VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 4403

Last change on this file since 4403 was 4387, checked in by vboxsync, 17 years ago

more grokable.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 19.8 KB
Line 
1/* $Id: PGMPhys.cpp 4387 2007-08-27 14:24:53Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/pgm.h>
24#include <VBox/cpum.h>
25#include <VBox/iom.h>
26#include <VBox/sup.h>
27#include <VBox/mm.h>
28#include <VBox/stam.h>
29#include <VBox/rem.h>
30#include <VBox/csam.h>
31#include "PGMInternal.h"
32#include <VBox/vm.h>
33#include <VBox/dbg.h>
34#include <VBox/param.h>
35#include <VBox/err.h>
36#include <iprt/assert.h>
37#include <iprt/alloc.h>
38#include <iprt/asm.h>
39#include <VBox/log.h>
40#include <iprt/thread.h>
41#include <iprt/string.h>
42
43
44
45
46/**
47 * Interface that the MMR3RamRegister(), MMR3RomRegister() and MMIO handler
48 * registration APIs calls to inform PGM about memory registrations.
49 *
50 * It registers the physical memory range with PGM. MM is responsible
51 * for the toplevel things - allocation and locking - while PGM is taking
52 * care of all the details and implements the physical address space virtualization.
53 *
54 * @returns VBox status.
55 * @param pVM The VM handle.
56 * @param pvRam HC virtual address of the RAM range. (page aligned)
57 * @param GCPhys GC physical address of the RAM range. (page aligned)
58 * @param cb Size of the RAM range. (page aligned)
59 * @param fFlags Flags, MM_RAM_*.
60 * @param paPages Pointer an array of physical page descriptors.
61 * @param pszDesc Description string.
62 */
63PGMR3DECL(int) PGMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
64{
65 /*
66 * Validate input.
67 * (Not so important because callers are only MMR3PhysRegister()
68 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
69 */
70 Log(("PGMR3PhysRegister %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
71
72 Assert((fFlags & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_DYNAMIC_ALLOC)) || paPages);
73 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !paPages);*/
74 Assert((fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO)) || (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) || pvRam);
75 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !pvRam);*/
76 Assert(!(fFlags & ~0xfff));
77 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
78 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
79 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
80 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
81 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
82 if (GCPhysLast < GCPhys)
83 {
84 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
85 return VERR_INVALID_PARAMETER;
86 }
87
88 /*
89 * Find range location and check for conflicts.
90 */
91 PPGMRAMRANGE pPrev = NULL;
92 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
93 while (pCur)
94 {
95 if (GCPhys <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
96 {
97 AssertMsgFailed(("Conflict! This cannot happen!\n"));
98 return VERR_PGM_RAM_CONFLICT;
99 }
100 if (GCPhysLast < pCur->GCPhys)
101 break;
102
103 /* next */
104 pPrev = pCur;
105 pCur = pCur->pNextHC;
106 }
107
108 /*
109 * Allocate RAM range.
110 * Small ranges are allocated from the heap, big ones have separate mappings.
111 */
112 size_t cbRam = RT_OFFSETOF(PGMRAMRANGE, aHCPhys[cb >> PAGE_SHIFT]);
113 PPGMRAMRANGE pNew;
114 RTGCPTR GCPtrNew;
115 int rc;
116 if (cbRam > PAGE_SIZE / 2)
117 { /* large */
118 cbRam = RT_ALIGN_Z(cbRam, PAGE_SIZE);
119 rc = SUPPageAlloc(cbRam >> PAGE_SHIFT, (void **)&pNew);
120 if (VBOX_SUCCESS(rc))
121 {
122 rc = MMR3HyperMapHCRam(pVM, pNew, cbRam, true, pszDesc, &GCPtrNew);
123 if (VBOX_SUCCESS(rc))
124 {
125 Assert(MMHyperHC2GC(pVM, pNew) == GCPtrNew);
126 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
127 }
128 else
129 {
130 AssertMsgFailed(("MMR3HyperMapHCRam(,,%#x,,,) -> %Vrc\n", cbRam, rc));
131 SUPPageFree(pNew, cbRam >> PAGE_SHIFT);
132 }
133 }
134 else
135 AssertMsgFailed(("SUPPageAlloc(%#x,,) -> %Vrc\n", cbRam >> PAGE_SHIFT, rc));
136 }
137 else
138 { /* small */
139 rc = MMHyperAlloc(pVM, cbRam, 16, MM_TAG_PGM, (void **)&pNew);
140 if (VBOX_SUCCESS(rc))
141 GCPtrNew = MMHyperHC2GC(pVM, pNew);
142 else
143 AssertMsgFailed(("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb));
144 }
145 if (VBOX_SUCCESS(rc))
146 {
147 /*
148 * Initialize the range.
149 */
150 pNew->pvHC = pvRam;
151 pNew->GCPhys = GCPhys;
152 pNew->GCPhysLast = GCPhysLast;
153 pNew->cb = cb;
154 pNew->fFlags = fFlags;
155 pNew->pavHCChunkHC = NULL;
156 pNew->pavHCChunkGC = 0;
157
158 unsigned iPage = cb >> PAGE_SHIFT;
159 if (paPages)
160 {
161 while (iPage-- > 0)
162 pNew->aHCPhys[iPage] = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags;
163 }
164 else if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
165 {
166 /* Allocate memory for chunk to HC ptr lookup array. */
167 rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
168 AssertMsgReturn(rc == VINF_SUCCESS, ("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb), rc);
169
170 pNew->pavHCChunkGC = MMHyperHC2GC(pVM, pNew->pavHCChunkHC);
171 Assert(pNew->pavHCChunkGC);
172
173 /* Physical memory will be allocated on demand. */
174 while (iPage-- > 0)
175 pNew->aHCPhys[iPage] = fFlags;
176 }
177 else
178 {
179 Assert(fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO));
180 RTHCPHYS HCPhysDummyPage = (MMR3PageDummyHCPhys(pVM) & X86_PTE_PAE_PG_MASK) | fFlags;
181 while (iPage-- > 0)
182 pNew->aHCPhys[iPage] = HCPhysDummyPage;
183 }
184
185 /*
186 * Insert the new RAM range.
187 */
188 pgmLock(pVM);
189 pNew->pNextHC = pCur;
190 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
191 if (pPrev)
192 {
193 pPrev->pNextHC = pNew;
194 pPrev->pNextGC = GCPtrNew;
195 }
196 else
197 {
198 pVM->pgm.s.pRamRangesHC = pNew;
199 pVM->pgm.s.pRamRangesGC = GCPtrNew;
200 }
201 pgmUnlock(pVM);
202 }
203 return rc;
204}
205
206
207/**
208 * Register a chunk of a the physical memory range with PGM. MM is responsible
209 * for the toplevel things - allocation and locking - while PGM is taking
210 * care of all the details and implements the physical address space virtualization.
211 *
212 *
213 * @returns VBox status.
214 * @param pVM The VM handle.
215 * @param pvRam HC virtual address of the RAM range. (page aligned)
216 * @param GCPhys GC physical address of the RAM range. (page aligned)
217 * @param cb Size of the RAM range. (page aligned)
218 * @param fFlags Flags, MM_RAM_*.
219 * @param paPages Pointer an array of physical page descriptors.
220 * @param pszDesc Description string.
221 */
222PGMR3DECL(int) PGMR3PhysRegisterChunk(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
223{
224#ifdef PGM_DYNAMIC_RAM_ALLOC
225 NOREF(pszDesc);
226
227 /*
228 * Validate input.
229 * (Not so important because callers are only MMR3PhysRegister()
230 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
231 */
232 Log(("PGMR3PhysRegisterChunk %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
233
234 Assert(paPages);
235 Assert(pvRam);
236 Assert(!(fFlags & ~0xfff));
237 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
238 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
239 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
240 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
241 Assert(VM_IS_EMT(pVM));
242 Assert(!(GCPhys & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
243 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
244
245 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
246 if (GCPhysLast < GCPhys)
247 {
248 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
249 return VERR_INVALID_PARAMETER;
250 }
251
252 /*
253 * Find existing range location.
254 */
255 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
256 while (pRam)
257 {
258 RTGCPHYS off = GCPhys - pRam->GCPhys;
259 if ( off < pRam->cb
260 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
261 break;
262
263 pRam = CTXSUFF(pRam->pNext);
264 }
265 AssertReturn(pRam, VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
266
267 unsigned off = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
268 unsigned iPage = cb >> PAGE_SHIFT;
269 if (paPages)
270 {
271 while (iPage-- > 0)
272 pRam->aHCPhys[off + iPage] = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags;
273 }
274 off >>= (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
275 pRam->pavHCChunkHC[off] = pvRam;
276
277 /* Notify the recompiler. */
278 REMR3NotifyPhysRamChunkRegister(pVM, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, (RTHCUINTPTR)pvRam, fFlags);
279
280 return VINF_SUCCESS;
281#else /* !PGM_DYNAMIC_RAM_ALLOC */
282 AssertReleaseMsgFailed(("Shouldn't ever get here when PGM_DYNAMIC_RAM_ALLOC isn't defined!\n"));
283 return VERR_INTERNAL_ERROR;
284#endif /* !PGM_DYNAMIC_RAM_ALLOC */
285}
286
287
288/**
289 * Allocate missing physical pages for an existing guest RAM range.
290 *
291 * @returns VBox status.
292 * @param pVM The VM handle.
293 * @param GCPhys GC physical address of the RAM range. (page aligned)
294 */
295PGMR3DECL(int) PGM3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
296{
297 /*
298 * Walk range list.
299 */
300 pgmLock(pVM);
301
302 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
303 while (pRam)
304 {
305 RTGCPHYS off = GCPhys - pRam->GCPhys;
306 if ( off < pRam->cb
307 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
308 {
309 bool fRangeExists = false;
310 unsigned off = (GCPhys - pRam->GCPhys) >> PGM_DYNAMIC_CHUNK_SHIFT;
311
312 /** @note A request made from another thread may end up in EMT after somebody else has already allocated the range. */
313 if (pRam->pavHCChunkHC[off])
314 fRangeExists = true;
315
316 pgmUnlock(pVM);
317 if (fRangeExists)
318 return VINF_SUCCESS;
319 return pgmr3PhysGrowRange(pVM, GCPhys);
320 }
321
322 pRam = CTXSUFF(pRam->pNext);
323 }
324 pgmUnlock(pVM);
325 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
326}
327
328
329/**
330 * Allocate missing physical pages for an existing guest RAM range.
331 *
332 * @returns VBox status.
333 * @param pVM The VM handle.
334 * @param pRamRange RAM range
335 * @param GCPhys GC physical address of the RAM range. (page aligned)
336 */
337int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
338{
339 void *pvRam;
340 int rc;
341
342 /* We must execute this function in the EMT thread, otherwise we'll run into problems. */
343 if (!VM_IS_EMT(pVM))
344 {
345 PVMREQ pReq;
346
347 AssertMsg(!PDMCritSectIsOwner(&pVM->pgm.s.CritSect), ("We own the PGM lock -> deadlock danger!!\n"));
348
349 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)PGM3PhysGrowRange, 2, pVM, GCPhys);
350 if (VBOX_SUCCESS(rc))
351 {
352 rc = pReq->iStatus;
353 VMR3ReqFree(pReq);
354 }
355 return rc;
356 }
357
358 /* Round down to chunk boundary */
359 GCPhys = GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK;
360
361 STAM_COUNTER_INC(&pVM->pgm.s.StatDynRamGrow);
362 STAM_COUNTER_ADD(&pVM->pgm.s.StatDynRamTotal, PGM_DYNAMIC_CHUNK_SIZE/(1024*1024));
363
364 Log(("pgmr3PhysGrowRange: allocate chunk of size 0x%X at %VGp\n", PGM_DYNAMIC_CHUNK_SIZE, GCPhys));
365
366 unsigned cPages = PGM_DYNAMIC_CHUNK_SIZE >> PAGE_SHIFT;
367 rc = SUPPageAlloc(cPages, &pvRam);
368 if (VBOX_SUCCESS(rc))
369 {
370 VMSTATE enmVMState = VMR3GetState(pVM);
371
372 rc = MMR3PhysRegisterEx(pVM, pvRam, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, 0, MM_PHYS_TYPE_DYNALLOC_CHUNK, "Main Memory");
373 if ( VBOX_SUCCESS(rc)
374 || enmVMState != VMSTATE_RUNNING)
375 {
376 if (VBOX_FAILURE(rc))
377 {
378 AssertMsgFailed(("Out of memory while trying to allocate a guest RAM chunk at %VGp!\n", GCPhys));
379 LogRel(("PGM: Out of memory while trying to allocate a guest RAM chunk at %VGp (VMstate=%s)!\n", GCPhys, VMR3GetStateName(enmVMState)));
380 }
381 return rc;
382 }
383
384 SUPPageFree(pvRam, cPages);
385
386 LogRel(("pgmr3PhysGrowRange: out of memory. pause until the user resumes execution.\n"));
387
388 /* Pause first, then inform Main. */
389 rc = VMR3SuspendNoSave(pVM);
390 AssertRC(rc);
391
392 VMSetRuntimeError(pVM, false, "HostMemoryLow", "Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM.");
393
394 /* Wait for resume event; will only return in that case. If the VM is stopped, the EMT thread will be destroyed. */
395 rc = VMR3WaitForResume(pVM);
396
397 /* Retry */
398 LogRel(("pgmr3PhysGrowRange: VM execution resumed -> retry.\n"));
399 return pgmr3PhysGrowRange(pVM, GCPhys);
400 }
401 return rc;
402}
403
404
405/**
406 * Interface MMIO handler relocation calls.
407 *
408 * It relocates an existing physical memory range with PGM.
409 *
410 * @returns VBox status.
411 * @param pVM The VM handle.
412 * @param GCPhysOld Previous GC physical address of the RAM range. (page aligned)
413 * @param GCPhysNew New GC physical address of the RAM range. (page aligned)
414 * @param cb Size of the RAM range. (page aligned)
415 */
416PGMR3DECL(int) PGMR3PhysRelocate(PVM pVM, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, size_t cb)
417{
418 /*
419 * Validate input.
420 * (Not so important because callers are only MMR3PhysRelocate(),
421 * but anyway...)
422 */
423 Log(("PGMR3PhysRelocate Old %VGp New %VGp (%#x bytes)\n", GCPhysOld, GCPhysNew, cb));
424
425 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
426 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
427 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
428 RTGCPHYS GCPhysLast;
429 GCPhysLast = GCPhysOld + (cb - 1);
430 if (GCPhysLast < GCPhysOld)
431 {
432 AssertMsgFailed(("The old range wraps! GCPhys=%VGp cb=%#x\n", GCPhysOld, cb));
433 return VERR_INVALID_PARAMETER;
434 }
435 GCPhysLast = GCPhysNew + (cb - 1);
436 if (GCPhysLast < GCPhysNew)
437 {
438 AssertMsgFailed(("The new range wraps! GCPhys=%VGp cb=%#x\n", GCPhysNew, cb));
439 return VERR_INVALID_PARAMETER;
440 }
441
442 /*
443 * Find and remove old range location.
444 */
445 pgmLock(pVM);
446 PPGMRAMRANGE pPrev = NULL;
447 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
448 while (pCur)
449 {
450 if (pCur->GCPhys == GCPhysOld && pCur->cb == cb)
451 break;
452
453 /* next */
454 pPrev = pCur;
455 pCur = pCur->pNextHC;
456 }
457 if (pPrev)
458 {
459 pPrev->pNextHC = pCur->pNextHC;
460 pPrev->pNextGC = pCur->pNextGC;
461 }
462 else
463 {
464 pVM->pgm.s.pRamRangesHC = pCur->pNextHC;
465 pVM->pgm.s.pRamRangesGC = pCur->pNextGC;
466 }
467
468 /*
469 * Update the range.
470 */
471 pCur->GCPhys = GCPhysNew;
472 pCur->GCPhysLast= GCPhysLast;
473 PPGMRAMRANGE pNew = pCur;
474
475 /*
476 * Find range location and check for conflicts.
477 */
478 pPrev = NULL;
479 pCur = pVM->pgm.s.pRamRangesHC;
480 while (pCur)
481 {
482 if (GCPhysNew <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
483 {
484 AssertMsgFailed(("Conflict! This cannot happen!\n"));
485 pgmUnlock(pVM);
486 return VERR_PGM_RAM_CONFLICT;
487 }
488 if (GCPhysLast < pCur->GCPhys)
489 break;
490
491 /* next */
492 pPrev = pCur;
493 pCur = pCur->pNextHC;
494 }
495
496 /*
497 * Reinsert the RAM range.
498 */
499 pNew->pNextHC = pCur;
500 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
501 if (pPrev)
502 {
503 pPrev->pNextHC = pNew;
504 pPrev->pNextGC = MMHyperHC2GC(pVM, pNew);
505 }
506 else
507 {
508 pVM->pgm.s.pRamRangesHC = pNew;
509 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pNew);
510 }
511
512 pgmUnlock(pVM);
513 return VINF_SUCCESS;
514}
515
516
517/**
518 * Interface MMR3RomRegister() and MMR3PhysReserve calls to update the
519 * flags of existing RAM ranges.
520 *
521 * @returns VBox status.
522 * @param pVM The VM handle.
523 * @param GCPhys GC physical address of the RAM range. (page aligned)
524 * @param cb Size of the RAM range. (page aligned)
525 * @param fFlags The Or flags, MM_RAM_* \#defines.
526 * @param fMask The and mask for the flags.
527 */
528PGMR3DECL(int) PGMR3PhysSetFlags(PVM pVM, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, unsigned fMask)
529{
530 Log(("PGMR3PhysSetFlags %08X %x %x %x\n", GCPhys, cb, fFlags, fMask));
531
532 /*
533 * Validate input.
534 * (Not so important because caller is always MMR3RomRegister() and MMR3PhysReserve(), but anyway...)
535 */
536 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)));
537 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
538 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
539 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
540 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
541
542 /*
543 * Lookup the range.
544 */
545 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
546 while (pRam && GCPhys > pRam->GCPhysLast)
547 pRam = CTXSUFF(pRam->pNext);
548 if ( !pRam
549 || GCPhys > pRam->GCPhysLast
550 || GCPhysLast < pRam->GCPhys)
551 {
552 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
553 return VERR_INVALID_PARAMETER;
554 }
555
556 /*
557 * Update the requested flags.
558 */
559 RTHCPHYS fFullMask = ~(RTHCPHYS)(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)
560 | fMask;
561 unsigned iPageEnd = (GCPhysLast - pRam->GCPhys + 1) >> PAGE_SHIFT;
562 unsigned iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
563 for ( ; iPage < iPageEnd; iPage++)
564 pRam->aHCPhys[iPage] = (pRam->aHCPhys[iPage] & fFullMask) | fFlags;
565
566 return VINF_SUCCESS;
567}
568
569
570/**
571 * Sets the Address Gate 20 state.
572 *
573 * @param pVM VM handle.
574 * @param fEnable True if the gate should be enabled.
575 * False if the gate should be disabled.
576 */
577PGMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
578{
579 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
580 if (pVM->pgm.s.fA20Enabled != (RTUINT)fEnable)
581 {
582 pVM->pgm.s.fA20Enabled = fEnable;
583 pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
584 REMR3A20Set(pVM, fEnable);
585 }
586}
587
588
589/*
590 * PGMR3PhysReadByte/Word/Dword
591 * PGMR3PhysWriteByte/Word/Dword
592 */
593
594#define PGMPHYSFN_READNAME PGMR3PhysReadByte
595#define PGMPHYSFN_WRITENAME PGMR3PhysWriteByte
596#define PGMPHYS_DATASIZE 1
597#define PGMPHYS_DATATYPE uint8_t
598#include "PGMPhys.h"
599
600#define PGMPHYSFN_READNAME PGMR3PhysReadWord
601#define PGMPHYSFN_WRITENAME PGMR3PhysWriteWord
602#define PGMPHYS_DATASIZE 2
603#define PGMPHYS_DATATYPE uint16_t
604#include "PGMPhys.h"
605
606#define PGMPHYSFN_READNAME PGMR3PhysReadDword
607#define PGMPHYSFN_WRITENAME PGMR3PhysWriteDword
608#define PGMPHYS_DATASIZE 4
609#define PGMPHYS_DATATYPE uint32_t
610#include "PGMPhys.h"
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette