VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 5999

Last change on this file since 5999 was 5999, checked in by vboxsync, 17 years ago

The Giant CDDL Dual-License Header Change.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 30.0 KB
Line 
1/* $Id: PGMPhys.cpp 5999 2007-12-07 15:05:06Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/pgm.h>
24#include <VBox/cpum.h>
25#include <VBox/iom.h>
26#include <VBox/sup.h>
27#include <VBox/mm.h>
28#include <VBox/stam.h>
29#include <VBox/rem.h>
30#include <VBox/csam.h>
31#include "PGMInternal.h"
32#include <VBox/vm.h>
33#include <VBox/dbg.h>
34#include <VBox/param.h>
35#include <VBox/err.h>
36#include <iprt/assert.h>
37#include <iprt/alloc.h>
38#include <iprt/asm.h>
39#include <VBox/log.h>
40#include <iprt/thread.h>
41#include <iprt/string.h>
42
43
44
45/*
46 * PGMR3PhysReadByte/Word/Dword
47 * PGMR3PhysWriteByte/Word/Dword
48 */
49
50#define PGMPHYSFN_READNAME PGMR3PhysReadByte
51#define PGMPHYSFN_WRITENAME PGMR3PhysWriteByte
52#define PGMPHYS_DATASIZE 1
53#define PGMPHYS_DATATYPE uint8_t
54#include "PGMPhys.h"
55
56#define PGMPHYSFN_READNAME PGMR3PhysReadWord
57#define PGMPHYSFN_WRITENAME PGMR3PhysWriteWord
58#define PGMPHYS_DATASIZE 2
59#define PGMPHYS_DATATYPE uint16_t
60#include "PGMPhys.h"
61
62#define PGMPHYSFN_READNAME PGMR3PhysReadDword
63#define PGMPHYSFN_WRITENAME PGMR3PhysWriteDword
64#define PGMPHYS_DATASIZE 4
65#define PGMPHYS_DATATYPE uint32_t
66#include "PGMPhys.h"
67
68
69
70
71/**
72 * Interface that the MMR3RamRegister(), MMR3RomRegister() and MMIO handler
73 * registration APIs calls to inform PGM about memory registrations.
74 *
75 * It registers the physical memory range with PGM. MM is responsible
76 * for the toplevel things - allocation and locking - while PGM is taking
77 * care of all the details and implements the physical address space virtualization.
78 *
79 * @returns VBox status.
80 * @param pVM The VM handle.
81 * @param pvRam HC virtual address of the RAM range. (page aligned)
82 * @param GCPhys GC physical address of the RAM range. (page aligned)
83 * @param cb Size of the RAM range. (page aligned)
84 * @param fFlags Flags, MM_RAM_*.
85 * @param paPages Pointer an array of physical page descriptors.
86 * @param pszDesc Description string.
87 */
88PGMR3DECL(int) PGMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
89{
90 /*
91 * Validate input.
92 * (Not so important because callers are only MMR3PhysRegister()
93 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
94 */
95 Log(("PGMR3PhysRegister %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
96
97 Assert((fFlags & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_DYNAMIC_ALLOC)) || paPages);
98 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !paPages);*/
99 Assert((fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO)) || (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) || pvRam);
100 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !pvRam);*/
101 Assert(!(fFlags & ~0xfff));
102 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
103 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
104 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
105 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
106 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
107 if (GCPhysLast < GCPhys)
108 {
109 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
110 return VERR_INVALID_PARAMETER;
111 }
112
113 /*
114 * Find range location and check for conflicts.
115 */
116 PPGMRAMRANGE pPrev = NULL;
117 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
118 while (pCur)
119 {
120 if (GCPhys <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
121 {
122 AssertMsgFailed(("Conflict! This cannot happen!\n"));
123 return VERR_PGM_RAM_CONFLICT;
124 }
125 if (GCPhysLast < pCur->GCPhys)
126 break;
127
128 /* next */
129 pPrev = pCur;
130 pCur = pCur->pNextHC;
131 }
132
133 /*
134 * Allocate RAM range.
135 * Small ranges are allocated from the heap, big ones have separate mappings.
136 */
137 size_t cbRam = RT_OFFSETOF(PGMRAMRANGE, aPages[cb >> PAGE_SHIFT]);
138 PPGMRAMRANGE pNew;
139 RTGCPTR GCPtrNew;
140 int rc;
141 if (cbRam > PAGE_SIZE / 2)
142 { /* large */
143 cbRam = RT_ALIGN_Z(cbRam, PAGE_SIZE);
144 rc = SUPPageAlloc(cbRam >> PAGE_SHIFT, (void **)&pNew);
145 if (VBOX_SUCCESS(rc))
146 {
147 rc = MMR3HyperMapHCRam(pVM, pNew, cbRam, true, pszDesc, &GCPtrNew);
148 if (VBOX_SUCCESS(rc))
149 {
150 Assert(MMHyperHC2GC(pVM, pNew) == GCPtrNew);
151 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
152 }
153 else
154 {
155 AssertMsgFailed(("MMR3HyperMapHCRam(,,%#x,,,) -> %Vrc\n", cbRam, rc));
156 SUPPageFree(pNew, cbRam >> PAGE_SHIFT);
157 }
158 }
159 else
160 AssertMsgFailed(("SUPPageAlloc(%#x,,) -> %Vrc\n", cbRam >> PAGE_SHIFT, rc));
161 }
162 else
163 { /* small */
164 rc = MMHyperAlloc(pVM, cbRam, 16, MM_TAG_PGM, (void **)&pNew);
165 if (VBOX_SUCCESS(rc))
166 GCPtrNew = MMHyperHC2GC(pVM, pNew);
167 else
168 AssertMsgFailed(("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb));
169 }
170 if (VBOX_SUCCESS(rc))
171 {
172 /*
173 * Initialize the range.
174 */
175 pNew->pvHC = pvRam;
176 pNew->GCPhys = GCPhys;
177 pNew->GCPhysLast = GCPhysLast;
178 pNew->cb = cb;
179 pNew->fFlags = fFlags;
180 pNew->pavHCChunkHC = NULL;
181 pNew->pavHCChunkGC = 0;
182
183 unsigned iPage = cb >> PAGE_SHIFT;
184 if (paPages)
185 {
186 while (iPage-- > 0)
187 {
188 pNew->aPages[iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
189 pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ALLOCATED;
190 pNew->aPages[iPage].fWrittenTo = 0;
191 pNew->aPages[iPage].fSomethingElse = 0;
192 pNew->aPages[iPage].idPage = 0;
193 pNew->aPages[iPage].u32B = 0;
194 }
195 }
196 else if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
197 {
198 /* Allocate memory for chunk to HC ptr lookup array. */
199 rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
200 AssertMsgReturn(rc == VINF_SUCCESS, ("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb), rc);
201
202 pNew->pavHCChunkGC = MMHyperHC2GC(pVM, pNew->pavHCChunkHC);
203 Assert(pNew->pavHCChunkGC);
204
205 /* Physical memory will be allocated on demand. */
206 while (iPage-- > 0)
207 {
208 pNew->aPages[iPage].HCPhys = fFlags; /** @todo PAGE FLAGS */
209 pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
210 pNew->aPages[iPage].fWrittenTo = 0;
211 pNew->aPages[iPage].fSomethingElse = 0;
212 pNew->aPages[iPage].idPage = 0;
213 pNew->aPages[iPage].u32B = 0;
214 }
215 }
216 else
217 {
218 Assert(fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO));
219 RTHCPHYS HCPhysDummyPage = (MMR3PageDummyHCPhys(pVM) & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
220 while (iPage-- > 0)
221 {
222 pNew->aPages[iPage].HCPhys = HCPhysDummyPage; /** @todo PAGE FLAGS */
223 pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
224 pNew->aPages[iPage].fWrittenTo = 0;
225 pNew->aPages[iPage].fSomethingElse = 0;
226 pNew->aPages[iPage].idPage = 0;
227 pNew->aPages[iPage].u32B = 0;
228 }
229 }
230
231 /*
232 * Insert the new RAM range.
233 */
234 pgmLock(pVM);
235 pNew->pNextHC = pCur;
236 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
237 if (pPrev)
238 {
239 pPrev->pNextHC = pNew;
240 pPrev->pNextGC = GCPtrNew;
241 }
242 else
243 {
244 pVM->pgm.s.pRamRangesHC = pNew;
245 pVM->pgm.s.pRamRangesGC = GCPtrNew;
246 }
247 pgmUnlock(pVM);
248 }
249 return rc;
250}
251
252
253/**
254 * Register a chunk of a the physical memory range with PGM. MM is responsible
255 * for the toplevel things - allocation and locking - while PGM is taking
256 * care of all the details and implements the physical address space virtualization.
257 *
258 *
259 * @returns VBox status.
260 * @param pVM The VM handle.
261 * @param pvRam HC virtual address of the RAM range. (page aligned)
262 * @param GCPhys GC physical address of the RAM range. (page aligned)
263 * @param cb Size of the RAM range. (page aligned)
264 * @param fFlags Flags, MM_RAM_*.
265 * @param paPages Pointer an array of physical page descriptors.
266 * @param pszDesc Description string.
267 */
268PGMR3DECL(int) PGMR3PhysRegisterChunk(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
269{
270#ifdef PGM_DYNAMIC_RAM_ALLOC
271 NOREF(pszDesc);
272
273 /*
274 * Validate input.
275 * (Not so important because callers are only MMR3PhysRegister()
276 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
277 */
278 Log(("PGMR3PhysRegisterChunk %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
279
280 Assert(paPages);
281 Assert(pvRam);
282 Assert(!(fFlags & ~0xfff));
283 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
284 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
285 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
286 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
287 Assert(VM_IS_EMT(pVM));
288 Assert(!(GCPhys & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
289 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
290
291 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
292 if (GCPhysLast < GCPhys)
293 {
294 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
295 return VERR_INVALID_PARAMETER;
296 }
297
298 /*
299 * Find existing range location.
300 */
301 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
302 while (pRam)
303 {
304 RTGCPHYS off = GCPhys - pRam->GCPhys;
305 if ( off < pRam->cb
306 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
307 break;
308
309 pRam = CTXSUFF(pRam->pNext);
310 }
311 AssertReturn(pRam, VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
312
313 unsigned off = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
314 unsigned iPage = cb >> PAGE_SHIFT;
315 if (paPages)
316 {
317 while (iPage-- > 0)
318 pRam->aPages[off + iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
319 }
320 off >>= (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
321 pRam->pavHCChunkHC[off] = pvRam;
322
323 /* Notify the recompiler. */
324 REMR3NotifyPhysRamChunkRegister(pVM, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, (RTHCUINTPTR)pvRam, fFlags);
325
326 return VINF_SUCCESS;
327#else /* !PGM_DYNAMIC_RAM_ALLOC */
328 AssertReleaseMsgFailed(("Shouldn't ever get here when PGM_DYNAMIC_RAM_ALLOC isn't defined!\n"));
329 return VERR_INTERNAL_ERROR;
330#endif /* !PGM_DYNAMIC_RAM_ALLOC */
331}
332
333
334/**
335 * Allocate missing physical pages for an existing guest RAM range.
336 *
337 * @returns VBox status.
338 * @param pVM The VM handle.
339 * @param GCPhys GC physical address of the RAM range. (page aligned)
340 */
341PGMR3DECL(int) PGM3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
342{
343 /*
344 * Walk range list.
345 */
346 pgmLock(pVM);
347
348 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
349 while (pRam)
350 {
351 RTGCPHYS off = GCPhys - pRam->GCPhys;
352 if ( off < pRam->cb
353 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
354 {
355 bool fRangeExists = false;
356 unsigned off = (GCPhys - pRam->GCPhys) >> PGM_DYNAMIC_CHUNK_SHIFT;
357
358 /** @note A request made from another thread may end up in EMT after somebody else has already allocated the range. */
359 if (pRam->pavHCChunkHC[off])
360 fRangeExists = true;
361
362 pgmUnlock(pVM);
363 if (fRangeExists)
364 return VINF_SUCCESS;
365 return pgmr3PhysGrowRange(pVM, GCPhys);
366 }
367
368 pRam = CTXSUFF(pRam->pNext);
369 }
370 pgmUnlock(pVM);
371 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
372}
373
374#ifndef NEW_PHYS_CODE
375
376/**
377 * Allocate missing physical pages for an existing guest RAM range.
378 *
379 * @returns VBox status.
380 * @param pVM The VM handle.
381 * @param pRamRange RAM range
382 * @param GCPhys GC physical address of the RAM range. (page aligned)
383 */
384int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
385{
386 void *pvRam;
387 int rc;
388
389 /* We must execute this function in the EMT thread, otherwise we'll run into problems. */
390 if (!VM_IS_EMT(pVM))
391 {
392 PVMREQ pReq;
393
394 AssertMsg(!PDMCritSectIsOwner(&pVM->pgm.s.CritSect), ("We own the PGM lock -> deadlock danger!!\n"));
395
396 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)PGM3PhysGrowRange, 2, pVM, GCPhys);
397 if (VBOX_SUCCESS(rc))
398 {
399 rc = pReq->iStatus;
400 VMR3ReqFree(pReq);
401 }
402 return rc;
403 }
404
405 /* Round down to chunk boundary */
406 GCPhys = GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK;
407
408 STAM_COUNTER_INC(&pVM->pgm.s.StatDynRamGrow);
409 STAM_COUNTER_ADD(&pVM->pgm.s.StatDynRamTotal, PGM_DYNAMIC_CHUNK_SIZE/(1024*1024));
410
411 Log(("pgmr3PhysGrowRange: allocate chunk of size 0x%X at %VGp\n", PGM_DYNAMIC_CHUNK_SIZE, GCPhys));
412
413 unsigned cPages = PGM_DYNAMIC_CHUNK_SIZE >> PAGE_SHIFT;
414 rc = SUPPageAlloc(cPages, &pvRam);
415 if (VBOX_SUCCESS(rc))
416 {
417 VMSTATE enmVMState = VMR3GetState(pVM);
418
419 rc = MMR3PhysRegisterEx(pVM, pvRam, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, 0, MM_PHYS_TYPE_DYNALLOC_CHUNK, "Main Memory");
420 if ( VBOX_SUCCESS(rc)
421 || enmVMState != VMSTATE_RUNNING)
422 {
423 if (VBOX_FAILURE(rc))
424 {
425 AssertMsgFailed(("Out of memory while trying to allocate a guest RAM chunk at %VGp!\n", GCPhys));
426 LogRel(("PGM: Out of memory while trying to allocate a guest RAM chunk at %VGp (VMstate=%s)!\n", GCPhys, VMR3GetStateName(enmVMState)));
427 }
428 return rc;
429 }
430
431 SUPPageFree(pvRam, cPages);
432
433 LogRel(("pgmr3PhysGrowRange: out of memory. pause until the user resumes execution.\n"));
434
435 /* Pause first, then inform Main. */
436 rc = VMR3SuspendNoSave(pVM);
437 AssertRC(rc);
438
439 VMSetRuntimeError(pVM, false, "HostMemoryLow", "Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM.");
440
441 /* Wait for resume event; will only return in that case. If the VM is stopped, the EMT thread will be destroyed. */
442 rc = VMR3WaitForResume(pVM);
443
444 /* Retry */
445 LogRel(("pgmr3PhysGrowRange: VM execution resumed -> retry.\n"));
446 return pgmr3PhysGrowRange(pVM, GCPhys);
447 }
448 LogRel(("pgmr3PhysGrowRange %VGp SUPPageAlloc %x pages failed with %Vrc\n", GCPhys, cPages, rc));
449 return rc;
450}
451
452#endif /* !NEW_PHYS_CODE */
453
454/**
455 * Interface MMIO handler relocation calls.
456 *
457 * It relocates an existing physical memory range with PGM.
458 *
459 * @returns VBox status.
460 * @param pVM The VM handle.
461 * @param GCPhysOld Previous GC physical address of the RAM range. (page aligned)
462 * @param GCPhysNew New GC physical address of the RAM range. (page aligned)
463 * @param cb Size of the RAM range. (page aligned)
464 */
465PGMR3DECL(int) PGMR3PhysRelocate(PVM pVM, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, size_t cb)
466{
467 /*
468 * Validate input.
469 * (Not so important because callers are only MMR3PhysRelocate(),
470 * but anyway...)
471 */
472 Log(("PGMR3PhysRelocate Old %VGp New %VGp (%#x bytes)\n", GCPhysOld, GCPhysNew, cb));
473
474 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
475 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
476 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
477 RTGCPHYS GCPhysLast;
478 GCPhysLast = GCPhysOld + (cb - 1);
479 if (GCPhysLast < GCPhysOld)
480 {
481 AssertMsgFailed(("The old range wraps! GCPhys=%VGp cb=%#x\n", GCPhysOld, cb));
482 return VERR_INVALID_PARAMETER;
483 }
484 GCPhysLast = GCPhysNew + (cb - 1);
485 if (GCPhysLast < GCPhysNew)
486 {
487 AssertMsgFailed(("The new range wraps! GCPhys=%VGp cb=%#x\n", GCPhysNew, cb));
488 return VERR_INVALID_PARAMETER;
489 }
490
491 /*
492 * Find and remove old range location.
493 */
494 pgmLock(pVM);
495 PPGMRAMRANGE pPrev = NULL;
496 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
497 while (pCur)
498 {
499 if (pCur->GCPhys == GCPhysOld && pCur->cb == cb)
500 break;
501
502 /* next */
503 pPrev = pCur;
504 pCur = pCur->pNextHC;
505 }
506 if (pPrev)
507 {
508 pPrev->pNextHC = pCur->pNextHC;
509 pPrev->pNextGC = pCur->pNextGC;
510 }
511 else
512 {
513 pVM->pgm.s.pRamRangesHC = pCur->pNextHC;
514 pVM->pgm.s.pRamRangesGC = pCur->pNextGC;
515 }
516
517 /*
518 * Update the range.
519 */
520 pCur->GCPhys = GCPhysNew;
521 pCur->GCPhysLast= GCPhysLast;
522 PPGMRAMRANGE pNew = pCur;
523
524 /*
525 * Find range location and check for conflicts.
526 */
527 pPrev = NULL;
528 pCur = pVM->pgm.s.pRamRangesHC;
529 while (pCur)
530 {
531 if (GCPhysNew <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
532 {
533 AssertMsgFailed(("Conflict! This cannot happen!\n"));
534 pgmUnlock(pVM);
535 return VERR_PGM_RAM_CONFLICT;
536 }
537 if (GCPhysLast < pCur->GCPhys)
538 break;
539
540 /* next */
541 pPrev = pCur;
542 pCur = pCur->pNextHC;
543 }
544
545 /*
546 * Reinsert the RAM range.
547 */
548 pNew->pNextHC = pCur;
549 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
550 if (pPrev)
551 {
552 pPrev->pNextHC = pNew;
553 pPrev->pNextGC = MMHyperHC2GC(pVM, pNew);
554 }
555 else
556 {
557 pVM->pgm.s.pRamRangesHC = pNew;
558 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pNew);
559 }
560
561 pgmUnlock(pVM);
562 return VINF_SUCCESS;
563}
564
565
566/**
567 * Interface MMR3RomRegister() and MMR3PhysReserve calls to update the
568 * flags of existing RAM ranges.
569 *
570 * @returns VBox status.
571 * @param pVM The VM handle.
572 * @param GCPhys GC physical address of the RAM range. (page aligned)
573 * @param cb Size of the RAM range. (page aligned)
574 * @param fFlags The Or flags, MM_RAM_* \#defines.
575 * @param fMask The and mask for the flags.
576 */
577PGMR3DECL(int) PGMR3PhysSetFlags(PVM pVM, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, unsigned fMask)
578{
579 Log(("PGMR3PhysSetFlags %08X %x %x %x\n", GCPhys, cb, fFlags, fMask));
580
581 /*
582 * Validate input.
583 * (Not so important because caller is always MMR3RomRegister() and MMR3PhysReserve(), but anyway...)
584 */
585 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)));
586 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
587 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
588 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
589 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
590
591 /*
592 * Lookup the range.
593 */
594 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
595 while (pRam && GCPhys > pRam->GCPhysLast)
596 pRam = CTXSUFF(pRam->pNext);
597 if ( !pRam
598 || GCPhys > pRam->GCPhysLast
599 || GCPhysLast < pRam->GCPhys)
600 {
601 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
602 return VERR_INVALID_PARAMETER;
603 }
604
605 /*
606 * Update the requested flags.
607 */
608 RTHCPHYS fFullMask = ~(RTHCPHYS)(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)
609 | fMask;
610 unsigned iPageEnd = (GCPhysLast - pRam->GCPhys + 1) >> PAGE_SHIFT;
611 unsigned iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
612 for ( ; iPage < iPageEnd; iPage++)
613 pRam->aPages[iPage].HCPhys = (pRam->aPages[iPage].HCPhys & fFullMask) | fFlags; /** @todo PAGE FLAGS */
614
615 return VINF_SUCCESS;
616}
617
618
619/**
620 * Sets the Address Gate 20 state.
621 *
622 * @param pVM VM handle.
623 * @param fEnable True if the gate should be enabled.
624 * False if the gate should be disabled.
625 */
626PGMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
627{
628 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
629 if (pVM->pgm.s.fA20Enabled != (RTUINT)fEnable)
630 {
631 pVM->pgm.s.fA20Enabled = fEnable;
632 pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
633 REMR3A20Set(pVM, fEnable);
634 }
635}
636
637
638/**
639 * Tree enumeration callback for dealing with age rollover.
640 * It will perform a simple compression of the current age.
641 */
642static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
643{
644 /* Age compression - ASSUMES iNow == 4. */
645 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
646 if (pChunk->iAge >= UINT32_C(0xffffff00))
647 pChunk->iAge = 3;
648 else if (pChunk->iAge >= UINT32_C(0xfffff000))
649 pChunk->iAge = 2;
650 else if (pChunk->iAge)
651 pChunk->iAge = 1;
652 else /* iAge = 0 */
653 pChunk->iAge = 4;
654
655 /* reinsert */
656 PVM pVM = (PVM)pvUser;
657 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
658 pChunk->AgeCore.Key = pChunk->iAge;
659 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
660 return 0;
661}
662
663
664/**
665 * Tree enumeration callback that updates the chunks that have
666 * been used since the last
667 */
668static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
669{
670 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
671 if (!pChunk->iAge)
672 {
673 PVM pVM = (PVM)pvUser;
674 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
675 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
676 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
677 }
678
679 return 0;
680}
681
682
683/**
684 * Performs ageing of the ring-3 chunk mappings.
685 *
686 * @param pVM The VM handle.
687 */
688PGMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
689{
690 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
691 pVM->pgm.s.ChunkR3Map.iNow++;
692 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
693 {
694 pVM->pgm.s.ChunkR3Map.iNow = 4;
695 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
696 }
697 else
698 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
699}
700
701
702/**
703 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
704 */
705typedef struct PGMR3PHYSCHUNKUNMAPCB
706{
707 PVM pVM; /**< The VM handle. */
708 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
709} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
710
711
712/**
713 * Callback used to find the mapping that's been unused for
714 * the longest time.
715 */
716static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
717{
718 do
719 {
720 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
721 if ( pChunk->iAge
722 && !pChunk->cRefs)
723 {
724 /*
725 * Check that it's not in any of the TLBs.
726 */
727 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
728 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
729 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
730 {
731 pChunk = NULL;
732 break;
733 }
734 if (pChunk)
735 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
736 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
737 {
738 pChunk = NULL;
739 break;
740 }
741 if (pChunk)
742 {
743 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
744 return 1; /* done */
745 }
746 }
747
748 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
749 pNode = pNode->pList;
750 } while (pNode);
751 return 0;
752}
753
754
755/**
756 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
757 *
758 * The candidate will not be part of any TLBs, so no need to flush
759 * anything afterwards.
760 *
761 * @returns Chunk id.
762 * @param pVM The VM handle.
763 */
764static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
765{
766 /*
767 * Do tree ageing first?
768 */
769 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
770 PGMR3PhysChunkAgeing(pVM);
771
772 /*
773 * Enumerate the age tree starting with the left most node.
774 */
775 PGMR3PHYSCHUNKUNMAPCB Args;
776 Args.pVM = pVM;
777 Args.pChunk = NULL;
778 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
779 return Args.pChunk->Core.Key;
780 return INT32_MAX;
781}
782
783
784/**
785 * Maps the given chunk into the ring-3 mapping cache.
786 *
787 * This will call ring-0.
788 *
789 * @returns VBox status code.
790 * @param pVM The VM handle.
791 * @param idChunk The chunk in question.
792 * @param ppChunk Where to store the chunk tracking structure.
793 *
794 * @remarks Called from within the PGM critical section.
795 */
796int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
797{
798 int rc;
799 /*
800 * Allocate a new tracking structure first.
801 */
802#if 0 /* for later when we've got a separate mapping method for ring-0. */
803 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
804 AssertReturn(pChunk, VERR_NO_MEMORY);
805#else
806 PPGMCHUNKR3MAP pChunk;
807 rc = MMHyperAlloc(pVM, sizeof(*pChunk), 0, MM_TAG_PGM_CHUNK_MAPPING, (void **)&pChunk);
808 AssertRCReturn(rc, rc);
809#endif
810 pChunk->Core.Key = idChunk;
811 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
812 pChunk->iAge = 0;
813 pChunk->cRefs = 0;
814 pChunk->cPermRefs = 0;
815 pChunk->pv = NULL;
816
817 /*
818 * Request the ring-0 part to map the chunk in question and if
819 * necessary unmap another one to make space in the mapping cache.
820 */
821 GMMMAPUNMAPCHUNKREQ Req;
822 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
823 Req.Hdr.cbReq = sizeof(Req);
824 Req.pvR3 = NULL;
825 Req.idChunkMap = idChunk;
826 Req.idChunkUnmap = INT32_MAX;
827 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
828 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
829 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
830 if (VBOX_SUCCESS(rc))
831 {
832 /*
833 * Update the tree.
834 */
835 /* insert the new one. */
836 AssertPtr(Req.pvR3);
837 pChunk->pv = Req.pvR3;
838 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
839 AssertRelease(fRc);
840 pVM->pgm.s.ChunkR3Map.c++;
841
842 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
843 AssertRelease(fRc);
844
845 /* remove the unmapped one. */
846 if (Req.idChunkUnmap != INT32_MAX)
847 {
848 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
849 AssertRelease(pUnmappedChunk);
850 pUnmappedChunk->pv = NULL;
851 pUnmappedChunk->Core.Key = UINT32_MAX;
852#if 0 /* for later when we've got a separate mapping method for ring-0. */
853 MMR3HeapFree(pUnmappedChunk);
854#else
855 MMHyperFree(pVM, pUnmappedChunk);
856#endif
857 pVM->pgm.s.ChunkR3Map.c--;
858 }
859 }
860 else
861 {
862 AssertRC(rc);
863#if 0 /* for later when we've got a separate mapping method for ring-0. */
864 MMR3HeapFree(pChunk);
865#else
866 MMHyperFree(pVM, pChunk);
867#endif
868 pChunk = NULL;
869 }
870
871 *ppChunk = pChunk;
872 return rc;
873}
874
875
876/**
877 * For VMMCALLHOST_PGM_MAP_CHUNK, considered internal.
878 *
879 * @returns see pgmR3PhysChunkMap.
880 * @param pVM The VM handle.
881 * @param idChunk The chunk to map.
882 */
883PDMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
884{
885 PPGMCHUNKR3MAP pChunk;
886 return pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
887}
888
889
890/**
891 * Invalidates the TLB for the ring-3 mapping cache.
892 *
893 * @param pVM The VM handle.
894 */
895PGMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
896{
897 pgmLock(pVM);
898 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
899 {
900 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
901 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
902 }
903 pgmUnlock(pVM);
904}
905
906
907/**
908 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES.
909 *
910 * @returns The following VBox status codes.
911 * @retval VINF_SUCCESS on success. FF cleared.
912 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in this case.
913 *
914 * @param pVM The VM handle.
915 */
916PDMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
917{
918 pgmLock(pVM);
919 int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
920 if (rc == VERR_GMM_SEED_ME)
921 {
922 void *pvChunk;
923 rc = SUPPageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
924 if (VBOX_SUCCESS(rc))
925 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
926 if (VBOX_FAILURE(rc))
927 {
928 LogRel(("PGM: GMM Seeding failed, rc=%Vrc\n", rc));
929 rc = VINF_EM_NO_MEMORY;
930 }
931 }
932 pgmUnlock(pVM);
933 Assert(rc == VINF_SUCCESS || rc == VINF_EM_NO_MEMORY);
934 return rc;
935}
936
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette