VirtualBox

source: vbox/trunk/src/VBox/VMM/SELM.cpp@ 17106

Last change on this file since 17106 was 17106, checked in by vboxsync, 16 years ago

VMM,REM: Removed the single page limitation on the TSS monitoring and going over the interrupt redirection bitmap monitoring.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 95.6 KB
Line 
1/* $Id: SELM.cpp 17106 2009-02-25 00:35:15Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_selm SELM - The Selector Manager
23 *
24 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
25 * of a few hyper selector for the raw-mode context. In the hardware assisted
26 * virtualization mode its only task is to decode entries in the guest GDT or
27 * LDT once in a while.
28 *
29 * @see grp_selm
30 *
31 *
32 * @section seg_selm_shadowing Shadowing
33 *
34 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
35 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
36 * The idea is to do it in a more on-demand fashion when we get time. There
37 * also a whole bunch of issues with the current synchronization of all three
38 * tables, see notes and todos in the code.
39 *
40 * When the guest makes changes to the GDT we will try update the shadow copy
41 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
42 *
43 * When the guest make LDT changes we'll trigger a full resync of the LDT
44 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
45 *
46 * The TSS shadowing is limited to the fields we need to care about, namely SS0
47 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
48 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
49 * rather than go the SELMR3SyncTSS() route.
50 *
51 * When in raw-mode SELM also injects a few extra GDT selectors which are used
52 * by the raw-mode (hyper) context. These start their life at the high end of
53 * the table and will be relocated when the guest tries to make use of them...
54 * Well, that was that idea at least, only the code isn't quite there yet which
55 * is why we have trouble with guests which actually have a full sized GDT.
56 *
57 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
58 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
59 *
60 */
61
62/*******************************************************************************
63* Header Files *
64*******************************************************************************/
65#define LOG_GROUP LOG_GROUP_SELM
66#include <VBox/selm.h>
67#include <VBox/cpum.h>
68#include <VBox/stam.h>
69#include <VBox/mm.h>
70#include <VBox/ssm.h>
71#include <VBox/pgm.h>
72#include <VBox/trpm.h>
73#include <VBox/dbgf.h>
74#include "SELMInternal.h"
75#include <VBox/vm.h>
76#include <VBox/err.h>
77#include <VBox/param.h>
78
79#include <iprt/assert.h>
80#include <VBox/log.h>
81#include <iprt/asm.h>
82#include <iprt/string.h>
83#include <iprt/thread.h>
84#include <iprt/string.h>
85
86
87/**
88 * Enable or disable tracking of Guest's GDT/LDT/TSS.
89 * @{
90 */
91#define SELM_TRACK_GUEST_GDT_CHANGES
92#define SELM_TRACK_GUEST_LDT_CHANGES
93#define SELM_TRACK_GUEST_TSS_CHANGES
94/** @} */
95
96/**
97 * Enable or disable tracking of Shadow GDT/LDT/TSS.
98 * @{
99 */
100#define SELM_TRACK_SHADOW_GDT_CHANGES
101#define SELM_TRACK_SHADOW_LDT_CHANGES
102#define SELM_TRACK_SHADOW_TSS_CHANGES
103/** @} */
104
105
106/** SELM saved state version. */
107#define SELM_SAVED_STATE_VERSION 5
108
109
110/*******************************************************************************
111* Internal Functions *
112*******************************************************************************/
113static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
114static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
115static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
116static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
117static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
118static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
119static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
120static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
121static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
122static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
123//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
124//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
125
126
127
128/**
129 * Initializes the SELM.
130 *
131 * @returns VBox status code.
132 * @param pVM The VM to operate on.
133 */
134VMMR3DECL(int) SELMR3Init(PVM pVM)
135{
136 LogFlow(("SELMR3Init\n"));
137
138 /*
139 * Assert alignment and sizes.
140 * (The TSS block requires contiguous back.)
141 */
142 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
143 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
144#if 0 /* doesn't work */
145 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
146 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
147#endif
148 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
149 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
150 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
151
152 /*
153 * Init the structure.
154 */
155 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
156 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
157 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
158 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
159 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
160 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
161
162 /*
163 * Allocate GDT table.
164 */
165 int rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
166 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
167 AssertRCReturn(rc, rc);
168
169 /*
170 * Allocate LDT area.
171 */
172 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
173 AssertRCReturn(rc, rc);
174
175 /*
176 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
177 */
178 pVM->selm.s.cbEffGuestGdtLimit = 0;
179 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
180 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
181 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
182
183 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
184 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
185 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
186 pVM->selm.s.GCSelTss = RTSEL_MAX;
187
188 pVM->selm.s.fDisableMonitoring = false;
189 pVM->selm.s.fSyncTSSRing0Stack = false;
190
191 /* The I/O bitmap starts right after the virtual interrupt redirection bitmap. Outside the TSS on purpose; the CPU will not check it
192 * for I/O operations. */
193 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
194 /* bit set to 1 means no redirection */
195 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
196
197 /*
198 * Register the saved state data unit.
199 */
200 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
201 NULL, selmR3Save, NULL,
202 NULL, selmR3Load, selmR3LoadDone);
203 if (RT_FAILURE(rc))
204 return rc;
205
206 /*
207 * Statistics.
208 */
209 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
210 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
211 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
212 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
213 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
214 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
215 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
216 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
217 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
218
219 STAM_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
220 STAM_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
221
222 /*
223 * Default action when entering raw mode for the first time
224 */
225 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
226 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
227 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
228
229 /*
230 * Register info handlers.
231 */
232 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
233 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
234 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
235 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
236 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
237 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
238
239 return rc;
240}
241
242
243/**
244 * Finalizes HMA page attributes.
245 *
246 * @returns VBox status code.
247 * @param pVM The VM handle.
248 */
249VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
250{
251 /** @cfgm{/DoubleFault,bool,false}
252 * Enables catching of double faults in the raw-mode context VMM code. This can
253 * be used when the tripple faults or hangs occure and one suspect an unhandled
254 * double fault. This is not enabled by default because it means making the
255 * hyper selectors writeable for all supervisor code, including the guest's.
256 * The double fault is a task switch and thus requires write access to the GDT
257 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
258 * 8 TSS for the back link.
259 */
260 bool f;
261#if defined(DEBUG_bird)
262 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
263#else
264 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
265#endif
266 AssertLogRelRCReturn(rc, rc);
267 if (f)
268 {
269 PX86DESC paGdt = pVM->selm.s.paGdtR3;
270 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
271 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
272 AssertRC(rc);
273 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
274 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
275 AssertRC(rc);
276 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
277 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
278 AssertRC(rc);
279 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
280 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
281 AssertRC(rc);
282 }
283 return VINF_SUCCESS;
284}
285
286
287/**
288 * Setup the hypervisor GDT selectors in our shadow table
289 *
290 * @param pVM The VM handle.
291 */
292static void selmR3SetupHyperGDTSelectors(PVM pVM)
293{
294 PX86DESC paGdt = pVM->selm.s.paGdtR3;
295
296 /*
297 * Set up global code and data descriptors for use in the guest context.
298 * Both are wide open (base 0, limit 4GB)
299 */
300 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
301 pDesc->Gen.u16LimitLow = 0xffff;
302 pDesc->Gen.u4LimitHigh = 0xf;
303 pDesc->Gen.u16BaseLow = 0;
304 pDesc->Gen.u8BaseHigh1 = 0;
305 pDesc->Gen.u8BaseHigh2 = 0;
306 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
307 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
308 pDesc->Gen.u2Dpl = 0; /* supervisor */
309 pDesc->Gen.u1Present = 1;
310 pDesc->Gen.u1Available = 0;
311 pDesc->Gen.u1Long = 0;
312 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
313 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
314
315 /* data */
316 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
317 pDesc->Gen.u16LimitLow = 0xffff;
318 pDesc->Gen.u4LimitHigh = 0xf;
319 pDesc->Gen.u16BaseLow = 0;
320 pDesc->Gen.u8BaseHigh1 = 0;
321 pDesc->Gen.u8BaseHigh2 = 0;
322 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
323 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
324 pDesc->Gen.u2Dpl = 0; /* supervisor */
325 pDesc->Gen.u1Present = 1;
326 pDesc->Gen.u1Available = 0;
327 pDesc->Gen.u1Long = 0;
328 pDesc->Gen.u1DefBig = 1; /* big */
329 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
330
331 /* 64-bit mode code (& data?) */
332 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
333 pDesc->Gen.u16LimitLow = 0xffff;
334 pDesc->Gen.u4LimitHigh = 0xf;
335 pDesc->Gen.u16BaseLow = 0;
336 pDesc->Gen.u8BaseHigh1 = 0;
337 pDesc->Gen.u8BaseHigh2 = 0;
338 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
339 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
340 pDesc->Gen.u2Dpl = 0; /* supervisor */
341 pDesc->Gen.u1Present = 1;
342 pDesc->Gen.u1Available = 0;
343 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
344 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
345 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
346
347 /*
348 * TSS descriptor
349 */
350 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
351 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
352 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
353 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
354 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
355 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
356 pDesc->Gen.u4LimitHigh = 0;
357 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
358 pDesc->Gen.u1DescType = 0; /* system */
359 pDesc->Gen.u2Dpl = 0; /* supervisor */
360 pDesc->Gen.u1Present = 1;
361 pDesc->Gen.u1Available = 0;
362 pDesc->Gen.u1Long = 0;
363 pDesc->Gen.u1DefBig = 0;
364 pDesc->Gen.u1Granularity = 0; /* byte limit */
365
366 /*
367 * TSS descriptor for trap 08
368 */
369 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
370 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
371 pDesc->Gen.u4LimitHigh = 0;
372 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
373 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
374 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
375 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
376 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
377 pDesc->Gen.u1DescType = 0; /* system */
378 pDesc->Gen.u2Dpl = 0; /* supervisor */
379 pDesc->Gen.u1Present = 1;
380 pDesc->Gen.u1Available = 0;
381 pDesc->Gen.u1Long = 0;
382 pDesc->Gen.u1DefBig = 0;
383 pDesc->Gen.u1Granularity = 0; /* byte limit */
384}
385
386/**
387 * Applies relocations to data and code managed by this
388 * component. This function will be called at init and
389 * whenever the VMM need to relocate it self inside the GC.
390 *
391 * @param pVM The VM.
392 */
393VMMR3DECL(void) SELMR3Relocate(PVM pVM)
394{
395 PX86DESC paGdt = pVM->selm.s.paGdtR3;
396 LogFlow(("SELMR3Relocate\n"));
397
398 /*
399 * Update GDTR and selector.
400 */
401 CPUMSetHyperGDTR(pVM, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
402
403 /** @todo selector relocations should be a seperate operation? */
404 CPUMSetHyperCS(pVM, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
405 CPUMSetHyperDS(pVM, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
406 CPUMSetHyperES(pVM, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
407 CPUMSetHyperSS(pVM, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
408 CPUMSetHyperTR(pVM, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
409
410 selmR3SetupHyperGDTSelectors(pVM);
411
412/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
413/** @todo PGM knows the proper CR3 values these days, not CPUM. */
414 /*
415 * Update the TSSes.
416 */
417 /* Current TSS */
418 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVM);
419 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
420 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVM);
421 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
422 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
423 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
424 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
425
426 /* trap 08 */
427 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM); /* this should give use better survival chances. */
428 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
429 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
430 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVM) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
431 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
432 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
433 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
434 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
435 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
436 pVM->selm.s.TssTrap08.fs = 0;
437 pVM->selm.s.TssTrap08.gs = 0;
438 pVM->selm.s.TssTrap08.selLdt = 0;
439 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
440 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
441 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
442 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
443 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
444 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
445 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
446 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
447 /* TRPM will be updating the eip */
448
449 if (!pVM->selm.s.fDisableMonitoring)
450 {
451 /*
452 * Update shadow GDT/LDT/TSS write access handlers.
453 */
454 int rc;
455#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
456 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
457 {
458 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
459 AssertRC(rc);
460 }
461 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
462 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
463 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
464 0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
465 AssertRC(rc);
466#endif
467#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
468 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
469 {
470 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
471 AssertRC(rc);
472 }
473 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
474 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
475 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
476 0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
477 AssertRC(rc);
478#endif
479
480 /*
481 * Update the GC LDT region handler and address.
482 */
483#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
484 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
485 {
486 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
487 AssertRC(rc);
488 }
489#endif
490 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
491#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
492 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
493 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
494 0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
495 AssertRC(rc);
496#endif
497 }
498}
499
500
501/**
502 * Notification callback which is called whenever there is a chance that a CR3
503 * value might have changed.
504 * This is called by PGM.
505 *
506 * @param pVM The VM handle
507 */
508VMMR3DECL(void) SELMR3PagingModeChanged(PVM pVM)
509{
510 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVM);
511 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM);
512}
513
514
515/**
516 * Terminates the SELM.
517 *
518 * Termination means cleaning up and freeing all resources,
519 * the VM it self is at this point powered off or suspended.
520 *
521 * @returns VBox status code.
522 * @param pVM The VM to operate on.
523 */
524VMMR3DECL(int) SELMR3Term(PVM pVM)
525{
526 return 0;
527}
528
529
530/**
531 * The VM is being reset.
532 *
533 * For the SELM component this means that any GDT/LDT/TSS monitors
534 * needs to be removed.
535 *
536 * @param pVM VM handle.
537 */
538VMMR3DECL(void) SELMR3Reset(PVM pVM)
539{
540 LogFlow(("SELMR3Reset:\n"));
541 VM_ASSERT_EMT(pVM);
542
543 /*
544 * Uninstall guest GDT/LDT/TSS write access handlers.
545 */
546 int rc;
547#ifdef SELM_TRACK_GUEST_GDT_CHANGES
548 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
549 {
550 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
551 AssertRC(rc);
552 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
553 pVM->selm.s.GuestGdtr.cbGdt = 0;
554 }
555 pVM->selm.s.fGDTRangeRegistered = false;
556#endif
557#ifdef SELM_TRACK_GUEST_LDT_CHANGES
558 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
559 {
560 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
561 AssertRC(rc);
562 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
563 }
564#endif
565#ifdef SELM_TRACK_GUEST_TSS_CHANGES
566 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
567 {
568 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
569 AssertRC(rc);
570 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
571 pVM->selm.s.GCSelTss = RTSEL_MAX;
572 }
573#endif
574
575 /*
576 * Re-initialize other members.
577 */
578 pVM->selm.s.cbLdtLimit = 0;
579 pVM->selm.s.offLdtHyper = 0;
580 pVM->selm.s.cbMonitoredGuestTss = 0;
581
582 pVM->selm.s.fSyncTSSRing0Stack = false;
583
584 /*
585 * Default action when entering raw mode for the first time
586 */
587 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
588 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
589 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
590}
591
592/**
593 * Disable GDT/LDT/TSS monitoring and syncing
594 *
595 * @param pVM The VM to operate on.
596 */
597VMMR3DECL(void) SELMR3DisableMonitoring(PVM pVM)
598{
599 /*
600 * Uninstall guest GDT/LDT/TSS write access handlers.
601 */
602 int rc;
603#ifdef SELM_TRACK_GUEST_GDT_CHANGES
604 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
605 {
606 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
607 AssertRC(rc);
608 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
609 pVM->selm.s.GuestGdtr.cbGdt = 0;
610 }
611 pVM->selm.s.fGDTRangeRegistered = false;
612#endif
613#ifdef SELM_TRACK_GUEST_LDT_CHANGES
614 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
615 {
616 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
617 AssertRC(rc);
618 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
619 }
620#endif
621#ifdef SELM_TRACK_GUEST_TSS_CHANGES
622 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
623 {
624 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
625 AssertRC(rc);
626 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
627 pVM->selm.s.GCSelTss = RTSEL_MAX;
628 }
629#endif
630
631 /*
632 * Unregister shadow GDT/LDT/TSS write access handlers.
633 */
634#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
635 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
636 {
637 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
638 AssertRC(rc);
639 pVM->selm.s.paGdtRC = NIL_RTRCPTR;
640 }
641#endif
642#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
643 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
644 {
645 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
646 AssertRC(rc);
647 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
648 }
649#endif
650#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
651 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
652 {
653 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
654 AssertRC(rc);
655 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
656 }
657#endif
658
659 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_TSS);
660 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_GDT);
661 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_LDT);
662
663 pVM->selm.s.fDisableMonitoring = true;
664}
665
666
667/**
668 * Execute state save operation.
669 *
670 * @returns VBox status code.
671 * @param pVM VM Handle.
672 * @param pSSM SSM operation handle.
673 */
674static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
675{
676 LogFlow(("selmR3Save:\n"));
677
678 /*
679 * Save the basic bits - fortunately all the other things can be resynced on load.
680 */
681 PSELM pSelm = &pVM->selm.s;
682
683 SSMR3PutBool(pSSM, pSelm->fDisableMonitoring);
684 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
685 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
686 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
687 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
688 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
689 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
690 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
691}
692
693
694/**
695 * Execute state load operation.
696 *
697 * @returns VBox status code.
698 * @param pVM VM Handle.
699 * @param pSSM SSM operation handle.
700 * @param u32Version Data layout version.
701 */
702static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
703{
704 LogFlow(("selmR3Load:\n"));
705
706 /*
707 * Validate version.
708 */
709 if (u32Version != SELM_SAVED_STATE_VERSION)
710 {
711 AssertMsgFailed(("selmR3Load: Invalid version u32Version=%d!\n", u32Version));
712 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
713 }
714
715 /*
716 * Do a reset.
717 */
718 SELMR3Reset(pVM);
719
720 /* Get the monitoring flag. */
721 SSMR3GetBool(pSSM, &pVM->selm.s.fDisableMonitoring);
722
723 /* Get the TSS state flag. */
724 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
725
726 /*
727 * Get the selectors.
728 */
729 RTSEL SelCS;
730 SSMR3GetSel(pSSM, &SelCS);
731 RTSEL SelDS;
732 SSMR3GetSel(pSSM, &SelDS);
733 RTSEL SelCS64;
734 SSMR3GetSel(pSSM, &SelCS64);
735 RTSEL SelDS64;
736 SSMR3GetSel(pSSM, &SelDS64);
737 RTSEL SelTSS;
738 SSMR3GetSel(pSSM, &SelTSS);
739 RTSEL SelTSSTrap08;
740 SSMR3GetSel(pSSM, &SelTSSTrap08);
741
742 /* Copy the selectors; they will be checked during relocation. */
743 PSELM pSelm = &pVM->selm.s;
744 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
745 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
746 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
747 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
748 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
749
750 return VINF_SUCCESS;
751}
752
753
754/**
755 * Sync the GDT, LDT and TSS after loading the state.
756 *
757 * Just to play save, we set the FFs to force syncing before
758 * executing GC code.
759 *
760 * @returns VBox status code.
761 * @param pVM VM Handle.
762 * @param pSSM SSM operation handle.
763 */
764static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
765{
766 LogFlow(("selmR3LoadDone:\n"));
767
768 /*
769 * Don't do anything if it's a load failure.
770 */
771 int rc = SSMR3HandleGetStatus(pSSM);
772 if (RT_FAILURE(rc))
773 return VINF_SUCCESS;
774
775 /*
776 * Do the syncing if we're in protected mode.
777 */
778 if (PGMGetGuestMode(pVM) != PGMMODE_REAL)
779 {
780 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
781 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
782 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
783 SELMR3UpdateFromCPUM(pVM);
784 }
785
786 /*
787 * Flag everything for resync on next raw mode entry.
788 */
789 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
790 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
791 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
792
793 return VINF_SUCCESS;
794}
795
796
797/**
798 * Updates the Guest GDT & LDT virtualization based on current CPU state.
799 *
800 * @returns VBox status code.
801 * @param pVM The VM to operate on.
802 */
803VMMR3DECL(int) SELMR3UpdateFromCPUM(PVM pVM)
804{
805 int rc = VINF_SUCCESS;
806
807 if (pVM->selm.s.fDisableMonitoring)
808 {
809 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_GDT);
810 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_LDT);
811 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_TSS);
812
813 return VINF_SUCCESS;
814 }
815
816 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
817
818 /*
819 * GDT sync
820 */
821 if (VM_FF_ISSET(pVM, VM_FF_SELM_SYNC_GDT))
822 {
823 /*
824 * Always assume the best
825 */
826 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_GDT);
827
828 /* If the GDT was changed, then make sure the LDT is checked too */
829 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
830 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
831 /* Same goes for the TSS selector */
832 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
833
834 /*
835 * Get the GDTR and check if there is anything to do (there usually is).
836 */
837 VBOXGDTR GDTR;
838 CPUMGetGuestGDTR(pVM, &GDTR);
839 if (GDTR.cbGdt < sizeof(X86DESC))
840 {
841 Log(("No GDT entries...\n"));
842 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
843 return VINF_SUCCESS;
844 }
845
846 /*
847 * Read the Guest GDT.
848 * ASSUMES that the entire GDT is in memory.
849 */
850 RTUINT cbEffLimit = GDTR.cbGdt;
851 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
852 rc = PGMPhysSimpleReadGCPtr(pVM, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
853 if (RT_FAILURE(rc))
854 {
855 /*
856 * Read it page by page.
857 *
858 * Keep track of the last valid page and delay memsets and
859 * adjust cbEffLimit to reflect the effective size. The latter
860 * is something we do in the belief that the guest will probably
861 * never actually commit the last page, thus allowing us to keep
862 * our selectors in the high end of the GDT.
863 */
864 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
865 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
866 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
867 uint8_t *pu8DstInvalid = pu8Dst;
868
869 while (cbLeft)
870 {
871 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
872 cb = RT_MIN(cb, cbLeft);
873 rc = PGMPhysSimpleReadGCPtr(pVM, pu8Dst, GCPtrSrc, cb);
874 if (RT_SUCCESS(rc))
875 {
876 if (pu8DstInvalid != pu8Dst)
877 memset(pu8DstInvalid, 0, pu8Dst - pu8DstInvalid);
878 GCPtrSrc += cb;
879 pu8Dst += cb;
880 pu8DstInvalid = pu8Dst;
881 }
882 else if ( rc == VERR_PAGE_NOT_PRESENT
883 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
884 {
885 GCPtrSrc += cb;
886 pu8Dst += cb;
887 }
888 else
889 {
890 AssertReleaseMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
891 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
892 return VERR_NOT_IMPLEMENTED;
893 }
894 cbLeft -= cb;
895 }
896
897 /* any invalid pages at the end? */
898 if (pu8DstInvalid != pu8Dst)
899 {
900 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
901 /* If any GDTEs was invalidated, zero them. */
902 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
903 memset(pu8DstInvalid + cbEffLimit + 1, 0, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
904 }
905
906 /* keep track of the effective limit. */
907 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
908 {
909 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
910 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
911 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
912 }
913 }
914
915 /*
916 * Check if the Guest GDT intrudes on our GDT entries.
917 */
918 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
919 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
920 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
921 {
922 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
923 PX86DESC pGDTE = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
924 int iGDT = 0;
925
926 Log(("Internal SELM GDT conflict: use non-present entries\n"));
927 STAM_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
928 while (pGDTE > pGDTEStart)
929 {
930 /* We can reuse non-present entries */
931 if (!pGDTE->Gen.u1Present)
932 {
933 aHyperSel[iGDT] = ((uintptr_t)pGDTE - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
934 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
935 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
936 iGDT++;
937 if (iGDT >= SELM_HYPER_SEL_MAX)
938 break;
939 }
940
941 pGDTE--;
942 }
943 if (iGDT != SELM_HYPER_SEL_MAX)
944 {
945 AssertReleaseMsgFailed(("Internal SELM GDT conflict.\n"));
946 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
947 return VERR_NOT_IMPLEMENTED;
948 }
949 }
950 else
951 {
952 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
953 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
954 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
955 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
956 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
957 }
958
959 /*
960 * Work thru the copied GDT entries adjusting them for correct virtualization.
961 */
962 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
963 while (pGDTE < pGDTEEnd)
964 {
965 if (pGDTE->Gen.u1Present)
966 {
967 /*
968 * Code and data selectors are generally 1:1, with the
969 * 'little' adjustment we do for DPL 0 selectors.
970 */
971 if (pGDTE->Gen.u1DescType)
972 {
973 /*
974 * Hack for A-bit against Trap E on read-only GDT.
975 */
976 /** @todo Fix this by loading ds and cs before turning off WP. */
977 pGDTE->Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
978
979 /*
980 * All DPL 0 code and data segments are squeezed into DPL 1.
981 *
982 * We're skipping conforming segments here because those
983 * cannot give us any trouble.
984 */
985 if ( pGDTE->Gen.u2Dpl == 0
986 && (pGDTE->Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
987 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) )
988 pGDTE->Gen.u2Dpl = 1;
989 }
990 else
991 {
992 /*
993 * System type selectors are marked not present.
994 * Recompiler or special handling is required for these.
995 */
996 /** @todo what about interrupt gates and rawr0? */
997 pGDTE->Gen.u1Present = 0;
998 }
999 }
1000
1001 /* Next GDT entry. */
1002 pGDTE++;
1003 }
1004
1005 /*
1006 * Check if our hypervisor selectors were changed.
1007 */
1008 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
1009 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
1010 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
1011 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
1012 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
1013 {
1014 /* Reinitialize our hypervisor GDTs */
1015 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
1016 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
1017 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
1018 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
1019 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
1020
1021 STAM_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
1022
1023 /*
1024 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
1025 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
1026 */
1027 VMR3Relocate(pVM, 0);
1028 }
1029 else if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
1030 /* We overwrote all entries above, so we have to save them again. */
1031 selmR3SetupHyperGDTSelectors(pVM);
1032
1033 /*
1034 * Adjust the cached GDT limit.
1035 * Any GDT entries which have been removed must be cleared.
1036 */
1037 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
1038 {
1039 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
1040 memset(pGDTE, 0, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
1041#ifndef SELM_TRACK_GUEST_GDT_CHANGES
1042 pVM->selm.s.GuestGdtr.cbGdt = GDTR.cbGdt;
1043#endif
1044 }
1045
1046#ifdef SELM_TRACK_GUEST_GDT_CHANGES
1047 /*
1048 * Check if Guest's GDTR is changed.
1049 */
1050 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
1051 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1052 {
1053 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
1054
1055 /*
1056 * [Re]Register write virtual handler for guest's GDT.
1057 */
1058 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
1059 {
1060 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
1061 AssertRC(rc);
1062 }
1063
1064 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1065 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0, "Guest GDT write access handler");
1066 if (RT_FAILURE(rc))
1067 return rc;
1068
1069 /* Update saved Guest GDTR. */
1070 pVM->selm.s.GuestGdtr = GDTR;
1071 pVM->selm.s.fGDTRangeRegistered = true;
1072 }
1073#endif
1074 }
1075
1076 /*
1077 * TSS sync
1078 */
1079 if (VM_FF_ISSET(pVM, VM_FF_SELM_SYNC_TSS))
1080 {
1081 SELMR3SyncTSS(pVM);
1082 }
1083
1084 /*
1085 * LDT sync
1086 */
1087 if (VM_FF_ISSET(pVM, VM_FF_SELM_SYNC_LDT))
1088 {
1089 /*
1090 * Always assume the best
1091 */
1092 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_LDT);
1093
1094 /*
1095 * LDT handling is done similarly to the GDT handling with a shadow
1096 * array. However, since the LDT is expected to be swappable (at least
1097 * some ancient OSes makes it swappable) it must be floating and
1098 * synced on a per-page basis.
1099 *
1100 * Eventually we will change this to be fully on demand. Meaning that
1101 * we will only sync pages containing LDT selectors actually used and
1102 * let the #PF handler lazily sync pages as they are used.
1103 * (This applies to GDT too, when we start making OS/2 fast.)
1104 */
1105
1106 /*
1107 * First, determin the current LDT selector.
1108 */
1109 RTSEL SelLdt = CPUMGetGuestLDTR(pVM);
1110 if ((SelLdt & X86_SEL_MASK) == 0)
1111 {
1112 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1113 CPUMSetHyperLDTR(pVM, 0);
1114#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1115 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1116 {
1117 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1118 AssertRC(rc);
1119 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1120 }
1121#endif
1122 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1123 return VINF_SUCCESS;
1124 }
1125
1126 /*
1127 * Get the LDT selector.
1128 */
1129 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1130 RTGCPTR GCPtrLdt = X86DESC_BASE(*pDesc);
1131 unsigned cbLdt = X86DESC_LIMIT(*pDesc);
1132 if (pDesc->Gen.u1Granularity)
1133 cbLdt = (cbLdt << PAGE_SHIFT) | PAGE_OFFSET_MASK;
1134
1135 /*
1136 * Validate it.
1137 */
1138 if ( !cbLdt
1139 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1140 || pDesc->Gen.u1DescType
1141 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1142 {
1143 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1144
1145 /* cbLdt > 0:
1146 * This is quite impossible, so we do as most people do when faced with
1147 * the impossible, we simply ignore it.
1148 */
1149 CPUMSetHyperLDTR(pVM, 0);
1150#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1151 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1152 {
1153 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1154 AssertRC(rc);
1155 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1156 }
1157#endif
1158 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1159 return VINF_SUCCESS;
1160 }
1161 /** @todo check what intel does about odd limits. */
1162 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1163
1164 /*
1165 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1166 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1167 */
1168 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1169 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1170
1171
1172#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1173 /** @todo Handle only present LDT segments. */
1174 // if (pDesc->Gen.u1Present)
1175 {
1176 /*
1177 * Check if Guest's LDT address/limit is changed.
1178 */
1179 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1180 || cbLdt != pVM->selm.s.cbLdtLimit)
1181 {
1182 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1183 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1184
1185 /*
1186 * [Re]Register write virtual handler for guest's GDT.
1187 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1188 */
1189 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1190 {
1191 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1192 AssertRC(rc);
1193 }
1194#ifdef DEBUG
1195 if (pDesc->Gen.u1Present)
1196 Log(("LDT selector marked not present!!\n"));
1197#endif
1198 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1199 0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
1200 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1201 {
1202 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1203 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1204 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1205 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1206 }
1207 else if (RT_SUCCESS(rc))
1208 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1209 else
1210 {
1211 CPUMSetHyperLDTR(pVM, 0);
1212 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1213 return rc;
1214 }
1215
1216 pVM->selm.s.cbLdtLimit = cbLdt;
1217 }
1218 }
1219#else
1220 pVM->selm.s.cbLdtLimit = cbLdt;
1221#endif
1222
1223 /*
1224 * Calc Shadow LDT base.
1225 */
1226 unsigned off;
1227 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1228 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1229 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1230
1231 /*
1232 * Enable the LDT selector in the shadow GDT.
1233 */
1234 pDesc->Gen.u1Present = 1;
1235 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1236 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1237 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1238 pDesc->Gen.u1Available = 0;
1239 pDesc->Gen.u1Long = 0;
1240 if (cbLdt > 0xffff)
1241 {
1242 cbLdt = 0xffff;
1243 pDesc->Gen.u4LimitHigh = 0;
1244 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1245 }
1246
1247 /*
1248 * Set Hyper LDTR and notify TRPM.
1249 */
1250 CPUMSetHyperLDTR(pVM, SelLdt);
1251
1252 /*
1253 * Loop synchronising the LDT page by page.
1254 */
1255 /** @todo investigate how intel handle various operations on half present cross page entries. */
1256 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1257 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1258
1259 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1260 unsigned cbLeft = cbLdt + 1;
1261 PX86DESC pLDTE = pShadowLDT;
1262 while (cbLeft)
1263 {
1264 /*
1265 * Read a chunk.
1266 */
1267 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1268 if (cbChunk > cbLeft)
1269 cbChunk = cbLeft;
1270 rc = PGMPhysSimpleReadGCPtr(pVM, pShadowLDT, GCPtrLdt, cbChunk);
1271 if (RT_SUCCESS(rc))
1272 {
1273 /*
1274 * Mark page
1275 */
1276 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1277 AssertRC(rc);
1278
1279 /*
1280 * Loop thru the available LDT entries.
1281 * Figure out where to start and end and the potential cross pageness of
1282 * things adds a little complexity. pLDTE is updated there and not in the
1283 * 'next' part of the loop. The pLDTEEnd is inclusive.
1284 */
1285 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1286 if (pLDTE + 1 < pShadowLDT)
1287 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1288 while (pLDTE <= pLDTEEnd)
1289 {
1290 if (pLDTE->Gen.u1Present)
1291 {
1292 /*
1293 * Code and data selectors are generally 1:1, with the
1294 * 'little' adjustment we do for DPL 0 selectors.
1295 */
1296 if (pLDTE->Gen.u1DescType)
1297 {
1298 /*
1299 * Hack for A-bit against Trap E on read-only GDT.
1300 */
1301 /** @todo Fix this by loading ds and cs before turning off WP. */
1302 if (!(pLDTE->Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1303 pLDTE->Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1304
1305 /*
1306 * All DPL 0 code and data segments are squeezed into DPL 1.
1307 *
1308 * We're skipping conforming segments here because those
1309 * cannot give us any trouble.
1310 */
1311 if ( pLDTE->Gen.u2Dpl == 0
1312 && (pLDTE->Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
1313 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) )
1314 pLDTE->Gen.u2Dpl = 1;
1315 }
1316 else
1317 {
1318 /*
1319 * System type selectors are marked not present.
1320 * Recompiler or special handling is required for these.
1321 */
1322 /** @todo what about interrupt gates and rawr0? */
1323 pLDTE->Gen.u1Present = 0;
1324 }
1325 }
1326
1327 /* Next LDT entry. */
1328 pLDTE++;
1329 }
1330 }
1331 else
1332 {
1333 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1334 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1335 AssertRC(rc);
1336 }
1337
1338 /*
1339 * Advance to the next page.
1340 */
1341 cbLeft -= cbChunk;
1342 GCPtrShadowLDT += cbChunk;
1343 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1344 GCPtrLdt += cbChunk;
1345 }
1346 }
1347
1348 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1349 return VINF_SUCCESS;
1350}
1351
1352
1353/**
1354 * \#PF Handler callback for virtual access handler ranges.
1355 *
1356 * Important to realize that a physical page in a range can have aliases, and
1357 * for ALL and WRITE handlers these will also trigger.
1358 *
1359 * @returns VINF_SUCCESS if the handler have carried out the operation.
1360 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1361 * @param pVM VM Handle.
1362 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1363 * @param pvPtr The HC mapping of that address.
1364 * @param pvBuf What the guest is reading/writing.
1365 * @param cbBuf How much it's reading/writing.
1366 * @param enmAccessType The access type.
1367 * @param pvUser User argument.
1368 */
1369static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
1370{
1371 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
1372 Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf));
1373 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
1374
1375 return VINF_PGM_HANDLER_DO_DEFAULT;
1376}
1377
1378
1379/**
1380 * \#PF Handler callback for virtual access handler ranges.
1381 *
1382 * Important to realize that a physical page in a range can have aliases, and
1383 * for ALL and WRITE handlers these will also trigger.
1384 *
1385 * @returns VINF_SUCCESS if the handler have carried out the operation.
1386 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1387 * @param pVM VM Handle.
1388 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1389 * @param pvPtr The HC mapping of that address.
1390 * @param pvBuf What the guest is reading/writing.
1391 * @param cbBuf How much it's reading/writing.
1392 * @param enmAccessType The access type.
1393 * @param pvUser User argument.
1394 */
1395static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
1396{
1397 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
1398 Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf));
1399 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
1400 return VINF_PGM_HANDLER_DO_DEFAULT;
1401}
1402
1403
1404/**
1405 * \#PF Handler callback for virtual access handler ranges.
1406 *
1407 * Important to realize that a physical page in a range can have aliases, and
1408 * for ALL and WRITE handlers these will also trigger.
1409 *
1410 * @returns VINF_SUCCESS if the handler have carried out the operation.
1411 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1412 * @param pVM VM Handle.
1413 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1414 * @param pvPtr The HC mapping of that address.
1415 * @param pvBuf What the guest is reading/writing.
1416 * @param cbBuf How much it's reading/writing.
1417 * @param enmAccessType The access type.
1418 * @param pvUser User argument.
1419 */
1420static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
1421{
1422 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
1423 Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
1424
1425 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
1426
1427 return VINF_PGM_HANDLER_DO_DEFAULT;
1428}
1429
1430
1431/**
1432 * Synchronize the shadowed fields in the TSS.
1433 *
1434 * At present we're shadowing the ring-0 stack selector & pointer, and the
1435 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1436 * REM and this function is called both if REM made any changes to the TSS or
1437 * loaded TR.
1438 *
1439 * @returns VBox status code.
1440 * @param pVM The VM to operate on.
1441 */
1442VMMR3DECL(int) SELMR3SyncTSS(PVM pVM)
1443{
1444 int rc;
1445
1446 if (pVM->selm.s.fDisableMonitoring)
1447 {
1448 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_TSS);
1449 return VINF_SUCCESS;
1450 }
1451
1452 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1453 Assert(VM_FF_ISSET(pVM, VM_FF_SELM_SYNC_TSS));
1454
1455 /*
1456 * Get TR and extract and store the basic info.
1457 *
1458 * Note! The TSS limit is not checked by the LTR code, so we
1459 * have to be a bit careful with it. We make sure cbTss
1460 * won't be zero if TR is valid and if it's NULL we'll
1461 * make sure cbTss is 0.
1462 */
1463 CPUMSELREGHID trHid;
1464 RTSEL SelTss = CPUMGetGuestTR(pVM, &trHid);
1465 RTGCPTR GCPtrTss = trHid.u64Base;
1466 uint32_t cbTss = trHid.u32Limit;
1467 Assert( (SelTss & X86_SEL_MASK)
1468 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1469 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */));
1470 if (SelTss & X86_SEL_MASK)
1471 {
1472 Assert(!(SelTss & X86_SEL_LDT));
1473 Assert(trHid.Attr.n.u1DescType == 0);
1474 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1475 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1476 if (!++cbTss)
1477 cbTss = UINT32_MAX;
1478 }
1479 else
1480 {
1481 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1482 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */));
1483 cbTss = 0; /* the reset case. */
1484 }
1485 pVM->selm.s.cbGuestTss = cbTss;
1486 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1487 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1488
1489 /*
1490 * Figure out the size of what need to monitor.
1491 */
1492 /* We're not interested in any 16-bit TSSes. */
1493 uint32_t cbMonitoredTss = cbTss;
1494 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1495 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1496 cbMonitoredTss = 0;
1497
1498 pVM->selm.s.offGuestIoBitmap = 0;
1499 bool fNoRing1Stack = true;
1500 if (cbMonitoredTss)
1501 {
1502 /*
1503 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1504 * If VME is enabled we also want to keep an eye on the interrupt
1505 * redirection bitmap.
1506 */
1507 VBOXTSS Tss;
1508 uint32_t cr4 = CPUMGetGuestCR4(pVM);
1509 rc = PGMPhysSimpleReadGCPtr(pVM, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1510 if ( !(cr4 & X86_CR4_VME)
1511 || ( VBOX_SUCCESS(rc)
1512 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1513 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1514 )
1515 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1516 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1517 else if (RT_SUCCESS(rc))
1518 {
1519 /*
1520 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1521 * this can be quite a large chunk. We use to skip it earlier and just hope it
1522 * was kind of static...
1523 *
1524 * Update the virtual interrupt redirection bitmap while we're here.
1525 * (It is located in the 32 bytes before TR:offIoBitmap.)
1526 */
1527 cbMonitoredTss = Tss.offIoBitmap;
1528 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1529
1530 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1531 rc = PGMPhysSimpleReadGCPtr(pVM, &pVM->selm.s.Tss.IntRedirBitmap,
1532 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1533 AssertRC(rc);
1534 /** @todo memset the bitmap on failure? */
1535 Log2(("Redirection bitmap:\n"));
1536 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1537 }
1538 else
1539 {
1540 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1541 pVM->selm.s.offGuestIoBitmap = 0;
1542 /** @todo memset the bitmap? */
1543 }
1544
1545 /*
1546 * Update the ring 0 stack selector and base address.
1547 */
1548 if (RT_SUCCESS(rc))
1549 {
1550#ifdef LOG_ENABLED
1551 if (LogIsEnabled())
1552 {
1553 uint32_t ssr0, espr0;
1554 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1555 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1556 {
1557 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1558 rc = PGMGstGetPage(pVM, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1559 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%VGp)\n",
1560 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1561 AssertMsg(ssr0 != Tss.ss0,
1562 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%VGp)\n",
1563 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1564 }
1565 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1566 }
1567#endif /* LOG_ENABLED */
1568 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1569
1570 /* Update our TSS structure for the guest's ring 1 stack */
1571 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1572 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1573 }
1574 }
1575
1576 /*
1577 * Flush the ring-1 stack and the direct syscall dispatching if we
1578 * cannot obtain SS0:ESP0.
1579 */
1580 if (fNoRing1Stack)
1581 {
1582 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1583 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1584
1585 /** @todo handle these dependencies better! */
1586 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1587 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1588 }
1589
1590 /*
1591 * Check for monitor changes and apply them.
1592 */
1593 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1594 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1595 {
1596 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1597 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1598
1599 /* Release the old range first. */
1600 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1601 {
1602 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
1603 AssertRC(rc);
1604 }
1605
1606 /* Register the write handler if TS != 0. */
1607 if (cbMonitoredTss != 0)
1608 {
1609 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1610 0, selmR3GuestTSSWriteHandler,
1611 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1612 if (RT_FAILURE(rc))
1613 {
1614 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1615 return rc;
1616 }
1617
1618 /* Update saved Guest TSS info. */
1619 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1620 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1621 pVM->selm.s.GCSelTss = SelTss;
1622 }
1623 else
1624 {
1625 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1626 pVM->selm.s.cbMonitoredGuestTss = 0;
1627 pVM->selm.s.GCSelTss = 0;
1628 }
1629 }
1630
1631 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_TSS);
1632
1633 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1634 return VINF_SUCCESS;
1635}
1636
1637
1638/**
1639 * Compares the Guest GDT and LDT with the shadow tables.
1640 * This is a VBOX_STRICT only function.
1641 *
1642 * @returns VBox status code.
1643 * @param pVM The VM Handle.
1644 */
1645VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1646{
1647#ifdef VBOX_STRICT
1648 /*
1649 * Get GDTR and check for conflict.
1650 */
1651 VBOXGDTR GDTR;
1652 CPUMGetGuestGDTR(pVM, &GDTR);
1653 if (GDTR.cbGdt == 0)
1654 return VINF_SUCCESS;
1655
1656 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1657 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1658
1659 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1660 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1661
1662 /*
1663 * Loop thru the GDT checking each entry.
1664 */
1665 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1666 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1667 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1668 while (pGDTE < pGDTEEnd)
1669 {
1670 X86DESC GDTEGuest;
1671 int rc = PGMPhysSimpleReadGCPtr(pVM, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1672 if (RT_SUCCESS(rc))
1673 {
1674 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1675 {
1676 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1677 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1678 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1679 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1680 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1681 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1682 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1683 {
1684 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1685 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1686 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1687 }
1688 }
1689 }
1690
1691 /* Advance to the next descriptor. */
1692 GCPtrGDTEGuest += sizeof(X86DESC);
1693 pGDTE++;
1694 }
1695
1696
1697 /*
1698 * LDT?
1699 */
1700 RTSEL SelLdt = CPUMGetGuestLDTR(pVM);
1701 if ((SelLdt & X86_SEL_MASK) == 0)
1702 return VINF_SUCCESS;
1703 if (SelLdt > GDTR.cbGdt)
1704 {
1705 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1706 return VERR_INTERNAL_ERROR;
1707 }
1708 X86DESC LDTDesc;
1709 int rc = PGMPhysSimpleReadGCPtr(pVM, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1710 if (RT_FAILURE(rc))
1711 {
1712 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1713 return rc;
1714 }
1715 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(LDTDesc);
1716 unsigned cbLdt = X86DESC_LIMIT(LDTDesc);
1717 if (LDTDesc.Gen.u1Granularity)
1718 cbLdt = (cbLdt << PAGE_SHIFT) | PAGE_OFFSET_MASK;
1719
1720 /*
1721 * Validate it.
1722 */
1723 if (!cbLdt)
1724 return VINF_SUCCESS;
1725 /** @todo check what intel does about odd limits. */
1726 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1727 if ( LDTDesc.Gen.u1DescType
1728 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1729 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1730 {
1731 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1732 return VERR_INTERNAL_ERROR;
1733 }
1734
1735 /*
1736 * Loop thru the LDT checking each entry.
1737 */
1738 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1739 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1740 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1741 while (pLDTE < pLDTEEnd)
1742 {
1743 X86DESC LDTEGuest;
1744 int rc = PGMPhysSimpleReadGCPtr(pVM, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1745 if (RT_SUCCESS(rc))
1746 {
1747 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1748 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1749 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1750 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1751 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1752 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1753 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1754 {
1755 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1756 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1757 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1758 }
1759 }
1760
1761 /* Advance to the next descriptor. */
1762 GCPtrLDTEGuest += sizeof(X86DESC);
1763 pLDTE++;
1764 }
1765
1766#else /* !VBOX_STRICT */
1767 NOREF(pVM);
1768#endif /* !VBOX_STRICT */
1769
1770 return VINF_SUCCESS;
1771}
1772
1773
1774/**
1775 * Validates the RawR0 TSS values against the one in the Guest TSS.
1776 *
1777 * @returns true if it matches.
1778 * @returns false and assertions on mismatch..
1779 * @param pVM VM Handle.
1780 */
1781VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1782{
1783#ifdef VBOX_STRICT
1784 if (VM_FF_ISSET(pVM, VM_FF_SELM_SYNC_TSS))
1785 return true;
1786
1787 /*
1788 * Get TR and extract the basic info.
1789 */
1790 CPUMSELREGHID trHid;
1791 RTSEL SelTss = CPUMGetGuestTR(pVM, &trHid);
1792 RTGCPTR GCPtrTss = trHid.u64Base;
1793 uint32_t cbTss = trHid.u32Limit;
1794 Assert( (SelTss & X86_SEL_MASK)
1795 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1796 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */));
1797 if (SelTss & X86_SEL_MASK)
1798 {
1799 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1800 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1801 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1802 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1803 false);
1804 if (!++cbTss)
1805 cbTss = UINT32_MAX;
1806 }
1807 else
1808 {
1809 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1810 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */),
1811 false);
1812 cbTss = 0; /* the reset case. */
1813 }
1814 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
1815 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1816 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
1817 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
1818 false);
1819 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
1820 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
1821 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
1822 false);
1823 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
1824 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
1825 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
1826 false);
1827
1828
1829 /*
1830 * Figure out the size of what need to monitor.
1831 */
1832 bool fNoRing1Stack = true;
1833 /* We're not interested in any 16-bit TSSes. */
1834 uint32_t cbMonitoredTss = cbTss;
1835 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1836 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1837 cbMonitoredTss = 0;
1838 if (cbMonitoredTss)
1839 {
1840 VBOXTSS Tss;
1841 uint32_t cr4 = CPUMGetGuestCR4(pVM);
1842 int rc = PGMPhysSimpleReadGCPtr(pVM, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1843 AssertReturn( rc == VINF_SUCCESS
1844 /* Happends early in XP boot during page table switching. */
1845 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
1846 && !(CPUMGetGuestEFlags(pVM) & X86_EFL_IF)),
1847 false);
1848 if ( !(cr4 & X86_CR4_VME)
1849 || ( VBOX_SUCCESS(rc)
1850 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1851 && Tss.offIoBitmap > cbTss)
1852 )
1853 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1854 else if (RT_SUCCESS(rc))
1855 {
1856 cbMonitoredTss = Tss.offIoBitmap;
1857 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
1858 ("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
1859 false);
1860
1861 /* check the bitmap */
1862 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1863 rc = PGMPhysSimpleReadGCPtr(pVM, &Tss.IntRedirBitmap,
1864 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1865 AssertRCReturn(rc, false);
1866 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
1867 ("offIoBitmap=%#x cbTss=%#x\n"
1868 " Guest: %.32Rhxs\n"
1869 "Shadow: %.32Rhxs\n",
1870 Tss.offIoBitmap, cbTss,
1871 &Tss.IntRedirBitmap[0],
1872 &pVM->selm.s.Tss.IntRedirBitmap[0]),
1873 false);
1874 }
1875 else
1876 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1877
1878 /*
1879 * Check SS0 and ESP0.
1880 */
1881 if ( !pVM->selm.s.fSyncTSSRing0Stack
1882 && RT_SUCCESS(rc))
1883 {
1884 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
1885 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
1886 {
1887 RTGCPHYS GCPhys;
1888 rc = PGMGstGetPage(pVM, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1889 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
1890 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
1891 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
1892 return false;
1893 }
1894 }
1895 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1896 }
1897 else
1898 {
1899 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
1900 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
1901 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1902 }
1903
1904
1905
1906 return true;
1907
1908#else /* !VBOX_STRICT */
1909 NOREF(pVM);
1910 return true;
1911#endif /* !VBOX_STRICT */
1912}
1913
1914
1915/**
1916 * Returns flat address and limit of LDT by LDT selector from guest GDTR.
1917 *
1918 * Fully validate selector.
1919 *
1920 * @returns VBox status.
1921 * @param pVM VM Handle.
1922 * @param SelLdt LDT selector.
1923 * @param ppvLdt Where to store the flat address of LDT.
1924 * @param pcbLimit Where to store LDT limit.
1925 */
1926VMMDECL(int) SELMGetLDTFromSel(PVM pVM, RTSEL SelLdt, PRTGCPTR ppvLdt, unsigned *pcbLimit)
1927{
1928 /* Get guest GDTR. */
1929 VBOXGDTR GDTR;
1930 CPUMGetGuestGDTR(pVM, &GDTR);
1931
1932 /* Check selector TI and GDT limit. */
1933 if ( SelLdt & X86_SEL_LDT
1934 || (SelLdt > GDTR.cbGdt))
1935 return VERR_INVALID_SELECTOR;
1936
1937 /* Read descriptor from GC. */
1938 X86DESC Desc;
1939 int rc = PGMPhysSimpleReadGCPtr(pVM, (void *)&Desc, (RTGCPTR)(GDTR.pGdt + (SelLdt & X86_SEL_MASK)), sizeof(Desc));
1940 if (RT_FAILURE(rc))
1941 {
1942 /* fatal */
1943 AssertMsgFailed(("Can't read LDT descriptor for selector=%04X\n", SelLdt));
1944 return VERR_SELECTOR_NOT_PRESENT;
1945 }
1946
1947 /* Check if LDT descriptor is not present. */
1948 if (Desc.Gen.u1Present == 0)
1949 return VERR_SELECTOR_NOT_PRESENT;
1950
1951 /* Check LDT descriptor type. */
1952 if ( Desc.Gen.u1DescType == 1
1953 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1954 return VERR_INVALID_SELECTOR;
1955
1956 /* LDT descriptor is ok. */
1957 if (ppvLdt)
1958 {
1959 *ppvLdt = (RTGCPTR)X86DESC_BASE(Desc);
1960 *pcbLimit = X86DESC_LIMIT(Desc);
1961 }
1962 return VINF_SUCCESS;
1963}
1964
1965
1966/**
1967 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
1968 *
1969 * See SELMR3GetSelectorInfo for details.
1970 *
1971 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
1972 *
1973 * @param pVM VM handle.
1974 * @param Sel The selector to get info about.
1975 * @param pSelInfo Where to store the information.
1976 */
1977static int selmR3GetSelectorInfo64(PVM pVM, RTSEL Sel, PSELMSELINFO pSelInfo)
1978{
1979 pSelInfo->fHyper = false;
1980
1981 /*
1982 * Read it from the guest descriptor table.
1983 */
1984 X86DESC64 Desc;
1985 VBOXGDTR Gdtr;
1986 RTGCPTR GCPtrDesc;
1987 CPUMGetGuestGDTR(pVM, &Gdtr);
1988 if (!(Sel & X86_SEL_LDT))
1989 {
1990 /* GDT */
1991 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
1992 return VERR_INVALID_SELECTOR;
1993 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
1994 }
1995 else
1996 {
1997 /*
1998 * LDT - must locate the LDT first...
1999 */
2000 RTSEL SelLdt = CPUMGetGuestLDTR(pVM);
2001 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */
2002 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2003 return VERR_INVALID_SELECTOR;
2004 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2005 int rc = PGMPhysSimpleReadGCPtr(pVM, &Desc, GCPtrDesc, sizeof(Desc));
2006 if (RT_FAILURE(rc))
2007 return rc;
2008
2009 /* validate the LDT descriptor. */
2010 if (Desc.Gen.u1Present == 0)
2011 return VERR_SELECTOR_NOT_PRESENT;
2012 if ( Desc.Gen.u1DescType == 1
2013 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
2014 return VERR_INVALID_SELECTOR;
2015
2016 unsigned cbLimit = X86DESC_LIMIT(Desc);
2017 if (Desc.Gen.u1Granularity)
2018 cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2019 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2020 return VERR_INVALID_SELECTOR;
2021
2022 /* calc the descriptor location. */
2023 GCPtrDesc = X86DESC64_BASE(Desc);
2024 GCPtrDesc += (Sel & X86_SEL_MASK);
2025 }
2026
2027 /* read the descriptor. */
2028 int rc = PGMPhysSimpleReadGCPtr(pVM, &Desc, GCPtrDesc, sizeof(Desc));
2029 if (RT_FAILURE(rc))
2030 return rc;
2031
2032 /*
2033 * Extract the base and limit
2034 */
2035 pSelInfo->Sel = Sel;
2036 pSelInfo->Raw64 = Desc;
2037 pSelInfo->cbLimit = X86DESC_LIMIT(Desc);
2038 if (Desc.Gen.u1Granularity)
2039 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2040 pSelInfo->GCPtrBase = X86DESC64_BASE(Desc);
2041 pSelInfo->fRealMode = false;
2042
2043 return VINF_SUCCESS;
2044}
2045
2046
2047/**
2048 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2049 *
2050 * See SELMR3GetSelectorInfo for details.
2051 *
2052 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2053 *
2054 * @param pVM VM handle.
2055 * @param Sel The selector to get info about.
2056 * @param pSelInfo Where to store the information.
2057 */
2058static int selmR3GetSelectorInfo32(PVM pVM, RTSEL Sel, PSELMSELINFO pSelInfo)
2059{
2060 /*
2061 * Read the descriptor entry
2062 */
2063 X86DESC Desc;
2064 if ( !(Sel & X86_SEL_LDT)
2065 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2066 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2067 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2068 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2069 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK))
2070 )
2071 {
2072 /*
2073 * Hypervisor descriptor.
2074 */
2075 pSelInfo->fHyper = true;
2076 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2077 }
2078 else if (CPUMIsGuestInProtectedMode(pVM))
2079 {
2080 /*
2081 * Read it from the guest descriptor table.
2082 */
2083 pSelInfo->fHyper = false;
2084
2085 VBOXGDTR Gdtr;
2086 RTGCPTR GCPtrDesc;
2087 CPUMGetGuestGDTR(pVM, &Gdtr);
2088 if (!(Sel & X86_SEL_LDT))
2089 {
2090 /* GDT */
2091 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2092 return VERR_INVALID_SELECTOR;
2093 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2094 }
2095 else
2096 {
2097 /*
2098 * LDT - must locate the LDT first...
2099 */
2100 RTSEL SelLdt = CPUMGetGuestLDTR(pVM);
2101 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */
2102 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2103 return VERR_INVALID_SELECTOR;
2104 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2105 int rc = PGMPhysSimpleReadGCPtr(pVM, &Desc, GCPtrDesc, sizeof(Desc));
2106 if (RT_FAILURE(rc))
2107 return rc;
2108
2109 /* validate the LDT descriptor. */
2110 if (Desc.Gen.u1Present == 0)
2111 return VERR_SELECTOR_NOT_PRESENT;
2112 if ( Desc.Gen.u1DescType == 1
2113 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
2114 return VERR_INVALID_SELECTOR;
2115
2116 unsigned cbLimit = X86DESC_LIMIT(Desc);
2117 if (Desc.Gen.u1Granularity)
2118 cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2119 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2120 return VERR_INVALID_SELECTOR;
2121
2122 /* calc the descriptor location. */
2123 GCPtrDesc = X86DESC_BASE(Desc);
2124 GCPtrDesc += (Sel & X86_SEL_MASK);
2125 }
2126
2127 /* read the descriptor. */
2128 int rc = PGMPhysSimpleReadGCPtr(pVM, &Desc, GCPtrDesc, sizeof(Desc));
2129 if (RT_FAILURE(rc))
2130 return rc;
2131 }
2132 else
2133 {
2134 /*
2135 * We're in real mode.
2136 */
2137 pSelInfo->Sel = Sel;
2138 pSelInfo->GCPtrBase = Sel << 4;
2139 pSelInfo->cbLimit = 0xffff;
2140 pSelInfo->fHyper = false;
2141 pSelInfo->fRealMode = true;
2142 memset(&pSelInfo->Raw, 0, sizeof(pSelInfo->Raw));
2143 return VINF_SUCCESS;
2144 }
2145
2146 /*
2147 * Extract the base and limit
2148 */
2149 pSelInfo->Sel = Sel;
2150 pSelInfo->Raw = Desc;
2151 pSelInfo->cbLimit = X86DESC_LIMIT(Desc);
2152 if (Desc.Gen.u1Granularity)
2153 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2154 pSelInfo->GCPtrBase = X86DESC_BASE(Desc);
2155 pSelInfo->fRealMode = false;
2156
2157 return VINF_SUCCESS;
2158}
2159
2160
2161/**
2162 * Gets information about a selector.
2163 * Intended for the debugger mostly and will prefer the guest
2164 * descriptor tables over the shadow ones.
2165 *
2166 * @returns VINF_SUCCESS on success.
2167 * @returns VERR_INVALID_SELECTOR if the selector isn't fully inside the descriptor table.
2168 * @returns VERR_SELECTOR_NOT_PRESENT if the selector wasn't present.
2169 * @returns VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the pagetable or page
2170 * backing the selector table wasn't present.
2171 * @returns Other VBox status code on other errors.
2172 *
2173 * @param pVM VM handle.
2174 * @param Sel The selector to get info about.
2175 * @param pSelInfo Where to store the information.
2176 */
2177VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, RTSEL Sel, PSELMSELINFO pSelInfo)
2178{
2179 AssertPtr(pSelInfo);
2180 if (CPUMIsGuestInLongMode(pVM))
2181 return selmR3GetSelectorInfo64(pVM, Sel, pSelInfo);
2182 return selmR3GetSelectorInfo32(pVM, Sel, pSelInfo);
2183}
2184
2185
2186/**
2187 * Gets information about a selector from the shadow tables.
2188 *
2189 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but requires
2190 * that the caller ensures that the shadow tables are up to date.
2191 *
2192 * @returns VINF_SUCCESS on success.
2193 * @returns VERR_INVALID_SELECTOR if the selector isn't fully inside the descriptor table.
2194 * @returns VERR_SELECTOR_NOT_PRESENT if the selector wasn't present.
2195 * @returns VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the pagetable or page
2196 * backing the selector table wasn't present.
2197 * @returns Other VBox status code on other errors.
2198 *
2199 * @param pVM VM handle.
2200 * @param Sel The selector to get info about.
2201 * @param pSelInfo Where to store the information.
2202 */
2203VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PSELMSELINFO pSelInfo)
2204{
2205 Assert(pSelInfo);
2206
2207 /*
2208 * Read the descriptor entry
2209 */
2210 X86DESC Desc;
2211 if (!(Sel & X86_SEL_LDT))
2212 {
2213 /*
2214 * Global descriptor.
2215 */
2216 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2217 pSelInfo->fHyper = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2218 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2219 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2220 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2221 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK);
2222 /** @todo check that the GDT offset is valid. */
2223 }
2224 else
2225 {
2226 /*
2227 * Local Descriptor.
2228 */
2229 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2230 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2231 /** @todo check if the LDT page is actually available. */
2232 /** @todo check that the LDT offset is valid. */
2233 pSelInfo->fHyper = false;
2234 }
2235
2236 /*
2237 * Extract the base and limit
2238 */
2239 pSelInfo->Sel = Sel;
2240 pSelInfo->Raw = Desc;
2241 pSelInfo->cbLimit = X86DESC_LIMIT(Desc);
2242 if (Desc.Gen.u1Granularity)
2243 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2244 pSelInfo->GCPtrBase = X86DESC_BASE(Desc);
2245 pSelInfo->fRealMode = false;
2246
2247 return VINF_SUCCESS;
2248}
2249
2250
2251/**
2252 * Formats a descriptor.
2253 *
2254 * @param Desc Descriptor to format.
2255 * @param Sel Selector number.
2256 * @param pszOutput Output buffer.
2257 * @param cchOutput Size of output buffer.
2258 */
2259static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2260{
2261 /*
2262 * Make variable description string.
2263 */
2264 static struct
2265 {
2266 unsigned cch;
2267 const char *psz;
2268 } const aTypes[32] =
2269 {
2270#define STRENTRY(str) { sizeof(str) - 1, str }
2271 /* system */
2272 STRENTRY("Reserved0 "), /* 0x00 */
2273 STRENTRY("TSS16Avail "), /* 0x01 */
2274 STRENTRY("LDT "), /* 0x02 */
2275 STRENTRY("TSS16Busy "), /* 0x03 */
2276 STRENTRY("Call16 "), /* 0x04 */
2277 STRENTRY("Task "), /* 0x05 */
2278 STRENTRY("Int16 "), /* 0x06 */
2279 STRENTRY("Trap16 "), /* 0x07 */
2280 STRENTRY("Reserved8 "), /* 0x08 */
2281 STRENTRY("TSS32Avail "), /* 0x09 */
2282 STRENTRY("ReservedA "), /* 0x0a */
2283 STRENTRY("TSS32Busy "), /* 0x0b */
2284 STRENTRY("Call32 "), /* 0x0c */
2285 STRENTRY("ReservedD "), /* 0x0d */
2286 STRENTRY("Int32 "), /* 0x0e */
2287 STRENTRY("Trap32 "), /* 0x0f */
2288 /* non system */
2289 STRENTRY("DataRO "), /* 0x10 */
2290 STRENTRY("DataRO Accessed "), /* 0x11 */
2291 STRENTRY("DataRW "), /* 0x12 */
2292 STRENTRY("DataRW Accessed "), /* 0x13 */
2293 STRENTRY("DataDownRO "), /* 0x14 */
2294 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2295 STRENTRY("DataDownRW "), /* 0x16 */
2296 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2297 STRENTRY("CodeEO "), /* 0x18 */
2298 STRENTRY("CodeEO Accessed "), /* 0x19 */
2299 STRENTRY("CodeER "), /* 0x1a */
2300 STRENTRY("CodeER Accessed "), /* 0x1b */
2301 STRENTRY("CodeConfEO "), /* 0x1c */
2302 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2303 STRENTRY("CodeConfER "), /* 0x1e */
2304 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2305#undef SYSENTRY
2306 };
2307#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2308 char szMsg[128];
2309 char *psz = &szMsg[0];
2310 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2311 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2312 psz += aTypes[i].cch;
2313
2314 if (Desc.Gen.u1Present)
2315 ADD_STR(psz, "Present ");
2316 else
2317 ADD_STR(psz, "Not-Present ");
2318 if (Desc.Gen.u1Granularity)
2319 ADD_STR(psz, "Page ");
2320 if (Desc.Gen.u1DefBig)
2321 ADD_STR(psz, "32-bit ");
2322 else
2323 ADD_STR(psz, "16-bit ");
2324#undef ADD_STR
2325 *psz = '\0';
2326
2327 /*
2328 * Limit and Base and format the output.
2329 */
2330 uint32_t u32Limit = X86DESC_LIMIT(Desc);
2331 if (Desc.Gen.u1Granularity)
2332 u32Limit = u32Limit << PAGE_SHIFT | PAGE_OFFSET_MASK;
2333 uint32_t u32Base = X86DESC_BASE(Desc);
2334
2335 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2336 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2337}
2338
2339
2340/**
2341 * Dumps a descriptor.
2342 *
2343 * @param Desc Descriptor to dump.
2344 * @param Sel Selector number.
2345 * @param pszMsg Message to prepend the log entry with.
2346 */
2347VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2348{
2349 char szOutput[128];
2350 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2351 Log(("%s: %s\n", pszMsg, szOutput));
2352 NOREF(szOutput[0]);
2353}
2354
2355
2356/**
2357 * Display the shadow gdt.
2358 *
2359 * @param pVM VM Handle.
2360 * @param pHlp The info helpers.
2361 * @param pszArgs Arguments, ignored.
2362 */
2363static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2364{
2365 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2366 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2367 {
2368 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2369 {
2370 char szOutput[128];
2371 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2372 const char *psz = "";
2373 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2374 psz = " HyperCS";
2375 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2376 psz = " HyperDS";
2377 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2378 psz = " HyperCS64";
2379 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2380 psz = " HyperTSS";
2381 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2382 psz = " HyperTSSTrap08";
2383 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2384 }
2385 }
2386}
2387
2388
2389/**
2390 * Display the guest gdt.
2391 *
2392 * @param pVM VM Handle.
2393 * @param pHlp The info helpers.
2394 * @param pszArgs Arguments, ignored.
2395 */
2396static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2397{
2398 VBOXGDTR GDTR;
2399 CPUMGetGuestGDTR(pVM, &GDTR);
2400 RTGCPTR GCPtrGDT = GDTR.pGdt;
2401 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2402
2403 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2404 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2405 {
2406 X86DESC GDTE;
2407 int rc = PGMPhysSimpleReadGCPtr(pVM, &GDTE, GCPtrGDT, sizeof(GDTE));
2408 if (RT_SUCCESS(rc))
2409 {
2410 if (GDTE.Gen.u1Present)
2411 {
2412 char szOutput[128];
2413 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2414 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2415 }
2416 }
2417 else if (rc == VERR_PAGE_NOT_PRESENT)
2418 {
2419 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2420 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2421 }
2422 else
2423 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2424 }
2425}
2426
2427
2428/**
2429 * Display the shadow ldt.
2430 *
2431 * @param pVM VM Handle.
2432 * @param pHlp The info helpers.
2433 * @param pszArgs Arguments, ignored.
2434 */
2435static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2436{
2437 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2438 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2439 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2440 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2441 {
2442 if (paLDT[iLDT].Gen.u1Present)
2443 {
2444 char szOutput[128];
2445 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2446 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2447 }
2448 }
2449}
2450
2451
2452/**
2453 * Display the guest ldt.
2454 *
2455 * @param pVM VM Handle.
2456 * @param pHlp The info helpers.
2457 * @param pszArgs Arguments, ignored.
2458 */
2459static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2460{
2461 RTSEL SelLdt = CPUMGetGuestLDTR(pVM);
2462 if (!(SelLdt & X86_SEL_MASK))
2463 {
2464 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2465 return;
2466 }
2467
2468 RTGCPTR GCPtrLdt;
2469 unsigned cbLdt;
2470 int rc = SELMGetLDTFromSel(pVM, SelLdt, &GCPtrLdt, &cbLdt);
2471 if (RT_FAILURE(rc))
2472 {
2473 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): rc=%Rrc\n", SelLdt, rc);
2474 return;
2475 }
2476
2477 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RGv limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2478 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2479 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2480 {
2481 X86DESC LdtE;
2482 int rc = PGMPhysSimpleReadGCPtr(pVM, &LdtE, GCPtrLdt, sizeof(LdtE));
2483 if (RT_SUCCESS(rc))
2484 {
2485 if (LdtE.Gen.u1Present)
2486 {
2487 char szOutput[128];
2488 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2489 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2490 }
2491 }
2492 else if (rc == VERR_PAGE_NOT_PRESENT)
2493 {
2494 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2495 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2496 }
2497 else
2498 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2499 }
2500}
2501
2502
2503/**
2504 * Dumps the hypervisor GDT
2505 *
2506 * @param pVM VM handle.
2507 */
2508VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2509{
2510 DBGFR3Info(pVM, "gdt", NULL, NULL);
2511}
2512
2513
2514/**
2515 * Dumps the hypervisor LDT
2516 *
2517 * @param pVM VM handle.
2518 */
2519VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2520{
2521 DBGFR3Info(pVM, "ldt", NULL, NULL);
2522}
2523
2524
2525/**
2526 * Dumps the guest GDT
2527 *
2528 * @param pVM VM handle.
2529 */
2530VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2531{
2532 DBGFR3Info(pVM, "gdtguest", NULL, NULL);
2533}
2534
2535
2536/**
2537 * Dumps the guest LDT
2538 *
2539 * @param pVM VM handle.
2540 */
2541VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2542{
2543 DBGFR3Info(pVM, "ldtguest", NULL, NULL);
2544}
2545
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette