VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 4968

Last change on this file since 4968 was 4932, checked in by vboxsync, 17 years ago

Always use the ioctl path for hwaccm code execution.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 97.1 KB
Line 
1/* $Id: VMM.cpp 4932 2007-09-20 14:12:41Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * !Revise this! It's already incorrect!
23 *
24 * The Virtual Machine Monitor (VMM) is the core of the virtual machine. It
25 * manages the alternate reality; controlling the virtualization, managing
26 * resources, tracking CPU state, it's resources and so on...
27 *
28 * We will split the VMM into smaller entities:
29 *
30 * - Virtual Machine Core Monitor (VMCM), which purpose it is to
31 * provide ring and world switching, that including routing
32 * interrupts to the host OS and traps to the appropriate trap
33 * handlers. It will implement an external interface for
34 * managing trap handlers.
35 *
36 * - CPU Monitor (CM), tracking the state of the CPU (in the alternate
37 * reality) and implementing external interfaces to read and change
38 * the state.
39 *
40 * - Memory Monitor (MM), which purpose it is to virtualize physical
41 * pages, segment descriptor tables, interrupt descriptor tables, task
42 * segments, and keep track of all memory providing external interfaces
43 * to access content and map pages. (Internally splitt into smaller entities!)
44 *
45 * - IO Monitor (IOM), which virtualizes in and out I/O operations. It
46 * interacts with the MM to implement memory mapped I/O. External
47 * interfaces for adding and removing I/O ranges are implemented.
48 *
49 * - External Interrupt Monitor (EIM), which purpose it is to manage
50 * interrupts generated by virtual devices. This monitor provides
51 * an interfaces for raising interrupts which is accessible at any
52 * time and from all thread.
53 * <p>
54 * A subentity of the EIM is the vitual Programmable Interrupt
55 * Controller Device (VPICD), and perhaps a virtual I/O Advanced
56 * Programmable Interrupt Controller Device (VAPICD).
57 *
58 * - Direct Memory Access Monitor (DMAM), which purpose it is to support
59 * virtual device using the DMA controller. Interfaces must be as the
60 * EIM interfaces independent and threadable.
61 * <p>
62 * A subentity of the DMAM is a virtual DMA Controller Device (VDMACD).
63 *
64 *
65 * Entities working on a higher level:
66 *
67 * - Device Manager (DM), which is a support facility for virtualized
68 * hardware. This provides generic facilities for efficient device
69 * virtualization. It will manage device attaching and detaching
70 * conversing with EIM and IOM.
71 *
72 * - Debugger Facility (DBGF) provides the basic features for
73 * debugging the alternate reality execution.
74 *
75 *
76 *
77 * @section pg_vmm_s_use_cases Use Cases
78 *
79 * @subsection pg_vmm_s_use_case_boot Bootstrap
80 *
81 * - Basic Init:
82 * - Init SUPDRV.
83 *
84 * - Init Virtual Machine Instance:
85 * - Load settings.
86 * - Check resource requirements (memory, com, stuff).
87 *
88 * - Init Host Ring 3 part:
89 * - Init Core code.
90 * - Load Pluggable Components.
91 * - Init Pluggable Components.
92 *
93 * - Init Host Ring 0 part:
94 * - Load Core (core = core components like VMM, RMI, CA, and so on) code.
95 * - Init Core code.
96 * - Load Pluggable Component code.
97 * - Init Pluggable Component code.
98 *
99 * - Allocate first chunk of memory and pin it down. This block of memory
100 * will fit the following pieces:
101 * - Virtual Machine Instance data. (Config, CPU state, VMM state, ++)
102 * (This is available from everywhere (at different addresses though)).
103 * - VMM Guest Context code.
104 * - Pluggable devices Guest Context code.
105 * - Page tables (directory and everything) for the VMM Guest
106 *
107 * - Setup Guest (Ring 0) part:
108 * - Setup initial page tables (i.e. directory all the stuff).
109 * - Load Core Guest Context code.
110 * - Load Pluggable Devices Guest Context code.
111 *
112 *
113 */
114
115
116/*******************************************************************************
117* Header Files *
118*******************************************************************************/
119#define LOG_GROUP LOG_GROUP_VMM
120#include <VBox/vmm.h>
121#include <VBox/vmapi.h>
122#include <VBox/pgm.h>
123#include <VBox/cfgm.h>
124#include <VBox/pdmqueue.h>
125#include <VBox/pdmapi.h>
126#include <VBox/cpum.h>
127#include <VBox/mm.h>
128#include <VBox/iom.h>
129#include <VBox/trpm.h>
130#include <VBox/selm.h>
131#include <VBox/em.h>
132#include <VBox/sup.h>
133#include <VBox/dbgf.h>
134#include <VBox/csam.h>
135#include <VBox/patm.h>
136#include <VBox/rem.h>
137#include <VBox/ssm.h>
138#include <VBox/tm.h>
139#include "VMMInternal.h"
140#include "VMMSwitcher/VMMSwitcher.h"
141#include <VBox/vm.h>
142#include <VBox/err.h>
143#include <VBox/param.h>
144#include <VBox/version.h>
145#include <VBox/x86.h>
146#include <VBox/hwaccm.h>
147#include <iprt/assert.h>
148#include <iprt/alloc.h>
149#include <iprt/asm.h>
150#include <iprt/time.h>
151#include <iprt/stream.h>
152#include <iprt/string.h>
153#include <iprt/stdarg.h>
154#include <iprt/ctype.h>
155
156
157
158/** The saved state version. */
159#define VMM_SAVED_STATE_VERSION 3
160
161
162/*******************************************************************************
163* Internal Functions *
164*******************************************************************************/
165static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
166static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
167static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
168static int vmmR3ServiceCallHostRequest(PVM pVM);
169static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
170
171
172/*******************************************************************************
173* Global Variables *
174*******************************************************************************/
175/** Array of switcher defininitions.
176 * The type and index shall match!
177 */
178static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
179{
180 NULL, /* invalid entry */
181#ifndef RT_ARCH_AMD64
182 &vmmR3Switcher32BitTo32Bit_Def,
183 &vmmR3Switcher32BitToPAE_Def,
184 NULL, //&vmmR3Switcher32BitToAMD64_Def,
185 &vmmR3SwitcherPAETo32Bit_Def,
186 &vmmR3SwitcherPAEToPAE_Def,
187 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
188# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
189 &vmmR3SwitcherAMD64ToPAE_Def,
190# else
191 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
192# endif
193 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
194#else
195 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
196 NULL, //&vmmR3Switcher32BitToPAE_Def,
197 NULL, //&vmmR3Switcher32BitToAMD64_Def,
198 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
199 NULL, //&vmmR3SwitcherPAEToPAE_Def,
200 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
201 &vmmR3SwitcherAMD64ToPAE_Def,
202 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
203#endif
204};
205
206
207
208/**
209 * Initiates the core code.
210 *
211 * This is core per VM code which might need fixups and/or for ease of use
212 * are put on linear contiguous backing.
213 *
214 * @returns VBox status code.
215 * @param pVM Pointer to VM structure.
216 */
217static int vmmR3InitCoreCode(PVM pVM)
218{
219 /*
220 * Calc the size.
221 */
222 unsigned cbCoreCode = 0;
223 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
224 {
225 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
226 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
227 if (pSwitcher)
228 {
229 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
230 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
231 }
232 }
233
234 /*
235 * Allocate continguous pages for switchers and deal with
236 * conflicts in the intermediate mapping of the code.
237 */
238 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
239 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
240 int rc = VERR_NO_MEMORY;
241 if (pVM->vmm.s.pvHCCoreCodeR3)
242 {
243 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
244 if (rc == VERR_PGM_MAPPINGS_FIX_CONFLICT)
245 {
246 /* try more allocations. */
247 struct
248 {
249 RTR0PTR pvR0;
250 void *pvR3;
251 RTHCPHYS HCPhys;
252 RTUINT cb;
253 } aBadTries[16];
254 unsigned i = 0;
255 do
256 {
257 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
258 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
259 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
260 i++;
261 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
262 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
263 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
264 if (!pVM->vmm.s.pvHCCoreCodeR3)
265 break;
266 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
267 } while ( rc == VERR_PGM_MAPPINGS_FIX_CONFLICT
268 && i < ELEMENTS(aBadTries) - 1);
269
270 /* cleanup */
271 if (VBOX_FAILURE(rc))
272 {
273 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
274 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
275 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
276 aBadTries[i].cb = pVM->vmm.s.cbCoreCode;
277 i++;
278 LogRel(("Failed to allocated and map core code: rc=%Vrc\n", rc));
279 }
280 while (i-- > 0)
281 {
282 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%VHp\n",
283 i, aBadTries[i].pvR3, aBadTries[i].pvR0, aBadTries[i].HCPhys));
284 SUPContFree(aBadTries[i].pvR3, aBadTries[i].cb >> PAGE_SHIFT);
285 }
286 }
287 }
288 if (VBOX_SUCCESS(rc))
289 {
290 /*
291 * copy the code.
292 */
293 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
294 {
295 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
296 if (pSwitcher)
297 memcpy((uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
298 pSwitcher->pvCode, pSwitcher->cbCode);
299 }
300
301 /*
302 * Map the code into the GC address space.
303 */
304 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &pVM->vmm.s.pvGCCoreCode);
305 if (VBOX_SUCCESS(rc))
306 {
307 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
308 LogRel(("CoreCode: R3=%VHv R0=%VHv GC=%VGv Phys=%VHp cb=%#x\n",
309 pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
310
311 /*
312 * Finally, PGM probably have selected a switcher already but we need
313 * to do get the addresses so we'll reselect it.
314 * This may legally fail so, we're ignoring the rc.
315 */
316 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
317 return rc;
318 }
319
320 /* shit */
321 AssertMsgFailed(("PGMR3Map(,%VGv, %VGp, %#x, 0) failed with rc=%Vrc\n", pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
322 SUPContFree(pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
323 }
324 else
325 VMSetError(pVM, rc, RT_SRC_POS,
326 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code."),
327 cbCoreCode);
328
329 pVM->vmm.s.pvHCCoreCodeR3 = NULL;
330 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
331 pVM->vmm.s.pvGCCoreCode = 0;
332 return rc;
333}
334
335
336/**
337 * Initializes the VMM.
338 *
339 * @returns VBox status code.
340 * @param pVM The VM to operate on.
341 */
342VMMR3DECL(int) VMMR3Init(PVM pVM)
343{
344 LogFlow(("VMMR3Init\n"));
345
346 /*
347 * Assert alignment, sizes and order.
348 */
349 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
350 AssertMsg(sizeof(pVM->vmm.padding) >= sizeof(pVM->vmm.s),
351 ("pVM->vmm.padding is too small! vmm.padding %d while vmm.s is %d\n",
352 sizeof(pVM->vmm.padding), sizeof(pVM->vmm.s)));
353
354 /*
355 * Init basic VM VMM members.
356 */
357 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
358 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
359 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
360 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
361 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
362 else
363 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Vrc\n", rc), rc);
364
365 /* GC switchers are enabled by default. Turned off by HWACCM. */
366 pVM->vmm.s.fSwitcherDisabled = false;
367
368 /*
369 * Register the saved state data unit.
370 */
371 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
372 NULL, vmmR3Save, NULL,
373 NULL, vmmR3Load, NULL);
374 if (VBOX_FAILURE(rc))
375 return rc;
376
377 /*
378 * Register the Ring-0 VM handle with the session for fast ioctl calls.
379 */
380 rc = SUPSetVMForFastIOCtl(pVM->pVMR0);
381 if (VBOX_FAILURE(rc))
382 return rc;
383
384 /*
385 * Init core code.
386 */
387 rc = vmmR3InitCoreCode(pVM);
388 if (VBOX_SUCCESS(rc))
389 {
390 /*
391 * Allocate & init VMM GC stack.
392 * The stack pages are also used by the VMM R0 when VMMR0CallHost is invoked.
393 * (The page protection is modifed during R3 init completion.)
394 */
395#ifdef VBOX_STRICT_VMM_STACK
396 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE + PAGE_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
397#else
398 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
399#endif
400 if (VBOX_SUCCESS(rc))
401 {
402 /* Set HC and GC stack pointers to top of stack. */
403 pVM->vmm.s.CallHostR0JmpBuf.pvSavedStack = (RTR0PTR)pVM->vmm.s.pbHCStack;
404 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
405 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
406 AssertRelease(pVM->vmm.s.pbGCStack);
407
408 /* Set hypervisor eip. */
409 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStack);
410
411 /*
412 * Allocate GC & R0 Logger instances (they are finalized in the relocator).
413 */
414#ifdef LOG_ENABLED
415 PRTLOGGER pLogger = RTLogDefaultInstance();
416 if (pLogger)
417 {
418 pVM->vmm.s.cbLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pLogger->cGroups]);
419 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pLoggerHC);
420 if (VBOX_SUCCESS(rc))
421 {
422 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
423
424/*
425 * Ring-0 logging isn't 100% safe yet (thread id reuse / process exit cleanup), so
426 * you have to sign up here by adding your defined(DEBUG_<userid>) to the #if.
427 *
428 * If you want to log in non-debug modes, you'll have to remember to change SUPDRvShared.c
429 * to not stub all the log functions.
430 *
431 * You might also wish to enable the AssertMsg1/2 overrides in VMMR0.cpp when enabling this.
432 */
433# if defined(DEBUG_sandervl) || defined(DEBUG_frank)
434 rc = MMHyperAlloc(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
435 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pR0Logger);
436 if (VBOX_SUCCESS(rc))
437 {
438 pVM->vmm.s.pR0Logger->pVM = pVM;
439 //pVM->vmm.s.pR0Logger->fCreated = false;
440 pVM->vmm.s.pR0Logger->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
441 }
442# endif
443 }
444 }
445#endif /* LOG_ENABLED */
446
447#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
448 /*
449 * Allocate GC Release Logger instances (finalized in the relocator).
450 */
451 if (VBOX_SUCCESS(rc))
452 {
453 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
454 if (pRelLogger)
455 {
456 pVM->vmm.s.cbRelLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pRelLogger->cGroups]);
457 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbRelLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRelLoggerHC);
458 if (VBOX_SUCCESS(rc))
459 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
460 }
461 }
462#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
463
464#ifdef VBOX_WITH_NMI
465 /*
466 * Allocate mapping for the host APIC.
467 */
468 if (VBOX_SUCCESS(rc))
469 {
470 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
471 AssertRC(rc);
472 }
473#endif
474 if (VBOX_SUCCESS(rc))
475 {
476 rc = RTCritSectInit(&pVM->vmm.s.CritSectVMLock);
477 if (VBOX_SUCCESS(rc))
478 {
479 /*
480 * Debug info.
481 */
482 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
483
484 /*
485 * Statistics.
486 */
487 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
488 STAM_REG(pVM, &pVM->vmm.s.StatGCRetNormal, STAMTYPE_COUNTER, "/VMM/GCRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterrupt, STAMTYPE_COUNTER, "/VMM/GCRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGuestTrap, STAMTYPE_COUNTER, "/VMM/GCRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitch, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatGCRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/GCRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatGCRetStaleSelector, STAMTYPE_COUNTER, "/VMM/GCRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
496 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIRETTrap, STAMTYPE_COUNTER, "/VMM/GCRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
497 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
498 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
499 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIORead, STAMTYPE_COUNTER, "/VMM/GCRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIORead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTSSFault, STAMTYPE_COUNTER, "/VMM/GCRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDFault, STAMTYPE_COUNTER, "/VMM/GCRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCSAMTask, STAMTYPE_COUNTER, "/VMM/GCRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatGCRetSyncCR3, STAMTYPE_COUNTER, "/VMM/GCRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMisc, STAMTYPE_COUNTER, "/VMM/GCRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
514 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchInt3, STAMTYPE_COUNTER, "/VMM/GCRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
515 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchPF, STAMTYPE_COUNTER, "/VMM/GCRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchGP, STAMTYPE_COUNTER, "/VMM/GCRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
517 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/GCRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
518 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPageOverflow, STAMTYPE_COUNTER, "/VMM/GCRet/InvlpgOverflow", STAMUNIT_OCCURENCES, "Number of VERR_REM_FLUSHED_PAGES_OVERFLOW returns.");
519 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/GCRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
520 STAM_REG(pVM, &pVM->vmm.s.StatGCRetToR3, STAMTYPE_COUNTER, "/VMM/GCRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
521 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTimerPending, STAMTYPE_COUNTER, "/VMM/GCRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
522 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptPending, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
523 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCallHost, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/Misc", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
524 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMGrowRAM, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/GrowRAM", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
525 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PDMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
526 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLogFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/LogFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
527 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/QueueFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
528 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMPoolGrow",STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
529 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRemReplay, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/REMReplay", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
530 STAM_REG(pVM, &pVM->vmm.s.StatGCRetVMSetError, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/VMSetError", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
531 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
532 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/GCRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
533 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/GCRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
534 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulHlt, STAMTYPE_COUNTER, "/VMM/GCRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
535 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPendingRequest, STAMTYPE_COUNTER, "/VMM/GCRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
536
537 return VINF_SUCCESS;
538 }
539 AssertRC(rc);
540 }
541 }
542 /** @todo: Need failure cleanup. */
543
544 //more todo in here?
545 //if (VBOX_SUCCESS(rc))
546 //{
547 //}
548 //int rc2 = vmmR3TermCoreCode(pVM);
549 //AssertRC(rc2));
550 }
551
552 return rc;
553}
554
555
556/**
557 * Ring-3 init finalizing.
558 *
559 * @returns VBox status code.
560 * @param pVM The VM handle.
561 */
562VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
563{
564#ifdef VBOX_STRICT_VMM_STACK
565 /*
566 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
567 */
568 memset(pVM->vmm.s.pbHCStack - PAGE_SIZE, 0xcc, PAGE_SIZE);
569 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack - PAGE_SIZE), PAGE_SIZE, 0);
570 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
571
572 memset(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
573 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack + VMM_STACK_SIZE), PAGE_SIZE, 0);
574 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
575#endif
576
577 /*
578 * Set page attributes to r/w for stack pages.
579 */
580 int rc = PGMMapSetPage(pVM, pVM->vmm.s.pbGCStack, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
581 AssertRC(rc);
582 if (VBOX_SUCCESS(rc))
583 {
584 /*
585 * Create the EMT yield timer.
586 */
587 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
588 if (VBOX_SUCCESS(rc))
589 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
590 }
591#ifdef VBOX_WITH_NMI
592 /*
593 * Map the host APIC into GC - This may be host os specific!
594 */
595 if (VBOX_SUCCESS(rc))
596 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
597 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
598#endif
599 return rc;
600}
601
602
603/**
604 * Initializes the R0 VMM.
605 *
606 * @returns VBox status code.
607 * @param pVM The VM to operate on.
608 */
609VMMR3DECL(int) VMMR3InitR0(PVM pVM)
610{
611 int rc;
612
613 /*
614 * Initialize the ring-0 logger if we haven't done so yet.
615 */
616 if ( pVM->vmm.s.pR0Logger
617 && !pVM->vmm.s.pR0Logger->fCreated)
618 {
619 rc = VMMR3UpdateLoggers(pVM);
620 if (VBOX_FAILURE(rc))
621 return rc;
622 }
623
624 /*
625 * Call Ring-0 entry with init code.
626 */
627 for (;;)
628 {
629#ifdef NO_SUPCALLR0VMM
630 //rc = VERR_GENERAL_FAILURE;
631 rc = VINF_SUCCESS;
632#else
633 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_VMMR0_INIT, (void *)VBOX_VERSION);
634#endif
635 if ( pVM->vmm.s.pR0Logger
636 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
637 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
638 if (rc != VINF_VMM_CALL_HOST)
639 break;
640 rc = vmmR3ServiceCallHostRequest(pVM);
641 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
642 break;
643 break; // remove this when we do setjmp for all ring-0 stuff.
644 }
645
646 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
647 {
648 LogRel(("R0 init failed, rc=%Vra\n", rc));
649 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
650 rc = VERR_INTERNAL_ERROR;
651 }
652 return rc;
653}
654
655
656/**
657 * Initializes the GC VMM.
658 *
659 * @returns VBox status code.
660 * @param pVM The VM to operate on.
661 */
662VMMR3DECL(int) VMMR3InitGC(PVM pVM)
663{
664 /* In VMX mode, there's no need to init GC. */
665 if (pVM->vmm.s.fSwitcherDisabled)
666 return VINF_SUCCESS;
667
668 /*
669 * Call VMMGCInit():
670 * -# resolve the address.
671 * -# setup stackframe and EIP to use the trampoline.
672 * -# do a generic hypervisor call.
673 */
674 RTGCPTR GCPtrEP;
675 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
676 if (VBOX_SUCCESS(rc))
677 {
678 CPUMHyperSetCtxCore(pVM, NULL);
679 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
680 uint64_t u64TS = RTTimeProgramStartNanoTS();
681#if GC_ARCH_BITS == 32
682 CPUMPushHyper(pVM, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
683 CPUMPushHyper(pVM, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
684#else /* 64-bit GC */
685 CPUMPushHyper(pVM, u64TS); /* Param 3: The program startup TS. */
686#endif
687 CPUMPushHyper(pVM, VBOX_VERSION); /* Param 2: Version argument. */
688 CPUMPushHyper(pVM, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
689 CPUMPushHyper(pVM, pVM->pVMGC); /* Param 0: pVM */
690 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* trampoline param: stacksize. */
691 CPUMPushHyper(pVM, GCPtrEP); /* Call EIP. */
692 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
693
694 for (;;)
695 {
696#ifdef NO_SUPCALLR0VMM
697 //rc = VERR_GENERAL_FAILURE;
698 rc = VINF_SUCCESS;
699#else
700 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_CALL_HYPERVISOR, NULL);
701#endif
702#ifdef LOG_ENABLED
703 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
704 if ( pLogger
705 && pLogger->offScratch > 0)
706 RTLogFlushGC(NULL, pLogger);
707#endif
708#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
709 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
710 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
711 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
712#endif
713 if (rc != VINF_VMM_CALL_HOST)
714 break;
715 rc = vmmR3ServiceCallHostRequest(pVM);
716 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
717 break;
718 }
719
720 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
721 {
722 VMMR3FatalDump(pVM, rc);
723 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
724 rc = VERR_INTERNAL_ERROR;
725 }
726 AssertRC(rc);
727 }
728 return rc;
729}
730
731
732/**
733 * Terminate the VMM bits.
734 *
735 * @returns VINF_SUCCESS.
736 * @param pVM The VM handle.
737 */
738VMMR3DECL(int) VMMR3Term(PVM pVM)
739{
740 /** @todo must call ring-0 so the logger thread instance can be properly removed. */
741
742#ifdef VBOX_STRICT_VMM_STACK
743 /*
744 * Make the two stack guard pages present again.
745 */
746 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
747 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
748#endif
749 return VINF_SUCCESS;
750}
751
752
753/**
754 * Applies relocations to data and code managed by this
755 * component. This function will be called at init and
756 * whenever the VMM need to relocate it self inside the GC.
757 *
758 * The VMM will need to apply relocations to the core code.
759 *
760 * @param pVM The VM handle.
761 * @param offDelta The relocation delta.
762 */
763VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
764{
765 LogFlow(("VMMR3Relocate: offDelta=%VGv\n", offDelta));
766
767 /*
768 * Recalc the GC address.
769 */
770 pVM->vmm.s.pvGCCoreCode = MMHyperHC2GC(pVM, pVM->vmm.s.pvHCCoreCodeR3);
771
772 /*
773 * The stack.
774 */
775 CPUMSetHyperESP(pVM, CPUMGetHyperESP(pVM) + offDelta);
776 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
777 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
778
779 /*
780 * All the switchers.
781 */
782 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
783 {
784 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
785 if (pSwitcher && pSwitcher->pfnRelocate)
786 {
787 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
788 pSwitcher->pfnRelocate(pVM,
789 pSwitcher,
790 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR0 + off,
791 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + off,
792 pVM->vmm.s.pvGCCoreCode + off,
793 pVM->vmm.s.HCPhysCoreCode + off);
794 }
795 }
796
797 /*
798 * Recalc the GC address for the current switcher.
799 */
800 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
801 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
802 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
803 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
804 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
805 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
806 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
807
808 /*
809 * Get other GC entry points.
810 */
811 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMGCResumeGuest);
812 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Vra\n", rc));
813
814 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMGCResumeGuestV86);
815 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Vra\n", rc));
816
817 /*
818 * Update the logger.
819 */
820 VMMR3UpdateLoggers(pVM);
821}
822
823
824/**
825 * Updates the settings for the GC and R0 loggers.
826 *
827 * @returns VBox status code.
828 * @param pVM The VM handle.
829 */
830VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
831{
832 /*
833 * Simply clone the logger instance (for GC).
834 */
835 int rc = VINF_SUCCESS;
836 RTGCPTR GCPtrLoggerFlush = 0;
837
838 if (pVM->vmm.s.pLoggerHC
839#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
840 || pVM->vmm.s.pRelLoggerHC
841#endif
842 )
843 {
844 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &GCPtrLoggerFlush);
845 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Vra\n", rc));
846 }
847
848 if (pVM->vmm.s.pLoggerHC)
849 {
850 RTGCPTR GCPtrLoggerWrapper = 0;
851 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &GCPtrLoggerWrapper);
852 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Vra\n", rc));
853 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
854 rc = RTLogCloneGC(NULL /* default */, pVM->vmm.s.pLoggerHC, pVM->vmm.s.cbLoggerGC,
855 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
856 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
857 }
858
859#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
860 if (pVM->vmm.s.pRelLoggerHC)
861 {
862 RTGCPTR GCPtrLoggerWrapper = 0;
863 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &GCPtrLoggerWrapper);
864 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Vra\n", rc));
865 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
866 rc = RTLogCloneGC(RTLogRelDefaultInstance(), pVM->vmm.s.pRelLoggerHC, pVM->vmm.s.cbRelLoggerGC,
867 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
868 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
869 }
870#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
871
872 /*
873 * For the ring-0 EMT logger, we use a per-thread logger
874 * instance in ring-0. Only initialize it once.
875 */
876 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
877 if (pR0Logger)
878 {
879 if (!pR0Logger->fCreated)
880 {
881 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
882 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
883 AssertReleaseMsgRCReturn(rc, ("VMMLoggerWrapper not found! rc=%Vra\n", rc), rc);
884
885 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
886 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
887 AssertReleaseMsgRCReturn(rc, ("VMMLoggerFlush not found! rc=%Vra\n", rc), rc);
888
889 rc = RTLogCreateForR0(&pR0Logger->Logger, pR0Logger->cbLogger,
890 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
891 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
892 AssertReleaseMsgRCReturn(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc), rc);
893 pR0Logger->fCreated = true;
894 }
895
896 rc = RTLogCopyGroupsAndFlags(&pR0Logger->Logger, NULL /* default */, RTLOGFLAGS_BUFFERED, 0);
897 AssertRC(rc);
898 }
899
900 return rc;
901}
902
903
904/**
905 * Generic switch code relocator.
906 *
907 * @param pVM The VM handle.
908 * @param pSwitcher The switcher definition.
909 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
910 * @param pu8CodeR0 Pointer to the core code block for the switcher, ring-0 mapping.
911 * @param GCPtrCode The guest context address corresponding to pu8Code.
912 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
913 * @param SelCS The hypervisor CS selector.
914 * @param SelDS The hypervisor DS selector.
915 * @param SelTSS The hypervisor TSS selector.
916 * @param GCPtrGDT The GC address of the hypervisor GDT.
917 * @param SelCS64 The 64-bit mode hypervisor CS selector.
918 */
919static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
920 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
921{
922 union
923 {
924 const uint8_t *pu8;
925 const uint16_t *pu16;
926 const uint32_t *pu32;
927 const uint64_t *pu64;
928 const void *pv;
929 uintptr_t u;
930 } u;
931 u.pv = pSwitcher->pvFixups;
932
933 /*
934 * Process fixups.
935 */
936 uint8_t u8;
937 while ((u8 = *u.pu8++) != FIX_THE_END)
938 {
939 /*
940 * Get the source (where to write the fixup).
941 */
942 uint32_t offSrc = *u.pu32++;
943 Assert(offSrc < pSwitcher->cbCode);
944 union
945 {
946 uint8_t *pu8;
947 uint16_t *pu16;
948 uint32_t *pu32;
949 uint64_t *pu64;
950 uintptr_t u;
951 } uSrc;
952 uSrc.pu8 = pu8CodeR3 + offSrc;
953
954 /* The fixup target and method depends on the type. */
955 switch (u8)
956 {
957 /*
958 * 32-bit relative, source in HC and target in GC.
959 */
960 case FIX_HC_2_GC_NEAR_REL:
961 {
962 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
963 uint32_t offTrg = *u.pu32++;
964 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
965 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
966 break;
967 }
968
969 /*
970 * 32-bit relative, source in HC and target in ID.
971 */
972 case FIX_HC_2_ID_NEAR_REL:
973 {
974 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
975 uint32_t offTrg = *u.pu32++;
976 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
977 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (uSrc.u + 4));
978 break;
979 }
980
981 /*
982 * 32-bit relative, source in GC and target in HC.
983 */
984 case FIX_GC_2_HC_NEAR_REL:
985 {
986 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
987 uint32_t offTrg = *u.pu32++;
988 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
989 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (GCPtrCode + offSrc + 4));
990 break;
991 }
992
993 /*
994 * 32-bit relative, source in GC and target in ID.
995 */
996 case FIX_GC_2_ID_NEAR_REL:
997 {
998 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
999 uint32_t offTrg = *u.pu32++;
1000 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1001 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
1002 break;
1003 }
1004
1005 /*
1006 * 32-bit relative, source in ID and target in HC.
1007 */
1008 case FIX_ID_2_HC_NEAR_REL:
1009 {
1010 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1011 uint32_t offTrg = *u.pu32++;
1012 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1013 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (u32IDCode + offSrc + 4));
1014 break;
1015 }
1016
1017 /*
1018 * 32-bit relative, source in ID and target in HC.
1019 */
1020 case FIX_ID_2_GC_NEAR_REL:
1021 {
1022 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1023 uint32_t offTrg = *u.pu32++;
1024 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1025 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
1026 break;
1027 }
1028
1029 /*
1030 * 16:32 far jump, target in GC.
1031 */
1032 case FIX_GC_FAR32:
1033 {
1034 uint32_t offTrg = *u.pu32++;
1035 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1036 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
1037 *uSrc.pu16++ = SelCS;
1038 break;
1039 }
1040
1041 /*
1042 * Make 32-bit GC pointer given CPUM offset.
1043 */
1044 case FIX_GC_CPUM_OFF:
1045 {
1046 uint32_t offCPUM = *u.pu32++;
1047 Assert(offCPUM < sizeof(pVM->cpum));
1048 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, &pVM->cpum) + offCPUM);
1049 break;
1050 }
1051
1052 /*
1053 * Make 32-bit GC pointer given VM offset.
1054 */
1055 case FIX_GC_VM_OFF:
1056 {
1057 uint32_t offVM = *u.pu32++;
1058 Assert(offVM < sizeof(VM));
1059 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, pVM) + offVM);
1060 break;
1061 }
1062
1063 /*
1064 * Make 32-bit HC pointer given CPUM offset.
1065 */
1066 case FIX_HC_CPUM_OFF:
1067 {
1068 uint32_t offCPUM = *u.pu32++;
1069 Assert(offCPUM < sizeof(pVM->cpum));
1070 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
1071 break;
1072 }
1073
1074 /*
1075 * Make 32-bit R0 pointer given VM offset.
1076 */
1077 case FIX_HC_VM_OFF:
1078 {
1079 uint32_t offVM = *u.pu32++;
1080 Assert(offVM < sizeof(VM));
1081 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
1082 break;
1083 }
1084
1085 /*
1086 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
1087 */
1088 case FIX_INTER_32BIT_CR3:
1089 {
1090
1091 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
1092 break;
1093 }
1094
1095 /*
1096 * Store the PAE CR3 (32-bit) for the intermediate memory context.
1097 */
1098 case FIX_INTER_PAE_CR3:
1099 {
1100
1101 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
1102 break;
1103 }
1104
1105 /*
1106 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
1107 */
1108 case FIX_INTER_AMD64_CR3:
1109 {
1110
1111 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
1112 break;
1113 }
1114
1115 /*
1116 * Store the 32-Bit CR3 (32-bit) for the hypervisor (shadow) memory context.
1117 */
1118 case FIX_HYPER_32BIT_CR3:
1119 {
1120
1121 *uSrc.pu32 = PGMGetHyper32BitCR3(pVM);
1122 break;
1123 }
1124
1125 /*
1126 * Store the PAE CR3 (32-bit) for the hypervisor (shadow) memory context.
1127 */
1128 case FIX_HYPER_PAE_CR3:
1129 {
1130
1131 *uSrc.pu32 = PGMGetHyperPaeCR3(pVM);
1132 break;
1133 }
1134
1135 /*
1136 * Store the AMD64 CR3 (32-bit) for the hypervisor (shadow) memory context.
1137 */
1138 case FIX_HYPER_AMD64_CR3:
1139 {
1140
1141 *uSrc.pu32 = PGMGetHyperAmd64CR3(pVM);
1142 break;
1143 }
1144
1145 /*
1146 * Store Hypervisor CS (16-bit).
1147 */
1148 case FIX_HYPER_CS:
1149 {
1150 *uSrc.pu16 = SelCS;
1151 break;
1152 }
1153
1154 /*
1155 * Store Hypervisor DS (16-bit).
1156 */
1157 case FIX_HYPER_DS:
1158 {
1159 *uSrc.pu16 = SelDS;
1160 break;
1161 }
1162
1163 /*
1164 * Store Hypervisor TSS (16-bit).
1165 */
1166 case FIX_HYPER_TSS:
1167 {
1168 *uSrc.pu16 = SelTSS;
1169 break;
1170 }
1171
1172 /*
1173 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
1174 */
1175 case FIX_GC_TSS_GDTE_DW2:
1176 {
1177 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
1178 *uSrc.pu32 = (uint32_t)GCPtr;
1179 break;
1180 }
1181
1182
1183 ///@todo case FIX_CR4_MASK:
1184 ///@todo case FIX_CR4_OSFSXR:
1185
1186 /*
1187 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
1188 */
1189 case FIX_NO_FXSAVE_JMP:
1190 {
1191 uint32_t offTrg = *u.pu32++;
1192 Assert(offTrg < pSwitcher->cbCode);
1193 if (!CPUMSupportsFXSR(pVM))
1194 {
1195 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1196 *uSrc.pu32++ = offTrg - (offSrc + 5);
1197 }
1198 else
1199 {
1200 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1201 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1202 }
1203 break;
1204 }
1205
1206 /*
1207 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1208 */
1209 case FIX_NO_SYSENTER_JMP:
1210 {
1211 uint32_t offTrg = *u.pu32++;
1212 Assert(offTrg < pSwitcher->cbCode);
1213 if (!CPUMIsHostUsingSysEnter(pVM))
1214 {
1215 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1216 *uSrc.pu32++ = offTrg - (offSrc + 5);
1217 }
1218 else
1219 {
1220 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1221 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1222 }
1223 break;
1224 }
1225
1226 /*
1227 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1228 */
1229 case FIX_NO_SYSCALL_JMP:
1230 {
1231 uint32_t offTrg = *u.pu32++;
1232 Assert(offTrg < pSwitcher->cbCode);
1233 if (!CPUMIsHostUsingSysEnter(pVM))
1234 {
1235 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1236 *uSrc.pu32++ = offTrg - (offSrc + 5);
1237 }
1238 else
1239 {
1240 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1241 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1242 }
1243 break;
1244 }
1245
1246 /*
1247 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1248 */
1249 case FIX_HC_32BIT:
1250 {
1251 uint32_t offTrg = *u.pu32++;
1252 Assert(offSrc < pSwitcher->cbCode);
1253 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1254 *uSrc.pu32 = (uintptr_t)pu8CodeR0 + offTrg;
1255 break;
1256 }
1257
1258#if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1259 /*
1260 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1261 */
1262 case FIX_HC_64BIT:
1263 {
1264 uint32_t offTrg = *u.pu32++;
1265 Assert(offSrc < pSwitcher->cbCode);
1266 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1267 *uSrc.pu64 = (uintptr_t)pu8CodeR0 + offTrg;
1268 break;
1269 }
1270
1271 /*
1272 * 64-bit HC Code Selector (no argument).
1273 */
1274 case FIX_HC_64BIT_CS:
1275 {
1276 Assert(offSrc < pSwitcher->cbCode);
1277#if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1278 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
1279#else
1280 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
1281#endif
1282 break;
1283 }
1284
1285 /*
1286 * 64-bit HC pointer to the CPUM instance data (no argument).
1287 */
1288 case FIX_HC_64BIT_CPUM:
1289 {
1290 Assert(offSrc < pSwitcher->cbCode);
1291 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
1292 break;
1293 }
1294#endif
1295
1296 /*
1297 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
1298 */
1299 case FIX_ID_32BIT:
1300 {
1301 uint32_t offTrg = *u.pu32++;
1302 Assert(offSrc < pSwitcher->cbCode);
1303 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1304 *uSrc.pu32 = u32IDCode + offTrg;
1305 break;
1306 }
1307
1308 /*
1309 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
1310 */
1311 case FIX_ID_64BIT:
1312 {
1313 uint32_t offTrg = *u.pu32++;
1314 Assert(offSrc < pSwitcher->cbCode);
1315 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1316 *uSrc.pu64 = u32IDCode + offTrg;
1317 break;
1318 }
1319
1320 /*
1321 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
1322 */
1323 case FIX_ID_FAR32_TO_64BIT_MODE:
1324 {
1325 uint32_t offTrg = *u.pu32++;
1326 Assert(offSrc < pSwitcher->cbCode);
1327 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1328 *uSrc.pu32++ = u32IDCode + offTrg;
1329 *uSrc.pu16 = SelCS64;
1330 AssertRelease(SelCS64);
1331 break;
1332 }
1333
1334#ifdef VBOX_WITH_NMI
1335 /*
1336 * 32-bit address to the APIC base.
1337 */
1338 case FIX_GC_APIC_BASE_32BIT:
1339 {
1340 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
1341 break;
1342 }
1343#endif
1344
1345 default:
1346 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
1347 break;
1348 }
1349 }
1350
1351#ifdef LOG_ENABLED
1352 /*
1353 * If Log2 is enabled disassemble the switcher code.
1354 *
1355 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
1356 */
1357 if (LogIs2Enabled())
1358 {
1359 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
1360 " pu8CodeR0 = %p\n"
1361 " pu8CodeR3 = %p\n"
1362 " GCPtrCode = %VGv\n"
1363 " u32IDCode = %08x\n"
1364 " pVMGC = %VGv\n"
1365 " pCPUMGC = %VGv\n"
1366 " pVMHC = %p\n"
1367 " pCPUMHC = %p\n"
1368 " GCPtrGDT = %VGv\n"
1369 " InterCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1370 " HyperCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1371 " SelCS = %04x\n"
1372 " SelDS = %04x\n"
1373 " SelCS64 = %04x\n"
1374 " SelTSS = %04x\n",
1375 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
1376 pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode, VM_GUEST_ADDR(pVM, pVM),
1377 VM_GUEST_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum,
1378 GCPtrGDT,
1379 PGMGetHyper32BitCR3(pVM), PGMGetHyperPaeCR3(pVM), PGMGetHyperAmd64CR3(pVM),
1380 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
1381 SelCS, SelDS, SelCS64, SelTSS);
1382
1383 uint32_t offCode = 0;
1384 while (offCode < pSwitcher->cbCode)
1385 {
1386 /*
1387 * Figure out where this is.
1388 */
1389 const char *pszDesc = NULL;
1390 RTUINTPTR uBase;
1391 uint32_t cbCode;
1392 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
1393 {
1394 pszDesc = "HCCode0";
1395 uBase = (RTUINTPTR)pu8CodeR0;
1396 offCode = pSwitcher->offHCCode0;
1397 cbCode = pSwitcher->cbHCCode0;
1398 }
1399 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
1400 {
1401 pszDesc = "HCCode1";
1402 uBase = (RTUINTPTR)pu8CodeR0;
1403 offCode = pSwitcher->offHCCode1;
1404 cbCode = pSwitcher->cbHCCode1;
1405 }
1406 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
1407 {
1408 pszDesc = "GCCode";
1409 uBase = GCPtrCode;
1410 offCode = pSwitcher->offGCCode;
1411 cbCode = pSwitcher->cbGCCode;
1412 }
1413 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
1414 {
1415 pszDesc = "IDCode0";
1416 uBase = u32IDCode;
1417 offCode = pSwitcher->offIDCode0;
1418 cbCode = pSwitcher->cbIDCode0;
1419 }
1420 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
1421 {
1422 pszDesc = "IDCode1";
1423 uBase = u32IDCode;
1424 offCode = pSwitcher->offIDCode1;
1425 cbCode = pSwitcher->cbIDCode1;
1426 }
1427 else
1428 {
1429 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
1430 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1431 offCode++;
1432 continue;
1433 }
1434
1435 /*
1436 * Disassemble it.
1437 */
1438 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
1439 DISCPUSTATE Cpu = {0};
1440 Cpu.mode = CPUMODE_32BIT;
1441 while (cbCode > 0)
1442 {
1443 /* try label it */
1444 if (pSwitcher->offR0HostToGuest == offCode)
1445 RTLogPrintf(" *R0HostToGuest:\n");
1446 if (pSwitcher->offGCGuestToHost == offCode)
1447 RTLogPrintf(" *GCGuestToHost:\n");
1448 if (pSwitcher->offGCCallTrampoline == offCode)
1449 RTLogPrintf(" *GCCallTrampoline:\n");
1450 if (pSwitcher->offGCGuestToHostAsm == offCode)
1451 RTLogPrintf(" *GCGuestToHostAsm:\n");
1452 if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
1453 RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
1454 if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
1455 RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
1456
1457 /* disas */
1458 uint32_t cbInstr = 0;
1459 char szDisas[256];
1460 if (DISInstr(&Cpu, (RTUINTPTR)pu8CodeR3 + offCode, uBase - (RTUINTPTR)pu8CodeR3, &cbInstr, szDisas))
1461 RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
1462 else
1463 {
1464 RTLogPrintf(" %04x: %02x '%c'\n",
1465 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1466 cbInstr = 1;
1467 }
1468 offCode += cbInstr;
1469 cbCode -= RT_MIN(cbInstr, cbCode);
1470 }
1471 }
1472 }
1473#endif
1474}
1475
1476
1477/**
1478 * Relocator for the 32-Bit to 32-Bit world switcher.
1479 */
1480DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1481{
1482 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1483 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1484}
1485
1486
1487/**
1488 * Relocator for the 32-Bit to PAE world switcher.
1489 */
1490DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1491{
1492 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1493 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1494}
1495
1496
1497/**
1498 * Relocator for the PAE to 32-Bit world switcher.
1499 */
1500DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1501{
1502 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1503 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1504}
1505
1506
1507/**
1508 * Relocator for the PAE to PAE world switcher.
1509 */
1510DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1511{
1512 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1513 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1514}
1515
1516
1517/**
1518 * Relocator for the AMD64 to PAE world switcher.
1519 */
1520DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1521{
1522 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1523 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
1524}
1525
1526
1527/**
1528 * Gets the pointer to g_szRTAssertMsg1 in GC.
1529 * @returns Pointer to VMMGC::g_szRTAssertMsg1.
1530 * Returns NULL if not present.
1531 * @param pVM The VM handle.
1532 */
1533VMMR3DECL(const char *) VMMR3GetGCAssertMsg1(PVM pVM)
1534{
1535 RTGCPTR GCPtr;
1536 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg1", &GCPtr);
1537 if (VBOX_SUCCESS(rc))
1538 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1539 return NULL;
1540}
1541
1542
1543/**
1544 * Gets the pointer to g_szRTAssertMsg2 in GC.
1545 * @returns Pointer to VMMGC::g_szRTAssertMsg2.
1546 * Returns NULL if not present.
1547 * @param pVM The VM handle.
1548 */
1549VMMR3DECL(const char *) VMMR3GetGCAssertMsg2(PVM pVM)
1550{
1551 RTGCPTR GCPtr;
1552 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg2", &GCPtr);
1553 if (VBOX_SUCCESS(rc))
1554 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1555 return NULL;
1556}
1557
1558
1559/**
1560 * Execute state save operation.
1561 *
1562 * @returns VBox status code.
1563 * @param pVM VM Handle.
1564 * @param pSSM SSM operation handle.
1565 */
1566static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1567{
1568 LogFlow(("vmmR3Save:\n"));
1569
1570 /*
1571 * The hypervisor stack.
1572 */
1573 SSMR3PutGCPtr(pSSM, pVM->vmm.s.pbGCStackBottom);
1574 RTGCPTR GCPtrESP = CPUMGetHyperESP(pVM);
1575 Assert(pVM->vmm.s.pbGCStackBottom - GCPtrESP <= VMM_STACK_SIZE);
1576 SSMR3PutGCPtr(pSSM, GCPtrESP);
1577 SSMR3PutMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1578 return SSMR3PutU32(pSSM, ~0); /* terminator */
1579}
1580
1581
1582/**
1583 * Execute state load operation.
1584 *
1585 * @returns VBox status code.
1586 * @param pVM VM Handle.
1587 * @param pSSM SSM operation handle.
1588 * @param u32Version Data layout version.
1589 */
1590static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1591{
1592 LogFlow(("vmmR3Load:\n"));
1593
1594 /*
1595 * Validate version.
1596 */
1597 if (u32Version != VMM_SAVED_STATE_VERSION)
1598 {
1599 Log(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
1600 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1601 }
1602
1603 /*
1604 * Check that the stack is in the same place, or that it's fearly empty.
1605 */
1606 RTGCPTR GCPtrStackBottom;
1607 SSMR3GetGCPtr(pSSM, &GCPtrStackBottom);
1608 RTGCPTR GCPtrESP;
1609 int rc = SSMR3GetGCPtr(pSSM, &GCPtrESP);
1610 if (VBOX_FAILURE(rc))
1611 return rc;
1612 if ( GCPtrStackBottom == pVM->vmm.s.pbGCStackBottom
1613 || (GCPtrStackBottom - GCPtrESP < 32)) /** @todo This will break if we start preemting the hypervisor. */
1614 {
1615 /*
1616 * We *must* set the ESP because the CPUM load + PGM load relocations will render
1617 * the ESP in CPUM fatally invalid.
1618 */
1619 CPUMSetHyperESP(pVM, GCPtrESP);
1620
1621 /* restore the stack. */
1622 SSMR3GetMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1623
1624 /* terminator */
1625 uint32_t u32;
1626 rc = SSMR3GetU32(pSSM, &u32);
1627 if (VBOX_FAILURE(rc))
1628 return rc;
1629 if (u32 != ~0U)
1630 {
1631 AssertMsgFailed(("u32=%#x\n", u32));
1632 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1633 }
1634 return VINF_SUCCESS;
1635 }
1636
1637 LogRel(("The stack is not in the same place and it's not empty! GCPtrStackBottom=%VGv pbGCStackBottom=%VGv ESP=%VGv\n",
1638 GCPtrStackBottom, pVM->vmm.s.pbGCStackBottom, GCPtrESP));
1639 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
1640 return VINF_SUCCESS; /* ignore this */
1641 AssertFailed();
1642 return VERR_SSM_LOAD_CONFIG_MISMATCH;
1643}
1644
1645
1646/**
1647 * Selects the switcher to be used for switching to GC.
1648 *
1649 * @returns VBox status code.
1650 * @param pVM VM handle.
1651 * @param enmSwitcher The new switcher.
1652 * @remark This function may be called before the VMM is initialized.
1653 */
1654VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1655{
1656 /*
1657 * Validate input.
1658 */
1659 if ( enmSwitcher < VMMSWITCHER_INVALID
1660 || enmSwitcher >= VMMSWITCHER_MAX)
1661 {
1662 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1663 return VERR_INVALID_PARAMETER;
1664 }
1665
1666 /*
1667 * Select the new switcher.
1668 */
1669 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1670 if (pSwitcher)
1671 {
1672 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
1673 pVM->vmm.s.enmSwitcher = enmSwitcher;
1674
1675 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvHCCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvHCCoreCodeR0 type */
1676 pVM->vmm.s.pfnR0HostToGuest = pbCodeR0 + pSwitcher->offR0HostToGuest;
1677
1678 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[enmSwitcher];
1679 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
1680 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
1681 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
1682 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
1683 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
1684 return VINF_SUCCESS;
1685 }
1686 return VERR_NOT_IMPLEMENTED;
1687}
1688
1689/**
1690 * Disable the switcher logic permanently.
1691 *
1692 * @returns VBox status code.
1693 * @param pVM VM handle.
1694 */
1695VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
1696{
1697/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1698 * @code
1699 * mov eax, VERR_INTERNAL_ERROR
1700 * ret
1701 * @endcode
1702 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1703 */
1704 pVM->vmm.s.fSwitcherDisabled = true;
1705 return VINF_SUCCESS;
1706}
1707
1708
1709/**
1710 * Resolve a builtin GC symbol.
1711 * Called by PDM when loading or relocating GC modules.
1712 *
1713 * @returns VBox status
1714 * @param pVM VM Handle.
1715 * @param pszSymbol Symbol to resolv
1716 * @param pGCPtrValue Where to store the symbol value.
1717 * @remark This has to work before VMMR3Relocate() is called.
1718 */
1719VMMR3DECL(int) VMMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
1720{
1721 if (!strcmp(pszSymbol, "g_Logger"))
1722 {
1723 if (pVM->vmm.s.pLoggerHC)
1724 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
1725 *pGCPtrValue = pVM->vmm.s.pLoggerGC;
1726 }
1727 else if (!strcmp(pszSymbol, "g_RelLogger"))
1728 {
1729#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1730 if (pVM->vmm.s.pRelLoggerHC)
1731 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
1732 *pGCPtrValue = pVM->vmm.s.pRelLoggerGC;
1733#else
1734 *pGCPtrValue = NIL_RTGCPTR;
1735#endif
1736 }
1737 else
1738 return VERR_SYMBOL_NOT_FOUND;
1739 return VINF_SUCCESS;
1740}
1741
1742
1743/**
1744 * Suspends the the CPU yielder.
1745 *
1746 * @param pVM The VM handle.
1747 */
1748VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1749{
1750 if (!pVM->vmm.s.cYieldResumeMillies)
1751 {
1752 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1753 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1754 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1755 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1756 else
1757 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1758 TMTimerStop(pVM->vmm.s.pYieldTimer);
1759 }
1760 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1761}
1762
1763
1764/**
1765 * Stops the the CPU yielder.
1766 *
1767 * @param pVM The VM handle.
1768 */
1769VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1770{
1771 if (!pVM->vmm.s.cYieldResumeMillies)
1772 TMTimerStop(pVM->vmm.s.pYieldTimer);
1773 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1774 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1775}
1776
1777
1778/**
1779 * Resumes the CPU yielder when it has been a suspended or stopped.
1780 *
1781 * @param pVM The VM handle.
1782 */
1783VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1784{
1785 if (pVM->vmm.s.cYieldResumeMillies)
1786 {
1787 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1788 pVM->vmm.s.cYieldResumeMillies = 0;
1789 }
1790}
1791
1792
1793/**
1794 * Internal timer callback function.
1795 *
1796 * @param pVM The VM.
1797 * @param pTimer The timer handle.
1798 * @param pvUser User argument specified upon timer creation.
1799 */
1800static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1801{
1802 /*
1803 * This really needs some careful tuning. While we shouldn't be too gready since
1804 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1805 * because that'll cause us to stop up.
1806 *
1807 * The current logic is to use the default interval when there is no lag worth
1808 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1809 *
1810 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1811 * so the lag is up to date.)
1812 */
1813 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1814 if ( u64Lag < 50000000 /* 50ms */
1815 || ( u64Lag < 1000000000 /* 1s */
1816 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1817 )
1818 {
1819 uint64_t u64Elapsed = RTTimeNanoTS();
1820 pVM->vmm.s.u64LastYield = u64Elapsed;
1821
1822 RTThreadYield();
1823
1824#ifdef LOG_ENABLED
1825 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1826 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1827#endif
1828 }
1829 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1830}
1831
1832
1833/**
1834 * Acquire global VM lock.
1835 *
1836 * @returns VBox status code
1837 * @param pVM The VM to operate on.
1838 */
1839VMMR3DECL(int) VMMR3Lock(PVM pVM)
1840{
1841 return RTCritSectEnter(&pVM->vmm.s.CritSectVMLock);
1842}
1843
1844
1845/**
1846 * Release global VM lock.
1847 *
1848 * @returns VBox status code
1849 * @param pVM The VM to operate on.
1850 */
1851VMMR3DECL(int) VMMR3Unlock(PVM pVM)
1852{
1853 return RTCritSectLeave(&pVM->vmm.s.CritSectVMLock);
1854}
1855
1856
1857/**
1858 * Return global VM lock owner.
1859 *
1860 * @returns Thread id of owner.
1861 * @returns NIL_RTTHREAD if no owner.
1862 * @param pVM The VM to operate on.
1863 */
1864VMMR3DECL(RTNATIVETHREAD) VMMR3LockGetOwner(PVM pVM)
1865{
1866 return RTCritSectGetOwner(&pVM->vmm.s.CritSectVMLock);
1867}
1868
1869
1870/**
1871 * Checks if the current thread is the owner of the global VM lock.
1872 *
1873 * @returns true if owner.
1874 * @returns false if not owner.
1875 * @param pVM The VM to operate on.
1876 */
1877VMMR3DECL(bool) VMMR3LockIsOwner(PVM pVM)
1878{
1879 return RTCritSectIsOwner(&pVM->vmm.s.CritSectVMLock);
1880}
1881
1882
1883/**
1884 * Executes guest code.
1885 *
1886 * @param pVM VM handle.
1887 */
1888VMMR3DECL(int) VMMR3RawRunGC(PVM pVM)
1889{
1890 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1891
1892 /*
1893 * Set the EIP and ESP.
1894 */
1895 CPUMSetHyperEIP(pVM, CPUMGetGuestEFlags(pVM) & X86_EFL_VM
1896 ? pVM->vmm.s.pfnCPUMGCResumeGuestV86
1897 : pVM->vmm.s.pfnCPUMGCResumeGuest);
1898 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom);
1899
1900 /*
1901 * We hide log flushes (outer) and hypervisor interrupts (inner).
1902 */
1903 for (;;)
1904 {
1905 int rc;
1906 do
1907 {
1908#ifdef NO_SUPCALLR0VMM
1909 rc = VERR_GENERAL_FAILURE;
1910#else
1911 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
1912#endif
1913 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1914
1915 /*
1916 * Flush the logs.
1917 */
1918#ifdef LOG_ENABLED
1919 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
1920 if ( pLogger
1921 && pLogger->offScratch > 0)
1922 RTLogFlushGC(NULL, pLogger);
1923#endif
1924#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1925 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
1926 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1927 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
1928#endif
1929 if (rc != VINF_VMM_CALL_HOST)
1930 {
1931 Log2(("VMMR3RawRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1932 return rc;
1933 }
1934 rc = vmmR3ServiceCallHostRequest(pVM);
1935 if (VBOX_FAILURE(rc))
1936 return rc;
1937 /* Resume GC */
1938 }
1939}
1940
1941
1942/**
1943 * Executes guest code (Intel VMX and AMD SVM).
1944 *
1945 * @param pVM VM handle.
1946 */
1947VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM)
1948{
1949 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1950
1951 for (;;)
1952 {
1953 int rc;
1954 do
1955 {
1956#ifdef NO_SUPCALLR0VMM
1957 rc = VERR_GENERAL_FAILURE;
1958#else
1959 rc = SUPCallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN);
1960#endif
1961 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1962
1963#ifdef LOG_ENABLED
1964 /*
1965 * Flush the log
1966 */
1967 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
1968 if ( pR0Logger
1969 && pR0Logger->Logger.offScratch > 0)
1970 RTLogFlushToLogger(&pR0Logger->Logger, NULL);
1971#endif /* !LOG_ENABLED */
1972 if (rc != VINF_VMM_CALL_HOST)
1973 {
1974 Log2(("VMMR3HwAccRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1975 return rc;
1976 }
1977 rc = vmmR3ServiceCallHostRequest(pVM);
1978 if (VBOX_FAILURE(rc))
1979 return rc;
1980 /* Resume R0 */
1981 }
1982}
1983
1984/**
1985 * Calls GC a function.
1986 *
1987 * @param pVM The VM handle.
1988 * @param GCPtrEntry The GC function address.
1989 * @param cArgs The number of arguments in the ....
1990 * @param ... Arguments to the function.
1991 */
1992VMMR3DECL(int) VMMR3CallGC(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, ...)
1993{
1994 va_list args;
1995 va_start(args, cArgs);
1996 int rc = VMMR3CallGCV(pVM, GCPtrEntry, cArgs, args);
1997 va_end(args);
1998 return rc;
1999}
2000
2001
2002/**
2003 * Calls GC a function.
2004 *
2005 * @param pVM The VM handle.
2006 * @param GCPtrEntry The GC function address.
2007 * @param cArgs The number of arguments in the ....
2008 * @param args Arguments to the function.
2009 */
2010VMMR3DECL(int) VMMR3CallGCV(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, va_list args)
2011{
2012 Log2(("VMMR3CallGCV: GCPtrEntry=%VGv cArgs=%d\n", GCPtrEntry, cArgs));
2013
2014 /*
2015 * Setup the call frame using the trampoline.
2016 */
2017 CPUMHyperSetCtxCore(pVM, NULL);
2018 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
2019 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom - cArgs * sizeof(RTGCUINTPTR));
2020 PRTGCUINTPTR pFrame = (PRTGCUINTPTR)(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE) - cArgs;
2021 int i = cArgs;
2022 while (i-- > 0)
2023 *pFrame++ = va_arg(args, RTGCUINTPTR);
2024
2025 CPUMPushHyper(pVM, cArgs * sizeof(RTGCUINTPTR)); /* stack frame size */
2026 CPUMPushHyper(pVM, GCPtrEntry); /* what to call */
2027 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2028
2029 /*
2030 * We hide log flushes (outer) and hypervisor interrupts (inner).
2031 */
2032 for (;;)
2033 {
2034 int rc;
2035 do
2036 {
2037#ifdef NO_SUPCALLR0VMM
2038 rc = VERR_GENERAL_FAILURE;
2039#else
2040 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2041#endif
2042 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2043
2044 /*
2045 * Flush the logs.
2046 */
2047#ifdef LOG_ENABLED
2048 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2049 if ( pLogger
2050 && pLogger->offScratch > 0)
2051 RTLogFlushGC(NULL, pLogger);
2052#endif
2053#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2054 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2055 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2056 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2057#endif
2058 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2059 VMMR3FatalDump(pVM, rc);
2060 if (rc != VINF_VMM_CALL_HOST)
2061 {
2062 Log2(("VMMR3CallGCV: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
2063 return rc;
2064 }
2065 rc = vmmR3ServiceCallHostRequest(pVM);
2066 if (VBOX_FAILURE(rc))
2067 return rc;
2068 }
2069}
2070
2071
2072/**
2073 * Resumes executing hypervisor code when interrupted
2074 * by a queue flush or a debug event.
2075 *
2076 * @returns VBox status code.
2077 * @param pVM VM handle.
2078 */
2079VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM)
2080{
2081 Log(("VMMR3ResumeHyper: eip=%VGv esp=%VGv\n", CPUMGetHyperEIP(pVM), CPUMGetHyperESP(pVM)));
2082
2083 /*
2084 * We hide log flushes (outer) and hypervisor interrupts (inner).
2085 */
2086 for (;;)
2087 {
2088 int rc;
2089 do
2090 {
2091#ifdef NO_SUPCALLR0VMM
2092 rc = VERR_GENERAL_FAILURE;
2093#else
2094 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2095#endif
2096 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2097
2098 /*
2099 * Flush the loggers,
2100 */
2101#ifdef LOG_ENABLED
2102 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2103 if ( pLogger
2104 && pLogger->offScratch > 0)
2105 RTLogFlushGC(NULL, pLogger);
2106#endif
2107#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2108 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2109 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2110 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2111#endif
2112 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2113 VMMR3FatalDump(pVM, rc);
2114 if (rc != VINF_VMM_CALL_HOST)
2115 {
2116 Log(("VMMR3ResumeHyper: returns %Vrc\n", rc));
2117 return rc;
2118 }
2119 rc = vmmR3ServiceCallHostRequest(pVM);
2120 if (VBOX_FAILURE(rc))
2121 return rc;
2122 }
2123}
2124
2125
2126/**
2127 * Service a call to the ring-3 host code.
2128 *
2129 * @returns VBox status code.
2130 * @param pVM VM handle.
2131 * @remark Careful with critsects.
2132 */
2133static int vmmR3ServiceCallHostRequest(PVM pVM)
2134{
2135 switch (pVM->vmm.s.enmCallHostOperation)
2136 {
2137 /*
2138 * Acquire the PDM lock.
2139 */
2140 case VMMCALLHOST_PDM_LOCK:
2141 {
2142 pVM->vmm.s.rcCallHost = PDMR3LockCall(pVM);
2143 break;
2144 }
2145
2146 /*
2147 * Flush a PDM queue.
2148 */
2149 case VMMCALLHOST_PDM_QUEUE_FLUSH:
2150 {
2151 PDMR3QueueFlushWorker(pVM, NULL);
2152 pVM->vmm.s.rcCallHost = VINF_SUCCESS;
2153 break;
2154 }
2155
2156 /*
2157 * Grow the PGM pool.
2158 */
2159 case VMMCALLHOST_PGM_POOL_GROW:
2160 {
2161 pVM->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
2162 break;
2163 }
2164
2165 /*
2166 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2167 */
2168 case VMMCALLHOST_PGM_MAP_CHUNK:
2169 {
2170 pVM->vmm.s.rcCallHost = PGMR3PhysChunkMap(pVM, pVM->vmm.s.u64CallHostArg);
2171 break;
2172 }
2173
2174 /*
2175 * Allocates more handy pages.
2176 */
2177 case VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES:
2178 {
2179 pVM->vmm.s.rcCallHost = PGMR3PhysAllocateHandyPages(pVM);
2180 break;
2181 }
2182#ifndef NEW_PHYS_CODE
2183
2184 case VMMCALLHOST_PGM_RAM_GROW_RANGE:
2185 {
2186 pVM->vmm.s.rcCallHost = PGM3PhysGrowRange(pVM, pVM->vmm.s.u64CallHostArg);
2187 break;
2188 }
2189#endif
2190
2191 /*
2192 * Acquire the PGM lock.
2193 */
2194 case VMMCALLHOST_PGM_LOCK:
2195 {
2196 pVM->vmm.s.rcCallHost = PGMR3LockCall(pVM);
2197 break;
2198 }
2199
2200 /*
2201 * Flush REM handler notifications.
2202 */
2203 case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
2204 {
2205 REMR3ReplayHandlerNotifications(pVM);
2206 break;
2207 }
2208
2209 /*
2210 * This is a noop. We just take this route to avoid unnecessary
2211 * tests in the loops.
2212 */
2213 case VMMCALLHOST_VMM_LOGGER_FLUSH:
2214 break;
2215
2216 /*
2217 * Set the VM error message.
2218 */
2219 case VMMCALLHOST_VM_SET_ERROR:
2220 VMR3SetErrorWorker(pVM);
2221 break;
2222
2223 /*
2224 * Set the VM runtime error message.
2225 */
2226 case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
2227 VMR3SetRuntimeErrorWorker(pVM);
2228 break;
2229
2230 /*
2231 * Signal a ring 0 hypervisor assertion.
2232 */
2233 case VMMCALLHOST_VM_R0_HYPER_ASSERTION:
2234 return VINF_EM_DBG_HYPER_ASSERTION;
2235
2236 default:
2237 AssertMsgFailed(("enmCallHostOperation=%d\n", pVM->vmm.s.enmCallHostOperation));
2238 return VERR_INTERNAL_ERROR;
2239 }
2240
2241 pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
2242 return VINF_SUCCESS;
2243}
2244
2245
2246
2247/**
2248 * Structure to pass to DBGFR3Info() and for doing all other
2249 * output during fatal dump.
2250 */
2251typedef struct VMMR3FATALDUMPINFOHLP
2252{
2253 /** The helper core. */
2254 DBGFINFOHLP Core;
2255 /** The release logger instance. */
2256 PRTLOGGER pRelLogger;
2257 /** The saved release logger flags. */
2258 RTUINT fRelLoggerFlags;
2259 /** The logger instance. */
2260 PRTLOGGER pLogger;
2261 /** The saved logger flags. */
2262 RTUINT fLoggerFlags;
2263 /** The saved logger destination flags. */
2264 RTUINT fLoggerDestFlags;
2265 /** Whether to output to stderr or not. */
2266 bool fStdErr;
2267} VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP;
2268typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP;
2269
2270
2271/**
2272 * Print formatted string.
2273 *
2274 * @param pHlp Pointer to this structure.
2275 * @param pszFormat The format string.
2276 * @param ... Arguments.
2277 */
2278static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
2279{
2280 va_list args;
2281 va_start(args, pszFormat);
2282 pHlp->pfnPrintfV(pHlp, pszFormat, args);
2283 va_end(args);
2284}
2285
2286
2287/**
2288 * Print formatted string.
2289 *
2290 * @param pHlp Pointer to this structure.
2291 * @param pszFormat The format string.
2292 * @param args Argument list.
2293 */
2294static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args)
2295{
2296 PCVMMR3FATALDUMPINFOHLP pMyHlp = (PCVMMR3FATALDUMPINFOHLP)pHlp;
2297
2298 if (pMyHlp->pRelLogger)
2299 {
2300 va_list args2;
2301 va_copy(args2, args);
2302 RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2);
2303 va_end(args2);
2304 }
2305 if (pMyHlp->pLogger)
2306 {
2307 va_list args2;
2308 va_copy(args2, args);
2309 RTLogLoggerV(pMyHlp->pLogger, pszFormat, args);
2310 va_end(args2);
2311 }
2312 if (pMyHlp->fStdErr)
2313 {
2314 va_list args2;
2315 va_copy(args2, args);
2316 RTStrmPrintfV(g_pStdErr, pszFormat, args);
2317 va_end(args2);
2318 }
2319}
2320
2321
2322/**
2323 * Initializes the fatal dump output helper.
2324 *
2325 * @param pHlp The structure to initialize.
2326 */
2327static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp)
2328{
2329 memset(pHlp, 0, sizeof(*pHlp));
2330
2331 pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf;
2332 pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV;
2333
2334 /*
2335 * The loggers.
2336 */
2337 pHlp->pRelLogger = RTLogRelDefaultInstance();
2338#ifndef LOG_ENABLED
2339 if (!pHlp->pRelLogger)
2340#endif
2341 pHlp->pLogger = RTLogDefaultInstance();
2342
2343 if (pHlp->pRelLogger)
2344 {
2345 pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags;
2346 pHlp->pRelLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2347 }
2348
2349 if (pHlp->pLogger)
2350 {
2351 pHlp->fLoggerFlags = pHlp->pLogger->fFlags;
2352 pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags;
2353 pHlp->pLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2354#ifndef DEBUG_sandervl
2355 pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER;
2356#endif
2357 }
2358
2359 /*
2360 * Check if we need write to stderr.
2361 */
2362 pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)))
2363 && (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)));
2364}
2365
2366
2367/**
2368 * Deletes the fatal dump output helper.
2369 *
2370 * @param pHlp The structure to delete.
2371 */
2372static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp)
2373{
2374 if (pHlp->pRelLogger)
2375 {
2376 RTLogFlush(pHlp->pRelLogger);
2377 pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags;
2378 }
2379
2380 if (pHlp->pLogger)
2381 {
2382 RTLogFlush(pHlp->pLogger);
2383 pHlp->pLogger->fFlags = pHlp->fLoggerFlags;
2384 pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags;
2385 }
2386}
2387
2388
2389/**
2390 * Dumps the VM state on a fatal error.
2391 *
2392 * @param pVM VM Handle.
2393 * @param rcErr VBox status code.
2394 */
2395VMMR3DECL(void) VMMR3FatalDump(PVM pVM, int rcErr)
2396{
2397 /*
2398 * Create our output helper and sync it with the log settings.
2399 * This helper will be used for all the output.
2400 */
2401 VMMR3FATALDUMPINFOHLP Hlp;
2402 PCDBGFINFOHLP pHlp = &Hlp.Core;
2403 vmmR3FatalDumpInfoHlpInit(&Hlp);
2404
2405 /*
2406 * Header.
2407 */
2408 pHlp->pfnPrintf(pHlp,
2409 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
2410 "!!\n"
2411 "!! Guru Meditation %d (%Vrc)\n"
2412 "!!\n",
2413 rcErr, rcErr);
2414
2415 /*
2416 * Continue according to context.
2417 */
2418 bool fDoneHyper = false;
2419 switch (rcErr)
2420 {
2421 /*
2422 * Hyper visor errors.
2423 */
2424 case VINF_EM_DBG_HYPER_ASSERTION:
2425 pHlp->pfnPrintf(pHlp, "%s%s!!\n", VMMR3GetGCAssertMsg1(pVM), VMMR3GetGCAssertMsg2(pVM));
2426 /* fall thru */
2427 case VERR_TRPM_DONT_PANIC:
2428 case VERR_TRPM_PANIC:
2429 case VINF_EM_RAW_STALE_SELECTOR:
2430 case VINF_EM_RAW_IRET_TRAP:
2431 case VINF_EM_DBG_HYPER_BREAKPOINT:
2432 case VINF_EM_DBG_HYPER_STEPPED:
2433 {
2434 /* Trap? */
2435 uint32_t uEIP = CPUMGetHyperEIP(pVM);
2436 TRPMEVENT enmType;
2437 uint8_t u8TrapNo = 0xce;
2438 RTGCUINT uErrorCode = 0xdeadface;
2439 RTGCUINTPTR uCR2 = 0xdeadface;
2440 int rc2 = TRPMQueryTrapAll(pVM, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
2441 if (VBOX_SUCCESS(rc2))
2442 pHlp->pfnPrintf(pHlp,
2443 "!! TRAP=%02x ERRCD=%VGv CR2=%VGv EIP=%VGv Type=%d\n",
2444 u8TrapNo, uErrorCode, uCR2, uEIP, enmType);
2445 else
2446 pHlp->pfnPrintf(pHlp,
2447 "!! EIP=%VGv NOTRAP\n",
2448 uEIP);
2449
2450 /*
2451 * Try figure out where eip is.
2452 */
2453 /** @todo make query call for core code or move this function to VMM. */
2454 /* core code? */
2455 //if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode < pVM->vmm.s.cbCoreCode)
2456 // pHlp->pfnPrintf(pHlp,
2457 // "!! EIP is in CoreCode, offset %#x\n",
2458 // uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode);
2459 //else
2460 { /* ask PDM */
2461 /** @todo ask DBGFR3Sym later. */
2462 char szModName[64];
2463 RTGCPTR GCPtrMod;
2464 char szNearSym1[260];
2465 RTGCPTR GCPtrNearSym1;
2466 char szNearSym2[260];
2467 RTGCPTR GCPtrNearSym2;
2468 int rc = PDMR3QueryModFromEIP(pVM, uEIP,
2469 &szModName[0], sizeof(szModName), &GCPtrMod,
2470 &szNearSym1[0], sizeof(szNearSym1), &GCPtrNearSym1,
2471 &szNearSym2[0], sizeof(szNearSym2), &GCPtrNearSym2);
2472 if (VBOX_SUCCESS(rc))
2473 {
2474 pHlp->pfnPrintf(pHlp,
2475 "!! EIP in %s (%p) at rva %x near symbols:\n"
2476 "!! %VGv rva %VGv off %08x %s\n"
2477 "!! %VGv rva %VGv off -%08x %s\n",
2478 szModName, GCPtrMod, (unsigned)(uEIP - GCPtrMod),
2479 GCPtrNearSym1, GCPtrNearSym1 - GCPtrMod, (unsigned)(uEIP - GCPtrNearSym1), szNearSym1,
2480 GCPtrNearSym2, GCPtrNearSym2 - GCPtrMod, (unsigned)(GCPtrNearSym2 - uEIP), szNearSym2);
2481 }
2482 else
2483 pHlp->pfnPrintf(pHlp,
2484 "!! EIP is not in any code known to VMM!\n");
2485 }
2486
2487 /* Disassemble the instruction. */
2488 char szInstr[256];
2489 rc2 = DBGFR3DisasInstrEx(pVM, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER, &szInstr[0], sizeof(szInstr), NULL);
2490 if (VBOX_SUCCESS(rc2))
2491 pHlp->pfnPrintf(pHlp,
2492 "!! %s\n", szInstr);
2493
2494 /* Dump the hypervisor cpu state. */
2495 pHlp->pfnPrintf(pHlp,
2496 "!!\n"
2497 "!!\n"
2498 "!!\n");
2499 rc2 = DBGFR3Info(pVM, "cpumhyper", "verbose", pHlp);
2500 fDoneHyper = true;
2501
2502 /* Callstack. */
2503 DBGFSTACKFRAME Frame = {0};
2504 rc2 = DBGFR3StackWalkBeginHyper(pVM, &Frame);
2505 if (VBOX_SUCCESS(rc2))
2506 {
2507 pHlp->pfnPrintf(pHlp,
2508 "!!\n"
2509 "!! Call Stack:\n"
2510 "!!\n"
2511 "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n");
2512 do
2513 {
2514 pHlp->pfnPrintf(pHlp,
2515 "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2516 (uint32_t)Frame.AddrFrame.off,
2517 (uint32_t)Frame.AddrReturnFrame.off,
2518 (uint32_t)Frame.AddrReturnPC.Sel,
2519 (uint32_t)Frame.AddrReturnPC.off,
2520 Frame.Args.au32[0],
2521 Frame.Args.au32[1],
2522 Frame.Args.au32[2],
2523 Frame.Args.au32[3]);
2524 pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", Frame.AddrPC.Sel, Frame.AddrPC.off);
2525 if (Frame.pSymPC)
2526 {
2527 RTGCINTPTR offDisp = Frame.AddrPC.FlatPtr - Frame.pSymPC->Value;
2528 if (offDisp > 0)
2529 pHlp->pfnPrintf(pHlp, " %s+%llx", Frame.pSymPC->szName, (int64_t)offDisp);
2530 else if (offDisp < 0)
2531 pHlp->pfnPrintf(pHlp, " %s-%llx", Frame.pSymPC->szName, -(int64_t)offDisp);
2532 else
2533 pHlp->pfnPrintf(pHlp, " %s", Frame.pSymPC->szName);
2534 }
2535 if (Frame.pLinePC)
2536 pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", Frame.pLinePC->szFilename, Frame.pLinePC->uLineNo);
2537 pHlp->pfnPrintf(pHlp, "\n");
2538
2539 /* next */
2540 rc2 = DBGFR3StackWalkNext(pVM, &Frame);
2541 } while (VBOX_SUCCESS(rc2));
2542 DBGFR3StackWalkEnd(pVM, &Frame);
2543 }
2544
2545 /* raw stack */
2546 pHlp->pfnPrintf(pHlp,
2547 "!!\n"
2548 "!! Raw stack (mind the direction).\n"
2549 "!!\n"
2550 "%.*Vhxd\n",
2551 VMM_STACK_SIZE, (char *)pVM->vmm.s.pbHCStack);
2552 break;
2553 }
2554
2555 default:
2556 {
2557 break;
2558 }
2559
2560 } /* switch (rcErr) */
2561
2562
2563 /*
2564 * Dump useful state information.
2565 */
2566 /** @todo convert these dumpers to DBGFR3Info() handlers!!! */
2567 pHlp->pfnPrintf(pHlp,
2568 "!!\n"
2569 "!! PGM Access Handlers & Stuff:\n"
2570 "!!\n");
2571 PGMR3DumpMappings(pVM);
2572
2573
2574 /*
2575 * Generic info dumper loop.
2576 */
2577 static struct
2578 {
2579 const char *pszInfo;
2580 const char *pszArgs;
2581 } const aInfo[] =
2582 {
2583 { "hma", NULL },
2584 { "cpumguest", "verbose" },
2585 { "cpumhyper", "verbose" },
2586 { "cpumhost", "verbose" },
2587 { "mode", "all" },
2588 { "cpuid", "verbose" },
2589 { "gdt", NULL },
2590 { "ldt", NULL },
2591 //{ "tss", NULL },
2592 { "ioport", NULL },
2593 { "mmio", NULL },
2594 { "phys", NULL },
2595 //{ "pgmpd", NULL }, - doesn't always work at init time...
2596 { "timers", NULL },
2597 { "activetimers", NULL },
2598 { "handlers", "phys virt stats" },
2599 { "cfgm", NULL },
2600 };
2601 for (unsigned i = 0; i < ELEMENTS(aInfo); i++)
2602 {
2603 if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper"))
2604 continue;
2605 pHlp->pfnPrintf(pHlp,
2606 "!!\n"
2607 "!! {%s, %s}\n"
2608 "!!\n",
2609 aInfo[i].pszInfo, aInfo[i].pszArgs);
2610 DBGFR3Info(pVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp);
2611 }
2612
2613 /* done */
2614 pHlp->pfnPrintf(pHlp,
2615 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
2616
2617
2618 /*
2619 * Delete the output instance (flushing and restoring of flags).
2620 */
2621 vmmR3FatalDumpInfoHlpDelete(&Hlp);
2622}
2623
2624
2625
2626/**
2627 * Displays the Force action Flags.
2628 *
2629 * @param pVM The VM handle.
2630 * @param pHlp The output helpers.
2631 * @param pszArgs The additional arguments (ignored).
2632 */
2633static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2634{
2635 const uint32_t fForcedActions = pVM->fForcedActions;
2636
2637 pHlp->pfnPrintf(pHlp, "Forced action Flags: %#RX32", fForcedActions);
2638
2639 /* show the flag mnemonics */
2640 int c = 0;
2641 uint32_t f = fForcedActions;
2642#define PRINT_FLAG(flag) do { \
2643 if (f & (flag)) \
2644 { \
2645 static const char *s_psz = #flag; \
2646 if (!(c % 6)) \
2647 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz + 6); \
2648 else \
2649 pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
2650 c++; \
2651 f &= ~(flag); \
2652 } \
2653 } while (0)
2654 PRINT_FLAG(VM_FF_INTERRUPT_APIC);
2655 PRINT_FLAG(VM_FF_INTERRUPT_PIC);
2656 PRINT_FLAG(VM_FF_TIMER);
2657 PRINT_FLAG(VM_FF_PDM_QUEUES);
2658 PRINT_FLAG(VM_FF_PDM_DMA);
2659 PRINT_FLAG(VM_FF_PDM_CRITSECT);
2660 PRINT_FLAG(VM_FF_DBGF);
2661 PRINT_FLAG(VM_FF_REQUEST);
2662 PRINT_FLAG(VM_FF_TERMINATE);
2663 PRINT_FLAG(VM_FF_RESET);
2664 PRINT_FLAG(VM_FF_PGM_SYNC_CR3);
2665 PRINT_FLAG(VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2666 PRINT_FLAG(VM_FF_TRPM_SYNC_IDT);
2667 PRINT_FLAG(VM_FF_SELM_SYNC_TSS);
2668 PRINT_FLAG(VM_FF_SELM_SYNC_GDT);
2669 PRINT_FLAG(VM_FF_SELM_SYNC_LDT);
2670 PRINT_FLAG(VM_FF_INHIBIT_INTERRUPTS);
2671 PRINT_FLAG(VM_FF_CSAM_SCAN_PAGE);
2672 PRINT_FLAG(VM_FF_CSAM_PENDING_ACTION);
2673 PRINT_FLAG(VM_FF_TO_R3);
2674 PRINT_FLAG(VM_FF_DEBUG_SUSPEND);
2675 if (f)
2676 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2677 else
2678 pHlp->pfnPrintf(pHlp, "\n");
2679#undef PRINT_FLAG
2680
2681 /* the groups */
2682 c = 0;
2683#define PRINT_GROUP(grp) do { \
2684 if (fForcedActions & (grp)) \
2685 { \
2686 static const char *s_psz = #grp; \
2687 if (!(c % 5)) \
2688 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : "Groups:\n", s_psz + 6); \
2689 else \
2690 pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
2691 c++; \
2692 } \
2693 } while (0)
2694 PRINT_GROUP(VM_FF_EXTERNAL_SUSPENDED_MASK);
2695 PRINT_GROUP(VM_FF_EXTERNAL_HALTED_MASK);
2696 PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_MASK);
2697 PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_RAW_MASK);
2698 PRINT_GROUP(VM_FF_HIGH_PRIORITY_POST_MASK);
2699 PRINT_GROUP(VM_FF_NORMAL_PRIORITY_POST_MASK);
2700 PRINT_GROUP(VM_FF_NORMAL_PRIORITY_MASK);
2701 PRINT_GROUP(VM_FF_RESUME_GUEST_MASK);
2702 PRINT_GROUP(VM_FF_ALL_BUT_RAW_MASK);
2703 if (c)
2704 pHlp->pfnPrintf(pHlp, "\n");
2705#undef PRINT_GROUP
2706}
2707
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette