VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 8225

Last change on this file since 8225 was 8155, checked in by vboxsync, 17 years ago

The Big Sun Rebranding Header Change

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 98.1 KB
Line 
1/* $Id: VMM.cpp 8155 2008-04-18 15:16:47Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * !Revise this! It's already incorrect!
27 *
28 * The Virtual Machine Monitor (VMM) is the core of the virtual machine. It
29 * manages the alternate reality; controlling the virtualization, managing
30 * resources, tracking CPU state, it's resources and so on...
31 *
32 * We will split the VMM into smaller entities:
33 *
34 * - Virtual Machine Core Monitor (VMCM), which purpose it is to
35 * provide ring and world switching, that including routing
36 * interrupts to the host OS and traps to the appropriate trap
37 * handlers. It will implement an external interface for
38 * managing trap handlers.
39 *
40 * - CPU Monitor (CM), tracking the state of the CPU (in the alternate
41 * reality) and implementing external interfaces to read and change
42 * the state.
43 *
44 * - Memory Monitor (MM), which purpose it is to virtualize physical
45 * pages, segment descriptor tables, interrupt descriptor tables, task
46 * segments, and keep track of all memory providing external interfaces
47 * to access content and map pages. (Internally splitt into smaller entities!)
48 *
49 * - IO Monitor (IOM), which virtualizes in and out I/O operations. It
50 * interacts with the MM to implement memory mapped I/O. External
51 * interfaces for adding and removing I/O ranges are implemented.
52 *
53 * - External Interrupt Monitor (EIM), which purpose it is to manage
54 * interrupts generated by virtual devices. This monitor provides
55 * an interfaces for raising interrupts which is accessible at any
56 * time and from all thread.
57 * <p>
58 * A subentity of the EIM is the vitual Programmable Interrupt
59 * Controller Device (VPICD), and perhaps a virtual I/O Advanced
60 * Programmable Interrupt Controller Device (VAPICD).
61 *
62 * - Direct Memory Access Monitor (DMAM), which purpose it is to support
63 * virtual device using the DMA controller. Interfaces must be as the
64 * EIM interfaces independent and threadable.
65 * <p>
66 * A subentity of the DMAM is a virtual DMA Controller Device (VDMACD).
67 *
68 *
69 * Entities working on a higher level:
70 *
71 * - Device Manager (DM), which is a support facility for virtualized
72 * hardware. This provides generic facilities for efficient device
73 * virtualization. It will manage device attaching and detaching
74 * conversing with EIM and IOM.
75 *
76 * - Debugger Facility (DBGF) provides the basic features for
77 * debugging the alternate reality execution.
78 *
79 *
80 *
81 * @section pg_vmm_s_use_cases Use Cases
82 *
83 * @subsection pg_vmm_s_use_case_boot Bootstrap
84 *
85 * - Basic Init:
86 * - Init SUPDRV.
87 *
88 * - Init Virtual Machine Instance:
89 * - Load settings.
90 * - Check resource requirements (memory, com, stuff).
91 *
92 * - Init Host Ring 3 part:
93 * - Init Core code.
94 * - Load Pluggable Components.
95 * - Init Pluggable Components.
96 *
97 * - Init Host Ring 0 part:
98 * - Load Core (core = core components like VMM, RMI, CA, and so on) code.
99 * - Init Core code.
100 * - Load Pluggable Component code.
101 * - Init Pluggable Component code.
102 *
103 * - Allocate first chunk of memory and pin it down. This block of memory
104 * will fit the following pieces:
105 * - Virtual Machine Instance data. (Config, CPU state, VMM state, ++)
106 * (This is available from everywhere (at different addresses though)).
107 * - VMM Guest Context code.
108 * - Pluggable devices Guest Context code.
109 * - Page tables (directory and everything) for the VMM Guest
110 *
111 * - Setup Guest (Ring 0) part:
112 * - Setup initial page tables (i.e. directory all the stuff).
113 * - Load Core Guest Context code.
114 * - Load Pluggable Devices Guest Context code.
115 *
116 *
117 */
118
119
120/*******************************************************************************
121* Header Files *
122*******************************************************************************/
123#define LOG_GROUP LOG_GROUP_VMM
124#include <VBox/vmm.h>
125#include <VBox/vmapi.h>
126#include <VBox/pgm.h>
127#include <VBox/cfgm.h>
128#include <VBox/pdmqueue.h>
129#include <VBox/pdmapi.h>
130#include <VBox/cpum.h>
131#include <VBox/mm.h>
132#include <VBox/iom.h>
133#include <VBox/trpm.h>
134#include <VBox/selm.h>
135#include <VBox/em.h>
136#include <VBox/sup.h>
137#include <VBox/dbgf.h>
138#include <VBox/csam.h>
139#include <VBox/patm.h>
140#include <VBox/rem.h>
141#include <VBox/ssm.h>
142#include <VBox/tm.h>
143#include "VMMInternal.h"
144#include "VMMSwitcher/VMMSwitcher.h"
145#include <VBox/vm.h>
146#include <VBox/err.h>
147#include <VBox/param.h>
148#include <VBox/version.h>
149#include <VBox/x86.h>
150#include <VBox/hwaccm.h>
151#include <iprt/assert.h>
152#include <iprt/alloc.h>
153#include <iprt/asm.h>
154#include <iprt/time.h>
155#include <iprt/stream.h>
156#include <iprt/string.h>
157#include <iprt/stdarg.h>
158#include <iprt/ctype.h>
159
160
161
162/** The saved state version. */
163#define VMM_SAVED_STATE_VERSION 3
164
165
166/*******************************************************************************
167* Internal Functions *
168*******************************************************************************/
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
171static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
172static int vmmR3ServiceCallHostRequest(PVM pVM);
173static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
174
175
176/*******************************************************************************
177* Global Variables *
178*******************************************************************************/
179/** Array of switcher defininitions.
180 * The type and index shall match!
181 */
182static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
183{
184 NULL, /* invalid entry */
185#ifndef RT_ARCH_AMD64
186 &vmmR3Switcher32BitTo32Bit_Def,
187 &vmmR3Switcher32BitToPAE_Def,
188 NULL, //&vmmR3Switcher32BitToAMD64_Def,
189 &vmmR3SwitcherPAETo32Bit_Def,
190 &vmmR3SwitcherPAEToPAE_Def,
191 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
192# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
193 &vmmR3SwitcherAMD64ToPAE_Def,
194# else
195 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
196# endif
197 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
198#else
199 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
200 NULL, //&vmmR3Switcher32BitToPAE_Def,
201 NULL, //&vmmR3Switcher32BitToAMD64_Def,
202 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
203 NULL, //&vmmR3SwitcherPAEToPAE_Def,
204 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
205 &vmmR3SwitcherAMD64ToPAE_Def,
206 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
207#endif
208};
209
210
211
212/**
213 * Initiates the core code.
214 *
215 * This is core per VM code which might need fixups and/or for ease of use
216 * are put on linear contiguous backing.
217 *
218 * @returns VBox status code.
219 * @param pVM Pointer to VM structure.
220 */
221static int vmmR3InitCoreCode(PVM pVM)
222{
223 /*
224 * Calc the size.
225 */
226 unsigned cbCoreCode = 0;
227 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
228 {
229 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
230 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
231 if (pSwitcher)
232 {
233 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
234 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
235 }
236 }
237
238 /*
239 * Allocate continguous pages for switchers and deal with
240 * conflicts in the intermediate mapping of the code.
241 */
242 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
243 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
244 int rc = VERR_NO_MEMORY;
245 if (pVM->vmm.s.pvHCCoreCodeR3)
246 {
247 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
248 if (rc == VERR_PGM_MAPPINGS_FIX_CONFLICT)
249 {
250 /* try more allocations. */
251 struct
252 {
253 RTR0PTR pvR0;
254 void *pvR3;
255 RTHCPHYS HCPhys;
256 RTUINT cb;
257 } aBadTries[16];
258 unsigned i = 0;
259 do
260 {
261 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
262 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
263 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
264 i++;
265 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
266 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
267 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
268 if (!pVM->vmm.s.pvHCCoreCodeR3)
269 break;
270 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
271 } while ( rc == VERR_PGM_MAPPINGS_FIX_CONFLICT
272 && i < ELEMENTS(aBadTries) - 1);
273
274 /* cleanup */
275 if (VBOX_FAILURE(rc))
276 {
277 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
278 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
279 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
280 aBadTries[i].cb = pVM->vmm.s.cbCoreCode;
281 i++;
282 LogRel(("Failed to allocated and map core code: rc=%Vrc\n", rc));
283 }
284 while (i-- > 0)
285 {
286 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%VHp\n",
287 i, aBadTries[i].pvR3, aBadTries[i].pvR0, aBadTries[i].HCPhys));
288 SUPContFree(aBadTries[i].pvR3, aBadTries[i].cb >> PAGE_SHIFT);
289 }
290 }
291 }
292 if (VBOX_SUCCESS(rc))
293 {
294 /*
295 * copy the code.
296 */
297 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
298 {
299 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
300 if (pSwitcher)
301 memcpy((uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
302 pSwitcher->pvCode, pSwitcher->cbCode);
303 }
304
305 /*
306 * Map the code into the GC address space.
307 */
308 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &pVM->vmm.s.pvGCCoreCode);
309 if (VBOX_SUCCESS(rc))
310 {
311 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
312 LogRel(("CoreCode: R3=%VHv R0=%VHv GC=%VGv Phys=%VHp cb=%#x\n",
313 pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
314
315 /*
316 * Finally, PGM probably have selected a switcher already but we need
317 * to do get the addresses so we'll reselect it.
318 * This may legally fail so, we're ignoring the rc.
319 */
320 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
321 return rc;
322 }
323
324 /* shit */
325 AssertMsgFailed(("PGMR3Map(,%VGv, %VGp, %#x, 0) failed with rc=%Vrc\n", pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
326 SUPContFree(pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
327 }
328 else
329 VMSetError(pVM, rc, RT_SRC_POS,
330 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code"),
331 cbCoreCode);
332
333 pVM->vmm.s.pvHCCoreCodeR3 = NULL;
334 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
335 pVM->vmm.s.pvGCCoreCode = 0;
336 return rc;
337}
338
339
340/**
341 * Initializes the VMM.
342 *
343 * @returns VBox status code.
344 * @param pVM The VM to operate on.
345 */
346VMMR3DECL(int) VMMR3Init(PVM pVM)
347{
348 LogFlow(("VMMR3Init\n"));
349
350 /*
351 * Assert alignment, sizes and order.
352 */
353 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
354 AssertMsg(sizeof(pVM->vmm.padding) >= sizeof(pVM->vmm.s),
355 ("pVM->vmm.padding is too small! vmm.padding %d while vmm.s is %d\n",
356 sizeof(pVM->vmm.padding), sizeof(pVM->vmm.s)));
357
358 /*
359 * Init basic VM VMM members.
360 */
361 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
362 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
363 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
364 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
365 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
366 else
367 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Vrc\n", rc), rc);
368
369 /* GC switchers are enabled by default. Turned off by HWACCM. */
370 pVM->vmm.s.fSwitcherDisabled = false;
371
372 /*
373 * Register the saved state data unit.
374 */
375 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
376 NULL, vmmR3Save, NULL,
377 NULL, vmmR3Load, NULL);
378 if (VBOX_FAILURE(rc))
379 return rc;
380
381 /*
382 * Register the Ring-0 VM handle with the session for fast ioctl calls.
383 */
384 rc = SUPSetVMForFastIOCtl(pVM->pVMR0);
385 if (VBOX_FAILURE(rc))
386 return rc;
387
388 /*
389 * Init core code.
390 */
391 rc = vmmR3InitCoreCode(pVM);
392 if (VBOX_SUCCESS(rc))
393 {
394 /*
395 * Allocate & init VMM GC stack.
396 * The stack pages are also used by the VMM R0 when VMMR0CallHost is invoked.
397 * (The page protection is modifed during R3 init completion.)
398 */
399#ifdef VBOX_STRICT_VMM_STACK
400 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE + PAGE_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
401#else
402 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
403#endif
404 if (VBOX_SUCCESS(rc))
405 {
406 /* Set HC and GC stack pointers to top of stack. */
407 pVM->vmm.s.CallHostR0JmpBuf.pvSavedStack = (RTR0PTR)pVM->vmm.s.pbHCStack;
408 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
409 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
410 AssertRelease(pVM->vmm.s.pbGCStack);
411
412 /* Set hypervisor eip. */
413 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStack);
414
415 /*
416 * Allocate GC & R0 Logger instances (they are finalized in the relocator).
417 */
418#ifdef LOG_ENABLED
419 PRTLOGGER pLogger = RTLogDefaultInstance();
420 if (pLogger)
421 {
422 pVM->vmm.s.cbLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pLogger->cGroups]);
423 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pLoggerHC);
424 if (VBOX_SUCCESS(rc))
425 {
426 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
427
428/*
429 * Ring-0 logging isn't 100% safe yet (thread id reuse / process exit cleanup), so
430 * you have to sign up here by adding your defined(DEBUG_<userid>) to the #if.
431 *
432 * If you want to log in non-debug modes, you'll have to remember to change SUPDRvShared.c
433 * to not stub all the log functions.
434 *
435 * You might also wish to enable the AssertMsg1/2 overrides in VMMR0.cpp when enabling this.
436 */
437# if defined(DEBUG_sandervl) || defined(DEBUG_frank)
438 rc = MMHyperAlloc(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
439 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pR0Logger);
440 if (VBOX_SUCCESS(rc))
441 {
442 pVM->vmm.s.pR0Logger->pVM = pVM->pVMR0;
443 //pVM->vmm.s.pR0Logger->fCreated = false;
444 pVM->vmm.s.pR0Logger->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
445 }
446# endif
447 }
448 }
449#endif /* LOG_ENABLED */
450
451#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
452 /*
453 * Allocate GC Release Logger instances (finalized in the relocator).
454 */
455 if (VBOX_SUCCESS(rc))
456 {
457 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
458 if (pRelLogger)
459 {
460 pVM->vmm.s.cbRelLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pRelLogger->cGroups]);
461 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbRelLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRelLoggerHC);
462 if (VBOX_SUCCESS(rc))
463 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
464 }
465 }
466#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
467
468#ifdef VBOX_WITH_NMI
469 /*
470 * Allocate mapping for the host APIC.
471 */
472 if (VBOX_SUCCESS(rc))
473 {
474 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
475 AssertRC(rc);
476 }
477#endif
478 if (VBOX_SUCCESS(rc))
479 {
480 rc = RTCritSectInit(&pVM->vmm.s.CritSectVMLock);
481 if (VBOX_SUCCESS(rc))
482 {
483 /*
484 * Debug info.
485 */
486 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
487
488 /*
489 * Statistics.
490 */
491 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
492 STAM_REG(pVM, &pVM->vmm.s.StatGCRetNormal, STAMTYPE_COUNTER, "/VMM/GCRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterrupt, STAMTYPE_COUNTER, "/VMM/GCRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGuestTrap, STAMTYPE_COUNTER, "/VMM/GCRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
496 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitch, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
497 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
498 STAM_REG(pVM, &pVM->vmm.s.StatGCRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/GCRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
499 STAM_REG(pVM, &pVM->vmm.s.StatGCRetStaleSelector, STAMTYPE_COUNTER, "/VMM/GCRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIRETTrap, STAMTYPE_COUNTER, "/VMM/GCRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIORead, STAMTYPE_COUNTER, "/VMM/GCRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIORead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTSSFault, STAMTYPE_COUNTER, "/VMM/GCRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
514 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDFault, STAMTYPE_COUNTER, "/VMM/GCRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
515 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCSAMTask, STAMTYPE_COUNTER, "/VMM/GCRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatGCRetSyncCR3, STAMTYPE_COUNTER, "/VMM/GCRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
517 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMisc, STAMTYPE_COUNTER, "/VMM/GCRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
518 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchInt3, STAMTYPE_COUNTER, "/VMM/GCRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
519 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchPF, STAMTYPE_COUNTER, "/VMM/GCRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
520 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchGP, STAMTYPE_COUNTER, "/VMM/GCRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
521 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/GCRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
522 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPageOverflow, STAMTYPE_COUNTER, "/VMM/GCRet/InvlpgOverflow", STAMUNIT_OCCURENCES, "Number of VERR_REM_FLUSHED_PAGES_OVERFLOW returns.");
523 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/GCRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
524 STAM_REG(pVM, &pVM->vmm.s.StatGCRetToR3, STAMTYPE_COUNTER, "/VMM/GCRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
525 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTimerPending, STAMTYPE_COUNTER, "/VMM/GCRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
526 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptPending, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
527 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCallHost, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/Misc", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
528 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMGrowRAM, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/GrowRAM", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
529 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PDMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
530 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLogFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/LogFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
531 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/QueueFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
532 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMPoolGrow",STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
533 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRemReplay, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/REMReplay", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
534 STAM_REG(pVM, &pVM->vmm.s.StatGCRetVMSetError, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/VMSetError", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
535 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
536 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/GCRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
537 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/GCRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
538 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulHlt, STAMTYPE_COUNTER, "/VMM/GCRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
539 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPendingRequest, STAMTYPE_COUNTER, "/VMM/GCRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
540
541 return VINF_SUCCESS;
542 }
543 AssertRC(rc);
544 }
545 }
546 /** @todo: Need failure cleanup. */
547
548 //more todo in here?
549 //if (VBOX_SUCCESS(rc))
550 //{
551 //}
552 //int rc2 = vmmR3TermCoreCode(pVM);
553 //AssertRC(rc2));
554 }
555
556 return rc;
557}
558
559
560/**
561 * Ring-3 init finalizing.
562 *
563 * @returns VBox status code.
564 * @param pVM The VM handle.
565 */
566VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
567{
568#ifdef VBOX_STRICT_VMM_STACK
569 /*
570 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
571 */
572 memset(pVM->vmm.s.pbHCStack - PAGE_SIZE, 0xcc, PAGE_SIZE);
573 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack - PAGE_SIZE), PAGE_SIZE, 0);
574 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
575
576 memset(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
577 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack + VMM_STACK_SIZE), PAGE_SIZE, 0);
578 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
579#endif
580
581 /*
582 * Set page attributes to r/w for stack pages.
583 */
584 int rc = PGMMapSetPage(pVM, pVM->vmm.s.pbGCStack, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
585 AssertRC(rc);
586 if (VBOX_SUCCESS(rc))
587 {
588 /*
589 * Create the EMT yield timer.
590 */
591 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
592 if (VBOX_SUCCESS(rc))
593 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
594 }
595#ifdef VBOX_WITH_NMI
596 /*
597 * Map the host APIC into GC - This may be host os specific!
598 */
599 if (VBOX_SUCCESS(rc))
600 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
601 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
602#endif
603 return rc;
604}
605
606
607/**
608 * Initializes the R0 VMM.
609 *
610 * @returns VBox status code.
611 * @param pVM The VM to operate on.
612 */
613VMMR3DECL(int) VMMR3InitR0(PVM pVM)
614{
615 int rc;
616
617 /*
618 * Initialize the ring-0 logger if we haven't done so yet.
619 */
620 if ( pVM->vmm.s.pR0Logger
621 && !pVM->vmm.s.pR0Logger->fCreated)
622 {
623 rc = VMMR3UpdateLoggers(pVM);
624 if (VBOX_FAILURE(rc))
625 return rc;
626 }
627
628 /*
629 * Call Ring-0 entry with init code.
630 */
631 for (;;)
632 {
633#ifdef NO_SUPCALLR0VMM
634 //rc = VERR_GENERAL_FAILURE;
635 rc = VINF_SUCCESS;
636#else
637 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_VMMR0_INIT, VBOX_VERSION, NULL);
638#endif
639 if ( pVM->vmm.s.pR0Logger
640 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
641 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
642 if (rc != VINF_VMM_CALL_HOST)
643 break;
644 rc = vmmR3ServiceCallHostRequest(pVM);
645 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
646 break;
647 /* Resume R0 */
648 }
649
650 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
651 {
652 LogRel(("R0 init failed, rc=%Vra\n", rc));
653 if (VBOX_SUCCESS(rc))
654 rc = VERR_INTERNAL_ERROR;
655 }
656 return rc;
657}
658
659
660/**
661 * Initializes the GC VMM.
662 *
663 * @returns VBox status code.
664 * @param pVM The VM to operate on.
665 */
666VMMR3DECL(int) VMMR3InitGC(PVM pVM)
667{
668 /* In VMX mode, there's no need to init GC. */
669 if (pVM->vmm.s.fSwitcherDisabled)
670 return VINF_SUCCESS;
671
672 /*
673 * Call VMMGCInit():
674 * -# resolve the address.
675 * -# setup stackframe and EIP to use the trampoline.
676 * -# do a generic hypervisor call.
677 */
678 RTGCPTR GCPtrEP;
679 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
680 if (VBOX_SUCCESS(rc))
681 {
682 CPUMHyperSetCtxCore(pVM, NULL);
683 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
684 uint64_t u64TS = RTTimeProgramStartNanoTS();
685#if GC_ARCH_BITS == 32
686 CPUMPushHyper(pVM, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
687 CPUMPushHyper(pVM, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
688#else /* 64-bit GC */
689 CPUMPushHyper(pVM, u64TS); /* Param 3: The program startup TS. */
690#endif
691 CPUMPushHyper(pVM, VBOX_VERSION); /* Param 2: Version argument. */
692 CPUMPushHyper(pVM, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
693 CPUMPushHyper(pVM, pVM->pVMGC); /* Param 0: pVM */
694 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* trampoline param: stacksize. */
695 CPUMPushHyper(pVM, GCPtrEP); /* Call EIP. */
696 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
697
698 for (;;)
699 {
700#ifdef NO_SUPCALLR0VMM
701 //rc = VERR_GENERAL_FAILURE;
702 rc = VINF_SUCCESS;
703#else
704 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_CALL_HYPERVISOR, NULL);
705#endif
706#ifdef LOG_ENABLED
707 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
708 if ( pLogger
709 && pLogger->offScratch > 0)
710 RTLogFlushGC(NULL, pLogger);
711#endif
712#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
713 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
714 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
715 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
716#endif
717 if (rc != VINF_VMM_CALL_HOST)
718 break;
719 rc = vmmR3ServiceCallHostRequest(pVM);
720 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
721 break;
722 }
723
724 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
725 {
726 VMMR3FatalDump(pVM, rc);
727 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
728 rc = VERR_INTERNAL_ERROR;
729 }
730 AssertRC(rc);
731 }
732 return rc;
733}
734
735
736/**
737 * Terminate the VMM bits.
738 *
739 * @returns VINF_SUCCESS.
740 * @param pVM The VM handle.
741 */
742VMMR3DECL(int) VMMR3Term(PVM pVM)
743{
744 /*
745 * Call Ring-0 entry with termination code.
746 */
747 int rc;
748 for (;;)
749 {
750#ifdef NO_SUPCALLR0VMM
751 //rc = VERR_GENERAL_FAILURE;
752 rc = VINF_SUCCESS;
753#else
754 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_VMMR0_TERM, VBOX_VERSION, NULL);
755#endif
756 if ( pVM->vmm.s.pR0Logger
757 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
758 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
759 if (rc != VINF_VMM_CALL_HOST)
760 break;
761 rc = vmmR3ServiceCallHostRequest(pVM);
762 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
763 break;
764 /* Resume R0 */
765 }
766 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
767 {
768 LogRel(("VMMR3Term: R0 term failed, rc=%Vra. (warning)\n", rc));
769 if (VBOX_SUCCESS(rc))
770 rc = VERR_INTERNAL_ERROR;
771 }
772
773#ifdef VBOX_STRICT_VMM_STACK
774 /*
775 * Make the two stack guard pages present again.
776 */
777 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
778 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
779#endif
780 return rc;
781}
782
783
784/**
785 * Applies relocations to data and code managed by this
786 * component. This function will be called at init and
787 * whenever the VMM need to relocate it self inside the GC.
788 *
789 * The VMM will need to apply relocations to the core code.
790 *
791 * @param pVM The VM handle.
792 * @param offDelta The relocation delta.
793 */
794VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
795{
796 LogFlow(("VMMR3Relocate: offDelta=%VGv\n", offDelta));
797
798 /*
799 * Recalc the GC address.
800 */
801 pVM->vmm.s.pvGCCoreCode = MMHyperHC2GC(pVM, pVM->vmm.s.pvHCCoreCodeR3);
802
803 /*
804 * The stack.
805 */
806 CPUMSetHyperESP(pVM, CPUMGetHyperESP(pVM) + offDelta);
807 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
808 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
809
810 /*
811 * All the switchers.
812 */
813 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
814 {
815 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
816 if (pSwitcher && pSwitcher->pfnRelocate)
817 {
818 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
819 pSwitcher->pfnRelocate(pVM,
820 pSwitcher,
821 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR0 + off,
822 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + off,
823 pVM->vmm.s.pvGCCoreCode + off,
824 pVM->vmm.s.HCPhysCoreCode + off);
825 }
826 }
827
828 /*
829 * Recalc the GC address for the current switcher.
830 */
831 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
832 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
833 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
834 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
835 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
836 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
837 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
838
839 /*
840 * Get other GC entry points.
841 */
842 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMGCResumeGuest);
843 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Vra\n", rc));
844
845 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMGCResumeGuestV86);
846 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Vra\n", rc));
847
848 /*
849 * Update the logger.
850 */
851 VMMR3UpdateLoggers(pVM);
852}
853
854
855/**
856 * Updates the settings for the GC and R0 loggers.
857 *
858 * @returns VBox status code.
859 * @param pVM The VM handle.
860 */
861VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
862{
863 /*
864 * Simply clone the logger instance (for GC).
865 */
866 int rc = VINF_SUCCESS;
867 RTGCPTR GCPtrLoggerFlush = 0;
868
869 if (pVM->vmm.s.pLoggerHC
870#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
871 || pVM->vmm.s.pRelLoggerHC
872#endif
873 )
874 {
875 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &GCPtrLoggerFlush);
876 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Vra\n", rc));
877 }
878
879 if (pVM->vmm.s.pLoggerHC)
880 {
881 RTGCPTR GCPtrLoggerWrapper = 0;
882 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &GCPtrLoggerWrapper);
883 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Vra\n", rc));
884 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
885 rc = RTLogCloneGC(NULL /* default */, pVM->vmm.s.pLoggerHC, pVM->vmm.s.cbLoggerGC,
886 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
887 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
888 }
889
890#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
891 if (pVM->vmm.s.pRelLoggerHC)
892 {
893 RTGCPTR GCPtrLoggerWrapper = 0;
894 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &GCPtrLoggerWrapper);
895 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Vra\n", rc));
896 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
897 rc = RTLogCloneGC(RTLogRelDefaultInstance(), pVM->vmm.s.pRelLoggerHC, pVM->vmm.s.cbRelLoggerGC,
898 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
899 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
900 }
901#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
902
903 /*
904 * For the ring-0 EMT logger, we use a per-thread logger
905 * instance in ring-0. Only initialize it once.
906 */
907 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
908 if (pR0Logger)
909 {
910 if (!pR0Logger->fCreated)
911 {
912 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
913 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
914 AssertReleaseMsgRCReturn(rc, ("VMMLoggerWrapper not found! rc=%Vra\n", rc), rc);
915
916 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
917 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
918 AssertReleaseMsgRCReturn(rc, ("VMMLoggerFlush not found! rc=%Vra\n", rc), rc);
919
920 rc = RTLogCreateForR0(&pR0Logger->Logger, pR0Logger->cbLogger,
921 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
922 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
923 AssertReleaseMsgRCReturn(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc), rc);
924 pR0Logger->fCreated = true;
925 }
926
927 rc = RTLogCopyGroupsAndFlags(&pR0Logger->Logger, NULL /* default */, RTLOGFLAGS_BUFFERED, 0);
928 AssertRC(rc);
929 }
930
931 return rc;
932}
933
934
935/**
936 * Generic switch code relocator.
937 *
938 * @param pVM The VM handle.
939 * @param pSwitcher The switcher definition.
940 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
941 * @param pu8CodeR0 Pointer to the core code block for the switcher, ring-0 mapping.
942 * @param GCPtrCode The guest context address corresponding to pu8Code.
943 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
944 * @param SelCS The hypervisor CS selector.
945 * @param SelDS The hypervisor DS selector.
946 * @param SelTSS The hypervisor TSS selector.
947 * @param GCPtrGDT The GC address of the hypervisor GDT.
948 * @param SelCS64 The 64-bit mode hypervisor CS selector.
949 */
950static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
951 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
952{
953 union
954 {
955 const uint8_t *pu8;
956 const uint16_t *pu16;
957 const uint32_t *pu32;
958 const uint64_t *pu64;
959 const void *pv;
960 uintptr_t u;
961 } u;
962 u.pv = pSwitcher->pvFixups;
963
964 /*
965 * Process fixups.
966 */
967 uint8_t u8;
968 while ((u8 = *u.pu8++) != FIX_THE_END)
969 {
970 /*
971 * Get the source (where to write the fixup).
972 */
973 uint32_t offSrc = *u.pu32++;
974 Assert(offSrc < pSwitcher->cbCode);
975 union
976 {
977 uint8_t *pu8;
978 uint16_t *pu16;
979 uint32_t *pu32;
980 uint64_t *pu64;
981 uintptr_t u;
982 } uSrc;
983 uSrc.pu8 = pu8CodeR3 + offSrc;
984
985 /* The fixup target and method depends on the type. */
986 switch (u8)
987 {
988 /*
989 * 32-bit relative, source in HC and target in GC.
990 */
991 case FIX_HC_2_GC_NEAR_REL:
992 {
993 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
994 uint32_t offTrg = *u.pu32++;
995 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
996 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
997 break;
998 }
999
1000 /*
1001 * 32-bit relative, source in HC and target in ID.
1002 */
1003 case FIX_HC_2_ID_NEAR_REL:
1004 {
1005 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1006 uint32_t offTrg = *u.pu32++;
1007 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1008 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - ((uintptr_t)pu8CodeR0 + offSrc + 4));
1009 break;
1010 }
1011
1012 /*
1013 * 32-bit relative, source in GC and target in HC.
1014 */
1015 case FIX_GC_2_HC_NEAR_REL:
1016 {
1017 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1018 uint32_t offTrg = *u.pu32++;
1019 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1020 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (GCPtrCode + offSrc + 4));
1021 break;
1022 }
1023
1024 /*
1025 * 32-bit relative, source in GC and target in ID.
1026 */
1027 case FIX_GC_2_ID_NEAR_REL:
1028 {
1029 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1030 uint32_t offTrg = *u.pu32++;
1031 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1032 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
1033 break;
1034 }
1035
1036 /*
1037 * 32-bit relative, source in ID and target in HC.
1038 */
1039 case FIX_ID_2_HC_NEAR_REL:
1040 {
1041 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1042 uint32_t offTrg = *u.pu32++;
1043 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1044 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (u32IDCode + offSrc + 4));
1045 break;
1046 }
1047
1048 /*
1049 * 32-bit relative, source in ID and target in HC.
1050 */
1051 case FIX_ID_2_GC_NEAR_REL:
1052 {
1053 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1054 uint32_t offTrg = *u.pu32++;
1055 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1056 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
1057 break;
1058 }
1059
1060 /*
1061 * 16:32 far jump, target in GC.
1062 */
1063 case FIX_GC_FAR32:
1064 {
1065 uint32_t offTrg = *u.pu32++;
1066 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1067 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
1068 *uSrc.pu16++ = SelCS;
1069 break;
1070 }
1071
1072 /*
1073 * Make 32-bit GC pointer given CPUM offset.
1074 */
1075 case FIX_GC_CPUM_OFF:
1076 {
1077 uint32_t offCPUM = *u.pu32++;
1078 Assert(offCPUM < sizeof(pVM->cpum));
1079 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, &pVM->cpum) + offCPUM);
1080 break;
1081 }
1082
1083 /*
1084 * Make 32-bit GC pointer given VM offset.
1085 */
1086 case FIX_GC_VM_OFF:
1087 {
1088 uint32_t offVM = *u.pu32++;
1089 Assert(offVM < sizeof(VM));
1090 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, pVM) + offVM);
1091 break;
1092 }
1093
1094 /*
1095 * Make 32-bit HC pointer given CPUM offset.
1096 */
1097 case FIX_HC_CPUM_OFF:
1098 {
1099 uint32_t offCPUM = *u.pu32++;
1100 Assert(offCPUM < sizeof(pVM->cpum));
1101 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
1102 break;
1103 }
1104
1105 /*
1106 * Make 32-bit R0 pointer given VM offset.
1107 */
1108 case FIX_HC_VM_OFF:
1109 {
1110 uint32_t offVM = *u.pu32++;
1111 Assert(offVM < sizeof(VM));
1112 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
1113 break;
1114 }
1115
1116 /*
1117 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
1118 */
1119 case FIX_INTER_32BIT_CR3:
1120 {
1121
1122 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
1123 break;
1124 }
1125
1126 /*
1127 * Store the PAE CR3 (32-bit) for the intermediate memory context.
1128 */
1129 case FIX_INTER_PAE_CR3:
1130 {
1131
1132 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
1133 break;
1134 }
1135
1136 /*
1137 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
1138 */
1139 case FIX_INTER_AMD64_CR3:
1140 {
1141
1142 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
1143 break;
1144 }
1145
1146 /*
1147 * Store the 32-Bit CR3 (32-bit) for the hypervisor (shadow) memory context.
1148 */
1149 case FIX_HYPER_32BIT_CR3:
1150 {
1151
1152 *uSrc.pu32 = PGMGetHyper32BitCR3(pVM);
1153 break;
1154 }
1155
1156 /*
1157 * Store the PAE CR3 (32-bit) for the hypervisor (shadow) memory context.
1158 */
1159 case FIX_HYPER_PAE_CR3:
1160 {
1161
1162 *uSrc.pu32 = PGMGetHyperPaeCR3(pVM);
1163 break;
1164 }
1165
1166 /*
1167 * Store the AMD64 CR3 (32-bit) for the hypervisor (shadow) memory context.
1168 */
1169 case FIX_HYPER_AMD64_CR3:
1170 {
1171
1172 *uSrc.pu32 = PGMGetHyperAmd64CR3(pVM);
1173 break;
1174 }
1175
1176 /*
1177 * Store Hypervisor CS (16-bit).
1178 */
1179 case FIX_HYPER_CS:
1180 {
1181 *uSrc.pu16 = SelCS;
1182 break;
1183 }
1184
1185 /*
1186 * Store Hypervisor DS (16-bit).
1187 */
1188 case FIX_HYPER_DS:
1189 {
1190 *uSrc.pu16 = SelDS;
1191 break;
1192 }
1193
1194 /*
1195 * Store Hypervisor TSS (16-bit).
1196 */
1197 case FIX_HYPER_TSS:
1198 {
1199 *uSrc.pu16 = SelTSS;
1200 break;
1201 }
1202
1203 /*
1204 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
1205 */
1206 case FIX_GC_TSS_GDTE_DW2:
1207 {
1208 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
1209 *uSrc.pu32 = (uint32_t)GCPtr;
1210 break;
1211 }
1212
1213
1214 ///@todo case FIX_CR4_MASK:
1215 ///@todo case FIX_CR4_OSFSXR:
1216
1217 /*
1218 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
1219 */
1220 case FIX_NO_FXSAVE_JMP:
1221 {
1222 uint32_t offTrg = *u.pu32++;
1223 Assert(offTrg < pSwitcher->cbCode);
1224 if (!CPUMSupportsFXSR(pVM))
1225 {
1226 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1227 *uSrc.pu32++ = offTrg - (offSrc + 5);
1228 }
1229 else
1230 {
1231 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1232 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1233 }
1234 break;
1235 }
1236
1237 /*
1238 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1239 */
1240 case FIX_NO_SYSENTER_JMP:
1241 {
1242 uint32_t offTrg = *u.pu32++;
1243 Assert(offTrg < pSwitcher->cbCode);
1244 if (!CPUMIsHostUsingSysEnter(pVM))
1245 {
1246 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1247 *uSrc.pu32++ = offTrg - (offSrc + 5);
1248 }
1249 else
1250 {
1251 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1252 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1253 }
1254 break;
1255 }
1256
1257 /*
1258 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1259 */
1260 case FIX_NO_SYSCALL_JMP:
1261 {
1262 uint32_t offTrg = *u.pu32++;
1263 Assert(offTrg < pSwitcher->cbCode);
1264 if (!CPUMIsHostUsingSysEnter(pVM))
1265 {
1266 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1267 *uSrc.pu32++ = offTrg - (offSrc + 5);
1268 }
1269 else
1270 {
1271 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1272 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1273 }
1274 break;
1275 }
1276
1277 /*
1278 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1279 */
1280 case FIX_HC_32BIT:
1281 {
1282 uint32_t offTrg = *u.pu32++;
1283 Assert(offSrc < pSwitcher->cbCode);
1284 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1285 *uSrc.pu32 = (uintptr_t)pu8CodeR0 + offTrg;
1286 break;
1287 }
1288
1289#if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1290 /*
1291 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1292 */
1293 case FIX_HC_64BIT:
1294 {
1295 uint32_t offTrg = *u.pu32++;
1296 Assert(offSrc < pSwitcher->cbCode);
1297 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1298 *uSrc.pu64 = (uintptr_t)pu8CodeR0 + offTrg;
1299 break;
1300 }
1301
1302 /*
1303 * 64-bit HC Code Selector (no argument).
1304 */
1305 case FIX_HC_64BIT_CS:
1306 {
1307 Assert(offSrc < pSwitcher->cbCode);
1308#if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1309 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
1310#else
1311 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
1312#endif
1313 break;
1314 }
1315
1316 /*
1317 * 64-bit HC pointer to the CPUM instance data (no argument).
1318 */
1319 case FIX_HC_64BIT_CPUM:
1320 {
1321 Assert(offSrc < pSwitcher->cbCode);
1322 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
1323 break;
1324 }
1325#endif
1326
1327 /*
1328 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
1329 */
1330 case FIX_ID_32BIT:
1331 {
1332 uint32_t offTrg = *u.pu32++;
1333 Assert(offSrc < pSwitcher->cbCode);
1334 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1335 *uSrc.pu32 = u32IDCode + offTrg;
1336 break;
1337 }
1338
1339 /*
1340 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
1341 */
1342 case FIX_ID_64BIT:
1343 {
1344 uint32_t offTrg = *u.pu32++;
1345 Assert(offSrc < pSwitcher->cbCode);
1346 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1347 *uSrc.pu64 = u32IDCode + offTrg;
1348 break;
1349 }
1350
1351 /*
1352 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
1353 */
1354 case FIX_ID_FAR32_TO_64BIT_MODE:
1355 {
1356 uint32_t offTrg = *u.pu32++;
1357 Assert(offSrc < pSwitcher->cbCode);
1358 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1359 *uSrc.pu32++ = u32IDCode + offTrg;
1360 *uSrc.pu16 = SelCS64;
1361 AssertRelease(SelCS64);
1362 break;
1363 }
1364
1365#ifdef VBOX_WITH_NMI
1366 /*
1367 * 32-bit address to the APIC base.
1368 */
1369 case FIX_GC_APIC_BASE_32BIT:
1370 {
1371 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
1372 break;
1373 }
1374#endif
1375
1376 default:
1377 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
1378 break;
1379 }
1380 }
1381
1382#ifdef LOG_ENABLED
1383 /*
1384 * If Log2 is enabled disassemble the switcher code.
1385 *
1386 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
1387 */
1388 if (LogIs2Enabled())
1389 {
1390 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
1391 " pu8CodeR0 = %p\n"
1392 " pu8CodeR3 = %p\n"
1393 " GCPtrCode = %VGv\n"
1394 " u32IDCode = %08x\n"
1395 " pVMGC = %VGv\n"
1396 " pCPUMGC = %VGv\n"
1397 " pVMHC = %p\n"
1398 " pCPUMHC = %p\n"
1399 " GCPtrGDT = %VGv\n"
1400 " InterCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1401 " HyperCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1402 " SelCS = %04x\n"
1403 " SelDS = %04x\n"
1404 " SelCS64 = %04x\n"
1405 " SelTSS = %04x\n",
1406 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
1407 pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode, VM_GUEST_ADDR(pVM, pVM),
1408 VM_GUEST_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum,
1409 GCPtrGDT,
1410 PGMGetHyper32BitCR3(pVM), PGMGetHyperPaeCR3(pVM), PGMGetHyperAmd64CR3(pVM),
1411 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
1412 SelCS, SelDS, SelCS64, SelTSS);
1413
1414 uint32_t offCode = 0;
1415 while (offCode < pSwitcher->cbCode)
1416 {
1417 /*
1418 * Figure out where this is.
1419 */
1420 const char *pszDesc = NULL;
1421 RTUINTPTR uBase;
1422 uint32_t cbCode;
1423 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
1424 {
1425 pszDesc = "HCCode0";
1426 uBase = (RTUINTPTR)pu8CodeR0;
1427 offCode = pSwitcher->offHCCode0;
1428 cbCode = pSwitcher->cbHCCode0;
1429 }
1430 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
1431 {
1432 pszDesc = "HCCode1";
1433 uBase = (RTUINTPTR)pu8CodeR0;
1434 offCode = pSwitcher->offHCCode1;
1435 cbCode = pSwitcher->cbHCCode1;
1436 }
1437 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
1438 {
1439 pszDesc = "GCCode";
1440 uBase = GCPtrCode;
1441 offCode = pSwitcher->offGCCode;
1442 cbCode = pSwitcher->cbGCCode;
1443 }
1444 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
1445 {
1446 pszDesc = "IDCode0";
1447 uBase = u32IDCode;
1448 offCode = pSwitcher->offIDCode0;
1449 cbCode = pSwitcher->cbIDCode0;
1450 }
1451 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
1452 {
1453 pszDesc = "IDCode1";
1454 uBase = u32IDCode;
1455 offCode = pSwitcher->offIDCode1;
1456 cbCode = pSwitcher->cbIDCode1;
1457 }
1458 else
1459 {
1460 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
1461 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1462 offCode++;
1463 continue;
1464 }
1465
1466 /*
1467 * Disassemble it.
1468 */
1469 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
1470 DISCPUSTATE Cpu;
1471
1472 memset(&Cpu, 0, sizeof(Cpu));
1473 Cpu.mode = CPUMODE_32BIT;
1474 while (cbCode > 0)
1475 {
1476 /* try label it */
1477 if (pSwitcher->offR0HostToGuest == offCode)
1478 RTLogPrintf(" *R0HostToGuest:\n");
1479 if (pSwitcher->offGCGuestToHost == offCode)
1480 RTLogPrintf(" *GCGuestToHost:\n");
1481 if (pSwitcher->offGCCallTrampoline == offCode)
1482 RTLogPrintf(" *GCCallTrampoline:\n");
1483 if (pSwitcher->offGCGuestToHostAsm == offCode)
1484 RTLogPrintf(" *GCGuestToHostAsm:\n");
1485 if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
1486 RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
1487 if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
1488 RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
1489
1490 /* disas */
1491 uint32_t cbInstr = 0;
1492 char szDisas[256];
1493 if (RT_SUCCESS(DISInstr(&Cpu, (RTUINTPTR)pu8CodeR3 + offCode, uBase - (RTUINTPTR)pu8CodeR3, &cbInstr, szDisas)))
1494 RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
1495 else
1496 {
1497 RTLogPrintf(" %04x: %02x '%c'\n",
1498 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1499 cbInstr = 1;
1500 }
1501 offCode += cbInstr;
1502 cbCode -= RT_MIN(cbInstr, cbCode);
1503 }
1504 }
1505 }
1506#endif
1507}
1508
1509
1510/**
1511 * Relocator for the 32-Bit to 32-Bit world switcher.
1512 */
1513DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1514{
1515 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1516 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1517}
1518
1519
1520/**
1521 * Relocator for the 32-Bit to PAE world switcher.
1522 */
1523DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1524{
1525 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1526 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1527}
1528
1529
1530/**
1531 * Relocator for the PAE to 32-Bit world switcher.
1532 */
1533DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1534{
1535 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1536 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1537}
1538
1539
1540/**
1541 * Relocator for the PAE to PAE world switcher.
1542 */
1543DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1544{
1545 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1546 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1547}
1548
1549
1550/**
1551 * Relocator for the AMD64 to PAE world switcher.
1552 */
1553DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1554{
1555 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1556 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
1557}
1558
1559
1560/**
1561 * Gets the pointer to g_szRTAssertMsg1 in GC.
1562 * @returns Pointer to VMMGC::g_szRTAssertMsg1.
1563 * Returns NULL if not present.
1564 * @param pVM The VM handle.
1565 */
1566VMMR3DECL(const char *) VMMR3GetGCAssertMsg1(PVM pVM)
1567{
1568 RTGCPTR GCPtr;
1569 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg1", &GCPtr);
1570 if (VBOX_SUCCESS(rc))
1571 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1572 return NULL;
1573}
1574
1575
1576/**
1577 * Gets the pointer to g_szRTAssertMsg2 in GC.
1578 * @returns Pointer to VMMGC::g_szRTAssertMsg2.
1579 * Returns NULL if not present.
1580 * @param pVM The VM handle.
1581 */
1582VMMR3DECL(const char *) VMMR3GetGCAssertMsg2(PVM pVM)
1583{
1584 RTGCPTR GCPtr;
1585 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg2", &GCPtr);
1586 if (VBOX_SUCCESS(rc))
1587 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1588 return NULL;
1589}
1590
1591
1592/**
1593 * Execute state save operation.
1594 *
1595 * @returns VBox status code.
1596 * @param pVM VM Handle.
1597 * @param pSSM SSM operation handle.
1598 */
1599static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1600{
1601 LogFlow(("vmmR3Save:\n"));
1602
1603 /*
1604 * The hypervisor stack.
1605 */
1606 SSMR3PutGCPtr(pSSM, pVM->vmm.s.pbGCStackBottom);
1607 RTGCPTR GCPtrESP = CPUMGetHyperESP(pVM);
1608 Assert(pVM->vmm.s.pbGCStackBottom - GCPtrESP <= VMM_STACK_SIZE);
1609 SSMR3PutGCPtr(pSSM, GCPtrESP);
1610 SSMR3PutMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1611 return SSMR3PutU32(pSSM, ~0); /* terminator */
1612}
1613
1614
1615/**
1616 * Execute state load operation.
1617 *
1618 * @returns VBox status code.
1619 * @param pVM VM Handle.
1620 * @param pSSM SSM operation handle.
1621 * @param u32Version Data layout version.
1622 */
1623static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1624{
1625 LogFlow(("vmmR3Load:\n"));
1626
1627 /*
1628 * Validate version.
1629 */
1630 if (u32Version != VMM_SAVED_STATE_VERSION)
1631 {
1632 Log(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
1633 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1634 }
1635
1636 /*
1637 * Check that the stack is in the same place, or that it's fearly empty.
1638 */
1639 RTGCPTR GCPtrStackBottom;
1640 SSMR3GetGCPtr(pSSM, &GCPtrStackBottom);
1641 RTGCPTR GCPtrESP;
1642 int rc = SSMR3GetGCPtr(pSSM, &GCPtrESP);
1643 if (VBOX_FAILURE(rc))
1644 return rc;
1645 if ( GCPtrStackBottom == pVM->vmm.s.pbGCStackBottom
1646 || (GCPtrStackBottom - GCPtrESP < 32)) /** @todo This will break if we start preemting the hypervisor. */
1647 {
1648 /*
1649 * We *must* set the ESP because the CPUM load + PGM load relocations will render
1650 * the ESP in CPUM fatally invalid.
1651 */
1652 CPUMSetHyperESP(pVM, GCPtrESP);
1653
1654 /* restore the stack. */
1655 SSMR3GetMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1656
1657 /* terminator */
1658 uint32_t u32;
1659 rc = SSMR3GetU32(pSSM, &u32);
1660 if (VBOX_FAILURE(rc))
1661 return rc;
1662 if (u32 != ~0U)
1663 {
1664 AssertMsgFailed(("u32=%#x\n", u32));
1665 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1666 }
1667 return VINF_SUCCESS;
1668 }
1669
1670 LogRel(("The stack is not in the same place and it's not empty! GCPtrStackBottom=%VGv pbGCStackBottom=%VGv ESP=%VGv\n",
1671 GCPtrStackBottom, pVM->vmm.s.pbGCStackBottom, GCPtrESP));
1672 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
1673 return VINF_SUCCESS; /* ignore this */
1674 AssertFailed();
1675 return VERR_SSM_LOAD_CONFIG_MISMATCH;
1676}
1677
1678
1679/**
1680 * Selects the switcher to be used for switching to GC.
1681 *
1682 * @returns VBox status code.
1683 * @param pVM VM handle.
1684 * @param enmSwitcher The new switcher.
1685 * @remark This function may be called before the VMM is initialized.
1686 */
1687VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1688{
1689 /*
1690 * Validate input.
1691 */
1692 if ( enmSwitcher < VMMSWITCHER_INVALID
1693 || enmSwitcher >= VMMSWITCHER_MAX)
1694 {
1695 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1696 return VERR_INVALID_PARAMETER;
1697 }
1698
1699 /*
1700 * Select the new switcher.
1701 */
1702 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1703 if (pSwitcher)
1704 {
1705 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
1706 pVM->vmm.s.enmSwitcher = enmSwitcher;
1707
1708 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvHCCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvHCCoreCodeR0 type */
1709 pVM->vmm.s.pfnR0HostToGuest = pbCodeR0 + pSwitcher->offR0HostToGuest;
1710
1711 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[enmSwitcher];
1712 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
1713 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
1714 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
1715 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
1716 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
1717 return VINF_SUCCESS;
1718 }
1719 return VERR_NOT_IMPLEMENTED;
1720}
1721
1722/**
1723 * Disable the switcher logic permanently.
1724 *
1725 * @returns VBox status code.
1726 * @param pVM VM handle.
1727 */
1728VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
1729{
1730/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1731 * @code
1732 * mov eax, VERR_INTERNAL_ERROR
1733 * ret
1734 * @endcode
1735 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1736 */
1737 pVM->vmm.s.fSwitcherDisabled = true;
1738 return VINF_SUCCESS;
1739}
1740
1741
1742/**
1743 * Resolve a builtin GC symbol.
1744 * Called by PDM when loading or relocating GC modules.
1745 *
1746 * @returns VBox status
1747 * @param pVM VM Handle.
1748 * @param pszSymbol Symbol to resolv
1749 * @param pGCPtrValue Where to store the symbol value.
1750 * @remark This has to work before VMMR3Relocate() is called.
1751 */
1752VMMR3DECL(int) VMMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
1753{
1754 if (!strcmp(pszSymbol, "g_Logger"))
1755 {
1756 if (pVM->vmm.s.pLoggerHC)
1757 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
1758 *pGCPtrValue = pVM->vmm.s.pLoggerGC;
1759 }
1760 else if (!strcmp(pszSymbol, "g_RelLogger"))
1761 {
1762#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1763 if (pVM->vmm.s.pRelLoggerHC)
1764 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
1765 *pGCPtrValue = pVM->vmm.s.pRelLoggerGC;
1766#else
1767 *pGCPtrValue = NIL_RTGCPTR;
1768#endif
1769 }
1770 else
1771 return VERR_SYMBOL_NOT_FOUND;
1772 return VINF_SUCCESS;
1773}
1774
1775
1776/**
1777 * Suspends the the CPU yielder.
1778 *
1779 * @param pVM The VM handle.
1780 */
1781VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1782{
1783 if (!pVM->vmm.s.cYieldResumeMillies)
1784 {
1785 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1786 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1787 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1788 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1789 else
1790 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1791 TMTimerStop(pVM->vmm.s.pYieldTimer);
1792 }
1793 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1794}
1795
1796
1797/**
1798 * Stops the the CPU yielder.
1799 *
1800 * @param pVM The VM handle.
1801 */
1802VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1803{
1804 if (!pVM->vmm.s.cYieldResumeMillies)
1805 TMTimerStop(pVM->vmm.s.pYieldTimer);
1806 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1807 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1808}
1809
1810
1811/**
1812 * Resumes the CPU yielder when it has been a suspended or stopped.
1813 *
1814 * @param pVM The VM handle.
1815 */
1816VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1817{
1818 if (pVM->vmm.s.cYieldResumeMillies)
1819 {
1820 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1821 pVM->vmm.s.cYieldResumeMillies = 0;
1822 }
1823}
1824
1825
1826/**
1827 * Internal timer callback function.
1828 *
1829 * @param pVM The VM.
1830 * @param pTimer The timer handle.
1831 * @param pvUser User argument specified upon timer creation.
1832 */
1833static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1834{
1835 /*
1836 * This really needs some careful tuning. While we shouldn't be too gready since
1837 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1838 * because that'll cause us to stop up.
1839 *
1840 * The current logic is to use the default interval when there is no lag worth
1841 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1842 *
1843 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1844 * so the lag is up to date.)
1845 */
1846 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1847 if ( u64Lag < 50000000 /* 50ms */
1848 || ( u64Lag < 1000000000 /* 1s */
1849 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1850 )
1851 {
1852 uint64_t u64Elapsed = RTTimeNanoTS();
1853 pVM->vmm.s.u64LastYield = u64Elapsed;
1854
1855 RTThreadYield();
1856
1857#ifdef LOG_ENABLED
1858 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1859 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1860#endif
1861 }
1862 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1863}
1864
1865
1866/**
1867 * Acquire global VM lock.
1868 *
1869 * @returns VBox status code
1870 * @param pVM The VM to operate on.
1871 */
1872VMMR3DECL(int) VMMR3Lock(PVM pVM)
1873{
1874 return RTCritSectEnter(&pVM->vmm.s.CritSectVMLock);
1875}
1876
1877
1878/**
1879 * Release global VM lock.
1880 *
1881 * @returns VBox status code
1882 * @param pVM The VM to operate on.
1883 */
1884VMMR3DECL(int) VMMR3Unlock(PVM pVM)
1885{
1886 return RTCritSectLeave(&pVM->vmm.s.CritSectVMLock);
1887}
1888
1889
1890/**
1891 * Return global VM lock owner.
1892 *
1893 * @returns Thread id of owner.
1894 * @returns NIL_RTTHREAD if no owner.
1895 * @param pVM The VM to operate on.
1896 */
1897VMMR3DECL(RTNATIVETHREAD) VMMR3LockGetOwner(PVM pVM)
1898{
1899 return RTCritSectGetOwner(&pVM->vmm.s.CritSectVMLock);
1900}
1901
1902
1903/**
1904 * Checks if the current thread is the owner of the global VM lock.
1905 *
1906 * @returns true if owner.
1907 * @returns false if not owner.
1908 * @param pVM The VM to operate on.
1909 */
1910VMMR3DECL(bool) VMMR3LockIsOwner(PVM pVM)
1911{
1912 return RTCritSectIsOwner(&pVM->vmm.s.CritSectVMLock);
1913}
1914
1915
1916/**
1917 * Executes guest code.
1918 *
1919 * @param pVM VM handle.
1920 */
1921VMMR3DECL(int) VMMR3RawRunGC(PVM pVM)
1922{
1923 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1924
1925 /*
1926 * Set the EIP and ESP.
1927 */
1928 CPUMSetHyperEIP(pVM, CPUMGetGuestEFlags(pVM) & X86_EFL_VM
1929 ? pVM->vmm.s.pfnCPUMGCResumeGuestV86
1930 : pVM->vmm.s.pfnCPUMGCResumeGuest);
1931 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom);
1932
1933 /*
1934 * We hide log flushes (outer) and hypervisor interrupts (inner).
1935 */
1936 for (;;)
1937 {
1938 int rc;
1939 do
1940 {
1941#ifdef NO_SUPCALLR0VMM
1942 rc = VERR_GENERAL_FAILURE;
1943#else
1944 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
1945#endif
1946 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1947
1948 /*
1949 * Flush the logs.
1950 */
1951#ifdef LOG_ENABLED
1952 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
1953 if ( pLogger
1954 && pLogger->offScratch > 0)
1955 RTLogFlushGC(NULL, pLogger);
1956#endif
1957#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1958 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
1959 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1960 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
1961#endif
1962 if (rc != VINF_VMM_CALL_HOST)
1963 {
1964 Log2(("VMMR3RawRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1965 return rc;
1966 }
1967 rc = vmmR3ServiceCallHostRequest(pVM);
1968 if (VBOX_FAILURE(rc))
1969 return rc;
1970 /* Resume GC */
1971 }
1972}
1973
1974
1975/**
1976 * Executes guest code (Intel VT-x and AMD-V).
1977 *
1978 * @param pVM VM handle.
1979 */
1980VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM)
1981{
1982 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1983
1984 for (;;)
1985 {
1986 int rc;
1987 do
1988 {
1989#ifdef NO_SUPCALLR0VMM
1990 rc = VERR_GENERAL_FAILURE;
1991#else
1992 rc = SUPCallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN);
1993#endif
1994 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1995
1996#ifdef LOG_ENABLED
1997 /*
1998 * Flush the log
1999 */
2000 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
2001 if ( pR0Logger
2002 && pR0Logger->Logger.offScratch > 0)
2003 RTLogFlushToLogger(&pR0Logger->Logger, NULL);
2004#endif /* !LOG_ENABLED */
2005 if (rc != VINF_VMM_CALL_HOST)
2006 {
2007 Log2(("VMMR3HwAccRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
2008 return rc;
2009 }
2010 rc = vmmR3ServiceCallHostRequest(pVM);
2011 if (VBOX_FAILURE(rc))
2012 return rc;
2013 /* Resume R0 */
2014 }
2015}
2016
2017/**
2018 * Calls GC a function.
2019 *
2020 * @param pVM The VM handle.
2021 * @param GCPtrEntry The GC function address.
2022 * @param cArgs The number of arguments in the ....
2023 * @param ... Arguments to the function.
2024 */
2025VMMR3DECL(int) VMMR3CallGC(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, ...)
2026{
2027 va_list args;
2028 va_start(args, cArgs);
2029 int rc = VMMR3CallGCV(pVM, GCPtrEntry, cArgs, args);
2030 va_end(args);
2031 return rc;
2032}
2033
2034
2035/**
2036 * Calls GC a function.
2037 *
2038 * @param pVM The VM handle.
2039 * @param GCPtrEntry The GC function address.
2040 * @param cArgs The number of arguments in the ....
2041 * @param args Arguments to the function.
2042 */
2043VMMR3DECL(int) VMMR3CallGCV(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, va_list args)
2044{
2045 Log2(("VMMR3CallGCV: GCPtrEntry=%VGv cArgs=%d\n", GCPtrEntry, cArgs));
2046
2047 /*
2048 * Setup the call frame using the trampoline.
2049 */
2050 CPUMHyperSetCtxCore(pVM, NULL);
2051 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
2052 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom - cArgs * sizeof(RTGCUINTPTR));
2053 PRTGCUINTPTR pFrame = (PRTGCUINTPTR)(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE) - cArgs;
2054 int i = cArgs;
2055 while (i-- > 0)
2056 *pFrame++ = va_arg(args, RTGCUINTPTR);
2057
2058 CPUMPushHyper(pVM, cArgs * sizeof(RTGCUINTPTR)); /* stack frame size */
2059 CPUMPushHyper(pVM, GCPtrEntry); /* what to call */
2060 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2061
2062 /*
2063 * We hide log flushes (outer) and hypervisor interrupts (inner).
2064 */
2065 for (;;)
2066 {
2067 int rc;
2068 do
2069 {
2070#ifdef NO_SUPCALLR0VMM
2071 rc = VERR_GENERAL_FAILURE;
2072#else
2073 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2074#endif
2075 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2076
2077 /*
2078 * Flush the logs.
2079 */
2080#ifdef LOG_ENABLED
2081 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2082 if ( pLogger
2083 && pLogger->offScratch > 0)
2084 RTLogFlushGC(NULL, pLogger);
2085#endif
2086#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2087 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2088 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2089 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2090#endif
2091 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2092 VMMR3FatalDump(pVM, rc);
2093 if (rc != VINF_VMM_CALL_HOST)
2094 {
2095 Log2(("VMMR3CallGCV: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
2096 return rc;
2097 }
2098 rc = vmmR3ServiceCallHostRequest(pVM);
2099 if (VBOX_FAILURE(rc))
2100 return rc;
2101 }
2102}
2103
2104
2105/**
2106 * Resumes executing hypervisor code when interrupted
2107 * by a queue flush or a debug event.
2108 *
2109 * @returns VBox status code.
2110 * @param pVM VM handle.
2111 */
2112VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM)
2113{
2114 Log(("VMMR3ResumeHyper: eip=%VGv esp=%VGv\n", CPUMGetHyperEIP(pVM), CPUMGetHyperESP(pVM)));
2115
2116 /*
2117 * We hide log flushes (outer) and hypervisor interrupts (inner).
2118 */
2119 for (;;)
2120 {
2121 int rc;
2122 do
2123 {
2124#ifdef NO_SUPCALLR0VMM
2125 rc = VERR_GENERAL_FAILURE;
2126#else
2127 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2128#endif
2129 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2130
2131 /*
2132 * Flush the loggers,
2133 */
2134#ifdef LOG_ENABLED
2135 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2136 if ( pLogger
2137 && pLogger->offScratch > 0)
2138 RTLogFlushGC(NULL, pLogger);
2139#endif
2140#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2141 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2142 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2143 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2144#endif
2145 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2146 VMMR3FatalDump(pVM, rc);
2147 if (rc != VINF_VMM_CALL_HOST)
2148 {
2149 Log(("VMMR3ResumeHyper: returns %Vrc\n", rc));
2150 return rc;
2151 }
2152 rc = vmmR3ServiceCallHostRequest(pVM);
2153 if (VBOX_FAILURE(rc))
2154 return rc;
2155 }
2156}
2157
2158
2159/**
2160 * Service a call to the ring-3 host code.
2161 *
2162 * @returns VBox status code.
2163 * @param pVM VM handle.
2164 * @remark Careful with critsects.
2165 */
2166static int vmmR3ServiceCallHostRequest(PVM pVM)
2167{
2168 switch (pVM->vmm.s.enmCallHostOperation)
2169 {
2170 /*
2171 * Acquire the PDM lock.
2172 */
2173 case VMMCALLHOST_PDM_LOCK:
2174 {
2175 pVM->vmm.s.rcCallHost = PDMR3LockCall(pVM);
2176 break;
2177 }
2178
2179 /*
2180 * Flush a PDM queue.
2181 */
2182 case VMMCALLHOST_PDM_QUEUE_FLUSH:
2183 {
2184 PDMR3QueueFlushWorker(pVM, NULL);
2185 pVM->vmm.s.rcCallHost = VINF_SUCCESS;
2186 break;
2187 }
2188
2189 /*
2190 * Grow the PGM pool.
2191 */
2192 case VMMCALLHOST_PGM_POOL_GROW:
2193 {
2194 pVM->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
2195 break;
2196 }
2197
2198 /*
2199 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2200 */
2201 case VMMCALLHOST_PGM_MAP_CHUNK:
2202 {
2203 pVM->vmm.s.rcCallHost = PGMR3PhysChunkMap(pVM, pVM->vmm.s.u64CallHostArg);
2204 break;
2205 }
2206
2207 /*
2208 * Allocates more handy pages.
2209 */
2210 case VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES:
2211 {
2212 pVM->vmm.s.rcCallHost = PGMR3PhysAllocateHandyPages(pVM);
2213 break;
2214 }
2215#ifndef VBOX_WITH_NEW_PHYS_CODE
2216
2217 case VMMCALLHOST_PGM_RAM_GROW_RANGE:
2218 {
2219 const RTGCPHYS GCPhys = pVM->vmm.s.u64CallHostArg;
2220 pVM->vmm.s.rcCallHost = PGM3PhysGrowRange(pVM, &GCPhys);
2221 break;
2222 }
2223#endif
2224
2225 /*
2226 * Acquire the PGM lock.
2227 */
2228 case VMMCALLHOST_PGM_LOCK:
2229 {
2230 pVM->vmm.s.rcCallHost = PGMR3LockCall(pVM);
2231 break;
2232 }
2233
2234 /*
2235 * Flush REM handler notifications.
2236 */
2237 case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
2238 {
2239 REMR3ReplayHandlerNotifications(pVM);
2240 break;
2241 }
2242
2243 /*
2244 * This is a noop. We just take this route to avoid unnecessary
2245 * tests in the loops.
2246 */
2247 case VMMCALLHOST_VMM_LOGGER_FLUSH:
2248 break;
2249
2250 /*
2251 * Set the VM error message.
2252 */
2253 case VMMCALLHOST_VM_SET_ERROR:
2254 VMR3SetErrorWorker(pVM);
2255 break;
2256
2257 /*
2258 * Set the VM runtime error message.
2259 */
2260 case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
2261 VMR3SetRuntimeErrorWorker(pVM);
2262 break;
2263
2264 /*
2265 * Signal a ring 0 hypervisor assertion.
2266 * Cancel the longjmp operation that's in progress.
2267 */
2268 case VMMCALLHOST_VM_R0_HYPER_ASSERTION:
2269 pVM->vmm.s.CallHostR0JmpBuf.fInRing3Call = false;
2270#ifdef RT_ARCH_X86
2271 pVM->vmm.s.CallHostR0JmpBuf.eip = 0;
2272#else
2273 pVM->vmm.s.CallHostR0JmpBuf.rip = 0;
2274#endif
2275 return VINF_EM_DBG_HYPER_ASSERTION;
2276
2277 default:
2278 AssertMsgFailed(("enmCallHostOperation=%d\n", pVM->vmm.s.enmCallHostOperation));
2279 return VERR_INTERNAL_ERROR;
2280 }
2281
2282 pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
2283 return VINF_SUCCESS;
2284}
2285
2286
2287
2288/**
2289 * Structure to pass to DBGFR3Info() and for doing all other
2290 * output during fatal dump.
2291 */
2292typedef struct VMMR3FATALDUMPINFOHLP
2293{
2294 /** The helper core. */
2295 DBGFINFOHLP Core;
2296 /** The release logger instance. */
2297 PRTLOGGER pRelLogger;
2298 /** The saved release logger flags. */
2299 RTUINT fRelLoggerFlags;
2300 /** The logger instance. */
2301 PRTLOGGER pLogger;
2302 /** The saved logger flags. */
2303 RTUINT fLoggerFlags;
2304 /** The saved logger destination flags. */
2305 RTUINT fLoggerDestFlags;
2306 /** Whether to output to stderr or not. */
2307 bool fStdErr;
2308} VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP;
2309typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP;
2310
2311
2312/**
2313 * Print formatted string.
2314 *
2315 * @param pHlp Pointer to this structure.
2316 * @param pszFormat The format string.
2317 * @param ... Arguments.
2318 */
2319static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
2320{
2321 va_list args;
2322 va_start(args, pszFormat);
2323 pHlp->pfnPrintfV(pHlp, pszFormat, args);
2324 va_end(args);
2325}
2326
2327
2328/**
2329 * Print formatted string.
2330 *
2331 * @param pHlp Pointer to this structure.
2332 * @param pszFormat The format string.
2333 * @param args Argument list.
2334 */
2335static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args)
2336{
2337 PCVMMR3FATALDUMPINFOHLP pMyHlp = (PCVMMR3FATALDUMPINFOHLP)pHlp;
2338
2339 if (pMyHlp->pRelLogger)
2340 {
2341 va_list args2;
2342 va_copy(args2, args);
2343 RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2);
2344 va_end(args2);
2345 }
2346 if (pMyHlp->pLogger)
2347 {
2348 va_list args2;
2349 va_copy(args2, args);
2350 RTLogLoggerV(pMyHlp->pLogger, pszFormat, args);
2351 va_end(args2);
2352 }
2353 if (pMyHlp->fStdErr)
2354 {
2355 va_list args2;
2356 va_copy(args2, args);
2357 RTStrmPrintfV(g_pStdErr, pszFormat, args);
2358 va_end(args2);
2359 }
2360}
2361
2362
2363/**
2364 * Initializes the fatal dump output helper.
2365 *
2366 * @param pHlp The structure to initialize.
2367 */
2368static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp)
2369{
2370 memset(pHlp, 0, sizeof(*pHlp));
2371
2372 pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf;
2373 pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV;
2374
2375 /*
2376 * The loggers.
2377 */
2378 pHlp->pRelLogger = RTLogRelDefaultInstance();
2379#ifndef LOG_ENABLED
2380 if (!pHlp->pRelLogger)
2381#endif
2382 pHlp->pLogger = RTLogDefaultInstance();
2383
2384 if (pHlp->pRelLogger)
2385 {
2386 pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags;
2387 pHlp->pRelLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2388 }
2389
2390 if (pHlp->pLogger)
2391 {
2392 pHlp->fLoggerFlags = pHlp->pLogger->fFlags;
2393 pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags;
2394 pHlp->pLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2395#ifndef DEBUG_sandervl
2396 pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER;
2397#endif
2398 }
2399
2400 /*
2401 * Check if we need write to stderr.
2402 */
2403 pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)))
2404 && (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)));
2405}
2406
2407
2408/**
2409 * Deletes the fatal dump output helper.
2410 *
2411 * @param pHlp The structure to delete.
2412 */
2413static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp)
2414{
2415 if (pHlp->pRelLogger)
2416 {
2417 RTLogFlush(pHlp->pRelLogger);
2418 pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags;
2419 }
2420
2421 if (pHlp->pLogger)
2422 {
2423 RTLogFlush(pHlp->pLogger);
2424 pHlp->pLogger->fFlags = pHlp->fLoggerFlags;
2425 pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags;
2426 }
2427}
2428
2429
2430/**
2431 * Dumps the VM state on a fatal error.
2432 *
2433 * @param pVM VM Handle.
2434 * @param rcErr VBox status code.
2435 */
2436VMMR3DECL(void) VMMR3FatalDump(PVM pVM, int rcErr)
2437{
2438 /*
2439 * Create our output helper and sync it with the log settings.
2440 * This helper will be used for all the output.
2441 */
2442 VMMR3FATALDUMPINFOHLP Hlp;
2443 PCDBGFINFOHLP pHlp = &Hlp.Core;
2444 vmmR3FatalDumpInfoHlpInit(&Hlp);
2445
2446 /*
2447 * Header.
2448 */
2449 pHlp->pfnPrintf(pHlp,
2450 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
2451 "!!\n"
2452 "!! Guru Meditation %d (%Vrc)\n"
2453 "!!\n",
2454 rcErr, rcErr);
2455
2456 /*
2457 * Continue according to context.
2458 */
2459 bool fDoneHyper = false;
2460 switch (rcErr)
2461 {
2462 /*
2463 * Hyper visor errors.
2464 */
2465 case VINF_EM_DBG_HYPER_ASSERTION:
2466 pHlp->pfnPrintf(pHlp, "%s%s!!\n", VMMR3GetGCAssertMsg1(pVM), VMMR3GetGCAssertMsg2(pVM));
2467 /* fall thru */
2468 case VERR_TRPM_DONT_PANIC:
2469 case VERR_TRPM_PANIC:
2470 case VINF_EM_RAW_STALE_SELECTOR:
2471 case VINF_EM_RAW_IRET_TRAP:
2472 case VINF_EM_DBG_HYPER_BREAKPOINT:
2473 case VINF_EM_DBG_HYPER_STEPPED:
2474 {
2475 /* Trap? */
2476 uint32_t uEIP = CPUMGetHyperEIP(pVM);
2477 TRPMEVENT enmType;
2478 uint8_t u8TrapNo = 0xce;
2479 RTGCUINT uErrorCode = 0xdeadface;
2480 RTGCUINTPTR uCR2 = 0xdeadface;
2481 int rc2 = TRPMQueryTrapAll(pVM, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
2482 if (VBOX_SUCCESS(rc2))
2483 pHlp->pfnPrintf(pHlp,
2484 "!! TRAP=%02x ERRCD=%VGv CR2=%VGv EIP=%VGv Type=%d\n",
2485 u8TrapNo, uErrorCode, uCR2, uEIP, enmType);
2486 else
2487 pHlp->pfnPrintf(pHlp,
2488 "!! EIP=%VGv NOTRAP\n",
2489 uEIP);
2490
2491 /*
2492 * Try figure out where eip is.
2493 */
2494 /** @todo make query call for core code or move this function to VMM. */
2495 /* core code? */
2496 //if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode < pVM->vmm.s.cbCoreCode)
2497 // pHlp->pfnPrintf(pHlp,
2498 // "!! EIP is in CoreCode, offset %#x\n",
2499 // uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode);
2500 //else
2501 { /* ask PDM */
2502 /** @todo ask DBGFR3Sym later. */
2503 char szModName[64];
2504 RTGCPTR GCPtrMod;
2505 char szNearSym1[260];
2506 RTGCPTR GCPtrNearSym1;
2507 char szNearSym2[260];
2508 RTGCPTR GCPtrNearSym2;
2509 int rc = PDMR3QueryModFromEIP(pVM, uEIP,
2510 &szModName[0], sizeof(szModName), &GCPtrMod,
2511 &szNearSym1[0], sizeof(szNearSym1), &GCPtrNearSym1,
2512 &szNearSym2[0], sizeof(szNearSym2), &GCPtrNearSym2);
2513 if (VBOX_SUCCESS(rc))
2514 {
2515 pHlp->pfnPrintf(pHlp,
2516 "!! EIP in %s (%p) at rva %x near symbols:\n"
2517 "!! %VGv rva %VGv off %08x %s\n"
2518 "!! %VGv rva %VGv off -%08x %s\n",
2519 szModName, GCPtrMod, (unsigned)(uEIP - GCPtrMod),
2520 GCPtrNearSym1, GCPtrNearSym1 - GCPtrMod, (unsigned)(uEIP - GCPtrNearSym1), szNearSym1,
2521 GCPtrNearSym2, GCPtrNearSym2 - GCPtrMod, (unsigned)(GCPtrNearSym2 - uEIP), szNearSym2);
2522 }
2523 else
2524 pHlp->pfnPrintf(pHlp,
2525 "!! EIP is not in any code known to VMM!\n");
2526 }
2527
2528 /* Disassemble the instruction. */
2529 char szInstr[256];
2530 rc2 = DBGFR3DisasInstrEx(pVM, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER, &szInstr[0], sizeof(szInstr), NULL);
2531 if (VBOX_SUCCESS(rc2))
2532 pHlp->pfnPrintf(pHlp,
2533 "!! %s\n", szInstr);
2534
2535 /* Dump the hypervisor cpu state. */
2536 pHlp->pfnPrintf(pHlp,
2537 "!!\n"
2538 "!!\n"
2539 "!!\n");
2540 rc2 = DBGFR3Info(pVM, "cpumhyper", "verbose", pHlp);
2541 fDoneHyper = true;
2542
2543 /* Callstack. */
2544 DBGFSTACKFRAME Frame = {0};
2545 rc2 = DBGFR3StackWalkBeginHyper(pVM, &Frame);
2546 if (VBOX_SUCCESS(rc2))
2547 {
2548 pHlp->pfnPrintf(pHlp,
2549 "!!\n"
2550 "!! Call Stack:\n"
2551 "!!\n"
2552 "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n");
2553 do
2554 {
2555 pHlp->pfnPrintf(pHlp,
2556 "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2557 (uint32_t)Frame.AddrFrame.off,
2558 (uint32_t)Frame.AddrReturnFrame.off,
2559 (uint32_t)Frame.AddrReturnPC.Sel,
2560 (uint32_t)Frame.AddrReturnPC.off,
2561 Frame.Args.au32[0],
2562 Frame.Args.au32[1],
2563 Frame.Args.au32[2],
2564 Frame.Args.au32[3]);
2565 pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", Frame.AddrPC.Sel, Frame.AddrPC.off);
2566 if (Frame.pSymPC)
2567 {
2568 RTGCINTPTR offDisp = Frame.AddrPC.FlatPtr - Frame.pSymPC->Value;
2569 if (offDisp > 0)
2570 pHlp->pfnPrintf(pHlp, " %s+%llx", Frame.pSymPC->szName, (int64_t)offDisp);
2571 else if (offDisp < 0)
2572 pHlp->pfnPrintf(pHlp, " %s-%llx", Frame.pSymPC->szName, -(int64_t)offDisp);
2573 else
2574 pHlp->pfnPrintf(pHlp, " %s", Frame.pSymPC->szName);
2575 }
2576 if (Frame.pLinePC)
2577 pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", Frame.pLinePC->szFilename, Frame.pLinePC->uLineNo);
2578 pHlp->pfnPrintf(pHlp, "\n");
2579
2580 /* next */
2581 rc2 = DBGFR3StackWalkNext(pVM, &Frame);
2582 } while (VBOX_SUCCESS(rc2));
2583 DBGFR3StackWalkEnd(pVM, &Frame);
2584 }
2585
2586 /* raw stack */
2587 pHlp->pfnPrintf(pHlp,
2588 "!!\n"
2589 "!! Raw stack (mind the direction).\n"
2590 "!!\n"
2591 "%.*Vhxd\n",
2592 VMM_STACK_SIZE, (char *)pVM->vmm.s.pbHCStack);
2593 break;
2594 }
2595
2596 default:
2597 {
2598 break;
2599 }
2600
2601 } /* switch (rcErr) */
2602
2603
2604 /*
2605 * Generic info dumper loop.
2606 */
2607 static struct
2608 {
2609 const char *pszInfo;
2610 const char *pszArgs;
2611 } const aInfo[] =
2612 {
2613 { "mappings", NULL },
2614 { "hma", NULL },
2615 { "cpumguest", "verbose" },
2616 { "cpumhyper", "verbose" },
2617 { "cpumhost", "verbose" },
2618 { "mode", "all" },
2619 { "cpuid", "verbose" },
2620 { "gdt", NULL },
2621 { "ldt", NULL },
2622 //{ "tss", NULL },
2623 { "ioport", NULL },
2624 { "mmio", NULL },
2625 { "phys", NULL },
2626 //{ "pgmpd", NULL }, - doesn't always work at init time...
2627 { "timers", NULL },
2628 { "activetimers", NULL },
2629 { "handlers", "phys virt hyper stats" },
2630 { "cfgm", NULL },
2631 };
2632 for (unsigned i = 0; i < ELEMENTS(aInfo); i++)
2633 {
2634 if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper"))
2635 continue;
2636 pHlp->pfnPrintf(pHlp,
2637 "!!\n"
2638 "!! {%s, %s}\n"
2639 "!!\n",
2640 aInfo[i].pszInfo, aInfo[i].pszArgs);
2641 DBGFR3Info(pVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp);
2642 }
2643
2644 /* done */
2645 pHlp->pfnPrintf(pHlp,
2646 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
2647
2648
2649 /*
2650 * Delete the output instance (flushing and restoring of flags).
2651 */
2652 vmmR3FatalDumpInfoHlpDelete(&Hlp);
2653}
2654
2655
2656
2657/**
2658 * Displays the Force action Flags.
2659 *
2660 * @param pVM The VM handle.
2661 * @param pHlp The output helpers.
2662 * @param pszArgs The additional arguments (ignored).
2663 */
2664static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2665{
2666 const uint32_t fForcedActions = pVM->fForcedActions;
2667
2668 pHlp->pfnPrintf(pHlp, "Forced action Flags: %#RX32", fForcedActions);
2669
2670 /* show the flag mnemonics */
2671 int c = 0;
2672 uint32_t f = fForcedActions;
2673#define PRINT_FLAG(flag) do { \
2674 if (f & (flag)) \
2675 { \
2676 static const char *s_psz = #flag; \
2677 if (!(c % 6)) \
2678 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz + 6); \
2679 else \
2680 pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
2681 c++; \
2682 f &= ~(flag); \
2683 } \
2684 } while (0)
2685 PRINT_FLAG(VM_FF_INTERRUPT_APIC);
2686 PRINT_FLAG(VM_FF_INTERRUPT_PIC);
2687 PRINT_FLAG(VM_FF_TIMER);
2688 PRINT_FLAG(VM_FF_PDM_QUEUES);
2689 PRINT_FLAG(VM_FF_PDM_DMA);
2690 PRINT_FLAG(VM_FF_PDM_CRITSECT);
2691 PRINT_FLAG(VM_FF_DBGF);
2692 PRINT_FLAG(VM_FF_REQUEST);
2693 PRINT_FLAG(VM_FF_TERMINATE);
2694 PRINT_FLAG(VM_FF_RESET);
2695 PRINT_FLAG(VM_FF_PGM_SYNC_CR3);
2696 PRINT_FLAG(VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2697 PRINT_FLAG(VM_FF_TRPM_SYNC_IDT);
2698 PRINT_FLAG(VM_FF_SELM_SYNC_TSS);
2699 PRINT_FLAG(VM_FF_SELM_SYNC_GDT);
2700 PRINT_FLAG(VM_FF_SELM_SYNC_LDT);
2701 PRINT_FLAG(VM_FF_INHIBIT_INTERRUPTS);
2702 PRINT_FLAG(VM_FF_CSAM_SCAN_PAGE);
2703 PRINT_FLAG(VM_FF_CSAM_PENDING_ACTION);
2704 PRINT_FLAG(VM_FF_TO_R3);
2705 PRINT_FLAG(VM_FF_DEBUG_SUSPEND);
2706 if (f)
2707 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2708 else
2709 pHlp->pfnPrintf(pHlp, "\n");
2710#undef PRINT_FLAG
2711
2712 /* the groups */
2713 c = 0;
2714#define PRINT_GROUP(grp) do { \
2715 if (fForcedActions & (grp)) \
2716 { \
2717 static const char *s_psz = #grp; \
2718 if (!(c % 5)) \
2719 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : "Groups:\n", s_psz + 6); \
2720 else \
2721 pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
2722 c++; \
2723 } \
2724 } while (0)
2725 PRINT_GROUP(VM_FF_EXTERNAL_SUSPENDED_MASK);
2726 PRINT_GROUP(VM_FF_EXTERNAL_HALTED_MASK);
2727 PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_MASK);
2728 PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_RAW_MASK);
2729 PRINT_GROUP(VM_FF_HIGH_PRIORITY_POST_MASK);
2730 PRINT_GROUP(VM_FF_NORMAL_PRIORITY_POST_MASK);
2731 PRINT_GROUP(VM_FF_NORMAL_PRIORITY_MASK);
2732 PRINT_GROUP(VM_FF_RESUME_GUEST_MASK);
2733 PRINT_GROUP(VM_FF_ALL_BUT_RAW_MASK);
2734 if (c)
2735 pHlp->pfnPrintf(pHlp, "\n");
2736#undef PRINT_GROUP
2737}
2738
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette