prefix & PREFIX_REP)
3154 && pDis->pCurInstr->opcode != OP_STOSWD
3155 )
3156 || ( (pDis->prefix & PREFIX_LOCK)
3157 && pDis->pCurInstr->opcode != OP_OR
3158 && pDis->pCurInstr->opcode != OP_AND
3159 && pDis->pCurInstr->opcode != OP_XOR
3160 && pDis->pCurInstr->opcode != OP_BTR
3161 && pDis->pCurInstr->opcode != OP_CMPXCHG
3162 && pDis->pCurInstr->opcode != OP_CMPXCHG8B
3163 )
3164 )
3165#endif
3166 {
3167 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3168 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3169 return VERR_EM_INTERPRETER;
3170 }
3171
3172#if HC_ARCH_BITS == 32
3173 /*
3174 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3175 * Whitelisted instructions are safe.
3176 */
3177 if ( pDis->param1.size > 4
3178 && CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
3179 {
3180 uint32_t uOpCode = pDis->pCurInstr->opcode;
3181 if ( uOpCode != OP_STOSWD
3182 && uOpCode != OP_MOV
3183 && uOpCode != OP_CMPXCHG8B
3184 && uOpCode != OP_XCHG
3185 && uOpCode != OP_BTS
3186 && uOpCode != OP_BTR
3187 && uOpCode != OP_BTC
3188# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
3189 && uOpCode != OP_CMPXCHG /* solaris */
3190 && uOpCode != OP_AND /* windows */
3191 && uOpCode != OP_OR /* windows */
3192 && uOpCode != OP_XOR /* because we can */
3193 && uOpCode != OP_ADD /* windows (dripple) */
3194 && uOpCode != OP_ADC /* because we can */
3195 && uOpCode != OP_SUB /* because we can */
3196 /** @todo OP_BTS or is that a different kind of failure? */
3197# endif
3198 )
3199 {
3200# ifdef VBOX_WITH_STATISTICS
3201 switch (pDis->pCurInstr->opcode)
3202 {
3203# define INTERPRET_FAILED_CASE(opcode, Instr) \
3204 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3205 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3206 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3207 INTERPRET_FAILED_CASE(OP_INC,Inc);
3208 INTERPRET_FAILED_CASE(OP_POP,Pop);
3209 INTERPRET_FAILED_CASE(OP_OR, Or);
3210 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3211 INTERPRET_FAILED_CASE(OP_AND,And);
3212 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3213 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3214 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3215 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3216 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3217 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3218 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3219 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3220 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3221 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3222 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3223 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3224 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3225 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3226 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3227 INTERPRET_FAILED_CASE(OP_ADD,Add);
3228 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3229 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3230 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3231 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3232 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3233 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3234 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3235 INTERPRET_FAILED_CASE(OP_STI, Sti);
3236 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3237 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3238 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3239 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3240 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3241 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3242# undef INTERPRET_FAILED_CASE
3243 default:
3244 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3245 break;
3246 }
3247# endif /* VBOX_WITH_STATISTICS */
3248 return VERR_EM_INTERPRETER;
3249 }
3250 }
3251#endif
3252
3253 int rc;
3254#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3255 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
3256#endif
3257 switch (pDis->pCurInstr->opcode)
3258 {
3259 /*
3260 * Macros for generating the right case statements.
3261 */
3262# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3263 case opcode:\
3264 if (pDis->prefix & PREFIX_LOCK) \
3265 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3266 else \
3267 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3268 if (RT_SUCCESS(rc)) \
3269 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3270 else \
3271 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3272 return rc
3273#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3274 case opcode:\
3275 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3276 if (RT_SUCCESS(rc)) \
3277 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3278 else \
3279 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3280 return rc
3281
3282#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3283 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3284#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3285 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3286
3287#define INTERPRET_CASE(opcode, Instr) \
3288 case opcode:\
3289 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3290 if (RT_SUCCESS(rc)) \
3291 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3292 else \
3293 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3294 return rc
3295
3296#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3297 case opcode:\
3298 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3299 if (RT_SUCCESS(rc)) \
3300 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3301 else \
3302 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3303 return rc
3304
3305#define INTERPRET_STAT_CASE(opcode, Instr) \
3306 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3307
3308 /*
3309 * The actual case statements.
3310 */
3311 INTERPRET_CASE(OP_XCHG,Xchg);
3312 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3313 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3314 INTERPRET_CASE(OP_POP,Pop);
3315 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3316 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3317 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3318 INTERPRET_CASE(OP_MOV,Mov);
3319#ifndef IN_RC
3320 INTERPRET_CASE(OP_STOSWD,StosWD);
3321#endif
3322 INTERPRET_CASE(OP_INVLPG,InvlPg);
3323 INTERPRET_CASE(OP_CPUID,CpuId);
3324 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3325 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3326#ifdef IN_RING0
3327 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3328 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3329#endif
3330 INTERPRET_CASE(OP_LLDT,LLdt);
3331 INTERPRET_CASE(OP_LMSW,Lmsw);
3332#ifdef EM_EMULATE_SMSW
3333 INTERPRET_CASE(OP_SMSW,Smsw);
3334#endif
3335 INTERPRET_CASE(OP_CLTS,Clts);
3336 INTERPRET_CASE(OP_MONITOR, Monitor);
3337 INTERPRET_CASE(OP_MWAIT, MWait);
3338 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3339 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3340 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3341 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3342 INTERPRET_CASE(OP_ADC,Adc);
3343 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3344 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3345 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3346 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3347 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3348 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3349#ifdef IN_RC
3350 INTERPRET_CASE(OP_STI,Sti);
3351 INTERPRET_CASE(OP_XADD, XAdd);
3352#endif
3353 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3354 INTERPRET_CASE(OP_HLT,Hlt);
3355 INTERPRET_CASE(OP_IRET,Iret);
3356 INTERPRET_CASE(OP_WBINVD,WbInvd);
3357#ifdef VBOX_WITH_STATISTICS
3358# ifndef IN_RC
3359 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3360# endif
3361 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3362#endif
3363
3364 default:
3365 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->opcode));
3366 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3367 return VERR_EM_INTERPRETER;
3368
3369#undef INTERPRET_CASE_EX_PARAM2
3370#undef INTERPRET_STAT_CASE
3371#undef INTERPRET_CASE_EX
3372#undef INTERPRET_CASE
3373 } /* switch (opcode) */
3374 AssertFailed();
3375 return VERR_INTERNAL_ERROR;
3376}
3377
3378
3379/**
3380 * Sets the PC for which interrupts should be inhibited.
3381 *
3382 * @param pVCpu The VMCPU handle.
3383 * @param PC The PC.
3384 */
3385VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
3386{
3387 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
3388 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3389}
3390
3391
3392/**
3393 * Gets the PC for which interrupts should be inhibited.
3394 *
3395 * There are a few instructions which inhibits or delays interrupts
3396 * for the instruction following them. These instructions are:
3397 * - STI
3398 * - MOV SS, r/m16
3399 * - POP SS
3400 *
3401 * @returns The PC for which interrupts should be inhibited.
3402 * @param pVCpu The VMCPU handle.
3403 *
3404 */
3405VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
3406{
3407 return pVCpu->em.s.GCPtrInhibitInterrupts;
3408}
3409
3410/**
3411 * Locks REM execution to a single VCpu
3412 *
3413 * @param pVM VM handle.
3414 */
3415VMMDECL(void) EMRemLock(PVM pVM)
3416{
3417 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
3418 return; /* early init */
3419
3420 Assert(!PGMIsLockOwner(pVM) && !IOMIsLockOwner(pVM));
3421 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
3422 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3423}
3424
3425/**
3426 * Unlocks REM execution
3427 *
3428 * @param pVM VM handle.
3429 */
3430VMMDECL(void) EMRemUnlock(PVM pVM)
3431{
3432 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
3433 return; /* early init */
3434
3435 PDMCritSectLeave(&pVM->em.s.CritSectREM);
3436}
3437
3438/**
3439 * Check if this VCPU currently owns the REM lock.
3440 *
3441 * @returns bool owner/not owner
3442 * @param pVM The VM to operate on.
3443 */
3444VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
3445{
3446 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
3447}
3448
3449/**
3450 * Try to acquire the REM lock.
3451 *
3452 * @returns VBox status code
3453 * @param pVM The VM to operate on.
3454 */
3455VMMDECL(int) EMTryEnterRemLock(PVM pVM)
3456{
3457 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
3458}
3459
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette