VirtualBox

source: vbox/trunk/src/VBox/VMM/TM.cpp@ 20750

Last change on this file since 20750 was 20750, checked in by vboxsync, 16 years ago

TMTimerSetRelative: Optimized the common case and added some more statistics to make sure I've got the right source for the virtual sync assertions.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 113.7 KB
Line 
1/* $Id: TM.cpp 20750 2009-06-21 21:14:52Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_tm TM - The Time Manager
23 *
24 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
25 * device and drivers.
26 *
27 * @see grp_tm
28 *
29 *
30 * @section sec_tm_clocks Clocks
31 *
32 * There are currently 4 clocks:
33 * - Virtual (guest).
34 * - Synchronous virtual (guest).
35 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
36 * function of the virtual clock.
37 * - Real (host). This is only used for display updates atm.
38 *
39 * The most important clocks are the three first ones and of these the second is
40 * the most interesting.
41 *
42 *
43 * The synchronous virtual clock is tied to the virtual clock except that it
44 * will take into account timer delivery lag caused by host scheduling. It will
45 * normally never advance beyond the head timer, and when lagging too far behind
46 * it will gradually speed up to catch up with the virtual clock. All devices
47 * implementing time sources accessible to and used by the guest is using this
48 * clock (for timers and other things). This ensures consistency between the
49 * time sources.
50 *
51 * The virtual clock is implemented as an offset to a monotonic, high
52 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
53 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
54 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
55 * a fairly high res clock that works in all contexts and on all hosts. The
56 * virtual clock is paused when the VM isn't in the running state.
57 *
58 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
59 * virtual clock, where the frequency defaults to the host cpu frequency (as we
60 * measure it). In this mode it is possible to configure the frequency. Another
61 * (non-default) option is to use the raw unmodified host TSC values. And yet
62 * another, to tie it to time spent executing guest code. All these things are
63 * configurable should non-default behavior be desirable.
64 *
65 * The real clock is a monotonic clock (when available) with relatively low
66 * resolution, though this a bit host specific. Note that we're currently not
67 * servicing timers using the real clock when the VM is not running, this is
68 * simply because it has not been needed yet therefore not implemented.
69 *
70 *
71 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
72 *
73 * Guest time syncing is primarily taken care of by the VMM device. The
74 * principle is very simple, the guest additions periodically asks the VMM
75 * device what the current UTC time is and makes adjustments accordingly.
76 *
77 * A complicating factor is that the synchronous virtual clock might be doing
78 * catchups and the guest perception is currently a little bit behind the world
79 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
80 * at a slightly higher rate. Adjusting the guest clock to the current wall
81 * time in the real world would be a bad idea then because the guest will be
82 * advancing too fast and run ahead of world time (if the catchup works out).
83 * To solve this problem TM provides the VMM device with an UTC time source that
84 * gets adjusted with the current lag, so that when the guest eventually catches
85 * up the lag it will be showing correct real world time.
86 *
87 *
88 * @section sec_tm_timers Timers
89 *
90 * The timers can use any of the TM clocks described in the previous section.
91 * Each clock has its own scheduling facility, or timer queue if you like.
92 * There are a few factors which makes it a bit complex. First, there is the
93 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
94 * is the timer thread that periodically checks whether any timers has expired
95 * without EMT noticing. On the API level, all but the create and save APIs
96 * must be mulithreaded. EMT will always run the timers.
97 *
98 * The design is using a doubly linked list of active timers which is ordered
99 * by expire date. This list is only modified by the EMT thread. Updates to
100 * the list are batched in a singly linked list, which is then processed by the
101 * EMT thread at the first opportunity (immediately, next time EMT modifies a
102 * timer on that clock, or next timer timeout). Both lists are offset based and
103 * all the elements are therefore allocated from the hyper heap.
104 *
105 * For figuring out when there is need to schedule and run timers TM will:
106 * - Poll whenever somebody queries the virtual clock.
107 * - Poll the virtual clocks from the EM and REM loops.
108 * - Poll the virtual clocks from trap exit path.
109 * - Poll the virtual clocks and calculate first timeout from the halt loop.
110 * - Employ a thread which periodically (100Hz) polls all the timer queues.
111 *
112 *
113 * @image html TMTIMER-Statechart-Diagram.gif
114 *
115 * @section sec_tm_timer Logging
116 *
117 * Level 2: Logs a most of the timer state transitions and queue servicing.
118 * Level 3: Logs a few oddments.
119 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
120 *
121 */
122
123/*******************************************************************************
124* Header Files *
125*******************************************************************************/
126#define LOG_GROUP LOG_GROUP_TM
127#include <VBox/tm.h>
128#include <VBox/vmm.h>
129#include <VBox/mm.h>
130#include <VBox/ssm.h>
131#include <VBox/dbgf.h>
132#include <VBox/rem.h>
133#include <VBox/pdm.h>
134#include "TMInternal.h"
135#include <VBox/vm.h>
136
137#include <VBox/param.h>
138#include <VBox/err.h>
139
140#include <VBox/log.h>
141#include <iprt/asm.h>
142#include <iprt/assert.h>
143#include <iprt/thread.h>
144#include <iprt/time.h>
145#include <iprt/timer.h>
146#include <iprt/semaphore.h>
147#include <iprt/string.h>
148#include <iprt/env.h>
149
150
151/*******************************************************************************
152* Defined Constants And Macros *
153*******************************************************************************/
154/** The current saved state version.*/
155#define TM_SAVED_STATE_VERSION 3
156
157
158/*******************************************************************************
159* Internal Functions *
160*******************************************************************************/
161static bool tmR3HasFixedTSC(PVM pVM);
162static uint64_t tmR3CalibrateTSC(PVM pVM);
163static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
164static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
165static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
166static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
167static void tmR3TimerQueueRunVirtualSync(PVM pVM);
168static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent);
169static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
170static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
171static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
172
173
174/**
175 * Initializes the TM.
176 *
177 * @returns VBox status code.
178 * @param pVM The VM to operate on.
179 */
180VMMR3DECL(int) TMR3Init(PVM pVM)
181{
182 LogFlow(("TMR3Init:\n"));
183
184 /*
185 * Assert alignment and sizes.
186 */
187 AssertCompileMemberAlignment(VM, tm.s, 32);
188 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
189 AssertCompileMemberAlignment(TM, EmtLock, 8);
190 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
191
192 /*
193 * Init the structure.
194 */
195 void *pv;
196 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
197 AssertRCReturn(rc, rc);
198 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
199 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
200 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
201
202 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
203 pVM->tm.s.idTimerCpu = pVM->cCPUs - 1; /* The last CPU. */
204 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
205 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
206 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
207 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
208 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
209 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
210 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
211 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
212
213
214 /*
215 * We directly use the GIP to calculate the virtual time. We map the
216 * the GIP into the guest context so we can do this calculation there
217 * as well and save costly world switches.
218 */
219 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
220 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
221 RTHCPHYS HCPhysGIP;
222 rc = SUPGipGetPhys(&HCPhysGIP);
223 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
224
225 RTGCPTR GCPtr;
226 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
227 if (RT_FAILURE(rc))
228 {
229 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
230 return rc;
231 }
232 pVM->tm.s.pvGIPRC = GCPtr;
233 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
234 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
235
236 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
237 if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
238 && g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
239 return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
240 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
241 g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
242 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u\n", g_pSUPGlobalInfoPage->u32Mode,
243 g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC ? "SyncTSC"
244 : g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_ASYNC_TSC ? "AsyncTSC" : "Unknown",
245 g_pSUPGlobalInfoPage->u32UpdateHz));
246
247 /*
248 * Setup the VirtualGetRaw backend.
249 */
250 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
251 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
252 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
253 if (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2)
254 {
255 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
256 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceSync;
257 else
258 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceAsync;
259 }
260 else
261 {
262 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
263 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacySync;
264 else
265 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacyAsync;
266 }
267
268 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
269 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
270 AssertReturn(pVM->tm.s.VirtualGetRawDataR0.pu64Prev, VERR_INTERNAL_ERROR);
271 /* The rest is done in TMR3InitFinalize since it's too early to call PDM. */
272
273 /*
274 * Init the locks.
275 */
276 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.EmtLock, "TM EMT Lock");
277 if (RT_FAILURE(rc))
278 return rc;
279 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, "TM VirtualSync Lock");
280 if (RT_FAILURE(rc))
281 return rc;
282
283 /*
284 * Get our CFGM node, create it if necessary.
285 */
286 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
287 if (!pCfgHandle)
288 {
289 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
290 AssertRCReturn(rc, rc);
291 }
292
293 /*
294 * Determin the TSC configuration and frequency.
295 */
296 /* mode */
297 /** @cfgm{/TM/TSCVirtualized,bool,true}
298 * Use a virtualize TSC, i.e. trap all TSC access. */
299 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
300 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
301 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
302 else if (RT_FAILURE(rc))
303 return VMSetError(pVM, rc, RT_SRC_POS,
304 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
305
306 /* source */
307 /** @cfgm{/TM/UseRealTSC,bool,false}
308 * Use the real TSC as time source for the TSC instead of the synchronous
309 * virtual clock (false, default). */
310 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCUseRealTSC);
311 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
312 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
313 else if (RT_FAILURE(rc))
314 return VMSetError(pVM, rc, RT_SRC_POS,
315 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
316 if (!pVM->tm.s.fTSCUseRealTSC)
317 pVM->tm.s.fTSCVirtualized = true;
318
319 /* TSC reliability */
320 /** @cfgm{/TM/MaybeUseOffsettedHostTSC,bool,detect}
321 * Whether the CPU has a fixed TSC rate and may be used in offsetted mode with
322 * VT-x/AMD-V execution. This is autodetected in a very restrictive way by
323 * default. */
324 rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
325 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
326 {
327 if (!pVM->tm.s.fTSCUseRealTSC)
328 {
329 /* @todo simple case for guest SMP; always emulate RDTSC */
330 if (pVM->cCPUs == 1)
331 pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC(pVM);
332 }
333 else
334 pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
335 }
336
337 /** @cfgm{TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
338 * The number of TSC ticks per second (i.e. the TSC frequency). This will
339 * override TSCUseRealTSC, TSCVirtualized and MaybeUseOffsettedHostTSC.
340 */
341 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
342 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
343 {
344 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
345 if ( !pVM->tm.s.fTSCUseRealTSC
346 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
347 {
348 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
349 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
350 }
351 }
352 else if (RT_FAILURE(rc))
353 return VMSetError(pVM, rc, RT_SRC_POS,
354 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
355 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
356 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
357 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
358 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
359 pVM->tm.s.cTSCTicksPerSecond);
360 else
361 {
362 pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
363 pVM->tm.s.fTSCVirtualized = true;
364 }
365
366 /** @cfgm{TM/TSCTiedToExecution, bool, false}
367 * Whether the TSC should be tied to execution. This will exclude most of the
368 * virtualization overhead, but will by default include the time spent in the
369 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
370 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
371 * be used avoided or used with great care. Note that this will only work right
372 * together with VT-x or AMD-V, and with a single virtual CPU. */
373 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
374 if (RT_FAILURE(rc))
375 return VMSetError(pVM, rc, RT_SRC_POS,
376 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
377 if (pVM->tm.s.fTSCTiedToExecution)
378 {
379 /* tied to execution, override all other settings. */
380 pVM->tm.s.fTSCVirtualized = true;
381 pVM->tm.s.fTSCUseRealTSC = true;
382 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
383 }
384
385 /** @cfgm{TM/TSCNotTiedToHalt, bool, true}
386 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
387 * to make the TSC freeze during HLT. */
388 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
389 if (RT_FAILURE(rc))
390 return VMSetError(pVM, rc, RT_SRC_POS,
391 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
392
393 /* setup and report */
394 if (pVM->tm.s.fTSCVirtualized)
395 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
396 else
397 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
398 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n"
399 "TM: fMaybeUseOffsettedHostTSC=%RTbool TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
400 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC,
401 pVM->tm.s.fMaybeUseOffsettedHostTSC, pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
402
403 /*
404 * Configure the timer synchronous virtual time.
405 */
406 /** @cfgm{TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
407 * Scheduling slack when processing timers. */
408 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
409 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
410 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
411 else if (RT_FAILURE(rc))
412 return VMSetError(pVM, rc, RT_SRC_POS,
413 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
414
415 /** @cfgm{TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
416 * When to stop a catch-up, considering it successful. */
417 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
418 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
419 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
420 else if (RT_FAILURE(rc))
421 return VMSetError(pVM, rc, RT_SRC_POS,
422 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
423
424 /** @cfgm{TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
425 * When to give up a catch-up attempt. */
426 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
427 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
428 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
429 else if (RT_FAILURE(rc))
430 return VMSetError(pVM, rc, RT_SRC_POS,
431 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
432
433
434 /** @cfgm{TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
435 * The catch-up percent for a given period. */
436 /** @cfgm{TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX,
437 * The catch-up period threshold, or if you like, when a period starts. */
438#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
439 do \
440 { \
441 uint64_t u64; \
442 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
443 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
444 u64 = UINT64_C(DefStart); \
445 else if (RT_FAILURE(rc)) \
446 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
447 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
448 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
449 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
450 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
451 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
452 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
453 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
454 else if (RT_FAILURE(rc)) \
455 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
456 } while (0)
457 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
458 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
459 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
460 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
461 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
462 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
463 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
464 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
465 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
466 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
467 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
468 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
469#undef TM_CFG_PERIOD
470
471 /*
472 * Configure real world time (UTC).
473 */
474 /** @cfgm{TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
475 * The UTC offset. This is used to put the guest back or forwards in time. */
476 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
477 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
478 pVM->tm.s.offUTC = 0; /* ns */
479 else if (RT_FAILURE(rc))
480 return VMSetError(pVM, rc, RT_SRC_POS,
481 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
482
483 /*
484 * Setup the warp drive.
485 */
486 /** @cfgm{TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
487 * The warp drive percentage, 100% is normal speed. This is used to speed up
488 * or slow down the virtual clock, which can be useful for fast forwarding
489 * borring periods during tests. */
490 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
491 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
492 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
493 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
494 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
495 else if (RT_FAILURE(rc))
496 return VMSetError(pVM, rc, RT_SRC_POS,
497 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
498 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
499 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
500 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
501 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
502 pVM->tm.s.u32VirtualWarpDrivePercentage);
503 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
504 if (pVM->tm.s.fVirtualWarpDrive)
505 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
506
507 /*
508 * Start the timer (guard against REM not yielding).
509 */
510 /** @cfgm{TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
511 * The watchdog timer interval. */
512 uint32_t u32Millies;
513 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
514 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
515 u32Millies = 10;
516 else if (RT_FAILURE(rc))
517 return VMSetError(pVM, rc, RT_SRC_POS,
518 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
519 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
520 if (RT_FAILURE(rc))
521 {
522 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
523 return rc;
524 }
525 Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
526 pVM->tm.s.u32TimerMillies = u32Millies;
527
528 /*
529 * Register saved state.
530 */
531 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
532 NULL, tmR3Save, NULL,
533 NULL, tmR3Load, NULL);
534 if (RT_FAILURE(rc))
535 return rc;
536
537 /*
538 * Register statistics.
539 */
540 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
541 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
542 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
543 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
544 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
545 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
546 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
547 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
548
549#ifdef VBOX_WITH_STATISTICS
550 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
551 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
552 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
553 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
554 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
555 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
556 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
557 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
558 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
559 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
560
561 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
562 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
563 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
564 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
565 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
566 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
567 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
568 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
569
570 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
571 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
572
573 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
574 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
575 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
576
577 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSetR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
578 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSetRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
579
580 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls");
581 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3.");
582 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC.");
583 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRacyVirtSync, STAMTYPE_COUNTER, "/TM/TimerSetRelative/RacyVirtSync", STAMUNIT_OCCURENCES, "Potentially racy virtual sync timer update.");
584 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
585 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
586 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
587 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
588 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
589 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
590 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
591 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
592 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
593
594 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
595 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
596
597 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
598 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
599 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
600 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
601 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
602 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
603 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
604 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
605 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
606 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
607
608 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
609
610 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
611 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
612 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
613 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
614 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
615 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
616 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
617 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
618 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
619#endif /* VBOX_WITH_STATISTICS */
620
621 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
622 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
623
624#ifdef VBOX_WITH_STATISTICS
625 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
626 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
627 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
628 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
629 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
630 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
631 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
632 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
633 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
634 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
635 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
636 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
637 {
638 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
639 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
640 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
641 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
642 }
643#endif /* VBOX_WITH_STATISTICS */
644
645 /*
646 * Register info handlers.
647 */
648 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
649 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
650 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
651
652 return VINF_SUCCESS;
653}
654
655
656/**
657 * Initializes the per-VCPU TM.
658 *
659 * @returns VBox status code.
660 * @param pVM The VM to operate on.
661 */
662VMMR3DECL(int) TMR3InitCPU(PVM pVM)
663{
664 LogFlow(("TMR3InitCPU\n"));
665 return VINF_SUCCESS;
666}
667
668
669/**
670 * Checks if the host CPU has a fixed TSC frequency.
671 *
672 * @returns true if it has, false if it hasn't.
673 *
674 * @remark This test doesn't bother with very old CPUs that don't do power
675 * management or any other stuff that might influence the TSC rate.
676 * This isn't currently relevant.
677 */
678static bool tmR3HasFixedTSC(PVM pVM)
679{
680 if (ASMHasCpuId())
681 {
682 uint32_t uEAX, uEBX, uECX, uEDX;
683
684 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_AMD)
685 {
686 /*
687 * AuthenticAMD - Check for APM support and that TscInvariant is set.
688 *
689 * This test isn't correct with respect to fixed/non-fixed TSC and
690 * older models, but this isn't relevant since the result is currently
691 * only used for making a descision on AMD-V models.
692 */
693 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
694 if (uEAX >= 0x80000007)
695 {
696 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
697
698 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
699 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
700 && pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* no fixed tsc if the gip timer is in async mode */)
701 return true;
702 }
703 }
704 else if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
705 {
706 /*
707 * GenuineIntel - Check the model number.
708 *
709 * This test is lacking in the same way and for the same reasons
710 * as the AMD test above.
711 */
712 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
713 unsigned uModel = (uEAX >> 4) & 0x0f;
714 unsigned uFamily = (uEAX >> 8) & 0x0f;
715 if (uFamily == 0x0f)
716 uFamily += (uEAX >> 20) & 0xff;
717 if (uFamily >= 0x06)
718 uModel += ((uEAX >> 16) & 0x0f) << 4;
719 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
720 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
721 return true;
722 }
723 }
724 return false;
725}
726
727
728/**
729 * Calibrate the CPU tick.
730 *
731 * @returns Number of ticks per second.
732 */
733static uint64_t tmR3CalibrateTSC(PVM pVM)
734{
735 /*
736 * Use GIP when available present.
737 */
738 uint64_t u64Hz;
739 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
740 if ( pGip
741 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
742 {
743 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
744 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
745 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
746 else
747 {
748 if (tmR3HasFixedTSC(pVM))
749 /* Sleep a bit to get a more reliable CpuHz value. */
750 RTThreadSleep(32);
751 else
752 {
753 /* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
754 const uint64_t u64 = RTTimeMilliTS();
755 while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
756 /* nothing */;
757 }
758
759 pGip = g_pSUPGlobalInfoPage;
760 if ( pGip
761 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
762 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
763 && u64Hz != ~(uint64_t)0)
764 return u64Hz;
765 }
766 }
767
768 /* call this once first to make sure it's initialized. */
769 RTTimeNanoTS();
770
771 /*
772 * Yield the CPU to increase our chances of getting
773 * a correct value.
774 */
775 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
776 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
777 uint64_t au64Samples[5];
778 unsigned i;
779 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
780 {
781 unsigned cMillies;
782 int cTries = 5;
783 uint64_t u64Start = ASMReadTSC();
784 uint64_t u64End;
785 uint64_t StartTS = RTTimeNanoTS();
786 uint64_t EndTS;
787 do
788 {
789 RTThreadSleep(s_auSleep[i]);
790 u64End = ASMReadTSC();
791 EndTS = RTTimeNanoTS();
792 cMillies = (unsigned)((EndTS - StartTS + 500000) / 1000000);
793 } while ( cMillies == 0 /* the sleep may be interrupted... */
794 || (cMillies < 20 && --cTries > 0));
795 uint64_t u64Diff = u64End - u64Start;
796
797 au64Samples[i] = (u64Diff * 1000) / cMillies;
798 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
799 }
800
801 /*
802 * Discard the highest and lowest results and calculate the average.
803 */
804 unsigned iHigh = 0;
805 unsigned iLow = 0;
806 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
807 {
808 if (au64Samples[i] < au64Samples[iLow])
809 iLow = i;
810 if (au64Samples[i] > au64Samples[iHigh])
811 iHigh = i;
812 }
813 au64Samples[iLow] = 0;
814 au64Samples[iHigh] = 0;
815
816 u64Hz = au64Samples[0];
817 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
818 u64Hz += au64Samples[i];
819 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
820
821 return u64Hz;
822}
823
824
825/**
826 * Finalizes the TM initialization.
827 *
828 * @returns VBox status code.
829 * @param pVM The VM to operate on.
830 */
831VMMR3DECL(int) TMR3InitFinalize(PVM pVM)
832{
833 int rc;
834
835 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
836 AssertRCReturn(rc, rc);
837 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
838 AssertRCReturn(rc, rc);
839 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
840 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
841 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
842 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
843 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
844 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
845 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
846 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
847 else
848 AssertFatalFailed();
849 AssertRCReturn(rc, rc);
850
851 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
852 AssertRCReturn(rc, rc);
853 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
854 AssertRCReturn(rc, rc);
855 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
856 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawR0);
857 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
858 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawR0);
859 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
860 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawR0);
861 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
862 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawR0);
863 else
864 AssertFatalFailed();
865 AssertRCReturn(rc, rc);
866
867 return VINF_SUCCESS;
868}
869
870
871/**
872 * Applies relocations to data and code managed by this
873 * component. This function will be called at init and
874 * whenever the VMM need to relocate it self inside the GC.
875 *
876 * @param pVM The VM.
877 * @param offDelta Relocation delta relative to old location.
878 */
879VMMR3DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
880{
881 int rc;
882 LogFlow(("TMR3Relocate\n"));
883
884 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
885 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
886 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
887
888 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
889 AssertFatal(pVM->tm.s.VirtualGetRawDataRC.pu64Prev);
890 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
891 AssertFatalRC(rc);
892 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
893 AssertFatalRC(rc);
894
895 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
896 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
897 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
898 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
899 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
900 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
901 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
902 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
903 else
904 AssertFatalFailed();
905 AssertFatalRC(rc);
906
907 /*
908 * Iterate the timers updating the pVMRC pointers.
909 */
910 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
911 {
912 pTimer->pVMRC = pVM->pVMRC;
913 pTimer->pVMR0 = pVM->pVMR0;
914 }
915}
916
917
918/**
919 * Terminates the TM.
920 *
921 * Termination means cleaning up and freeing all resources,
922 * the VM it self is at this point powered off or suspended.
923 *
924 * @returns VBox status code.
925 * @param pVM The VM to operate on.
926 */
927VMMR3DECL(int) TMR3Term(PVM pVM)
928{
929 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
930 if (pVM->tm.s.pTimer)
931 {
932 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
933 AssertRC(rc);
934 pVM->tm.s.pTimer = NULL;
935 }
936
937 return VINF_SUCCESS;
938}
939
940
941/**
942 * Terminates the per-VCPU TM.
943 *
944 * Termination means cleaning up and freeing all resources,
945 * the VM it self is at this point powered off or suspended.
946 *
947 * @returns VBox status code.
948 * @param pVM The VM to operate on.
949 */
950VMMR3DECL(int) TMR3TermCPU(PVM pVM)
951{
952 return 0;
953}
954
955
956/**
957 * The VM is being reset.
958 *
959 * For the TM component this means that a rescheduling is preformed,
960 * the FF is cleared and but without running the queues. We'll have to
961 * check if this makes sense or not, but it seems like a good idea now....
962 *
963 * @param pVM VM handle.
964 */
965VMMR3DECL(void) TMR3Reset(PVM pVM)
966{
967 LogFlow(("TMR3Reset:\n"));
968 VM_ASSERT_EMT(pVM);
969 tmLock(pVM);
970
971 /*
972 * Abort any pending catch up.
973 * This isn't perfect...
974 */
975 if (pVM->tm.s.fVirtualSyncCatchUp)
976 {
977 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
978 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
979 if (pVM->tm.s.fVirtualSyncCatchUp)
980 {
981 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
982
983 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
984 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
985 Assert(offOld <= offNew);
986 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
987 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
988 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
989 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
990 }
991 }
992
993 /*
994 * Process the queues.
995 */
996 for (int i = 0; i < TMCLOCK_MAX; i++)
997 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
998#ifdef VBOX_STRICT
999 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1000#endif
1001
1002 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1003 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1004 tmUnlock(pVM);
1005}
1006
1007
1008/**
1009 * Resolve a builtin RC symbol.
1010 * Called by PDM when loading or relocating GC modules.
1011 *
1012 * @returns VBox status
1013 * @param pVM VM Handle.
1014 * @param pszSymbol Symbol to resolve.
1015 * @param pRCPtrValue Where to store the symbol value.
1016 * @remark This has to work before TMR3Relocate() is called.
1017 */
1018VMMR3DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1019{
1020 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1021 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1022 //else if (..)
1023 else
1024 return VERR_SYMBOL_NOT_FOUND;
1025 return VINF_SUCCESS;
1026}
1027
1028
1029/**
1030 * Execute state save operation.
1031 *
1032 * @returns VBox status code.
1033 * @param pVM VM Handle.
1034 * @param pSSM SSM operation handle.
1035 */
1036static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1037{
1038 LogFlow(("tmR3Save:\n"));
1039#ifdef VBOX_STRICT
1040 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1041 {
1042 PVMCPU pVCpu = &pVM->aCpus[i];
1043 Assert(!pVCpu->tm.s.fTSCTicking);
1044 }
1045 Assert(!pVM->tm.s.cVirtualTicking);
1046 Assert(!pVM->tm.s.fVirtualSyncTicking);
1047#endif
1048
1049 /*
1050 * Save the virtual clocks.
1051 */
1052 /* the virtual clock. */
1053 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1054 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1055
1056 /* the virtual timer synchronous clock. */
1057 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1058 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1059 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1060 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1061 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1062
1063 /* real time clock */
1064 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1065
1066 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1067 {
1068 PVMCPU pVCpu = &pVM->aCpus[i];
1069
1070 /* the cpu tick clock. */
1071 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1072 }
1073 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1074}
1075
1076
1077/**
1078 * Execute state load operation.
1079 *
1080 * @returns VBox status code.
1081 * @param pVM VM Handle.
1082 * @param pSSM SSM operation handle.
1083 * @param u32Version Data layout version.
1084 */
1085static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1086{
1087 LogFlow(("tmR3Load:\n"));
1088
1089#ifdef VBOX_STRICT
1090 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1091 {
1092 PVMCPU pVCpu = &pVM->aCpus[i];
1093 Assert(!pVCpu->tm.s.fTSCTicking);
1094 }
1095 Assert(!pVM->tm.s.cVirtualTicking);
1096 Assert(!pVM->tm.s.fVirtualSyncTicking);
1097#endif
1098
1099 /*
1100 * Validate version.
1101 */
1102 if (u32Version != TM_SAVED_STATE_VERSION)
1103 {
1104 AssertMsgFailed(("tmR3Load: Invalid version u32Version=%d!\n", u32Version));
1105 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1106 }
1107
1108 /*
1109 * Load the virtual clock.
1110 */
1111 pVM->tm.s.cVirtualTicking = 0;
1112 /* the virtual clock. */
1113 uint64_t u64Hz;
1114 int rc = SSMR3GetU64(pSSM, &u64Hz);
1115 if (RT_FAILURE(rc))
1116 return rc;
1117 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1118 {
1119 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1120 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1121 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1122 }
1123 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1124 pVM->tm.s.u64VirtualOffset = 0;
1125
1126 /* the virtual timer synchronous clock. */
1127 pVM->tm.s.fVirtualSyncTicking = false;
1128 uint64_t u64;
1129 SSMR3GetU64(pSSM, &u64);
1130 pVM->tm.s.u64VirtualSync = u64;
1131 SSMR3GetU64(pSSM, &u64);
1132 pVM->tm.s.offVirtualSync = u64;
1133 SSMR3GetU64(pSSM, &u64);
1134 pVM->tm.s.offVirtualSyncGivenUp = u64;
1135 SSMR3GetU64(pSSM, &u64);
1136 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1137 bool f;
1138 SSMR3GetBool(pSSM, &f);
1139 pVM->tm.s.fVirtualSyncCatchUp = f;
1140
1141 /* the real clock */
1142 rc = SSMR3GetU64(pSSM, &u64Hz);
1143 if (RT_FAILURE(rc))
1144 return rc;
1145 if (u64Hz != TMCLOCK_FREQ_REAL)
1146 {
1147 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1148 u64Hz, TMCLOCK_FREQ_REAL));
1149 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
1150 }
1151
1152 /* the cpu tick clock. */
1153 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1154 {
1155 PVMCPU pVCpu = &pVM->aCpus[i];
1156
1157 pVCpu->tm.s.fTSCTicking = false;
1158 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1159
1160 if (pVM->tm.s.fTSCUseRealTSC)
1161 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1162 }
1163
1164 rc = SSMR3GetU64(pSSM, &u64Hz);
1165 if (RT_FAILURE(rc))
1166 return rc;
1167 if (!pVM->tm.s.fTSCUseRealTSC)
1168 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1169
1170 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
1171 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
1172
1173 /*
1174 * Make sure timers get rescheduled immediately.
1175 */
1176 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1177 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1178
1179 return VINF_SUCCESS;
1180}
1181
1182
1183/**
1184 * Internal TMR3TimerCreate worker.
1185 *
1186 * @returns VBox status code.
1187 * @param pVM The VM handle.
1188 * @param enmClock The timer clock.
1189 * @param pszDesc The timer description.
1190 * @param ppTimer Where to store the timer pointer on success.
1191 */
1192static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1193{
1194 VM_ASSERT_EMT(pVM);
1195
1196 /*
1197 * Allocate the timer.
1198 */
1199 PTMTIMERR3 pTimer = NULL;
1200 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1201 {
1202 pTimer = pVM->tm.s.pFree;
1203 pVM->tm.s.pFree = pTimer->pBigNext;
1204 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1205 }
1206
1207 if (!pTimer)
1208 {
1209 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1210 if (RT_FAILURE(rc))
1211 return rc;
1212 Log3(("TM: Allocated new timer %p\n", pTimer));
1213 }
1214
1215 /*
1216 * Initialize it.
1217 */
1218 pTimer->u64Expire = 0;
1219 pTimer->enmClock = enmClock;
1220 pTimer->pVMR3 = pVM;
1221 pTimer->pVMR0 = pVM->pVMR0;
1222 pTimer->pVMRC = pVM->pVMRC;
1223 pTimer->enmState = TMTIMERSTATE_STOPPED;
1224 pTimer->offScheduleNext = 0;
1225 pTimer->offNext = 0;
1226 pTimer->offPrev = 0;
1227 pTimer->pvUser = NULL;
1228 pTimer->pCritSect = NULL;
1229 pTimer->pszDesc = pszDesc;
1230
1231 /* insert into the list of created timers. */
1232 tmLock(pVM);
1233 pTimer->pBigPrev = NULL;
1234 pTimer->pBigNext = pVM->tm.s.pCreated;
1235 pVM->tm.s.pCreated = pTimer;
1236 if (pTimer->pBigNext)
1237 pTimer->pBigNext->pBigPrev = pTimer;
1238#ifdef VBOX_STRICT
1239 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1240#endif
1241 tmUnlock(pVM);
1242
1243 *ppTimer = pTimer;
1244 return VINF_SUCCESS;
1245}
1246
1247
1248/**
1249 * Creates a device timer.
1250 *
1251 * @returns VBox status.
1252 * @param pVM The VM to create the timer in.
1253 * @param pDevIns Device instance.
1254 * @param enmClock The clock to use on this timer.
1255 * @param pfnCallback Callback function.
1256 * @param pvUser The user argument to the callback.
1257 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1258 * @param pszDesc Pointer to description string which must stay around
1259 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1260 * @param ppTimer Where to store the timer on success.
1261 */
1262VMMR3DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, void *pvUser, uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1263{
1264 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1265
1266 /*
1267 * Allocate and init stuff.
1268 */
1269 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1270 if (RT_SUCCESS(rc))
1271 {
1272 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1273 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1274 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1275 (*ppTimer)->pvUser = pvUser;
1276 if (fFlags & TMTIMER_FLAGS_DEFAULT_CRIT_SECT)
1277 (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1278 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1279 }
1280
1281 return rc;
1282}
1283
1284
1285/**
1286 * Creates a driver timer.
1287 *
1288 * @returns VBox status.
1289 * @param pVM The VM to create the timer in.
1290 * @param pDrvIns Driver instance.
1291 * @param enmClock The clock to use on this timer.
1292 * @param pfnCallback Callback function.
1293 * @param pvUser The user argument to the callback.
1294 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1295 * @param pszDesc Pointer to description string which must stay around
1296 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1297 * @param ppTimer Where to store the timer on success.
1298 */
1299VMMR3DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1300 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1301{
1302 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1303
1304 /*
1305 * Allocate and init stuff.
1306 */
1307 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1308 if (RT_SUCCESS(rc))
1309 {
1310 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1311 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1312 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1313 (*ppTimer)->pvUser = pvUser;
1314 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1315 }
1316
1317 return rc;
1318}
1319
1320
1321/**
1322 * Creates an internal timer.
1323 *
1324 * @returns VBox status.
1325 * @param pVM The VM to create the timer in.
1326 * @param enmClock The clock to use on this timer.
1327 * @param pfnCallback Callback function.
1328 * @param pvUser User argument to be passed to the callback.
1329 * @param pszDesc Pointer to description string which must stay around
1330 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1331 * @param ppTimer Where to store the timer on success.
1332 */
1333VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1334{
1335 /*
1336 * Allocate and init stuff.
1337 */
1338 PTMTIMER pTimer;
1339 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1340 if (RT_SUCCESS(rc))
1341 {
1342 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1343 pTimer->u.Internal.pfnTimer = pfnCallback;
1344 pTimer->pvUser = pvUser;
1345 *ppTimer = pTimer;
1346 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1347 }
1348
1349 return rc;
1350}
1351
1352/**
1353 * Creates an external timer.
1354 *
1355 * @returns Timer handle on success.
1356 * @returns NULL on failure.
1357 * @param pVM The VM to create the timer in.
1358 * @param enmClock The clock to use on this timer.
1359 * @param pfnCallback Callback function.
1360 * @param pvUser User argument.
1361 * @param pszDesc Pointer to description string which must stay around
1362 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1363 */
1364VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1365{
1366 /*
1367 * Allocate and init stuff.
1368 */
1369 PTMTIMERR3 pTimer;
1370 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1371 if (RT_SUCCESS(rc))
1372 {
1373 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1374 pTimer->u.External.pfnTimer = pfnCallback;
1375 pTimer->pvUser = pvUser;
1376 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1377 return pTimer;
1378 }
1379
1380 return NULL;
1381}
1382
1383
1384/**
1385 * Destroy a timer
1386 *
1387 * @returns VBox status.
1388 * @param pTimer Timer handle as returned by one of the create functions.
1389 */
1390VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1391{
1392 /*
1393 * Be extra careful here.
1394 */
1395 if (!pTimer)
1396 return VINF_SUCCESS;
1397 AssertPtr(pTimer);
1398 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1399
1400 PVM pVM = pTimer->CTX_SUFF(pVM);
1401 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1402 bool fActive = false;
1403 bool fPending = false;
1404
1405 AssertMsg( !pTimer->pCritSect
1406 || VMR3GetState(pVM) != VMSTATE_RUNNING
1407 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1408
1409 /*
1410 * The rest of the game happens behind the lock, just
1411 * like create does. All the work is done here.
1412 */
1413 tmLock(pVM);
1414 for (int cRetries = 1000;; cRetries--)
1415 {
1416 /*
1417 * Change to the DESTROY state.
1418 */
1419 TMTIMERSTATE enmState = pTimer->enmState;
1420 TMTIMERSTATE enmNewState = enmState;
1421 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1422 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1423 switch (enmState)
1424 {
1425 case TMTIMERSTATE_STOPPED:
1426 case TMTIMERSTATE_EXPIRED_DELIVER:
1427 break;
1428
1429 case TMTIMERSTATE_ACTIVE:
1430 fActive = true;
1431 break;
1432
1433 case TMTIMERSTATE_PENDING_STOP:
1434 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1435 case TMTIMERSTATE_PENDING_RESCHEDULE:
1436 fActive = true;
1437 fPending = true;
1438 break;
1439
1440 case TMTIMERSTATE_PENDING_SCHEDULE:
1441 fPending = true;
1442 break;
1443
1444 /*
1445 * This shouldn't happen as the caller should make sure there are no races.
1446 */
1447 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1448 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1449 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1450 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1451 tmUnlock(pVM);
1452 if (!RTThreadYield())
1453 RTThreadSleep(1);
1454 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1455 VERR_TM_UNSTABLE_STATE);
1456 tmLock(pVM);
1457 continue;
1458
1459 /*
1460 * Invalid states.
1461 */
1462 case TMTIMERSTATE_FREE:
1463 case TMTIMERSTATE_DESTROY:
1464 tmUnlock(pVM);
1465 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1466
1467 default:
1468 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1469 tmUnlock(pVM);
1470 return VERR_TM_UNKNOWN_STATE;
1471 }
1472
1473 /*
1474 * Try switch to the destroy state.
1475 * This should always succeed as the caller should make sure there are no race.
1476 */
1477 bool fRc;
1478 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1479 if (fRc)
1480 break;
1481 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1482 tmUnlock(pVM);
1483 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1484 VERR_TM_UNSTABLE_STATE);
1485 tmLock(pVM);
1486 }
1487
1488 /*
1489 * Unlink from the active list.
1490 */
1491 if (fActive)
1492 {
1493 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1494 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1495 if (pPrev)
1496 TMTIMER_SET_NEXT(pPrev, pNext);
1497 else
1498 {
1499 TMTIMER_SET_HEAD(pQueue, pNext);
1500 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1501 }
1502 if (pNext)
1503 TMTIMER_SET_PREV(pNext, pPrev);
1504 pTimer->offNext = 0;
1505 pTimer->offPrev = 0;
1506 }
1507
1508 /*
1509 * Unlink from the schedule list by running it.
1510 */
1511 if (fPending)
1512 {
1513 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1514 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1515 Assert(pQueue->offSchedule);
1516 tmTimerQueueSchedule(pVM, pQueue);
1517 }
1518
1519 /*
1520 * Read to move the timer from the created list and onto the free list.
1521 */
1522 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1523
1524 /* unlink from created list */
1525 if (pTimer->pBigPrev)
1526 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1527 else
1528 pVM->tm.s.pCreated = pTimer->pBigNext;
1529 if (pTimer->pBigNext)
1530 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1531 pTimer->pBigNext = 0;
1532 pTimer->pBigPrev = 0;
1533
1534 /* free */
1535 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1536 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1537 pTimer->pBigNext = pVM->tm.s.pFree;
1538 pVM->tm.s.pFree = pTimer;
1539
1540#ifdef VBOX_STRICT
1541 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1542#endif
1543 tmUnlock(pVM);
1544 return VINF_SUCCESS;
1545}
1546
1547
1548/**
1549 * Destroy all timers owned by a device.
1550 *
1551 * @returns VBox status.
1552 * @param pVM VM handle.
1553 * @param pDevIns Device which timers should be destroyed.
1554 */
1555VMMR3DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1556{
1557 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1558 if (!pDevIns)
1559 return VERR_INVALID_PARAMETER;
1560
1561 tmLock(pVM);
1562 PTMTIMER pCur = pVM->tm.s.pCreated;
1563 while (pCur)
1564 {
1565 PTMTIMER pDestroy = pCur;
1566 pCur = pDestroy->pBigNext;
1567 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1568 && pDestroy->u.Dev.pDevIns == pDevIns)
1569 {
1570 int rc = TMR3TimerDestroy(pDestroy);
1571 AssertRC(rc);
1572 }
1573 }
1574 tmUnlock(pVM);
1575
1576 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1577 return VINF_SUCCESS;
1578}
1579
1580
1581/**
1582 * Destroy all timers owned by a driver.
1583 *
1584 * @returns VBox status.
1585 * @param pVM VM handle.
1586 * @param pDrvIns Driver which timers should be destroyed.
1587 */
1588VMMR3DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1589{
1590 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1591 if (!pDrvIns)
1592 return VERR_INVALID_PARAMETER;
1593
1594 tmLock(pVM);
1595 PTMTIMER pCur = pVM->tm.s.pCreated;
1596 while (pCur)
1597 {
1598 PTMTIMER pDestroy = pCur;
1599 pCur = pDestroy->pBigNext;
1600 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1601 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1602 {
1603 int rc = TMR3TimerDestroy(pDestroy);
1604 AssertRC(rc);
1605 }
1606 }
1607 tmUnlock(pVM);
1608
1609 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1610 return VINF_SUCCESS;
1611}
1612
1613
1614/**
1615 * Internal function for getting the clock time.
1616 *
1617 * @returns clock time.
1618 * @param pVM The VM handle.
1619 * @param enmClock The clock.
1620 */
1621DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1622{
1623 switch (enmClock)
1624 {
1625 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1626 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1627 case TMCLOCK_REAL: return TMRealGet(pVM);
1628 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1629 default:
1630 AssertMsgFailed(("enmClock=%d\n", enmClock));
1631 return ~(uint64_t)0;
1632 }
1633}
1634
1635
1636/**
1637 * Checks if the sync queue has one or more expired timers.
1638 *
1639 * @returns true / false.
1640 *
1641 * @param pVM The VM handle.
1642 * @param enmClock The queue.
1643 */
1644DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1645{
1646 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1647 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1648}
1649
1650
1651/**
1652 * Checks for expired timers in all the queues.
1653 *
1654 * @returns true / false.
1655 * @param pVM The VM handle.
1656 */
1657DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1658{
1659 /*
1660 * Combine the time calculation for the first two since we're not on EMT
1661 * TMVirtualSyncGet only permits EMT.
1662 */
1663 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1664 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1665 return true;
1666 u64Now = pVM->tm.s.fVirtualSyncTicking
1667 ? u64Now - pVM->tm.s.offVirtualSync
1668 : pVM->tm.s.u64VirtualSync;
1669 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1670 return true;
1671
1672 /*
1673 * The remaining timers.
1674 */
1675 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1676 return true;
1677 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1678 return true;
1679 return false;
1680}
1681
1682
1683/**
1684 * Schedulation timer callback.
1685 *
1686 * @param pTimer Timer handle.
1687 * @param pvUser VM handle.
1688 * @thread Timer thread.
1689 *
1690 * @remark We cannot do the scheduling and queues running from a timer handler
1691 * since it's not executing in EMT, and even if it was it would be async
1692 * and we wouldn't know the state of the affairs.
1693 * So, we'll just raise the timer FF and force any REM execution to exit.
1694 */
1695static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1696{
1697 PVM pVM = (PVM)pvUser;
1698 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1699
1700 AssertCompile(TMCLOCK_MAX == 4);
1701#ifdef DEBUG_Sander /* very annoying, keep it private. */
1702 if (VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER))
1703 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1704#endif
1705 if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1706 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1707 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1708 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1709 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1710 || tmR3AnyExpiredTimers(pVM)
1711 )
1712 && !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1713 && !pVM->tm.s.fRunningQueues
1714 )
1715 {
1716 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1717 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1718 REMR3NotifyTimerPending(pVM, pVCpuDst);
1719 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo | VMNOTIFYFF_FLAGS_POKE ?*/);
1720 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1721 }
1722}
1723
1724
1725/**
1726 * Schedules and runs any pending timers.
1727 *
1728 * This is normally called from a forced action handler in EMT.
1729 *
1730 * @param pVM The VM to run the timers for.
1731 *
1732 * @thread EMT (actually EMT0, but we fend off the others)
1733 */
1734VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1735{
1736 /*
1737 * Only the dedicated timer EMT should do stuff here.
1738 * (fRunningQueues is only used as an indicator.)
1739 */
1740 Assert(pVM->tm.s.idTimerCpu < pVM->cCPUs);
1741 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1742 if (VMMGetCpu(pVM) != pVCpuDst)
1743 {
1744 Assert(pVM->cCPUs > 1);
1745 return;
1746 }
1747 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1748 Log2(("TMR3TimerQueuesDo:\n"));
1749 Assert(!pVM->tm.s.fRunningQueues);
1750 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
1751 tmLock(pVM);
1752
1753 /*
1754 * Process the queues.
1755 */
1756 AssertCompile(TMCLOCK_MAX == 4);
1757
1758 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
1759 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1760 tmVirtualSyncLock(pVM);
1761 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
1762 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
1763
1764 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
1765 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1766 tmR3TimerQueueRunVirtualSync(pVM);
1767 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
1768 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
1769
1770 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
1771 tmVirtualSyncUnlock(pVM);
1772 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1773
1774 /* TMCLOCK_VIRTUAL */
1775 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1776 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
1777 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1778 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1779 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1780
1781 /* TMCLOCK_TSC */
1782 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
1783
1784 /* TMCLOCK_REAL */
1785 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1786 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
1787 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1788 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1789 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1790
1791#ifdef VBOX_STRICT
1792 /* check that we didn't screwup. */
1793 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1794#endif
1795
1796 /* done */
1797 Log2(("TMR3TimerQueuesDo: returns void\n"));
1798 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
1799 tmUnlock(pVM);
1800 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1801}
1802
1803//RT_C_DECLS_BEGIN
1804//int iomLock(PVM pVM);
1805//void iomUnlock(PVM pVM);
1806//RT_C_DECLS_END
1807
1808
1809/**
1810 * Schedules and runs any pending times in the specified queue.
1811 *
1812 * This is normally called from a forced action handler in EMT.
1813 *
1814 * @param pVM The VM to run the timers for.
1815 * @param pQueue The queue to run.
1816 */
1817static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1818{
1819 VM_ASSERT_EMT(pVM);
1820
1821 /*
1822 * Run timers.
1823 *
1824 * We check the clock once and run all timers which are ACTIVE
1825 * and have an expire time less or equal to the time we read.
1826 *
1827 * N.B. A generic unlink must be applied since other threads
1828 * are allowed to mess with any active timer at any time.
1829 * However, we only allow EMT to handle EXPIRED_PENDING
1830 * timers, thus enabling the timer handler function to
1831 * arm the timer again.
1832 */
1833 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1834 if (!pNext)
1835 return;
1836 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1837 while (pNext && pNext->u64Expire <= u64Now)
1838 {
1839 PTMTIMER pTimer = pNext;
1840 pNext = TMTIMER_GET_NEXT(pTimer);
1841 PPDMCRITSECT pCritSect = pTimer->pCritSect;
1842 if (pCritSect)
1843 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
1844 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1845 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1846 bool fRc;
1847 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
1848 if (fRc)
1849 {
1850 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1851
1852 /* unlink */
1853 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1854 if (pPrev)
1855 TMTIMER_SET_NEXT(pPrev, pNext);
1856 else
1857 {
1858 TMTIMER_SET_HEAD(pQueue, pNext);
1859 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1860 }
1861 if (pNext)
1862 TMTIMER_SET_PREV(pNext, pPrev);
1863 pTimer->offNext = 0;
1864 pTimer->offPrev = 0;
1865
1866 /* fire */
1867 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
1868 switch (pTimer->enmType)
1869 {
1870 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
1871 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
1872 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
1873 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
1874 default:
1875 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1876 break;
1877 }
1878
1879 /* change the state if it wasn't changed already in the handler. */
1880 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
1881 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1882 }
1883 if (pCritSect)
1884 PDMCritSectLeave(pCritSect);
1885 } /* run loop */
1886}
1887
1888
1889/**
1890 * Schedules and runs any pending times in the timer queue for the
1891 * synchronous virtual clock.
1892 *
1893 * This scheduling is a bit different from the other queues as it need
1894 * to implement the special requirements of the timer synchronous virtual
1895 * clock, thus this 2nd queue run funcion.
1896 *
1897 * @param pVM The VM to run the timers for.
1898 *
1899 * @remarks The caller must own both the TM/EMT and the Virtual Sync locks.
1900 */
1901static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1902{
1903 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1904 VM_ASSERT_EMT(pVM);
1905
1906 /*
1907 * Any timers?
1908 */
1909 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1910 if (RT_UNLIKELY(!pNext))
1911 {
1912 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
1913 return;
1914 }
1915 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1916
1917 /*
1918 * Calculate the time frame for which we will dispatch timers.
1919 *
1920 * We use a time frame ranging from the current sync time (which is most likely the
1921 * same as the head timer) and some configurable period (100000ns) up towards the
1922 * current virtual time. This period might also need to be restricted by the catch-up
1923 * rate so frequent calls to this function won't accelerate the time too much, however
1924 * this will be implemented at a later point if neccessary.
1925 *
1926 * Without this frame we would 1) having to run timers much more frequently
1927 * and 2) lag behind at a steady rate.
1928 */
1929 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
1930 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
1931 uint64_t u64Now;
1932 if (!pVM->tm.s.fVirtualSyncTicking)
1933 {
1934 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1935 u64Now = pVM->tm.s.u64VirtualSync;
1936 Assert(u64Now <= pNext->u64Expire);
1937 }
1938 else
1939 {
1940 /* Calc 'now'. */
1941 bool fStopCatchup = false;
1942 bool fUpdateStuff = false;
1943 uint64_t off = pVM->tm.s.offVirtualSync;
1944 if (pVM->tm.s.fVirtualSyncCatchUp)
1945 {
1946 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
1947 if (RT_LIKELY(!(u64Delta >> 32)))
1948 {
1949 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
1950 if (off > u64Sub + offSyncGivenUp)
1951 {
1952 off -= u64Sub;
1953 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
1954 }
1955 else
1956 {
1957 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1958 fStopCatchup = true;
1959 off = offSyncGivenUp;
1960 }
1961 }
1962 }
1963 u64Now = u64VirtualNow - off;
1964
1965 /* Check if stopped by expired timer. */
1966 uint64_t u64Expire = pNext->u64Expire;
1967 if (u64Now >= pNext->u64Expire)
1968 {
1969 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
1970 u64Now = pNext->u64Expire;
1971 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
1972 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
1973 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
1974 }
1975 else if (fUpdateStuff)
1976 {
1977 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
1978 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
1979 if (fStopCatchup)
1980 {
1981 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1982 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
1983 }
1984 }
1985 }
1986
1987 /* calc end of frame. */
1988 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
1989 if (u64Max > u64VirtualNow - offSyncGivenUp)
1990 u64Max = u64VirtualNow - offSyncGivenUp;
1991
1992 /* assert sanity */
1993 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
1994 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
1995 Assert(u64Now <= u64Max);
1996 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
1997
1998 /*
1999 * Process the expired timers moving the clock along as we progress.
2000 */
2001#ifdef VBOX_STRICT
2002 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2003#endif
2004 while (pNext && pNext->u64Expire <= u64Max)
2005 {
2006 PTMTIMER pTimer = pNext;
2007 pNext = TMTIMER_GET_NEXT(pTimer);
2008 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2009 if (pCritSect)
2010 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2011 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2012 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2013 bool fRc;
2014 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2015 if (fRc)
2016 {
2017 /* unlink */
2018 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2019 if (pPrev)
2020 TMTIMER_SET_NEXT(pPrev, pNext);
2021 else
2022 {
2023 TMTIMER_SET_HEAD(pQueue, pNext);
2024 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2025 }
2026 if (pNext)
2027 TMTIMER_SET_PREV(pNext, pPrev);
2028 pTimer->offNext = 0;
2029 pTimer->offPrev = 0;
2030
2031 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
2032#ifdef VBOX_STRICT
2033 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2034 u64Prev = pTimer->u64Expire;
2035#endif
2036 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2037 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2038
2039 /* fire */
2040 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2041 switch (pTimer->enmType)
2042 {
2043 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2044 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2045 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2046 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2047 default:
2048 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2049 break;
2050 }
2051
2052 /* change the state if it wasn't changed already in the handler. */
2053 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2054 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2055 }
2056 if (pCritSect)
2057 PDMCritSectLeave(pCritSect);
2058 } /* run loop */
2059
2060 /*
2061 * Restart the clock if it was stopped to serve any timers,
2062 * and start/adjust catch-up if necessary.
2063 */
2064 if ( !pVM->tm.s.fVirtualSyncTicking
2065 && pVM->tm.s.cVirtualTicking)
2066 {
2067 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2068
2069 /* calc the slack we've handed out. */
2070 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2071 Assert(u64VirtualNow2 >= u64VirtualNow);
2072 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2073 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2074 STAM_STATS({
2075 if (offSlack)
2076 {
2077 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2078 p->cPeriods++;
2079 p->cTicks += offSlack;
2080 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2081 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2082 }
2083 });
2084
2085 /* Let the time run a little bit while we were busy running timers(?). */
2086 uint64_t u64Elapsed;
2087#define MAX_ELAPSED 30000U /* ns */
2088 if (offSlack > MAX_ELAPSED)
2089 u64Elapsed = 0;
2090 else
2091 {
2092 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2093 if (u64Elapsed > MAX_ELAPSED)
2094 u64Elapsed = MAX_ELAPSED;
2095 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2096 }
2097#undef MAX_ELAPSED
2098
2099 /* Calc the current offset. */
2100 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2101 Assert(!(offNew & RT_BIT_64(63)));
2102 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2103 Assert(!(offLag & RT_BIT_64(63)));
2104
2105 /*
2106 * Deal with starting, adjusting and stopping catchup.
2107 */
2108 if (pVM->tm.s.fVirtualSyncCatchUp)
2109 {
2110 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2111 {
2112 /* stop */
2113 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2114 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2115 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2116 }
2117 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2118 {
2119 /* adjust */
2120 unsigned i = 0;
2121 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2122 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2123 i++;
2124 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2125 {
2126 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2127 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2128 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2129 }
2130 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2131 }
2132 else
2133 {
2134 /* give up */
2135 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2136 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2137 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2138 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2139 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2140 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2141 }
2142 }
2143 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2144 {
2145 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2146 {
2147 /* start */
2148 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2149 unsigned i = 0;
2150 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2151 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2152 i++;
2153 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2154 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2155 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2156 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2157 }
2158 else
2159 {
2160 /* don't bother */
2161 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2162 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2163 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2164 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2165 }
2166 }
2167
2168 /*
2169 * Update the offset and restart the clock.
2170 */
2171 Assert(!(offNew & RT_BIT_64(63)));
2172 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2173 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2174 }
2175}
2176
2177
2178/**
2179 * Deals with stopped Virtual Sync clock.
2180 *
2181 * This is called by the forced action flag handling code in EM when it
2182 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2183 * will block on the VirtualSyncLock until the pending timers has been executed
2184 * and the clock restarted.
2185 *
2186 * @param pVM The VM to run the timers for.
2187 * @param pVCpu The virtual CPU we're running at.
2188 *
2189 * @thread EMTs
2190 */
2191VMMR3DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2192{
2193 Log2(("TMR3VirtualSyncFF:\n"));
2194
2195 /*
2196 * The EMT doing the timers is diverted to them.
2197 */
2198 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2199 TMR3TimerQueuesDo(pVM);
2200 /*
2201 * The other EMTs will block on the virtual sync lock and the first owner
2202 * will run the queue and thus restarting the clock.
2203 *
2204 * Note! This is very suboptimal code wrt to resuming execution when there
2205 * are more than two Virtual CPUs, since they will all have to enter
2206 * the critical section one by one. But it's a very simple solution
2207 * which will have to do the job for now.
2208 */
2209 else
2210 {
2211 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2212 tmVirtualSyncLock(pVM);
2213 if (pVM->tm.s.fVirtualSyncTicking)
2214 {
2215 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2216 tmVirtualSyncUnlock(pVM);
2217 Log2(("TMR3VirtualSyncFF: ticking\n"));
2218 }
2219 else
2220 {
2221 tmVirtualSyncUnlock(pVM);
2222
2223 /* try run it. */
2224 tmLock(pVM);
2225 tmVirtualSyncLock(pVM);
2226 if (pVM->tm.s.fVirtualSyncTicking)
2227 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2228 else
2229 {
2230 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2231 Log2(("TMR3VirtualSyncFF: running queue\n"));
2232
2233 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
2234 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
2235 tmR3TimerQueueRunVirtualSync(pVM);
2236 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2237 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2238
2239 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2240 }
2241 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2242 tmVirtualSyncUnlock(pVM);
2243 tmUnlock(pVM);
2244 }
2245 }
2246}
2247
2248
2249/** @name Saved state values
2250 * @{ */
2251#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2252#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2253/** @} */
2254
2255
2256/**
2257 * Saves the state of a timer to a saved state.
2258 *
2259 * @returns VBox status.
2260 * @param pTimer Timer to save.
2261 * @param pSSM Save State Manager handle.
2262 */
2263VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2264{
2265 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2266 switch (pTimer->enmState)
2267 {
2268 case TMTIMERSTATE_STOPPED:
2269 case TMTIMERSTATE_PENDING_STOP:
2270 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2271 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2272
2273 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2274 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2275 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2276 if (!RTThreadYield())
2277 RTThreadSleep(1);
2278 /* fall thru */
2279 case TMTIMERSTATE_ACTIVE:
2280 case TMTIMERSTATE_PENDING_SCHEDULE:
2281 case TMTIMERSTATE_PENDING_RESCHEDULE:
2282 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2283 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2284
2285 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2286 case TMTIMERSTATE_EXPIRED_DELIVER:
2287 case TMTIMERSTATE_DESTROY:
2288 case TMTIMERSTATE_FREE:
2289 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2290 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2291 }
2292
2293 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2294 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2295}
2296
2297
2298/**
2299 * Loads the state of a timer from a saved state.
2300 *
2301 * @returns VBox status.
2302 * @param pTimer Timer to restore.
2303 * @param pSSM Save State Manager handle.
2304 */
2305VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2306{
2307 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2308 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2309
2310 /*
2311 * Load the state and validate it.
2312 */
2313 uint8_t u8State;
2314 int rc = SSMR3GetU8(pSSM, &u8State);
2315 if (RT_FAILURE(rc))
2316 return rc;
2317#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2318 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2319 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2320 u8State--;
2321#endif
2322 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2323 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2324 {
2325 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2326 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2327 }
2328
2329 /* Enter the critical section to make TMTimerSet/Stop happy. */
2330 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2331 if (pCritSect)
2332 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2333
2334 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2335 {
2336 /*
2337 * Load the expire time.
2338 */
2339 uint64_t u64Expire;
2340 rc = SSMR3GetU64(pSSM, &u64Expire);
2341 if (RT_FAILURE(rc))
2342 return rc;
2343
2344 /*
2345 * Set it.
2346 */
2347 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2348 rc = TMTimerSet(pTimer, u64Expire);
2349 }
2350 else
2351 {
2352 /*
2353 * Stop it.
2354 */
2355 Log(("u8State=%d\n", u8State));
2356 rc = TMTimerStop(pTimer);
2357 }
2358
2359 if (pCritSect)
2360 PDMCritSectLeave(pCritSect);
2361
2362 /*
2363 * On failure set SSM status.
2364 */
2365 if (RT_FAILURE(rc))
2366 rc = SSMR3HandleSetStatus(pSSM, rc);
2367 return rc;
2368}
2369
2370
2371/**
2372 * Associates a critical section with a timer.
2373 *
2374 * The critical section will be entered prior to doing the timer call back, thus
2375 * avoiding potential races between the timer thread and other threads trying to
2376 * stop or adjust the timer expiration while it's being delivered. The timer
2377 * thread will leave the critical section when the timer callback returns.
2378 *
2379 * In strict builds, ownership of the critical section will be asserted by
2380 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2381 * runtime).
2382 *
2383 * @retval VINF_SUCCESS on success.
2384 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2385 * (asserted).
2386 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2387 * (asserted).
2388 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2389 * with the timer (asserted).
2390 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2391 *
2392 * @param pTimer The timer handle.
2393 * @param pCritSect The critical section. The caller must make sure this
2394 * is around for the life time of the timer.
2395 *
2396 * @thread Any, but the caller is responsible for making sure the timer is not
2397 * active.
2398 */
2399VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2400{
2401 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2402 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2403 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2404 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2405 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2406 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2407 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2408
2409 pTimer->pCritSect = pCritSect;
2410 return VINF_SUCCESS;
2411}
2412
2413
2414/**
2415 * Get the real world UTC time adjusted for VM lag.
2416 *
2417 * @returns pTime.
2418 * @param pVM The VM instance.
2419 * @param pTime Where to store the time.
2420 */
2421VMMR3DECL(PRTTIMESPEC) TMR3UTCNow(PVM pVM, PRTTIMESPEC pTime)
2422{
2423 RTTimeNow(pTime);
2424 RTTimeSpecSubNano(pTime, ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) - ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp));
2425 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2426 return pTime;
2427}
2428
2429
2430/**
2431 * Pauses all clocks except TMCLOCK_REAL.
2432 *
2433 * @returns VBox status code, all errors are asserted.
2434 * @param pVM The VM handle.
2435 * @param pVCpu The virtual CPU handle.
2436 * @thread EMT corrsponding to the virtual CPU handle.
2437 */
2438VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2439{
2440 VMCPU_ASSERT_EMT(pVCpu);
2441
2442 /*
2443 * The shared virtual clock (includes virtual sync which is tied to it).
2444 */
2445 tmLock(pVM);
2446 int rc = tmVirtualPauseLocked(pVM);
2447 tmUnlock(pVM);
2448 if (RT_FAILURE(rc))
2449 return rc;
2450
2451 /*
2452 * Pause the TSC last since it is normally linked to the virtual
2453 * sync clock, so the above code may actually stop both clock.
2454 */
2455 return tmCpuTickPause(pVM, pVCpu);
2456}
2457
2458
2459/**
2460 * Resumes all clocks except TMCLOCK_REAL.
2461 *
2462 * @returns VBox status code, all errors are asserted.
2463 * @param pVM The VM handle.
2464 * @param pVCpu The virtual CPU handle.
2465 * @thread EMT corrsponding to the virtual CPU handle.
2466 */
2467VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2468{
2469 VMCPU_ASSERT_EMT(pVCpu);
2470 int rc;
2471
2472 /*
2473 * Resume the TSC first since it is normally linked to the virtual sync
2474 * clock, so it may actually not be resumed until we've executed the code
2475 * below.
2476 */
2477 if (!pVM->tm.s.fTSCTiedToExecution)
2478 {
2479 rc = tmCpuTickResume(pVM, pVCpu);
2480 if (RT_FAILURE(rc))
2481 return rc;
2482 }
2483
2484 /*
2485 * The shared virtual clock (includes virtual sync which is tied to it).
2486 */
2487 tmLock(pVM);
2488 rc = tmVirtualResumeLocked(pVM);
2489 tmUnlock(pVM);
2490
2491 return rc;
2492}
2493
2494
2495/**
2496 * Sets the warp drive percent of the virtual time.
2497 *
2498 * @returns VBox status code.
2499 * @param pVM The VM handle.
2500 * @param u32Percent The new percentage. 100 means normal operation.
2501 *
2502 * @todo Move to Ring-3!
2503 */
2504VMMDECL(int) TMR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2505{
2506 PVMREQ pReq;
2507 int rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT,
2508 (PFNRT)tmR3SetWarpDrive, 2, pVM, u32Percent);
2509 if (RT_SUCCESS(rc))
2510 rc = pReq->iStatus;
2511 VMR3ReqFree(pReq);
2512 return rc;
2513}
2514
2515
2516/**
2517 * EMT worker for TMR3SetWarpDrive.
2518 *
2519 * @returns VBox status code.
2520 * @param pVM The VM handle.
2521 * @param u32Percent See TMR3SetWarpDrive().
2522 * @internal
2523 */
2524static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2525{
2526 PVMCPU pVCpu = VMMGetCpu(pVM);
2527
2528 /*
2529 * Validate it.
2530 */
2531 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2532 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2533 VERR_INVALID_PARAMETER);
2534
2535/** @todo This isn't a feature specific to virtual time, move the variables to
2536 * TM level and make it affect TMR3UCTNow as well! */
2537
2538 /*
2539 * If the time is running we'll have to pause it before we can change
2540 * the warp drive settings.
2541 */
2542 tmLock(pVM);
2543 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2544 if (fPaused) /** @todo this isn't really working, but wtf. */
2545 TMR3NotifySuspend(pVM, pVCpu);
2546
2547 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2548 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2549 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2550 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2551
2552 if (fPaused)
2553 TMR3NotifyResume(pVM, pVCpu);
2554 tmUnlock(pVM);
2555 return VINF_SUCCESS;
2556}
2557
2558
2559/**
2560 * Display all timers.
2561 *
2562 * @param pVM VM Handle.
2563 * @param pHlp The info helpers.
2564 * @param pszArgs Arguments, ignored.
2565 */
2566static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2567{
2568 NOREF(pszArgs);
2569 pHlp->pfnPrintf(pHlp,
2570 "Timers (pVM=%p)\n"
2571 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2572 pVM,
2573 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2574 sizeof(int32_t) * 2, "offNext ",
2575 sizeof(int32_t) * 2, "offPrev ",
2576 sizeof(int32_t) * 2, "offSched ",
2577 "Time",
2578 "Expire",
2579 "State");
2580 tmLock(pVM);
2581 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
2582 {
2583 pHlp->pfnPrintf(pHlp,
2584 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2585 pTimer,
2586 pTimer->offNext,
2587 pTimer->offPrev,
2588 pTimer->offScheduleNext,
2589 pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
2590 TMTimerGet(pTimer),
2591 pTimer->u64Expire,
2592 tmTimerState(pTimer->enmState),
2593 pTimer->pszDesc);
2594 }
2595 tmUnlock(pVM);
2596}
2597
2598
2599/**
2600 * Display all active timers.
2601 *
2602 * @param pVM VM Handle.
2603 * @param pHlp The info helpers.
2604 * @param pszArgs Arguments, ignored.
2605 */
2606static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2607{
2608 NOREF(pszArgs);
2609 pHlp->pfnPrintf(pHlp,
2610 "Active Timers (pVM=%p)\n"
2611 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2612 pVM,
2613 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2614 sizeof(int32_t) * 2, "offNext ",
2615 sizeof(int32_t) * 2, "offPrev ",
2616 sizeof(int32_t) * 2, "offSched ",
2617 "Time",
2618 "Expire",
2619 "State");
2620 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
2621 {
2622 tmLock(pVM);
2623 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
2624 pTimer;
2625 pTimer = TMTIMER_GET_NEXT(pTimer))
2626 {
2627 pHlp->pfnPrintf(pHlp,
2628 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2629 pTimer,
2630 pTimer->offNext,
2631 pTimer->offPrev,
2632 pTimer->offScheduleNext,
2633 pTimer->enmClock == TMCLOCK_REAL
2634 ? "Real "
2635 : pTimer->enmClock == TMCLOCK_VIRTUAL
2636 ? "Virt "
2637 : pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
2638 ? "VrSy "
2639 : "TSC ",
2640 TMTimerGet(pTimer),
2641 pTimer->u64Expire,
2642 tmTimerState(pTimer->enmState),
2643 pTimer->pszDesc);
2644 }
2645 tmUnlock(pVM);
2646 }
2647}
2648
2649
2650/**
2651 * Display all clocks.
2652 *
2653 * @param pVM VM Handle.
2654 * @param pHlp The info helpers.
2655 * @param pszArgs Arguments, ignored.
2656 */
2657static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2658{
2659 NOREF(pszArgs);
2660
2661 /*
2662 * Read the times first to avoid more than necessary time variation.
2663 */
2664 const uint64_t u64Virtual = TMVirtualGet(pVM);
2665 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
2666 const uint64_t u64Real = TMRealGet(pVM);
2667
2668 for (unsigned i = 0; i < pVM->cCPUs; i++)
2669 {
2670 PVMCPU pVCpu = &pVM->aCpus[i];
2671 uint64_t u64TSC = TMCpuTickGet(pVCpu);
2672
2673 /*
2674 * TSC
2675 */
2676 pHlp->pfnPrintf(pHlp,
2677 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
2678 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
2679 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused",
2680 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
2681 if (pVM->tm.s.fTSCUseRealTSC)
2682 {
2683 pHlp->pfnPrintf(pHlp, " - real tsc");
2684 if (pVCpu->tm.s.offTSCRawSrc)
2685 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
2686 }
2687 else
2688 pHlp->pfnPrintf(pHlp, " - virtual clock");
2689 pHlp->pfnPrintf(pHlp, "\n");
2690 }
2691
2692 /*
2693 * virtual
2694 */
2695 pHlp->pfnPrintf(pHlp,
2696 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
2697 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
2698 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
2699 if (pVM->tm.s.fVirtualWarpDrive)
2700 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
2701 pHlp->pfnPrintf(pHlp, "\n");
2702
2703 /*
2704 * virtual sync
2705 */
2706 pHlp->pfnPrintf(pHlp,
2707 "VirtSync: %18RU64 (%#016RX64) %s%s",
2708 u64VirtualSync, u64VirtualSync,
2709 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
2710 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
2711 if (pVM->tm.s.offVirtualSync)
2712 {
2713 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
2714 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
2715 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
2716 }
2717 pHlp->pfnPrintf(pHlp, "\n");
2718
2719 /*
2720 * real
2721 */
2722 pHlp->pfnPrintf(pHlp,
2723 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
2724 u64Real, u64Real, TMRealGetFreq(pVM));
2725}
2726
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette