/* $Id: CPUMAllRegs.cpp 5389 2007-10-19 16:45:07Z vboxsync $ */ /** @file * CPUM - CPU Monitor(/Manager) - Gets and Sets. */ /* * Copyright (C) 2006-2007 innotek GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #include #include #include #include #include "CPUMInternal.h" #include #include #include #include #include #include /** Disable stack frame pointer generation here. */ #if defined(_MSC_VER) && !defined(DEBUG) # pragma optimize("y", off) #endif /** * Sets or resets an alternative hypervisor context core. * * This is called when we get a hypervisor trap set switch the context * core with the trap frame on the stack. It is called again to reset * back to the default context core when resuming hypervisor execution. * * @param pVM The VM handle. * @param pCtxCore Pointer to the alternative context core or NULL * to go back to the default context core. */ CPUMDECL(void) CPUMHyperSetCtxCore(PVM pVM, PCPUMCTXCORE pCtxCore) { LogFlow(("CPUMHyperSetCtxCore: %p/%p/%p -> %p\n", pVM->cpum.s.CTXALLSUFF(pHyperCore), pCtxCore)); if (!pCtxCore) { pCtxCore = CPUMCTX2CORE(&pVM->cpum.s.Hyper); pVM->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))VM_R3_ADDR(pVM, pCtxCore); pVM->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))VM_R0_ADDR(pVM, pCtxCore); pVM->cpum.s.pHyperCoreGC = (GCPTRTYPE(PCPUMCTXCORE))VM_GUEST_ADDR(pVM, pCtxCore); } else { pVM->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))MMHyperCCToR3(pVM, pCtxCore); pVM->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))MMHyperCCToR0(pVM, pCtxCore); pVM->cpum.s.pHyperCoreGC = (GCPTRTYPE(PCPUMCTXCORE))MMHyperCCToGC(pVM, pCtxCore); } } /** * Gets the pointer to the internal CPUMCTXCORE structure for the hypervisor. * This is only for reading in order to save a few calls. * * @param pVM Handle to the virtual machine. */ CPUMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore); } /** * Queries the pointer to the internal CPUMCTX structure for the hypervisor. * * @returns VBox status code. * @param pVM Handle to the virtual machine. * @param ppCtx Receives the hyper CPUMCTX pointer when successful. * * @deprecated This will *not* (and has never) given the right picture of the * hypervisor register state. With CPUMHyperSetCtxCore() this is * getting much worse. So, use the individual functions for getting * and esp. setting the hypervisor registers. */ CPUMDECL(int) CPUMQueryHyperCtxPtr(PVM pVM, PCPUMCTX *ppCtx) { *ppCtx = &pVM->cpum.s.Hyper; return VINF_SUCCESS; } CPUMDECL(void) CPUMSetHyperGDTR(PVM pVM, uint32_t addr, uint16_t limit) { pVM->cpum.s.Hyper.gdtr.cbGdt = limit; pVM->cpum.s.Hyper.gdtr.pGdt = addr; pVM->cpum.s.Hyper.gdtrPadding = 0; pVM->cpum.s.Hyper.gdtrPadding64 = 0; } CPUMDECL(void) CPUMSetHyperIDTR(PVM pVM, uint32_t addr, uint16_t limit) { pVM->cpum.s.Hyper.idtr.cbIdt = limit; pVM->cpum.s.Hyper.idtr.pIdt = addr; pVM->cpum.s.Hyper.idtrPadding = 0; pVM->cpum.s.Hyper.idtrPadding64 = 0; } CPUMDECL(void) CPUMSetHyperCR3(PVM pVM, uint32_t cr3) { pVM->cpum.s.Hyper.cr3 = cr3; } CPUMDECL(void) CPUMSetHyperCS(PVM pVM, RTSEL SelCS) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->cs = SelCS; } CPUMDECL(void) CPUMSetHyperDS(PVM pVM, RTSEL SelDS) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->ds = SelDS; } CPUMDECL(void) CPUMSetHyperES(PVM pVM, RTSEL SelES) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->es = SelES; } CPUMDECL(void) CPUMSetHyperFS(PVM pVM, RTSEL SelFS) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->fs = SelFS; } CPUMDECL(void) CPUMSetHyperGS(PVM pVM, RTSEL SelGS) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->gs = SelGS; } CPUMDECL(void) CPUMSetHyperSS(PVM pVM, RTSEL SelSS) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->ss = SelSS; } CPUMDECL(void) CPUMSetHyperESP(PVM pVM, uint32_t u32ESP) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->esp = u32ESP; } CPUMDECL(int) CPUMSetHyperEFlags(PVM pVM, uint32_t Efl) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->eflags.u32 = Efl; return VINF_SUCCESS; } CPUMDECL(void) CPUMSetHyperEIP(PVM pVM, uint32_t u32EIP) { pVM->cpum.s.CTXALLSUFF(pHyperCore)->eip = u32EIP; } CPUMDECL(void) CPUMSetHyperTR(PVM pVM, RTSEL SelTR) { pVM->cpum.s.Hyper.tr = SelTR; } CPUMDECL(void) CPUMSetHyperLDTR(PVM pVM, RTSEL SelLDTR) { pVM->cpum.s.Hyper.ldtr = SelLDTR; } CPUMDECL(void) CPUMSetHyperDR0(PVM pVM, RTGCUINTREG uDr0) { pVM->cpum.s.Hyper.dr0 = uDr0; /** @todo in GC we must load it! */ } CPUMDECL(void) CPUMSetHyperDR1(PVM pVM, RTGCUINTREG uDr1) { pVM->cpum.s.Hyper.dr1 = uDr1; /** @todo in GC we must load it! */ } CPUMDECL(void) CPUMSetHyperDR2(PVM pVM, RTGCUINTREG uDr2) { pVM->cpum.s.Hyper.dr2 = uDr2; /** @todo in GC we must load it! */ } CPUMDECL(void) CPUMSetHyperDR3(PVM pVM, RTGCUINTREG uDr3) { pVM->cpum.s.Hyper.dr3 = uDr3; /** @todo in GC we must load it! */ } CPUMDECL(void) CPUMSetHyperDR6(PVM pVM, RTGCUINTREG uDr6) { pVM->cpum.s.Hyper.dr6 = uDr6; /** @todo in GC we must load it! */ } CPUMDECL(void) CPUMSetHyperDR7(PVM pVM, RTGCUINTREG uDr7) { pVM->cpum.s.Hyper.dr7 = uDr7; /** @todo in GC we must load it! */ } CPUMDECL(RTSEL) CPUMGetHyperCS(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->cs; } CPUMDECL(RTSEL) CPUMGetHyperDS(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ds; } CPUMDECL(RTSEL) CPUMGetHyperES(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->es; } CPUMDECL(RTSEL) CPUMGetHyperFS(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->fs; } CPUMDECL(RTSEL) CPUMGetHyperGS(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->gs; } CPUMDECL(RTSEL) CPUMGetHyperSS(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ss; } #if 0 /* these are not correct. */ CPUMDECL(uint32_t) CPUMGetHyperCR0(PVM pVM) { return pVM->cpum.s.Hyper.cr0; } CPUMDECL(uint32_t) CPUMGetHyperCR2(PVM pVM) { return pVM->cpum.s.Hyper.cr2; } CPUMDECL(uint32_t) CPUMGetHyperCR3(PVM pVM) { return pVM->cpum.s.Hyper.cr3; } CPUMDECL(uint32_t) CPUMGetHyperCR4(PVM pVM) { return pVM->cpum.s.Hyper.cr4; } #endif /* not correct */ CPUMDECL(uint32_t) CPUMGetHyperEAX(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->eax; } CPUMDECL(uint32_t) CPUMGetHyperEBX(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ebx; } CPUMDECL(uint32_t) CPUMGetHyperECX(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ecx; } CPUMDECL(uint32_t) CPUMGetHyperEDX(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->edx; } CPUMDECL(uint32_t) CPUMGetHyperESI(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->esi; } CPUMDECL(uint32_t) CPUMGetHyperEDI(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->edi; } CPUMDECL(uint32_t) CPUMGetHyperEBP(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ebp; } CPUMDECL(uint32_t) CPUMGetHyperESP(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->esp; } CPUMDECL(uint32_t) CPUMGetHyperEFlags(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->eflags.u32; } CPUMDECL(uint32_t) CPUMGetHyperEIP(PVM pVM) { return pVM->cpum.s.CTXALLSUFF(pHyperCore)->eip; } CPUMDECL(uint32_t) CPUMGetHyperIDTR(PVM pVM, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVM->cpum.s.Hyper.idtr.cbIdt; return pVM->cpum.s.Hyper.idtr.pIdt; } CPUMDECL(uint32_t) CPUMGetHyperGDTR(PVM pVM, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVM->cpum.s.Hyper.gdtr.cbGdt; return pVM->cpum.s.Hyper.gdtr.pGdt; } CPUMDECL(RTSEL) CPUMGetHyperLDTR(PVM pVM) { return pVM->cpum.s.Hyper.ldtr; } CPUMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVM pVM) { return pVM->cpum.s.Hyper.dr0; } CPUMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVM pVM) { return pVM->cpum.s.Hyper.dr1; } CPUMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVM pVM) { return pVM->cpum.s.Hyper.dr2; } CPUMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVM pVM) { return pVM->cpum.s.Hyper.dr3; } CPUMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVM pVM) { return pVM->cpum.s.Hyper.dr6; } CPUMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVM pVM) { return pVM->cpum.s.Hyper.dr7; } /** * Gets the pointer to the internal CPUMCTXCORE structure. * This is only for reading in order to save a few calls. * * @param pVM Handle to the virtual machine. */ CPUMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVM pVM) { return CPUMCTX2CORE(&pVM->cpum.s.Guest); } /** * Sets the guest context core registers. * * @param pVM Handle to the virtual machine. * @param pCtxCore The new context core values. */ CPUMDECL(void) CPUMSetGuestCtxCore(PVM pVM, PCCPUMCTXCORE pCtxCore) { /** @todo #1410 requires selectors to be checked. */ PCPUMCTXCORE pCtxCoreDst CPUMCTX2CORE(&pVM->cpum.s.Guest); *pCtxCoreDst = *pCtxCore; } /** * Queries the pointer to the internal CPUMCTX structure * * @returns VBox status code. * @param pVM Handle to the virtual machine. * @param ppCtx Receives the CPUMCTX pointer when successful. */ CPUMDECL(int) CPUMQueryGuestCtxPtr(PVM pVM, PCPUMCTX *ppCtx) { *ppCtx = &pVM->cpum.s.Guest; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestGDTR(PVM pVM, uint32_t addr, uint16_t limit) { pVM->cpum.s.Guest.gdtr.cbGdt = limit; pVM->cpum.s.Guest.gdtr.pGdt = addr; pVM->cpum.s.fChanged |= CPUM_CHANGED_GDTR; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestIDTR(PVM pVM, uint32_t addr, uint16_t limit) { pVM->cpum.s.Guest.idtr.cbIdt = limit; pVM->cpum.s.Guest.idtr.pIdt = addr; pVM->cpum.s.fChanged |= CPUM_CHANGED_IDTR; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestTR(PVM pVM, uint16_t tr) { pVM->cpum.s.Guest.tr = tr; pVM->cpum.s.fChanged |= CPUM_CHANGED_TR; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestLDTR(PVM pVM, uint16_t ldtr) { pVM->cpum.s.Guest.ldtr = ldtr; pVM->cpum.s.fChanged |= CPUM_CHANGED_LDTR; return VINF_SUCCESS; } /** * Set the guest CR0. * * When called in GC, the hyper CR0 may be updated if that is * required. The caller only has to take special action if AM, * WP, PG or PE changes. * * @returns VINF_SUCCESS (consider it void). * @param pVM Pointer to the shared VM structure. * @param cr0 The new CR0 value. */ CPUMDECL(int) CPUMSetGuestCR0(PVM pVM, uint32_t cr0) { #ifdef IN_GC /* * Check if we need to change hypervisor CR0 because * of math stuff. */ if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) != (pVM->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))) { if (!(pVM->cpum.s.fUseFlags & CPUM_USED_FPU)) { /* * We haven't saved the host FPU state yet, so TS and MT are both set * and EM should be reflecting the guest EM (it always does this). */ if ((cr0 & X86_CR0_EM) != (pVM->cpum.s.Guest.cr0 & X86_CR0_EM)) { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pVM->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); HyperCR0 &= ~X86_CR0_EM; HyperCR0 |= cr0 & X86_CR0_EM; Log(("CPUM New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } #ifdef VBOX_STRICT else { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pVM->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); } #endif } else { /* * Already saved the state, so we're just mirroring * the guest flags. */ uint32_t HyperCR0 = ASMGetCR0(); AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) == (pVM->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)), ("%#x %#x\n", HyperCR0, pVM->cpum.s.Guest.cr0)); HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); Log(("CPUM New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } } #endif /* * Check for changes causing TLB flushes (for REM). * The caller is responsible for calling PGM when appropriate. */ if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) != (pVM->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))) pVM->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVM->cpum.s.fChanged |= CPUM_CHANGED_CR0; pVM->cpum.s.Guest.cr0 = cr0 | X86_CR0_ET; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestCR2(PVM pVM, uint32_t cr2) { pVM->cpum.s.Guest.cr2 = cr2; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestCR3(PVM pVM, uint32_t cr3) { pVM->cpum.s.Guest.cr3 = cr3; pVM->cpum.s.fChanged |= CPUM_CHANGED_CR3; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestCR4(PVM pVM, uint32_t cr4) { if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)) != (pVM->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))) pVM->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVM->cpum.s.fChanged |= CPUM_CHANGED_CR4; if (!CPUMSupportsFXSR(pVM)) cr4 &= ~X86_CR4_OSFSXR; pVM->cpum.s.Guest.cr4 = cr4; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestEFlags(PVM pVM, uint32_t eflags) { pVM->cpum.s.Guest.eflags.u32 = eflags; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestEIP(PVM pVM, uint32_t eip) { pVM->cpum.s.Guest.eip = eip; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestEAX(PVM pVM, uint32_t eax) { pVM->cpum.s.Guest.eax = eax; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestEBX(PVM pVM, uint32_t ebx) { pVM->cpum.s.Guest.ebx = ebx; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestECX(PVM pVM, uint32_t ecx) { pVM->cpum.s.Guest.ecx = ecx; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestEDX(PVM pVM, uint32_t edx) { pVM->cpum.s.Guest.edx = edx; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestESP(PVM pVM, uint32_t esp) { pVM->cpum.s.Guest.esp = esp; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestEBP(PVM pVM, uint32_t ebp) { pVM->cpum.s.Guest.ebp = ebp; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestESI(PVM pVM, uint32_t esi) { pVM->cpum.s.Guest.esi = esi; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestEDI(PVM pVM, uint32_t edi) { pVM->cpum.s.Guest.edi = edi; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestSS(PVM pVM, uint16_t ss) { pVM->cpum.s.Guest.ss = ss; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestCS(PVM pVM, uint16_t cs) { pVM->cpum.s.Guest.cs = cs; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestDS(PVM pVM, uint16_t ds) { pVM->cpum.s.Guest.ds = ds; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestES(PVM pVM, uint16_t es) { pVM->cpum.s.Guest.es = es; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestFS(PVM pVM, uint16_t fs) { pVM->cpum.s.Guest.fs = fs; return VINF_SUCCESS; } CPUMDECL(int) CPUMSetGuestGS(PVM pVM, uint16_t gs) { pVM->cpum.s.Guest.gs = gs; return VINF_SUCCESS; } CPUMDECL(uint32_t) CPUMGetGuestIDTR(PVM pVM, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVM->cpum.s.Guest.idtr.cbIdt; return pVM->cpum.s.Guest.idtr.pIdt; } CPUMDECL(RTSEL) CPUMGetGuestTR(PVM pVM) { return pVM->cpum.s.Guest.tr; } CPUMDECL(RTSEL) CPUMGetGuestCS(PVM pVM) { return pVM->cpum.s.Guest.cs; } CPUMDECL(RTSEL) CPUMGetGuestDS(PVM pVM) { return pVM->cpum.s.Guest.ds; } CPUMDECL(RTSEL) CPUMGetGuestES(PVM pVM) { return pVM->cpum.s.Guest.es; } CPUMDECL(RTSEL) CPUMGetGuestFS(PVM pVM) { return pVM->cpum.s.Guest.fs; } CPUMDECL(RTSEL) CPUMGetGuestGS(PVM pVM) { return pVM->cpum.s.Guest.gs; } CPUMDECL(RTSEL) CPUMGetGuestSS(PVM pVM) { return pVM->cpum.s.Guest.ss; } CPUMDECL(RTSEL) CPUMGetGuestLDTR(PVM pVM) { return pVM->cpum.s.Guest.ldtr; } CPUMDECL(uint32_t) CPUMGetGuestCR0(PVM pVM) { return pVM->cpum.s.Guest.cr0; } CPUMDECL(uint32_t) CPUMGetGuestCR2(PVM pVM) { return pVM->cpum.s.Guest.cr2; } CPUMDECL(uint32_t) CPUMGetGuestCR3(PVM pVM) { return pVM->cpum.s.Guest.cr3; } CPUMDECL(uint32_t) CPUMGetGuestCR4(PVM pVM) { return pVM->cpum.s.Guest.cr4; } CPUMDECL(void) CPUMGetGuestGDTR(PVM pVM, PVBOXGDTR pGDTR) { *pGDTR = pVM->cpum.s.Guest.gdtr; } CPUMDECL(uint32_t) CPUMGetGuestEIP(PVM pVM) { return pVM->cpum.s.Guest.eip; } CPUMDECL(uint32_t) CPUMGetGuestEAX(PVM pVM) { return pVM->cpum.s.Guest.eax; } CPUMDECL(uint32_t) CPUMGetGuestEBX(PVM pVM) { return pVM->cpum.s.Guest.ebx; } CPUMDECL(uint32_t) CPUMGetGuestECX(PVM pVM) { return pVM->cpum.s.Guest.ecx; } CPUMDECL(uint32_t) CPUMGetGuestEDX(PVM pVM) { return pVM->cpum.s.Guest.edx; } CPUMDECL(uint32_t) CPUMGetGuestESI(PVM pVM) { return pVM->cpum.s.Guest.esi; } CPUMDECL(uint32_t) CPUMGetGuestEDI(PVM pVM) { return pVM->cpum.s.Guest.edi; } CPUMDECL(uint32_t) CPUMGetGuestESP(PVM pVM) { return pVM->cpum.s.Guest.esp; } CPUMDECL(uint32_t) CPUMGetGuestEBP(PVM pVM) { return pVM->cpum.s.Guest.ebp; } CPUMDECL(uint32_t) CPUMGetGuestEFlags(PVM pVM) { return pVM->cpum.s.Guest.eflags.u32; } CPUMDECL(CPUMSELREGHID *) CPUMGetGuestTRHid(PVM pVM) { return &pVM->cpum.s.Guest.trHid; } //@todo: crx should be an array CPUMDECL(int) CPUMGetGuestCRx(PVM pVM, uint32_t iReg, uint32_t *pValue) { switch (iReg) { case USE_REG_CR0: *pValue = pVM->cpum.s.Guest.cr0; break; case USE_REG_CR2: *pValue = pVM->cpum.s.Guest.cr2; break; case USE_REG_CR3: *pValue = pVM->cpum.s.Guest.cr3; break; case USE_REG_CR4: *pValue = pVM->cpum.s.Guest.cr4; break; default: return VERR_INVALID_PARAMETER; } return VINF_SUCCESS; } CPUMDECL(RTUINTREG) CPUMGetGuestDR0(PVM pVM) { return pVM->cpum.s.Guest.dr0; } CPUMDECL(RTUINTREG) CPUMGetGuestDR1(PVM pVM) { return pVM->cpum.s.Guest.dr1; } CPUMDECL(RTUINTREG) CPUMGetGuestDR2(PVM pVM) { return pVM->cpum.s.Guest.dr2; } CPUMDECL(RTUINTREG) CPUMGetGuestDR3(PVM pVM) { return pVM->cpum.s.Guest.dr3; } CPUMDECL(RTUINTREG) CPUMGetGuestDR6(PVM pVM) { return pVM->cpum.s.Guest.dr6; } CPUMDECL(RTUINTREG) CPUMGetGuestDR7(PVM pVM) { return pVM->cpum.s.Guest.dr7; } /** @todo drx should be an array */ CPUMDECL(int) CPUMGetGuestDRx(PVM pVM, uint32_t iReg, uint32_t *pValue) { switch (iReg) { case USE_REG_DR0: *pValue = pVM->cpum.s.Guest.dr0; break; case USE_REG_DR1: *pValue = pVM->cpum.s.Guest.dr1; break; case USE_REG_DR2: *pValue = pVM->cpum.s.Guest.dr2; break; case USE_REG_DR3: *pValue = pVM->cpum.s.Guest.dr3; break; case USE_REG_DR4: case USE_REG_DR6: *pValue = pVM->cpum.s.Guest.dr6; break; case USE_REG_DR5: case USE_REG_DR7: *pValue = pVM->cpum.s.Guest.dr7; break; default: return VERR_INVALID_PARAMETER; } return VINF_SUCCESS; } /** * Gets a CpuId leaf. * * @param pVM The VM handle. * @param iLeaf The CPUID leaf to get. * @param pEax Where to store the EAX value. * @param pEbx Where to store the EBX value. * @param pEcx Where to store the ECX value. * @param pEdx Where to store the EDX value. */ CPUMDECL(void) CPUMGetGuestCpuId(PVM pVM, uint32_t iLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx) { PCCPUMCPUID pCpuId; if (iLeaf < ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)) pCpuId = &pVM->cpum.s.aGuestCpuIdStd[iLeaf]; else if (iLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)) pCpuId = &pVM->cpum.s.aGuestCpuIdExt[iLeaf - UINT32_C(0x80000000)]; else if (iLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)) pCpuId = &pVM->cpum.s.aGuestCpuIdCentaur[iLeaf - UINT32_C(0xc0000000)]; else pCpuId = &pVM->cpum.s.GuestCpuIdDef; *pEax = pCpuId->eax; *pEbx = pCpuId->ebx; *pEcx = pCpuId->ecx; *pEdx = pCpuId->edx; Log2(("CPUMGetGuestCpuId: iLeaf=%#010x %RX32 %RX32 %RX32 %RX32\n", iLeaf, *pEax, *pEbx, *pEcx, *pEdx)); } /** * Gets a pointer to the array of standard CPUID leafs. * * CPUMGetGuestCpuIdStdMax() give the size of the array. * * @returns Pointer to the standard CPUID leafs (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdStdGCPtr(PVM pVM) { return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]); } /** * Gets a pointer to the array of extended CPUID leafs. * * CPUMGetGuestCpuIdExtMax() give the size of the array. * * @returns Pointer to the extended CPUID leafs (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdExtGCPtr(PVM pVM) { return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]); } /** * Gets a pointer to the array of centaur CPUID leafs. * * CPUMGetGuestCpuIdCentaurMax() give the size of the array. * * @returns Pointer to the centaur CPUID leafs (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdCentaurGCPtr(PVM pVM) { return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]); } /** * Gets a pointer to the default CPUID leaf. * * @returns Pointer to the default CPUID leaf (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdDefGCPtr(PVM pVM) { return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef); } /** * Gets a number of standard CPUID leafs. * * @returns Number of leafs. * @param pVM The VM handle. * @remark Intended for PATM. */ CPUMDECL(uint32_t) CPUMGetGuestCpuIdStdMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); } /** * Gets a number of extended CPUID leafs. * * @returns Number of leafs. * @param pVM The VM handle. * @remark Intended for PATM. */ CPUMDECL(uint32_t) CPUMGetGuestCpuIdExtMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); } /** * Gets a number of centaur CPUID leafs. * * @returns Number of leafs. * @param pVM The VM handle. * @remark Intended for PATM. */ CPUMDECL(uint32_t) CPUMGetGuestCpuIdCentaurMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); } /** * Sets a CPUID feature bit. * * @param pVM The VM Handle. * @param enmFeature The feature to set. */ CPUMDECL(void) CPUMSetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { /* * Set the APIC bit in both feature masks. */ case CPUMCPUIDFEATURE_APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_APIC; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.aGuestCpuIdExt[1].edx) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_APIC; Log(("CPUMSetGuestCpuIdFeature: Enabled APIC\n")); break; /* * Set the sysenter/sysexit bit in both feature masks. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_SEP: { uint32_t ulEdx, ulDummy; ASMCpuId(1, &ulDummy, &ulDummy, &ulDummy, &ulEdx); if (!(ulEdx & X86_CPUID_FEATURE_EDX_SEP)) { AssertMsgFailed(("ERROR: Can't turn on SEP when the host doesn't support it!!\n")); return; } if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_SEP; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.aGuestCpuIdExt[1].edx) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_SEP; Log(("CPUMSetGuestCpuIdFeature: Enabled sysenter/exit\n")); break; } default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } } /** * Clears a CPUID feature bit. * * @param pVM The VM Handle. * @param enmFeature The feature to clear. */ CPUMDECL(void) CPUMClearGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { /* * Set the APIC bit in both feature masks. */ case CPUMCPUIDFEATURE_APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_APIC; if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC; Log(("CPUMSetGuestCpuIdFeature: Disabled APIC\n")); break; default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } } CPUMDECL(int) CPUMSetGuestDR0(PVM pVM, RTGCUINTREG uDr0) { pVM->cpum.s.Guest.dr0 = uDr0; return CPUMRecalcHyperDRx(pVM); } CPUMDECL(int) CPUMSetGuestDR1(PVM pVM, RTGCUINTREG uDr1) { pVM->cpum.s.Guest.dr1 = uDr1; return CPUMRecalcHyperDRx(pVM); } CPUMDECL(int) CPUMSetGuestDR2(PVM pVM, RTGCUINTREG uDr2) { pVM->cpum.s.Guest.dr2 = uDr2; return CPUMRecalcHyperDRx(pVM); } CPUMDECL(int) CPUMSetGuestDR3(PVM pVM, RTGCUINTREG uDr3) { pVM->cpum.s.Guest.dr3 = uDr3; return CPUMRecalcHyperDRx(pVM); } CPUMDECL(int) CPUMSetGuestDR6(PVM pVM, RTGCUINTREG uDr6) { pVM->cpum.s.Guest.dr6 = uDr6; return CPUMRecalcHyperDRx(pVM); } CPUMDECL(int) CPUMSetGuestDR7(PVM pVM, RTGCUINTREG uDr7) { pVM->cpum.s.Guest.dr7 = uDr7; return CPUMRecalcHyperDRx(pVM); } /** @todo drx should be an array */ CPUMDECL(int) CPUMSetGuestDRx(PVM pVM, uint32_t iReg, uint32_t Value) { switch (iReg) { case USE_REG_DR0: pVM->cpum.s.Guest.dr0 = Value; break; case USE_REG_DR1: pVM->cpum.s.Guest.dr1 = Value; break; case USE_REG_DR2: pVM->cpum.s.Guest.dr2 = Value; break; case USE_REG_DR3: pVM->cpum.s.Guest.dr3 = Value; break; case USE_REG_DR4: case USE_REG_DR6: pVM->cpum.s.Guest.dr6 = Value; break; case USE_REG_DR5: case USE_REG_DR7: pVM->cpum.s.Guest.dr7 = Value; break; default: return VERR_INVALID_PARAMETER; } return CPUMRecalcHyperDRx(pVM); } /** * Recalculates the hypvervisor DRx register values based on * current guest registers and DBGF breakpoints. * * This is called whenever a guest DRx register is modified and when DBGF * sets a hardware breakpoint. In guest context this function will reload * any (hyper) DRx registers which comes out with a different value. * * @returns VINF_SUCCESS. * @param pVM The VM handle. */ CPUMDECL(int) CPUMRecalcHyperDRx(PVM pVM) { /* * Compare the DR7s first. * * We only care about the enabled flags. The GE and LE flags are always * set and we don't care if the guest doesn't set them. GD is virtualized * when we dispatch #DB, we never enable it. */ const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM); #ifdef CPUM_VIRTUALIZE_DRX const RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVM); #else const RTGCUINTREG uGstDr7 = 0; #endif if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK) { /* * Ok, something is enabled. Recalc each of the breakpoints. * Straight forward code, not optimized/minimized in any way. */ RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_MB1_MASK; /* bp 0 */ RTGCUINTREG uNewDr0; if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = DBGFBpGetDR0(pVM); } else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = CPUMGetGuestDR0(pVM); } else uNewDr0 = pVM->cpum.s.Hyper.dr0; /* bp 1 */ RTGCUINTREG uNewDr1; if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = DBGFBpGetDR1(pVM); } else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = CPUMGetGuestDR1(pVM); } else uNewDr1 = pVM->cpum.s.Hyper.dr1; /* bp 2 */ RTGCUINTREG uNewDr2; if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = DBGFBpGetDR2(pVM); } else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = CPUMGetGuestDR2(pVM); } else uNewDr2 = pVM->cpum.s.Hyper.dr2; /* bp 3 */ RTGCUINTREG uNewDr3; if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = DBGFBpGetDR3(pVM); } else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = CPUMGetGuestDR3(pVM); } else uNewDr3 = pVM->cpum.s.Hyper.dr3; /* * Apply the updates. */ #ifdef IN_GC if (!(pVM->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS)) { /** @todo save host DBx registers. */ } #endif pVM->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS; if (uNewDr3 != pVM->cpum.s.Hyper.dr3) CPUMSetHyperDR3(pVM, uNewDr3); if (uNewDr2 != pVM->cpum.s.Hyper.dr2) CPUMSetHyperDR2(pVM, uNewDr2); if (uNewDr1 != pVM->cpum.s.Hyper.dr1) CPUMSetHyperDR1(pVM, uNewDr1); if (uNewDr0 != pVM->cpum.s.Hyper.dr0) CPUMSetHyperDR0(pVM, uNewDr0); if (uNewDr7 != pVM->cpum.s.Hyper.dr7) CPUMSetHyperDR7(pVM, uNewDr7); } else { #ifdef IN_GC if (pVM->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS) { /** @todo restore host DBx registers. */ } #endif pVM->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS; } Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n", pVM->cpum.s.fUseFlags, pVM->cpum.s.Hyper.dr0, pVM->cpum.s.Hyper.dr1, pVM->cpum.s.Hyper.dr2, pVM->cpum.s.Hyper.dr3, pVM->cpum.s.Hyper.dr6, pVM->cpum.s.Hyper.dr7)); return VINF_SUCCESS; } #ifndef IN_RING0 /** @todo I don't think we need this in R0, so move it to CPUMAll.cpp? */ /** * Transforms the guest CPU state to raw-ring mode. * * This function will change the any of the cs and ss register with DPL=0 to DPL=1. * * @returns VBox status. (recompiler failure) * @param pVM VM handle. * @param pCtxCore The context core (for trap usage). * @see @ref pg_raw */ CPUMDECL(int) CPUMRawEnter(PVM pVM, PCPUMCTXCORE pCtxCore) { Assert(!pVM->cpum.s.fRawEntered); if (!pCtxCore) pCtxCore = CPUMCTX2CORE(&pVM->cpum.s.Guest); /* * Are we in Ring-0? */ if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0 && !pCtxCore->eflags.Bits.u1VM) { /* * Enter execution mode. */ PATMRawEnter(pVM, pCtxCore); /* * Set CPL to Ring-1. */ pCtxCore->ss |= 1; if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0) pCtxCore->cs |= 1; } else { AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM, ("ring-1 code not supported\n")); /* * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well. */ PATMRawEnter(pVM, pCtxCore); } /* * Assert sanity. */ AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n")); AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL) || pCtxCore->eflags.Bits.u1VM, ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL)); Assert((pVM->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP)); pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */ pVM->cpum.s.fRawEntered = true; return VINF_SUCCESS; } /** * Transforms the guest CPU state from raw-ring mode to correct values. * * This function will change any selector registers with DPL=1 to DPL=0. * * @returns Adjusted rc. * @param pVM VM handle. * @param rc Raw mode return code * @param pCtxCore The context core (for trap usage). * @see @ref pg_raw */ CPUMDECL(int) CPUMRawLeave(PVM pVM, PCPUMCTXCORE pCtxCore, int rc) { /* * Don't leave if we've already left (in GC). */ Assert(pVM->cpum.s.fRawEntered); if (!pVM->cpum.s.fRawEntered) return rc; pVM->cpum.s.fRawEntered = false; PCPUMCTX pCtx = &pVM->cpum.s.Guest; if (!pCtxCore) pCtxCore = CPUMCTX2CORE(pCtx); Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL)); AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL), ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL)); /* * Are we executing in raw ring-1? */ if ( (pCtxCore->ss & X86_SEL_RPL) == 1 && !pCtxCore->eflags.Bits.u1VM) { /* * Leave execution mode. */ PATMRawLeave(pVM, pCtxCore, rc); /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */ /** @todo See what happens if we remove this. */ if ((pCtxCore->ds & X86_SEL_RPL) == 1) pCtxCore->ds &= ~X86_SEL_RPL; if ((pCtxCore->es & X86_SEL_RPL) == 1) pCtxCore->es &= ~X86_SEL_RPL; if ((pCtxCore->fs & X86_SEL_RPL) == 1) pCtxCore->fs &= ~X86_SEL_RPL; if ((pCtxCore->gs & X86_SEL_RPL) == 1) pCtxCore->gs &= ~X86_SEL_RPL; /* * Ring-1 selector => Ring-0. */ pCtxCore->ss &= ~X86_SEL_RPL; if ((pCtxCore->cs & X86_SEL_RPL) == 1) pCtxCore->cs &= ~X86_SEL_RPL; } else { /* * PATM is taking care of the IOPL and IF flags for us. */ PATMRawLeave(pVM, pCtxCore, rc); if (!pCtxCore->eflags.Bits.u1VM) { /** @todo See what happens if we remove this. */ if ((pCtxCore->ds & X86_SEL_RPL) == 1) pCtxCore->ds &= ~X86_SEL_RPL; if ((pCtxCore->es & X86_SEL_RPL) == 1) pCtxCore->es &= ~X86_SEL_RPL; if ((pCtxCore->fs & X86_SEL_RPL) == 1) pCtxCore->fs &= ~X86_SEL_RPL; if ((pCtxCore->gs & X86_SEL_RPL) == 1) pCtxCore->gs &= ~X86_SEL_RPL; } } return rc; } /** * Updates the EFLAGS while we're in raw-mode. * * @param pVM The VM handle. * @param pCtxCore The context core. * @param eflags The new EFLAGS value. */ CPUMDECL(void) CPUMRawSetEFlags(PVM pVM, PCPUMCTXCORE pCtxCore, uint32_t eflags) { if (!pVM->cpum.s.fRawEntered) { pCtxCore->eflags.u32 = eflags; return; } PATMRawSetEFlags(pVM, pCtxCore, eflags); } #endif /* !IN_RING0 */ /** * Gets the EFLAGS while we're in raw-mode. * * @returns The eflags. * @param pVM The VM handle. * @param pCtxCore The context core. */ CPUMDECL(uint32_t) CPUMRawGetEFlags(PVM pVM, PCPUMCTXCORE pCtxCore) { #ifdef IN_RING0 return pCtxCore->eflags.u32; #else if (!pVM->cpum.s.fRawEntered) return pCtxCore->eflags.u32; return PATMRawGetEFlags(pVM, pCtxCore); #endif } /** * Gets and resets the changed flags (CPUM_CHANGED_*). * Only REM should call this function. * * @returns The changed flags. * @param pVM The VM handle. */ CPUMDECL(unsigned) CPUMGetAndClearChangedFlagsREM(PVM pVM) { unsigned fFlags = pVM->cpum.s.fChanged; pVM->cpum.s.fChanged = 0; /** @todo change the switcher to use the fChanged flags. */ if (pVM->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM) { fFlags |= CPUM_CHANGED_FPU_REM; pVM->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM; } return fFlags; } /** * Sets the specified changed flags (CPUM_CHANGED_*). * * @param pVM The VM handle. */ CPUMDECL(void) CPUMSetChangedFlags(PVM pVM, uint32_t fChangedFlags) { pVM->cpum.s.fChanged |= fChangedFlags; } /** * Checks if the CPU supports the FXSAVE and FXRSTOR instruction. * @returns true if supported. * @returns false if not supported. * @param pVM The VM handle. */ CPUMDECL(bool) CPUMSupportsFXSR(PVM pVM) { return pVM->cpum.s.CPUFeatures.edx.u1FXSR != 0; } /** * Checks if the host OS uses the SYSENTER / SYSEXIT instructions. * @returns true if used. * @returns false if not used. * @param pVM The VM handle. */ CPUMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM) { return (pVM->cpum.s.fUseFlags & CPUM_USE_SYSENTER) != 0; } /** * Checks if the host OS uses the SYSCALL / SYSRET instructions. * @returns true if used. * @returns false if not used. * @param pVM The VM handle. */ CPUMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM) { return (pVM->cpum.s.fUseFlags & CPUM_USE_SYSCALL) != 0; } /** * Lazily sync in the FPU/XMM state * * @returns VBox status code. * @param pVM VM handle. */ CPUMDECL(int) CPUMHandleLazyFPU(PVM pVM) { return CPUMHandleLazyFPUAsm(&pVM->cpum.s); } /** * Restore host FPU/XMM state * * @returns VBox status code. * @param pVM VM handle. */ CPUMDECL(int) CPUMRestoreHostFPUState(PVM pVM) { Assert(pVM->cpum.s.CPUFeatures.edx.u1FXSR); return CPUMRestoreHostFPUStateAsm(&pVM->cpum.s); } /** * Checks if we activated the FPU/XMM state of the guest OS * @returns true if we did. * @returns false if not. * @param pVM The VM handle. */ CPUMDECL(bool) CPUMIsGuestFPUStateActive(PVM pVM) { return (pVM->cpum.s.fUseFlags & CPUM_USED_FPU) != 0; } /** * Deactivate the FPU/XMM state of the guest OS * @param pVM The VM handle. */ CPUMDECL(void) CPUMDeactivateGuestFPUState(PVM pVM) { pVM->cpum.s.fUseFlags &= ~CPUM_USED_FPU; } /** * Checks if the hidden selector registers are valid * @returns true if they are. * @returns false if not. * @param pVM The VM handle. */ CPUMDECL(bool) CPUMAreHiddenSelRegsValid(PVM pVM) { return !!pVM->cpum.s.fValidHiddenSelRegs; /** @todo change fValidHiddenSelRegs to bool! */ } /** * Checks if the hidden selector registers are valid * @param pVM The VM handle. * @param fValid Valid or not */ CPUMDECL(void) CPUMSetHiddenSelRegsValid(PVM pVM, bool fValid) { pVM->cpum.s.fValidHiddenSelRegs = fValid; } /** * Get the current privilege level of the guest. * * @returns cpl * @param pVM VM Handle. * @param pRegFrame Trap register frame. */ CPUMDECL(uint32_t) CPUMGetGuestCPL(PVM pVM, PCPUMCTXCORE pCtxCore) { uint32_t cpl; if (CPUMAreHiddenSelRegsValid(pVM)) cpl = pCtxCore->ssHid.Attr.n.u2Dpl; else if (RT_LIKELY(pVM->cpum.s.Guest.cr0 & X86_CR0_PE)) { if (RT_LIKELY(!pCtxCore->eflags.Bits.u1VM)) { cpl = (pCtxCore->ss & X86_SEL_RPL); #ifndef IN_RING0 if (cpl == 1) cpl = 0; #endif } else cpl = 3; } else cpl = 0; /* real mode; cpl is zero */ return cpl; } /** * Gets the current guest CPU mode. * * If paging mode is what you need, check out PGMGetGuestMode(). * * @returns The CPU mode. * @param pVM The VM handle. */ CPUMDECL(CPUMMODE) CPUMGetGuestMode(PVM pVM) { CPUMMODE enmMode; if (!(pVM->cpum.s.Guest.cr0 & X86_CR0_PE)) enmMode = CPUMMODE_REAL; else //GUEST64 if (!(pVM->cpum.s.Guest.efer & MSR_K6_EFER_LMA) enmMode = CPUMMODE_PROTECTED; //GUEST64 else //GUEST64 enmMode = CPUMMODE_LONG; return enmMode; }