VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 4738

Last change on this file since 4738 was 4738, checked in by vboxsync, 17 years ago

more new phys code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 30.3 KB
Line 
1/* $Id: PGMPhys.cpp 4738 2007-09-12 16:00:54Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/pgm.h>
24#include <VBox/cpum.h>
25#include <VBox/iom.h>
26#include <VBox/sup.h>
27#include <VBox/mm.h>
28#include <VBox/stam.h>
29#include <VBox/rem.h>
30#include <VBox/csam.h>
31#include "PGMInternal.h"
32#include <VBox/vm.h>
33#include <VBox/dbg.h>
34#include <VBox/param.h>
35#include <VBox/err.h>
36#include <iprt/assert.h>
37#include <iprt/alloc.h>
38#include <iprt/asm.h>
39#include <VBox/log.h>
40#include <iprt/thread.h>
41#include <iprt/string.h>
42
43
44
45/*
46 * PGMR3PhysReadByte/Word/Dword
47 * PGMR3PhysWriteByte/Word/Dword
48 */
49
50#define PGMPHYSFN_READNAME PGMR3PhysReadByte
51#define PGMPHYSFN_WRITENAME PGMR3PhysWriteByte
52#define PGMPHYS_DATASIZE 1
53#define PGMPHYS_DATATYPE uint8_t
54#include "PGMPhys.h"
55
56#define PGMPHYSFN_READNAME PGMR3PhysReadWord
57#define PGMPHYSFN_WRITENAME PGMR3PhysWriteWord
58#define PGMPHYS_DATASIZE 2
59#define PGMPHYS_DATATYPE uint16_t
60#include "PGMPhys.h"
61
62#define PGMPHYSFN_READNAME PGMR3PhysReadDword
63#define PGMPHYSFN_WRITENAME PGMR3PhysWriteDword
64#define PGMPHYS_DATASIZE 4
65#define PGMPHYS_DATATYPE uint32_t
66#include "PGMPhys.h"
67
68
69
70
71/**
72 * Interface that the MMR3RamRegister(), MMR3RomRegister() and MMIO handler
73 * registration APIs calls to inform PGM about memory registrations.
74 *
75 * It registers the physical memory range with PGM. MM is responsible
76 * for the toplevel things - allocation and locking - while PGM is taking
77 * care of all the details and implements the physical address space virtualization.
78 *
79 * @returns VBox status.
80 * @param pVM The VM handle.
81 * @param pvRam HC virtual address of the RAM range. (page aligned)
82 * @param GCPhys GC physical address of the RAM range. (page aligned)
83 * @param cb Size of the RAM range. (page aligned)
84 * @param fFlags Flags, MM_RAM_*.
85 * @param paPages Pointer an array of physical page descriptors.
86 * @param pszDesc Description string.
87 */
88PGMR3DECL(int) PGMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
89{
90 /*
91 * Validate input.
92 * (Not so important because callers are only MMR3PhysRegister()
93 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
94 */
95 Log(("PGMR3PhysRegister %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
96
97 Assert((fFlags & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_DYNAMIC_ALLOC)) || paPages);
98 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !paPages);*/
99 Assert((fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO)) || (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) || pvRam);
100 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !pvRam);*/
101 Assert(!(fFlags & ~0xfff));
102 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
103 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
104 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
105 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
106 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
107 if (GCPhysLast < GCPhys)
108 {
109 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
110 return VERR_INVALID_PARAMETER;
111 }
112
113 /*
114 * Find range location and check for conflicts.
115 */
116 PPGMRAMRANGE pPrev = NULL;
117 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
118 while (pCur)
119 {
120 if (GCPhys <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
121 {
122 AssertMsgFailed(("Conflict! This cannot happen!\n"));
123 return VERR_PGM_RAM_CONFLICT;
124 }
125 if (GCPhysLast < pCur->GCPhys)
126 break;
127
128 /* next */
129 pPrev = pCur;
130 pCur = pCur->pNextHC;
131 }
132
133 /*
134 * Allocate RAM range.
135 * Small ranges are allocated from the heap, big ones have separate mappings.
136 */
137 size_t cbRam = RT_OFFSETOF(PGMRAMRANGE, aPages[cb >> PAGE_SHIFT]);
138 PPGMRAMRANGE pNew;
139 RTGCPTR GCPtrNew;
140 int rc;
141 if (cbRam > PAGE_SIZE / 2)
142 { /* large */
143 cbRam = RT_ALIGN_Z(cbRam, PAGE_SIZE);
144 rc = SUPPageAlloc(cbRam >> PAGE_SHIFT, (void **)&pNew);
145 if (VBOX_SUCCESS(rc))
146 {
147 rc = MMR3HyperMapHCRam(pVM, pNew, cbRam, true, pszDesc, &GCPtrNew);
148 if (VBOX_SUCCESS(rc))
149 {
150 Assert(MMHyperHC2GC(pVM, pNew) == GCPtrNew);
151 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
152 }
153 else
154 {
155 AssertMsgFailed(("MMR3HyperMapHCRam(,,%#x,,,) -> %Vrc\n", cbRam, rc));
156 SUPPageFree(pNew, cbRam >> PAGE_SHIFT);
157 }
158 }
159 else
160 AssertMsgFailed(("SUPPageAlloc(%#x,,) -> %Vrc\n", cbRam >> PAGE_SHIFT, rc));
161 }
162 else
163 { /* small */
164 rc = MMHyperAlloc(pVM, cbRam, 16, MM_TAG_PGM, (void **)&pNew);
165 if (VBOX_SUCCESS(rc))
166 GCPtrNew = MMHyperHC2GC(pVM, pNew);
167 else
168 AssertMsgFailed(("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb));
169 }
170 if (VBOX_SUCCESS(rc))
171 {
172 /*
173 * Initialize the range.
174 */
175 pNew->pvHC = pvRam;
176 pNew->GCPhys = GCPhys;
177 pNew->GCPhysLast = GCPhysLast;
178 pNew->cb = cb;
179 pNew->fFlags = fFlags;
180 pNew->pavHCChunkHC = NULL;
181 pNew->pavHCChunkGC = 0;
182
183 unsigned iPage = cb >> PAGE_SHIFT;
184 if (paPages)
185 {
186 while (iPage-- > 0)
187 {
188 pNew->aPages[iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
189 pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ALLOCATED;
190 pNew->aPages[iPage].fWrittenTo = 0;
191 pNew->aPages[iPage].fSomethingElse = 0;
192 pNew->aPages[iPage].idPage = 0;
193 pNew->aPages[iPage].u32B = 0;
194 }
195 }
196 else if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
197 {
198 /* Allocate memory for chunk to HC ptr lookup array. */
199 rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
200 AssertMsgReturn(rc == VINF_SUCCESS, ("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb), rc);
201
202 pNew->pavHCChunkGC = MMHyperHC2GC(pVM, pNew->pavHCChunkHC);
203 Assert(pNew->pavHCChunkGC);
204
205 /* Physical memory will be allocated on demand. */
206 while (iPage-- > 0)
207 {
208 pNew->aPages[iPage].HCPhys = fFlags; /** @todo PAGE FLAGS */
209 pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
210 pNew->aPages[iPage].fWrittenTo = 0;
211 pNew->aPages[iPage].fSomethingElse = 0;
212 pNew->aPages[iPage].idPage = 0;
213 pNew->aPages[iPage].u32B = 0;
214 }
215 }
216 else
217 {
218 Assert(fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO));
219 RTHCPHYS HCPhysDummyPage = (MMR3PageDummyHCPhys(pVM) & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
220 while (iPage-- > 0)
221 {
222 pNew->aPages[iPage].HCPhys = HCPhysDummyPage; /** @todo PAGE FLAGS */
223 pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
224 pNew->aPages[iPage].fWrittenTo = 0;
225 pNew->aPages[iPage].fSomethingElse = 0;
226 pNew->aPages[iPage].idPage = 0;
227 pNew->aPages[iPage].u32B = 0;
228 }
229 }
230
231 /*
232 * Insert the new RAM range.
233 */
234 pgmLock(pVM);
235 pNew->pNextHC = pCur;
236 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
237 if (pPrev)
238 {
239 pPrev->pNextHC = pNew;
240 pPrev->pNextGC = GCPtrNew;
241 }
242 else
243 {
244 pVM->pgm.s.pRamRangesHC = pNew;
245 pVM->pgm.s.pRamRangesGC = GCPtrNew;
246 }
247 pgmUnlock(pVM);
248 }
249 return rc;
250}
251
252
253/**
254 * Register a chunk of a the physical memory range with PGM. MM is responsible
255 * for the toplevel things - allocation and locking - while PGM is taking
256 * care of all the details and implements the physical address space virtualization.
257 *
258 *
259 * @returns VBox status.
260 * @param pVM The VM handle.
261 * @param pvRam HC virtual address of the RAM range. (page aligned)
262 * @param GCPhys GC physical address of the RAM range. (page aligned)
263 * @param cb Size of the RAM range. (page aligned)
264 * @param fFlags Flags, MM_RAM_*.
265 * @param paPages Pointer an array of physical page descriptors.
266 * @param pszDesc Description string.
267 */
268PGMR3DECL(int) PGMR3PhysRegisterChunk(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
269{
270#ifdef PGM_DYNAMIC_RAM_ALLOC
271 NOREF(pszDesc);
272
273 /*
274 * Validate input.
275 * (Not so important because callers are only MMR3PhysRegister()
276 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
277 */
278 Log(("PGMR3PhysRegisterChunk %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
279
280 Assert(paPages);
281 Assert(pvRam);
282 Assert(!(fFlags & ~0xfff));
283 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
284 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
285 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
286 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
287 Assert(VM_IS_EMT(pVM));
288 Assert(!(GCPhys & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
289 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
290
291 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
292 if (GCPhysLast < GCPhys)
293 {
294 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
295 return VERR_INVALID_PARAMETER;
296 }
297
298 /*
299 * Find existing range location.
300 */
301 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
302 while (pRam)
303 {
304 RTGCPHYS off = GCPhys - pRam->GCPhys;
305 if ( off < pRam->cb
306 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
307 break;
308
309 pRam = CTXSUFF(pRam->pNext);
310 }
311 AssertReturn(pRam, VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
312
313 unsigned off = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
314 unsigned iPage = cb >> PAGE_SHIFT;
315 if (paPages)
316 {
317 while (iPage-- > 0)
318 pRam->aPages[off + iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
319 }
320 off >>= (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
321 pRam->pavHCChunkHC[off] = pvRam;
322
323 /* Notify the recompiler. */
324 REMR3NotifyPhysRamChunkRegister(pVM, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, (RTHCUINTPTR)pvRam, fFlags);
325
326 return VINF_SUCCESS;
327#else /* !PGM_DYNAMIC_RAM_ALLOC */
328 AssertReleaseMsgFailed(("Shouldn't ever get here when PGM_DYNAMIC_RAM_ALLOC isn't defined!\n"));
329 return VERR_INTERNAL_ERROR;
330#endif /* !PGM_DYNAMIC_RAM_ALLOC */
331}
332
333
334/**
335 * Allocate missing physical pages for an existing guest RAM range.
336 *
337 * @returns VBox status.
338 * @param pVM The VM handle.
339 * @param GCPhys GC physical address of the RAM range. (page aligned)
340 */
341PGMR3DECL(int) PGM3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
342{
343 /*
344 * Walk range list.
345 */
346 pgmLock(pVM);
347
348 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
349 while (pRam)
350 {
351 RTGCPHYS off = GCPhys - pRam->GCPhys;
352 if ( off < pRam->cb
353 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
354 {
355 bool fRangeExists = false;
356 unsigned off = (GCPhys - pRam->GCPhys) >> PGM_DYNAMIC_CHUNK_SHIFT;
357
358 /** @note A request made from another thread may end up in EMT after somebody else has already allocated the range. */
359 if (pRam->pavHCChunkHC[off])
360 fRangeExists = true;
361
362 pgmUnlock(pVM);
363 if (fRangeExists)
364 return VINF_SUCCESS;
365 return pgmr3PhysGrowRange(pVM, GCPhys);
366 }
367
368 pRam = CTXSUFF(pRam->pNext);
369 }
370 pgmUnlock(pVM);
371 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
372}
373
374#ifndef NEW_PHYS_CODE
375
376/**
377 * Allocate missing physical pages for an existing guest RAM range.
378 *
379 * @returns VBox status.
380 * @param pVM The VM handle.
381 * @param pRamRange RAM range
382 * @param GCPhys GC physical address of the RAM range. (page aligned)
383 */
384int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
385{
386 void *pvRam;
387 int rc;
388
389 /* We must execute this function in the EMT thread, otherwise we'll run into problems. */
390 if (!VM_IS_EMT(pVM))
391 {
392 PVMREQ pReq;
393
394 AssertMsg(!PDMCritSectIsOwner(&pVM->pgm.s.CritSect), ("We own the PGM lock -> deadlock danger!!\n"));
395
396 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)PGM3PhysGrowRange, 2, pVM, GCPhys);
397 if (VBOX_SUCCESS(rc))
398 {
399 rc = pReq->iStatus;
400 VMR3ReqFree(pReq);
401 }
402 return rc;
403 }
404
405 /* Round down to chunk boundary */
406 GCPhys = GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK;
407
408 STAM_COUNTER_INC(&pVM->pgm.s.StatDynRamGrow);
409 STAM_COUNTER_ADD(&pVM->pgm.s.StatDynRamTotal, PGM_DYNAMIC_CHUNK_SIZE/(1024*1024));
410
411 Log(("pgmr3PhysGrowRange: allocate chunk of size 0x%X at %VGp\n", PGM_DYNAMIC_CHUNK_SIZE, GCPhys));
412
413 unsigned cPages = PGM_DYNAMIC_CHUNK_SIZE >> PAGE_SHIFT;
414 rc = SUPPageAlloc(cPages, &pvRam);
415 if (VBOX_SUCCESS(rc))
416 {
417 VMSTATE enmVMState = VMR3GetState(pVM);
418
419 rc = MMR3PhysRegisterEx(pVM, pvRam, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, 0, MM_PHYS_TYPE_DYNALLOC_CHUNK, "Main Memory");
420 if ( VBOX_SUCCESS(rc)
421 || enmVMState != VMSTATE_RUNNING)
422 {
423 if (VBOX_FAILURE(rc))
424 {
425 AssertMsgFailed(("Out of memory while trying to allocate a guest RAM chunk at %VGp!\n", GCPhys));
426 LogRel(("PGM: Out of memory while trying to allocate a guest RAM chunk at %VGp (VMstate=%s)!\n", GCPhys, VMR3GetStateName(enmVMState)));
427 }
428 return rc;
429 }
430
431 SUPPageFree(pvRam, cPages);
432
433 LogRel(("pgmr3PhysGrowRange: out of memory. pause until the user resumes execution.\n"));
434
435 /* Pause first, then inform Main. */
436 rc = VMR3SuspendNoSave(pVM);
437 AssertRC(rc);
438
439 VMSetRuntimeError(pVM, false, "HostMemoryLow", "Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM.");
440
441 /* Wait for resume event; will only return in that case. If the VM is stopped, the EMT thread will be destroyed. */
442 rc = VMR3WaitForResume(pVM);
443
444 /* Retry */
445 LogRel(("pgmr3PhysGrowRange: VM execution resumed -> retry.\n"));
446 return pgmr3PhysGrowRange(pVM, GCPhys);
447 }
448 return rc;
449}
450
451#endif /* !NEW_PHYS_CODE */
452
453/**
454 * Interface MMIO handler relocation calls.
455 *
456 * It relocates an existing physical memory range with PGM.
457 *
458 * @returns VBox status.
459 * @param pVM The VM handle.
460 * @param GCPhysOld Previous GC physical address of the RAM range. (page aligned)
461 * @param GCPhysNew New GC physical address of the RAM range. (page aligned)
462 * @param cb Size of the RAM range. (page aligned)
463 */
464PGMR3DECL(int) PGMR3PhysRelocate(PVM pVM, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, size_t cb)
465{
466 /*
467 * Validate input.
468 * (Not so important because callers are only MMR3PhysRelocate(),
469 * but anyway...)
470 */
471 Log(("PGMR3PhysRelocate Old %VGp New %VGp (%#x bytes)\n", GCPhysOld, GCPhysNew, cb));
472
473 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
474 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
475 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
476 RTGCPHYS GCPhysLast;
477 GCPhysLast = GCPhysOld + (cb - 1);
478 if (GCPhysLast < GCPhysOld)
479 {
480 AssertMsgFailed(("The old range wraps! GCPhys=%VGp cb=%#x\n", GCPhysOld, cb));
481 return VERR_INVALID_PARAMETER;
482 }
483 GCPhysLast = GCPhysNew + (cb - 1);
484 if (GCPhysLast < GCPhysNew)
485 {
486 AssertMsgFailed(("The new range wraps! GCPhys=%VGp cb=%#x\n", GCPhysNew, cb));
487 return VERR_INVALID_PARAMETER;
488 }
489
490 /*
491 * Find and remove old range location.
492 */
493 pgmLock(pVM);
494 PPGMRAMRANGE pPrev = NULL;
495 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
496 while (pCur)
497 {
498 if (pCur->GCPhys == GCPhysOld && pCur->cb == cb)
499 break;
500
501 /* next */
502 pPrev = pCur;
503 pCur = pCur->pNextHC;
504 }
505 if (pPrev)
506 {
507 pPrev->pNextHC = pCur->pNextHC;
508 pPrev->pNextGC = pCur->pNextGC;
509 }
510 else
511 {
512 pVM->pgm.s.pRamRangesHC = pCur->pNextHC;
513 pVM->pgm.s.pRamRangesGC = pCur->pNextGC;
514 }
515
516 /*
517 * Update the range.
518 */
519 pCur->GCPhys = GCPhysNew;
520 pCur->GCPhysLast= GCPhysLast;
521 PPGMRAMRANGE pNew = pCur;
522
523 /*
524 * Find range location and check for conflicts.
525 */
526 pPrev = NULL;
527 pCur = pVM->pgm.s.pRamRangesHC;
528 while (pCur)
529 {
530 if (GCPhysNew <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
531 {
532 AssertMsgFailed(("Conflict! This cannot happen!\n"));
533 pgmUnlock(pVM);
534 return VERR_PGM_RAM_CONFLICT;
535 }
536 if (GCPhysLast < pCur->GCPhys)
537 break;
538
539 /* next */
540 pPrev = pCur;
541 pCur = pCur->pNextHC;
542 }
543
544 /*
545 * Reinsert the RAM range.
546 */
547 pNew->pNextHC = pCur;
548 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
549 if (pPrev)
550 {
551 pPrev->pNextHC = pNew;
552 pPrev->pNextGC = MMHyperHC2GC(pVM, pNew);
553 }
554 else
555 {
556 pVM->pgm.s.pRamRangesHC = pNew;
557 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pNew);
558 }
559
560 pgmUnlock(pVM);
561 return VINF_SUCCESS;
562}
563
564
565/**
566 * Interface MMR3RomRegister() and MMR3PhysReserve calls to update the
567 * flags of existing RAM ranges.
568 *
569 * @returns VBox status.
570 * @param pVM The VM handle.
571 * @param GCPhys GC physical address of the RAM range. (page aligned)
572 * @param cb Size of the RAM range. (page aligned)
573 * @param fFlags The Or flags, MM_RAM_* \#defines.
574 * @param fMask The and mask for the flags.
575 */
576PGMR3DECL(int) PGMR3PhysSetFlags(PVM pVM, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, unsigned fMask)
577{
578 Log(("PGMR3PhysSetFlags %08X %x %x %x\n", GCPhys, cb, fFlags, fMask));
579
580 /*
581 * Validate input.
582 * (Not so important because caller is always MMR3RomRegister() and MMR3PhysReserve(), but anyway...)
583 */
584 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)));
585 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
586 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
587 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
588 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
589
590 /*
591 * Lookup the range.
592 */
593 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
594 while (pRam && GCPhys > pRam->GCPhysLast)
595 pRam = CTXSUFF(pRam->pNext);
596 if ( !pRam
597 || GCPhys > pRam->GCPhysLast
598 || GCPhysLast < pRam->GCPhys)
599 {
600 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
601 return VERR_INVALID_PARAMETER;
602 }
603
604 /*
605 * Update the requested flags.
606 */
607 RTHCPHYS fFullMask = ~(RTHCPHYS)(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)
608 | fMask;
609 unsigned iPageEnd = (GCPhysLast - pRam->GCPhys + 1) >> PAGE_SHIFT;
610 unsigned iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
611 for ( ; iPage < iPageEnd; iPage++)
612 pRam->aPages[iPage].HCPhys = (pRam->aPages[iPage].HCPhys & fFullMask) | fFlags; /** @todo PAGE FLAGS */
613
614 return VINF_SUCCESS;
615}
616
617
618/**
619 * Sets the Address Gate 20 state.
620 *
621 * @param pVM VM handle.
622 * @param fEnable True if the gate should be enabled.
623 * False if the gate should be disabled.
624 */
625PGMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
626{
627 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
628 if (pVM->pgm.s.fA20Enabled != (RTUINT)fEnable)
629 {
630 pVM->pgm.s.fA20Enabled = fEnable;
631 pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
632 REMR3A20Set(pVM, fEnable);
633 }
634}
635
636
637/**
638 * Tree enumeration callback for dealing with age rollover.
639 * It will perform a simple compression of the current age.
640 */
641static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
642{
643 /* Age compression - ASSUMES iNow == 4. */
644 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
645 if (pChunk->iAge >= UINT32_C(0xffffff00))
646 pChunk->iAge = 3;
647 else if (pChunk->iAge >= UINT32_C(0xfffff000))
648 pChunk->iAge = 2;
649 else if (pChunk->iAge)
650 pChunk->iAge = 1;
651 else /* iAge = 0 */
652 pChunk->iAge = 4;
653
654 /* reinsert */
655 PVM pVM = (PVM)pvUser;
656 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
657 pChunk->AgeCore.Key = pChunk->iAge;
658 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
659 return 0;
660}
661
662
663/**
664 * Tree enumeration callback that updates the chunks that have
665 * been used since the last
666 */
667static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
668{
669 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
670 if (!pChunk->iAge)
671 {
672 PVM pVM = (PVM)pvUser;
673 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
674 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
675 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
676 }
677
678 return 0;
679}
680
681
682/**
683 * Performs ageing of the ring-3 chunk mappings.
684 *
685 * @param pVM The VM handle.
686 */
687PGMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
688{
689 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
690 pVM->pgm.s.ChunkR3Map.iNow++;
691 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
692 {
693 pVM->pgm.s.ChunkR3Map.iNow = 4;
694 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
695 }
696 else
697 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
698}
699
700
701/**
702 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
703 */
704typedef struct PGMR3PHYSCHUNKUNMAPCB
705{
706 PVM pVM; /**< The VM handle. */
707 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
708} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
709
710
711/**
712 * Callback used to find the mapping that's been unused for
713 * the longest time.
714 */
715static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
716{
717 do
718 {
719 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
720 if ( pChunk->iAge
721 && !pChunk->cRefs)
722 {
723 /*
724 * Check that it's not in any of the TLBs.
725 */
726 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
727 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
728 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
729 {
730 pChunk = NULL;
731 break;
732 }
733 if (pChunk)
734 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
735 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
736 {
737 pChunk = NULL;
738 break;
739 }
740 if (pChunk)
741 {
742 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
743 return 1; /* done */
744 }
745 }
746
747 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
748 pNode = pNode->pList;
749 } while (pNode);
750 return 0;
751}
752
753
754/**
755 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
756 *
757 * The candidate will not be part of any TLBs, so no need to flush
758 * anything afterwards.
759 *
760 * @returns Chunk id.
761 * @param pVM The VM handle.
762 */
763static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
764{
765 /*
766 * Do tree ageing first?
767 */
768 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
769 PGMR3PhysChunkAgeing(pVM);
770
771 /*
772 * Enumerate the age tree starting with the left most node.
773 */
774 PGMR3PHYSCHUNKUNMAPCB Args;
775 Args.pVM = pVM;
776 Args.pChunk = NULL;
777 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
778 return Args.pChunk->Core.Key;
779 return INT32_MAX;
780}
781
782
783/**
784 * Argument package for the VMMR0_DO_GMM_MAP_UNMAP_CHUNK request.
785 */
786typedef struct GMMMAPUNMAPCHUNKREQ
787{
788 /** The chunk to map, UINT32_MAX if unmap only. (IN) */
789 uint32_t idChunkMap;
790 /** The chunk to unmap, UINT32_MAX if map only. (IN) */
791 uint32_t idChunkUnmap;
792 /** Where the mapping address is returned. (OUT) */
793 RTR3PTR pvR3;
794} GMMMAPUNMAPCHUNKREQ;
795
796
797/**
798 * Maps the given chunk into the ring-3 mapping cache.
799 *
800 * This will call ring-0.
801 *
802 * @returns VBox status code.
803 * @param pVM The VM handle.
804 * @param idChunk The chunk in question.
805 * @param ppChunk Where to store the chunk tracking structure.
806 *
807 * @remarks Called from within the PGM critical section.
808 */
809int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
810{
811 int rc;
812 /*
813 * Allocate a new tracking structure first.
814 */
815#if 0 /* for later when we've got a separate mapping method for ring-0. */
816 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
817 AssertReturn(pChunk, VERR_NO_MEMORY);
818#else
819 PPGMCHUNKR3MAP pChunk;
820 rc = MMHyperAlloc(pVM, sizeof(*pChunk), 0, MM_TAG_PGM_CHUNK_MAPPING, (void **)&pChunk);
821 AssertRCReturn(rc, rc);
822#endif
823 pChunk->Core.Key = idChunk;
824 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
825 pChunk->iAge = 0;
826 pChunk->cRefs = 0;
827 pChunk->cPermRefs = 0;
828 pChunk->pv = NULL;
829
830 /*
831 * Request the ring-0 part to map the chunk in question and if
832 * necessary unmap another one to make space in the mapping cache.
833 */
834 GMMMAPUNMAPCHUNKREQ Req;
835 Req.pvR3 = NULL;
836 Req.idChunkMap = idChunk;
837 Req.idChunkUnmap = INT32_MAX;
838 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
839 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
840 /** @todo SUPCallVMMR0Ex needs to support in+out or similar. */
841 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, &Req, sizeof(Req));
842 if (VBOX_SUCCESS(rc))
843 {
844 /*
845 * Update the tree.
846 */
847 /* insert the new one. */
848 AssertPtr(Req.pvR3);
849 pChunk->pv = Req.pvR3;
850 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
851 AssertRelease(fRc);
852 pVM->pgm.s.ChunkR3Map.c++;
853
854 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
855 AssertRelease(fRc);
856
857 /* remove the unmapped one. */
858 if (Req.idChunkUnmap != INT32_MAX)
859 {
860 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
861 AssertRelease(pUnmappedChunk);
862 pUnmappedChunk->pv = NULL;
863 pUnmappedChunk->Core.Key = UINT32_MAX;
864#if 0 /* for later when we've got a separate mapping method for ring-0. */
865 MMR3HeapFree(pUnmappedChunk);
866#else
867 MMHyperFree(pVM, pUnmappedChunk);
868#endif
869 pVM->pgm.s.ChunkR3Map.c--;
870 }
871 }
872 else
873 {
874 AssertRC(rc);
875#if 0 /* for later when we've got a separate mapping method for ring-0. */
876 MMR3HeapFree(pChunk);
877#else
878 MMHyperFree(pVM, pChunk);
879#endif
880 pChunk = NULL;
881 }
882
883 *ppChunk = pChunk;
884 return rc;
885}
886
887
888/**
889 * For VMMCALLHOST_PGM_MAP_CHUNK, considered internal.
890 *
891 * @returns see pgmR3PhysChunkMap.
892 * @param pVM The VM handle.
893 * @param idChunk The chunk to map.
894 */
895PDMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
896{
897 PPGMCHUNKR3MAP pChunk;
898 return pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
899}
900
901
902/**
903 * Invalidates the TLB for the ring-3 mapping cache.
904 *
905 * @param pVM The VM handle.
906 */
907PGMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
908{
909 pgmLock(pVM);
910 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
911 {
912 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
913 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
914 }
915 pgmUnlock(pVM);
916}
917
918
919/**
920 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES.
921 *
922 * @returns The following VBox status codes.
923 * @retval VINF_SUCCESS on success. FF cleared.
924 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in this case.
925 *
926 * @param pVM The VM handle.
927 */
928PDMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
929{
930 pgmLock(pVM);
931 int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, NULL, 0);
932 if (rc == VERR_GMM_SEED_ME)
933 {
934 void *pvChunk;
935 rc = SUPPageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
936 if (VBOX_SUCCESS(rc))
937 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_SEED_CHUNK, pvChunk, 0);
938 if (VBOX_FAILURE(rc))
939 {
940 LogRel(("PGM: GMM Seeding failed, rc=%Vrc\n", rc));
941 rc = VINF_EM_NO_MEMORY;
942 }
943 }
944 pgmUnlock(pVM);
945 Assert(rc == VINF_SUCCESS || rc == VINF_EM_NO_MEMORY);
946 return rc;
947}
948
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette