VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 22309

Last change on this file since 22309 was 21963, checked in by vboxsync, 15 years ago

VMM: When we're switching to our own private stack, it must have a ring-0 mapping. fixes darwin.amd64 #DFs and #PFs when using VT-x and sometimes with raw-mode.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 74.8 KB
Line 
1/* $Id: VMM.cpp 21963 2009-08-04 15:12:59Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * The VMM component is two things at the moment, it's a component doing a few
27 * management and routing tasks, and it's the whole virtual machine monitor
28 * thing. For hysterical reasons, it is not doing all the management that one
29 * would expect, this is instead done by @ref pg_vm. We'll address this
30 * misdesign eventually.
31 *
32 * @see grp_vmm, grp_vm
33 *
34 *
35 * @section sec_vmmstate VMM State
36 *
37 * @image html VM_Statechart_Diagram.gif
38 *
39 * To be written.
40 *
41 *
42 * @subsection subsec_vmm_init VMM Initialization
43 *
44 * To be written.
45 *
46 *
47 * @subsection subsec_vmm_term VMM Termination
48 *
49 * To be written.
50 *
51 */
52
53/*******************************************************************************
54* Header Files *
55*******************************************************************************/
56#define LOG_GROUP LOG_GROUP_VMM
57#include <VBox/vmm.h>
58#include <VBox/vmapi.h>
59#include <VBox/pgm.h>
60#include <VBox/cfgm.h>
61#include <VBox/pdmqueue.h>
62#include <VBox/pdmcritsect.h>
63#include <VBox/pdmapi.h>
64#include <VBox/cpum.h>
65#include <VBox/mm.h>
66#include <VBox/iom.h>
67#include <VBox/trpm.h>
68#include <VBox/selm.h>
69#include <VBox/em.h>
70#include <VBox/sup.h>
71#include <VBox/dbgf.h>
72#include <VBox/csam.h>
73#include <VBox/patm.h>
74#include <VBox/rem.h>
75#include <VBox/ssm.h>
76#include <VBox/tm.h>
77#include "VMMInternal.h"
78#include "VMMSwitcher/VMMSwitcher.h"
79#include <VBox/vm.h>
80
81#include <VBox/err.h>
82#include <VBox/param.h>
83#include <VBox/version.h>
84#include <VBox/x86.h>
85#include <VBox/hwaccm.h>
86#include <iprt/assert.h>
87#include <iprt/alloc.h>
88#include <iprt/asm.h>
89#include <iprt/time.h>
90#include <iprt/semaphore.h>
91#include <iprt/stream.h>
92#include <iprt/string.h>
93#include <iprt/stdarg.h>
94#include <iprt/ctype.h>
95
96
97
98/*******************************************************************************
99* Defined Constants And Macros *
100*******************************************************************************/
101/** The saved state version. */
102#define VMM_SAVED_STATE_VERSION 3
103
104
105/*******************************************************************************
106* Internal Functions *
107*******************************************************************************/
108static int vmmR3InitStacks(PVM pVM);
109static int vmmR3InitLoggers(PVM pVM);
110static void vmmR3InitRegisterStats(PVM pVM);
111static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
112static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
113static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
114static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
115static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
116
117
118/**
119 * Initializes the VMM.
120 *
121 * @returns VBox status code.
122 * @param pVM The VM to operate on.
123 */
124VMMR3DECL(int) VMMR3Init(PVM pVM)
125{
126 LogFlow(("VMMR3Init\n"));
127
128 /*
129 * Assert alignment, sizes and order.
130 */
131 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
132 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
133 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
134
135 /*
136 * Init basic VM VMM members.
137 */
138 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
139 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
140 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
141 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
142 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
143 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
144 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
145 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
146 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
147 else
148 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
149
150 /*
151 * Initialize the VMM sync critical section and semaphores.
152 */
153 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
154 AssertRCReturn(rc, rc);
155 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
156 AssertRCReturn(rc, rc);
157 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
158 AssertRCReturn(rc, rc);
159 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
160 AssertRCReturn(rc, rc);
161 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
162 AssertRCReturn(rc, rc);
163
164 /* GC switchers are enabled by default. Turned off by HWACCM. */
165 pVM->vmm.s.fSwitcherDisabled = false;
166
167 /*
168 * Register the saved state data unit.
169 */
170 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
171 NULL, vmmR3Save, NULL,
172 NULL, vmmR3Load, NULL);
173 if (RT_FAILURE(rc))
174 return rc;
175
176 /*
177 * Register the Ring-0 VM handle with the session for fast ioctl calls.
178 */
179 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
180 if (RT_FAILURE(rc))
181 return rc;
182
183 /*
184 * Init various sub-components.
185 */
186 rc = vmmR3SwitcherInit(pVM);
187 if (RT_SUCCESS(rc))
188 {
189 rc = vmmR3InitStacks(pVM);
190 if (RT_SUCCESS(rc))
191 {
192 rc = vmmR3InitLoggers(pVM);
193
194#ifdef VBOX_WITH_NMI
195 /*
196 * Allocate mapping for the host APIC.
197 */
198 if (RT_SUCCESS(rc))
199 {
200 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
201 AssertRC(rc);
202 }
203#endif
204 if (RT_SUCCESS(rc))
205 {
206 /*
207 * Debug info and statistics.
208 */
209 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
210 vmmR3InitRegisterStats(pVM);
211
212 return VINF_SUCCESS;
213 }
214 }
215 /** @todo: Need failure cleanup. */
216
217 //more todo in here?
218 //if (RT_SUCCESS(rc))
219 //{
220 //}
221 //int rc2 = vmmR3TermCoreCode(pVM);
222 //AssertRC(rc2));
223 }
224
225 return rc;
226}
227
228
229/**
230 * Allocate & setup the VMM RC stack(s) (for EMTs).
231 *
232 * The stacks are also used for long jumps in Ring-0.
233 *
234 * @returns VBox status code.
235 * @param pVM Pointer to the shared VM structure.
236 *
237 * @remarks The optional guard page gets it protection setup up during R3 init
238 * completion because of init order issues.
239 */
240static int vmmR3InitStacks(PVM pVM)
241{
242 int rc = VINF_SUCCESS;
243#ifdef VMM_R0_SWITCH_STACK
244 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
245#else
246 uint32_t fFlags = 0;
247#endif
248
249 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
250 {
251 PVMCPU pVCpu = &pVM->aCpus[idCpu];
252
253#ifdef VBOX_STRICT_VMM_STACK
254 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
255#else
256 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
257#endif
258 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
259 if (RT_SUCCESS(rc))
260 {
261#ifdef VBOX_STRICT_VMM_STACK
262 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
263#endif
264#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
265 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
266 if (!VMMIsHwVirtExtForced(pVM))
267 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
268 else
269#endif
270 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
271 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
272 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
273 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
274
275 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
276 }
277 }
278
279 return rc;
280}
281
282
283/**
284 * Initialize the loggers.
285 *
286 * @returns VBox status code.
287 * @param pVM Pointer to the shared VM structure.
288 */
289static int vmmR3InitLoggers(PVM pVM)
290{
291 int rc;
292
293 /*
294 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
295 */
296#ifdef LOG_ENABLED
297 PRTLOGGER pLogger = RTLogDefaultInstance();
298 if (pLogger)
299 {
300 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
301 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
302 if (RT_FAILURE(rc))
303 return rc;
304 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
305
306# ifdef VBOX_WITH_R0_LOGGING
307 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
308 {
309 PVMCPU pVCpu = &pVM->aCpus[i];
310
311 rc = MMR3HyperAllocOnceNoRelEx(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
312 0, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
313 (void **)&pVCpu->vmm.s.pR0LoggerR3);
314 if (RT_FAILURE(rc))
315 return rc;
316 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
317 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
318 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
319 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
320 }
321# endif
322 }
323#endif /* LOG_ENABLED */
324
325#ifdef VBOX_WITH_RC_RELEASE_LOGGING
326 /*
327 * Allocate RC release logger instances (finalized in the relocator).
328 */
329 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
330 if (pRelLogger)
331 {
332 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
333 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
334 if (RT_FAILURE(rc))
335 return rc;
336 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
337 }
338#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
339 return VINF_SUCCESS;
340}
341
342
343/**
344 * VMMR3Init worker that register the statistics with STAM.
345 *
346 * @param pVM The shared VM structure.
347 */
348static void vmmR3InitRegisterStats(PVM pVM)
349{
350 /*
351 * Statistics.
352 */
353 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
354 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
355 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
356 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
357 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
358 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
359 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
360 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
361 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
362 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
363 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMQueueFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_QUEUE_FLUSH calls.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
403
404#ifdef VBOX_WITH_STATISTICS
405 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
406 {
407 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
408 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
409 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
410 }
411#endif
412}
413
414
415/**
416 * Initializes the per-VCPU VMM.
417 *
418 * @returns VBox status code.
419 * @param pVM The VM to operate on.
420 */
421VMMR3DECL(int) VMMR3InitCPU(PVM pVM)
422{
423 LogFlow(("VMMR3InitCPU\n"));
424 return VINF_SUCCESS;
425}
426
427
428/**
429 * Ring-3 init finalizing.
430 *
431 * @returns VBox status code.
432 * @param pVM The VM handle.
433 */
434VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
435{
436 int rc = VINF_SUCCESS;
437
438 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
439 {
440 PVMCPU pVCpu = &pVM->aCpus[idCpu];
441
442#ifdef VBOX_STRICT_VMM_STACK
443 /*
444 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
445 */
446 memset(pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
447 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
448
449 memset(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
450 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
451#endif
452
453 /*
454 * Set page attributes to r/w for stack pages.
455 */
456 rc = PGMMapSetPage(pVM, pVCpu->vmm.s.pbEMTStackRC, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
457 AssertRC(rc);
458 if (RT_FAILURE(rc))
459 break;
460 }
461 if (RT_SUCCESS(rc))
462 {
463 /*
464 * Create the EMT yield timer.
465 */
466 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
467 if (RT_SUCCESS(rc))
468 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
469 }
470
471#ifdef VBOX_WITH_NMI
472 /*
473 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
474 */
475 if (RT_SUCCESS(rc))
476 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
477 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
478#endif
479 return rc;
480}
481
482
483/**
484 * Initializes the R0 VMM.
485 *
486 * @returns VBox status code.
487 * @param pVM The VM to operate on.
488 */
489VMMR3DECL(int) VMMR3InitR0(PVM pVM)
490{
491 int rc;
492 PVMCPU pVCpu = VMMGetCpu(pVM);
493 Assert(pVCpu && pVCpu->idCpu == 0);
494
495#ifdef LOG_ENABLED
496 /*
497 * Initialize the ring-0 logger if we haven't done so yet.
498 */
499 if ( pVCpu->vmm.s.pR0LoggerR3
500 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
501 {
502 rc = VMMR3UpdateLoggers(pVM);
503 if (RT_FAILURE(rc))
504 return rc;
505 }
506#endif
507
508 /*
509 * Call Ring-0 entry with init code.
510 */
511 for (;;)
512 {
513#ifdef NO_SUPCALLR0VMM
514 //rc = VERR_GENERAL_FAILURE;
515 rc = VINF_SUCCESS;
516#else
517 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
518#endif
519 /*
520 * Flush the logs.
521 */
522#ifdef LOG_ENABLED
523 if ( pVCpu->vmm.s.pR0LoggerR3
524 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
525 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
526#endif
527 if (rc != VINF_VMM_CALL_HOST)
528 break;
529 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
530 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
531 break;
532 /* Resume R0 */
533 }
534
535 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
536 {
537 LogRel(("R0 init failed, rc=%Rra\n", rc));
538 if (RT_SUCCESS(rc))
539 rc = VERR_INTERNAL_ERROR;
540 }
541 return rc;
542}
543
544
545/**
546 * Initializes the RC VMM.
547 *
548 * @returns VBox status code.
549 * @param pVM The VM to operate on.
550 */
551VMMR3DECL(int) VMMR3InitRC(PVM pVM)
552{
553 PVMCPU pVCpu = VMMGetCpu(pVM);
554 Assert(pVCpu && pVCpu->idCpu == 0);
555
556 /* In VMX mode, there's no need to init RC. */
557 if (pVM->vmm.s.fSwitcherDisabled)
558 return VINF_SUCCESS;
559
560 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
561
562 /*
563 * Call VMMGCInit():
564 * -# resolve the address.
565 * -# setup stackframe and EIP to use the trampoline.
566 * -# do a generic hypervisor call.
567 */
568 RTRCPTR RCPtrEP;
569 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
570 if (RT_SUCCESS(rc))
571 {
572 CPUMHyperSetCtxCore(pVCpu, NULL);
573 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
574 uint64_t u64TS = RTTimeProgramStartNanoTS();
575 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
576 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
577 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
578 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
579 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
580 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
581 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
582 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
583 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
584
585 for (;;)
586 {
587#ifdef NO_SUPCALLR0VMM
588 //rc = VERR_GENERAL_FAILURE;
589 rc = VINF_SUCCESS;
590#else
591 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
592#endif
593#ifdef LOG_ENABLED
594 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
595 if ( pLogger
596 && pLogger->offScratch > 0)
597 RTLogFlushRC(NULL, pLogger);
598#endif
599#ifdef VBOX_WITH_RC_RELEASE_LOGGING
600 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
601 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
602 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
603#endif
604 if (rc != VINF_VMM_CALL_HOST)
605 break;
606 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
607 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
608 break;
609 }
610
611 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
612 {
613 VMMR3FatalDump(pVM, pVCpu, rc);
614 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
615 rc = VERR_INTERNAL_ERROR;
616 }
617 AssertRC(rc);
618 }
619 return rc;
620}
621
622
623/**
624 * Terminate the VMM bits.
625 *
626 * @returns VINF_SUCCESS.
627 * @param pVM The VM handle.
628 */
629VMMR3DECL(int) VMMR3Term(PVM pVM)
630{
631 PVMCPU pVCpu = VMMGetCpu(pVM);
632 Assert(pVCpu && pVCpu->idCpu == 0);
633
634 /*
635 * Call Ring-0 entry with termination code.
636 */
637 int rc;
638 for (;;)
639 {
640#ifdef NO_SUPCALLR0VMM
641 //rc = VERR_GENERAL_FAILURE;
642 rc = VINF_SUCCESS;
643#else
644 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
645#endif
646 /*
647 * Flush the logs.
648 */
649#ifdef LOG_ENABLED
650 if ( pVCpu->vmm.s.pR0LoggerR3
651 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
652 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
653#endif
654 if (rc != VINF_VMM_CALL_HOST)
655 break;
656 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
657 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
658 break;
659 /* Resume R0 */
660 }
661 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
662 {
663 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
664 if (RT_SUCCESS(rc))
665 rc = VERR_INTERNAL_ERROR;
666 }
667
668 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
669 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
670 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
671 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
672 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
673 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
674 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
675 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
676 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
677
678#ifdef VBOX_STRICT_VMM_STACK
679 /*
680 * Make the two stack guard pages present again.
681 */
682 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
683 {
684 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
685 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
686 }
687#endif
688 return rc;
689}
690
691
692/**
693 * Terminates the per-VCPU VMM.
694 *
695 * Termination means cleaning up and freeing all resources,
696 * the VM it self is at this point powered off or suspended.
697 *
698 * @returns VBox status code.
699 * @param pVM The VM to operate on.
700 */
701VMMR3DECL(int) VMMR3TermCPU(PVM pVM)
702{
703 return VINF_SUCCESS;
704}
705
706
707/**
708 * Applies relocations to data and code managed by this
709 * component. This function will be called at init and
710 * whenever the VMM need to relocate it self inside the GC.
711 *
712 * The VMM will need to apply relocations to the core code.
713 *
714 * @param pVM The VM handle.
715 * @param offDelta The relocation delta.
716 */
717VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
718{
719 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
720
721 /*
722 * Recalc the RC address.
723 */
724 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
725
726 /*
727 * The stack.
728 */
729 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
730 {
731 PVMCPU pVCpu = &pVM->aCpus[i];
732
733 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
734
735 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
736 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
737 }
738
739 /*
740 * All the switchers.
741 */
742 vmmR3SwitcherRelocate(pVM, offDelta);
743
744 /*
745 * Get other RC entry points.
746 */
747 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
748 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
749
750 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
751 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
752
753 /*
754 * Update the logger.
755 */
756 VMMR3UpdateLoggers(pVM);
757}
758
759
760/**
761 * Updates the settings for the RC and R0 loggers.
762 *
763 * @returns VBox status code.
764 * @param pVM The VM handle.
765 */
766VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
767{
768 /*
769 * Simply clone the logger instance (for RC).
770 */
771 int rc = VINF_SUCCESS;
772 RTRCPTR RCPtrLoggerFlush = 0;
773
774 if (pVM->vmm.s.pRCLoggerR3
775#ifdef VBOX_WITH_RC_RELEASE_LOGGING
776 || pVM->vmm.s.pRCRelLoggerR3
777#endif
778 )
779 {
780 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
781 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
782 }
783
784 if (pVM->vmm.s.pRCLoggerR3)
785 {
786 RTRCPTR RCPtrLoggerWrapper = 0;
787 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
788 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
789
790 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
791 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
792 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
793 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
794 }
795
796#ifdef VBOX_WITH_RC_RELEASE_LOGGING
797 if (pVM->vmm.s.pRCRelLoggerR3)
798 {
799 RTRCPTR RCPtrLoggerWrapper = 0;
800 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
801 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
802
803 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
804 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
805 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
806 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
807 }
808#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
809
810#ifdef LOG_ENABLED
811 /*
812 * For the ring-0 EMT logger, we use a per-thread logger instance
813 * in ring-0. Only initialize it once.
814 */
815 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
816 {
817 PVMCPU pVCpu = &pVM->aCpus[i];
818 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
819 if (pR0LoggerR3)
820 {
821 if (!pR0LoggerR3->fCreated)
822 {
823 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
824 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
825 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
826
827 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
828 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
829 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
830
831 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
832 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
833 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
834 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
835
836 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
837 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
838 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
839 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
840 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
841
842 pR0LoggerR3->idCpu = i;
843 pR0LoggerR3->fCreated = true;
844 pR0LoggerR3->fFlushingDisabled = false;
845
846 }
847
848 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
849 AssertRC(rc);
850 }
851 }
852#endif
853 return rc;
854}
855
856
857/**
858 * Gets the pointer to a buffer containing the R0/RC AssertMsg1 output.
859 *
860 * @returns Pointer to the buffer.
861 * @param pVM The VM handle.
862 */
863VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
864{
865 if (HWACCMIsEnabled(pVM))
866 return pVM->vmm.s.szRing0AssertMsg1;
867
868 RTRCPTR RCPtr;
869 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
870 if (RT_SUCCESS(rc))
871 return (const char *)MMHyperRCToR3(pVM, RCPtr);
872
873 return NULL;
874}
875
876
877/**
878 * Gets the pointer to a buffer containing the R0/RC AssertMsg2 output.
879 *
880 * @returns Pointer to the buffer.
881 * @param pVM The VM handle.
882 */
883VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
884{
885 if (HWACCMIsEnabled(pVM))
886 return pVM->vmm.s.szRing0AssertMsg2;
887
888 RTRCPTR RCPtr;
889 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
890 if (RT_SUCCESS(rc))
891 return (const char *)MMHyperRCToR3(pVM, RCPtr);
892
893 return NULL;
894}
895
896
897/**
898 * Execute state save operation.
899 *
900 * @returns VBox status code.
901 * @param pVM VM Handle.
902 * @param pSSM SSM operation handle.
903 */
904static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
905{
906 LogFlow(("vmmR3Save:\n"));
907
908 /*
909 * The hypervisor stack.
910 * Note! See note in vmmR3Load (remove this on version change).
911 */
912 PVMCPU pVCpu0 = &pVM->aCpus[0];
913 SSMR3PutRCPtr(pSSM, pVCpu0->vmm.s.pbEMTStackBottomRC);
914 RTRCPTR RCPtrESP = CPUMGetHyperESP(pVCpu0);
915 AssertMsg(pVCpu0->vmm.s.pbEMTStackBottomRC - RCPtrESP <= VMM_STACK_SIZE, ("Bottom %RRv ESP=%RRv\n", pVCpu0->vmm.s.pbEMTStackBottomRC, RCPtrESP));
916 SSMR3PutRCPtr(pSSM, RCPtrESP);
917 SSMR3PutMem(pSSM, pVCpu0->vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
918
919 /*
920 * Save the started/stopped state of all CPUs except 0 as it will always
921 * be running. This avoids breaking the saved state version. :-)
922 */
923 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
924 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
925
926 return SSMR3PutU32(pSSM, ~0); /* terminator */
927}
928
929
930/**
931 * Execute state load operation.
932 *
933 * @returns VBox status code.
934 * @param pVM VM Handle.
935 * @param pSSM SSM operation handle.
936 * @param u32Version Data layout version.
937 */
938static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
939{
940 LogFlow(("vmmR3Load:\n"));
941
942 /*
943 * Validate version.
944 */
945 if (u32Version != VMM_SAVED_STATE_VERSION)
946 {
947 AssertMsgFailed(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
948 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
949 }
950
951 /*
952 * Check that the stack is in the same place, or that it's fearly empty.
953 *
954 * Note! This can be skipped next time we update saved state as we will
955 * never be in a R0/RC -> ring-3 call when saving the state. The
956 * stack and the two associated pointers are not required.
957 */
958 RTRCPTR RCPtrStackBottom;
959 SSMR3GetRCPtr(pSSM, &RCPtrStackBottom);
960 RTRCPTR RCPtrESP;
961 int rc = SSMR3GetRCPtr(pSSM, &RCPtrESP);
962 if (RT_FAILURE(rc))
963 return rc;
964 SSMR3GetMem(pSSM, pVM->aCpus[0].vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
965
966 /* Restore the VMCPU states. VCPU 0 is always started. */
967 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
968 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
969 {
970 bool fStarted;
971 rc = SSMR3GetBool(pSSM, &fStarted);
972 if (RT_FAILURE(rc))
973 return rc;
974 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
975 }
976
977 /* terminator */
978 uint32_t u32;
979 rc = SSMR3GetU32(pSSM, &u32);
980 if (RT_FAILURE(rc))
981 return rc;
982 if (u32 != ~0U)
983 {
984 AssertMsgFailed(("u32=%#x\n", u32));
985 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
986 }
987 return VINF_SUCCESS;
988}
989
990
991/**
992 * Resolve a builtin RC symbol.
993 *
994 * Called by PDM when loading or relocating RC modules.
995 *
996 * @returns VBox status
997 * @param pVM VM Handle.
998 * @param pszSymbol Symbol to resolv
999 * @param pRCPtrValue Where to store the symbol value.
1000 *
1001 * @remark This has to work before VMMR3Relocate() is called.
1002 */
1003VMMR3DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1004{
1005 if (!strcmp(pszSymbol, "g_Logger"))
1006 {
1007 if (pVM->vmm.s.pRCLoggerR3)
1008 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1009 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1010 }
1011 else if (!strcmp(pszSymbol, "g_RelLogger"))
1012 {
1013#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1014 if (pVM->vmm.s.pRCRelLoggerR3)
1015 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1016 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1017#else
1018 *pRCPtrValue = NIL_RTRCPTR;
1019#endif
1020 }
1021 else
1022 return VERR_SYMBOL_NOT_FOUND;
1023 return VINF_SUCCESS;
1024}
1025
1026
1027/**
1028 * Suspends the CPU yielder.
1029 *
1030 * @param pVM The VM handle.
1031 */
1032VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1033{
1034 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1035 if (!pVM->vmm.s.cYieldResumeMillies)
1036 {
1037 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1038 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1039 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1040 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1041 else
1042 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1043 TMTimerStop(pVM->vmm.s.pYieldTimer);
1044 }
1045 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1046}
1047
1048
1049/**
1050 * Stops the CPU yielder.
1051 *
1052 * @param pVM The VM handle.
1053 */
1054VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1055{
1056 if (!pVM->vmm.s.cYieldResumeMillies)
1057 TMTimerStop(pVM->vmm.s.pYieldTimer);
1058 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1059 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1060}
1061
1062
1063/**
1064 * Resumes the CPU yielder when it has been a suspended or stopped.
1065 *
1066 * @param pVM The VM handle.
1067 */
1068VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1069{
1070 if (pVM->vmm.s.cYieldResumeMillies)
1071 {
1072 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1073 pVM->vmm.s.cYieldResumeMillies = 0;
1074 }
1075}
1076
1077
1078/**
1079 * Internal timer callback function.
1080 *
1081 * @param pVM The VM.
1082 * @param pTimer The timer handle.
1083 * @param pvUser User argument specified upon timer creation.
1084 */
1085static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1086{
1087 /*
1088 * This really needs some careful tuning. While we shouldn't be too greedy since
1089 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1090 * because that'll cause us to stop up.
1091 *
1092 * The current logic is to use the default interval when there is no lag worth
1093 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1094 *
1095 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1096 * so the lag is up to date.)
1097 */
1098 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1099 if ( u64Lag < 50000000 /* 50ms */
1100 || ( u64Lag < 1000000000 /* 1s */
1101 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1102 )
1103 {
1104 uint64_t u64Elapsed = RTTimeNanoTS();
1105 pVM->vmm.s.u64LastYield = u64Elapsed;
1106
1107 RTThreadYield();
1108
1109#ifdef LOG_ENABLED
1110 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1111 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1112#endif
1113 }
1114 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1115}
1116
1117
1118/**
1119 * Executes guest code in the raw-mode context.
1120 *
1121 * @param pVM VM handle.
1122 * @param pVCpu The VMCPU to operate on.
1123 */
1124VMMR3DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1125{
1126 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1127
1128 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1129
1130 /*
1131 * Set the EIP and ESP.
1132 */
1133 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1134 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1135 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1136 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1137
1138 /*
1139 * We hide log flushes (outer) and hypervisor interrupts (inner).
1140 */
1141 for (;;)
1142 {
1143#ifdef VBOX_STRICT
1144 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1145 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1146 PGMMapCheck(pVM);
1147#endif
1148 int rc;
1149 do
1150 {
1151#ifdef NO_SUPCALLR0VMM
1152 rc = VERR_GENERAL_FAILURE;
1153#else
1154 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1155 if (RT_LIKELY(rc == VINF_SUCCESS))
1156 rc = pVCpu->vmm.s.iLastGZRc;
1157#endif
1158 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1159
1160 /*
1161 * Flush the logs.
1162 */
1163#ifdef LOG_ENABLED
1164 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1165 if ( pLogger
1166 && pLogger->offScratch > 0)
1167 RTLogFlushRC(NULL, pLogger);
1168#endif
1169#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1170 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1171 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1172 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1173#endif
1174 if (rc != VINF_VMM_CALL_HOST)
1175 {
1176 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1177 return rc;
1178 }
1179 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1180 if (RT_FAILURE(rc))
1181 return rc;
1182 /* Resume GC */
1183 }
1184}
1185
1186
1187/**
1188 * Executes guest code (Intel VT-x and AMD-V).
1189 *
1190 * @param pVM VM handle.
1191 * @param pVCpu The VMCPU to operate on.
1192 */
1193VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1194{
1195 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1196
1197 for (;;)
1198 {
1199 int rc;
1200 do
1201 {
1202#ifdef NO_SUPCALLR0VMM
1203 rc = VERR_GENERAL_FAILURE;
1204#else
1205 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1206 if (RT_LIKELY(rc == VINF_SUCCESS))
1207 rc = pVCpu->vmm.s.iLastGZRc;
1208#endif
1209 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1210
1211#ifdef LOG_ENABLED
1212 /*
1213 * Flush the log
1214 */
1215 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1216 if ( pR0LoggerR3
1217 && pR0LoggerR3->Logger.offScratch > 0)
1218 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1219#endif /* !LOG_ENABLED */
1220 if (rc != VINF_VMM_CALL_HOST)
1221 {
1222 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1223 return rc;
1224 }
1225 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1226 if (RT_FAILURE(rc))
1227 return rc;
1228 /* Resume R0 */
1229 }
1230}
1231
1232/**
1233 * VCPU worker for VMMSendSipi.
1234 *
1235 * @param pVM The VM to operate on.
1236 * @param idCpu Virtual CPU to perform SIPI on
1237 * @param uVector SIPI vector
1238 */
1239DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1240{
1241 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1242 VMCPU_ASSERT_EMT(pVCpu);
1243
1244 /** @todo what are we supposed to do if the processor is already running? */
1245 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1246 return VERR_ACCESS_DENIED;
1247
1248
1249 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1250
1251 pCtx->cs = uVector << 8;
1252 pCtx->csHid.u64Base = uVector << 12;
1253 pCtx->csHid.u32Limit = 0x0000ffff;
1254 pCtx->rip = 0;
1255
1256 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1257
1258# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1259 EMSetState(pVCpu, EMSTATE_HALTED);
1260 return VINF_EM_RESCHEDULE;
1261# else /* And if we go the VMCPU::enmState way it can stay here. */
1262 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1263 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1264 return VINF_SUCCESS;
1265# endif
1266}
1267
1268DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1269{
1270 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1271 VMCPU_ASSERT_EMT(pVCpu);
1272
1273 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1274 CPUMR3ResetCpu(pVCpu);
1275 return VINF_EM_WAIT_SIPI;
1276}
1277
1278/**
1279 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1280 * and unhalting processor
1281 *
1282 * @param pVM The VM to operate on.
1283 * @param idCpu Virtual CPU to perform SIPI on
1284 * @param uVector SIPI vector
1285 */
1286VMMR3DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1287{
1288 AssertReturnVoid(idCpu < pVM->cCPUs);
1289
1290 PVMREQ pReq;
1291 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1292 (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1293 AssertRC(rc);
1294}
1295
1296/**
1297 * Sends init IPI to the virtual CPU.
1298 *
1299 * @param pVM The VM to operate on.
1300 * @param idCpu Virtual CPU to perform int IPI on
1301 */
1302VMMR3DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1303{
1304 AssertReturnVoid(idCpu < pVM->cCPUs);
1305
1306 PVMREQ pReq;
1307 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1308 (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1309 AssertRC(rc);
1310}
1311
1312/**
1313 * Registers the guest memory range that can be used for patching
1314 *
1315 * @returns VBox status code.
1316 * @param pVM The VM to operate on.
1317 * @param pPatchMem Patch memory range
1318 * @param cbPatchMem Size of the memory range
1319 */
1320VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1321{
1322 if (HWACCMIsEnabled(pVM))
1323 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1324
1325 return VERR_NOT_SUPPORTED;
1326}
1327
1328/**
1329 * Deregisters the guest memory range that can be used for patching
1330 *
1331 * @returns VBox status code.
1332 * @param pVM The VM to operate on.
1333 * @param pPatchMem Patch memory range
1334 * @param cbPatchMem Size of the memory range
1335 */
1336VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1337{
1338 if (HWACCMIsEnabled(pVM))
1339 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1340
1341 return VINF_SUCCESS;
1342}
1343
1344
1345/**
1346 * VCPU worker for VMMR3SynchronizeAllVCpus.
1347 *
1348 * @param pVM The VM to operate on.
1349 * @param idCpu Virtual CPU to perform SIPI on
1350 * @param uVector SIPI vector
1351 */
1352DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1353{
1354 /* Block until the job in the caller has finished. */
1355 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1356 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1357 return VINF_SUCCESS;
1358}
1359
1360
1361/**
1362 * Atomically execute a callback handler
1363 * Note: This is very expensive; avoid using it frequently!
1364 *
1365 * @param pVM The VM to operate on.
1366 * @param pfnHandler Callback handler
1367 * @param pvUser User specified parameter
1368 *
1369 * @thread EMT
1370 */
1371VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1372{
1373 int rc;
1374 PVMCPU pVCpu = VMMGetCpu(pVM);
1375 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1376
1377 /* Shortcut for the uniprocessor case. */
1378 if (pVM->cCPUs == 1)
1379 return pfnHandler(pVM, pvUser);
1380
1381 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1382 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
1383 {
1384 if (idCpu != pVCpu->idCpu)
1385 {
1386 rc = VMR3ReqCallU(pVM->pUVM, idCpu, NULL, 0, VMREQFLAGS_NO_WAIT,
1387 (PFNRT)vmmR3SyncVCpu, 1, pVM);
1388 AssertRC(rc);
1389 }
1390 }
1391 /* Wait until all other VCPUs are waiting for us. */
1392 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCPUs - 1))
1393 RTThreadSleep(1);
1394
1395 rc = pfnHandler(pVM, pvUser);
1396 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1397 return rc;
1398}
1399
1400
1401/**
1402 * Count returns and have the last non-caller EMT wake up the caller.
1403 *
1404 * @param pVM The VM handle.
1405 */
1406DECL_FORCE_INLINE(void) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1407{
1408 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1409 if (cReturned == pVM->cCPUs - 1U)
1410 {
1411 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1412 AssertLogRelRC(rc);
1413 }
1414}
1415
1416
1417/**
1418 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1419 *
1420 * @param pVM The VM handle.
1421 * @param pVCpu The VMCPU structure for the calling EMT.
1422 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1423 * not.
1424 * @param fFlags The flags.
1425 * @param pfnRendezvous The callback.
1426 * @param pvUser The user argument for the callback.
1427 */
1428static void vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1429 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1430{
1431 int rc;
1432
1433 /*
1434 * Enter, the last EMT triggers the next callback phase.
1435 */
1436 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1437 if (cEntered != pVM->cCPUs)
1438 {
1439 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1440 {
1441 /* Wait for our turn. */
1442 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1443 AssertLogRelRC(rc);
1444 }
1445 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1446 {
1447 /* Wait for the last EMT to arrive and wake everyone up. */
1448 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1449 AssertLogRelRC(rc);
1450 }
1451 else
1452 {
1453 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1454
1455 /*
1456 * The execute once is handled specially to optimize the code flow.
1457 *
1458 * The last EMT to arrive will perform the callback and the other
1459 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1460 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1461 * returns, that EMT will initiate the normal return sequence.
1462 */
1463 if (!fIsCaller)
1464 {
1465 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1466 AssertLogRelRC(rc);
1467
1468 vmmR3EmtRendezvousNonCallerReturn(pVM);
1469 }
1470 return;
1471 }
1472 }
1473 else
1474 {
1475 /*
1476 * All EMTs are waiting, clear the FF and take action according to the
1477 * execution method.
1478 */
1479 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1480
1481 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1482 {
1483 /* Wake up everyone. */
1484 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1485 AssertLogRelRC(rc);
1486 }
1487 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1488 }
1489
1490
1491 /*
1492 * Do the callback and update the status if necessary.
1493 */
1494 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1495 if (rc != VINF_SUCCESS)
1496 {
1497 int32_t i32RendezvousStatus;
1498 do
1499 {
1500 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1501 if ( RT_FAILURE(i32RendezvousStatus)
1502 || ( i32RendezvousStatus != VINF_SUCCESS
1503 && RT_SUCCESS(rc)))
1504 break;
1505 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, rc, i32RendezvousStatus));
1506 }
1507
1508 /*
1509 * Increment the done counter and take action depending on whether we're
1510 * the last to finish callback execution.
1511 */
1512 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1513 if ( cDone != pVM->cCPUs
1514 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1515 {
1516 /* Signal the next EMT? */
1517 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1518 {
1519 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1520 AssertLogRelRC(rc);
1521 }
1522
1523 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1524 if (!fIsCaller)
1525 {
1526 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1527 AssertLogRelRC(rc);
1528 }
1529 }
1530 else
1531 {
1532 /* Callback execution is all done, tell the rest to return. */
1533 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1534 AssertLogRelRC(rc);
1535 }
1536
1537 if (!fIsCaller)
1538 vmmR3EmtRendezvousNonCallerReturn(pVM);
1539}
1540
1541
1542/**
1543 * Called in response to VM_FF_EMT_RENDEZVOUS.
1544 *
1545 * @param pVM The VM handle
1546 * @param pVCpu The handle of the calling EMT.
1547 *
1548 * @thread EMT
1549 */
1550VMMR3DECL(void) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1551{
1552 vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1553 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1554}
1555
1556
1557/**
1558 * EMT rendezvous.
1559 *
1560 * Gathers all the EMTs and execute some code on each of them, either in a one
1561 * by one fashion or all at once.
1562 *
1563 * @returns VBox status code. This will be the first error or, if all succeed,
1564 * the first informational status code.
1565 * @retval VERR_VM_THREAD_NOT_EMT if the caller is not an EMT.
1566 *
1567 * @param pVM The VM handle.
1568 * @param fFlags Flags indicating execution methods. See
1569 * grp_VMMR3EmtRendezvous_fFlags.
1570 * @param pfnRendezvous The callback.
1571 * @param pvUser User argument for the callback.
1572 *
1573 * @thread EMT
1574 */
1575VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1576{
1577 /*
1578 * Validate input.
1579 */
1580 PVMCPU pVCpu = VMMGetCpu(pVM);
1581 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1582 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1583 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1584
1585 int rc;
1586 if (pVM->cCPUs == 1)
1587 /*
1588 * Shortcut for the single EMT case.
1589 */
1590 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1591 else
1592 {
1593 /*
1594 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1595 * lookout of the RENDEZVOUS FF.
1596 */
1597 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1598 {
1599 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1600 VMMR3EmtRendezvousFF(pVM, pVCpu);
1601 }
1602 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1603
1604 /*
1605 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1606 */
1607 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1608 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1609 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1610 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1611 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1612 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1613 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1614 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1615 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1616 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1617 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1618
1619 /*
1620 * Set the FF and poke the other EMTs.
1621 */
1622 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1623 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1624
1625 /*
1626 * Do the same ourselves.
1627 */
1628 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1629
1630 /*
1631 * The caller waits for the other EMTs to be done and return before doing
1632 * the cleanup. This makes away with wakeup / reset races we would otherwise
1633 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1634 */
1635 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1636 AssertLogRelRC(rc);
1637
1638 /*
1639 * Get the return code and clean up a little bit.
1640 */
1641 rc = pVM->vmm.s.i32RendezvousStatus;
1642 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, NULL);
1643
1644 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1645 }
1646
1647 return rc;
1648}
1649
1650
1651/**
1652 * Read from the ring 0 jump buffer stack
1653 *
1654 * @returns VBox status code.
1655 *
1656 * @param pVM Pointer to the shared VM structure.
1657 * @param idCpu The ID of the source CPU context (for the address).
1658 * @param pAddress Where to start reading.
1659 * @param pvBuf Where to store the data we've read.
1660 * @param cbRead The number of bytes to read.
1661 */
1662VMMR3DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR pAddress, void *pvBuf, size_t cbRead)
1663{
1664 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1665 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1666
1667 RTHCUINTPTR offset = pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - pAddress;
1668 if (offset >= pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack)
1669 return VERR_INVALID_POINTER;
1670
1671 memcpy(pvBuf, pVCpu->vmm.s.pbEMTStackR3 + pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - offset, cbRead);
1672 return VINF_SUCCESS;
1673}
1674
1675
1676/**
1677 * Calls a RC function.
1678 *
1679 * @param pVM The VM handle.
1680 * @param RCPtrEntry The address of the RC function.
1681 * @param cArgs The number of arguments in the ....
1682 * @param ... Arguments to the function.
1683 */
1684VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1685{
1686 va_list args;
1687 va_start(args, cArgs);
1688 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1689 va_end(args);
1690 return rc;
1691}
1692
1693
1694/**
1695 * Calls a RC function.
1696 *
1697 * @param pVM The VM handle.
1698 * @param RCPtrEntry The address of the RC function.
1699 * @param cArgs The number of arguments in the ....
1700 * @param args Arguments to the function.
1701 */
1702VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1703{
1704 /* Raw mode implies 1 VCPU. */
1705 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1706 PVMCPU pVCpu = &pVM->aCpus[0];
1707
1708 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1709
1710 /*
1711 * Setup the call frame using the trampoline.
1712 */
1713 CPUMHyperSetCtxCore(pVCpu, NULL);
1714 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1715 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1716 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1717 int i = cArgs;
1718 while (i-- > 0)
1719 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1720
1721 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1722 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1723 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1724
1725 /*
1726 * We hide log flushes (outer) and hypervisor interrupts (inner).
1727 */
1728 for (;;)
1729 {
1730 int rc;
1731 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1732 do
1733 {
1734#ifdef NO_SUPCALLR0VMM
1735 rc = VERR_GENERAL_FAILURE;
1736#else
1737 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1738 if (RT_LIKELY(rc == VINF_SUCCESS))
1739 rc = pVCpu->vmm.s.iLastGZRc;
1740#endif
1741 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1742
1743 /*
1744 * Flush the logs.
1745 */
1746#ifdef LOG_ENABLED
1747 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1748 if ( pLogger
1749 && pLogger->offScratch > 0)
1750 RTLogFlushRC(NULL, pLogger);
1751#endif
1752#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1753 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1754 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1755 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1756#endif
1757 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1758 VMMR3FatalDump(pVM, pVCpu, rc);
1759 if (rc != VINF_VMM_CALL_HOST)
1760 {
1761 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1762 return rc;
1763 }
1764 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1765 if (RT_FAILURE(rc))
1766 return rc;
1767 }
1768}
1769
1770
1771/**
1772 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1773 *
1774 * @returns VBox status code.
1775 * @param pVM The VM to operate on.
1776 * @param uOperation Operation to execute.
1777 * @param u64Arg Constant argument.
1778 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1779 * details.
1780 */
1781VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1782{
1783 PVMCPU pVCpu = VMMGetCpu(pVM);
1784 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1785
1786 /*
1787 * Call Ring-0 entry with init code.
1788 */
1789 int rc;
1790 for (;;)
1791 {
1792#ifdef NO_SUPCALLR0VMM
1793 rc = VERR_GENERAL_FAILURE;
1794#else
1795 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1796#endif
1797 /*
1798 * Flush the logs.
1799 */
1800#ifdef LOG_ENABLED
1801 if ( pVCpu->vmm.s.pR0LoggerR3
1802 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1803 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1804#endif
1805 if (rc != VINF_VMM_CALL_HOST)
1806 break;
1807 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1808 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1809 break;
1810 /* Resume R0 */
1811 }
1812
1813 AssertLogRelMsgReturn(rc == VINF_SUCCESS || VBOX_FAILURE(rc),
1814 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1815 VERR_INTERNAL_ERROR);
1816 return rc;
1817}
1818
1819
1820/**
1821 * Resumes executing hypervisor code when interrupted by a queue flush or a
1822 * debug event.
1823 *
1824 * @returns VBox status code.
1825 * @param pVM VM handle.
1826 * @param pVCpu VMCPU handle.
1827 */
1828VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1829{
1830 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1831 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1832
1833 /*
1834 * We hide log flushes (outer) and hypervisor interrupts (inner).
1835 */
1836 for (;;)
1837 {
1838 int rc;
1839 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1840 do
1841 {
1842#ifdef NO_SUPCALLR0VMM
1843 rc = VERR_GENERAL_FAILURE;
1844#else
1845 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1846 if (RT_LIKELY(rc == VINF_SUCCESS))
1847 rc = pVCpu->vmm.s.iLastGZRc;
1848#endif
1849 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1850
1851 /*
1852 * Flush the loggers,
1853 */
1854#ifdef LOG_ENABLED
1855 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1856 if ( pLogger
1857 && pLogger->offScratch > 0)
1858 RTLogFlushRC(NULL, pLogger);
1859#endif
1860#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1861 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1862 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1863 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1864#endif
1865 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1866 VMMR3FatalDump(pVM, pVCpu, rc);
1867 if (rc != VINF_VMM_CALL_HOST)
1868 {
1869 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
1870 return rc;
1871 }
1872 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1873 if (RT_FAILURE(rc))
1874 return rc;
1875 }
1876}
1877
1878
1879/**
1880 * Service a call to the ring-3 host code.
1881 *
1882 * @returns VBox status code.
1883 * @param pVM VM handle.
1884 * @param pVCpu VMCPU handle
1885 * @remark Careful with critsects.
1886 */
1887static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
1888{
1889 /*
1890 * We must also check for pending critsect exits or else we can deadlock
1891 * when entering other critsects here.
1892 */
1893 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
1894 PDMCritSectFF(pVCpu);
1895
1896 switch (pVCpu->vmm.s.enmCallRing3Operation)
1897 {
1898 /*
1899 * Acquire the PDM lock.
1900 */
1901 case VMMCALLRING3_PDM_LOCK:
1902 {
1903 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
1904 break;
1905 }
1906
1907 /*
1908 * Flush a PDM queue.
1909 */
1910 case VMMCALLRING3_PDM_QUEUE_FLUSH:
1911 {
1912 PDMR3QueueFlushWorker(pVM, NULL);
1913 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1914 break;
1915 }
1916
1917 /*
1918 * Grow the PGM pool.
1919 */
1920 case VMMCALLRING3_PGM_POOL_GROW:
1921 {
1922 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
1923 break;
1924 }
1925
1926 /*
1927 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
1928 */
1929 case VMMCALLRING3_PGM_MAP_CHUNK:
1930 {
1931 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
1932 break;
1933 }
1934
1935 /*
1936 * Allocates more handy pages.
1937 */
1938 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
1939 {
1940 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
1941 break;
1942 }
1943
1944 /*
1945 * Acquire the PGM lock.
1946 */
1947 case VMMCALLRING3_PGM_LOCK:
1948 {
1949 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
1950 break;
1951 }
1952
1953 /*
1954 * Acquire the MM hypervisor heap lock.
1955 */
1956 case VMMCALLRING3_MMHYPER_LOCK:
1957 {
1958 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
1959 break;
1960 }
1961
1962 /*
1963 * Flush REM handler notifications.
1964 */
1965 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
1966 {
1967 REMR3ReplayHandlerNotifications(pVM);
1968 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1969 break;
1970 }
1971
1972 /*
1973 * This is a noop. We just take this route to avoid unnecessary
1974 * tests in the loops.
1975 */
1976 case VMMCALLRING3_VMM_LOGGER_FLUSH:
1977 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1978 LogAlways(("*FLUSH*\n"));
1979 break;
1980
1981 /*
1982 * Set the VM error message.
1983 */
1984 case VMMCALLRING3_VM_SET_ERROR:
1985 VMR3SetErrorWorker(pVM);
1986 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1987 break;
1988
1989 /*
1990 * Set the VM runtime error message.
1991 */
1992 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
1993 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
1994 break;
1995
1996 /*
1997 * Signal a ring 0 hypervisor assertion.
1998 * Cancel the longjmp operation that's in progress.
1999 */
2000 case VMMCALLRING3_VM_R0_ASSERTION:
2001 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2002 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2003#ifdef RT_ARCH_X86
2004 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2005#else
2006 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2007#endif
2008 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2009 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2010 return VERR_VMM_RING0_ASSERTION;
2011
2012 /*
2013 * A forced switch to ring 0 for preemption purposes.
2014 */
2015 case VMMCALLRING3_VM_R0_PREEMPT:
2016 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2017 break;
2018
2019 default:
2020 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2021 return VERR_INTERNAL_ERROR;
2022 }
2023
2024 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2025 return VINF_SUCCESS;
2026}
2027
2028
2029/**
2030 * Displays the Force action Flags.
2031 *
2032 * @param pVM The VM handle.
2033 * @param pHlp The output helpers.
2034 * @param pszArgs The additional arguments (ignored).
2035 */
2036static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2037{
2038 int c;
2039 uint32_t f;
2040#define PRINT_FLAG(prf,flag) do { \
2041 if (f & (prf##flag)) \
2042 { \
2043 static const char *s_psz = #flag; \
2044 if (!(c % 6)) \
2045 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2046 else \
2047 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2048 c++; \
2049 f &= ~(prf##flag); \
2050 } \
2051 } while (0)
2052
2053#define PRINT_GROUP(prf,grp,sfx) do { \
2054 if (f & (prf##grp##sfx)) \
2055 { \
2056 static const char *s_psz = #grp; \
2057 if (!(c % 5)) \
2058 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2059 else \
2060 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2061 c++; \
2062 } \
2063 } while (0)
2064
2065 /*
2066 * The global flags.
2067 */
2068 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2069 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2070
2071 /* show the flag mnemonics */
2072 c = 0;
2073 f = fGlobalForcedActions;
2074 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2075 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2076 PRINT_FLAG(VM_FF_,PDM_DMA);
2077 PRINT_FLAG(VM_FF_,DBGF);
2078 PRINT_FLAG(VM_FF_,REQUEST);
2079 PRINT_FLAG(VM_FF_,TERMINATE);
2080 PRINT_FLAG(VM_FF_,RESET);
2081 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2082 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2083 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2084 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2085 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2086 if (f)
2087 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2088 else
2089 pHlp->pfnPrintf(pHlp, "\n");
2090
2091 /* the groups */
2092 c = 0;
2093 f = fGlobalForcedActions;
2094 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2095 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2096 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2097 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2098 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2099 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2100 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2101 PRINT_GROUP(VM_FF_,ALL_BUT_RAW,_MASK);
2102 if (c)
2103 pHlp->pfnPrintf(pHlp, "\n");
2104
2105 /*
2106 * Per CPU flags.
2107 */
2108 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
2109 {
2110 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2111 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2112
2113 /* show the flag mnemonics */
2114 c = 0;
2115 f = fLocalForcedActions;
2116 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2117 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2118 PRINT_FLAG(VMCPU_FF_,TIMER);
2119 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2120 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2121 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2122 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2123 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2124 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2125 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2126 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2127 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2128 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2129 PRINT_FLAG(VMCPU_FF_,TO_R3);
2130 if (f)
2131 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2132 else
2133 pHlp->pfnPrintf(pHlp, "\n");
2134
2135 /* the groups */
2136 c = 0;
2137 f = fLocalForcedActions;
2138 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2139 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2140 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2141 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2142 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2143 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2144 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2145 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2146 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2147 PRINT_GROUP(VMCPU_FF_,ALL_BUT_RAW,_MASK);
2148 if (c)
2149 pHlp->pfnPrintf(pHlp, "\n");
2150 }
2151
2152#undef PRINT_FLAG
2153#undef PRINT_GROUP
2154}
2155
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette