VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 25776

Last change on this file since 25776 was 25528, checked in by vboxsync, 15 years ago

IPRT,SUPDrv,++: AssertMsg[12] -> AssertMsg1Weak, AssertMsg1, AssertMsg2Weak, AssertMsg2, AssertMsg2WeakV and AssertMsg2V. Doing more of the assertion machinery in common/misc/assert.cpp to avoid code duplication (ring-0). Major SUPDrv version bump.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 80.8 KB
Line 
1/* $Id: VMM.cpp 25528 2009-12-20 23:24:59Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * The VMM component is two things at the moment, it's a component doing a few
27 * management and routing tasks, and it's the whole virtual machine monitor
28 * thing. For hysterical reasons, it is not doing all the management that one
29 * would expect, this is instead done by @ref pg_vm. We'll address this
30 * misdesign eventually.
31 *
32 * @see grp_vmm, grp_vm
33 *
34 *
35 * @section sec_vmmstate VMM State
36 *
37 * @image html VM_Statechart_Diagram.gif
38 *
39 * To be written.
40 *
41 *
42 * @subsection subsec_vmm_init VMM Initialization
43 *
44 * To be written.
45 *
46 *
47 * @subsection subsec_vmm_term VMM Termination
48 *
49 * To be written.
50 *
51 */
52
53/*******************************************************************************
54* Header Files *
55*******************************************************************************/
56#define LOG_GROUP LOG_GROUP_VMM
57#include <VBox/vmm.h>
58#include <VBox/vmapi.h>
59#include <VBox/pgm.h>
60#include <VBox/cfgm.h>
61#include <VBox/pdmqueue.h>
62#include <VBox/pdmcritsect.h>
63#include <VBox/pdmapi.h>
64#include <VBox/cpum.h>
65#include <VBox/mm.h>
66#include <VBox/iom.h>
67#include <VBox/trpm.h>
68#include <VBox/selm.h>
69#include <VBox/em.h>
70#include <VBox/sup.h>
71#include <VBox/dbgf.h>
72#include <VBox/csam.h>
73#include <VBox/patm.h>
74#include <VBox/rem.h>
75#include <VBox/ssm.h>
76#include <VBox/tm.h>
77#include "VMMInternal.h"
78#include "VMMSwitcher/VMMSwitcher.h"
79#include <VBox/vm.h>
80
81#include <VBox/err.h>
82#include <VBox/param.h>
83#include <VBox/version.h>
84#include <VBox/x86.h>
85#include <VBox/hwaccm.h>
86#include <iprt/assert.h>
87#include <iprt/alloc.h>
88#include <iprt/asm.h>
89#include <iprt/time.h>
90#include <iprt/semaphore.h>
91#include <iprt/stream.h>
92#include <iprt/string.h>
93#include <iprt/stdarg.h>
94#include <iprt/ctype.h>
95
96
97
98/*******************************************************************************
99* Defined Constants And Macros *
100*******************************************************************************/
101/** The saved state version. */
102#define VMM_SAVED_STATE_VERSION 4
103/** The saved state version used by v3.0 and earlier. (Teleportation) */
104#define VMM_SAVED_STATE_VERSION_3_0 3
105
106
107/*******************************************************************************
108* Internal Functions *
109*******************************************************************************/
110static int vmmR3InitStacks(PVM pVM);
111static int vmmR3InitLoggers(PVM pVM);
112static void vmmR3InitRegisterStats(PVM pVM);
113static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
114static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
115static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
116static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
117static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
118
119
120/**
121 * Initializes the VMM.
122 *
123 * @returns VBox status code.
124 * @param pVM The VM to operate on.
125 */
126VMMR3DECL(int) VMMR3Init(PVM pVM)
127{
128 LogFlow(("VMMR3Init\n"));
129
130 /*
131 * Assert alignment, sizes and order.
132 */
133 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
134 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
135 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
136
137 /*
138 * Init basic VM VMM members.
139 */
140 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
141 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
142 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
143 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
144 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
145 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
146 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
147 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
148 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
149 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
150 else
151 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
152
153 /*
154 * Initialize the VMM sync critical section and semaphores.
155 */
156 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
157 AssertRCReturn(rc, rc);
158 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
159 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
160 return VERR_NO_MEMORY;
161 for (VMCPUID i = 0; i < pVM->cCpus; i++)
162 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
163 for (VMCPUID i = 0; i < pVM->cCpus; i++)
164 {
165 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
166 AssertRCReturn(rc, rc);
167 }
168 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
169 AssertRCReturn(rc, rc);
170 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
171 AssertRCReturn(rc, rc);
172 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
173 AssertRCReturn(rc, rc);
174 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
175 AssertRCReturn(rc, rc);
176
177 /* GC switchers are enabled by default. Turned off by HWACCM. */
178 pVM->vmm.s.fSwitcherDisabled = false;
179
180 /*
181 * Register the saved state data unit.
182 */
183 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
184 NULL, NULL, NULL,
185 NULL, vmmR3Save, NULL,
186 NULL, vmmR3Load, NULL);
187 if (RT_FAILURE(rc))
188 return rc;
189
190 /*
191 * Register the Ring-0 VM handle with the session for fast ioctl calls.
192 */
193 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
194 if (RT_FAILURE(rc))
195 return rc;
196
197 /*
198 * Init various sub-components.
199 */
200 rc = vmmR3SwitcherInit(pVM);
201 if (RT_SUCCESS(rc))
202 {
203 rc = vmmR3InitStacks(pVM);
204 if (RT_SUCCESS(rc))
205 {
206 rc = vmmR3InitLoggers(pVM);
207
208#ifdef VBOX_WITH_NMI
209 /*
210 * Allocate mapping for the host APIC.
211 */
212 if (RT_SUCCESS(rc))
213 {
214 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
215 AssertRC(rc);
216 }
217#endif
218 if (RT_SUCCESS(rc))
219 {
220 /*
221 * Debug info and statistics.
222 */
223 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
224 vmmR3InitRegisterStats(pVM);
225
226 return VINF_SUCCESS;
227 }
228 }
229 /** @todo: Need failure cleanup. */
230
231 //more todo in here?
232 //if (RT_SUCCESS(rc))
233 //{
234 //}
235 //int rc2 = vmmR3TermCoreCode(pVM);
236 //AssertRC(rc2));
237 }
238
239 return rc;
240}
241
242
243/**
244 * Allocate & setup the VMM RC stack(s) (for EMTs).
245 *
246 * The stacks are also used for long jumps in Ring-0.
247 *
248 * @returns VBox status code.
249 * @param pVM Pointer to the shared VM structure.
250 *
251 * @remarks The optional guard page gets it protection setup up during R3 init
252 * completion because of init order issues.
253 */
254static int vmmR3InitStacks(PVM pVM)
255{
256 int rc = VINF_SUCCESS;
257#ifdef VMM_R0_SWITCH_STACK
258 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
259#else
260 uint32_t fFlags = 0;
261#endif
262
263 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
264 {
265 PVMCPU pVCpu = &pVM->aCpus[idCpu];
266
267#ifdef VBOX_STRICT_VMM_STACK
268 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
269#else
270 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
271#endif
272 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
273 if (RT_SUCCESS(rc))
274 {
275#ifdef VBOX_STRICT_VMM_STACK
276 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
277#endif
278#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
279 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
280 if (!VMMIsHwVirtExtForced(pVM))
281 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
282 else
283#endif
284 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
285 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
286 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
287 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
288
289 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
290 }
291 }
292
293 return rc;
294}
295
296
297/**
298 * Initialize the loggers.
299 *
300 * @returns VBox status code.
301 * @param pVM Pointer to the shared VM structure.
302 */
303static int vmmR3InitLoggers(PVM pVM)
304{
305 int rc;
306
307 /*
308 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
309 */
310#ifdef LOG_ENABLED
311 PRTLOGGER pLogger = RTLogDefaultInstance();
312 if (pLogger)
313 {
314 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
315 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
316 if (RT_FAILURE(rc))
317 return rc;
318 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
319
320# ifdef VBOX_WITH_R0_LOGGING
321 for (VMCPUID i = 0; i < pVM->cCpus; i++)
322 {
323 PVMCPU pVCpu = &pVM->aCpus[i];
324
325 rc = MMR3HyperAllocOnceNoRelEx(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
326 0, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
327 (void **)&pVCpu->vmm.s.pR0LoggerR3);
328 if (RT_FAILURE(rc))
329 return rc;
330 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
331 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
332 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
333 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
334 }
335# endif
336 }
337#endif /* LOG_ENABLED */
338
339#ifdef VBOX_WITH_RC_RELEASE_LOGGING
340 /*
341 * Allocate RC release logger instances (finalized in the relocator).
342 */
343 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
344 if (pRelLogger)
345 {
346 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
347 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
348 if (RT_FAILURE(rc))
349 return rc;
350 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
351 }
352#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
353 return VINF_SUCCESS;
354}
355
356
357/**
358 * VMMR3Init worker that register the statistics with STAM.
359 *
360 * @param pVM The shared VM structure.
361 */
362static void vmmR3InitRegisterStats(PVM pVM)
363{
364 /*
365 * Statistics.
366 */
367 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMQueueFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_QUEUE_FLUSH calls.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
417
418#ifdef VBOX_WITH_STATISTICS
419 for (VMCPUID i = 0; i < pVM->cCpus; i++)
420 {
421 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
422 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
423 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
424 }
425#endif
426}
427
428
429/**
430 * Initializes the per-VCPU VMM.
431 *
432 * @returns VBox status code.
433 * @param pVM The VM to operate on.
434 */
435VMMR3DECL(int) VMMR3InitCPU(PVM pVM)
436{
437 LogFlow(("VMMR3InitCPU\n"));
438 return VINF_SUCCESS;
439}
440
441
442/**
443 * Ring-3 init finalizing.
444 *
445 * @returns VBox status code.
446 * @param pVM The VM handle.
447 */
448VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
449{
450 int rc;
451
452 /*
453 * Set page attributes to r/w for stack pages.
454 */
455 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
456 {
457 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
458 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
459 AssertRCReturn(rc, rc);
460 }
461
462 /*
463 * Create the EMT yield timer.
464 */
465 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
466 AssertRCReturn(rc, rc);
467
468 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
469 AssertRCReturn(rc, rc);
470
471#ifdef VBOX_WITH_NMI
472 /*
473 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
474 */
475 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
476 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
477 AssertRCReturn(rc, rc);
478#endif
479
480#ifdef VBOX_STRICT_VMM_STACK
481 /*
482 * Setup the stack guard pages: Two inaccessible pages at each sides of the
483 * stack to catch over/under-flows.
484 */
485 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
486 {
487 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
488
489 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
490 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
491
492 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
493 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
494 }
495 pVM->vmm.s.fStackGuardsStationed = true;
496#endif
497
498 return VINF_SUCCESS;
499}
500
501
502/**
503 * Initializes the R0 VMM.
504 *
505 * @returns VBox status code.
506 * @param pVM The VM to operate on.
507 */
508VMMR3DECL(int) VMMR3InitR0(PVM pVM)
509{
510 int rc;
511 PVMCPU pVCpu = VMMGetCpu(pVM);
512 Assert(pVCpu && pVCpu->idCpu == 0);
513
514#ifdef LOG_ENABLED
515 /*
516 * Initialize the ring-0 logger if we haven't done so yet.
517 */
518 if ( pVCpu->vmm.s.pR0LoggerR3
519 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
520 {
521 rc = VMMR3UpdateLoggers(pVM);
522 if (RT_FAILURE(rc))
523 return rc;
524 }
525#endif
526
527 /*
528 * Call Ring-0 entry with init code.
529 */
530 for (;;)
531 {
532#ifdef NO_SUPCALLR0VMM
533 //rc = VERR_GENERAL_FAILURE;
534 rc = VINF_SUCCESS;
535#else
536 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
537#endif
538 /*
539 * Flush the logs.
540 */
541#ifdef LOG_ENABLED
542 if ( pVCpu->vmm.s.pR0LoggerR3
543 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
544 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
545#endif
546 if (rc != VINF_VMM_CALL_HOST)
547 break;
548 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
549 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
550 break;
551 /* Resume R0 */
552 }
553
554 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
555 {
556 LogRel(("R0 init failed, rc=%Rra\n", rc));
557 if (RT_SUCCESS(rc))
558 rc = VERR_INTERNAL_ERROR;
559 }
560 return rc;
561}
562
563
564/**
565 * Initializes the RC VMM.
566 *
567 * @returns VBox status code.
568 * @param pVM The VM to operate on.
569 */
570VMMR3DECL(int) VMMR3InitRC(PVM pVM)
571{
572 PVMCPU pVCpu = VMMGetCpu(pVM);
573 Assert(pVCpu && pVCpu->idCpu == 0);
574
575 /* In VMX mode, there's no need to init RC. */
576 if (pVM->vmm.s.fSwitcherDisabled)
577 return VINF_SUCCESS;
578
579 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
580
581 /*
582 * Call VMMGCInit():
583 * -# resolve the address.
584 * -# setup stackframe and EIP to use the trampoline.
585 * -# do a generic hypervisor call.
586 */
587 RTRCPTR RCPtrEP;
588 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
589 if (RT_SUCCESS(rc))
590 {
591 CPUMHyperSetCtxCore(pVCpu, NULL);
592 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
593 uint64_t u64TS = RTTimeProgramStartNanoTS();
594 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
595 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
596 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
597 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
598 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
599 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
600 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
601 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
602 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
603
604 for (;;)
605 {
606#ifdef NO_SUPCALLR0VMM
607 //rc = VERR_GENERAL_FAILURE;
608 rc = VINF_SUCCESS;
609#else
610 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
611#endif
612#ifdef LOG_ENABLED
613 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
614 if ( pLogger
615 && pLogger->offScratch > 0)
616 RTLogFlushRC(NULL, pLogger);
617#endif
618#ifdef VBOX_WITH_RC_RELEASE_LOGGING
619 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
620 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
621 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
622#endif
623 if (rc != VINF_VMM_CALL_HOST)
624 break;
625 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
626 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
627 break;
628 }
629
630 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
631 {
632 VMMR3FatalDump(pVM, pVCpu, rc);
633 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
634 rc = VERR_INTERNAL_ERROR;
635 }
636 AssertRC(rc);
637 }
638 return rc;
639}
640
641
642/**
643 * Terminate the VMM bits.
644 *
645 * @returns VINF_SUCCESS.
646 * @param pVM The VM handle.
647 */
648VMMR3DECL(int) VMMR3Term(PVM pVM)
649{
650 PVMCPU pVCpu = VMMGetCpu(pVM);
651 Assert(pVCpu && pVCpu->idCpu == 0);
652
653 /*
654 * Call Ring-0 entry with termination code.
655 */
656 int rc;
657 for (;;)
658 {
659#ifdef NO_SUPCALLR0VMM
660 //rc = VERR_GENERAL_FAILURE;
661 rc = VINF_SUCCESS;
662#else
663 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
664#endif
665 /*
666 * Flush the logs.
667 */
668#ifdef LOG_ENABLED
669 if ( pVCpu->vmm.s.pR0LoggerR3
670 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
671 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
672#endif
673 if (rc != VINF_VMM_CALL_HOST)
674 break;
675 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
676 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
677 break;
678 /* Resume R0 */
679 }
680 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
681 {
682 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
683 if (RT_SUCCESS(rc))
684 rc = VERR_INTERNAL_ERROR;
685 }
686
687 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
688 for (VMCPUID i = 0; i < pVM->cCpus; i++)
689 {
690 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
691 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
692 }
693 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
694 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
695 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
696 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
697 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
698 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
699 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
700 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
701
702#ifdef VBOX_STRICT_VMM_STACK
703 /*
704 * Make the two stack guard pages present again.
705 */
706 if (pVM->vmm.s.fStackGuardsStationed)
707 {
708 for (VMCPUID i = 0; i < pVM->cCpus; i++)
709 {
710 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
711 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
712 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
713 }
714 pVM->vmm.s.fStackGuardsStationed = false;
715 }
716#endif
717 return rc;
718}
719
720
721/**
722 * Terminates the per-VCPU VMM.
723 *
724 * Termination means cleaning up and freeing all resources,
725 * the VM it self is at this point powered off or suspended.
726 *
727 * @returns VBox status code.
728 * @param pVM The VM to operate on.
729 */
730VMMR3DECL(int) VMMR3TermCPU(PVM pVM)
731{
732 return VINF_SUCCESS;
733}
734
735
736/**
737 * Applies relocations to data and code managed by this
738 * component. This function will be called at init and
739 * whenever the VMM need to relocate it self inside the GC.
740 *
741 * The VMM will need to apply relocations to the core code.
742 *
743 * @param pVM The VM handle.
744 * @param offDelta The relocation delta.
745 */
746VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
747{
748 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
749
750 /*
751 * Recalc the RC address.
752 */
753 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
754
755 /*
756 * The stack.
757 */
758 for (VMCPUID i = 0; i < pVM->cCpus; i++)
759 {
760 PVMCPU pVCpu = &pVM->aCpus[i];
761
762 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
763
764 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
765 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
766 }
767
768 /*
769 * All the switchers.
770 */
771 vmmR3SwitcherRelocate(pVM, offDelta);
772
773 /*
774 * Get other RC entry points.
775 */
776 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
777 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
778
779 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
780 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
781
782 /*
783 * Update the logger.
784 */
785 VMMR3UpdateLoggers(pVM);
786}
787
788
789/**
790 * Updates the settings for the RC and R0 loggers.
791 *
792 * @returns VBox status code.
793 * @param pVM The VM handle.
794 */
795VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
796{
797 /*
798 * Simply clone the logger instance (for RC).
799 */
800 int rc = VINF_SUCCESS;
801 RTRCPTR RCPtrLoggerFlush = 0;
802
803 if (pVM->vmm.s.pRCLoggerR3
804#ifdef VBOX_WITH_RC_RELEASE_LOGGING
805 || pVM->vmm.s.pRCRelLoggerR3
806#endif
807 )
808 {
809 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
810 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
811 }
812
813 if (pVM->vmm.s.pRCLoggerR3)
814 {
815 RTRCPTR RCPtrLoggerWrapper = 0;
816 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
817 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
818
819 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
820 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
821 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
822 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
823 }
824
825#ifdef VBOX_WITH_RC_RELEASE_LOGGING
826 if (pVM->vmm.s.pRCRelLoggerR3)
827 {
828 RTRCPTR RCPtrLoggerWrapper = 0;
829 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
830 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
831
832 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
833 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
834 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
835 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
836 }
837#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
838
839#ifdef LOG_ENABLED
840 /*
841 * For the ring-0 EMT logger, we use a per-thread logger instance
842 * in ring-0. Only initialize it once.
843 */
844 for (VMCPUID i = 0; i < pVM->cCpus; i++)
845 {
846 PVMCPU pVCpu = &pVM->aCpus[i];
847 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
848 if (pR0LoggerR3)
849 {
850 if (!pR0LoggerR3->fCreated)
851 {
852 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
853 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
854 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
855
856 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
857 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
858 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
859
860 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
861 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
862 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
863 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
864
865 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
866 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
867 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
868 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
869 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
870
871 pR0LoggerR3->idCpu = i;
872 pR0LoggerR3->fCreated = true;
873 pR0LoggerR3->fFlushingDisabled = false;
874
875 }
876
877 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
878 AssertRC(rc);
879 }
880 }
881#endif
882 return rc;
883}
884
885
886/**
887 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
888 *
889 * @returns Pointer to the buffer.
890 * @param pVM The VM handle.
891 */
892VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
893{
894 if (HWACCMIsEnabled(pVM))
895 return pVM->vmm.s.szRing0AssertMsg1;
896
897 RTRCPTR RCPtr;
898 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
899 if (RT_SUCCESS(rc))
900 return (const char *)MMHyperRCToR3(pVM, RCPtr);
901
902 return NULL;
903}
904
905
906/**
907 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
908 *
909 * @returns Pointer to the buffer.
910 * @param pVM The VM handle.
911 */
912VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
913{
914 if (HWACCMIsEnabled(pVM))
915 return pVM->vmm.s.szRing0AssertMsg2;
916
917 RTRCPTR RCPtr;
918 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
919 if (RT_SUCCESS(rc))
920 return (const char *)MMHyperRCToR3(pVM, RCPtr);
921
922 return NULL;
923}
924
925
926/**
927 * Execute state save operation.
928 *
929 * @returns VBox status code.
930 * @param pVM VM Handle.
931 * @param pSSM SSM operation handle.
932 */
933static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
934{
935 LogFlow(("vmmR3Save:\n"));
936
937 /*
938 * Save the started/stopped state of all CPUs except 0 as it will always
939 * be running. This avoids breaking the saved state version. :-)
940 */
941 for (VMCPUID i = 1; i < pVM->cCpus; i++)
942 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
943
944 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
945}
946
947
948/**
949 * Execute state load operation.
950 *
951 * @returns VBox status code.
952 * @param pVM VM Handle.
953 * @param pSSM SSM operation handle.
954 * @param uVersion Data layout version.
955 * @param uPass The data pass.
956 */
957static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
958{
959 LogFlow(("vmmR3Load:\n"));
960 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
961
962 /*
963 * Validate version.
964 */
965 if ( uVersion != VMM_SAVED_STATE_VERSION
966 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
967 {
968 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
969 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
970 }
971
972 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
973 {
974 /* Ignore the stack bottom, stack pointer and stack bits. */
975 RTRCPTR RCPtrIgnored;
976 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
977 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
978#ifdef RT_OS_DARWIN
979 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
980 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
981 && SSMR3HandleRevision(pSSM) >= 48858
982 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
983 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
984 )
985 SSMR3Skip(pSSM, 16384);
986 else
987 SSMR3Skip(pSSM, 8192);
988#else
989 SSMR3Skip(pSSM, 8192);
990#endif
991 }
992
993 /*
994 * Restore the VMCPU states. VCPU 0 is always started.
995 */
996 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
997 for (VMCPUID i = 1; i < pVM->cCpus; i++)
998 {
999 bool fStarted;
1000 int rc = SSMR3GetBool(pSSM, &fStarted);
1001 if (RT_FAILURE(rc))
1002 return rc;
1003 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1004 }
1005
1006 /* terminator */
1007 uint32_t u32;
1008 int rc = SSMR3GetU32(pSSM, &u32);
1009 if (RT_FAILURE(rc))
1010 return rc;
1011 if (u32 != UINT32_MAX)
1012 {
1013 AssertMsgFailed(("u32=%#x\n", u32));
1014 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1015 }
1016 return VINF_SUCCESS;
1017}
1018
1019
1020/**
1021 * Resolve a builtin RC symbol.
1022 *
1023 * Called by PDM when loading or relocating RC modules.
1024 *
1025 * @returns VBox status
1026 * @param pVM VM Handle.
1027 * @param pszSymbol Symbol to resolv
1028 * @param pRCPtrValue Where to store the symbol value.
1029 *
1030 * @remark This has to work before VMMR3Relocate() is called.
1031 */
1032VMMR3DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1033{
1034 if (!strcmp(pszSymbol, "g_Logger"))
1035 {
1036 if (pVM->vmm.s.pRCLoggerR3)
1037 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1038 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1039 }
1040 else if (!strcmp(pszSymbol, "g_RelLogger"))
1041 {
1042#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1043 if (pVM->vmm.s.pRCRelLoggerR3)
1044 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1045 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1046#else
1047 *pRCPtrValue = NIL_RTRCPTR;
1048#endif
1049 }
1050 else
1051 return VERR_SYMBOL_NOT_FOUND;
1052 return VINF_SUCCESS;
1053}
1054
1055
1056/**
1057 * Suspends the CPU yielder.
1058 *
1059 * @param pVM The VM handle.
1060 */
1061VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1062{
1063 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1064 if (!pVM->vmm.s.cYieldResumeMillies)
1065 {
1066 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1067 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1068 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1069 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1070 else
1071 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1072 TMTimerStop(pVM->vmm.s.pYieldTimer);
1073 }
1074 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1075}
1076
1077
1078/**
1079 * Stops the CPU yielder.
1080 *
1081 * @param pVM The VM handle.
1082 */
1083VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1084{
1085 if (!pVM->vmm.s.cYieldResumeMillies)
1086 TMTimerStop(pVM->vmm.s.pYieldTimer);
1087 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1088 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1089}
1090
1091
1092/**
1093 * Resumes the CPU yielder when it has been a suspended or stopped.
1094 *
1095 * @param pVM The VM handle.
1096 */
1097VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1098{
1099 if (pVM->vmm.s.cYieldResumeMillies)
1100 {
1101 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1102 pVM->vmm.s.cYieldResumeMillies = 0;
1103 }
1104}
1105
1106
1107/**
1108 * Internal timer callback function.
1109 *
1110 * @param pVM The VM.
1111 * @param pTimer The timer handle.
1112 * @param pvUser User argument specified upon timer creation.
1113 */
1114static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1115{
1116 /*
1117 * This really needs some careful tuning. While we shouldn't be too greedy since
1118 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1119 * because that'll cause us to stop up.
1120 *
1121 * The current logic is to use the default interval when there is no lag worth
1122 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1123 *
1124 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1125 * so the lag is up to date.)
1126 */
1127 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1128 if ( u64Lag < 50000000 /* 50ms */
1129 || ( u64Lag < 1000000000 /* 1s */
1130 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1131 )
1132 {
1133 uint64_t u64Elapsed = RTTimeNanoTS();
1134 pVM->vmm.s.u64LastYield = u64Elapsed;
1135
1136 RTThreadYield();
1137
1138#ifdef LOG_ENABLED
1139 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1140 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1141#endif
1142 }
1143 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1144}
1145
1146
1147/**
1148 * Executes guest code in the raw-mode context.
1149 *
1150 * @param pVM VM handle.
1151 * @param pVCpu The VMCPU to operate on.
1152 */
1153VMMR3DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1154{
1155 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1156
1157 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1158
1159 /*
1160 * Set the EIP and ESP.
1161 */
1162 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1163 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1164 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1165 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1166
1167 /*
1168 * We hide log flushes (outer) and hypervisor interrupts (inner).
1169 */
1170 for (;;)
1171 {
1172#ifdef VBOX_STRICT
1173 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1174 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1175 PGMMapCheck(pVM);
1176#endif
1177 int rc;
1178 do
1179 {
1180#ifdef NO_SUPCALLR0VMM
1181 rc = VERR_GENERAL_FAILURE;
1182#else
1183 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1184 if (RT_LIKELY(rc == VINF_SUCCESS))
1185 rc = pVCpu->vmm.s.iLastGZRc;
1186#endif
1187 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1188
1189 /*
1190 * Flush the logs.
1191 */
1192#ifdef LOG_ENABLED
1193 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1194 if ( pLogger
1195 && pLogger->offScratch > 0)
1196 RTLogFlushRC(NULL, pLogger);
1197#endif
1198#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1199 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1200 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1201 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1202#endif
1203 if (rc != VINF_VMM_CALL_HOST)
1204 {
1205 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1206 return rc;
1207 }
1208 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1209 if (RT_FAILURE(rc))
1210 return rc;
1211 /* Resume GC */
1212 }
1213}
1214
1215
1216/**
1217 * Executes guest code (Intel VT-x and AMD-V).
1218 *
1219 * @param pVM VM handle.
1220 * @param pVCpu The VMCPU to operate on.
1221 */
1222VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1223{
1224 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1225
1226 for (;;)
1227 {
1228 int rc;
1229 do
1230 {
1231#ifdef NO_SUPCALLR0VMM
1232 rc = VERR_GENERAL_FAILURE;
1233#else
1234 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1235 if (RT_LIKELY(rc == VINF_SUCCESS))
1236 rc = pVCpu->vmm.s.iLastGZRc;
1237#endif
1238 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1239
1240#ifdef LOG_ENABLED
1241 /*
1242 * Flush the log
1243 */
1244 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1245 if ( pR0LoggerR3
1246 && pR0LoggerR3->Logger.offScratch > 0)
1247 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1248#endif /* !LOG_ENABLED */
1249 if (rc != VINF_VMM_CALL_HOST)
1250 {
1251 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1252 return rc;
1253 }
1254 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1255 if (RT_FAILURE(rc))
1256 return rc;
1257 /* Resume R0 */
1258 }
1259}
1260
1261/**
1262 * VCPU worker for VMMSendSipi.
1263 *
1264 * @param pVM The VM to operate on.
1265 * @param idCpu Virtual CPU to perform SIPI on
1266 * @param uVector SIPI vector
1267 */
1268DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1269{
1270 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1271 VMCPU_ASSERT_EMT(pVCpu);
1272
1273 /** @todo what are we supposed to do if the processor is already running? */
1274 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1275 return VERR_ACCESS_DENIED;
1276
1277
1278 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1279
1280 pCtx->cs = uVector << 8;
1281 pCtx->csHid.u64Base = uVector << 12;
1282 pCtx->csHid.u32Limit = 0x0000ffff;
1283 pCtx->rip = 0;
1284
1285 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1286
1287# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1288 EMSetState(pVCpu, EMSTATE_HALTED);
1289 return VINF_EM_RESCHEDULE;
1290# else /* And if we go the VMCPU::enmState way it can stay here. */
1291 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1292 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1293 return VINF_SUCCESS;
1294# endif
1295}
1296
1297DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1298{
1299 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1300 VMCPU_ASSERT_EMT(pVCpu);
1301
1302 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1303 CPUMR3ResetCpu(pVCpu);
1304 return VINF_EM_WAIT_SIPI;
1305}
1306
1307/**
1308 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1309 * and unhalting processor
1310 *
1311 * @param pVM The VM to operate on.
1312 * @param idCpu Virtual CPU to perform SIPI on
1313 * @param uVector SIPI vector
1314 */
1315VMMR3DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1316{
1317 AssertReturnVoid(idCpu < pVM->cCpus);
1318
1319 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1320 AssertRC(rc);
1321}
1322
1323/**
1324 * Sends init IPI to the virtual CPU.
1325 *
1326 * @param pVM The VM to operate on.
1327 * @param idCpu Virtual CPU to perform int IPI on
1328 */
1329VMMR3DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1330{
1331 AssertReturnVoid(idCpu < pVM->cCpus);
1332
1333 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1334 AssertRC(rc);
1335}
1336
1337/**
1338 * Registers the guest memory range that can be used for patching
1339 *
1340 * @returns VBox status code.
1341 * @param pVM The VM to operate on.
1342 * @param pPatchMem Patch memory range
1343 * @param cbPatchMem Size of the memory range
1344 */
1345VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1346{
1347 if (HWACCMIsEnabled(pVM))
1348 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1349
1350 return VERR_NOT_SUPPORTED;
1351}
1352
1353/**
1354 * Deregisters the guest memory range that can be used for patching
1355 *
1356 * @returns VBox status code.
1357 * @param pVM The VM to operate on.
1358 * @param pPatchMem Patch memory range
1359 * @param cbPatchMem Size of the memory range
1360 */
1361VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1362{
1363 if (HWACCMIsEnabled(pVM))
1364 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1365
1366 return VINF_SUCCESS;
1367}
1368
1369
1370/**
1371 * VCPU worker for VMMR3SynchronizeAllVCpus.
1372 *
1373 * @param pVM The VM to operate on.
1374 * @param idCpu Virtual CPU to perform SIPI on
1375 * @param uVector SIPI vector
1376 */
1377DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1378{
1379 /* Block until the job in the caller has finished. */
1380 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1381 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1382 return VINF_SUCCESS;
1383}
1384
1385
1386/**
1387 * Atomically execute a callback handler
1388 * Note: This is very expensive; avoid using it frequently!
1389 *
1390 * @param pVM The VM to operate on.
1391 * @param pfnHandler Callback handler
1392 * @param pvUser User specified parameter
1393 *
1394 * @thread EMT
1395 */
1396VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1397{
1398 int rc;
1399 PVMCPU pVCpu = VMMGetCpu(pVM);
1400 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1401
1402 /* Shortcut for the uniprocessor case. */
1403 if (pVM->cCpus == 1)
1404 return pfnHandler(pVM, pvUser);
1405
1406 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1407 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1408 {
1409 if (idCpu != pVCpu->idCpu)
1410 {
1411 rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SyncVCpu, 1, pVM);
1412 AssertRC(rc);
1413 }
1414 }
1415 /* Wait until all other VCPUs are waiting for us. */
1416 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCpus - 1))
1417 RTThreadSleep(1);
1418
1419 rc = pfnHandler(pVM, pvUser);
1420 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1421 return rc;
1422}
1423
1424
1425/**
1426 * Count returns and have the last non-caller EMT wake up the caller.
1427 *
1428 * @returns VBox strict informational status code for EM scheduling. No failures
1429 * will be returned here, those are for the caller only.
1430 *
1431 * @param pVM The VM handle.
1432 */
1433DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1434{
1435 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1436 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1437 if (cReturned == pVM->cCpus - 1U)
1438 {
1439 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1440 AssertLogRelRC(rc);
1441 }
1442
1443 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1444 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1445 ("%Rrc\n", rcRet),
1446 VERR_IPE_UNEXPECTED_INFO_STATUS);
1447 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1448}
1449
1450
1451/**
1452 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1453 *
1454 * @returns VBox strict informational status code for EM scheduling. No failures
1455 * will be returned here, those are for the caller only. When
1456 * fIsCaller is set, VINF_SUCESS is always returned.
1457 *
1458 * @param pVM The VM handle.
1459 * @param pVCpu The VMCPU structure for the calling EMT.
1460 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1461 * not.
1462 * @param fFlags The flags.
1463 * @param pfnRendezvous The callback.
1464 * @param pvUser The user argument for the callback.
1465 */
1466static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1467 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1468{
1469 int rc;
1470
1471 /*
1472 * Enter, the last EMT triggers the next callback phase.
1473 */
1474 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1475 if (cEntered != pVM->cCpus)
1476 {
1477 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1478 {
1479 /* Wait for our turn. */
1480 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1481 AssertLogRelRC(rc);
1482 }
1483 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1484 {
1485 /* Wait for the last EMT to arrive and wake everyone up. */
1486 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1487 AssertLogRelRC(rc);
1488 }
1489 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1490 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1491 {
1492 /* Wait for our turn. */
1493 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1494 AssertLogRelRC(rc);
1495 }
1496 else
1497 {
1498 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1499
1500 /*
1501 * The execute once is handled specially to optimize the code flow.
1502 *
1503 * The last EMT to arrive will perform the callback and the other
1504 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1505 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1506 * returns, that EMT will initiate the normal return sequence.
1507 */
1508 if (!fIsCaller)
1509 {
1510 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1511 AssertLogRelRC(rc);
1512
1513 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1514 }
1515 return VINF_SUCCESS;
1516 }
1517 }
1518 else
1519 {
1520 /*
1521 * All EMTs are waiting, clear the FF and take action according to the
1522 * execution method.
1523 */
1524 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1525
1526 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1527 {
1528 /* Wake up everyone. */
1529 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1530 AssertLogRelRC(rc);
1531 }
1532 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1533 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1534 {
1535 /* Figure out who to wake up and wake it up. If it's ourself, then
1536 it's easy otherwise wait for our turn. */
1537 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1538 ? 0
1539 : pVM->cCpus - 1U;
1540 if (pVCpu->idCpu != iFirst)
1541 {
1542 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1543 AssertLogRelRC(rc);
1544 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1545 AssertLogRelRC(rc);
1546 }
1547 }
1548 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1549 }
1550
1551
1552 /*
1553 * Do the callback and update the status if necessary.
1554 */
1555 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1556 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1557 {
1558 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1559 if (rcStrict != VINF_SUCCESS)
1560 {
1561 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1562 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1563 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1564 int32_t i32RendezvousStatus;
1565 do
1566 {
1567 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1568 if ( rcStrict == i32RendezvousStatus
1569 || RT_FAILURE(i32RendezvousStatus)
1570 || ( i32RendezvousStatus != VINF_SUCCESS
1571 && rcStrict > i32RendezvousStatus))
1572 break;
1573 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1574 }
1575 }
1576
1577 /*
1578 * Increment the done counter and take action depending on whether we're
1579 * the last to finish callback execution.
1580 */
1581 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1582 if ( cDone != pVM->cCpus
1583 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1584 {
1585 /* Signal the next EMT? */
1586 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1587 {
1588 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1589 AssertLogRelRC(rc);
1590 }
1591 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1592 {
1593 Assert(cDone == pVCpu->idCpu + 1U);
1594 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1595 AssertLogRelRC(rc);
1596 }
1597 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1598 {
1599 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1600 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1601 AssertLogRelRC(rc);
1602 }
1603
1604 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1605 if (!fIsCaller)
1606 {
1607 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1608 AssertLogRelRC(rc);
1609 }
1610 }
1611 else
1612 {
1613 /* Callback execution is all done, tell the rest to return. */
1614 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1615 AssertLogRelRC(rc);
1616 }
1617
1618 if (!fIsCaller)
1619 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1620 return VINF_SUCCESS;
1621}
1622
1623
1624/**
1625 * Called in response to VM_FF_EMT_RENDEZVOUS.
1626 *
1627 * @returns VBox strict status code - EM scheduling. No errors will be returned
1628 * here, nor will any non-EM scheduling status codes be returned.
1629 *
1630 * @param pVM The VM handle
1631 * @param pVCpu The handle of the calling EMT.
1632 *
1633 * @thread EMT
1634 */
1635VMMR3DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1636{
1637 return vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1638 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1639}
1640
1641
1642/**
1643 * EMT rendezvous.
1644 *
1645 * Gathers all the EMTs and execute some code on each of them, either in a one
1646 * by one fashion or all at once.
1647 *
1648 * @returns VBox strict status code. This will be the the first error,
1649 * VINF_SUCCESS, or an EM scheduling status code.
1650 *
1651 * @param pVM The VM handle.
1652 * @param fFlags Flags indicating execution methods. See
1653 * grp_VMMR3EmtRendezvous_fFlags.
1654 * @param pfnRendezvous The callback.
1655 * @param pvUser User argument for the callback.
1656 *
1657 * @thread Any.
1658 */
1659VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1660{
1661 /*
1662 * Validate input.
1663 */
1664 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1665 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1666 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1667 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1668 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1669 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1670 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1671
1672 VBOXSTRICTRC rcStrict;
1673 PVMCPU pVCpu = VMMGetCpu(pVM);
1674 if (!pVCpu)
1675 /*
1676 * Forward the request to an EMT thread.
1677 */
1678 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1679 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1680 else if (pVM->cCpus == 1)
1681 /*
1682 * Shortcut for the single EMT case.
1683 */
1684 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1685 else
1686 {
1687 /*
1688 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1689 * lookout of the RENDEZVOUS FF.
1690 */
1691 int rc;
1692 rcStrict = VINF_SUCCESS;
1693 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1694 {
1695 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1696 {
1697 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1698 {
1699 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1700 if ( rc != VINF_SUCCESS
1701 && ( rcStrict == VINF_SUCCESS
1702 || rcStrict > rc))
1703 rcStrict = rc;
1704 /** @todo Perhaps deal with termination here? */
1705 }
1706 ASMNopPause();
1707 }
1708 }
1709 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1710
1711 /*
1712 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1713 */
1714 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1715 {
1716 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1717 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1718 }
1719 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1720 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1721 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1722 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1723 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1724 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1725 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1726 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1727 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1728 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1729 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1730
1731 /*
1732 * Set the FF and poke the other EMTs.
1733 */
1734 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1735 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1736
1737 /*
1738 * Do the same ourselves.
1739 */
1740 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1741
1742 /*
1743 * The caller waits for the other EMTs to be done and return before doing
1744 * the cleanup. This makes away with wakeup / reset races we would otherwise
1745 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1746 */
1747 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1748 AssertLogRelRC(rc);
1749
1750 /*
1751 * Get the return code and clean up a little bit.
1752 */
1753 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1754 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, NULL);
1755
1756 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1757
1758 /*
1759 * Merge rcStrict and rcMy.
1760 */
1761 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1762 if ( rcMy != VINF_SUCCESS
1763 && ( rcStrict == VINF_SUCCESS
1764 || rcStrict > rcMy))
1765 rcStrict = rcMy;
1766 }
1767
1768 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1769 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1770 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1771 VERR_IPE_UNEXPECTED_INFO_STATUS);
1772 return VBOXSTRICTRC_VAL(rcStrict);
1773}
1774
1775
1776/**
1777 * Read from the ring 0 jump buffer stack
1778 *
1779 * @returns VBox status code.
1780 *
1781 * @param pVM Pointer to the shared VM structure.
1782 * @param idCpu The ID of the source CPU context (for the address).
1783 * @param pAddress Where to start reading.
1784 * @param pvBuf Where to store the data we've read.
1785 * @param cbRead The number of bytes to read.
1786 */
1787VMMR3DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR pAddress, void *pvBuf, size_t cbRead)
1788{
1789 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1790 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1791
1792 RTHCUINTPTR offset = pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - pAddress;
1793 if (offset >= pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack)
1794 return VERR_INVALID_POINTER;
1795
1796 memcpy(pvBuf, pVCpu->vmm.s.pbEMTStackR3 + pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - offset, cbRead);
1797 return VINF_SUCCESS;
1798}
1799
1800
1801/**
1802 * Calls a RC function.
1803 *
1804 * @param pVM The VM handle.
1805 * @param RCPtrEntry The address of the RC function.
1806 * @param cArgs The number of arguments in the ....
1807 * @param ... Arguments to the function.
1808 */
1809VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1810{
1811 va_list args;
1812 va_start(args, cArgs);
1813 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1814 va_end(args);
1815 return rc;
1816}
1817
1818
1819/**
1820 * Calls a RC function.
1821 *
1822 * @param pVM The VM handle.
1823 * @param RCPtrEntry The address of the RC function.
1824 * @param cArgs The number of arguments in the ....
1825 * @param args Arguments to the function.
1826 */
1827VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1828{
1829 /* Raw mode implies 1 VCPU. */
1830 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1831 PVMCPU pVCpu = &pVM->aCpus[0];
1832
1833 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1834
1835 /*
1836 * Setup the call frame using the trampoline.
1837 */
1838 CPUMHyperSetCtxCore(pVCpu, NULL);
1839 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1840 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1841 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1842 int i = cArgs;
1843 while (i-- > 0)
1844 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1845
1846 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1847 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1848 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1849
1850 /*
1851 * We hide log flushes (outer) and hypervisor interrupts (inner).
1852 */
1853 for (;;)
1854 {
1855 int rc;
1856 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1857 do
1858 {
1859#ifdef NO_SUPCALLR0VMM
1860 rc = VERR_GENERAL_FAILURE;
1861#else
1862 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1863 if (RT_LIKELY(rc == VINF_SUCCESS))
1864 rc = pVCpu->vmm.s.iLastGZRc;
1865#endif
1866 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1867
1868 /*
1869 * Flush the logs.
1870 */
1871#ifdef LOG_ENABLED
1872 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1873 if ( pLogger
1874 && pLogger->offScratch > 0)
1875 RTLogFlushRC(NULL, pLogger);
1876#endif
1877#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1878 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1879 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1880 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1881#endif
1882 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1883 VMMR3FatalDump(pVM, pVCpu, rc);
1884 if (rc != VINF_VMM_CALL_HOST)
1885 {
1886 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1887 return rc;
1888 }
1889 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1890 if (RT_FAILURE(rc))
1891 return rc;
1892 }
1893}
1894
1895
1896/**
1897 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1898 *
1899 * @returns VBox status code.
1900 * @param pVM The VM to operate on.
1901 * @param uOperation Operation to execute.
1902 * @param u64Arg Constant argument.
1903 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1904 * details.
1905 */
1906VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1907{
1908 PVMCPU pVCpu = VMMGetCpu(pVM);
1909 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1910
1911 /*
1912 * Call Ring-0 entry with init code.
1913 */
1914 int rc;
1915 for (;;)
1916 {
1917#ifdef NO_SUPCALLR0VMM
1918 rc = VERR_GENERAL_FAILURE;
1919#else
1920 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1921#endif
1922 /*
1923 * Flush the logs.
1924 */
1925#ifdef LOG_ENABLED
1926 if ( pVCpu->vmm.s.pR0LoggerR3
1927 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1928 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1929#endif
1930 if (rc != VINF_VMM_CALL_HOST)
1931 break;
1932 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1933 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1934 break;
1935 /* Resume R0 */
1936 }
1937
1938 AssertLogRelMsgReturn(rc == VINF_SUCCESS || VBOX_FAILURE(rc),
1939 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1940 VERR_INTERNAL_ERROR);
1941 return rc;
1942}
1943
1944
1945/**
1946 * Resumes executing hypervisor code when interrupted by a queue flush or a
1947 * debug event.
1948 *
1949 * @returns VBox status code.
1950 * @param pVM VM handle.
1951 * @param pVCpu VMCPU handle.
1952 */
1953VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1954{
1955 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1956 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1957
1958 /*
1959 * We hide log flushes (outer) and hypervisor interrupts (inner).
1960 */
1961 for (;;)
1962 {
1963 int rc;
1964 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1965 do
1966 {
1967#ifdef NO_SUPCALLR0VMM
1968 rc = VERR_GENERAL_FAILURE;
1969#else
1970 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1971 if (RT_LIKELY(rc == VINF_SUCCESS))
1972 rc = pVCpu->vmm.s.iLastGZRc;
1973#endif
1974 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1975
1976 /*
1977 * Flush the loggers,
1978 */
1979#ifdef LOG_ENABLED
1980 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1981 if ( pLogger
1982 && pLogger->offScratch > 0)
1983 RTLogFlushRC(NULL, pLogger);
1984#endif
1985#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1986 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1987 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1988 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1989#endif
1990 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1991 VMMR3FatalDump(pVM, pVCpu, rc);
1992 if (rc != VINF_VMM_CALL_HOST)
1993 {
1994 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
1995 return rc;
1996 }
1997 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1998 if (RT_FAILURE(rc))
1999 return rc;
2000 }
2001}
2002
2003
2004/**
2005 * Service a call to the ring-3 host code.
2006 *
2007 * @returns VBox status code.
2008 * @param pVM VM handle.
2009 * @param pVCpu VMCPU handle
2010 * @remark Careful with critsects.
2011 */
2012static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2013{
2014 /*
2015 * We must also check for pending critsect exits or else we can deadlock
2016 * when entering other critsects here.
2017 */
2018 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2019 PDMCritSectFF(pVCpu);
2020
2021 switch (pVCpu->vmm.s.enmCallRing3Operation)
2022 {
2023 /*
2024 * Acquire the PDM lock.
2025 */
2026 case VMMCALLRING3_PDM_LOCK:
2027 {
2028 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2029 break;
2030 }
2031
2032 /*
2033 * Flush a PDM queue.
2034 */
2035 case VMMCALLRING3_PDM_QUEUE_FLUSH:
2036 {
2037 PDMR3QueueFlushWorker(pVM, NULL);
2038 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2039 break;
2040 }
2041
2042 /*
2043 * Grow the PGM pool.
2044 */
2045 case VMMCALLRING3_PGM_POOL_GROW:
2046 {
2047 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2048 break;
2049 }
2050
2051 /*
2052 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2053 */
2054 case VMMCALLRING3_PGM_MAP_CHUNK:
2055 {
2056 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2057 break;
2058 }
2059
2060 /*
2061 * Allocates more handy pages.
2062 */
2063 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2064 {
2065 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2066 break;
2067 }
2068
2069 /*
2070 * Acquire the PGM lock.
2071 */
2072 case VMMCALLRING3_PGM_LOCK:
2073 {
2074 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2075 break;
2076 }
2077
2078 /*
2079 * Acquire the MM hypervisor heap lock.
2080 */
2081 case VMMCALLRING3_MMHYPER_LOCK:
2082 {
2083 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2084 break;
2085 }
2086
2087 /*
2088 * Flush REM handler notifications.
2089 */
2090 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2091 {
2092 REMR3ReplayHandlerNotifications(pVM);
2093 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2094 break;
2095 }
2096
2097 /*
2098 * This is a noop. We just take this route to avoid unnecessary
2099 * tests in the loops.
2100 */
2101 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2102 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2103 LogAlways(("*FLUSH*\n"));
2104 break;
2105
2106 /*
2107 * Set the VM error message.
2108 */
2109 case VMMCALLRING3_VM_SET_ERROR:
2110 VMR3SetErrorWorker(pVM);
2111 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2112 break;
2113
2114 /*
2115 * Set the VM runtime error message.
2116 */
2117 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2118 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2119 break;
2120
2121 /*
2122 * Signal a ring 0 hypervisor assertion.
2123 * Cancel the longjmp operation that's in progress.
2124 */
2125 case VMMCALLRING3_VM_R0_ASSERTION:
2126 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2127 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2128#ifdef RT_ARCH_X86
2129 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2130#else
2131 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2132#endif
2133 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2134 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2135 return VERR_VMM_RING0_ASSERTION;
2136
2137 /*
2138 * A forced switch to ring 0 for preemption purposes.
2139 */
2140 case VMMCALLRING3_VM_R0_PREEMPT:
2141 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2142 break;
2143
2144 default:
2145 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2146 return VERR_INTERNAL_ERROR;
2147 }
2148
2149 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2150 return VINF_SUCCESS;
2151}
2152
2153
2154/**
2155 * Displays the Force action Flags.
2156 *
2157 * @param pVM The VM handle.
2158 * @param pHlp The output helpers.
2159 * @param pszArgs The additional arguments (ignored).
2160 */
2161static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2162{
2163 int c;
2164 uint32_t f;
2165#define PRINT_FLAG(prf,flag) do { \
2166 if (f & (prf##flag)) \
2167 { \
2168 static const char *s_psz = #flag; \
2169 if (!(c % 6)) \
2170 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2171 else \
2172 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2173 c++; \
2174 f &= ~(prf##flag); \
2175 } \
2176 } while (0)
2177
2178#define PRINT_GROUP(prf,grp,sfx) do { \
2179 if (f & (prf##grp##sfx)) \
2180 { \
2181 static const char *s_psz = #grp; \
2182 if (!(c % 5)) \
2183 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2184 else \
2185 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2186 c++; \
2187 } \
2188 } while (0)
2189
2190 /*
2191 * The global flags.
2192 */
2193 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2194 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2195
2196 /* show the flag mnemonics */
2197 c = 0;
2198 f = fGlobalForcedActions;
2199 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2200 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2201 PRINT_FLAG(VM_FF_,PDM_DMA);
2202 PRINT_FLAG(VM_FF_,DBGF);
2203 PRINT_FLAG(VM_FF_,REQUEST);
2204 PRINT_FLAG(VM_FF_,TERMINATE);
2205 PRINT_FLAG(VM_FF_,RESET);
2206 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2207 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2208 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2209 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2210 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2211 if (f)
2212 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2213 else
2214 pHlp->pfnPrintf(pHlp, "\n");
2215
2216 /* the groups */
2217 c = 0;
2218 f = fGlobalForcedActions;
2219 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2220 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2221 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2222 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2223 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2224 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2225 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2226 PRINT_GROUP(VM_FF_,ALL_BUT_RAW,_MASK);
2227 if (c)
2228 pHlp->pfnPrintf(pHlp, "\n");
2229
2230 /*
2231 * Per CPU flags.
2232 */
2233 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2234 {
2235 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2236 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2237
2238 /* show the flag mnemonics */
2239 c = 0;
2240 f = fLocalForcedActions;
2241 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2242 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2243 PRINT_FLAG(VMCPU_FF_,TIMER);
2244 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2245 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2246 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2247 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2248 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2249 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2250 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2251 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2252 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2253 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2254 PRINT_FLAG(VMCPU_FF_,TO_R3);
2255 if (f)
2256 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2257 else
2258 pHlp->pfnPrintf(pHlp, "\n");
2259
2260 /* the groups */
2261 c = 0;
2262 f = fLocalForcedActions;
2263 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2264 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2265 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2266 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2267 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2268 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2269 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2270 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2271 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2272 PRINT_GROUP(VMCPU_FF_,ALL_BUT_RAW,_MASK);
2273 if (c)
2274 pHlp->pfnPrintf(pHlp, "\n");
2275 }
2276
2277#undef PRINT_FLAG
2278#undef PRINT_GROUP
2279}
2280
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette