/* $Id: CPUMAllCpuId.cpp 97529 2022-11-14 11:52:01Z vboxsync $ */ /** @file * CPUM - CPU ID part, common bits. */ /* * Copyright (C) 2013-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #include #include #include #include "CPUMInternal.h" #include #include #include #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) # include #endif #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** * The intel pentium family. */ static const CPUMMICROARCH g_aenmIntelFamily06[] = { /* [ 0(0x00)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro A-step (says sandpile.org). */ /* [ 1(0x01)] = */ kCpumMicroarch_Intel_P6, /* Pentium Pro */ /* [ 2(0x02)] = */ kCpumMicroarch_Intel_Unknown, /* [ 3(0x03)] = */ kCpumMicroarch_Intel_P6_II, /* PII Klamath */ /* [ 4(0x04)] = */ kCpumMicroarch_Intel_Unknown, /* [ 5(0x05)] = */ kCpumMicroarch_Intel_P6_II, /* PII Deschutes */ /* [ 6(0x06)] = */ kCpumMicroarch_Intel_P6_II, /* Celeron Mendocino. */ /* [ 7(0x07)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Katmai. */ /* [ 8(0x08)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Coppermine (includes Celeron). */ /* [ 9(0x09)] = */ kCpumMicroarch_Intel_P6_M_Banias, /* Pentium/Celeron M Banias. */ /* [10(0x0a)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Xeon */ /* [11(0x0b)] = */ kCpumMicroarch_Intel_P6_III, /* PIII Tualatin (includes Celeron). */ /* [12(0x0c)] = */ kCpumMicroarch_Intel_Unknown, /* [13(0x0d)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Pentium/Celeron M Dothan. */ /* [14(0x0e)] = */ kCpumMicroarch_Intel_Core_Yonah, /* Core Yonah (Enhanced Pentium M). */ /* [15(0x0f)] = */ kCpumMicroarch_Intel_Core2_Merom, /* Merom */ /* [16(0x10)] = */ kCpumMicroarch_Intel_Unknown, /* [17(0x11)] = */ kCpumMicroarch_Intel_Unknown, /* [18(0x12)] = */ kCpumMicroarch_Intel_Unknown, /* [19(0x13)] = */ kCpumMicroarch_Intel_Unknown, /* [20(0x14)] = */ kCpumMicroarch_Intel_Unknown, /* [21(0x15)] = */ kCpumMicroarch_Intel_P6_M_Dothan, /* Tolapai - System-on-a-chip. */ /* [22(0x16)] = */ kCpumMicroarch_Intel_Core2_Merom, /* [23(0x17)] = */ kCpumMicroarch_Intel_Core2_Penryn, /* [24(0x18)] = */ kCpumMicroarch_Intel_Unknown, /* [25(0x19)] = */ kCpumMicroarch_Intel_Unknown, /* [26(0x1a)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Nehalem-EP */ /* [27(0x1b)] = */ kCpumMicroarch_Intel_Unknown, /* [28(0x1c)] = */ kCpumMicroarch_Intel_Atom_Bonnell, /* Diamonville, Pineview, */ /* [29(0x1d)] = */ kCpumMicroarch_Intel_Core2_Penryn, /* [30(0x1e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Clarksfield, Lynnfield, Jasper Forest. */ /* [31(0x1f)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Only listed by sandpile.org. 2 cores ABD/HVD, whatever that means. */ /* [32(0x20)] = */ kCpumMicroarch_Intel_Unknown, /* [33(0x21)] = */ kCpumMicroarch_Intel_Unknown, /* [34(0x22)] = */ kCpumMicroarch_Intel_Unknown, /* [35(0x23)] = */ kCpumMicroarch_Intel_Unknown, /* [36(0x24)] = */ kCpumMicroarch_Intel_Unknown, /* [37(0x25)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Arrandale, Clarksdale. */ /* [38(0x26)] = */ kCpumMicroarch_Intel_Atom_Lincroft, /* [39(0x27)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* [40(0x28)] = */ kCpumMicroarch_Intel_Unknown, /* [41(0x29)] = */ kCpumMicroarch_Intel_Unknown, /* [42(0x2a)] = */ kCpumMicroarch_Intel_Core7_SandyBridge, /* [43(0x2b)] = */ kCpumMicroarch_Intel_Unknown, /* [44(0x2c)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Gulftown, Westmere-EP. */ /* [45(0x2d)] = */ kCpumMicroarch_Intel_Core7_SandyBridge, /* SandyBridge-E, SandyBridge-EN, SandyBridge-EP. */ /* [46(0x2e)] = */ kCpumMicroarch_Intel_Core7_Nehalem, /* Beckton (Xeon). */ /* [47(0x2f)] = */ kCpumMicroarch_Intel_Core7_Westmere, /* Westmere-EX. */ /* [48(0x30)] = */ kCpumMicroarch_Intel_Unknown, /* [49(0x31)] = */ kCpumMicroarch_Intel_Unknown, /* [50(0x32)] = */ kCpumMicroarch_Intel_Unknown, /* [51(0x33)] = */ kCpumMicroarch_Intel_Unknown, /* [52(0x34)] = */ kCpumMicroarch_Intel_Unknown, /* [53(0x35)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* ?? */ /* [54(0x36)] = */ kCpumMicroarch_Intel_Atom_Saltwell, /* Cedarview, ++ */ /* [55(0x37)] = */ kCpumMicroarch_Intel_Atom_Silvermont, /* [56(0x38)] = */ kCpumMicroarch_Intel_Unknown, /* [57(0x39)] = */ kCpumMicroarch_Intel_Unknown, /* [58(0x3a)] = */ kCpumMicroarch_Intel_Core7_IvyBridge, /* [59(0x3b)] = */ kCpumMicroarch_Intel_Unknown, /* [60(0x3c)] = */ kCpumMicroarch_Intel_Core7_Haswell, /* [61(0x3d)] = */ kCpumMicroarch_Intel_Core7_Broadwell, /* [62(0x3e)] = */ kCpumMicroarch_Intel_Core7_IvyBridge, /* [63(0x3f)] = */ kCpumMicroarch_Intel_Core7_Haswell, /* [64(0x40)] = */ kCpumMicroarch_Intel_Unknown, /* [65(0x41)] = */ kCpumMicroarch_Intel_Unknown, /* [66(0x42)] = */ kCpumMicroarch_Intel_Unknown, /* [67(0x43)] = */ kCpumMicroarch_Intel_Unknown, /* [68(0x44)] = */ kCpumMicroarch_Intel_Unknown, /* [69(0x45)] = */ kCpumMicroarch_Intel_Core7_Haswell, /* [70(0x46)] = */ kCpumMicroarch_Intel_Core7_Haswell, /* [71(0x47)] = */ kCpumMicroarch_Intel_Core7_Broadwell, /* i7-5775C */ /* [72(0x48)] = */ kCpumMicroarch_Intel_Unknown, /* [73(0x49)] = */ kCpumMicroarch_Intel_Unknown, /* [74(0x4a)] = */ kCpumMicroarch_Intel_Atom_Silvermont, /* [75(0x4b)] = */ kCpumMicroarch_Intel_Unknown, /* [76(0x4c)] = */ kCpumMicroarch_Intel_Atom_Airmount, /* [77(0x4d)] = */ kCpumMicroarch_Intel_Atom_Silvermont, /* [78(0x4e)] = */ kCpumMicroarch_Intel_Core7_Skylake, /* [79(0x4f)] = */ kCpumMicroarch_Intel_Core7_Broadwell, /* Broadwell-E */ /* [80(0x50)] = */ kCpumMicroarch_Intel_Unknown, /* [81(0x51)] = */ kCpumMicroarch_Intel_Unknown, /* [82(0x52)] = */ kCpumMicroarch_Intel_Unknown, /* [83(0x53)] = */ kCpumMicroarch_Intel_Unknown, /* [84(0x54)] = */ kCpumMicroarch_Intel_Unknown, /* [85(0x55)] = */ kCpumMicroarch_Intel_Core7_Skylake, /* server cpu; skylake <= 4, cascade lake > 5 */ /* [86(0x56)] = */ kCpumMicroarch_Intel_Core7_Broadwell, /* Xeon D-1540, Broadwell-DE */ /* [87(0x57)] = */ kCpumMicroarch_Intel_Phi_KnightsLanding, /* [88(0x58)] = */ kCpumMicroarch_Intel_Unknown, /* [89(0x59)] = */ kCpumMicroarch_Intel_Unknown, /* [90(0x5a)] = */ kCpumMicroarch_Intel_Atom_Silvermont, /* Moorefield */ /* [91(0x5b)] = */ kCpumMicroarch_Intel_Unknown, /* [92(0x5c)] = */ kCpumMicroarch_Intel_Atom_Goldmont, /* Apollo Lake */ /* [93(0x5d)] = */ kCpumMicroarch_Intel_Atom_Silvermont, /* x3-C3230 */ /* [94(0x5e)] = */ kCpumMicroarch_Intel_Core7_Skylake, /* i7-6700K */ /* [95(0x5f)] = */ kCpumMicroarch_Intel_Atom_Goldmont, /* Denverton */ /* [96(0x60)] = */ kCpumMicroarch_Intel_Unknown, /* [97(0x61)] = */ kCpumMicroarch_Intel_Unknown, /* [98(0x62)] = */ kCpumMicroarch_Intel_Unknown, /* [99(0x63)] = */ kCpumMicroarch_Intel_Unknown, /*[100(0x64)] = */ kCpumMicroarch_Intel_Unknown, /*[101(0x65)] = */ kCpumMicroarch_Intel_Atom_Silvermont, /* SoFIA */ /*[102(0x66)] = */ kCpumMicroarch_Intel_Core7_CannonLake, /* unconfirmed */ /*[103(0x67)] = */ kCpumMicroarch_Intel_Unknown, /*[104(0x68)] = */ kCpumMicroarch_Intel_Unknown, /*[105(0x69)] = */ kCpumMicroarch_Intel_Unknown, /*[106(0x6a)] = */ kCpumMicroarch_Intel_Core7_IceLake, /* unconfirmed server */ /*[107(0x6b)] = */ kCpumMicroarch_Intel_Unknown, /*[108(0x6c)] = */ kCpumMicroarch_Intel_Core7_IceLake, /* unconfirmed server */ /*[109(0x6d)] = */ kCpumMicroarch_Intel_Unknown, /*[110(0x6e)] = */ kCpumMicroarch_Intel_Atom_Airmount, /* or silvermount? */ /*[111(0x6f)] = */ kCpumMicroarch_Intel_Unknown, /*[112(0x70)] = */ kCpumMicroarch_Intel_Unknown, /*[113(0x71)] = */ kCpumMicroarch_Intel_Unknown, /*[114(0x72)] = */ kCpumMicroarch_Intel_Unknown, /*[115(0x73)] = */ kCpumMicroarch_Intel_Unknown, /*[116(0x74)] = */ kCpumMicroarch_Intel_Unknown, /*[117(0x75)] = */ kCpumMicroarch_Intel_Atom_Airmount, /* or silvermount? */ /*[118(0x76)] = */ kCpumMicroarch_Intel_Unknown, /*[119(0x77)] = */ kCpumMicroarch_Intel_Unknown, /*[120(0x78)] = */ kCpumMicroarch_Intel_Unknown, /*[121(0x79)] = */ kCpumMicroarch_Intel_Unknown, /*[122(0x7a)] = */ kCpumMicroarch_Intel_Atom_GoldmontPlus, /*[123(0x7b)] = */ kCpumMicroarch_Intel_Unknown, /*[124(0x7c)] = */ kCpumMicroarch_Intel_Unknown, /*[125(0x7d)] = */ kCpumMicroarch_Intel_Core7_IceLake, /* unconfirmed */ /*[126(0x7e)] = */ kCpumMicroarch_Intel_Core7_IceLake, /* unconfirmed */ /*[127(0x7f)] = */ kCpumMicroarch_Intel_Unknown, /*[128(0x80)] = */ kCpumMicroarch_Intel_Unknown, /*[129(0x81)] = */ kCpumMicroarch_Intel_Unknown, /*[130(0x82)] = */ kCpumMicroarch_Intel_Unknown, /*[131(0x83)] = */ kCpumMicroarch_Intel_Unknown, /*[132(0x84)] = */ kCpumMicroarch_Intel_Unknown, /*[133(0x85)] = */ kCpumMicroarch_Intel_Phi_KnightsMill, /*[134(0x86)] = */ kCpumMicroarch_Intel_Unknown, /*[135(0x87)] = */ kCpumMicroarch_Intel_Unknown, /*[136(0x88)] = */ kCpumMicroarch_Intel_Unknown, /*[137(0x89)] = */ kCpumMicroarch_Intel_Unknown, /*[138(0x8a)] = */ kCpumMicroarch_Intel_Unknown, /*[139(0x8b)] = */ kCpumMicroarch_Intel_Unknown, /*[140(0x8c)] = */ kCpumMicroarch_Intel_Core7_TigerLake, /* 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz (bird) */ /*[141(0x8d)] = */ kCpumMicroarch_Intel_Core7_TigerLake, /* unconfirmed */ /*[142(0x8e)] = */ kCpumMicroarch_Intel_Core7_KabyLake, /* Stepping >= 0xB is Whiskey Lake, 0xA is CoffeeLake. */ /*[143(0x8f)] = */ kCpumMicroarch_Intel_Core7_SapphireRapids, /*[144(0x90)] = */ kCpumMicroarch_Intel_Unknown, /*[145(0x91)] = */ kCpumMicroarch_Intel_Unknown, /*[146(0x92)] = */ kCpumMicroarch_Intel_Unknown, /*[147(0x93)] = */ kCpumMicroarch_Intel_Unknown, /*[148(0x94)] = */ kCpumMicroarch_Intel_Unknown, /*[149(0x95)] = */ kCpumMicroarch_Intel_Unknown, /*[150(0x96)] = */ kCpumMicroarch_Intel_Unknown, /*[151(0x97)] = */ kCpumMicroarch_Intel_Core7_AlderLake, /* unconfirmed, unreleased */ /*[152(0x98)] = */ kCpumMicroarch_Intel_Unknown, /*[153(0x99)] = */ kCpumMicroarch_Intel_Unknown, /*[154(0x9a)] = */ kCpumMicroarch_Intel_Core7_AlderLake, /* unconfirmed, unreleased */ /*[155(0x9b)] = */ kCpumMicroarch_Intel_Unknown, /*[156(0x9c)] = */ kCpumMicroarch_Intel_Unknown, /*[157(0x9d)] = */ kCpumMicroarch_Intel_Unknown, /*[158(0x9e)] = */ kCpumMicroarch_Intel_Core7_KabyLake, /* Stepping >= 0xB is Whiskey Lake, 0xA is CoffeeLake. */ /*[159(0x9f)] = */ kCpumMicroarch_Intel_Unknown, /*[160(0xa0)] = */ kCpumMicroarch_Intel_Unknown, /*[161(0xa1)] = */ kCpumMicroarch_Intel_Unknown, /*[162(0xa2)] = */ kCpumMicroarch_Intel_Unknown, /*[163(0xa3)] = */ kCpumMicroarch_Intel_Unknown, /*[164(0xa4)] = */ kCpumMicroarch_Intel_Unknown, /*[165(0xa5)] = */ kCpumMicroarch_Intel_Core7_CometLake, /* unconfirmed */ /*[166(0xa6)] = */ kCpumMicroarch_Intel_Unknown, /*[167(0xa7)] = */ kCpumMicroarch_Intel_Core7_CypressCove, /* 14nm backport, unconfirmed */ }; AssertCompile(RT_ELEMENTS(g_aenmIntelFamily06) == 0xa7+1); /** * Figures out the (sub-)micro architecture given a bit of CPUID info. * * @returns Micro architecture. * @param enmVendor The CPU vendor. * @param bFamily The CPU family. * @param bModel The CPU model. * @param bStepping The CPU stepping. */ VMMDECL(CPUMMICROARCH) CPUMCpuIdDetermineX86MicroarchEx(CPUMCPUVENDOR enmVendor, uint8_t bFamily, uint8_t bModel, uint8_t bStepping) { if (enmVendor == CPUMCPUVENDOR_AMD) { switch (bFamily) { case 0x02: return kCpumMicroarch_AMD_Am286; /* Not really kosher... */ case 0x03: return kCpumMicroarch_AMD_Am386; case 0x23: return kCpumMicroarch_AMD_Am386; /* SX*/ case 0x04: return bModel < 14 ? kCpumMicroarch_AMD_Am486 : kCpumMicroarch_AMD_Am486Enh; case 0x05: return bModel < 6 ? kCpumMicroarch_AMD_K5 : kCpumMicroarch_AMD_K6; /* Genode LX is 0x0a, lump it with K6. */ case 0x06: switch (bModel) { case 0: return kCpumMicroarch_AMD_K7_Palomino; case 1: return kCpumMicroarch_AMD_K7_Palomino; case 2: return kCpumMicroarch_AMD_K7_Palomino; case 3: return kCpumMicroarch_AMD_K7_Spitfire; case 4: return kCpumMicroarch_AMD_K7_Thunderbird; case 6: return kCpumMicroarch_AMD_K7_Palomino; case 7: return kCpumMicroarch_AMD_K7_Morgan; case 8: return kCpumMicroarch_AMD_K7_Thoroughbred; case 10: return kCpumMicroarch_AMD_K7_Barton; /* Thorton too. */ } return kCpumMicroarch_AMD_K7_Unknown; case 0x0f: /* * This family is a friggin mess. Trying my best to make some * sense out of it. Too much happened in the 0x0f family to * lump it all together as K8 (130nm->90nm->65nm, AMD-V, ++). * * Emperical CPUID.01h.EAX evidence from revision guides, wikipedia, * cpu-world.com, and other places: * - 130nm: * - ClawHammer: F7A/SH-CG, F5A/-CG, F4A/-CG, F50/-B0, F48/-C0, F58/-C0, * - SledgeHammer: F50/SH-B0, F48/-C0, F58/-C0, F4A/-CG, F5A/-CG, F7A/-CG, F51/-B3 * - Newcastle: FC0/DH-CG (erratum #180: FE0/DH-CG), FF0/DH-CG * - Dublin: FC0/-CG, FF0/-CG, F82/CH-CG, F4A/-CG, F48/SH-C0, * - Odessa: FC0/DH-CG (erratum #180: FE0/DH-CG) * - Paris: FF0/DH-CG, FC0/DH-CG (erratum #180: FE0/DH-CG), * - 90nm: * - Winchester: 10FF0/DH-D0, 20FF0/DH-E3. * - Oakville: 10FC0/DH-D0. * - Georgetown: 10FC0/DH-D0. * - Sonora: 10FC0/DH-D0. * - Venus: 20F71/SH-E4 * - Troy: 20F51/SH-E4 * - Athens: 20F51/SH-E4 * - San Diego: 20F71/SH-E4. * - Lancaster: 20F42/SH-E5 * - Newark: 20F42/SH-E5. * - Albany: 20FC2/DH-E6. * - Roma: 20FC2/DH-E6. * - Venice: 20FF0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6. * - Palermo: 10FC0/DH-D0, 20FF0/DH-E3, 20FC0/DH-E3, 20FC2/DH-E6, 20FF2/DH-E6 * - 90nm introducing Dual core: * - Denmark: 20F30/JH-E1, 20F32/JH-E6 * - Italy: 20F10/JH-E1, 20F12/JH-E6 * - Egypt: 20F10/JH-E1, 20F12/JH-E6 * - Toledo: 20F32/JH-E6, 30F72/DH-E6 (single code variant). * - Manchester: 20FB1/BH-E4, 30FF2/BH-E4. * - 90nm 2nd gen opteron ++, AMD-V introduced (might be missing in some cheaper models): * - Santa Ana: 40F32/JH-F2, /-F3 * - Santa Rosa: 40F12/JH-F2, 40F13/JH-F3 * - Windsor: 40F32/JH-F2, 40F33/JH-F3, C0F13/JH-F3, 40FB2/BH-F2, ??20FB1/BH-E4??. * - Manila: 50FF2/DH-F2, 40FF2/DH-F2 * - Orleans: 40FF2/DH-F2, 50FF2/DH-F2, 50FF3/DH-F3. * - Keene: 40FC2/DH-F2. * - Richmond: 40FC2/DH-F2 * - Taylor: 40F82/BH-F2 * - Trinidad: 40F82/BH-F2 * * - 65nm: * - Brisbane: 60FB1/BH-G1, 60FB2/BH-G2. * - Tyler: 60F81/BH-G1, 60F82/BH-G2. * - Sparta: 70FF1/DH-G1, 70FF2/DH-G2. * - Lima: 70FF1/DH-G1, 70FF2/DH-G2. * - Sherman: /-G1, 70FC2/DH-G2. * - Huron: 70FF2/DH-G2. */ if (bModel < 0x10) return kCpumMicroarch_AMD_K8_130nm; if (bModel >= 0x60 && bModel < 0x80) return kCpumMicroarch_AMD_K8_65nm; if (bModel >= 0x40) return kCpumMicroarch_AMD_K8_90nm_AMDV; switch (bModel) { case 0x21: case 0x23: case 0x2b: case 0x2f: case 0x37: case 0x3f: return kCpumMicroarch_AMD_K8_90nm_DualCore; } return kCpumMicroarch_AMD_K8_90nm; case 0x10: return kCpumMicroarch_AMD_K10; case 0x11: return kCpumMicroarch_AMD_K10_Lion; case 0x12: return kCpumMicroarch_AMD_K10_Llano; case 0x14: return kCpumMicroarch_AMD_Bobcat; case 0x15: switch (bModel) { case 0x00: return kCpumMicroarch_AMD_15h_Bulldozer; /* Any? prerelease? */ case 0x01: return kCpumMicroarch_AMD_15h_Bulldozer; /* Opteron 4200, FX-81xx. */ case 0x02: return kCpumMicroarch_AMD_15h_Piledriver; /* Opteron 4300, FX-83xx. */ case 0x10: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-5800K for e.g. */ case 0x11: /* ?? */ case 0x12: /* ?? */ case 0x13: return kCpumMicroarch_AMD_15h_Piledriver; /* A10-6800K for e.g. */ } return kCpumMicroarch_AMD_15h_Unknown; case 0x16: return kCpumMicroarch_AMD_Jaguar; case 0x17: return kCpumMicroarch_AMD_Zen_Ryzen; } return kCpumMicroarch_AMD_Unknown; } if (enmVendor == CPUMCPUVENDOR_INTEL) { switch (bFamily) { case 3: return kCpumMicroarch_Intel_80386; case 4: return kCpumMicroarch_Intel_80486; case 5: return kCpumMicroarch_Intel_P5; case 6: if (bModel < RT_ELEMENTS(g_aenmIntelFamily06)) { CPUMMICROARCH enmMicroArch = g_aenmIntelFamily06[bModel]; if (enmMicroArch == kCpumMicroarch_Intel_Core7_KabyLake) { if (bStepping >= 0xa && bStepping <= 0xc) enmMicroArch = kCpumMicroarch_Intel_Core7_CoffeeLake; else if (bStepping >= 0xc) enmMicroArch = kCpumMicroarch_Intel_Core7_WhiskeyLake; } else if ( enmMicroArch == kCpumMicroarch_Intel_Core7_Skylake && bModel == 0x55 && bStepping >= 5) enmMicroArch = kCpumMicroarch_Intel_Core7_CascadeLake; return enmMicroArch; } return kCpumMicroarch_Intel_Atom_Unknown; case 15: switch (bModel) { case 0: return kCpumMicroarch_Intel_NB_Willamette; case 1: return kCpumMicroarch_Intel_NB_Willamette; case 2: return kCpumMicroarch_Intel_NB_Northwood; case 3: return kCpumMicroarch_Intel_NB_Prescott; case 4: return kCpumMicroarch_Intel_NB_Prescott2M; /* ?? */ case 5: return kCpumMicroarch_Intel_NB_Unknown; /*??*/ case 6: return kCpumMicroarch_Intel_NB_CedarMill; case 7: return kCpumMicroarch_Intel_NB_Gallatin; default: return kCpumMicroarch_Intel_NB_Unknown; } break; /* The following are not kosher but kind of follow intuitively from 6, 5 & 4. */ case 0: return kCpumMicroarch_Intel_8086; case 1: return kCpumMicroarch_Intel_80186; case 2: return kCpumMicroarch_Intel_80286; } return kCpumMicroarch_Intel_Unknown; } if (enmVendor == CPUMCPUVENDOR_VIA) { switch (bFamily) { case 5: switch (bModel) { case 1: return kCpumMicroarch_Centaur_C6; case 4: return kCpumMicroarch_Centaur_C6; case 8: return kCpumMicroarch_Centaur_C2; case 9: return kCpumMicroarch_Centaur_C3; } break; case 6: switch (bModel) { case 5: return kCpumMicroarch_VIA_C3_M2; case 6: return kCpumMicroarch_VIA_C3_C5A; case 7: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5B : kCpumMicroarch_VIA_C3_C5C; case 8: return kCpumMicroarch_VIA_C3_C5N; case 9: return bStepping < 8 ? kCpumMicroarch_VIA_C3_C5XL : kCpumMicroarch_VIA_C3_C5P; case 10: return kCpumMicroarch_VIA_C7_C5J; case 15: return kCpumMicroarch_VIA_Isaiah; } break; } return kCpumMicroarch_VIA_Unknown; } if (enmVendor == CPUMCPUVENDOR_SHANGHAI) { switch (bFamily) { case 6: case 7: return kCpumMicroarch_Shanghai_Wudaokou; default: break; } return kCpumMicroarch_Shanghai_Unknown; } if (enmVendor == CPUMCPUVENDOR_CYRIX) { switch (bFamily) { case 4: switch (bModel) { case 9: return kCpumMicroarch_Cyrix_5x86; } break; case 5: switch (bModel) { case 2: return kCpumMicroarch_Cyrix_M1; case 4: return kCpumMicroarch_Cyrix_MediaGX; case 5: return kCpumMicroarch_Cyrix_MediaGXm; } break; case 6: switch (bModel) { case 0: return kCpumMicroarch_Cyrix_M2; } break; } return kCpumMicroarch_Cyrix_Unknown; } if (enmVendor == CPUMCPUVENDOR_HYGON) { switch (bFamily) { case 0x18: return kCpumMicroarch_Hygon_Dhyana; default: break; } return kCpumMicroarch_Hygon_Unknown; } return kCpumMicroarch_Unknown; } /** * Translates a microarchitecture enum value to the corresponding string * constant. * * @returns Read-only string constant (omits "kCpumMicroarch_" prefix). Returns * NULL if the value is invalid. * * @param enmMicroarch The enum value to convert. */ VMMDECL(const char *) CPUMMicroarchName(CPUMMICROARCH enmMicroarch) { switch (enmMicroarch) { #define CASE_RET_STR(enmValue) case enmValue: return #enmValue + (sizeof("kCpumMicroarch_") - 1) CASE_RET_STR(kCpumMicroarch_Intel_8086); CASE_RET_STR(kCpumMicroarch_Intel_80186); CASE_RET_STR(kCpumMicroarch_Intel_80286); CASE_RET_STR(kCpumMicroarch_Intel_80386); CASE_RET_STR(kCpumMicroarch_Intel_80486); CASE_RET_STR(kCpumMicroarch_Intel_P5); CASE_RET_STR(kCpumMicroarch_Intel_P6); CASE_RET_STR(kCpumMicroarch_Intel_P6_II); CASE_RET_STR(kCpumMicroarch_Intel_P6_III); CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Banias); CASE_RET_STR(kCpumMicroarch_Intel_P6_M_Dothan); CASE_RET_STR(kCpumMicroarch_Intel_Core_Yonah); CASE_RET_STR(kCpumMicroarch_Intel_Core2_Merom); CASE_RET_STR(kCpumMicroarch_Intel_Core2_Penryn); CASE_RET_STR(kCpumMicroarch_Intel_Core7_Nehalem); CASE_RET_STR(kCpumMicroarch_Intel_Core7_Westmere); CASE_RET_STR(kCpumMicroarch_Intel_Core7_SandyBridge); CASE_RET_STR(kCpumMicroarch_Intel_Core7_IvyBridge); CASE_RET_STR(kCpumMicroarch_Intel_Core7_Haswell); CASE_RET_STR(kCpumMicroarch_Intel_Core7_Broadwell); CASE_RET_STR(kCpumMicroarch_Intel_Core7_Skylake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_KabyLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_CoffeeLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_WhiskeyLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_CascadeLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_CannonLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_CometLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_IceLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_RocketLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_TigerLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_AlderLake); CASE_RET_STR(kCpumMicroarch_Intel_Core7_SapphireRapids); CASE_RET_STR(kCpumMicroarch_Intel_Atom_Bonnell); CASE_RET_STR(kCpumMicroarch_Intel_Atom_Lincroft); CASE_RET_STR(kCpumMicroarch_Intel_Atom_Saltwell); CASE_RET_STR(kCpumMicroarch_Intel_Atom_Silvermont); CASE_RET_STR(kCpumMicroarch_Intel_Atom_Airmount); CASE_RET_STR(kCpumMicroarch_Intel_Atom_Goldmont); CASE_RET_STR(kCpumMicroarch_Intel_Atom_GoldmontPlus); CASE_RET_STR(kCpumMicroarch_Intel_Atom_Unknown); CASE_RET_STR(kCpumMicroarch_Intel_Phi_KnightsFerry); CASE_RET_STR(kCpumMicroarch_Intel_Phi_KnightsCorner); CASE_RET_STR(kCpumMicroarch_Intel_Phi_KnightsLanding); CASE_RET_STR(kCpumMicroarch_Intel_Phi_KnightsHill); CASE_RET_STR(kCpumMicroarch_Intel_Phi_KnightsMill); CASE_RET_STR(kCpumMicroarch_Intel_NB_Willamette); CASE_RET_STR(kCpumMicroarch_Intel_NB_Northwood); CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott); CASE_RET_STR(kCpumMicroarch_Intel_NB_Prescott2M); CASE_RET_STR(kCpumMicroarch_Intel_NB_CedarMill); CASE_RET_STR(kCpumMicroarch_Intel_NB_Gallatin); CASE_RET_STR(kCpumMicroarch_Intel_NB_Unknown); CASE_RET_STR(kCpumMicroarch_Intel_Unknown); CASE_RET_STR(kCpumMicroarch_AMD_Am286); CASE_RET_STR(kCpumMicroarch_AMD_Am386); CASE_RET_STR(kCpumMicroarch_AMD_Am486); CASE_RET_STR(kCpumMicroarch_AMD_Am486Enh); CASE_RET_STR(kCpumMicroarch_AMD_K5); CASE_RET_STR(kCpumMicroarch_AMD_K6); CASE_RET_STR(kCpumMicroarch_AMD_K7_Palomino); CASE_RET_STR(kCpumMicroarch_AMD_K7_Spitfire); CASE_RET_STR(kCpumMicroarch_AMD_K7_Thunderbird); CASE_RET_STR(kCpumMicroarch_AMD_K7_Morgan); CASE_RET_STR(kCpumMicroarch_AMD_K7_Thoroughbred); CASE_RET_STR(kCpumMicroarch_AMD_K7_Barton); CASE_RET_STR(kCpumMicroarch_AMD_K7_Unknown); CASE_RET_STR(kCpumMicroarch_AMD_K8_130nm); CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm); CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_DualCore); CASE_RET_STR(kCpumMicroarch_AMD_K8_90nm_AMDV); CASE_RET_STR(kCpumMicroarch_AMD_K8_65nm); CASE_RET_STR(kCpumMicroarch_AMD_K10); CASE_RET_STR(kCpumMicroarch_AMD_K10_Lion); CASE_RET_STR(kCpumMicroarch_AMD_K10_Llano); CASE_RET_STR(kCpumMicroarch_AMD_Bobcat); CASE_RET_STR(kCpumMicroarch_AMD_Jaguar); CASE_RET_STR(kCpumMicroarch_AMD_15h_Bulldozer); CASE_RET_STR(kCpumMicroarch_AMD_15h_Piledriver); CASE_RET_STR(kCpumMicroarch_AMD_15h_Steamroller); CASE_RET_STR(kCpumMicroarch_AMD_15h_Excavator); CASE_RET_STR(kCpumMicroarch_AMD_15h_Unknown); CASE_RET_STR(kCpumMicroarch_AMD_16h_First); CASE_RET_STR(kCpumMicroarch_AMD_Zen_Ryzen); CASE_RET_STR(kCpumMicroarch_AMD_Unknown); CASE_RET_STR(kCpumMicroarch_Hygon_Dhyana); CASE_RET_STR(kCpumMicroarch_Hygon_Unknown); CASE_RET_STR(kCpumMicroarch_Centaur_C6); CASE_RET_STR(kCpumMicroarch_Centaur_C2); CASE_RET_STR(kCpumMicroarch_Centaur_C3); CASE_RET_STR(kCpumMicroarch_VIA_C3_M2); CASE_RET_STR(kCpumMicroarch_VIA_C3_C5A); CASE_RET_STR(kCpumMicroarch_VIA_C3_C5B); CASE_RET_STR(kCpumMicroarch_VIA_C3_C5C); CASE_RET_STR(kCpumMicroarch_VIA_C3_C5N); CASE_RET_STR(kCpumMicroarch_VIA_C3_C5XL); CASE_RET_STR(kCpumMicroarch_VIA_C3_C5P); CASE_RET_STR(kCpumMicroarch_VIA_C7_C5J); CASE_RET_STR(kCpumMicroarch_VIA_Isaiah); CASE_RET_STR(kCpumMicroarch_VIA_Unknown); CASE_RET_STR(kCpumMicroarch_Shanghai_Wudaokou); CASE_RET_STR(kCpumMicroarch_Shanghai_Unknown); CASE_RET_STR(kCpumMicroarch_Cyrix_5x86); CASE_RET_STR(kCpumMicroarch_Cyrix_M1); CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGX); CASE_RET_STR(kCpumMicroarch_Cyrix_MediaGXm); CASE_RET_STR(kCpumMicroarch_Cyrix_M2); CASE_RET_STR(kCpumMicroarch_Cyrix_Unknown); CASE_RET_STR(kCpumMicroarch_NEC_V20); CASE_RET_STR(kCpumMicroarch_NEC_V30); CASE_RET_STR(kCpumMicroarch_Unknown); #undef CASE_RET_STR case kCpumMicroarch_Invalid: case kCpumMicroarch_Intel_End: case kCpumMicroarch_Intel_Core2_End: case kCpumMicroarch_Intel_Core7_End: case kCpumMicroarch_Intel_Atom_End: case kCpumMicroarch_Intel_P6_Core_Atom_End: case kCpumMicroarch_Intel_Phi_End: case kCpumMicroarch_Intel_NB_End: case kCpumMicroarch_AMD_K7_End: case kCpumMicroarch_AMD_K8_End: case kCpumMicroarch_AMD_15h_End: case kCpumMicroarch_AMD_16h_End: case kCpumMicroarch_AMD_Zen_End: case kCpumMicroarch_AMD_End: case kCpumMicroarch_Hygon_End: case kCpumMicroarch_VIA_End: case kCpumMicroarch_Shanghai_End: case kCpumMicroarch_Cyrix_End: case kCpumMicroarch_NEC_End: case kCpumMicroarch_32BitHack: break; /* no default! */ } return NULL; } /** * Gets a matching leaf in the CPUID leaf array. * * @returns Pointer to the matching leaf, or NULL if not found. * @param paLeaves The CPUID leaves to search. This is sorted. * @param cLeaves The number of leaves in the array. * @param uLeaf The leaf to locate. * @param uSubLeaf The subleaf to locate. Pass 0 if no sub-leaves. */ PCPUMCPUIDLEAF cpumCpuIdGetLeafInt(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf) { /* Lazy bird does linear lookup here since this is only used for the occational CPUID overrides. */ for (uint32_t i = 0; i < cLeaves; i++) if ( paLeaves[i].uLeaf == uLeaf && paLeaves[i].uSubLeaf == (uSubLeaf & paLeaves[i].fSubLeafMask)) return &paLeaves[i]; return NULL; } /** * Ensures that the CPUID leaf array can hold one more leaf. * * @returns Pointer to the CPUID leaf array (*ppaLeaves) on success. NULL on * failure. * @param pVM The cross context VM structure. If NULL, use * the process heap, otherwise the VM's hyper heap. * @param ppaLeaves Pointer to the variable holding the array pointer * (input/output). * @param cLeaves The current array size. * * @remarks This function will automatically update the R0 and RC pointers when * using the hyper heap, which means @a ppaLeaves and @a cLeaves must * be the corresponding VM's CPUID arrays (which is asserted). */ PCPUMCPUIDLEAF cpumCpuIdEnsureSpace(PVM pVM, PCPUMCPUIDLEAF *ppaLeaves, uint32_t cLeaves) { /* * If pVM is not specified, we're on the regular heap and can waste a * little space to speed things up. */ uint32_t cAllocated; if (!pVM) { cAllocated = RT_ALIGN(cLeaves, 16); if (cLeaves + 1 > cAllocated) { void *pvNew = RTMemRealloc(*ppaLeaves, (cAllocated + 16) * sizeof(**ppaLeaves)); if (pvNew) *ppaLeaves = (PCPUMCPUIDLEAF)pvNew; else { RTMemFree(*ppaLeaves); *ppaLeaves = NULL; } } } /* * Otherwise, we're on the hyper heap and are probably just inserting * one or two leaves and should conserve space. */ else { #ifdef IN_VBOX_CPU_REPORT AssertReleaseFailed(); #else # ifdef IN_RING3 Assert(ppaLeaves == &pVM->cpum.s.GuestInfo.paCpuIdLeavesR3); Assert(*ppaLeaves == pVM->cpum.s.GuestInfo.aCpuIdLeaves); Assert(cLeaves == pVM->cpum.s.GuestInfo.cCpuIdLeaves); if (cLeaves + 1 <= RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves)) { } else # endif { *ppaLeaves = NULL; LogRel(("CPUM: cpumR3CpuIdEnsureSpace: Out of CPUID space!\n")); } #endif } return *ppaLeaves; } #ifdef VBOX_STRICT /** * Checks that we've updated the CPUID leaves array correctly. * * This is a no-op in non-strict builds. * * @param paLeaves The leaves array. * @param cLeaves The number of leaves. */ void cpumCpuIdAssertOrder(PCPUMCPUIDLEAF paLeaves, uint32_t cLeaves) { for (uint32_t i = 1; i < cLeaves; i++) if (paLeaves[i].uLeaf != paLeaves[i - 1].uLeaf) AssertMsg(paLeaves[i].uLeaf > paLeaves[i - 1].uLeaf, ("%#x vs %#x\n", paLeaves[i].uLeaf, paLeaves[i - 1].uLeaf)); else { AssertMsg(paLeaves[i].uSubLeaf > paLeaves[i - 1].uSubLeaf, ("%#x: %#x vs %#x\n", paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, paLeaves[i - 1].uSubLeaf)); AssertMsg(paLeaves[i].fSubLeafMask == paLeaves[i - 1].fSubLeafMask, ("%#x/%#x: %#x vs %#x\n", paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, paLeaves[i].fSubLeafMask, paLeaves[i - 1].fSubLeafMask)); AssertMsg(paLeaves[i].fFlags == paLeaves[i - 1].fFlags, ("%#x/%#x: %#x vs %#x\n", paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, paLeaves[i].fFlags, paLeaves[i - 1].fFlags)); } } #endif #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) /** * Append a CPUID leaf or sub-leaf. * * ASSUMES linear insertion order, so we'll won't need to do any searching or * replace anything. Use cpumR3CpuIdInsert() for those cases. * * @returns VINF_SUCCESS or VERR_NO_MEMORY. On error, *ppaLeaves is freed, so * the caller need do no more work. * @param ppaLeaves Pointer to the pointer to the array of sorted * CPUID leaves and sub-leaves. * @param pcLeaves Where we keep the leaf count for *ppaLeaves. * @param uLeaf The leaf we're adding. * @param uSubLeaf The sub-leaf number. * @param fSubLeafMask The sub-leaf mask. * @param uEax The EAX value. * @param uEbx The EBX value. * @param uEcx The ECX value. * @param uEdx The EDX value. * @param fFlags The flags. */ static int cpumCollectCpuIdInfoAddOne(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves, uint32_t uLeaf, uint32_t uSubLeaf, uint32_t fSubLeafMask, uint32_t uEax, uint32_t uEbx, uint32_t uEcx, uint32_t uEdx, uint32_t fFlags) { if (!cpumCpuIdEnsureSpace(NULL /* pVM */, ppaLeaves, *pcLeaves)) return VERR_NO_MEMORY; PCPUMCPUIDLEAF pNew = &(*ppaLeaves)[*pcLeaves]; Assert( *pcLeaves == 0 || pNew[-1].uLeaf < uLeaf || (pNew[-1].uLeaf == uLeaf && pNew[-1].uSubLeaf < uSubLeaf) ); pNew->uLeaf = uLeaf; pNew->uSubLeaf = uSubLeaf; pNew->fSubLeafMask = fSubLeafMask; pNew->uEax = uEax; pNew->uEbx = uEbx; pNew->uEcx = uEcx; pNew->uEdx = uEdx; pNew->fFlags = fFlags; *pcLeaves += 1; return VINF_SUCCESS; } /** * Checks if ECX make a difference when reading a given CPUID leaf. * * @returns @c true if it does, @c false if it doesn't. * @param uLeaf The leaf we're reading. * @param pcSubLeaves Number of sub-leaves accessible via ECX. * @param pfFinalEcxUnchanged Whether ECX is passed thru when going beyond the * final sub-leaf (for leaf 0xb only). */ static bool cpumIsEcxRelevantForCpuIdLeaf(uint32_t uLeaf, uint32_t *pcSubLeaves, bool *pfFinalEcxUnchanged) { *pfFinalEcxUnchanged = false; uint32_t auCur[4]; uint32_t auPrev[4]; ASMCpuIdExSlow(uLeaf, 0, 0, 0, &auPrev[0], &auPrev[1], &auPrev[2], &auPrev[3]); /* Look for sub-leaves. */ uint32_t uSubLeaf = 1; for (;;) { ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]); if (memcmp(auCur, auPrev, sizeof(auCur))) break; /* Advance / give up. */ uSubLeaf++; if (uSubLeaf >= 64) { *pcSubLeaves = 1; return false; } } /* Count sub-leaves. */ uint32_t cMinLeaves = uLeaf == 0xd ? 64 : 0; uint32_t cRepeats = 0; uSubLeaf = 0; for (;;) { ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auCur[0], &auCur[1], &auCur[2], &auCur[3]); /* Figuring out when to stop isn't entirely straight forward as we need to cover undocumented behavior up to a point and implementation shortcuts. */ /* 1. Look for more than 4 repeating value sets. */ if ( auCur[0] == auPrev[0] && auCur[1] == auPrev[1] && ( auCur[2] == auPrev[2] || ( auCur[2] == uSubLeaf && auPrev[2] == uSubLeaf - 1) ) && auCur[3] == auPrev[3]) { if ( uLeaf != 0xd || uSubLeaf >= 64 || ( auCur[0] == 0 && auCur[1] == 0 && auCur[2] == 0 && auCur[3] == 0 && auPrev[2] == 0) ) cRepeats++; if (cRepeats > 4 && uSubLeaf >= cMinLeaves) break; } else cRepeats = 0; /* 2. Look for zero values. */ if ( auCur[0] == 0 && auCur[1] == 0 && (auCur[2] == 0 || auCur[2] == uSubLeaf) && (auCur[3] == 0 || uLeaf == 0xb /* edx is fixed */) && uSubLeaf >= cMinLeaves) { cRepeats = 0; break; } /* 3. Leaf 0xb level type 0 check. */ if ( uLeaf == 0xb && (auCur[2] & 0xff00) == 0 && (auPrev[2] & 0xff00) == 0) { cRepeats = 0; break; } /* 99. Give up. */ if (uSubLeaf >= 128) { # ifndef IN_VBOX_CPU_REPORT /* Ok, limit it according to the documentation if possible just to avoid annoying users with these detection issues. */ uint32_t cDocLimit = UINT32_MAX; if (uLeaf == 0x4) cDocLimit = 4; else if (uLeaf == 0x7) cDocLimit = 1; else if (uLeaf == 0xd) cDocLimit = 63; else if (uLeaf == 0xf) cDocLimit = 2; if (cDocLimit != UINT32_MAX) { *pfFinalEcxUnchanged = auCur[2] == uSubLeaf && uLeaf == 0xb; *pcSubLeaves = cDocLimit + 3; return true; } # endif *pcSubLeaves = UINT32_MAX; return true; } /* Advance. */ uSubLeaf++; memcpy(auPrev, auCur, sizeof(auCur)); } /* Standard exit. */ *pfFinalEcxUnchanged = auCur[2] == uSubLeaf && uLeaf == 0xb; *pcSubLeaves = uSubLeaf + 1 - cRepeats; if (*pcSubLeaves == 0) *pcSubLeaves = 1; return true; } /** * Collects CPUID leaves and sub-leaves, returning a sorted array of them. * * @returns VBox status code. * @param ppaLeaves Where to return the array pointer on success. * Use RTMemFree to release. * @param pcLeaves Where to return the size of the array on * success. */ VMMDECL(int) CPUMCpuIdCollectLeavesX86(PCPUMCPUIDLEAF *ppaLeaves, uint32_t *pcLeaves) { *ppaLeaves = NULL; *pcLeaves = 0; /* * Try out various candidates. This must be sorted! */ static struct { uint32_t uMsr; bool fSpecial; } const s_aCandidates[] = { { UINT32_C(0x00000000), false }, { UINT32_C(0x10000000), false }, { UINT32_C(0x20000000), false }, { UINT32_C(0x30000000), false }, { UINT32_C(0x40000000), false }, { UINT32_C(0x50000000), false }, { UINT32_C(0x60000000), false }, { UINT32_C(0x70000000), false }, { UINT32_C(0x80000000), false }, { UINT32_C(0x80860000), false }, { UINT32_C(0x8ffffffe), true }, { UINT32_C(0x8fffffff), true }, { UINT32_C(0x90000000), false }, { UINT32_C(0xa0000000), false }, { UINT32_C(0xb0000000), false }, { UINT32_C(0xc0000000), false }, { UINT32_C(0xd0000000), false }, { UINT32_C(0xe0000000), false }, { UINT32_C(0xf0000000), false }, }; for (uint32_t iOuter = 0; iOuter < RT_ELEMENTS(s_aCandidates); iOuter++) { uint32_t uLeaf = s_aCandidates[iOuter].uMsr; uint32_t uEax, uEbx, uEcx, uEdx; ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx); /* * Does EAX look like a typical leaf count value? */ if ( uEax > uLeaf && uEax - uLeaf < UINT32_C(0xff)) /* Adjust 0xff limit when exceeded by real HW. */ { /* Yes, dump them. */ uint32_t cLeaves = uEax - uLeaf + 1; while (cLeaves-- > 0) { ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx); uint32_t fFlags = 0; /* There are currently three known leaves containing an APIC ID that needs EMT specific attention */ if (uLeaf == 1) fFlags |= CPUMCPUIDLEAF_F_CONTAINS_APIC_ID; else if (uLeaf == 0xb && uEcx != 0) fFlags |= CPUMCPUIDLEAF_F_CONTAINS_APIC_ID; else if ( uLeaf == UINT32_C(0x8000001e) && ( uEax || uEbx || uEdx || RTX86IsAmdCpu((*ppaLeaves)[0].uEbx, (*ppaLeaves)[0].uEcx, (*ppaLeaves)[0].uEdx) || RTX86IsHygonCpu((*ppaLeaves)[0].uEbx, (*ppaLeaves)[0].uEcx, (*ppaLeaves)[0].uEdx)) ) fFlags |= CPUMCPUIDLEAF_F_CONTAINS_APIC_ID; /* The APIC bit is per-VCpu and needs flagging. */ if (uLeaf == 1) fFlags |= CPUMCPUIDLEAF_F_CONTAINS_APIC; else if ( uLeaf == UINT32_C(0x80000001) && ( (uEdx & X86_CPUID_AMD_FEATURE_EDX_APIC) || RTX86IsAmdCpu((*ppaLeaves)[0].uEbx, (*ppaLeaves)[0].uEcx, (*ppaLeaves)[0].uEdx) || RTX86IsHygonCpu((*ppaLeaves)[0].uEbx, (*ppaLeaves)[0].uEcx, (*ppaLeaves)[0].uEdx)) ) fFlags |= CPUMCPUIDLEAF_F_CONTAINS_APIC; /* Check three times here to reduce the chance of CPU migration resulting in false positives with things like the APIC ID. */ uint32_t cSubLeaves; bool fFinalEcxUnchanged; if ( cpumIsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged) && cpumIsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged) && cpumIsEcxRelevantForCpuIdLeaf(uLeaf, &cSubLeaves, &fFinalEcxUnchanged)) { if (cSubLeaves > (uLeaf == 0xd ? 68U : 16U)) { /* This shouldn't happen. But in case it does, file all relevant details in the release log. */ LogRel(("CPUM: VERR_CPUM_TOO_MANY_CPUID_SUBLEAVES! uLeaf=%#x cSubLeaves=%#x\n", uLeaf, cSubLeaves)); LogRel(("------------------ dump of problematic sub-leaves -----------------\n")); for (uint32_t uSubLeaf = 0; uSubLeaf < 128; uSubLeaf++) { uint32_t auTmp[4]; ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &auTmp[0], &auTmp[1], &auTmp[2], &auTmp[3]); LogRel(("CPUM: %#010x, %#010x => %#010x %#010x %#010x %#010x\n", uLeaf, uSubLeaf, auTmp[0], auTmp[1], auTmp[2], auTmp[3])); } LogRel(("----------------- dump of what we've found so far -----------------\n")); for (uint32_t i = 0 ; i < *pcLeaves; i++) LogRel(("CPUM: %#010x, %#010x/%#010x => %#010x %#010x %#010x %#010x\n", (*ppaLeaves)[i].uLeaf, (*ppaLeaves)[i].uSubLeaf, (*ppaLeaves)[i].fSubLeafMask, (*ppaLeaves)[i].uEax, (*ppaLeaves)[i].uEbx, (*ppaLeaves)[i].uEcx, (*ppaLeaves)[i].uEdx)); LogRel(("\nPlease create a defect on virtualbox.org and attach this log file!\n\n")); return VERR_CPUM_TOO_MANY_CPUID_SUBLEAVES; } if (fFinalEcxUnchanged) fFlags |= CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES; for (uint32_t uSubLeaf = 0; uSubLeaf < cSubLeaves; uSubLeaf++) { ASMCpuIdExSlow(uLeaf, 0, uSubLeaf, 0, &uEax, &uEbx, &uEcx, &uEdx); int rc = cpumCollectCpuIdInfoAddOne(ppaLeaves, pcLeaves, uLeaf, uSubLeaf, UINT32_MAX, uEax, uEbx, uEcx, uEdx, fFlags); if (RT_FAILURE(rc)) return rc; } } else { int rc = cpumCollectCpuIdInfoAddOne(ppaLeaves, pcLeaves, uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, fFlags); if (RT_FAILURE(rc)) return rc; } /* next */ uLeaf++; } } /* * Special CPUIDs needs special handling as they don't follow the * leaf count principle used above. */ else if (s_aCandidates[iOuter].fSpecial) { bool fKeep = false; if (uLeaf == 0x8ffffffe && uEax == UINT32_C(0x00494544)) fKeep = true; else if ( uLeaf == 0x8fffffff && RT_C_IS_PRINT(RT_BYTE1(uEax)) && RT_C_IS_PRINT(RT_BYTE2(uEax)) && RT_C_IS_PRINT(RT_BYTE3(uEax)) && RT_C_IS_PRINT(RT_BYTE4(uEax)) && RT_C_IS_PRINT(RT_BYTE1(uEbx)) && RT_C_IS_PRINT(RT_BYTE2(uEbx)) && RT_C_IS_PRINT(RT_BYTE3(uEbx)) && RT_C_IS_PRINT(RT_BYTE4(uEbx)) && RT_C_IS_PRINT(RT_BYTE1(uEcx)) && RT_C_IS_PRINT(RT_BYTE2(uEcx)) && RT_C_IS_PRINT(RT_BYTE3(uEcx)) && RT_C_IS_PRINT(RT_BYTE4(uEcx)) && RT_C_IS_PRINT(RT_BYTE1(uEdx)) && RT_C_IS_PRINT(RT_BYTE2(uEdx)) && RT_C_IS_PRINT(RT_BYTE3(uEdx)) && RT_C_IS_PRINT(RT_BYTE4(uEdx)) ) fKeep = true; if (fKeep) { int rc = cpumCollectCpuIdInfoAddOne(ppaLeaves, pcLeaves, uLeaf, 0, 0, uEax, uEbx, uEcx, uEdx, 0); if (RT_FAILURE(rc)) return rc; } } } # ifdef VBOX_STRICT cpumCpuIdAssertOrder(*ppaLeaves, *pcLeaves); # endif return VINF_SUCCESS; } #endif /* RT_ARCH_X86 || RT_ARCH_AMD64 */ /** * Detect the CPU vendor give n the * * @returns The vendor. * @param uEAX EAX from CPUID(0). * @param uEBX EBX from CPUID(0). * @param uECX ECX from CPUID(0). * @param uEDX EDX from CPUID(0). */ VMMDECL(CPUMCPUVENDOR) CPUMCpuIdDetectX86VendorEx(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX) { if (RTX86IsValidStdRange(uEAX)) { if (RTX86IsAmdCpu(uEBX, uECX, uEDX)) return CPUMCPUVENDOR_AMD; if (RTX86IsIntelCpu(uEBX, uECX, uEDX)) return CPUMCPUVENDOR_INTEL; if (RTX86IsViaCentaurCpu(uEBX, uECX, uEDX)) return CPUMCPUVENDOR_VIA; if (RTX86IsShanghaiCpu(uEBX, uECX, uEDX)) return CPUMCPUVENDOR_SHANGHAI; if ( uEBX == UINT32_C(0x69727943) /* CyrixInstead */ && uECX == UINT32_C(0x64616574) && uEDX == UINT32_C(0x736E4978)) return CPUMCPUVENDOR_CYRIX; if (RTX86IsHygonCpu(uEBX, uECX, uEDX)) return CPUMCPUVENDOR_HYGON; /* "Geode by NSC", example: family 5, model 9. */ /** @todo detect the other buggers... */ } return CPUMCPUVENDOR_UNKNOWN; } /** * Translates a CPU vendor enum value into the corresponding string constant. * * The named can be prefixed with 'CPUMCPUVENDOR_' to construct a valid enum * value name. This can be useful when generating code. * * @returns Read only name string. * @param enmVendor The CPU vendor value. */ VMMDECL(const char *) CPUMCpuVendorName(CPUMCPUVENDOR enmVendor) { switch (enmVendor) { case CPUMCPUVENDOR_INTEL: return "INTEL"; case CPUMCPUVENDOR_AMD: return "AMD"; case CPUMCPUVENDOR_VIA: return "VIA"; case CPUMCPUVENDOR_CYRIX: return "CYRIX"; case CPUMCPUVENDOR_SHANGHAI: return "SHANGHAI"; case CPUMCPUVENDOR_HYGON: return "HYGON"; case CPUMCPUVENDOR_UNKNOWN: return "UNKNOWN"; case CPUMCPUVENDOR_INVALID: case CPUMCPUVENDOR_32BIT_HACK: break; } return "Invalid-cpu-vendor"; } static PCCPUMCPUIDLEAF cpumCpuIdFindLeaf(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf) { /* Could do binary search, doing linear now because I'm lazy. */ PCCPUMCPUIDLEAF pLeaf = paLeaves; while (cLeaves-- > 0) { if (pLeaf->uLeaf == uLeaf) return pLeaf; pLeaf++; } return NULL; } static PCCPUMCPUIDLEAF cpumCpuIdFindLeafEx(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, uint32_t uLeaf, uint32_t uSubLeaf) { PCCPUMCPUIDLEAF pLeaf = cpumCpuIdFindLeaf(paLeaves, cLeaves, uLeaf); if ( !pLeaf || pLeaf->uSubLeaf != (uSubLeaf & pLeaf->fSubLeafMask)) return pLeaf; /* Linear sub-leaf search. Lazy as usual. */ cLeaves -= pLeaf - paLeaves; while ( cLeaves-- > 0 && pLeaf->uLeaf == uLeaf) { if (pLeaf->uSubLeaf == (uSubLeaf & pLeaf->fSubLeafMask)) return pLeaf; pLeaf++; } return NULL; } static void cpumExplodeVmxFeatures(PCVMXMSRS pVmxMsrs, PCPUMFEATURES pFeatures) { Assert(pVmxMsrs); Assert(pFeatures); Assert(pFeatures->fVmx); /* Basic information. */ bool const fVmxTrueMsrs = RT_BOOL(pVmxMsrs->u64Basic & VMX_BF_BASIC_TRUE_CTLS_MASK); { uint64_t const u64Basic = pVmxMsrs->u64Basic; pFeatures->fVmxInsOutInfo = RT_BF_GET(u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS); } /* Pin-based VM-execution controls. */ { uint32_t const fPinCtls = fVmxTrueMsrs ? pVmxMsrs->TruePinCtls.n.allowed1 : pVmxMsrs->PinCtls.n.allowed1; pFeatures->fVmxExtIntExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_EXT_INT_EXIT); pFeatures->fVmxNmiExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_NMI_EXIT); pFeatures->fVmxVirtNmi = RT_BOOL(fPinCtls & VMX_PIN_CTLS_VIRT_NMI); pFeatures->fVmxPreemptTimer = RT_BOOL(fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER); pFeatures->fVmxPostedInt = RT_BOOL(fPinCtls & VMX_PIN_CTLS_POSTED_INT); } /* Processor-based VM-execution controls. */ { uint32_t const fProcCtls = fVmxTrueMsrs ? pVmxMsrs->TrueProcCtls.n.allowed1 : pVmxMsrs->ProcCtls.n.allowed1; pFeatures->fVmxIntWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT); pFeatures->fVmxTscOffsetting = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING); pFeatures->fVmxHltExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_HLT_EXIT); pFeatures->fVmxInvlpgExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INVLPG_EXIT); pFeatures->fVmxMwaitExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MWAIT_EXIT); pFeatures->fVmxRdpmcExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDPMC_EXIT); pFeatures->fVmxRdtscExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDTSC_EXIT); pFeatures->fVmxCr3LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT); pFeatures->fVmxCr3StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT); pFeatures->fVmxTertiaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TERTIARY_CTLS); pFeatures->fVmxCr8LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT); pFeatures->fVmxCr8StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT); pFeatures->fVmxUseTprShadow = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); pFeatures->fVmxNmiWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT); pFeatures->fVmxMovDRxExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT); pFeatures->fVmxUncondIoExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT); pFeatures->fVmxUseIoBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS); pFeatures->fVmxMonitorTrapFlag = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG); pFeatures->fVmxUseMsrBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS); pFeatures->fVmxMonitorExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_EXIT); pFeatures->fVmxPauseExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_PAUSE_EXIT); pFeatures->fVmxSecondaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS); } /* Secondary processor-based VM-execution controls. */ { uint32_t const fProcCtls2 = pFeatures->fVmxSecondaryExecCtls ? pVmxMsrs->ProcCtls2.n.allowed1 : 0; pFeatures->fVmxVirtApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS); pFeatures->fVmxEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT); pFeatures->fVmxDescTableExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT); pFeatures->fVmxRdtscp = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDTSCP); pFeatures->fVmxVirtX2ApicMode = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE); pFeatures->fVmxVpid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VPID); pFeatures->fVmxWbinvdExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_WBINVD_EXIT); pFeatures->fVmxUnrestrictedGuest = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST); pFeatures->fVmxApicRegVirt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT); pFeatures->fVmxVirtIntDelivery = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY); pFeatures->fVmxPauseLoopExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT); pFeatures->fVmxRdrandExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT); pFeatures->fVmxInvpcid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_INVPCID); pFeatures->fVmxVmFunc = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMFUNC); pFeatures->fVmxVmcsShadowing = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING); pFeatures->fVmxRdseedExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDSEED_EXIT); pFeatures->fVmxPml = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PML); pFeatures->fVmxEptXcptVe = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT_XCPT_VE); pFeatures->fVmxConcealVmxFromPt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT); pFeatures->fVmxXsavesXrstors = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_XSAVES_XRSTORS); pFeatures->fVmxModeBasedExecuteEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_MODE_BASED_EPT_PERM); pFeatures->fVmxSppEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_SPP_EPT); pFeatures->fVmxPtEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PT_EPT); pFeatures->fVmxUseTscScaling = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING); pFeatures->fVmxUserWaitPause = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_USER_WAIT_PAUSE); pFeatures->fVmxEnclvExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_ENCLV_EXIT); } /* Tertiary processor-based VM-execution controls. */ { uint64_t const fProcCtls3 = pFeatures->fVmxTertiaryExecCtls ? pVmxMsrs->u64ProcCtls3 : 0; pFeatures->fVmxLoadIwKeyExit = RT_BOOL(fProcCtls3 & VMX_PROC_CTLS3_LOADIWKEY_EXIT); } /* VM-exit controls. */ { uint32_t const fExitCtls = fVmxTrueMsrs ? pVmxMsrs->TrueExitCtls.n.allowed1 : pVmxMsrs->ExitCtls.n.allowed1; pFeatures->fVmxExitSaveDebugCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG); pFeatures->fVmxHostAddrSpaceSize = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE); pFeatures->fVmxExitAckExtInt = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT); pFeatures->fVmxExitSavePatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR); pFeatures->fVmxExitLoadPatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR); pFeatures->fVmxExitSaveEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR); pFeatures->fVmxExitLoadEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR); pFeatures->fVmxSavePreemptTimer = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER); pFeatures->fVmxSecondaryExitCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_USE_SECONDARY_CTLS); } /* VM-entry controls. */ { uint32_t const fEntryCtls = fVmxTrueMsrs ? pVmxMsrs->TrueEntryCtls.n.allowed1 : pVmxMsrs->EntryCtls.n.allowed1; pFeatures->fVmxEntryLoadDebugCtls = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG); pFeatures->fVmxIa32eModeGuest = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); pFeatures->fVmxEntryLoadEferMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR); pFeatures->fVmxEntryLoadPatMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR); } /* Miscellaneous data. */ { uint32_t const fMiscData = pVmxMsrs->u64Misc; pFeatures->fVmxExitSaveEferLma = RT_BOOL(fMiscData & VMX_MISC_EXIT_SAVE_EFER_LMA); pFeatures->fVmxPt = RT_BOOL(fMiscData & VMX_MISC_INTEL_PT); pFeatures->fVmxVmwriteAll = RT_BOOL(fMiscData & VMX_MISC_VMWRITE_ALL); pFeatures->fVmxEntryInjectSoftInt = RT_BOOL(fMiscData & VMX_MISC_ENTRY_INJECT_SOFT_INT); } } int cpumCpuIdExplodeFeaturesX86(PCCPUMCPUIDLEAF paLeaves, uint32_t cLeaves, PCCPUMMSRS pMsrs, PCPUMFEATURES pFeatures) { Assert(pMsrs); RT_ZERO(*pFeatures); if (cLeaves >= 2) { AssertLogRelReturn(paLeaves[0].uLeaf == 0, VERR_CPUM_IPE_1); AssertLogRelReturn(paLeaves[1].uLeaf == 1, VERR_CPUM_IPE_1); PCCPUMCPUIDLEAF const pStd0Leaf = cpumCpuIdFindLeafEx(paLeaves, cLeaves, 0, 0); AssertLogRelReturn(pStd0Leaf, VERR_CPUM_IPE_1); PCCPUMCPUIDLEAF const pStd1Leaf = cpumCpuIdFindLeafEx(paLeaves, cLeaves, 1, 0); AssertLogRelReturn(pStd1Leaf, VERR_CPUM_IPE_1); pFeatures->enmCpuVendor = CPUMCpuIdDetectX86VendorEx(pStd0Leaf->uEax, pStd0Leaf->uEbx, pStd0Leaf->uEcx, pStd0Leaf->uEdx); pFeatures->uFamily = RTX86GetCpuFamily(pStd1Leaf->uEax); pFeatures->uModel = RTX86GetCpuModel(pStd1Leaf->uEax, pFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL); pFeatures->uStepping = RTX86GetCpuStepping(pStd1Leaf->uEax); pFeatures->enmMicroarch = CPUMCpuIdDetermineX86MicroarchEx((CPUMCPUVENDOR)pFeatures->enmCpuVendor, pFeatures->uFamily, pFeatures->uModel, pFeatures->uStepping); PCCPUMCPUIDLEAF const pExtLeaf8 = cpumCpuIdFindLeaf(paLeaves, cLeaves, 0x80000008); if (pExtLeaf8) { pFeatures->cMaxPhysAddrWidth = pExtLeaf8->uEax & 0xff; pFeatures->cMaxLinearAddrWidth = (pExtLeaf8->uEax >> 8) & 0xff; } else if (pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_PSE36) { pFeatures->cMaxPhysAddrWidth = 36; pFeatures->cMaxLinearAddrWidth = 36; } else { pFeatures->cMaxPhysAddrWidth = 32; pFeatures->cMaxLinearAddrWidth = 32; } /* Standard features. */ pFeatures->fMsr = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_MSR); pFeatures->fApic = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_APIC); pFeatures->fX2Apic = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_X2APIC); pFeatures->fPse = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_PSE); pFeatures->fPse36 = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_PSE36); pFeatures->fPae = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_PAE); pFeatures->fPge = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_PGE); pFeatures->fPat = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_PAT); pFeatures->fFxSaveRstor = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_FXSR); pFeatures->fXSaveRstor = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_XSAVE); pFeatures->fOpSysXSaveRstor = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_OSXSAVE); pFeatures->fMmx = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_MMX); pFeatures->fSse = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_SSE); pFeatures->fSse2 = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_SSE2); pFeatures->fSse3 = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_SSE3); pFeatures->fSsse3 = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_SSSE3); pFeatures->fSse41 = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_SSE4_1); pFeatures->fSse42 = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_SSE4_2); pFeatures->fAesNi = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_AES); pFeatures->fAvx = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_AVX); pFeatures->fTsc = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_TSC); pFeatures->fSysEnter = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_SEP); pFeatures->fHypervisorPresent = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_HVP); pFeatures->fMonitorMWait = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_MONITOR); pFeatures->fMovCmpXchg16b = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_CX16); pFeatures->fClFlush = RT_BOOL(pStd1Leaf->uEdx & X86_CPUID_FEATURE_EDX_CLFSH); pFeatures->fPcid = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_PCID); pFeatures->fPopCnt = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_POPCNT); pFeatures->fRdRand = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_RDRAND); pFeatures->fVmx = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_VMX); pFeatures->fPclMul = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_PCLMUL); pFeatures->fMovBe = RT_BOOL(pStd1Leaf->uEcx & X86_CPUID_FEATURE_ECX_MOVBE); if (pFeatures->fVmx) cpumExplodeVmxFeatures(&pMsrs->hwvirt.vmx, pFeatures); /* Structured extended features. */ PCCPUMCPUIDLEAF const pSxfLeaf0 = cpumCpuIdFindLeafEx(paLeaves, cLeaves, 7, 0); if (pSxfLeaf0) { pFeatures->fFsGsBase = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_FSGSBASE); pFeatures->fAvx2 = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_AVX2); pFeatures->fAvx512Foundation = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_AVX512F); pFeatures->fClFlushOpt = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_CLFLUSHOPT); pFeatures->fInvpcid = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_INVPCID); pFeatures->fBmi1 = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_BMI1); pFeatures->fBmi2 = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_BMI2); pFeatures->fRdSeed = RT_BOOL(pSxfLeaf0->uEbx & X86_CPUID_STEXT_FEATURE_EBX_RDSEED); pFeatures->fIbpb = RT_BOOL(pSxfLeaf0->uEdx & X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB); pFeatures->fIbrs = pFeatures->fIbpb; pFeatures->fStibp = RT_BOOL(pSxfLeaf0->uEdx & X86_CPUID_STEXT_FEATURE_EDX_STIBP); pFeatures->fFlushCmd = RT_BOOL(pSxfLeaf0->uEdx & X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD); pFeatures->fArchCap = RT_BOOL(pSxfLeaf0->uEdx & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP); pFeatures->fMdsClear = RT_BOOL(pSxfLeaf0->uEdx & X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR); } /* MWAIT/MONITOR leaf. */ PCCPUMCPUIDLEAF const pMWaitLeaf = cpumCpuIdFindLeaf(paLeaves, cLeaves, 5); if (pMWaitLeaf) pFeatures->fMWaitExtensions = (pMWaitLeaf->uEcx & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0)) == (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0); /* Extended features. */ PCCPUMCPUIDLEAF const pExtLeaf = cpumCpuIdFindLeaf(paLeaves, cLeaves, 0x80000001); if (pExtLeaf) { pFeatures->fLongMode = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE); pFeatures->fSysCall = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL); pFeatures->fNoExecute = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_NX); pFeatures->fLahfSahf = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF); pFeatures->fRdTscP = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_EXT_FEATURE_EDX_RDTSCP); pFeatures->fMovCr8In32Bit = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_CMPL); pFeatures->f3DNow = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_3DNOW); pFeatures->f3DNowPrefetch = (pExtLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF) || (pExtLeaf->uEdx & ( X86_CPUID_EXT_FEATURE_EDX_LONG_MODE | X86_CPUID_AMD_FEATURE_EDX_3DNOW)); pFeatures->fAbm = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_ABM); } /* VMX (VMXON, VMCS region and related data structures) physical address width (depends on long-mode). */ pFeatures->cVmxMaxPhysAddrWidth = pFeatures->fLongMode ? pFeatures->cMaxPhysAddrWidth : 32; if ( pExtLeaf && ( pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD || pFeatures->enmCpuVendor == CPUMCPUVENDOR_HYGON)) { /* AMD features. */ pFeatures->fMsr |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_MSR); pFeatures->fApic |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_APIC); pFeatures->fPse |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE); pFeatures->fPse36 |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PSE36); pFeatures->fPae |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAE); pFeatures->fPge |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PGE); pFeatures->fPat |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_PAT); pFeatures->fFxSaveRstor |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FXSR); pFeatures->fMmx |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_MMX); pFeatures->fTsc |= RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_TSC); pFeatures->fIbpb |= pExtLeaf8 && (pExtLeaf8->uEbx & X86_CPUID_AMD_EFEID_EBX_IBPB); pFeatures->fAmdMmxExts = RT_BOOL(pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_AXMMX); pFeatures->fXop = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_XOP); pFeatures->fTbm = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_TBM); pFeatures->fSvm = RT_BOOL(pExtLeaf->uEcx & X86_CPUID_AMD_FEATURE_ECX_SVM); if (pFeatures->fSvm) { PCCPUMCPUIDLEAF pSvmLeaf = cpumCpuIdFindLeaf(paLeaves, cLeaves, 0x8000000a); AssertLogRelReturn(pSvmLeaf, VERR_CPUM_IPE_1); pFeatures->fSvmNestedPaging = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING); pFeatures->fSvmLbrVirt = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT); pFeatures->fSvmSvmLock = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK); pFeatures->fSvmNextRipSave = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE); pFeatures->fSvmTscRateMsr = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR); pFeatures->fSvmVmcbClean = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN); pFeatures->fSvmFlusbByAsid = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID); pFeatures->fSvmDecodeAssists = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS); pFeatures->fSvmPauseFilter = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER); pFeatures->fSvmPauseFilterThreshold = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD); pFeatures->fSvmAvic = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_AVIC); pFeatures->fSvmVirtVmsaveVmload = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD); pFeatures->fSvmVGif = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_VGIF); pFeatures->fSvmGmet = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_GMET); pFeatures->fSvmSSSCheck = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_SSSCHECK); pFeatures->fSvmSpecCtrl = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_SPEC_CTRL); pFeatures->fSvmHostMceOverride = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_HOST_MCE_OVERRIDE); pFeatures->fSvmTlbiCtl = RT_BOOL(pSvmLeaf->uEdx & X86_CPUID_SVM_FEATURE_EDX_TLBICTL); pFeatures->uSvmMaxAsid = pSvmLeaf->uEbx; } } /* * Quirks. */ pFeatures->fLeakyFxSR = pExtLeaf && (pExtLeaf->uEdx & X86_CPUID_AMD_FEATURE_EDX_FFXSR) && ( ( pFeatures->enmCpuVendor == CPUMCPUVENDOR_AMD && pFeatures->uFamily >= 6 /* K7 and up */) || pFeatures->enmCpuVendor == CPUMCPUVENDOR_HYGON); /* * Max extended (/FPU) state. */ pFeatures->cbMaxExtendedState = pFeatures->fFxSaveRstor ? sizeof(X86FXSTATE) : sizeof(X86FPUSTATE); if (pFeatures->fXSaveRstor) { PCCPUMCPUIDLEAF const pXStateLeaf0 = cpumCpuIdFindLeafEx(paLeaves, cLeaves, 13, 0); if (pXStateLeaf0) { if ( pXStateLeaf0->uEcx >= sizeof(X86FXSTATE) && pXStateLeaf0->uEcx <= CPUM_MAX_XSAVE_AREA_SIZE && RT_ALIGN_32(pXStateLeaf0->uEcx, 8) == pXStateLeaf0->uEcx && pXStateLeaf0->uEbx >= sizeof(X86FXSTATE) && pXStateLeaf0->uEbx <= pXStateLeaf0->uEcx && RT_ALIGN_32(pXStateLeaf0->uEbx, 8) == pXStateLeaf0->uEbx) { pFeatures->cbMaxExtendedState = pXStateLeaf0->uEcx; /* (paranoia:) */ PCCPUMCPUIDLEAF const pXStateLeaf1 = cpumCpuIdFindLeafEx(paLeaves, cLeaves, 13, 1); if ( pXStateLeaf1 && pXStateLeaf1->uEbx > pFeatures->cbMaxExtendedState && pXStateLeaf1->uEbx <= CPUM_MAX_XSAVE_AREA_SIZE && (pXStateLeaf1->uEcx || pXStateLeaf1->uEdx) ) pFeatures->cbMaxExtendedState = pXStateLeaf1->uEbx; } else AssertLogRelMsgFailedStmt(("Unexpected max/cur XSAVE area sizes: %#x/%#x\n", pXStateLeaf0->uEcx, pXStateLeaf0->uEbx), pFeatures->fXSaveRstor = 0); } else AssertLogRelMsgFailedStmt(("Expected leaf eax=0xd/ecx=0 with the XSAVE/XRSTOR feature!\n"), pFeatures->fXSaveRstor = 0); } } else AssertLogRelReturn(cLeaves == 0, VERR_CPUM_IPE_1); return VINF_SUCCESS; }