VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMSavedState.cpp@ 30744

Last change on this file since 30744 was 30744, checked in by vboxsync, 14 years ago

Skip allocated pages that are zero (pgm saved state).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 116.7 KB
Line 
1/* $Id: PGMSavedState.cpp 30744 2010-07-08 13:42:28Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2009 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/pgm.h>
24#include <VBox/stam.h>
25#include <VBox/ssm.h>
26#include <VBox/pdmdrv.h>
27#include <VBox/pdmdev.h>
28#include "PGMInternal.h"
29#include <VBox/vm.h>
30#include "PGMInline.h"
31
32#include <VBox/param.h>
33#include <VBox/err.h>
34
35#include <iprt/asm.h>
36#include <iprt/assert.h>
37#include <iprt/crc32.h>
38#include <iprt/mem.h>
39#include <iprt/sha.h>
40#include <iprt/string.h>
41#include <iprt/thread.h>
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47/** Saved state data unit version.
48 * @todo remove the guest mappings from the saved state at next version change! */
49#define PGM_SAVED_STATE_VERSION 12
50/** Saved state before the balloon change. */
51#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
52/** Saved state data unit version used during 3.1 development, misses the RAM
53 * config. */
54#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
55/** Saved state data unit version for 3.0 (pre teleportation). */
56#define PGM_SAVED_STATE_VERSION_3_0_0 9
57/** Saved state data unit version for 2.2.2 and later. */
58#define PGM_SAVED_STATE_VERSION_2_2_2 8
59/** Saved state data unit version for 2.2.0. */
60#define PGM_SAVED_STATE_VERSION_RR_DESC 7
61/** Saved state data unit version. */
62#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
63
64
65/** @name Sparse state record types
66 * @{ */
67/** Zero page. No data. */
68#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
69/** Raw page. */
70#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
71/** Raw MMIO2 page. */
72#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
73/** Zero MMIO2 page. */
74#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
75/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
76#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
77/** Raw shadowed ROM page. The protection (8-bit) preceeds the raw bits. */
78#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
79/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
80#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
81/** ROM protection (8-bit). */
82#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
83/** The last record type. */
84#define PGM_STATE_REC_LAST PGM_STATE_REC_ROM_PROT
85/** End marker. */
86#define PGM_STATE_REC_END UINT8_C(0xff)
87/** Flag indicating that the data is preceeded by the page address.
88 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
89 * range ID and a 32-bit page index.
90 */
91#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
92/** @} */
93
94/** The CRC-32 for a zero page. */
95#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
96/** The CRC-32 for a zero half page. */
97#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
98
99
100/*******************************************************************************
101* Structures and Typedefs *
102*******************************************************************************/
103/** For loading old saved states. (pre-smp) */
104typedef struct
105{
106 /** If set no conflict checks are required. (boolean) */
107 bool fMappingsFixed;
108 /** Size of fixed mapping */
109 uint32_t cbMappingFixed;
110 /** Base address (GC) of fixed mapping */
111 RTGCPTR GCPtrMappingFixed;
112 /** A20 gate mask.
113 * Our current approach to A20 emulation is to let REM do it and don't bother
114 * anywhere else. The interesting guests will be operating with it enabled anyway.
115 * But should the need arise, we'll subject physical addresses to this mask. */
116 RTGCPHYS GCPhysA20Mask;
117 /** A20 gate state - boolean! */
118 bool fA20Enabled;
119 /** The guest paging mode. */
120 PGMMODE enmGuestMode;
121} PGMOLD;
122
123
124/*******************************************************************************
125* Global Variables *
126*******************************************************************************/
127/** PGM fields to save/load. */
128
129static const SSMFIELD s_aPGMFields[] =
130{
131 SSMFIELD_ENTRY( PGM, fMappingsFixed),
132 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
133 SSMFIELD_ENTRY( PGM, cbMappingFixed),
134 SSMFIELD_ENTRY( PGM, cBalloonedPages),
135 SSMFIELD_ENTRY_TERM()
136};
137
138static const SSMFIELD s_aPGMFieldsPreBalloon[] =
139{
140 SSMFIELD_ENTRY( PGM, fMappingsFixed),
141 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
142 SSMFIELD_ENTRY( PGM, cbMappingFixed),
143 SSMFIELD_ENTRY_TERM()
144};
145
146static const SSMFIELD s_aPGMCpuFields[] =
147{
148 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
149 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
150 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
151 SSMFIELD_ENTRY_TERM()
152};
153
154static const SSMFIELD s_aPGMFields_Old[] =
155{
156 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
157 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
158 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
159 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
160 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
161 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
162 SSMFIELD_ENTRY_TERM()
163};
164
165
166/**
167 * Find the ROM tracking structure for the given page.
168 *
169 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
170 * that it's a ROM page.
171 * @param pVM The VM handle.
172 * @param GCPhys The address of the ROM page.
173 */
174static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
175{
176 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
177 pRomRange;
178 pRomRange = pRomRange->CTX_SUFF(pNext))
179 {
180 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
181 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
182 return &pRomRange->aPages[off >> PAGE_SHIFT];
183 }
184 return NULL;
185}
186
187
188/**
189 * Prepares the ROM pages for a live save.
190 *
191 * @returns VBox status code.
192 * @param pVM The VM handle.
193 */
194static int pgmR3PrepRomPages(PVM pVM)
195{
196 /*
197 * Initialize the live save tracking in the ROM page descriptors.
198 */
199 pgmLock(pVM);
200 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
201 {
202 PPGMRAMRANGE pRamHint = NULL;;
203 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
204
205 for (uint32_t iPage = 0; iPage < cPages; iPage++)
206 {
207 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
208 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
209 pRom->aPages[iPage].LiveSave.fDirty = true;
210 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
211 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
212 {
213 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
214 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
215 else
216 {
217 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
218 PPGMPAGE pPage;
219 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
220 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
221 if (RT_SUCCESS(rc))
222 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
223 else
224 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
225 }
226 }
227 }
228
229 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
230 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
231 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
232 }
233 pgmUnlock(pVM);
234
235 return VINF_SUCCESS;
236}
237
238
239/**
240 * Assigns IDs to the ROM ranges and saves them.
241 *
242 * @returns VBox status code.
243 * @param pVM The VM handle.
244 * @param pSSM Saved state handle.
245 */
246static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
247{
248 pgmLock(pVM);
249 uint8_t id = 1;
250 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
251 {
252 pRom->idSavedState = id;
253 SSMR3PutU8(pSSM, id);
254 SSMR3PutStrZ(pSSM, ""); /* device name */
255 SSMR3PutU32(pSSM, 0); /* device instance */
256 SSMR3PutU8(pSSM, 0); /* region */
257 SSMR3PutStrZ(pSSM, pRom->pszDesc);
258 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
259 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
260 if (RT_FAILURE(rc))
261 break;
262 }
263 pgmUnlock(pVM);
264 return SSMR3PutU8(pSSM, UINT8_MAX);
265}
266
267
268/**
269 * Loads the ROM range ID assignments.
270 *
271 * @returns VBox status code.
272 *
273 * @param pVM The VM handle.
274 * @param pSSM The saved state handle.
275 */
276static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
277{
278 Assert(PGMIsLockOwner(pVM));
279
280 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
281 pRom->idSavedState = UINT8_MAX;
282
283 for (;;)
284 {
285 /*
286 * Read the data.
287 */
288 uint8_t id;
289 int rc = SSMR3GetU8(pSSM, &id);
290 if (RT_FAILURE(rc))
291 return rc;
292 if (id == UINT8_MAX)
293 {
294 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
295 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX,
296 ("The \"%s\" ROM was not found in the saved state. Probably due to some misconfiguration\n",
297 pRom->pszDesc));
298 return VINF_SUCCESS; /* the end */
299 }
300 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
301
302 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
303 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
304 AssertLogRelRCReturn(rc, rc);
305
306 uint32_t uInstance;
307 SSMR3GetU32(pSSM, &uInstance);
308 uint8_t iRegion;
309 SSMR3GetU8(pSSM, &iRegion);
310
311 char szDesc[64];
312 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
313 AssertLogRelRCReturn(rc, rc);
314
315 RTGCPHYS GCPhys;
316 SSMR3GetGCPhys(pSSM, &GCPhys);
317 RTGCPHYS cb;
318 rc = SSMR3GetGCPhys(pSSM, &cb);
319 if (RT_FAILURE(rc))
320 return rc;
321 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
322 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
323
324 /*
325 * Locate a matching ROM range.
326 */
327 AssertLogRelMsgReturn( uInstance == 0
328 && iRegion == 0
329 && szDevName[0] == '\0',
330 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
331 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
332 PPGMROMRANGE pRom;
333 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
334 {
335 if ( pRom->idSavedState == UINT8_MAX
336 && !strcmp(pRom->pszDesc, szDesc))
337 {
338 pRom->idSavedState = id;
339 break;
340 }
341 }
342 if (!pRom)
343 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
344 } /* forever */
345}
346
347
348/**
349 * Scan ROM pages.
350 *
351 * @param pVM The VM handle.
352 */
353static void pgmR3ScanRomPages(PVM pVM)
354{
355 /*
356 * The shadow ROMs.
357 */
358 pgmLock(pVM);
359 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
360 {
361 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
362 {
363 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
364 for (uint32_t iPage = 0; iPage < cPages; iPage++)
365 {
366 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
367 if (pRomPage->LiveSave.fWrittenTo)
368 {
369 pRomPage->LiveSave.fWrittenTo = false;
370 if (!pRomPage->LiveSave.fDirty)
371 {
372 pRomPage->LiveSave.fDirty = true;
373 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
374 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
375 }
376 pRomPage->LiveSave.fDirtiedRecently = true;
377 }
378 else
379 pRomPage->LiveSave.fDirtiedRecently = false;
380 }
381 }
382 }
383 pgmUnlock(pVM);
384}
385
386
387/**
388 * Takes care of the virgin ROM pages in the first pass.
389 *
390 * This is an attempt at simplifying the handling of ROM pages a little bit.
391 * This ASSUMES that no new ROM ranges will be added and that they won't be
392 * relinked in any way.
393 *
394 * @param pVM The VM handle.
395 * @param pSSM The SSM handle.
396 * @param fLiveSave Whether we're in a live save or not.
397 */
398static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
399{
400 pgmLock(pVM);
401 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
402 {
403 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
404 for (uint32_t iPage = 0; iPage < cPages; iPage++)
405 {
406 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
407 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
408
409 /* Get the virgin page descriptor. */
410 PPGMPAGE pPage;
411 if (PGMROMPROT_IS_ROM(enmProt))
412 pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
413 else
414 pPage = &pRom->aPages[iPage].Virgin;
415
416 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
417 int rc = VINF_SUCCESS;
418 char abPage[PAGE_SIZE];
419 if ( !PGM_PAGE_IS_ZERO(pPage)
420 && !PGM_PAGE_IS_BALLOONED(pPage))
421 {
422 void const *pvPage;
423 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
424 if (RT_SUCCESS(rc))
425 memcpy(abPage, pvPage, PAGE_SIZE);
426 }
427 else
428 ASMMemZeroPage(abPage);
429 pgmUnlock(pVM);
430 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
431
432 /* Save it. */
433 if (iPage > 0)
434 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
435 else
436 {
437 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
438 SSMR3PutU8(pSSM, pRom->idSavedState);
439 SSMR3PutU32(pSSM, iPage);
440 }
441 SSMR3PutU8(pSSM, (uint8_t)enmProt);
442 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
443 if (RT_FAILURE(rc))
444 return rc;
445
446 /* Update state. */
447 pgmLock(pVM);
448 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
449 if (fLiveSave)
450 {
451 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
452 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
453 pVM->pgm.s.LiveSave.cSavedPages++;
454 }
455 }
456 }
457 pgmUnlock(pVM);
458 return VINF_SUCCESS;
459}
460
461
462/**
463 * Saves dirty pages in the shadowed ROM ranges.
464 *
465 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
466 *
467 * @returns VBox status code.
468 * @param pVM The VM handle.
469 * @param pSSM The SSM handle.
470 * @param fLiveSave Whether it's a live save or not.
471 * @param fFinalPass Whether this is the final pass or not.
472 */
473static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
474{
475 /*
476 * The Shadowed ROMs.
477 *
478 * ASSUMES that the ROM ranges are fixed.
479 * ASSUMES that all the ROM ranges are mapped.
480 */
481 pgmLock(pVM);
482 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
483 {
484 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
485 {
486 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
487 uint32_t iPrevPage = cPages;
488 for (uint32_t iPage = 0; iPage < cPages; iPage++)
489 {
490 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
491 if ( !fLiveSave
492 || ( pRomPage->LiveSave.fDirty
493 && ( ( !pRomPage->LiveSave.fDirtiedRecently
494 && !pRomPage->LiveSave.fWrittenTo)
495 || fFinalPass
496 )
497 )
498 )
499 {
500 uint8_t abPage[PAGE_SIZE];
501 PGMROMPROT enmProt = pRomPage->enmProt;
502 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
503 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(&pVM->pgm.s, GCPhys);
504 bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage);
505 int rc = VINF_SUCCESS;
506 if (!fZero)
507 {
508 void const *pvPage;
509 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
510 if (RT_SUCCESS(rc))
511 memcpy(abPage, pvPage, PAGE_SIZE);
512 }
513 if (fLiveSave && RT_SUCCESS(rc))
514 {
515 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
516 pRomPage->LiveSave.fDirty = false;
517 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
518 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
519 pVM->pgm.s.LiveSave.cSavedPages++;
520 }
521 pgmUnlock(pVM);
522 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
523
524 if (iPage - 1U == iPrevPage && iPage > 0)
525 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
526 else
527 {
528 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
529 SSMR3PutU8(pSSM, pRom->idSavedState);
530 SSMR3PutU32(pSSM, iPage);
531 }
532 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
533 if (!fZero)
534 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
535 if (RT_FAILURE(rc))
536 return rc;
537
538 pgmLock(pVM);
539 iPrevPage = iPage;
540 }
541 /*
542 * In the final pass, make sure the protection is in sync.
543 */
544 else if ( fFinalPass
545 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
546 {
547 PGMROMPROT enmProt = pRomPage->enmProt;
548 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
549 pgmUnlock(pVM);
550
551 if (iPage - 1U == iPrevPage && iPage > 0)
552 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
553 else
554 {
555 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
556 SSMR3PutU8(pSSM, pRom->idSavedState);
557 SSMR3PutU32(pSSM, iPage);
558 }
559 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
560 if (RT_FAILURE(rc))
561 return rc;
562
563 pgmLock(pVM);
564 iPrevPage = iPage;
565 }
566 }
567 }
568 }
569 pgmUnlock(pVM);
570 return VINF_SUCCESS;
571}
572
573
574/**
575 * Cleans up ROM pages after a live save.
576 *
577 * @param pVM The VM handle.
578 */
579static void pgmR3DoneRomPages(PVM pVM)
580{
581 NOREF(pVM);
582}
583
584
585/**
586 * Prepares the MMIO2 pages for a live save.
587 *
588 * @returns VBox status code.
589 * @param pVM The VM handle.
590 */
591static int pgmR3PrepMmio2Pages(PVM pVM)
592{
593 /*
594 * Initialize the live save tracking in the MMIO2 ranges.
595 * ASSUME nothing changes here.
596 */
597 pgmLock(pVM);
598 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
599 {
600 uint32_t const cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
601 pgmUnlock(pVM);
602
603 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
604 if (!paLSPages)
605 return VERR_NO_MEMORY;
606 for (uint32_t iPage = 0; iPage < cPages; iPage++)
607 {
608 /* Initialize it as a dirty zero page. */
609 paLSPages[iPage].fDirty = true;
610 paLSPages[iPage].cUnchangedScans = 0;
611 paLSPages[iPage].fZero = true;
612 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
613 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
614 }
615
616 pgmLock(pVM);
617 pMmio2->paLSPages = paLSPages;
618 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
619 }
620 pgmUnlock(pVM);
621 return VINF_SUCCESS;
622}
623
624
625/**
626 * Assigns IDs to the MMIO2 ranges and saves them.
627 *
628 * @returns VBox status code.
629 * @param pVM The VM handle.
630 * @param pSSM Saved state handle.
631 */
632static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
633{
634 pgmLock(pVM);
635 uint8_t id = 1;
636 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3, id++)
637 {
638 pMmio2->idSavedState = id;
639 SSMR3PutU8(pSSM, id);
640 SSMR3PutStrZ(pSSM, pMmio2->pDevInsR3->pReg->szName);
641 SSMR3PutU32(pSSM, pMmio2->pDevInsR3->iInstance);
642 SSMR3PutU8(pSSM, pMmio2->iRegion);
643 SSMR3PutStrZ(pSSM, pMmio2->RamRange.pszDesc);
644 int rc = SSMR3PutGCPhys(pSSM, pMmio2->RamRange.cb);
645 if (RT_FAILURE(rc))
646 break;
647 }
648 pgmUnlock(pVM);
649 return SSMR3PutU8(pSSM, UINT8_MAX);
650}
651
652
653/**
654 * Loads the MMIO2 range ID assignments.
655 *
656 * @returns VBox status code.
657 *
658 * @param pVM The VM handle.
659 * @param pSSM The saved state handle.
660 */
661static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
662{
663 Assert(PGMIsLockOwner(pVM));
664
665 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
666 pMmio2->idSavedState = UINT8_MAX;
667
668 for (;;)
669 {
670 /*
671 * Read the data.
672 */
673 uint8_t id;
674 int rc = SSMR3GetU8(pSSM, &id);
675 if (RT_FAILURE(rc))
676 return rc;
677 if (id == UINT8_MAX)
678 {
679 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
680 AssertLogRelMsg(pMmio2->idSavedState != UINT8_MAX, ("%s\n", pMmio2->RamRange.pszDesc));
681 return VINF_SUCCESS; /* the end */
682 }
683 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
684
685 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
686 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
687 AssertLogRelRCReturn(rc, rc);
688
689 uint32_t uInstance;
690 SSMR3GetU32(pSSM, &uInstance);
691 uint8_t iRegion;
692 SSMR3GetU8(pSSM, &iRegion);
693
694 char szDesc[64];
695 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
696 AssertLogRelRCReturn(rc, rc);
697
698 RTGCPHYS cb;
699 rc = SSMR3GetGCPhys(pSSM, &cb);
700 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
701
702 /*
703 * Locate a matching MMIO2 range.
704 */
705 PPGMMMIO2RANGE pMmio2;
706 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
707 {
708 if ( pMmio2->idSavedState == UINT8_MAX
709 && pMmio2->iRegion == iRegion
710 && pMmio2->pDevInsR3->iInstance == uInstance
711 && !strcmp(pMmio2->pDevInsR3->pReg->szName, szDevName))
712 {
713 pMmio2->idSavedState = id;
714 break;
715 }
716 }
717 if (!pMmio2)
718 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
719 szDesc, szDevName, uInstance, iRegion);
720
721 /*
722 * Validate the configuration, the size of the MMIO2 region should be
723 * the same.
724 */
725 if (cb != pMmio2->RamRange.cb)
726 {
727 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
728 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb));
729 if (cb > pMmio2->RamRange.cb) /* bad idea? */
730 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
731 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb);
732 }
733 } /* forever */
734}
735
736
737/**
738 * Scans one MMIO2 page.
739 *
740 * @returns True if changed, false if unchanged.
741 *
742 * @param pVM The VM handle
743 * @param pbPage The page bits.
744 * @param pLSPage The live save tracking structure for the page.
745 *
746 */
747DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
748{
749 /*
750 * Special handling of zero pages.
751 */
752 bool const fZero = pLSPage->fZero;
753 if (fZero)
754 {
755 if (ASMMemIsZeroPage(pbPage))
756 {
757 /* Not modified. */
758 if (pLSPage->fDirty)
759 pLSPage->cUnchangedScans++;
760 return false;
761 }
762
763 pLSPage->fZero = false;
764 pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
765 }
766 else
767 {
768 /*
769 * CRC the first half, if it doesn't match the page is dirty and
770 * we won't check the 2nd half (we'll do that next time).
771 */
772 uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
773 if (u32CrcH1 == pLSPage->u32CrcH1)
774 {
775 uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
776 if (u32CrcH2 == pLSPage->u32CrcH2)
777 {
778 /* Probably not modified. */
779 if (pLSPage->fDirty)
780 pLSPage->cUnchangedScans++;
781 return false;
782 }
783
784 pLSPage->u32CrcH2 = u32CrcH2;
785 }
786 else
787 {
788 pLSPage->u32CrcH1 = u32CrcH1;
789 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
790 && ASMMemIsZeroPage(pbPage))
791 {
792 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
793 pLSPage->fZero = true;
794 }
795 }
796 }
797
798 /* dirty page path */
799 pLSPage->cUnchangedScans = 0;
800 if (!pLSPage->fDirty)
801 {
802 pLSPage->fDirty = true;
803 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
804 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
805 if (fZero)
806 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
807 }
808 return true;
809}
810
811
812/**
813 * Scan for MMIO2 page modifications.
814 *
815 * @param pVM The VM handle.
816 * @param uPass The pass number.
817 */
818static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
819{
820 /*
821 * Since this is a bit expensive we lower the scan rate after a little while.
822 */
823 if ( ( (uPass & 3) != 0
824 && uPass > 10)
825 || uPass == SSM_PASS_FINAL)
826 return;
827
828 pgmLock(pVM); /* paranoia */
829 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
830 {
831 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
832 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
833 pgmUnlock(pVM);
834
835 for (uint32_t iPage = 0; iPage < cPages; iPage++)
836 {
837 uint8_t const *pbPage = (uint8_t const *)pMmio2->pvR3 + iPage * PAGE_SIZE;
838 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
839 }
840
841 pgmLock(pVM);
842 }
843 pgmUnlock(pVM);
844
845}
846
847
848/**
849 * Save quiescent MMIO2 pages.
850 *
851 * @returns VBox status code.
852 * @param pVM The VM handle.
853 * @param pSSM The SSM handle.
854 * @param fLiveSave Whether it's a live save or not.
855 * @param uPass The pass number.
856 */
857static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
858{
859 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
860 * device that we wish to know about changes.) */
861
862 int rc = VINF_SUCCESS;
863 if (uPass == SSM_PASS_FINAL)
864 {
865 /*
866 * The mop up round.
867 */
868 pgmLock(pVM);
869 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
870 pMmio2 && RT_SUCCESS(rc);
871 pMmio2 = pMmio2->pNextR3)
872 {
873 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
874 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
875 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
876 uint32_t iPageLast = cPages;
877 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
878 {
879 uint8_t u8Type;
880 if (!fLiveSave)
881 u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
882 else
883 {
884 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
885 if ( !paLSPages[iPage].fDirty
886 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
887 {
888 if (paLSPages[iPage].fZero)
889 continue;
890
891 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
892 RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
893 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
894 continue;
895 }
896 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
897 pVM->pgm.s.LiveSave.cSavedPages++;
898 }
899
900 if (iPage != 0 && iPage == iPageLast + 1)
901 rc = SSMR3PutU8(pSSM, u8Type);
902 else
903 {
904 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
905 SSMR3PutU8(pSSM, pMmio2->idSavedState);
906 rc = SSMR3PutU32(pSSM, iPage);
907 }
908 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
909 rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
910 if (RT_FAILURE(rc))
911 break;
912 iPageLast = iPage;
913 }
914 }
915 pgmUnlock(pVM);
916 }
917 /*
918 * Reduce the rate after a little while since the current MMIO2 approach is
919 * a bit expensive.
920 * We position it two passes after the scan pass to avoid saving busy pages.
921 */
922 else if ( uPass <= 10
923 || (uPass & 3) == 2)
924 {
925 pgmLock(pVM);
926 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
927 pMmio2 && RT_SUCCESS(rc);
928 pMmio2 = pMmio2->pNextR3)
929 {
930 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
931 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
932 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
933 uint32_t iPageLast = cPages;
934 pgmUnlock(pVM);
935
936 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
937 {
938 /* Skip clean pages and pages which hasn't quiesced. */
939 if (!paLSPages[iPage].fDirty)
940 continue;
941 if (paLSPages[iPage].cUnchangedScans < 3)
942 continue;
943 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
944 continue;
945
946 /* Save it. */
947 bool const fZero = paLSPages[iPage].fZero;
948 uint8_t abPage[PAGE_SIZE];
949 if (!fZero)
950 {
951 memcpy(abPage, pbPage, PAGE_SIZE);
952 RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
953 }
954
955 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
956 if (iPage != 0 && iPage == iPageLast + 1)
957 rc = SSMR3PutU8(pSSM, u8Type);
958 else
959 {
960 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
961 SSMR3PutU8(pSSM, pMmio2->idSavedState);
962 rc = SSMR3PutU32(pSSM, iPage);
963 }
964 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
965 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
966 if (RT_FAILURE(rc))
967 break;
968
969 /* Housekeeping. */
970 paLSPages[iPage].fDirty = false;
971 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
972 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
973 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
974 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
975 pVM->pgm.s.LiveSave.cSavedPages++;
976 iPageLast = iPage;
977 }
978
979 pgmLock(pVM);
980 }
981 pgmUnlock(pVM);
982 }
983
984 return rc;
985}
986
987
988/**
989 * Cleans up MMIO2 pages after a live save.
990 *
991 * @param pVM The VM handle.
992 */
993static void pgmR3DoneMmio2Pages(PVM pVM)
994{
995 /*
996 * Free the tracking structures for the MMIO2 pages.
997 * We do the freeing outside the lock in case the VM is running.
998 */
999 pgmLock(pVM);
1000 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
1001 {
1002 void *pvMmio2ToFree = pMmio2->paLSPages;
1003 if (pvMmio2ToFree)
1004 {
1005 pMmio2->paLSPages = NULL;
1006 pgmUnlock(pVM);
1007 MMR3HeapFree(pvMmio2ToFree);
1008 pgmLock(pVM);
1009 }
1010 }
1011 pgmUnlock(pVM);
1012}
1013
1014
1015/**
1016 * Prepares the RAM pages for a live save.
1017 *
1018 * @returns VBox status code.
1019 * @param pVM The VM handle.
1020 */
1021static int pgmR3PrepRamPages(PVM pVM)
1022{
1023
1024 /*
1025 * Try allocating tracking structures for the ram ranges.
1026 *
1027 * To avoid lock contention, we leave the lock every time we're allocating
1028 * a new array. This means we'll have to ditch the allocation and start
1029 * all over again if the RAM range list changes in-between.
1030 *
1031 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1032 * for cleaning up.
1033 */
1034 PPGMRAMRANGE pCur;
1035 pgmLock(pVM);
1036 do
1037 {
1038 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1039 {
1040 if ( !pCur->paLSPages
1041 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1042 {
1043 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1044 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
1045 pgmUnlock(pVM);
1046 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1047 if (!paLSPages)
1048 return VERR_NO_MEMORY;
1049 pgmLock(pVM);
1050 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1051 {
1052 pgmUnlock(pVM);
1053 MMR3HeapFree(paLSPages);
1054 pgmLock(pVM);
1055 break; /* try again */
1056 }
1057 pCur->paLSPages = paLSPages;
1058
1059 /*
1060 * Initialize the array.
1061 */
1062 uint32_t iPage = cPages;
1063 while (iPage-- > 0)
1064 {
1065 /** @todo yield critsect! (after moving this away from EMT0) */
1066 PCPGMPAGE pPage = &pCur->aPages[iPage];
1067 paLSPages[iPage].cDirtied = 0;
1068 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1069 paLSPages[iPage].fWriteMonitored = 0;
1070 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1071 paLSPages[iPage].u2Reserved = 0;
1072 switch (PGM_PAGE_GET_TYPE(pPage))
1073 {
1074 case PGMPAGETYPE_RAM:
1075 if ( PGM_PAGE_IS_ZERO(pPage)
1076 || PGM_PAGE_IS_BALLOONED(pPage))
1077 {
1078 paLSPages[iPage].fZero = 1;
1079 paLSPages[iPage].fShared = 0;
1080#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1081 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1082#endif
1083 }
1084 else if (PGM_PAGE_IS_SHARED(pPage))
1085 {
1086 paLSPages[iPage].fZero = 0;
1087 paLSPages[iPage].fShared = 1;
1088#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1089 paLSPages[iPage].u32Crc = UINT32_MAX;
1090#endif
1091 }
1092 else
1093 {
1094 paLSPages[iPage].fZero = 0;
1095 paLSPages[iPage].fShared = 0;
1096#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1097 paLSPages[iPage].u32Crc = UINT32_MAX;
1098#endif
1099 }
1100 paLSPages[iPage].fIgnore = 0;
1101 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1102 break;
1103
1104 case PGMPAGETYPE_ROM_SHADOW:
1105 case PGMPAGETYPE_ROM:
1106 {
1107 paLSPages[iPage].fZero = 0;
1108 paLSPages[iPage].fShared = 0;
1109 paLSPages[iPage].fDirty = 0;
1110 paLSPages[iPage].fIgnore = 1;
1111#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1112 paLSPages[iPage].u32Crc = UINT32_MAX;
1113#endif
1114 pVM->pgm.s.LiveSave.cIgnoredPages++;
1115 break;
1116 }
1117
1118 default:
1119 AssertMsgFailed(("%R[pgmpage]", pPage));
1120 case PGMPAGETYPE_MMIO2:
1121 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1122 paLSPages[iPage].fZero = 0;
1123 paLSPages[iPage].fShared = 0;
1124 paLSPages[iPage].fDirty = 0;
1125 paLSPages[iPage].fIgnore = 1;
1126#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1127 paLSPages[iPage].u32Crc = UINT32_MAX;
1128#endif
1129 pVM->pgm.s.LiveSave.cIgnoredPages++;
1130 break;
1131
1132 case PGMPAGETYPE_MMIO:
1133 paLSPages[iPage].fZero = 0;
1134 paLSPages[iPage].fShared = 0;
1135 paLSPages[iPage].fDirty = 0;
1136 paLSPages[iPage].fIgnore = 1;
1137#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1138 paLSPages[iPage].u32Crc = UINT32_MAX;
1139#endif
1140 pVM->pgm.s.LiveSave.cIgnoredPages++;
1141 break;
1142 }
1143 }
1144 }
1145 }
1146 } while (pCur);
1147 pgmUnlock(pVM);
1148
1149 return VINF_SUCCESS;
1150}
1151
1152
1153/**
1154 * Saves the RAM configuration.
1155 *
1156 * @returns VBox status code.
1157 * @param pVM The VM handle.
1158 * @param pSSM The saved state handle.
1159 */
1160static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1161{
1162 uint32_t cbRamHole = 0;
1163 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1164 AssertRCReturn(rc, rc);
1165
1166 uint64_t cbRam = 0;
1167 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1168 AssertRCReturn(rc, rc);
1169
1170 SSMR3PutU32(pSSM, cbRamHole);
1171 return SSMR3PutU64(pSSM, cbRam);
1172}
1173
1174
1175/**
1176 * Loads and verifies the RAM configuration.
1177 *
1178 * @returns VBox status code.
1179 * @param pVM The VM handle.
1180 * @param pSSM The saved state handle.
1181 */
1182static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1183{
1184 uint32_t cbRamHoleCfg = 0;
1185 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1186 AssertRCReturn(rc, rc);
1187
1188 uint64_t cbRamCfg = 0;
1189 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1190 AssertRCReturn(rc, rc);
1191
1192 uint32_t cbRamHoleSaved;
1193 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1194
1195 uint64_t cbRamSaved;
1196 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1197 AssertRCReturn(rc, rc);
1198
1199 if ( cbRamHoleCfg != cbRamHoleSaved
1200 || cbRamCfg != cbRamSaved)
1201 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1202 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1203 return VINF_SUCCESS;
1204}
1205
1206#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1207
1208/**
1209 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1210 * info with it.
1211 *
1212 * @param pVM The VM handle.
1213 * @param pCur The current RAM range.
1214 * @param paLSPages The current array of live save page tracking
1215 * structures.
1216 * @param iPage The page index.
1217 */
1218static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1219{
1220 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1221 void const *pvPage;
1222 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1223 if (RT_SUCCESS(rc))
1224 paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1225 else
1226 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1227}
1228
1229
1230/**
1231 * Verifies the CRC-32 for a page given it's raw bits.
1232 *
1233 * @param pvPage The page bits.
1234 * @param pCur The current RAM range.
1235 * @param paLSPages The current array of live save page tracking
1236 * structures.
1237 * @param iPage The page index.
1238 */
1239static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1240{
1241 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1242 {
1243 uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1244 Assert( ( !PGM_PAGE_IS_ZERO(&pCur->aPages[iPage])
1245 && !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]))
1246 || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1247 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1248 ("%08x != %08x for %RGp %R[pgmpage] %s\n", paLSPages[iPage].u32Crc, u32Crc,
1249 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage], pszWhere));
1250 }
1251}
1252
1253
1254/**
1255 * Verfies the CRC-32 for a RAM page.
1256 *
1257 * @param pVM The VM handle.
1258 * @param pCur The current RAM range.
1259 * @param paLSPages The current array of live save page tracking
1260 * structures.
1261 * @param iPage The page index.
1262 */
1263static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1264{
1265 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1266 {
1267 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1268 void const *pvPage;
1269 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1270 if (RT_SUCCESS(rc))
1271 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage, pszWhere);
1272 }
1273}
1274
1275#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1276
1277/**
1278 * Scan for RAM page modifications and reprotect them.
1279 *
1280 * @param pVM The VM handle.
1281 * @param fFinalPass Whether this is the final pass or not.
1282 */
1283static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1284{
1285 /*
1286 * The RAM.
1287 */
1288 RTGCPHYS GCPhysCur = 0;
1289 PPGMRAMRANGE pCur;
1290 pgmLock(pVM);
1291 do
1292 {
1293 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1294 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1295 {
1296 if ( pCur->GCPhysLast > GCPhysCur
1297 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1298 {
1299 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1300 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1301 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1302 GCPhysCur = 0;
1303 for (; iPage < cPages; iPage++)
1304 {
1305 /* Do yield first. */
1306 if ( !fFinalPass
1307#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1308 && (iPage & 0x7ff) == 0x100
1309#endif
1310 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1311 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1312 {
1313 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1314 break; /* restart */
1315 }
1316
1317 /* Skip already ignored pages. */
1318 if (paLSPages[iPage].fIgnore)
1319 continue;
1320
1321 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1322 {
1323 /*
1324 * A RAM page.
1325 */
1326 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1327 {
1328 case PGM_PAGE_STATE_ALLOCATED:
1329 /** @todo Optimize this: Don't always re-enable write
1330 * monitoring if the page is known to be very busy. */
1331 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1332 {
1333 Assert(paLSPages[iPage].fWriteMonitored);
1334 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1335 Assert(pVM->pgm.s.cWrittenToPages > 0);
1336 pVM->pgm.s.cWrittenToPages--;
1337 }
1338 else
1339 {
1340 Assert(!paLSPages[iPage].fWriteMonitored);
1341 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1342 }
1343
1344 if (!paLSPages[iPage].fDirty)
1345 {
1346 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1347 if (paLSPages[iPage].fZero)
1348 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1349 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1350 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1351 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1352 }
1353
1354 PGM_PAGE_SET_STATE(&pCur->aPages[iPage], PGM_PAGE_STATE_WRITE_MONITORED);
1355 pVM->pgm.s.cMonitoredPages++;
1356 paLSPages[iPage].fWriteMonitored = 1;
1357 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1358 paLSPages[iPage].fDirty = 1;
1359 paLSPages[iPage].fZero = 0;
1360 paLSPages[iPage].fShared = 0;
1361#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1362 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1363#endif
1364 break;
1365
1366 case PGM_PAGE_STATE_WRITE_MONITORED:
1367 Assert(paLSPages[iPage].fWriteMonitored);
1368 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1369 {
1370#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1371 if (paLSPages[iPage].fWriteMonitoredJustNow)
1372 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1373 else
1374 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "scan");
1375#endif
1376 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1377 }
1378 else
1379 {
1380 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1381#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1382 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1383#endif
1384 if (!paLSPages[iPage].fDirty)
1385 {
1386 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1387 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1388 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1389 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1390 }
1391 }
1392 break;
1393
1394 case PGM_PAGE_STATE_ZERO:
1395 if (!paLSPages[iPage].fZero)
1396 {
1397 if (!paLSPages[iPage].fDirty)
1398 {
1399 paLSPages[iPage].fDirty = 1;
1400 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1401 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1402 }
1403 paLSPages[iPage].fZero = 1;
1404 paLSPages[iPage].fShared = 0;
1405#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1406 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1407#endif
1408 }
1409 break;
1410
1411 case PGM_PAGE_STATE_BALLOONED:
1412 if (!paLSPages[iPage].fZero)
1413 {
1414 if (!paLSPages[iPage].fDirty)
1415 {
1416 paLSPages[iPage].fDirty = 1;
1417 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1418 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1419 }
1420 paLSPages[iPage].fZero = 1;
1421 paLSPages[iPage].fShared = 0;
1422#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1423 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1424#endif
1425 }
1426 break;
1427
1428 case PGM_PAGE_STATE_SHARED:
1429 if (!paLSPages[iPage].fShared)
1430 {
1431 if (!paLSPages[iPage].fDirty)
1432 {
1433 paLSPages[iPage].fDirty = 1;
1434 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1435 if (paLSPages[iPage].fZero)
1436 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1437 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1438 }
1439 paLSPages[iPage].fZero = 0;
1440 paLSPages[iPage].fShared = 1;
1441#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1442 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1443#endif
1444 }
1445 break;
1446 }
1447 }
1448 else
1449 {
1450 /*
1451 * All other types => Ignore the page.
1452 */
1453 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1454 paLSPages[iPage].fIgnore = 1;
1455 if (paLSPages[iPage].fWriteMonitored)
1456 {
1457 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1458 * pages! */
1459 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1460 {
1461 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1462 PGM_PAGE_SET_STATE(&pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1463 Assert(pVM->pgm.s.cMonitoredPages > 0);
1464 pVM->pgm.s.cMonitoredPages--;
1465 }
1466 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1467 {
1468 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1469 Assert(pVM->pgm.s.cWrittenToPages > 0);
1470 pVM->pgm.s.cWrittenToPages--;
1471 }
1472 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1473 }
1474
1475 /** @todo the counting doesn't quite work out here. fix later? */
1476 if (paLSPages[iPage].fDirty)
1477 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1478 else
1479 {
1480 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1481 if (paLSPages[iPage].fZero)
1482 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1483 }
1484 pVM->pgm.s.LiveSave.cIgnoredPages++;
1485 }
1486 } /* for each page in range */
1487
1488 if (GCPhysCur != 0)
1489 break; /* Yield + ramrange change */
1490 GCPhysCur = pCur->GCPhysLast;
1491 }
1492 } /* for each range */
1493 } while (pCur);
1494 pgmUnlock(pVM);
1495}
1496
1497
1498/**
1499 * Save quiescent RAM pages.
1500 *
1501 * @returns VBox status code.
1502 * @param pVM The VM handle.
1503 * @param pSSM The SSM handle.
1504 * @param fLiveSave Whether it's a live save or not.
1505 * @param uPass The pass number.
1506 */
1507static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1508{
1509 /*
1510 * The RAM.
1511 */
1512 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1513 RTGCPHYS GCPhysCur = 0;
1514 PPGMRAMRANGE pCur;
1515 pgmLock(pVM);
1516 do
1517 {
1518 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1519 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1520 {
1521 if ( pCur->GCPhysLast > GCPhysCur
1522 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1523 {
1524 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1525 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1526 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1527 GCPhysCur = 0;
1528 for (; iPage < cPages; iPage++)
1529 {
1530 /* Do yield first. */
1531 if ( uPass != SSM_PASS_FINAL
1532 && (iPage & 0x7ff) == 0x100
1533 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1534 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1535 {
1536 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1537 break; /* restart */
1538 }
1539
1540 /*
1541 * Only save pages that haven't changed since last scan and are dirty.
1542 */
1543 if ( uPass != SSM_PASS_FINAL
1544 && paLSPages)
1545 {
1546 if (!paLSPages[iPage].fDirty)
1547 continue;
1548 if (paLSPages[iPage].fWriteMonitoredJustNow)
1549 continue;
1550 if (paLSPages[iPage].fIgnore)
1551 continue;
1552 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM) /* in case of recent remappings */
1553 continue;
1554 if ( PGM_PAGE_GET_STATE(&pCur->aPages[iPage])
1555 != ( paLSPages[iPage].fZero
1556 ? PGM_PAGE_STATE_ZERO
1557 : paLSPages[iPage].fShared
1558 ? PGM_PAGE_STATE_SHARED
1559 : PGM_PAGE_STATE_WRITE_MONITORED))
1560 continue;
1561 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1562 continue;
1563 }
1564 else
1565 {
1566 if ( paLSPages
1567 && !paLSPages[iPage].fDirty
1568 && !paLSPages[iPage].fIgnore)
1569 {
1570#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1571 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM)
1572 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#1");
1573#endif
1574 continue;
1575 }
1576 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM)
1577 continue;
1578 }
1579
1580 /*
1581 * Do the saving outside the PGM critsect since SSM may block on I/O.
1582 */
1583 int rc;
1584 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1585 bool fZero = PGM_PAGE_IS_ZERO(&pCur->aPages[iPage]) || PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]);
1586
1587 if (!fZero)
1588 {
1589 /*
1590 * Copy the page and then save it outside the lock (since any
1591 * SSM call may block).
1592 */
1593 uint8_t abPage[PAGE_SIZE];
1594 void const *pvPage;
1595 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1596 if (RT_SUCCESS(rc))
1597 {
1598 /* Skip allocated pages that are zero. */
1599 if ( !fLiveSave
1600 && ASMMemIsZeroPage(pvPage))
1601 {
1602 fZero = true;
1603 goto save_zero_page;
1604 }
1605
1606 memcpy(abPage, pvPage, PAGE_SIZE);
1607#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1608 if (paLSPages)
1609 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage, "save#3");
1610#endif
1611 }
1612 pgmUnlock(pVM);
1613 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1614
1615 if (GCPhys == GCPhysLast + PAGE_SIZE)
1616 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1617 else
1618 {
1619 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1620 SSMR3PutGCPhys(pSSM, GCPhys);
1621 }
1622 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1623 }
1624 else
1625 {
1626save_zero_page:
1627 /*
1628 * Dirty zero page.
1629 */
1630#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1631 if (paLSPages)
1632 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#2");
1633#endif
1634 pgmUnlock(pVM);
1635
1636 if (GCPhys == GCPhysLast + PAGE_SIZE)
1637 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1638 else
1639 {
1640 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1641 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1642 }
1643 }
1644 if (RT_FAILURE(rc))
1645 return rc;
1646
1647 pgmLock(pVM);
1648 GCPhysLast = GCPhys;
1649 if (paLSPages)
1650 {
1651 paLSPages[iPage].fDirty = 0;
1652 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1653 if (fZero)
1654 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1655 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1656 pVM->pgm.s.LiveSave.cSavedPages++;
1657 }
1658 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1659 {
1660 GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
1661 break; /* restart */
1662 }
1663
1664 } /* for each page in range */
1665
1666 if (GCPhysCur != 0)
1667 break; /* Yield + ramrange change */
1668 GCPhysCur = pCur->GCPhysLast;
1669 }
1670 } /* for each range */
1671 } while (pCur);
1672 pgmUnlock(pVM);
1673
1674 return VINF_SUCCESS;
1675}
1676
1677
1678/**
1679 * Cleans up RAM pages after a live save.
1680 *
1681 * @param pVM The VM handle.
1682 */
1683static void pgmR3DoneRamPages(PVM pVM)
1684{
1685 /*
1686 * Free the tracking arrays and disable write monitoring.
1687 *
1688 * Play nice with the PGM lock in case we're called while the VM is still
1689 * running. This means we have to delay the freeing since we wish to use
1690 * paLSPages as an indicator of which RAM ranges which we need to scan for
1691 * write monitored pages.
1692 */
1693 void *pvToFree = NULL;
1694 PPGMRAMRANGE pCur;
1695 uint32_t cMonitoredPages = 0;
1696 pgmLock(pVM);
1697 do
1698 {
1699 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1700 {
1701 if (pCur->paLSPages)
1702 {
1703 if (pvToFree)
1704 {
1705 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1706 pgmUnlock(pVM);
1707 MMR3HeapFree(pvToFree);
1708 pvToFree = NULL;
1709 pgmLock(pVM);
1710 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1711 break; /* start over again. */
1712 }
1713
1714 pvToFree = pCur->paLSPages;
1715 pCur->paLSPages = NULL;
1716
1717 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
1718 while (iPage--)
1719 {
1720 PPGMPAGE pPage = &pCur->aPages[iPage];
1721 PGM_PAGE_CLEAR_WRITTEN_TO(pPage);
1722 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1723 {
1724 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1725 cMonitoredPages++;
1726 }
1727 }
1728 }
1729 }
1730 } while (pCur);
1731
1732 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1733 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1734 pVM->pgm.s.cMonitoredPages = 0;
1735 else
1736 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1737
1738 pgmUnlock(pVM);
1739
1740 MMR3HeapFree(pvToFree);
1741 pvToFree = NULL;
1742}
1743
1744
1745/**
1746 * Execute a live save pass.
1747 *
1748 * @returns VBox status code.
1749 *
1750 * @param pVM The VM handle.
1751 * @param pSSM The SSM handle.
1752 */
1753static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1754{
1755 int rc;
1756
1757 /*
1758 * Save the MMIO2 and ROM range IDs in pass 0.
1759 */
1760 if (uPass == 0)
1761 {
1762 rc = pgmR3SaveRamConfig(pVM, pSSM);
1763 if (RT_FAILURE(rc))
1764 return rc;
1765 rc = pgmR3SaveRomRanges(pVM, pSSM);
1766 if (RT_FAILURE(rc))
1767 return rc;
1768 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1769 if (RT_FAILURE(rc))
1770 return rc;
1771 }
1772 /*
1773 * Reset the page-per-second estimate to avoid inflation by the initial
1774 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1775 */
1776 else if (uPass == 7)
1777 {
1778 pVM->pgm.s.LiveSave.cSavedPages = 0;
1779 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1780 }
1781
1782 /*
1783 * Do the scanning.
1784 */
1785 pgmR3ScanRomPages(pVM);
1786 pgmR3ScanMmio2Pages(pVM, uPass);
1787 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1788 pgmR3PoolClearAll(pVM, true /*fFlushRemTlb*/); /** @todo this could perhaps be optimized a bit. */
1789
1790 /*
1791 * Save the pages.
1792 */
1793 if (uPass == 0)
1794 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1795 else
1796 rc = VINF_SUCCESS;
1797 if (RT_SUCCESS(rc))
1798 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1799 if (RT_SUCCESS(rc))
1800 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1801 if (RT_SUCCESS(rc))
1802 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1803 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes care of it.) */
1804
1805 return rc;
1806}
1807
1808
1809/**
1810 * Votes on whether the live save phase is done or not.
1811 *
1812 * @returns VBox status code.
1813 *
1814 * @param pVM The VM handle.
1815 * @param pSSM The SSM handle.
1816 * @param uPass The data pass.
1817 */
1818static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1819{
1820 /*
1821 * Update and calculate parameters used in the decision making.
1822 */
1823 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1824
1825 /* update history. */
1826 pgmLock(pVM);
1827 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1828 pgmUnlock(pVM);
1829 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1830 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1831 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1832 + cWrittenToPages;
1833 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1834 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1835 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1836
1837 /* calc shortterm average (4 passes). */
1838 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1839 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1840 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1841 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1842 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1843 uint32_t const cDirtyPagesShort = cTotal / 4;
1844 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1845
1846 /* calc longterm average. */
1847 cTotal = 0;
1848 if (uPass < cHistoryEntries)
1849 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1850 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1851 else
1852 for (i = 0; i < cHistoryEntries; i++)
1853 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1854 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1855 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1856
1857 /* estimate the speed */
1858 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1859 uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
1860 / ((long double)cNsElapsed / 1000000000.0) );
1861 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1862
1863 /*
1864 * Try make a decision.
1865 */
1866 if ( cDirtyPagesShort <= cDirtyPagesLong
1867 && ( cDirtyNow <= cDirtyPagesShort
1868 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1869 )
1870 )
1871 {
1872 if (uPass > 10)
1873 {
1874 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1875 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1876 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1877 if (cMsMaxDowntime < 32)
1878 cMsMaxDowntime = 32;
1879 if ( ( cMsLeftLong <= cMsMaxDowntime
1880 && cMsLeftShort < cMsMaxDowntime)
1881 || cMsLeftShort < cMsMaxDowntime / 2
1882 )
1883 {
1884 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1885 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1886 return VINF_SUCCESS;
1887 }
1888 }
1889 else
1890 {
1891 if ( ( cDirtyPagesShort <= 128
1892 && cDirtyPagesLong <= 1024)
1893 || cDirtyPagesLong <= 256
1894 )
1895 {
1896 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1897 return VINF_SUCCESS;
1898 }
1899 }
1900 }
1901
1902 /*
1903 * Come up with a completion percentage. Currently this is a simple
1904 * dirty page (long term) vs. total pages ratio + some pass trickery.
1905 */
1906 unsigned uPctDirty = (unsigned)( (long double)cDirtyPagesLong
1907 / (pVM->pgm.s.cAllPages - pVM->pgm.s.LiveSave.cIgnoredPages - pVM->pgm.s.cZeroPages) );
1908 if (uPctDirty <= 100)
1909 SSMR3HandleReportLivePercent(pSSM, RT_MIN(100 - uPctDirty, uPass * 2));
1910 else
1911 AssertMsgFailed(("uPctDirty=%u cDirtyPagesLong=%#x cAllPages=%#x cIgnoredPages=%#x cZeroPages=%#x\n",
1912 uPctDirty, cDirtyPagesLong, pVM->pgm.s.cAllPages, pVM->pgm.s.LiveSave.cIgnoredPages, pVM->pgm.s.cZeroPages));
1913
1914 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
1915}
1916
1917
1918/**
1919 * Prepare for a live save operation.
1920 *
1921 * This will attempt to allocate and initialize the tracking structures. It
1922 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
1923 * pgmR3SaveDone will do the cleanups.
1924 *
1925 * @returns VBox status code.
1926 *
1927 * @param pVM The VM handle.
1928 * @param pSSM The SSM handle.
1929 */
1930static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
1931{
1932 /*
1933 * Indicate that we will be using the write monitoring.
1934 */
1935 pgmLock(pVM);
1936 /** @todo find a way of mediating this when more users are added. */
1937 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
1938 {
1939 pgmUnlock(pVM);
1940 AssertLogRelFailedReturn(VERR_INTERNAL_ERROR_2);
1941 }
1942 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
1943 pgmUnlock(pVM);
1944
1945 /*
1946 * Initialize the statistics.
1947 */
1948 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
1949 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
1950 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
1951 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
1952 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
1953 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
1954 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
1955 pVM->pgm.s.LiveSave.fActive = true;
1956 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
1957 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
1958 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
1959 pVM->pgm.s.LiveSave.cSavedPages = 0;
1960 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1961 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
1962
1963 /*
1964 * Per page type.
1965 */
1966 int rc = pgmR3PrepRomPages(pVM);
1967 if (RT_SUCCESS(rc))
1968 rc = pgmR3PrepMmio2Pages(pVM);
1969 if (RT_SUCCESS(rc))
1970 rc = pgmR3PrepRamPages(pVM);
1971 return rc;
1972}
1973
1974
1975/**
1976 * Execute state save operation.
1977 *
1978 * @returns VBox status code.
1979 * @param pVM VM Handle.
1980 * @param pSSM SSM operation handle.
1981 */
1982static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1983{
1984 int rc;
1985 unsigned i;
1986 PPGM pPGM = &pVM->pgm.s;
1987
1988 /*
1989 * Lock PGM and set the no-more-writes indicator.
1990 */
1991 pgmLock(pVM);
1992 pVM->pgm.s.fNoMorePhysWrites = true;
1993
1994 /*
1995 * Save basic data (required / unaffected by relocation).
1996 */
1997 bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
1998 pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
1999 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2000 pVM->pgm.s.fMappingsFixed = fMappingsFixed;
2001
2002 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2003 SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
2004
2005 /*
2006 * The guest mappings.
2007 */
2008 i = 0;
2009 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2010 {
2011 SSMR3PutU32( pSSM, i);
2012 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2013 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2014 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2015 }
2016 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2017
2018 /*
2019 * Save the (remainder of the) memory.
2020 */
2021 if (RT_SUCCESS(rc))
2022 {
2023 if (pVM->pgm.s.LiveSave.fActive)
2024 {
2025 pgmR3ScanRomPages(pVM);
2026 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
2027 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
2028
2029 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
2030 if (RT_SUCCESS(rc))
2031 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2032 if (RT_SUCCESS(rc))
2033 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2034 }
2035 else
2036 {
2037 rc = pgmR3SaveRamConfig(pVM, pSSM);
2038 if (RT_SUCCESS(rc))
2039 rc = pgmR3SaveRomRanges(pVM, pSSM);
2040 if (RT_SUCCESS(rc))
2041 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
2042 if (RT_SUCCESS(rc))
2043 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
2044 if (RT_SUCCESS(rc))
2045 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
2046 if (RT_SUCCESS(rc))
2047 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2048 if (RT_SUCCESS(rc))
2049 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2050 }
2051 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
2052 }
2053
2054 pgmUnlock(pVM);
2055 return rc;
2056}
2057
2058
2059/**
2060 * Cleans up after an save state operation.
2061 *
2062 * @returns VBox status code.
2063 * @param pVM VM Handle.
2064 * @param pSSM SSM operation handle.
2065 */
2066static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2067{
2068 /*
2069 * Do per page type cleanups first.
2070 */
2071 if (pVM->pgm.s.LiveSave.fActive)
2072 {
2073 pgmR3DoneRomPages(pVM);
2074 pgmR3DoneMmio2Pages(pVM);
2075 pgmR3DoneRamPages(pVM);
2076 }
2077
2078 /*
2079 * Clear the live save indicator and disengage write monitoring.
2080 */
2081 pgmLock(pVM);
2082 pVM->pgm.s.LiveSave.fActive = false;
2083 /** @todo this is blindly assuming that we're the only user of write
2084 * monitoring. Fix this when more users are added. */
2085 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2086 pgmUnlock(pVM);
2087
2088 return VINF_SUCCESS;
2089}
2090
2091
2092/**
2093 * Prepare state load operation.
2094 *
2095 * @returns VBox status code.
2096 * @param pVM VM Handle.
2097 * @param pSSM SSM operation handle.
2098 */
2099static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2100{
2101 /*
2102 * Call the reset function to make sure all the memory is cleared.
2103 */
2104 PGMR3Reset(pVM);
2105 pVM->pgm.s.LiveSave.fActive = false;
2106 NOREF(pSSM);
2107 return VINF_SUCCESS;
2108}
2109
2110
2111/**
2112 * Load an ignored page.
2113 *
2114 * @returns VBox status code.
2115 * @param pSSM The saved state handle.
2116 */
2117static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2118{
2119 uint8_t abPage[PAGE_SIZE];
2120 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2121}
2122
2123
2124/**
2125 * Loads a page without any bits in the saved state, i.e. making sure it's
2126 * really zero.
2127 *
2128 * @returns VBox status code.
2129 * @param pVM The VM handle.
2130 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2131 * state).
2132 * @param pPage The guest page tracking structure.
2133 * @param GCPhys The page address.
2134 * @param pRam The ram range (logging).
2135 */
2136static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2137{
2138 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2139 && uType != PGMPAGETYPE_INVALID)
2140 return VERR_SSM_UNEXPECTED_DATA;
2141
2142 /* I think this should be sufficient. */
2143 if ( !PGM_PAGE_IS_ZERO(pPage)
2144 && !PGM_PAGE_IS_BALLOONED(pPage))
2145 return VERR_SSM_UNEXPECTED_DATA;
2146
2147 NOREF(pVM);
2148 NOREF(GCPhys);
2149 NOREF(pRam);
2150 return VINF_SUCCESS;
2151}
2152
2153
2154/**
2155 * Loads a page from the saved state.
2156 *
2157 * @returns VBox status code.
2158 * @param pVM The VM handle.
2159 * @param pSSM The SSM handle.
2160 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2161 * state).
2162 * @param pPage The guest page tracking structure.
2163 * @param GCPhys The page address.
2164 * @param pRam The ram range (logging).
2165 */
2166static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2167{
2168 /*
2169 * Match up the type, dealing with MMIO2 aliases (dropped).
2170 */
2171 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2172 || uType == PGMPAGETYPE_INVALID,
2173 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2174 VERR_SSM_UNEXPECTED_DATA);
2175
2176 /*
2177 * Load the page.
2178 */
2179 void *pvPage;
2180 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2181 if (RT_SUCCESS(rc))
2182 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2183
2184 return rc;
2185}
2186
2187
2188/**
2189 * Loads a page (counter part to pgmR3SavePage).
2190 *
2191 * @returns VBox status code, fully bitched errors.
2192 * @param pVM The VM handle.
2193 * @param pSSM The SSM handle.
2194 * @param uType The page type.
2195 * @param pPage The page.
2196 * @param GCPhys The page address.
2197 * @param pRam The RAM range (for error messages).
2198 */
2199static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2200{
2201 uint8_t uState;
2202 int rc = SSMR3GetU8(pSSM, &uState);
2203 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2204 if (uState == 0 /* zero */)
2205 rc = pgmR3LoadPageZeroOld(pVM, uType, pPage, GCPhys, pRam);
2206 else if (uState == 1)
2207 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uType, pPage, GCPhys, pRam);
2208 else
2209 rc = VERR_INTERNAL_ERROR;
2210 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2211 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2212 rc);
2213 return VINF_SUCCESS;
2214}
2215
2216
2217/**
2218 * Loads a shadowed ROM page.
2219 *
2220 * @returns VBox status code, errors are fully bitched.
2221 * @param pVM The VM handle.
2222 * @param pSSM The saved state handle.
2223 * @param pPage The page.
2224 * @param GCPhys The page address.
2225 * @param pRam The RAM range (for error messages).
2226 */
2227static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2228{
2229 /*
2230 * Load and set the protection first, then load the two pages, the first
2231 * one is the active the other is the passive.
2232 */
2233 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2234 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2235
2236 uint8_t uProt;
2237 int rc = SSMR3GetU8(pSSM, &uProt);
2238 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2239 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2240 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2241 && enmProt < PGMROMPROT_END,
2242 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2243 VERR_SSM_UNEXPECTED_DATA);
2244
2245 if (pRomPage->enmProt != enmProt)
2246 {
2247 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2248 AssertLogRelRCReturn(rc, rc);
2249 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2250 }
2251
2252 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2253 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2254 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2255 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2256
2257 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2258 * used down the line (will the 2nd page will be written to the first
2259 * one because of a false TLB hit since the TLB is using GCPhys and
2260 * doesn't check the HCPhys of the desired page). */
2261 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2262 if (RT_SUCCESS(rc))
2263 {
2264 *pPageActive = *pPage;
2265 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2266 }
2267 return rc;
2268}
2269
2270/**
2271 * Ram range flags and bits for older versions of the saved state.
2272 *
2273 * @returns VBox status code.
2274 *
2275 * @param pVM The VM handle
2276 * @param pSSM The SSM handle.
2277 * @param uVersion The saved state version.
2278 */
2279static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2280{
2281 PPGM pPGM = &pVM->pgm.s;
2282
2283 /*
2284 * Ram range flags and bits.
2285 */
2286 uint32_t i = 0;
2287 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2288 {
2289 /* Check the seqence number / separator. */
2290 uint32_t u32Sep;
2291 int rc = SSMR3GetU32(pSSM, &u32Sep);
2292 if (RT_FAILURE(rc))
2293 return rc;
2294 if (u32Sep == ~0U)
2295 break;
2296 if (u32Sep != i)
2297 {
2298 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2299 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2300 }
2301 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2302
2303 /* Get the range details. */
2304 RTGCPHYS GCPhys;
2305 SSMR3GetGCPhys(pSSM, &GCPhys);
2306 RTGCPHYS GCPhysLast;
2307 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2308 RTGCPHYS cb;
2309 SSMR3GetGCPhys(pSSM, &cb);
2310 uint8_t fHaveBits;
2311 rc = SSMR3GetU8(pSSM, &fHaveBits);
2312 if (RT_FAILURE(rc))
2313 return rc;
2314 if (fHaveBits & ~1)
2315 {
2316 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2317 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2318 }
2319 size_t cchDesc = 0;
2320 char szDesc[256];
2321 szDesc[0] = '\0';
2322 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2323 {
2324 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2325 if (RT_FAILURE(rc))
2326 return rc;
2327 /* Since we've modified the description strings in r45878, only compare
2328 them if the saved state is more recent. */
2329 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2330 cchDesc = strlen(szDesc);
2331 }
2332
2333 /*
2334 * Match it up with the current range.
2335 *
2336 * Note there is a hack for dealing with the high BIOS mapping
2337 * in the old saved state format, this means we might not have
2338 * a 1:1 match on success.
2339 */
2340 if ( ( GCPhys != pRam->GCPhys
2341 || GCPhysLast != pRam->GCPhysLast
2342 || cb != pRam->cb
2343 || ( cchDesc
2344 && strcmp(szDesc, pRam->pszDesc)) )
2345 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2346 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2347 || GCPhys != UINT32_C(0xfff80000)
2348 || GCPhysLast != UINT32_C(0xffffffff)
2349 || pRam->GCPhysLast != GCPhysLast
2350 || pRam->GCPhys < GCPhys
2351 || !fHaveBits)
2352 )
2353 {
2354 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2355 "State : %RGp-%RGp %RGp bytes %s %s\n",
2356 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2357 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2358 /*
2359 * If we're loading a state for debugging purpose, don't make a fuss if
2360 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2361 */
2362 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2363 || GCPhys < 8 * _1M)
2364 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2365 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2366 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2367 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2368
2369 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2370 continue;
2371 }
2372
2373 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2374 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2375 {
2376 /*
2377 * Load the pages one by one.
2378 */
2379 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2380 {
2381 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2382 PPGMPAGE pPage = &pRam->aPages[iPage];
2383 uint8_t uType;
2384 rc = SSMR3GetU8(pSSM, &uType);
2385 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2386 if (uType == PGMPAGETYPE_ROM_SHADOW)
2387 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2388 else
2389 rc = pgmR3LoadPageOld(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2390 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2391 }
2392 }
2393 else
2394 {
2395 /*
2396 * Old format.
2397 */
2398
2399 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2400 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2401 uint32_t fFlags = 0;
2402 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2403 {
2404 uint16_t u16Flags;
2405 rc = SSMR3GetU16(pSSM, &u16Flags);
2406 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2407 fFlags |= u16Flags;
2408 }
2409
2410 /* Load the bits */
2411 if ( !fHaveBits
2412 && GCPhysLast < UINT32_C(0xe0000000))
2413 {
2414 /*
2415 * Dynamic chunks.
2416 */
2417 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2418 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2419 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2420 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2421
2422 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2423 {
2424 uint8_t fPresent;
2425 rc = SSMR3GetU8(pSSM, &fPresent);
2426 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2427 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2428 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2429 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2430
2431 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2432 {
2433 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2434 PPGMPAGE pPage = &pRam->aPages[iPage];
2435 if (fPresent)
2436 {
2437 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2438 rc = pgmR3LoadPageToDevNullOld(pSSM);
2439 else
2440 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2441 }
2442 else
2443 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2444 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2445 }
2446 }
2447 }
2448 else if (pRam->pvR3)
2449 {
2450 /*
2451 * MMIO2.
2452 */
2453 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2454 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2455 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2456 AssertLogRelMsgReturn(pRam->pvR3,
2457 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2458 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2459
2460 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2461 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2462 }
2463 else if (GCPhysLast < UINT32_C(0xfff80000))
2464 {
2465 /*
2466 * PCI MMIO, no pages saved.
2467 */
2468 }
2469 else
2470 {
2471 /*
2472 * Load the 0xfff80000..0xffffffff BIOS range.
2473 * It starts with X reserved pages that we have to skip over since
2474 * the RAMRANGE create by the new code won't include those.
2475 */
2476 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2477 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2478 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2479 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2480 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2481 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2482 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2483
2484 /* Skip wasted reserved pages before the ROM. */
2485 while (GCPhys < pRam->GCPhys)
2486 {
2487 rc = pgmR3LoadPageToDevNullOld(pSSM);
2488 GCPhys += PAGE_SIZE;
2489 }
2490
2491 /* Load the bios pages. */
2492 cPages = pRam->cb >> PAGE_SHIFT;
2493 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2494 {
2495 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2496 PPGMPAGE pPage = &pRam->aPages[iPage];
2497
2498 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2499 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2500 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2501 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2502 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2503 }
2504 }
2505 }
2506 }
2507
2508 return VINF_SUCCESS;
2509}
2510
2511
2512/**
2513 * Worker for pgmR3Load and pgmR3LoadLocked.
2514 *
2515 * @returns VBox status code.
2516 *
2517 * @param pVM The VM handle.
2518 * @param pSSM The SSM handle.
2519 * @param uVersion The saved state version.
2520 *
2521 * @todo This needs splitting up if more record types or code twists are
2522 * added...
2523 */
2524static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2525{
2526 /*
2527 * Process page records until we hit the terminator.
2528 */
2529 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2530 PPGMRAMRANGE pRamHint = NULL;
2531 uint8_t id = UINT8_MAX;
2532 uint32_t iPage = UINT32_MAX - 10;
2533 PPGMROMRANGE pRom = NULL;
2534 PPGMMMIO2RANGE pMmio2 = NULL;
2535
2536 /*
2537 * We batch up pages that should be freed instead of calling GMM for
2538 * each and every one of them.
2539 */
2540 uint32_t cPendingPages = 0;
2541 PGMMFREEPAGESREQ pReq;
2542 int rc = GMMR3FreePagesPrepare(pVM, &pReq, 128 /* batch size */, GMMACCOUNT_BASE);
2543 AssertLogRelRCReturn(rc, rc);
2544
2545 for (;;)
2546 {
2547 /*
2548 * Get the record type and flags.
2549 */
2550 uint8_t u8;
2551 rc = SSMR3GetU8(pSSM, &u8);
2552 if (RT_FAILURE(rc))
2553 return rc;
2554 if (u8 == PGM_STATE_REC_END)
2555 {
2556 /*
2557 * Finish off any pages pending freeing.
2558 */
2559 if (cPendingPages)
2560 {
2561 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2562 AssertLogRelRCReturn(rc, rc);
2563 }
2564 GMMR3FreePagesCleanup(pReq);
2565 return VINF_SUCCESS;
2566 }
2567 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2568 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2569 {
2570 /*
2571 * RAM page.
2572 */
2573 case PGM_STATE_REC_RAM_ZERO:
2574 case PGM_STATE_REC_RAM_RAW:
2575 {
2576 /*
2577 * Get the address and resolve it into a page descriptor.
2578 */
2579 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2580 GCPhys += PAGE_SIZE;
2581 else
2582 {
2583 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2584 if (RT_FAILURE(rc))
2585 return rc;
2586 }
2587 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2588
2589 PPGMPAGE pPage;
2590 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
2591 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2592
2593 /*
2594 * Take action according to the record type.
2595 */
2596 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2597 {
2598 case PGM_STATE_REC_RAM_ZERO:
2599 {
2600 if ( PGM_PAGE_IS_ZERO(pPage)
2601 || PGM_PAGE_IS_BALLOONED(pPage))
2602 break;
2603 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_INTERNAL_ERROR_5);
2604 /* Allocated before (prealloc), so free it now. */
2605 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
2606 AssertRC(rc);
2607 break;
2608 }
2609
2610 case PGM_STATE_REC_RAM_RAW:
2611 {
2612 void *pvDstPage;
2613 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2614 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2615 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2616 if (RT_FAILURE(rc))
2617 return rc;
2618 break;
2619 }
2620
2621 default:
2622 AssertMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2623 }
2624 id = UINT8_MAX;
2625 break;
2626 }
2627
2628 /*
2629 * MMIO2 page.
2630 */
2631 case PGM_STATE_REC_MMIO2_RAW:
2632 case PGM_STATE_REC_MMIO2_ZERO:
2633 {
2634 /*
2635 * Get the ID + page number and resolved that into a MMIO2 page.
2636 */
2637 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2638 iPage++;
2639 else
2640 {
2641 SSMR3GetU8(pSSM, &id);
2642 rc = SSMR3GetU32(pSSM, &iPage);
2643 if (RT_FAILURE(rc))
2644 return rc;
2645 }
2646 if ( !pMmio2
2647 || pMmio2->idSavedState != id)
2648 {
2649 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
2650 if (pMmio2->idSavedState == id)
2651 break;
2652 AssertLogRelMsgReturn(pMmio2, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2653 }
2654 AssertLogRelMsgReturn(iPage < (pMmio2->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pMmio2->RamRange.cb, pMmio2->RamRange.pszDesc), VERR_INTERNAL_ERROR);
2655 void *pvDstPage = (uint8_t *)pMmio2->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
2656
2657 /*
2658 * Load the page bits.
2659 */
2660 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2661 ASMMemZeroPage(pvDstPage);
2662 else
2663 {
2664 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2665 if (RT_FAILURE(rc))
2666 return rc;
2667 }
2668 GCPhys = NIL_RTGCPHYS;
2669 break;
2670 }
2671
2672 /*
2673 * ROM pages.
2674 */
2675 case PGM_STATE_REC_ROM_VIRGIN:
2676 case PGM_STATE_REC_ROM_SHW_RAW:
2677 case PGM_STATE_REC_ROM_SHW_ZERO:
2678 case PGM_STATE_REC_ROM_PROT:
2679 {
2680 /*
2681 * Get the ID + page number and resolved that into a ROM page descriptor.
2682 */
2683 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2684 iPage++;
2685 else
2686 {
2687 SSMR3GetU8(pSSM, &id);
2688 rc = SSMR3GetU32(pSSM, &iPage);
2689 if (RT_FAILURE(rc))
2690 return rc;
2691 }
2692 if ( !pRom
2693 || pRom->idSavedState != id)
2694 {
2695 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2696 if (pRom->idSavedState == id)
2697 break;
2698 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2699 }
2700 AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_INTERNAL_ERROR);
2701 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2702 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2703
2704 /*
2705 * Get and set the protection.
2706 */
2707 uint8_t u8Prot;
2708 rc = SSMR3GetU8(pSSM, &u8Prot);
2709 if (RT_FAILURE(rc))
2710 return rc;
2711 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2712 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_INTERNAL_ERROR);
2713
2714 if (enmProt != pRomPage->enmProt)
2715 {
2716 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2717 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2718 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2719 GCPhys, enmProt, pRom->pszDesc);
2720 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2721 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2722 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2723 }
2724 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2725 break; /* done */
2726
2727 /*
2728 * Get the right page descriptor.
2729 */
2730 PPGMPAGE pRealPage;
2731 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2732 {
2733 case PGM_STATE_REC_ROM_VIRGIN:
2734 if (!PGMROMPROT_IS_ROM(enmProt))
2735 pRealPage = &pRomPage->Virgin;
2736 else
2737 pRealPage = NULL;
2738 break;
2739
2740 case PGM_STATE_REC_ROM_SHW_RAW:
2741 case PGM_STATE_REC_ROM_SHW_ZERO:
2742 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2743 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2744 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2745 GCPhys, enmProt, pRom->pszDesc);
2746 if (PGMROMPROT_IS_ROM(enmProt))
2747 pRealPage = &pRomPage->Shadow;
2748 else
2749 pRealPage = NULL;
2750 break;
2751
2752 default: AssertLogRelFailedReturn(VERR_INTERNAL_ERROR); /* shut up gcc */
2753 }
2754 if (!pRealPage)
2755 {
2756 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pRealPage, &pRamHint);
2757 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2758 }
2759
2760 /*
2761 * Make it writable and map it (if necessary).
2762 */
2763 void *pvDstPage = NULL;
2764 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2765 {
2766 case PGM_STATE_REC_ROM_SHW_ZERO:
2767 if ( PGM_PAGE_IS_ZERO(pRealPage)
2768 || PGM_PAGE_IS_BALLOONED(pRealPage))
2769 break;
2770 /** @todo implement zero page replacing. */
2771 /* fall thru */
2772 case PGM_STATE_REC_ROM_VIRGIN:
2773 case PGM_STATE_REC_ROM_SHW_RAW:
2774 {
2775 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2776 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2777 break;
2778 }
2779 }
2780
2781 /*
2782 * Load the bits.
2783 */
2784 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2785 {
2786 case PGM_STATE_REC_ROM_SHW_ZERO:
2787 if (pvDstPage)
2788 ASMMemZeroPage(pvDstPage);
2789 break;
2790
2791 case PGM_STATE_REC_ROM_VIRGIN:
2792 case PGM_STATE_REC_ROM_SHW_RAW:
2793 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2794 if (RT_FAILURE(rc))
2795 return rc;
2796 break;
2797 }
2798 GCPhys = NIL_RTGCPHYS;
2799 break;
2800 }
2801
2802 /*
2803 * Unknown type.
2804 */
2805 default:
2806 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2807 }
2808 } /* forever */
2809}
2810
2811
2812/**
2813 * Worker for pgmR3Load.
2814 *
2815 * @returns VBox status code.
2816 *
2817 * @param pVM The VM handle.
2818 * @param pSSM The SSM handle.
2819 * @param uVersion The saved state version.
2820 */
2821static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2822{
2823 PPGM pPGM = &pVM->pgm.s;
2824 int rc;
2825 uint32_t u32Sep;
2826
2827 /*
2828 * Load basic data (required / unaffected by relocation).
2829 */
2830 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2831 {
2832 if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
2833 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2834 else
2835 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFieldsPreBalloon[0]);
2836
2837 AssertLogRelRCReturn(rc, rc);
2838
2839 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2840 {
2841 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2842 AssertLogRelRCReturn(rc, rc);
2843 }
2844 }
2845 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2846 {
2847 AssertRelease(pVM->cCpus == 1);
2848
2849 PGMOLD pgmOld;
2850 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2851 AssertLogRelRCReturn(rc, rc);
2852
2853 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2854 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2855 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2856
2857 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2858 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2859 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2860 }
2861 else
2862 {
2863 AssertRelease(pVM->cCpus == 1);
2864
2865 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2866 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2867 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2868
2869 uint32_t cbRamSizeIgnored;
2870 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2871 if (RT_FAILURE(rc))
2872 return rc;
2873 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2874
2875 uint32_t u32 = 0;
2876 SSMR3GetUInt(pSSM, &u32);
2877 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2878 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2879 RTUINT uGuestMode;
2880 SSMR3GetUInt(pSSM, &uGuestMode);
2881 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2882
2883 /* check separator. */
2884 SSMR3GetU32(pSSM, &u32Sep);
2885 if (RT_FAILURE(rc))
2886 return rc;
2887 if (u32Sep != (uint32_t)~0)
2888 {
2889 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2890 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2891 }
2892 }
2893
2894 /*
2895 * The guest mappings - skipped now, see re-fixation in the caller.
2896 */
2897 uint32_t i = 0;
2898 for (;; i++)
2899 {
2900 rc = SSMR3GetU32(pSSM, &u32Sep); /* seqence number */
2901 if (RT_FAILURE(rc))
2902 return rc;
2903 if (u32Sep == ~0U)
2904 break;
2905 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2906
2907 char szDesc[256];
2908 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2909 if (RT_FAILURE(rc))
2910 return rc;
2911 RTGCPTR GCPtrIgnore;
2912 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
2913 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
2914 if (RT_FAILURE(rc))
2915 return rc;
2916 }
2917
2918 /*
2919 * Load the RAM contents.
2920 */
2921 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
2922 {
2923 if (!pVM->pgm.s.LiveSave.fActive)
2924 {
2925 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2926 {
2927 rc = pgmR3LoadRamConfig(pVM, pSSM);
2928 if (RT_FAILURE(rc))
2929 return rc;
2930 }
2931 rc = pgmR3LoadRomRanges(pVM, pSSM);
2932 if (RT_FAILURE(rc))
2933 return rc;
2934 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
2935 if (RT_FAILURE(rc))
2936 return rc;
2937 }
2938
2939 rc = pgmR3LoadMemory(pVM, pSSM, SSM_PASS_FINAL);
2940 }
2941 else
2942 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
2943
2944 /* Refresh balloon accounting. */
2945 if (pVM->pgm.s.cBalloonedPages)
2946 {
2947 rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
2948 AssertRC(rc);
2949 }
2950 return rc;
2951}
2952
2953
2954/**
2955 * Execute state load operation.
2956 *
2957 * @returns VBox status code.
2958 * @param pVM VM Handle.
2959 * @param pSSM SSM operation handle.
2960 * @param uVersion Data layout version.
2961 * @param uPass The data pass.
2962 */
2963static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2964{
2965 int rc;
2966 PPGM pPGM = &pVM->pgm.s;
2967
2968 /*
2969 * Validate version.
2970 */
2971 if ( ( uPass != SSM_PASS_FINAL
2972 && uVersion != PGM_SAVED_STATE_VERSION
2973 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
2974 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2975 || ( uVersion != PGM_SAVED_STATE_VERSION
2976 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
2977 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
2978 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
2979 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
2980 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
2981 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
2982 )
2983 {
2984 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
2985 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2986 }
2987
2988 /*
2989 * Do the loading while owning the lock because a bunch of the functions
2990 * we're using requires this.
2991 */
2992 if (uPass != SSM_PASS_FINAL)
2993 {
2994 pgmLock(pVM);
2995 if (uPass != 0)
2996 rc = pgmR3LoadMemory(pVM, pSSM, uPass);
2997 else
2998 {
2999 pVM->pgm.s.LiveSave.fActive = true;
3000 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3001 rc = pgmR3LoadRamConfig(pVM, pSSM);
3002 else
3003 rc = VINF_SUCCESS;
3004 if (RT_SUCCESS(rc))
3005 rc = pgmR3LoadRomRanges(pVM, pSSM);
3006 if (RT_SUCCESS(rc))
3007 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3008 if (RT_SUCCESS(rc))
3009 rc = pgmR3LoadMemory(pVM, pSSM, uPass);
3010 }
3011 pgmUnlock(pVM);
3012 }
3013 else
3014 {
3015 pgmLock(pVM);
3016 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
3017 pVM->pgm.s.LiveSave.fActive = false;
3018 pgmUnlock(pVM);
3019 if (RT_SUCCESS(rc))
3020 {
3021 /*
3022 * We require a full resync now.
3023 */
3024 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3025 {
3026 PVMCPU pVCpu = &pVM->aCpus[i];
3027 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3028 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3029 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3030 }
3031
3032 pgmR3HandlerPhysicalUpdateAll(pVM);
3033
3034 /*
3035 * Change the paging mode and restore PGMCPU::GCPhysCR3.
3036 * (The latter requires the CPUM state to be restored already.)
3037 */
3038 if (CPUMR3IsStateRestorePending(pVM))
3039 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3040 N_("PGM was unexpectedly restored before CPUM"));
3041
3042 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3043 {
3044 PVMCPU pVCpu = &pVM->aCpus[i];
3045
3046 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3047 AssertLogRelRCReturn(rc, rc);
3048
3049 /* Restore pVM->pgm.s.GCPhysCR3. */
3050 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3051 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3052 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3053 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3054 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3055 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3056 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3057 else
3058 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3059 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3060 }
3061
3062 /*
3063 * Try re-fixate the guest mappings.
3064 */
3065 pVM->pgm.s.fMappingsFixedRestored = false;
3066 if ( pVM->pgm.s.fMappingsFixed
3067 && pgmMapAreMappingsEnabled(&pVM->pgm.s))
3068 {
3069 RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
3070 uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
3071 pVM->pgm.s.fMappingsFixed = false;
3072
3073 uint32_t cbRequired;
3074 int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
3075 if ( RT_SUCCESS(rc2)
3076 && cbRequired > cbFixed)
3077 rc2 = VERR_OUT_OF_RANGE;
3078 if (RT_SUCCESS(rc2))
3079 rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
3080 if (RT_FAILURE(rc2))
3081 {
3082 LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
3083 GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
3084 pVM->pgm.s.fMappingsFixed = false;
3085 pVM->pgm.s.fMappingsFixedRestored = true;
3086 pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
3087 pVM->pgm.s.cbMappingFixed = cbFixed;
3088 }
3089 }
3090 else
3091 {
3092 /* We used to set fixed + disabled while we only use disabled now,
3093 so wipe the state to avoid any confusion. */
3094 pVM->pgm.s.fMappingsFixed = false;
3095 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
3096 pVM->pgm.s.cbMappingFixed = 0;
3097 }
3098
3099 /*
3100 * If we have floating mappings, do a CR3 sync now to make sure the HMA
3101 * doesn't conflict with guest code / data and thereby cause trouble
3102 * when restoring other components like PATM.
3103 */
3104 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3105 {
3106 PVMCPU pVCpu = &pVM->aCpus[0];
3107 rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
3108 if (RT_FAILURE(rc))
3109 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3110 N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
3111
3112 /* Make sure to re-sync before executing code. */
3113 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3114 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3115 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3116 }
3117 }
3118 }
3119
3120 return rc;
3121}
3122
3123
3124/**
3125 * Registers the saved state callbacks with SSM.
3126 *
3127 * @returns VBox status code.
3128 * @param pVM Pointer to VM structure.
3129 * @param cbRam The RAM size.
3130 */
3131int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3132{
3133 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3134 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3135 NULL, pgmR3SaveExec, pgmR3SaveDone,
3136 pgmR3LoadPrep, pgmR3Load, NULL);
3137}
3138
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette