/* $Id: PGMInternal.h 22170 2009-08-11 15:01:56Z vboxsync $ */ /** @file * PGM - Internal header file. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ #ifndef ___PGMInternal_h #define ___PGMInternal_h #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** @defgroup grp_pgm_int Internals * @ingroup grp_pgm * @internal * @{ */ /** @name PGM Compile Time Config * @{ */ /** * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp). * Comment it if it will break something. */ #define PGM_OUT_OF_SYNC_IN_GC /** * Check and skip global PDEs for non-global flushes */ #define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH /** * Sync N pages instead of a whole page table */ #define PGM_SYNC_N_PAGES /** * Number of pages to sync during a page fault * * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here * causes a lot of unnecessary extents and also is slower than taking more \#PFs. */ #define PGM_SYNC_NR_PAGES 8 /** * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t)) */ #define PGM_MAX_PHYSCACHE_ENTRIES 64 #define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1) /** @def PGMPOOL_WITH_CACHE * Enable agressive caching using the page pool. * * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING. */ #define PGMPOOL_WITH_CACHE /** @def PGMPOOL_WITH_MIXED_PT_CR3 * When defined, we'll deal with 'uncachable' pages. */ #ifdef PGMPOOL_WITH_CACHE # define PGMPOOL_WITH_MIXED_PT_CR3 #endif /** @def PGMPOOL_WITH_MONITORING * Monitor the guest pages which are shadowed. * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must * be enabled as well. * @remark doesn't really work without caching now. (Mixed PT/CR3 change.) */ #ifdef PGMPOOL_WITH_CACHE # define PGMPOOL_WITH_MONITORING #endif /** @def PGMPOOL_WITH_GCPHYS_TRACKING * Tracking the of shadow pages mapping guest physical pages. * * This is very expensive, the current cache prototype is trying to figure out * whether it will be acceptable with an agressive caching policy. */ #if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING) # define PGMPOOL_WITH_GCPHYS_TRACKING #endif /** @def PGMPOOL_WITH_USER_TRACKING * Tracking users of shadow pages. This is required for the linking of shadow page * tables and physical guest addresses. */ #if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING) # define PGMPOOL_WITH_USER_TRACKING #endif /** @def PGMPOOL_CFG_MAX_GROW * The maximum number of pages to add to the pool in one go. */ #define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT) /** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL * Enables some extra assertions for virtual handlers (mainly phys2virt related). */ #ifdef VBOX_STRICT # define VBOX_STRICT_PGM_HANDLER_VIRTUAL #endif /** @def VBOX_WITH_NEW_LAZY_PAGE_ALLOC * Enables the experimental lazy page allocation code. */ /*# define VBOX_WITH_NEW_LAZY_PAGE_ALLOC */ /** @} */ /** @name PDPT and PML4 flags. * These are placed in the three bits available for system programs in * the PDPT and PML4 entries. * @{ */ /** The entry is a permanent one and it's must always be present. * Never free such an entry. */ #define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10) /** Mapping (hypervisor allocated pagetable). */ #define PGM_PLXFLAGS_MAPPING RT_BIT_64(11) /** @} */ /** @name Page directory flags. * These are placed in the three bits available for system programs in * the page directory entries. * @{ */ /** Mapping (hypervisor allocated pagetable). */ #define PGM_PDFLAGS_MAPPING RT_BIT_64(10) /** Made read-only to facilitate dirty bit tracking. */ #define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11) /** @} */ /** @name Page flags. * These are placed in the three bits available for system programs in * the page entries. * @{ */ /** Made read-only to facilitate dirty bit tracking. */ #define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9) #ifndef PGM_PTFLAGS_CSAM_VALIDATED /** Scanned and approved by CSAM (tm). * NOTE: Must be identical to the one defined in CSAMInternal.h!! * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */ #define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11) #endif /** @} */ /** @name Defines used to indicate the shadow and guest paging in the templates. * @{ */ #define PGM_TYPE_REAL 1 #define PGM_TYPE_PROT 2 #define PGM_TYPE_32BIT 3 #define PGM_TYPE_PAE 4 #define PGM_TYPE_AMD64 5 #define PGM_TYPE_NESTED 6 #define PGM_TYPE_EPT 7 #define PGM_TYPE_MAX PGM_TYPE_EPT /** @} */ /** Macro for checking if the guest is using paging. * @param uGstType PGM_TYPE_* * @param uShwType PGM_TYPE_* * @remark ASSUMES certain order of the PGM_TYPE_* values. */ #define PGM_WITH_PAGING(uGstType, uShwType) \ ( (uGstType) >= PGM_TYPE_32BIT \ && (uShwType) != PGM_TYPE_NESTED \ && (uShwType) != PGM_TYPE_EPT) /** Macro for checking if the guest supports the NX bit. * @param uGstType PGM_TYPE_* * @param uShwType PGM_TYPE_* * @remark ASSUMES certain order of the PGM_TYPE_* values. */ #define PGM_WITH_NX(uGstType, uShwType) \ ( (uGstType) >= PGM_TYPE_PAE \ && (uShwType) != PGM_TYPE_NESTED \ && (uShwType) != PGM_TYPE_EPT) /** @def PGM_HCPHYS_2_PTR * Maps a HC physical page pool address to a virtual address. * * @returns VBox status code. * @param pVM The VM handle. * @param HCPhys The HC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef IN_RC # define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \ PGMDynMapHCPage(pVM, HCPhys, (void **)(ppv)) #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \ pgmR0DynMapHCPageInlined(&(pVM)->pgm.s, HCPhys, (void **)(ppv)) #else # define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \ MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv)) #endif /** @def PGM_HCPHYS_2_PTR_BY_PGM * Maps a HC physical page pool address to a virtual address. * * @returns VBox status code. * @param pPGM The PGM instance data. * @param HCPhys The HC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 # define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \ pgmR0DynMapHCPageInlined(pPGM, HCPhys, (void **)(ppv)) #else # define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \ PGM_HCPHYS_2_PTR(PGM2VM(pPGM), HCPhys, (void **)(ppv)) #endif /** @def PGM_GCPHYS_2_PTR * Maps a GC physical page address to a virtual address. * * @returns VBox status code. * @param pVM The VM handle. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef IN_RC # define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \ PGMDynMapGCPage(pVM, GCPhys, (void **)(ppv)) #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \ pgmR0DynMapGCPageInlined(&(pVM)->pgm.s, GCPhys, (void **)(ppv)) #else # define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \ PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */ #endif /** @def PGM_GCPHYS_2_PTR_BY_PGMCPU * Maps a GC physical page address to a virtual address. * * @returns VBox status code. * @param pPGM Pointer to the PGM instance data. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 # define PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, GCPhys, ppv) \ pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), GCPhys, (void **)(ppv)) #else # define PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, GCPhys, ppv) \ PGM_GCPHYS_2_PTR(PGMCPU2VM(pPGM), GCPhys, ppv) #endif /** @def PGM_GCPHYS_2_PTR_EX * Maps a unaligned GC physical page address to a virtual address. * * @returns VBox status code. * @param pVM The VM handle. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \ PGMDynMapGCPageOff(pVM, GCPhys, (void **)(ppv)) #else # define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \ PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */ #endif /** @def PGM_INVL_PG * Invalidates a page. * * @param pVCpu The VMCPU handle. * @param GCVirt The virtual address of the page to invalidate. */ #ifdef IN_RC # define PGM_INVL_PG(pVCpu, GCVirt) ASMInvalidatePage((void *)(GCVirt)) #elif defined(IN_RING0) # define PGM_INVL_PG(pVCpu, GCVirt) HWACCMInvalidatePage(pVCpu, (RTGCPTR)(GCVirt)) #else # define PGM_INVL_PG(pVCpu, GCVirt) HWACCMInvalidatePage(pVCpu, (RTGCPTR)(GCVirt)) #endif /** @def PGM_INVL_PG * Invalidates a page on all VCPUs * * @param pVM The VM handle. * @param GCVirt The virtual address of the page to invalidate. */ #ifdef IN_RC # define PGM_INVL_ALL_VCPU_PG(pVM, GCVirt) ASMInvalidatePage((void *)(GCVirt)) #elif defined(IN_RING0) # define PGM_INVL_ALL_VCPU_PG(pVM, GCVirt) HWACCMInvalidatePageOnAllVCpus(pVM, (RTGCPTR)(GCVirt)) #else # define PGM_INVL_ALL_VCPU_PG(pVM, GCVirt) HWACCMInvalidatePageOnAllVCpus(pVM, (RTGCPTR)(GCVirt)) #endif /** @def PGM_INVL_BIG_PG * Invalidates a 4MB page directory entry. * * @param pVCpu The VMCPU handle. * @param GCVirt The virtual address within the page directory to invalidate. */ #ifdef IN_RC # define PGM_INVL_BIG_PG(pVCpu, GCVirt) ASMReloadCR3() #elif defined(IN_RING0) # define PGM_INVL_BIG_PG(pVCpu, GCVirt) HWACCMFlushTLB(pVCpu) #else # define PGM_INVL_BIG_PG(pVCpu, GCVirt) HWACCMFlushTLB(pVCpu) #endif /** @def PGM_INVL_VCPU_TLBS() * Invalidates the TLBs of the specified VCPU * * @param pVCpu The VMCPU handle. */ #ifdef IN_RC # define PGM_INVL_VCPU_TLBS(pVCpu) ASMReloadCR3() #elif defined(IN_RING0) # define PGM_INVL_VCPU_TLBS(pVCpu) HWACCMFlushTLB(pVCpu) #else # define PGM_INVL_VCPU_TLBS(pVCpu) HWACCMFlushTLB(pVCpu) #endif /** @def PGM_INVL_ALL_VCPU_TLBS() * Invalidates the TLBs of all VCPUs * * @param pVM The VM handle. */ #ifdef IN_RC # define PGM_INVL_ALL_VCPU_TLBS(pVM) ASMReloadCR3() #elif defined(IN_RING0) # define PGM_INVL_ALL_VCPU_TLBS(pVM) HWACCMFlushTLBOnAllVCpus(pVM) #else # define PGM_INVL_ALL_VCPU_TLBS(pVM) HWACCMFlushTLBOnAllVCpus(pVM) #endif /** Size of the GCPtrConflict array in PGMMAPPING. * @remarks Must be a power of two. */ #define PGMMAPPING_CONFLICT_MAX 8 /** * Structure for tracking GC Mappings. * * This structure is used by linked list in both GC and HC. */ typedef struct PGMMAPPING { /** Pointer to next entry. */ R3PTRTYPE(struct PGMMAPPING *) pNextR3; /** Pointer to next entry. */ R0PTRTYPE(struct PGMMAPPING *) pNextR0; /** Pointer to next entry. */ RCPTRTYPE(struct PGMMAPPING *) pNextRC; /** Indicate whether this entry is finalized. */ bool fFinalized; /** Start Virtual address. */ RTGCPTR GCPtr; /** Last Virtual address (inclusive). */ RTGCPTR GCPtrLast; /** Range size (bytes). */ RTGCPTR cb; /** Pointer to relocation callback function. */ R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate; /** User argument to the callback. */ R3PTRTYPE(void *) pvUser; /** Mapping description / name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; /** Last 8 addresses that caused conflicts. */ RTGCPTR aGCPtrConflicts[PGMMAPPING_CONFLICT_MAX]; /** Number of conflicts for this hypervisor mapping. */ uint32_t cConflicts; /** Number of page tables. */ uint32_t cPTs; /** Array of page table mapping data. Each entry * describes one page table. The array can be longer * than the declared length. */ struct { /** The HC physical address of the page table. */ RTHCPHYS HCPhysPT; /** The HC physical address of the first PAE page table. */ RTHCPHYS HCPhysPaePT0; /** The HC physical address of the second PAE page table. */ RTHCPHYS HCPhysPaePT1; /** The HC virtual address of the 32-bit page table. */ R3PTRTYPE(PX86PT) pPTR3; /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */ R3PTRTYPE(PX86PTPAE) paPaePTsR3; /** The RC virtual address of the 32-bit page table. */ RCPTRTYPE(PX86PT) pPTRC; /** The RC virtual address of the two PAE page table. */ RCPTRTYPE(PX86PTPAE) paPaePTsRC; /** The R0 virtual address of the 32-bit page table. */ R0PTRTYPE(PX86PT) pPTR0; /** The R0 virtual address of the two PAE page table. */ R0PTRTYPE(PX86PTPAE) paPaePTsR0; } aPTs[1]; } PGMMAPPING; /** Pointer to structure for tracking GC Mappings. */ typedef struct PGMMAPPING *PPGMMAPPING; /** * Physical page access handler structure. * * This is used to keep track of physical address ranges * which are being monitored in some kind of way. */ typedef struct PGMPHYSHANDLER { AVLROGCPHYSNODECORE Core; /** Access type. */ PGMPHYSHANDLERTYPE enmType; /** Number of pages to update. */ uint32_t cPages; /** Pointer to R3 callback function. */ R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3; /** User argument for R3 handlers. */ R3PTRTYPE(void *) pvUserR3; /** Pointer to R0 callback function. */ R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0; /** User argument for R0 handlers. */ R0PTRTYPE(void *) pvUserR0; /** Pointer to RC callback function. */ RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC; /** User argument for RC handlers. */ RCPTRTYPE(void *) pvUserRC; /** Description / Name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; #ifdef VBOX_WITH_STATISTICS /** Profiling of this handler. */ STAMPROFILE Stat; #endif } PGMPHYSHANDLER; /** Pointer to a physical page access handler structure. */ typedef PGMPHYSHANDLER *PPGMPHYSHANDLER; /** * Cache node for the physical addresses covered by a virtual handler. */ typedef struct PGMPHYS2VIRTHANDLER { /** Core node for the tree based on physical ranges. */ AVLROGCPHYSNODECORE Core; /** Offset from this struct to the PGMVIRTHANDLER structure. */ int32_t offVirtHandler; /** Offset of the next alias relative to this one. * Bit 0 is used for indicating whether we're in the tree. * Bit 1 is used for indicating that we're the head node. */ int32_t offNextAlias; } PGMPHYS2VIRTHANDLER; /** Pointer to a phys to virtual handler structure. */ typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER; /** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the * node is in the tree. */ #define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0) /** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the * node is in the head of an alias chain. * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */ #define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1) /** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */ #define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3) /** * Virtual page access handler structure. * * This is used to keep track of virtual address ranges * which are being monitored in some kind of way. */ typedef struct PGMVIRTHANDLER { /** Core node for the tree based on virtual ranges. */ AVLROGCPTRNODECORE Core; /** Size of the range (in bytes). */ RTGCPTR cb; /** Number of cache pages. */ uint32_t cPages; /** Access type. */ PGMVIRTHANDLERTYPE enmType; /** Pointer to the RC callback function. */ RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC; #if HC_ARCH_BITS == 64 RTRCPTR padding; #endif /** Pointer to the R3 callback function for invalidation. */ R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3; /** Pointer to the R3 callback function. */ R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3; /** Description / Name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; #ifdef VBOX_WITH_STATISTICS /** Profiling of this handler. */ STAMPROFILE Stat; #endif /** Array of cached physical addresses for the monitored ranged. */ PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2]; } PGMVIRTHANDLER; /** Pointer to a virtual page access handler structure. */ typedef PGMVIRTHANDLER *PPGMVIRTHANDLER; /** * Page type. * * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type). * @remarks This is used in the saved state, so changes to it requires bumping * the saved state version. * @todo So, convert to \#defines! */ typedef enum PGMPAGETYPE { /** The usual invalid zero entry. */ PGMPAGETYPE_INVALID = 0, /** RAM page. (RWX) */ PGMPAGETYPE_RAM, /** MMIO2 page. (RWX) */ PGMPAGETYPE_MMIO2, /** MMIO2 page aliased over an MMIO page. (RWX) * See PGMHandlerPhysicalPageAlias(). */ PGMPAGETYPE_MMIO2_ALIAS_MMIO, /** Shadowed ROM. (RWX) */ PGMPAGETYPE_ROM_SHADOW, /** ROM page. (R-X) */ PGMPAGETYPE_ROM, /** MMIO page. (---) */ PGMPAGETYPE_MMIO, /** End of valid entries. */ PGMPAGETYPE_END } PGMPAGETYPE; AssertCompile(PGMPAGETYPE_END <= 7); /** @name Page type predicates. * @{ */ #define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM ) #define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW ) #define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW ) #define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM ) #define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO ) /** @} */ /** * A Physical Guest Page tracking structure. * * The format of this structure is complicated because we have to fit a lot * of information into as few bits as possible. The format is also subject * to change (there is one comming up soon). Which means that for we'll be * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all* * accessess to the structure. */ typedef struct PGMPAGE { /** The physical address and a whole lot of other stuff. All bits are used! */ RTHCPHYS HCPhysX; /** The page state. */ uint32_t u2StateX : 2; /** Flag indicating that a write monitored page was written to when set. */ uint32_t fWrittenToX : 1; /** For later. */ uint32_t fSomethingElse : 1; /** The Page ID. * @todo Merge with HCPhysX once we've liberated HCPhysX of its stuff. * The HCPhysX will then be 100% static. */ uint32_t idPageX : 28; /** The page type (PGMPAGETYPE). */ uint32_t u3Type : 3; /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */ uint32_t u2HandlerPhysStateX : 2; /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */ uint32_t u2HandlerVirtStateX : 2; uint32_t u29B : 25; } PGMPAGE; AssertCompileSize(PGMPAGE, 16); /** Pointer to a physical guest page. */ typedef PGMPAGE *PPGMPAGE; /** Pointer to a const physical guest page. */ typedef const PGMPAGE *PCPGMPAGE; /** Pointer to a physical guest page pointer. */ typedef PPGMPAGE *PPPGMPAGE; /** * Clears the page structure. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_CLEAR(pPage) \ do { \ (pPage)->HCPhysX = 0; \ (pPage)->u2StateX = 0; \ (pPage)->fWrittenToX = 0; \ (pPage)->fSomethingElse = 0; \ (pPage)->idPageX = 0; \ (pPage)->u3Type = 0; \ (pPage)->u29B = 0; \ } while (0) /** * Initializes the page structure. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \ do { \ (pPage)->HCPhysX = (_HCPhys); \ (pPage)->u2StateX = (_uState); \ (pPage)->fWrittenToX = 0; \ (pPage)->fSomethingElse = 0; \ (pPage)->idPageX = (_idPage); \ /*(pPage)->u3Type = (_uType); - later */ \ PGM_PAGE_SET_TYPE(pPage, _uType); \ (pPage)->u29B = 0; \ } while (0) /** * Initializes the page structure of a ZERO page. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \ PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO) /** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */ # define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \ PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO) /** @name The Page state, PGMPAGE::u2StateX. * @{ */ /** The zero page. * This is a per-VM page that's never ever mapped writable. */ #define PGM_PAGE_STATE_ZERO 0 /** A allocated page. * This is a per-VM page allocated from the page pool (or wherever * we get MMIO2 pages from if the type is MMIO2). */ #define PGM_PAGE_STATE_ALLOCATED 1 /** A allocated page that's being monitored for writes. * The shadow page table mappings are read-only. When a write occurs, the * fWrittenTo member is set, the page remapped as read-write and the state * moved back to allocated. */ #define PGM_PAGE_STATE_WRITE_MONITORED 2 /** The page is shared, aka. copy-on-write. * This is a page that's shared with other VMs. */ #define PGM_PAGE_STATE_SHARED 3 /** @} */ /** * Gets the page state. * @returns page state (PGM_PAGE_STATE_*). * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX ) /** * Sets the page state. * @param pPage Pointer to the physical guest page tracking structure. * @param _uState The new page state. */ #define PGM_PAGE_SET_STATE(pPage, _uState) \ do { (pPage)->u2StateX = (_uState); } while (0) /** * Gets the host physical address of the guest page. * @returns host physical address (RTHCPHYS). * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhysX & UINT64_C(0x0000fffffffff000) ) /** * Sets the host physical address of the guest page. * @param pPage Pointer to the physical guest page tracking structure. * @param _HCPhys The new host physical address. */ #define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \ do { (pPage)->HCPhysX = (((pPage)->HCPhysX) & UINT64_C(0xffff000000000fff)) \ | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0) /** * Get the Page ID. * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX ) /* later: #define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhysX >> (48 - 12)) | ((uint32_t)(pPage)->HCPhysX & 0xfff) ) */ /** * Sets the Page ID. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0) /* later: #define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhysX = (((pPage)->HCPhysX) & UINT64_C(0x0000fffffffff000)) \ | ((_idPage) & 0xfff) \ | (((_idPage) & 0x0ffff000) << (48-12)); } while (0) */ /** * Get the Chunk ID. * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT ) /* later: #if GMM_CHUNKID_SHIFT == 12 # define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhysX >> 48) ) #elif GMM_CHUNKID_SHIFT > 12 # define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhysX >> (48 + (GMM_CHUNKID_SHIFT - 12)) ) #elif GMM_CHUNKID_SHIFT < 12 # define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhysX >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \ | ( (uint32_t)((pPage)->HCPhysX & 0xfff) >> GMM_CHUNKID_SHIFT ) ) #else # error "GMM_CHUNKID_SHIFT isn't defined or something." #endif */ /** * Get the index of the page within the allocaiton chunk. * @returns The page index. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK ) /* later: #if GMM_CHUNKID_SHIFT <= 12 # define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhysX & GMM_PAGEID_IDX_MASK) ) #else # define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhysX & 0xfff) \ | ( (uint32_t)((pPage)->HCPhysX >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) ) #endif */ /** * Gets the page type. * @returns The page type. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type /** * Sets the page type. * @param pPage Pointer to the physical guest page tracking structure. * @param _enmType The new page type (PGMPAGETYPE). */ #define PGM_PAGE_SET_TYPE(pPage, _enmType) \ do { (pPage)->u3Type = (_enmType); } while (0) /** * Checks if the page is marked for MMIO. * @returns true/false. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_MMIO(pPage) ( (pPage)->u3Type == PGMPAGETYPE_MMIO ) /** * Checks if the page is backed by the ZERO page. * @returns true/false. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO ) /** * Checks if the page is backed by a SHARED page. * @returns true/false. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED ) /** * Marks the paget as written to (for GMM change monitoring). * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0) /** * Clears the written-to indicator. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0) /** * Checks if the page was marked as written-to. * @returns true/false. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX ) /** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX). * * @remarks The values are assigned in order of priority, so we can calculate * the correct state for a page with different handlers installed. * @{ */ /** No handler installed. */ #define PGM_PAGE_HNDL_PHYS_STATE_NONE 0 /** Monitoring is temporarily disabled. */ #define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1 /** Write access is monitored. */ #define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2 /** All access is monitored. */ #define PGM_PAGE_HNDL_PHYS_STATE_ALL 3 /** @} */ /** * Gets the physical access handler state of a page. * @returns PGM_PAGE_HNDL_PHYS_STATE_* value. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX ) /** * Sets the physical access handler state of a page. * @param pPage Pointer to the physical guest page tracking structure. * @param _uState The new state value. */ #define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \ do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0) /** * Checks if the page has any physical access handlers, including temporariliy disabled ones. * @returns true/false * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE ) /** * Checks if the page has any active physical access handlers. * @returns true/false * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE ) /** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX). * * @remarks The values are assigned in order of priority, so we can calculate * the correct state for a page with different handlers installed. * @{ */ /** No handler installed. */ #define PGM_PAGE_HNDL_VIRT_STATE_NONE 0 /* 1 is reserved so the lineup is identical with the physical ones. */ /** Write access is monitored. */ #define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2 /** All access is monitored. */ #define PGM_PAGE_HNDL_VIRT_STATE_ALL 3 /** @} */ /** * Gets the virtual access handler state of a page. * @returns PGM_PAGE_HNDL_VIRT_STATE_* value. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX ) /** * Sets the virtual access handler state of a page. * @param pPage Pointer to the physical guest page tracking structure. * @param _uState The new state value. */ #define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \ do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0) /** * Checks if the page has any virtual access handlers. * @returns true/false * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE ) /** * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in * virtual handlers. * @returns true/false * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) /** * Checks if the page has any access handlers, including temporarily disabled ones. * @returns true/false * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \ ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \ || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE ) /** * Checks if the page has any active access handlers. * @returns true/false * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \ ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \ || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE ) /** * Checks if the page has any active access handlers catching all accesses. * @returns true/false * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \ ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \ || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL ) /** @def PGM_PAGE_GET_TRACKING * Gets the packed shadow page pool tracking data associated with a guest page. * @returns uint16_t containing the data. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_TRACKING(pPage) \ ( *((uint16_t *)&(pPage)->HCPhysX + 3) ) /** @def PGM_PAGE_SET_TRACKING * Sets the packed shadow page pool tracking data associated with a guest page. * @param pPage Pointer to the physical guest page tracking structure. * @param u16TrackingData The tracking data to store. */ #define PGM_PAGE_SET_TRACKING(pPage, u16TrackingData) \ do { *((uint16_t *)&(pPage)->HCPhysX + 3) = (u16TrackingData); } while (0) /** @def PGM_PAGE_GET_TD_CREFS * Gets the @a cRefs tracking data member. * @returns cRefs. * @param pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_TD_CREFS(pPage) \ ((PGM_PAGE_GET_TRACKING(pPage) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK) #define PGM_PAGE_GET_TD_IDX(pPage) \ ((PGM_PAGE_GET_TRACKING(pPage) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK) /** * Ram range for GC Phys to HC Phys conversion. * * Can be used for HC Virt to GC Phys and HC Virt to HC Phys * conversions too, but we'll let MM handle that for now. * * This structure is used by linked lists in both GC and HC. */ typedef struct PGMRAMRANGE { /** Start of the range. Page aligned. */ RTGCPHYS GCPhys; /** Size of the range. (Page aligned of course). */ RTGCPHYS cb; /** Pointer to the next RAM range - for R3. */ R3PTRTYPE(struct PGMRAMRANGE *) pNextR3; /** Pointer to the next RAM range - for R0. */ R0PTRTYPE(struct PGMRAMRANGE *) pNextR0; /** Pointer to the next RAM range - for RC. */ RCPTRTYPE(struct PGMRAMRANGE *) pNextRC; /** PGM_RAM_RANGE_FLAGS_* flags. */ uint32_t fFlags; /** Last address in the range (inclusive). Page aligned (-1). */ RTGCPHYS GCPhysLast; /** Start of the HC mapping of the range. This is only used for MMIO2. */ R3PTRTYPE(void *) pvR3; /** The range description. */ R3PTRTYPE(const char *) pszDesc; /** Pointer to self - R0 pointer. */ R0PTRTYPE(struct PGMRAMRANGE *) pSelfR0; /** Pointer to self - RC pointer. */ RCPTRTYPE(struct PGMRAMRANGE *) pSelfRC; /** Padding to make aPage aligned on sizeof(PGMPAGE). */ uint32_t au32Alignment2[HC_ARCH_BITS == 32 ? 2 : 1]; /** Array of physical guest page tracking structures. */ PGMPAGE aPages[1]; } PGMRAMRANGE; /** Pointer to Ram range for GC Phys to HC Phys conversion. */ typedef PGMRAMRANGE *PPGMRAMRANGE; /** @name PGMRAMRANGE::fFlags * @{ */ /** The RAM range is floating around as an independent guest mapping. */ #define PGM_RAM_RANGE_FLAGS_FLOATING RT_BIT(20) /** @} */ /** * Per page tracking structure for ROM image. * * A ROM image may have a shadow page, in which case we may have * two pages backing it. This structure contains the PGMPAGE for * both while PGMRAMRANGE have a copy of the active one. It is * important that these aren't out of sync in any regard other * than page pool tracking data. */ typedef struct PGMROMPAGE { /** The page structure for the virgin ROM page. */ PGMPAGE Virgin; /** The page structure for the shadow RAM page. */ PGMPAGE Shadow; /** The current protection setting. */ PGMROMPROT enmProt; /** Pad the structure size to a multiple of 8. */ uint32_t u32Padding; } PGMROMPAGE; /** Pointer to a ROM page tracking structure. */ typedef PGMROMPAGE *PPGMROMPAGE; /** * A registered ROM image. * * This is needed to keep track of ROM image since they generally * intrude into a PGMRAMRANGE. It also keeps track of additional * info like the two page sets (read-only virgin and read-write shadow), * the current state of each page. * * Because access handlers cannot easily be executed in a different * context, the ROM ranges needs to be accessible and in all contexts. */ typedef struct PGMROMRANGE { /** Pointer to the next range - R3. */ R3PTRTYPE(struct PGMROMRANGE *) pNextR3; /** Pointer to the next range - R0. */ R0PTRTYPE(struct PGMROMRANGE *) pNextR0; /** Pointer to the next range - RC. */ RCPTRTYPE(struct PGMROMRANGE *) pNextRC; /** Pointer alignment */ RTRCPTR GCPtrAlignment; /** Address of the range. */ RTGCPHYS GCPhys; /** Address of the last byte in the range. */ RTGCPHYS GCPhysLast; /** Size of the range. */ RTGCPHYS cb; /** The flags (PGMPHYS_ROM_FLAG_*). */ uint32_t fFlags; /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */ uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3]; /** Pointer to the original bits when PGMPHYS_ROM_FLAGS_PERMANENT_BINARY was specified. * This is used for strictness checks. */ R3PTRTYPE(const void *) pvOriginal; /** The ROM description. */ R3PTRTYPE(const char *) pszDesc; /** The per page tracking structures. */ PGMROMPAGE aPages[1]; } PGMROMRANGE; /** Pointer to a ROM range. */ typedef PGMROMRANGE *PPGMROMRANGE; /** * A registered MMIO2 (= Device RAM) range. * * There are a few reason why we need to keep track of these * registrations. One of them is the deregistration & cleanup * stuff, while another is that the PGMRAMRANGE associated with * such a region may have to be removed from the ram range list. * * Overlapping with a RAM range has to be 100% or none at all. The * pages in the existing RAM range must not be ROM nor MMIO. A guru * meditation will be raised if a partial overlap or an overlap of * ROM pages is encountered. On an overlap we will free all the * existing RAM pages and put in the ram range pages instead. */ typedef struct PGMMMIO2RANGE { /** The owner of the range. (a device) */ PPDMDEVINSR3 pDevInsR3; /** Pointer to the ring-3 mapping of the allocation. */ RTR3PTR pvR3; /** Pointer to the next range - R3. */ R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3; /** Whether it's mapped or not. */ bool fMapped; /** Whether it's overlapping or not. */ bool fOverlapping; /** The PCI region number. * @remarks This ASSUMES that nobody will ever really need to have multiple * PCI devices with matching MMIO region numbers on a single device. */ uint8_t iRegion; /** Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */ uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5]; /** The associated RAM range. */ PGMRAMRANGE RamRange; } PGMMMIO2RANGE; /** Pointer to a MMIO2 range. */ typedef PGMMMIO2RANGE *PPGMMMIO2RANGE; /** * PGMPhysRead/Write cache entry */ typedef struct PGMPHYSCACHEENTRY { /** R3 pointer to physical page. */ R3PTRTYPE(uint8_t *) pbR3; /** GC Physical address for cache entry */ RTGCPHYS GCPhys; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 RTGCPHYS u32Padding0; /**< alignment padding. */ #endif } PGMPHYSCACHEENTRY; /** * PGMPhysRead/Write cache to reduce REM memory access overhead */ typedef struct PGMPHYSCACHE { /** Bitmap of valid cache entries */ uint64_t aEntries; /** Cache entries */ PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES]; } PGMPHYSCACHE; /** Pointer to an allocation chunk ring-3 mapping. */ typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP; /** Pointer to an allocation chunk ring-3 mapping pointer. */ typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP; /** * Ring-3 tracking structore for an allocation chunk ring-3 mapping. * * The primary tree (Core) uses the chunk id as key. * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key. */ typedef struct PGMCHUNKR3MAP { /** The key is the chunk id. */ AVLU32NODECORE Core; /** The key is the ageing sequence number. */ AVLLU32NODECORE AgeCore; /** The current age thingy. */ uint32_t iAge; /** The current reference count. */ uint32_t volatile cRefs; /** The current permanent reference count. */ uint32_t volatile cPermRefs; /** The mapping address. */ void *pv; } PGMCHUNKR3MAP; /** * Allocation chunk ring-3 mapping TLB entry. */ typedef struct PGMCHUNKR3MAPTLBE { /** The chunk id. */ uint32_t volatile idChunk; #if HC_ARCH_BITS == 64 uint32_t u32Padding; /**< alignment padding. */ #endif /** The chunk map. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk; #else R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk; #endif } PGMCHUNKR3MAPTLBE; /** Pointer to the an allocation chunk ring-3 mapping TLB entry. */ typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE; /** The number of TLB entries in PGMCHUNKR3MAPTLB. * @remark Must be a power of two value. */ #define PGM_CHUNKR3MAPTLB_ENTRIES 32 /** * Allocation chunk ring-3 mapping TLB. * * @remarks We use a TLB to speed up lookups by avoiding walking the AVL. * At first glance this might look kinda odd since AVL trees are * supposed to give the most optimial lookup times of all trees * due to their balancing. However, take a tree with 1023 nodes * in it, that's 10 levels, meaning that most searches has to go * down 9 levels before they find what they want. This isn't fast * compared to a TLB hit. There is the factor of cache misses, * and of course the problem with trees and branch prediction. * This is why we use TLBs in front of most of the trees. * * @todo Generalize this TLB + AVL stuff, shouldn't be all that * difficult when we switch to the new inlined AVL trees (from kStuff). */ typedef struct PGMCHUNKR3MAPTLB { /** The TLB entries. */ PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES]; } PGMCHUNKR3MAPTLB; /** * Calculates the index of a guest page in the Ring-3 Chunk TLB. * @returns Chunk TLB index. * @param idChunk The Chunk ID. */ #define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) ) /** * Ring-3 guest page mapping TLB entry. * @remarks used in ring-0 as well at the moment. */ typedef struct PGMPAGER3MAPTLBE { /** Address of the page. */ RTGCPHYS volatile GCPhys; /** The guest page. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PPGMPAGE) volatile pPage; #else R3R0PTRTYPE(PPGMPAGE) volatile pPage; #endif /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap; #else R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap; #endif /** The address */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(void *) volatile pv; #else R3R0PTRTYPE(void *) volatile pv; #endif #if HC_ARCH_BITS == 32 uint32_t u32Padding; /**< alignment padding. */ #endif } PGMPAGER3MAPTLBE; /** Pointer to an entry in the HC physical TLB. */ typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE; /** The number of entries in the ring-3 guest page mapping TLB. * @remarks The value must be a power of two. */ #define PGM_PAGER3MAPTLB_ENTRIES 64 /** * Ring-3 guest page mapping TLB. * @remarks used in ring-0 as well at the moment. */ typedef struct PGMPAGER3MAPTLB { /** The TLB entries. */ PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES]; } PGMPAGER3MAPTLB; /** Pointer to the ring-3 guest page mapping TLB. */ typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB; /** * Calculates the index of the TLB entry for the specified guest page. * @returns Physical TLB index. * @param GCPhys The guest physical address. */ #define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) ) /** * Mapping cache usage set entry. * * @remarks 16-bit ints was choosen as the set is not expected to be used beyond * the dynamic ring-0 and (to some extent) raw-mode context mapping * cache. If it's extended to include ring-3, well, then something will * have be changed here... */ typedef struct PGMMAPSETENTRY { /** The mapping cache index. */ uint16_t iPage; /** The number of references. * The max is UINT16_MAX - 1. */ uint16_t cRefs; #if HC_ARCH_BITS == 64 uint32_t alignment; #endif /** Pointer to the page. */ RTR0PTR pvPage; /** The physical address for this entry. */ RTHCPHYS HCPhys; } PGMMAPSETENTRY; /** Pointer to a mapping cache usage set entry. */ typedef PGMMAPSETENTRY *PPGMMAPSETENTRY; /** * Mapping cache usage set. * * This is used in ring-0 and the raw-mode context to track dynamic mappings * done during exits / traps. The set is */ typedef struct PGMMAPSET { /** The number of occupied entries. * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do * dynamic mappings. */ uint32_t cEntries; /** The start of the current subset. * This is UINT32_MAX if no subset is currently open. */ uint32_t iSubset; /** The index of the current CPU, only valid if the set is open. */ int32_t iCpu; #if HC_ARCH_BITS == 64 uint32_t alignment; #endif /** The entries. */ PGMMAPSETENTRY aEntries[64]; /** HCPhys -> iEntry fast lookup table. * Use PGMMAPSET_HASH for hashing. * The entries may or may not be valid, check against cEntries. */ uint8_t aiHashTable[128]; } PGMMAPSET; /** Pointer to the mapping cache set. */ typedef PGMMAPSET *PPGMMAPSET; /** PGMMAPSET::cEntries value for a closed set. */ #define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe) /** Hash function for aiHashTable. */ #define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 127) /** The max fill size (strict builds). */ #define PGMMAPSET_MAX_FILL (64U * 80U / 100U) /** @name Context neutrual page mapper TLB. * * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr * code is writting in a kind of context neutrual way. Time will show whether * this actually makes sense or not... * * @todo this needs to be reconsidered and dropped/redone since the ring-0 * context ends up using a global mapping cache on some platforms * (darwin). * * @{ */ /** @typedef PPGMPAGEMAPTLB * The page mapper TLB pointer type for the current context. */ /** @typedef PPGMPAGEMAPTLB * The page mapper TLB entry pointer type for the current context. */ /** @typedef PPGMPAGEMAPTLB * The page mapper TLB entry pointer pointer type for the current context. */ /** @def PGM_PAGEMAPTLB_ENTRIES * The number of TLB entries in the page mapper TLB for the current context. */ /** @def PGM_PAGEMAPTLB_IDX * Calculate the TLB index for a guest physical address. * @returns The TLB index. * @param GCPhys The guest physical address. */ /** @typedef PPGMPAGEMAP * Pointer to a page mapper unit for current context. */ /** @typedef PPPGMPAGEMAP * Pointer to a page mapper unit pointer for current context. */ #ifdef IN_RC // typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB; // typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE; // typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE; # define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES # define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys) typedef void * PPGMPAGEMAP; typedef void ** PPPGMPAGEMAP; //#elif IN_RING0 // typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB; // typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE; // typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE; //# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES //# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys) // typedef PPGMCHUNKR0MAP PPGMPAGEMAP; // typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP; #else typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB; typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE; typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE; # define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES # define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys) typedef PPGMCHUNKR3MAP PPGMPAGEMAP; typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP; #endif /** @} */ /** @name PGM Pool Indexes. * Aka. the unique shadow page identifier. * @{ */ /** NIL page pool IDX. */ #define NIL_PGMPOOL_IDX 0 /** The first normal index. */ #define PGMPOOL_IDX_FIRST_SPECIAL 1 /** Page directory (32-bit root). */ #define PGMPOOL_IDX_PD 1 /** Page Directory Pointer Table (PAE root). */ #define PGMPOOL_IDX_PDPT 2 /** AMD64 CR3 level index.*/ #define PGMPOOL_IDX_AMD64_CR3 3 /** Nested paging root.*/ #define PGMPOOL_IDX_NESTED_ROOT 4 /** The first normal index. */ #define PGMPOOL_IDX_FIRST 5 /** The last valid index. (inclusive, 14 bits) */ #define PGMPOOL_IDX_LAST 0x3fff /** @} */ /** The NIL index for the parent chain. */ #define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff) /** * Node in the chain linking a shadowed page to it's parent (user). */ #pragma pack(1) typedef struct PGMPOOLUSER { /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */ uint16_t iNext; /** The user page index. */ uint16_t iUser; /** Index into the user table. */ uint32_t iUserTable; } PGMPOOLUSER, *PPGMPOOLUSER; typedef const PGMPOOLUSER *PCPGMPOOLUSER; #pragma pack() /** The NIL index for the phys ext chain. */ #define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff) /** * Node in the chain of physical cross reference extents. * @todo Calling this an 'extent' is not quite right, find a better name. */ #pragma pack(1) typedef struct PGMPOOLPHYSEXT { /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */ uint16_t iNext; /** The user page index. */ uint16_t aidx[3]; } PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT; typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT; #pragma pack() /** * The kind of page that's being shadowed. */ typedef enum PGMPOOLKIND { /** The virtual invalid 0 entry. */ PGMPOOLKIND_INVALID = 0, /** The entry is free (=unused). */ PGMPOOLKIND_FREE, /** Shw: 32-bit page table; Gst: no paging */ PGMPOOLKIND_32BIT_PT_FOR_PHYS, /** Shw: 32-bit page table; Gst: 32-bit page table. */ PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT, /** Shw: 32-bit page table; Gst: 4MB page. */ PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB, /** Shw: PAE page table; Gst: no paging */ PGMPOOLKIND_PAE_PT_FOR_PHYS, /** Shw: PAE page table; Gst: 32-bit page table. */ PGMPOOLKIND_PAE_PT_FOR_32BIT_PT, /** Shw: PAE page table; Gst: Half of a 4MB page. */ PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB, /** Shw: PAE page table; Gst: PAE page table. */ PGMPOOLKIND_PAE_PT_FOR_PAE_PT, /** Shw: PAE page table; Gst: 2MB page. */ PGMPOOLKIND_PAE_PT_FOR_PAE_2MB, /** Shw: 32-bit page directory. Gst: 32-bit page directory. */ PGMPOOLKIND_32BIT_PD, /** Shw: 32-bit page directory. Gst: no paging. */ PGMPOOLKIND_32BIT_PD_PHYS, /** Shw: PAE page directory 0; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD, /** Shw: PAE page directory 1; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD, /** Shw: PAE page directory 2; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD, /** Shw: PAE page directory 3; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD, /** Shw: PAE page directory; Gst: PAE page directory. */ PGMPOOLKIND_PAE_PD_FOR_PAE_PD, /** Shw: PAE page directory; Gst: no paging. */ PGMPOOLKIND_PAE_PD_PHYS, /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */ PGMPOOLKIND_PAE_PDPT_FOR_32BIT, /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */ PGMPOOLKIND_PAE_PDPT, /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst: no paging. */ PGMPOOLKIND_PAE_PDPT_PHYS, /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */ PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT, /** Shw: 64-bit page directory pointer table; Gst: no paging */ PGMPOOLKIND_64BIT_PDPT_FOR_PHYS, /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */ PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD, /** Shw: 64-bit page directory table; Gst: no paging */ PGMPOOLKIND_64BIT_PD_FOR_PHYS, /* 22 */ /** Shw: 64-bit PML4; Gst: 64-bit PML4. */ PGMPOOLKIND_64BIT_PML4, /** Shw: EPT page directory pointer table; Gst: no paging */ PGMPOOLKIND_EPT_PDPT_FOR_PHYS, /** Shw: EPT page directory table; Gst: no paging */ PGMPOOLKIND_EPT_PD_FOR_PHYS, /** Shw: EPT page table; Gst: no paging */ PGMPOOLKIND_EPT_PT_FOR_PHYS, /** Shw: Root Nested paging table. */ PGMPOOLKIND_ROOT_NESTED, /** The last valid entry. */ PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED } PGMPOOLKIND; /** * The access attributes of the page; only applies to big pages. */ typedef enum { PGMPOOLACCESS_DONTCARE = 0, PGMPOOLACCESS_USER_RW, PGMPOOLACCESS_USER_R, PGMPOOLACCESS_USER_RW_NX, PGMPOOLACCESS_USER_R_NX, PGMPOOLACCESS_SUPERVISOR_RW, PGMPOOLACCESS_SUPERVISOR_R, PGMPOOLACCESS_SUPERVISOR_RW_NX, PGMPOOLACCESS_SUPERVISOR_R_NX } PGMPOOLACCESS; /** * The tracking data for a page in the pool. */ typedef struct PGMPOOLPAGE { /** AVL node code with the (R3) physical address of this page. */ AVLOHCPHYSNODECORE Core; /** Pointer to the R3 mapping of the page. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(void *) pvPageR3; #else R3R0PTRTYPE(void *) pvPageR3; #endif /** The guest physical address. */ #if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64 uint32_t Alignment0; #endif RTGCPHYS GCPhys; /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */ uint8_t enmKind; /** The subkind of page we're shadowing. (This is really a PGMPOOLACCESS enum.) */ uint8_t enmAccess; /** The index of this page. */ uint16_t idx; /** The next entry in the list this page currently resides in. * It's either in the free list or in the GCPhys hash. */ uint16_t iNext; #ifdef PGMPOOL_WITH_USER_TRACKING /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */ uint16_t iUserHead; /** The number of present entries. */ uint16_t cPresent; /** The first entry in the table which is present. */ uint16_t iFirstPresent; #endif #ifdef PGMPOOL_WITH_MONITORING /** The number of modifications to the monitored page. */ uint16_t cModifications; /** The next modified page. NIL_PGMPOOL_IDX if tail. */ uint16_t iModifiedNext; /** The previous modified page. NIL_PGMPOOL_IDX if head. */ uint16_t iModifiedPrev; /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */ uint16_t iMonitoredNext; /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */ uint16_t iMonitoredPrev; #endif #ifdef PGMPOOL_WITH_CACHE /** The next page in the age list. */ uint16_t iAgeNext; /** The previous page in the age list. */ uint16_t iAgePrev; #endif /* PGMPOOL_WITH_CACHE */ /** Used to indicate that the page is zeroed. */ bool fZeroed; /** Used to indicate that a PT has non-global entries. */ bool fSeenNonGlobal; /** Used to indicate that we're monitoring writes to the guest page. */ bool fMonitored; /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash). * (All pages are in the age list.) */ bool fCached; /** This is used by the R3 access handlers when invoked by an async thread. * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */ bool volatile fReusedFlushPending; bool bPadding1; /** Used to indicate that this page can't be flushed. Important for cr3 root pages or shadow pae pd pages). */ uint32_t cLocked; uint32_t bPadding2; } PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE; /** Pointer to a const pool page. */ typedef PGMPOOLPAGE const *PCPGMPOOLPAGE; #ifdef PGMPOOL_WITH_CACHE /** The hash table size. */ # define PGMPOOL_HASH_SIZE 0x40 /** The hash function. */ # define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) ) #endif /** * The shadow page pool instance data. * * It's all one big allocation made at init time, except for the * pages that is. The user nodes follows immediatly after the * page structures. */ typedef struct PGMPOOL { /** The VM handle - R3 Ptr. */ PVMR3 pVMR3; /** The VM handle - R0 Ptr. */ PVMR0 pVMR0; /** The VM handle - RC Ptr. */ PVMRC pVMRC; /** The max pool size. This includes the special IDs. */ uint16_t cMaxPages; /** The current pool size. */ uint16_t cCurPages; /** The head of the free page list. */ uint16_t iFreeHead; /* Padding. */ uint16_t u16Padding; #ifdef PGMPOOL_WITH_USER_TRACKING /** Head of the chain of free user nodes. */ uint16_t iUserFreeHead; /** The number of user nodes we've allocated. */ uint16_t cMaxUsers; /** The number of present page table entries in the entire pool. */ uint32_t cPresent; /** Pointer to the array of user nodes - RC pointer. */ RCPTRTYPE(PPGMPOOLUSER) paUsersRC; /** Pointer to the array of user nodes - R3 pointer. */ R3PTRTYPE(PPGMPOOLUSER) paUsersR3; /** Pointer to the array of user nodes - R0 pointer. */ R0PTRTYPE(PPGMPOOLUSER) paUsersR0; #endif /* PGMPOOL_WITH_USER_TRACKING */ #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** Head of the chain of free phys ext nodes. */ uint16_t iPhysExtFreeHead; /** The number of user nodes we've allocated. */ uint16_t cMaxPhysExts; /** Pointer to the array of physical xref extent - RC pointer. */ RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC; /** Pointer to the array of physical xref extent nodes - R3 pointer. */ R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3; /** Pointer to the array of physical xref extent nodes - R0 pointer. */ R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0; #endif /* PGMPOOL_WITH_GCPHYS_TRACKING */ #ifdef PGMPOOL_WITH_CACHE /** Hash table for GCPhys addresses. */ uint16_t aiHash[PGMPOOL_HASH_SIZE]; /** The head of the age list. */ uint16_t iAgeHead; /** The tail of the age list. */ uint16_t iAgeTail; /** Set if the cache is enabled. */ bool fCacheEnabled; #endif /* PGMPOOL_WITH_CACHE */ #ifdef PGMPOOL_WITH_MONITORING /** Head of the list of modified pages. */ uint16_t iModifiedHead; /** The current number of modified pages. */ uint16_t cModifiedPages; /** Access handler, RC. */ RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC; /** Access handler, R0. */ R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0; /** Access handler, R3. */ R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3; /** The access handler description (HC ptr). */ R3PTRTYPE(const char *) pszAccessHandler; #endif /* PGMPOOL_WITH_MONITORING */ /** The number of pages currently in use. */ uint16_t cUsedPages; #ifdef VBOX_WITH_STATISTICS /** The high wather mark for cUsedPages. */ uint16_t cUsedPagesHigh; uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */ /** Profiling pgmPoolAlloc(). */ STAMPROFILEADV StatAlloc; /** Profiling pgmPoolClearAll(). */ STAMPROFILE StatClearAll; /** Profiling pgmPoolFlushAllInt(). */ STAMPROFILE StatFlushAllInt; /** Profiling pgmPoolFlushPage(). */ STAMPROFILE StatFlushPage; /** Profiling pgmPoolFree(). */ STAMPROFILE StatFree; /** Profiling time spent zeroing pages. */ STAMPROFILE StatZeroPage; # ifdef PGMPOOL_WITH_USER_TRACKING /** Profiling of pgmPoolTrackDeref. */ STAMPROFILE StatTrackDeref; /** Profiling pgmTrackFlushGCPhysPT. */ STAMPROFILE StatTrackFlushGCPhysPT; /** Profiling pgmTrackFlushGCPhysPTs. */ STAMPROFILE StatTrackFlushGCPhysPTs; /** Profiling pgmTrackFlushGCPhysPTsSlow. */ STAMPROFILE StatTrackFlushGCPhysPTsSlow; /** Number of times we've been out of user records. */ STAMCOUNTER StatTrackFreeUpOneUser; # endif # ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** Profiling deref activity related tracking GC physical pages. */ STAMPROFILE StatTrackDerefGCPhys; /** Number of linear searches for a HCPhys in the ram ranges. */ STAMCOUNTER StatTrackLinearRamSearches; /** The number of failing pgmPoolTrackPhysExtAlloc calls. */ STAMCOUNTER StamTrackPhysExtAllocFailures; # endif # ifdef PGMPOOL_WITH_MONITORING /** Profiling the RC/R0 access handler. */ STAMPROFILE StatMonitorRZ; /** Times we've failed interpreting the instruction. */ STAMCOUNTER StatMonitorRZEmulateInstr; /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */ STAMPROFILE StatMonitorRZFlushPage; /** Times we've detected fork(). */ STAMCOUNTER StatMonitorRZFork; /** Profiling the RC/R0 access we've handled (except REP STOSD). */ STAMPROFILE StatMonitorRZHandled; /** Times we've failed interpreting a patch code instruction. */ STAMCOUNTER StatMonitorRZIntrFailPatch1; /** Times we've failed interpreting a patch code instruction during flushing. */ STAMCOUNTER StatMonitorRZIntrFailPatch2; /** The number of times we've seen rep prefixes we can't handle. */ STAMCOUNTER StatMonitorRZRepPrefix; /** Profiling the REP STOSD cases we've handled. */ STAMPROFILE StatMonitorRZRepStosd; /** Profiling the R3 access handler. */ STAMPROFILE StatMonitorR3; /** Times we've failed interpreting the instruction. */ STAMCOUNTER StatMonitorR3EmulateInstr; /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */ STAMPROFILE StatMonitorR3FlushPage; /** Times we've detected fork(). */ STAMCOUNTER StatMonitorR3Fork; /** Profiling the R3 access we've handled (except REP STOSD). */ STAMPROFILE StatMonitorR3Handled; /** The number of times we've seen rep prefixes we can't handle. */ STAMCOUNTER StatMonitorR3RepPrefix; /** Profiling the REP STOSD cases we've handled. */ STAMPROFILE StatMonitorR3RepStosd; /** The number of times we're called in an async thread an need to flush. */ STAMCOUNTER StatMonitorR3Async; /** The high wather mark for cModifiedPages. */ uint16_t cModifiedPagesHigh; uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */ # endif # ifdef PGMPOOL_WITH_CACHE /** The number of cache hits. */ STAMCOUNTER StatCacheHits; /** The number of cache misses. */ STAMCOUNTER StatCacheMisses; /** The number of times we've got a conflict of 'kind' in the cache. */ STAMCOUNTER StatCacheKindMismatches; /** Number of times we've been out of pages. */ STAMCOUNTER StatCacheFreeUpOne; /** The number of cacheable allocations. */ STAMCOUNTER StatCacheCacheable; /** The number of uncacheable allocations. */ STAMCOUNTER StatCacheUncacheable; # endif #elif HC_ARCH_BITS == 64 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */ #endif /** The AVL tree for looking up a page by its HC physical address. */ AVLOHCPHYSTREE HCPhysTree; uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */ /** Array of pages. (cMaxPages in length) * The Id is the index into thist array. */ PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST]; } PGMPOOL, *PPGMPOOL, **PPPGMPOOL; /** @def PGMPOOL_PAGE_2_PTR * Maps a pool page pool into the current context. * * @returns VBox status code. * @param pVM The VM handle. * @param pPage The pool page. * * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) # define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage)) #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage)) #elif defined(VBOX_STRICT) # define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageStrict(pPage) DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE pPage) { Assert(pPage && pPage->pvPageR3); return pPage->pvPageR3; } #else # define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageR3) #endif /** @def PGMPOOL_PAGE_2_PTR_BY_PGM * Maps a pool page pool into the current context. * * @returns VBox status code. * @param pPGM Pointer to the PGM instance data. * @param pPage The pool page. * * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) # define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined(pPGM, (pPage)) #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined(pPGM, (pPage)) #else # define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPage) #endif /** @def PGMPOOL_PAGE_2_PTR_BY_PGMCPU * Maps a pool page pool into the current context. * * @returns VBox status code. * @param pPGM Pointer to the PGMCPU instance data. * @param pPage The pool page. * * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) # define PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPage) pgmPoolMapPageInlined(PGMCPU2PGM(pPGM), (pPage)) #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPage) pgmPoolMapPageInlined(PGMCPU2PGM(pPGM), (pPage)) #else # define PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPage) PGMPOOL_PAGE_2_PTR(PGMCPU2VM(pPGM), pPage) #endif /** @name Per guest page tracking data. * This is currently as a 16-bit word in the PGMPAGE structure, the idea though * is to use more bits for it and split it up later on. But for now we'll play * safe and change as little as possible. * * The 16-bit word has two parts: * * The first 14-bit forms the @a idx field. It is either the index of a page in * the shadow page pool, or and index into the extent list. * * The 2 topmost bits makes up the @a cRefs field, which counts the number of * shadow page pool references to the page. If cRefs equals * PGMPOOL_CREFS_PHYSEXT, then the @a idx field is an indext into the extent * (misnomer) table and not the shadow page pool. * * See PGM_PAGE_GET_TRACKING and PGM_PAGE_SET_TRACKING for how to get and set * the 16-bit word. * * @{ */ /** The shift count for getting to the cRefs part. */ #define PGMPOOL_TD_CREFS_SHIFT 14 /** The mask applied after shifting the tracking data down by * PGMPOOL_TD_CREFS_SHIFT. */ #define PGMPOOL_TD_CREFS_MASK 0x3 /** The cRef value used to indiciate that the idx is the head of a * physical cross reference list. */ #define PGMPOOL_TD_CREFS_PHYSEXT PGMPOOL_TD_CREFS_MASK /** The shift used to get idx. */ #define PGMPOOL_TD_IDX_SHIFT 0 /** The mask applied to the idx after shifting down by PGMPOOL_TD_IDX_SHIFT. */ #define PGMPOOL_TD_IDX_MASK 0x3fff /** The idx value when we're out of of PGMPOOLPHYSEXT entries or/and there are * simply too many mappings of this page. */ #define PGMPOOL_TD_IDX_OVERFLOWED PGMPOOL_TD_IDX_MASK /** @def PGMPOOL_TD_MAKE * Makes a 16-bit tracking data word. * * @returns tracking data. * @param cRefs The @a cRefs field. Must be within bounds! * @param idx The @a idx field. Must also be within bounds! */ #define PGMPOOL_TD_MAKE(cRefs, idx) ( ((cRefs) << PGMPOOL_TD_CREFS_SHIFT) | (idx) ) /** @def PGMPOOL_TD_GET_CREFS * Get the @a cRefs field from a tracking data word. * * @returns The @a cRefs field * @param u16 The tracking data word. */ #define PGMPOOL_TD_GET_CREFS(u16) ( ((u16) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK ) /** @def PGMPOOL_TD_GET_IDX * Get the @a idx field from a tracking data word. * * @returns The @a idx field * @param u16 The tracking data word. */ #define PGMPOOL_TD_GET_IDX(u16) ( ((u16) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK ) /** @} */ /** * Trees are using self relative offsets as pointers. * So, all its data, including the root pointer, must be in the heap for HC and GC * to have the same layout. */ typedef struct PGMTREES { /** Physical access handlers (AVL range+offsetptr tree). */ AVLROGCPHYSTREE PhysHandlers; /** Virtual access handlers (AVL range + GC ptr tree). */ AVLROGCPTRTREE VirtHandlers; /** Virtual access handlers (Phys range AVL range + offsetptr tree). */ AVLROGCPHYSTREE PhysToVirtHandlers; /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */ AVLROGCPTRTREE HyperVirtHandlers; } PGMTREES; /** Pointer to PGM trees. */ typedef PGMTREES *PPGMTREES; /** @name Paging mode macros * @{ */ #ifdef IN_RC # define PGM_CTX(a,b) a##RC##b # define PGM_CTX_STR(a,b) a "GC" b # define PGM_CTX_DECL(type) VMMRCDECL(type) #else # ifdef IN_RING3 # define PGM_CTX(a,b) a##R3##b # define PGM_CTX_STR(a,b) a "R3" b # define PGM_CTX_DECL(type) DECLCALLBACK(type) # else # define PGM_CTX(a,b) a##R0##b # define PGM_CTX_STR(a,b) a "R0" b # define PGM_CTX_DECL(type) VMMDECL(type) # endif #endif #define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name) #define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name #define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name #define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name) #define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name #define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name #define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name) #define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name #define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name #define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name) #define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name #define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name #define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name) #define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name #define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name #define PGM_GST_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Gst##name)) #define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name) #define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name) #define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name #define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name #define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name) #define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name #define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name #define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name) #define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name #define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name #define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name) #define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name #define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name #define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name) #define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name #define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name #define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name) #define PGM_SHW_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Shw##name)) /* Shw_Gst */ #define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name) #define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name) #define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name) #define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name) #define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name) #define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name) #define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name) #define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name) #define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name) #define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name) #define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name) #define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name) #define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name) #define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name) #define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name) #define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name) #define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name) #define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name) #define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name) #define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name #define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name #define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name #define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name #define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name #define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name #define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name #define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name #define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name #define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name #define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name #define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name #define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name #define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name #define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name #define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name #define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name #define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name #define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name #define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name #define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name #define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name #define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name #define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name #define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name #define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name #define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name #define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name #define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name #define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name #define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name #define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name #define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name #define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name #define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name #define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name #define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name #define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name) #define PGM_BTH_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Bth##name)) /** @} */ /** * Data for each paging mode. */ typedef struct PGMMODEDATA { /** The guest mode type. */ uint32_t uGstType; /** The shadow mode type. */ uint32_t uShwType; /** @name Function pointers for Shadow paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); /** @} */ /** @name Function pointers for Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); /** @} */ /** @name Function pointers for Both Shadow and Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); /* no pfnR3BthTrap0eHandler */ DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVMCPU pVCpu, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); #endif DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVMCPU pVCpu)); DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVMCPU pVCpu, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); #endif DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVMCPU pVCpu)); DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVMCPU pVCpu, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); #endif DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVMCPU pVCpu)); /** @} */ } PGMMODEDATA, *PPGMMODEDATA; /** * Converts a PGM pointer into a VM pointer. * @returns Pointer to the VM structure the PGM is part of. * @param pPGM Pointer to PGM instance data. */ #define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) ) /** * PGM Data (part of VM) */ typedef struct PGM { /** Offset to the VM structure. */ RTINT offVM; /** Offset of the PGMCPU structure relative to VMCPU. */ RTINT offVCpuPGM; /** @cfgm{RamPreAlloc, boolean, false} * Indicates whether the base RAM should all be allocated before starting * the VM (default), or if it should be allocated when first written to. */ bool fRamPreAlloc; /** Alignment padding. */ bool afAlignment0[11]; /* * This will be redefined at least two more times before we're done, I'm sure. * The current code is only to get on with the coding. * - 2004-06-10: initial version, bird. * - 2004-07-02: 1st time, bird. * - 2004-10-18: 2nd time, bird. * - 2005-07-xx: 3rd time, bird. */ /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */ RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC; /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */ RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC; /** The host paging mode. (This is what SUPLib reports.) */ SUPPAGINGMODE enmHostMode; /** 4 MB page mask; 32 or 36 bits depending on PSE-36 (identical for all VCPUs) */ RTGCPHYS GCPhys4MBPSEMask; /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3. * This is sorted by physical address and contains no overlapping ranges. */ R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3; /** R0 pointer corresponding to PGM::pRamRangesR3. */ R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0; /** RC pointer corresponding to PGM::pRamRangesR3. */ RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC; RTRCPTR alignment4; /**< structure alignment. */ /** Pointer to the list of ROM ranges - for R3. * This is sorted by physical address and contains no overlapping ranges. */ R3PTRTYPE(PPGMROMRANGE) pRomRangesR3; /** R0 pointer corresponding to PGM::pRomRangesR3. */ R0PTRTYPE(PPGMROMRANGE) pRomRangesR0; /** RC pointer corresponding to PGM::pRomRangesR3. */ RCPTRTYPE(PPGMROMRANGE) pRomRangesRC; /** Alignment padding. */ RTRCPTR GCPtrPadding2; /** Pointer to the list of MMIO2 ranges - for R3. * Registration order. */ R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3; /** PGM offset based trees - R3 Ptr. */ R3PTRTYPE(PPGMTREES) pTreesR3; /** PGM offset based trees - R0 Ptr. */ R0PTRTYPE(PPGMTREES) pTreesR0; /** PGM offset based trees - RC Ptr. */ RCPTRTYPE(PPGMTREES) pTreesRC; /** Linked list of GC mappings - for RC. * The list is sorted ascending on address. */ RCPTRTYPE(PPGMMAPPING) pMappingsRC; /** Linked list of GC mappings - for HC. * The list is sorted ascending on address. */ R3PTRTYPE(PPGMMAPPING) pMappingsR3; /** Linked list of GC mappings - for R0. * The list is sorted ascending on address. */ R0PTRTYPE(PPGMMAPPING) pMappingsR0; /** Pointer to the 5 page CR3 content mapping. * The first page is always the CR3 (in some form) while the 4 other pages * are used of the PDs in PAE mode. */ RTGCPTR GCPtrCR3Mapping; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 uint32_t u32Alignment; #endif /** Indicates that PGMR3FinalizeMappings has been called and that further * PGMR3MapIntermediate calls will be rejected. */ bool fFinalizedMappings; /** If set no conflict checks are required. (boolean) */ bool fMappingsFixed; /** If set, then no mappings are put into the shadow page table. (boolean) */ bool fDisableMappings; /** Size of fixed mapping */ uint32_t cbMappingFixed; /** Base address (GC) of fixed mapping */ RTGCPTR GCPtrMappingFixed; /** The address of the previous RAM range mapping. */ RTGCPTR GCPtrPrevRamRangeMapping; /** @name Intermediate Context * @{ */ /** Pointer to the intermediate page directory - Normal. */ R3PTRTYPE(PX86PD) pInterPD; /** Pointer to the intermedate page tables - Normal. * There are two page tables, one for the identity mapping and one for * the host context mapping (of the core code). */ R3PTRTYPE(PX86PT) apInterPTs[2]; /** Pointer to the intermedate page tables - PAE. */ R3PTRTYPE(PX86PTPAE) apInterPaePTs[2]; /** Pointer to the intermedate page directory - PAE. */ R3PTRTYPE(PX86PDPAE) apInterPaePDs[4]; /** Pointer to the intermedate page directory - PAE. */ R3PTRTYPE(PX86PDPT) pInterPaePDPT; /** Pointer to the intermedate page-map level 4 - AMD64. */ R3PTRTYPE(PX86PML4) pInterPaePML4; /** Pointer to the intermedate page directory - AMD64. */ R3PTRTYPE(PX86PDPT) pInterPaePDPT64; /** The Physical Address (HC) of the intermediate Page Directory - Normal. */ RTHCPHYS HCPhysInterPD; /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */ RTHCPHYS HCPhysInterPaePDPT; /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */ RTHCPHYS HCPhysInterPaePML4; /** @} */ /** Base address of the dynamic page mapping area. * The array is MM_HYPER_DYNAMIC_SIZE bytes big. */ RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC; /** The index of the last entry used in the dynamic page mapping area. */ RTUINT iDynPageMapLast; /** Cache containing the last entries in the dynamic page mapping area. * The cache size is covering half of the mapping area. */ RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)]; /** Keep a lock counter for the full (!) mapping area. */ uint32_t aLockedDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT)]; /** The address of the ring-0 mapping cache if we're making use of it. */ RTR0PTR pvR0DynMapUsed; /** PGM critical section. * This protects the physical & virtual access handlers, ram ranges, * and the page flag updating (some of it anyway). */ PDMCRITSECT CritSect; /** Pointer to SHW+GST mode data (function pointers). * The index into this table is made up from */ R3PTRTYPE(PPGMMODEDATA) paModeData; /** Shadow Page Pool - R3 Ptr. */ R3PTRTYPE(PPGMPOOL) pPoolR3; /** Shadow Page Pool - R0 Ptr. */ R0PTRTYPE(PPGMPOOL) pPoolR0; /** Shadow Page Pool - RC Ptr. */ RCPTRTYPE(PPGMPOOL) pPoolRC; /** We're not in a state which permits writes to guest memory. * (Only used in strict builds.) */ bool fNoMorePhysWrites; /** * Data associated with managing the ring-3 mappings of the allocation chunks. */ struct { /** The chunk tree, ordered by chunk id. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PAVLU32NODECORE) pTree; #else R3R0PTRTYPE(PAVLU32NODECORE) pTree; #endif /** The chunk mapping TLB. */ PGMCHUNKR3MAPTLB Tlb; /** The number of mapped chunks. */ uint32_t c; /** The maximum number of mapped chunks. * @cfgm PGM/MaxRing3Chunks */ uint32_t cMax; /** The chunk age tree, ordered by ageing sequence number. */ R3PTRTYPE(PAVLLU32NODECORE) pAgeTree; /** The current time. */ uint32_t iNow; /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */ uint32_t AgeingCountdown; } ChunkR3Map; /** * The page mapping TLB for ring-3 and (for the time being) ring-0. */ PGMPAGER3MAPTLB PhysTlbHC; /** @name The zero page. * @{ */ /** The host physical address of the zero page. */ RTHCPHYS HCPhysZeroPg; /** The ring-3 mapping of the zero page. */ RTR3PTR pvZeroPgR3; /** The ring-0 mapping of the zero page. */ RTR0PTR pvZeroPgR0; /** The GC mapping of the zero page. */ RTGCPTR pvZeroPgRC; #if GC_ARCH_BITS != 32 uint32_t u32ZeroAlignment; /**< Alignment padding. */ #endif /** @}*/ /** The number of handy pages. */ uint32_t cHandyPages; /** * Array of handy pages. * * This array is used in a two way communication between pgmPhysAllocPage * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as * an intermediary. * * The size of this array is important, see pgmPhysEnsureHandyPage for details. * (The current size of 32 pages, means 128 KB of handy memory.) */ GMMPAGEDESC aHandyPages[PGM_HANDY_PAGES]; /** @name Error injection. * @{ */ /** Inject handy page allocation errors pretending we're completely out of * memory. */ bool volatile fErrInjHandyPages; /** Padding. */ bool afReserved[7]; /** @} */ /** @name Release Statistics * @{ */ uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */ uint32_t cPrivatePages; /**< The number of private pages. */ uint32_t cSharedPages; /**< The number of shared pages. */ uint32_t cZeroPages; /**< The number of zero backed pages. */ /** The number of times we were forced to change the hypervisor region location. */ STAMCOUNTER cRelocations; /** @} */ #ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */ /* R3 only: */ STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */ STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */ STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */ STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */ STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */ STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */ STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */ STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */ STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */ STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */ STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */ STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */ STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */ STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */ STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */ STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */ STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */ STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */ STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */ STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */ /// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */ STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */ STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */ /// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */ /* RC only: */ STAMCOUNTER StatRCDynMapCacheMisses; /**< RC: The number of dynamic page mapping cache misses */ STAMCOUNTER StatRCDynMapCacheHits; /**< RC: The number of dynamic page mapping cache hits */ STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */ STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */ STAMCOUNTER StatRZPhysRead; STAMCOUNTER StatRZPhysReadBytes; STAMCOUNTER StatRZPhysWrite; STAMCOUNTER StatRZPhysWriteBytes; STAMCOUNTER StatR3PhysRead; STAMCOUNTER StatR3PhysReadBytes; STAMCOUNTER StatR3PhysWrite; STAMCOUNTER StatR3PhysWriteBytes; STAMCOUNTER StatRCPhysRead; STAMCOUNTER StatRCPhysReadBytes; STAMCOUNTER StatRCPhysWrite; STAMCOUNTER StatRCPhysWriteBytes; STAMCOUNTER StatRZPhysSimpleRead; STAMCOUNTER StatRZPhysSimpleReadBytes; STAMCOUNTER StatRZPhysSimpleWrite; STAMCOUNTER StatRZPhysSimpleWriteBytes; STAMCOUNTER StatR3PhysSimpleRead; STAMCOUNTER StatR3PhysSimpleReadBytes; STAMCOUNTER StatR3PhysSimpleWrite; STAMCOUNTER StatR3PhysSimpleWriteBytes; STAMCOUNTER StatRCPhysSimpleRead; STAMCOUNTER StatRCPhysSimpleReadBytes; STAMCOUNTER StatRCPhysSimpleWrite; STAMCOUNTER StatRCPhysSimpleWriteBytes; # ifdef PGMPOOL_WITH_GCPHYS_TRACKING STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */ STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */ STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */ STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */ STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */ STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */ # endif #endif } PGM; /** Pointer to the PGM instance data. */ typedef PGM *PPGM; /** * Converts a PGMCPU pointer into a VM pointer. * @returns Pointer to the VM structure the PGM is part of. * @param pPGM Pointer to PGMCPU instance data. */ #define PGMCPU2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) ) /** * Converts a PGMCPU pointer into a PGM pointer. * @returns Pointer to the VM structure the PGM is part of. * @param pPGM Pointer to PGMCPU instance data. */ #define PGMCPU2PGM(pPGMCpu) ( (PPGM)((char*)pPGMCpu - pPGMCpu->offPGM) ) /** * PGMCPU Data (part of VMCPU). */ typedef struct PGMCPU { /** Offset to the VM structure. */ RTINT offVM; /** Offset to the VMCPU structure. */ RTINT offVCpu; /** Offset of the PGM structure relative to VMCPU. */ RTINT offPGM; RTINT uPadding0; /**< structure size alignment. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE /** Automatically tracked physical memory mapping set. * Ring-0 and strict raw-mode builds. */ PGMMAPSET AutoSet; #endif /** A20 gate mask. * Our current approach to A20 emulation is to let REM do it and don't bother * anywhere else. The interesting Guests will be operating with it enabled anyway. * But whould need arrise, we'll subject physical addresses to this mask. */ RTGCPHYS GCPhysA20Mask; /** A20 gate state - boolean! */ bool fA20Enabled; /** What needs syncing (PGM_SYNC_*). * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage, * PGMFlushTLB, and PGMR3Load. */ RTUINT fSyncFlags; /** The shadow paging mode. */ PGMMODE enmShadowMode; /** The guest paging mode. */ PGMMODE enmGuestMode; /** The current physical address representing in the guest CR3 register. */ RTGCPHYS GCPhysCR3; /** @name 32-bit Guest Paging. * @{ */ /** The guest's page directory, R3 pointer. */ R3PTRTYPE(PX86PD) pGst32BitPdR3; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE /** The guest's page directory, R0 pointer. */ R0PTRTYPE(PX86PD) pGst32BitPdR0; #endif /** The guest's page directory, static RC mapping. */ RCPTRTYPE(PX86PD) pGst32BitPdRC; /** @} */ /** @name PAE Guest Paging. * @{ */ /** The guest's page directory pointer table, static RC mapping. */ RCPTRTYPE(PX86PDPT) pGstPaePdptRC; /** The guest's page directory pointer table, R3 pointer. */ R3PTRTYPE(PX86PDPT) pGstPaePdptR3; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE /** The guest's page directory pointer table, R0 pointer. */ R0PTRTYPE(PX86PDPT) pGstPaePdptR0; #endif /** The guest's page directories, R3 pointers. * These are individual pointers and don't have to be adjecent. * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */ R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4]; /** The guest's page directories, R0 pointers. * Same restrictions as apGstPaePDsR3. */ #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4]; #endif /** The guest's page directories, static GC mapping. * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD. * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */ RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4]; /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */ RTGCPHYS aGCPhysGstPaePDs[4]; /** The physical addresses of the monitored guest page directories (PAE). */ RTGCPHYS aGCPhysGstPaePDsMonitored[4]; /** @} */ /** @name AMD64 Guest Paging. * @{ */ /** The guest's page directory pointer table, R3 pointer. */ R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE /** The guest's page directory pointer table, R0 pointer. */ R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0; #endif /** @} */ /** Pointer to the page of the current active CR3 - R3 Ptr. */ R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3; /** Pointer to the page of the current active CR3 - R0 Ptr. */ R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0; /** Pointer to the page of the current active CR3 - RC Ptr. */ RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC; /* The shadow page pool index of the user table as specified during allocation; useful for freeing root pages */ uint32_t iShwUser; /* The index into the user table (shadowed) as specified during allocation; useful for freeing root pages. */ uint32_t iShwUserTable; # if HC_ARCH_BITS == 64 RTRCPTR alignment6; /**< structure size alignment. */ # endif /** @} */ /** @name Function pointers for Shadow paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); /** @} */ /** @name Function pointers for Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); #if HC_ARCH_BITS == 64 RTRCPTR alignment3; /**< structure size alignment. */ #endif DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); /** @} */ /** @name Function pointers for Both Shadow and Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); /* no pfnR3BthTrap0eHandler */ DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVMCPU pVCpu, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVMCPU pVCpu)); DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVMCPU pVCpu, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVMCPU pVCpu)); DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVMCPU pVCpu, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVMCPU pVCpu)); #if HC_ARCH_BITS == 64 RTRCPTR alignment2; /**< structure size alignment. */ #endif /** @} */ /** For saving stack space, the disassembler state is allocated here instead of * on the stack. * @note The DISCPUSTATE structure is not R3/R0/RZ clean! */ union { /** The disassembler scratch space. */ DISCPUSTATE DisState; /** Padding. */ uint8_t abDisStatePadding[DISCPUSTATE_PADDING_SIZE]; }; /** @name Release Statistics * @{ */ /** The number of times the guest has switched mode since last reset or statistics reset. */ STAMCOUNTER cGuestModeChanges; /** @} */ #ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */ /** @name Statistics * @{ */ /** RC: Which statistic this \#PF should be attributed to. */ RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC; RTRCPTR padding0; /** R0: Which statistic this \#PF should be attributed to. */ R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0; RTR0PTR padding1; /* Common */ STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */ STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */ /* R0 only: */ STAMCOUNTER StatR0DynMapMigrateInvlPg; /**< R0: invlpg in PGMDynMapMigrateAutoSet. */ STAMPROFILE StatR0DynMapGCPageInl; /**< R0: Calls to pgmR0DynMapGCPageInlined. */ STAMCOUNTER StatR0DynMapGCPageInlHits; /**< R0: Hash table lookup hits. */ STAMCOUNTER StatR0DynMapGCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */ STAMCOUNTER StatR0DynMapGCPageInlRamHits; /**< R0: 1st ram range hits. */ STAMCOUNTER StatR0DynMapGCPageInlRamMisses; /**< R0: 1st ram range misses, takes slow path. */ STAMPROFILE StatR0DynMapHCPageInl; /**< R0: Calls to pgmR0DynMapHCPageInlined. */ STAMCOUNTER StatR0DynMapHCPageInlHits; /**< R0: Hash table lookup hits. */ STAMCOUNTER StatR0DynMapHCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */ STAMPROFILE StatR0DynMapHCPage; /**< R0: Calls to PGMDynMapHCPage. */ STAMCOUNTER StatR0DynMapSetOptimize; /**< R0: Calls to pgmDynMapOptimizeAutoSet. */ STAMCOUNTER StatR0DynMapSetSearchFlushes; /**< R0: Set search restorting to subset flushes. */ STAMCOUNTER StatR0DynMapSetSearchHits; /**< R0: Set search hits. */ STAMCOUNTER StatR0DynMapSetSearchMisses; /**< R0: Set search misses. */ STAMCOUNTER StatR0DynMapPage; /**< R0: Calls to pgmR0DynMapPage. */ STAMCOUNTER StatR0DynMapPageHits0; /**< R0: Hits at iPage+0. */ STAMCOUNTER StatR0DynMapPageHits1; /**< R0: Hits at iPage+1. */ STAMCOUNTER StatR0DynMapPageHits2; /**< R0: Hits at iPage+2. */ STAMCOUNTER StatR0DynMapPageInvlPg; /**< R0: invlpg. */ STAMCOUNTER StatR0DynMapPageSlow; /**< R0: Calls to pgmR0DynMapPageSlow. */ STAMCOUNTER StatR0DynMapPageSlowLoopHits; /**< R0: Hits in the pgmR0DynMapPageSlow search loop. */ STAMCOUNTER StatR0DynMapPageSlowLoopMisses; /**< R0: Misses in the pgmR0DynMapPageSlow search loop. */ //STAMCOUNTER StatR0DynMapPageSlowLostHits; /**< R0: Lost hits. */ STAMCOUNTER StatR0DynMapSubsets; /**< R0: Times PGMDynMapPushAutoSubset was called. */ STAMCOUNTER StatR0DynMapPopFlushes; /**< R0: Times PGMDynMapPopAutoSubset flushes the subset. */ STAMCOUNTER aStatR0DynMapSetSize[11]; /**< R0: Set size distribution. */ /* RZ only: */ STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */ STAMPROFILE StatRZTrap0eTimeCheckPageFault; STAMPROFILE StatRZTrap0eTimeSyncPT; STAMPROFILE StatRZTrap0eTimeMapping; STAMPROFILE StatRZTrap0eTimeOutOfSync; STAMPROFILE StatRZTrap0eTimeHandlers; STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */ STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */ STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */ STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */ STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */ STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */ STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */ STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */ STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */ STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */ STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */ STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */ STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */ STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */ STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */ STAMCOUNTER StatRZTrap0eHandlersPhysical; /**< RC/R0: Number of traps due to physical access handlers. */ STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */ STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */ STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */ STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */ STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */ STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: #PF err kind */ STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest #PFs. */ STAMCOUNTER StatRZTrap0eGuestPFUnh; /**< RC/R0: Real guest #PF ending up at the end of the #PF code. */ STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest #PF to HMA or other mapping. */ STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */ STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */ STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the #PFs. */ STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */ STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */ STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */ STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */ STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */ /* HC - R3 and (maybe) R0: */ /* RZ & R3: */ STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */ STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */ STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */ STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */ STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */ STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */ STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */ STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */ STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */ STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */ STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */ STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */ STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */ STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */ STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */ STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */ STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */ STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */ STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */ STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */ STAMCOUNTER StatRZDirtyPageStale; /**< RC/R0: The number of traps generated for dirty bit tracking. (stale tlb entries) */ STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */ STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */ STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */ STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */ STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */ STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */ STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */ STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */ STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */ STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */ STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */ STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */ STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */ STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */ STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */ STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */ STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */ STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */ STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */ STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */ STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */ STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */ STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */ STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */ STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */ STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */ STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */ STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */ STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */ STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */ STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */ STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */ STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */ STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */ STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */ STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */ STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */ STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */ STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */ STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */ STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */ STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */ STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */ STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */ STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */ STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */ STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */ STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */ STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */ STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */ STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */ STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */ STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */ STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */ STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */ STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */ STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */ STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */ STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */ STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */ STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */ STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */ /** @} */ #endif /* VBOX_WITH_STATISTICS */ } PGMCPU; /** Pointer to the per-cpu PGM data. */ typedef PGMCPU *PPGMCPU; /** @name PGM::fSyncFlags Flags * @{ */ /** Updates the virtual access handler state bit in PGMPAGE. */ #define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0) /** Always sync CR3. */ #define PGM_SYNC_ALWAYS RT_BIT(1) /** Check monitoring on next CR3 (re)load and invalidate page. * @todo This is obsolete now. Remove after 2.2.0 is branched off. */ #define PGM_SYNC_MONITOR_CR3 RT_BIT(2) /** Check guest mapping in SyncCR3. */ #define PGM_SYNC_MAP_CR3 RT_BIT(3) /** Clear the page pool (a light weight flush). */ #define PGM_SYNC_CLEAR_PGM_POOL_BIT 8 #define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(PGM_SYNC_CLEAR_PGM_POOL_BIT) /** @} */ RT_C_DECLS_BEGIN int pgmLock(PVM pVM); void pgmUnlock(PVM pVM); int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping); int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping); PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr); void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping); DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); void pgmR3HandlerPhysicalUpdateAll(PVM pVM); bool pgmHandlerPhysicalIsAll(PVM pVM, RTGCPHYS GCPhys); void pgmHandlerPhysicalResetAliasedPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhysPage); int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage); DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser); #if defined(VBOX_STRICT) || defined(LOG_ENABLED) void pgmHandlerVirtualDumpPhysPages(PVM pVM); #else # define pgmHandlerVirtualDumpPhysPages(a) do { } while (0) #endif DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys); int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys); int pgmPhysPageLoadIntoTlbWithPage(PPGM pPGM, PPGMPAGE pPage, RTGCPHYS GCPhys); int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys); int pgmPhysPageMakeWritableUnlocked(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys); int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv); int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv); int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv); int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv); VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser); #ifdef IN_RING3 void pgmR3PhysRelinkRamRanges(PVM pVM); int pgmR3PhysRamPreAllocate(PVM pVM); int pgmR3PhysRamReset(PVM pVM); int pgmR3PhysRomReset(PVM pVM); int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk); int pgmR3PoolInit(PVM pVM); void pgmR3PoolRelocate(PVM pVM); void pgmR3PoolReset(PVM pVM); #endif /* IN_RING3 */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 int pgmR0DynMapHCPageCommon(PVM pVM, PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv); #endif int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage, bool fLockPage = false); DECLINLINE(int) pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage, bool fLockPage = false) { return pgmPoolAllocEx(pVM, GCPhys, enmKind, PGMPOOLACCESS_DONTCARE, iUser, iUserTable, ppPage, fLockPage); } void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable); void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable); int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage); void pgmPoolClearAll(PVM pVM); PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys); int pgmPoolSyncCR3(PVMCPU pVCpu); int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs); uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT); void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage); #ifdef PGMPOOL_WITH_MONITORING void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu); int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage); void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage); #endif int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu); int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu); void pgmMapSetShadowPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE); void pgmMapClearShadowPDEs(PVM pVM, PPGMPOOLPAGE pShwPageCR3, PPGMMAPPING pMap, unsigned iOldPDE, bool fDeactivateCR3); int pgmMapActivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3); int pgmMapDeactivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3); int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD); #ifndef IN_RC int pgmShwSyncLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD); #endif int pgmShwGetEPTPDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD); PX86PD pgmGstLazyMap32BitPD(PPGMCPU pPGM); PX86PDPT pgmGstLazyMapPaePDPT(PPGMCPU pPGM); PX86PDPAE pgmGstLazyMapPaePD(PPGMCPU pPGM, uint32_t iPdpt); PX86PML4 pgmGstLazyMapPml4(PPGMCPU pPGM); RT_C_DECLS_END /** * Gets the PGMRAMRANGE structure for a guest page. * * @returns Pointer to the RAM range on success. * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition. * * @param pPGM PGM handle. * @param GCPhys The GC physical address. */ DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys) { /* * Optimize for the first range. */ PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb)) { do { pRam = pRam->CTX_SUFF(pNext); if (RT_UNLIKELY(!pRam)) break; off = GCPhys - pRam->GCPhys; } while (off >= pRam->cb); } return pRam; } /** * Gets the PGMPAGE structure for a guest page. * * @returns Pointer to the page on success. * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition. * * @param pPGM PGM handle. * @param GCPhys The GC physical address. */ DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys) { /* * Optimize for the first range. */ PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb)) { do { pRam = pRam->CTX_SUFF(pNext); if (RT_UNLIKELY(!pRam)) return NULL; off = GCPhys - pRam->GCPhys; } while (off >= pRam->cb); } return &pRam->aPages[off >> PAGE_SHIFT]; } /** * Gets the PGMPAGE structure for a guest page. * * Old Phys code: Will make sure the page is present. * * @returns VBox status code. * @retval VINF_SUCCESS and a valid *ppPage on success. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid. * * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param ppPage Where to store the page poitner on success. */ DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage) { /* * Optimize for the first range. */ PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb)) { do { pRam = pRam->CTX_SUFF(pNext); if (RT_UNLIKELY(!pRam)) { *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */ return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } off = GCPhys - pRam->GCPhys; } while (off >= pRam->cb); } *ppPage = &pRam->aPages[off >> PAGE_SHIFT]; return VINF_SUCCESS; } /** * Gets the PGMPAGE structure for a guest page. * * Old Phys code: Will make sure the page is present. * * @returns VBox status code. * @retval VINF_SUCCESS and a valid *ppPage on success. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid. * * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param ppPage Where to store the page poitner on success. * @param ppRamHint Where to read and store the ram list hint. * The caller initializes this to NULL before the call. */ DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint) { RTGCPHYS off; PPGMRAMRANGE pRam = *ppRamHint; if ( !pRam || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb)) { pRam = pPGM->CTX_SUFF(pRamRanges); off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb)) { do { pRam = pRam->CTX_SUFF(pNext); if (RT_UNLIKELY(!pRam)) { *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */ return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } off = GCPhys - pRam->GCPhys; } while (off >= pRam->cb); } *ppRamHint = pRam; } *ppPage = &pRam->aPages[off >> PAGE_SHIFT]; return VINF_SUCCESS; } /** * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE. * * @returns Pointer to the page on success. * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition. * * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param ppRam Where to store the pointer to the PGMRAMRANGE. */ DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam) { /* * Optimize for the first range. */ PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb)) { do { pRam = pRam->CTX_SUFF(pNext); if (RT_UNLIKELY(!pRam)) return NULL; off = GCPhys - pRam->GCPhys; } while (off >= pRam->cb); } *ppRam = pRam; return &pRam->aPages[off >> PAGE_SHIFT]; } /** * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE. * * @returns Pointer to the page on success. * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition. * * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param ppPage Where to store the pointer to the PGMPAGE structure. * @param ppRam Where to store the pointer to the PGMRAMRANGE structure. */ DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam) { /* * Optimize for the first range. */ PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb)) { do { pRam = pRam->CTX_SUFF(pNext); if (RT_UNLIKELY(!pRam)) { *ppRam = NULL; /* Shut up silly GCC warnings. */ *ppPage = NULL; /* ditto */ return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } off = GCPhys - pRam->GCPhys; } while (off >= pRam->cb); } *ppRam = pRam; *ppPage = &pRam->aPages[off >> PAGE_SHIFT]; return VINF_SUCCESS; } /** * Convert GC Phys to HC Phys. * * @returns VBox status. * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param pHCPhys Where to store the corresponding HC physical address. * * @deprecated Doesn't deal with zero, shared or write monitored pages. * Avoid when writing new code! */ DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys) { PPGMPAGE pPage; int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage); if (RT_FAILURE(rc)) return rc; *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK); return VINF_SUCCESS; } #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 /** * Inlined version of the ring-0 version of PGMDynMapHCPage that * optimizes access to pages already in the set. * * @returns VINF_SUCCESS. Will bail out to ring-3 on failure. * @param pPGM Pointer to the PVM instance data. * @param HCPhys The physical address of the page. * @param ppv Where to store the mapping address. */ DECLINLINE(int) pgmR0DynMapHCPageInlined(PPGM pPGM, RTHCPHYS HCPhys, void **ppv) { PVM pVM = PGM2VM(pPGM); PPGMCPU pPGMCPU = (PPGMCPU)((uint8_t *)VMMGetCpu(pVM) + pPGM->offVCpuPGM); /* very pretty ;-) */ PPGMMAPSET pSet = &pPGMCPU->AutoSet; STAM_PROFILE_START(&pPGMCPU->StatR0DynMapHCPageInl, a); Assert(!(HCPhys & PAGE_OFFSET_MASK)); Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries)); unsigned iHash = PGMMAPSET_HASH(HCPhys); unsigned iEntry = pSet->aiHashTable[iHash]; if ( iEntry < pSet->cEntries && pSet->aEntries[iEntry].HCPhys == HCPhys) { *ppv = pSet->aEntries[iEntry].pvPage; STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapHCPageInlHits); } else { STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapHCPageInlMisses); pgmR0DynMapHCPageCommon(pVM, pSet, HCPhys, ppv); } STAM_PROFILE_STOP(&pPGMCPU->StatR0DynMapHCPageInl, a); return VINF_SUCCESS; } /** * Inlined version of the ring-0 version of PGMDynMapGCPage that optimizes * access to pages already in the set. * * @returns See PGMDynMapGCPage. * @param pPGM Pointer to the PVM instance data. * @param HCPhys The physical address of the page. * @param ppv Where to store the mapping address. */ DECLINLINE(int) pgmR0DynMapGCPageInlined(PPGM pPGM, RTGCPHYS GCPhys, void **ppv) { PVM pVM = PGM2VM(pPGM); PPGMCPU pPGMCPU = (PPGMCPU)((uint8_t *)VMMGetCpu(pVM) + pPGM->offVCpuPGM); /* very pretty ;-) */ STAM_PROFILE_START(&pPGMCPU->StatR0DynMapGCPageInl, a); AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys)); /* * Get the ram range. */ PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb /** @todo || page state stuff */)) { /* This case is not counted into StatR0DynMapGCPageInl. */ STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlRamMisses); return PGMDynMapGCPage(pVM, GCPhys, ppv); } RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[off >> PAGE_SHIFT]); STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlRamHits); /* * pgmR0DynMapHCPageInlined with out stats. */ PPGMMAPSET pSet = &pPGMCPU->AutoSet; Assert(!(HCPhys & PAGE_OFFSET_MASK)); Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries)); unsigned iHash = PGMMAPSET_HASH(HCPhys); unsigned iEntry = pSet->aiHashTable[iHash]; if ( iEntry < pSet->cEntries && pSet->aEntries[iEntry].HCPhys == HCPhys) { *ppv = pSet->aEntries[iEntry].pvPage; STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlHits); } else { STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlMisses); pgmR0DynMapHCPageCommon(pVM, pSet, HCPhys, ppv); } STAM_PROFILE_STOP(&pPGMCPU->StatR0DynMapGCPageInl, a); return VINF_SUCCESS; } /** * Inlined version of the ring-0 version of PGMDynMapGCPageOff that optimizes * access to pages already in the set. * * @returns See PGMDynMapGCPage. * @param pPGM Pointer to the PVM instance data. * @param HCPhys The physical address of the page. * @param ppv Where to store the mapping address. */ DECLINLINE(int) pgmR0DynMapGCPageOffInlined(PPGM pPGM, RTGCPHYS GCPhys, void **ppv) { PVM pVM = PGM2VM(pPGM); PPGMCPU pPGMCPU = (PPGMCPU)((uint8_t *)VMMGetCpu(pVM) + pPGM->offVCpuPGM); /* very pretty ;-) */ STAM_PROFILE_START(&pPGMCPU->StatR0DynMapGCPageInl, a); /* * Get the ram range. */ PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges); RTGCPHYS off = GCPhys - pRam->GCPhys; if (RT_UNLIKELY(off >= pRam->cb /** @todo || page state stuff */)) { /* This case is not counted into StatR0DynMapGCPageInl. */ STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlRamMisses); return PGMDynMapGCPageOff(pVM, GCPhys, ppv); } RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[off >> PAGE_SHIFT]); STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlRamHits); /* * pgmR0DynMapHCPageInlined with out stats. */ PPGMMAPSET pSet = &pPGMCPU->AutoSet; Assert(!(HCPhys & PAGE_OFFSET_MASK)); Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries)); unsigned iHash = PGMMAPSET_HASH(HCPhys); unsigned iEntry = pSet->aiHashTable[iHash]; if ( iEntry < pSet->cEntries && pSet->aEntries[iEntry].HCPhys == HCPhys) { *ppv = (void *)((uintptr_t)pSet->aEntries[iEntry].pvPage | (PAGE_OFFSET_MASK & (uintptr_t)GCPhys)); STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlHits); } else { STAM_COUNTER_INC(&pPGMCPU->StatR0DynMapGCPageInlMisses); pgmR0DynMapHCPageCommon(pVM, pSet, HCPhys, ppv); *ppv = (void *)((uintptr_t)*ppv | (PAGE_OFFSET_MASK & (uintptr_t)GCPhys)); } STAM_PROFILE_STOP(&pPGMCPU->StatR0DynMapGCPageInl, a); return VINF_SUCCESS; } #endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /** * Maps the page into current context (RC and maybe R0). * * @returns pointer to the mapping. * @param pVM Pointer to the PGM instance data. * @param pPage The page. */ DECLINLINE(void *) pgmPoolMapPageInlined(PPGM pPGM, PPGMPOOLPAGE pPage) { if (pPage->idx >= PGMPOOL_IDX_FIRST) { Assert(pPage->idx < pPGM->CTX_SUFF(pPool)->cCurPages); void *pv; # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 pgmR0DynMapHCPageInlined(pPGM, pPage->Core.Key, &pv); # else PGMDynMapHCPage(PGM2VM(pPGM), pPage->Core.Key, &pv); # endif return pv; } AssertFatalMsgFailed(("pgmPoolMapPageInlined invalid page index %x\n", pPage->idx)); } /** * Temporarily maps one host page specified by HC physical address, returning * pointer within the page. * * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is * reused after 8 mappings (or perhaps a few more if you score with the cache). * * @returns The address corresponding to HCPhys. * @param pPGM Pointer to the PVM instance data. * @param HCPhys HC Physical address of the page. */ DECLINLINE(void *) pgmDynMapHCPageOff(PPGM pPGM, RTHCPHYS HCPhys) { void *pv; # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 pgmR0DynMapHCPageInlined(pPGM, HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv); # else PGMDynMapHCPage(PGM2VM(pPGM), HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv); # endif pv = (void *)((uintptr_t)pv | (HCPhys & PAGE_OFFSET_MASK)); return pv; } #endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 || IN_RC */ #ifndef IN_RC /** * Queries the Physical TLB entry for a physical guest page, * attempting to load the TLB entry if necessary. * * @returns VBox status code. * @retval VINF_SUCCESS on success * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pPGM The PGM instance handle. * @param GCPhys The address of the guest page. * @param ppTlbe Where to store the pointer to the TLB entry. */ DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe) { int rc; PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)]; if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK)) { STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits)); rc = VINF_SUCCESS; } else rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys); *ppTlbe = pTlbe; return rc; } /** * Queries the Physical TLB entry for a physical guest page, * attempting to load the TLB entry if necessary. * * @returns VBox status code. * @retval VINF_SUCCESS on success * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pPGM The PGM instance handle. * @param pPage Pointer to the PGMPAGE structure corresponding to * GCPhys. * @param GCPhys The address of the guest page. * @param ppTlbe Where to store the pointer to the TLB entry. */ DECLINLINE(int) pgmPhysPageQueryTlbeWithPage(PPGM pPGM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe) { int rc; PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)]; if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK)) { STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits)); rc = VINF_SUCCESS; } else rc = pgmPhysPageLoadIntoTlbWithPage(pPGM, pPage, GCPhys); *ppTlbe = pTlbe; return rc; } #endif /* !IN_RC */ /** * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode. * Takes PSE-36 into account. * * @returns guest physical address * @param pPGM Pointer to the PGM instance data. * @param Pde Guest Pde */ DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde) { RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK; GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32; return GCPhys & pPGM->GCPhys4MBPSEMask; } /** * Gets the page directory entry for the specified address (32-bit paging). * * @returns The page directory entry in question. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(X86PDE) pgmGstGet32bitPDE(PPGMCPU pPGM, RTGCPTR GCPtr) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PCX86PD pGuestPD = NULL; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPD); if (RT_FAILURE(rc)) { X86PDE ZeroPde = {0}; AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPde); } #else PX86PD pGuestPD = pPGM->CTX_SUFF(pGst32BitPd); # ifdef IN_RING3 if (!pGuestPD) pGuestPD = pgmGstLazyMap32BitPD(pPGM); # endif #endif return pGuestPD->a[GCPtr >> X86_PD_SHIFT]; } /** * Gets the address of a specific page directory entry (32-bit paging). * * @returns Pointer the page directory entry in question. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDE) pgmGstGet32bitPDEPtr(PPGMCPU pPGM, RTGCPTR GCPtr) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PD pGuestPD = NULL; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPD); AssertRCReturn(rc, NULL); #else PX86PD pGuestPD = pPGM->CTX_SUFF(pGst32BitPd); # ifdef IN_RING3 if (!pGuestPD) pGuestPD = pgmGstLazyMap32BitPD(pPGM); # endif #endif return &pGuestPD->a[GCPtr >> X86_PD_SHIFT]; } /** * Gets the address the guest page directory (32-bit paging). * * @returns Pointer the page directory entry in question. * @param pPGM Pointer to the PGM instance data. */ DECLINLINE(PX86PD) pgmGstGet32bitPDPtr(PPGMCPU pPGM) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PD pGuestPD = NULL; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPD); AssertRCReturn(rc, NULL); #else PX86PD pGuestPD = pPGM->CTX_SUFF(pGst32BitPd); # ifdef IN_RING3 if (!pGuestPD) pGuestPD = pgmGstLazyMap32BitPD(pPGM); # endif #endif return pGuestPD; } /** * Gets the guest page directory pointer table. * * @returns Pointer to the page directory in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. */ DECLINLINE(PX86PDPT) pgmGstGetPaePDPTPtr(PPGMCPU pPGM) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PDPT pGuestPDPT = NULL; int rc = pgmR0DynMapGCPageOffInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPDPT); AssertRCReturn(rc, NULL); #else PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt); # ifdef IN_RING3 if (!pGuestPDPT) pGuestPDPT = pgmGstLazyMapPaePDPT(pPGM); # endif #endif return pGuestPDPT; } /** * Gets the guest page directory pointer table entry for the specified address. * * @returns Pointer to the page directory in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDPE) pgmGstGetPaePDPEPtr(PPGMCPU pPGM, RTGCPTR GCPtr) { AssertGCPtr32(GCPtr); #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PDPT pGuestPDPT = 0; int rc = pgmR0DynMapGCPageOffInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPDPT); AssertRCReturn(rc, 0); #else PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt); # ifdef IN_RING3 if (!pGuestPDPT) pGuestPDPT = pgmGstLazyMapPaePDPT(pPGM); # endif #endif return &pGuestPDPT->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE]; } /** * Gets the page directory for the specified address. * * @returns Pointer to the page directory in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGMCPU pPGM, RTGCPTR GCPtr) { AssertGCPtr32(GCPtr); PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM); AssertReturn(pGuestPDPT, NULL); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; if (pGuestPDPT->a[iPdpt].n.u1Present) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PDPAE pGuestPD = NULL; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK, (void **)&pGuestPD); AssertRCReturn(rc, NULL); #else PX86PDPAE pGuestPD = pPGM->CTX_SUFF(apGstPaePDs)[iPdpt]; if ( !pGuestPD || (pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK) != pPGM->aGCPhysGstPaePDs[iPdpt]) pGuestPD = pgmGstLazyMapPaePD(pPGM, iPdpt); #endif return pGuestPD; /* returning NULL is ok if we assume it's just an invalid page of some kind emulated as all 0s. (not quite true) */ } return NULL; } /** * Gets the page directory entry for the specified address. * * @returns Pointer to the page directory entry in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGMCPU pPGM, RTGCPTR GCPtr) { AssertGCPtr32(GCPtr); PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM); AssertReturn(pGuestPDPT, NULL); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; if (pGuestPDPT->a[iPdpt].n.u1Present) { const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PDPAE pGuestPD = NULL; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK, (void **)&pGuestPD); AssertRCReturn(rc, NULL); #else PX86PDPAE pGuestPD = pPGM->CTX_SUFF(apGstPaePDs)[iPdpt]; if ( !pGuestPD || (pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK) != pPGM->aGCPhysGstPaePDs[iPdpt]) pGuestPD = pgmGstLazyMapPaePD(pPGM, iPdpt); #endif return &pGuestPD->a[iPD]; /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. (not quite true) */ } return NULL; } /** * Gets the page directory entry for the specified address. * * @returns The page directory entry in question. * @returns A non-present entry if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(X86PDEPAE) pgmGstGetPaePDE(PPGMCPU pPGM, RTGCPTR GCPtr) { AssertGCPtr32(GCPtr); X86PDEPAE ZeroPde = {0}; PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM); if (RT_LIKELY(pGuestPDPT)) { const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; if (pGuestPDPT->a[iPdpt].n.u1Present) { const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PDPAE pGuestPD = NULL; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK, (void **)&pGuestPD); AssertRCReturn(rc, ZeroPde); #else PX86PDPAE pGuestPD = pPGM->CTX_SUFF(apGstPaePDs)[iPdpt]; if ( !pGuestPD || (pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK) != pPGM->aGCPhysGstPaePDs[iPdpt]) pGuestPD = pgmGstLazyMapPaePD(pPGM, iPdpt); #endif return pGuestPD->a[iPD]; } } return ZeroPde; } /** * Gets the page directory pointer table entry for the specified address * and returns the index into the page directory * * @returns Pointer to the page directory in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. * @param piPD Receives the index into the returned page directory * @param pPdpe Receives the page directory pointer entry. Optional. */ DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGMCPU pPGM, RTGCPTR GCPtr, unsigned *piPD, PX86PDPE pPdpe) { AssertGCPtr32(GCPtr); PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM); AssertReturn(pGuestPDPT, NULL); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; if (pPdpe) *pPdpe = pGuestPDPT->a[iPdpt]; if (pGuestPDPT->a[iPdpt].n.u1Present) { const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PDPAE pGuestPD = NULL; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK, (void **)&pGuestPD); AssertRCReturn(rc, NULL); #else PX86PDPAE pGuestPD = pPGM->CTX_SUFF(apGstPaePDs)[iPdpt]; if ( !pGuestPD || (pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK) != pPGM->aGCPhysGstPaePDs[iPdpt]) pGuestPD = pgmGstLazyMapPaePD(pPGM, iPdpt); #endif *piPD = iPD; return pGuestPD; /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */ } return NULL; } #ifndef IN_RC /** * Gets the page map level-4 pointer for the guest. * * @returns Pointer to the PML4 page. * @param pPGM Pointer to the PGM instance data. */ DECLINLINE(PX86PML4) pgmGstGetLongModePML4Ptr(PPGMCPU pPGM) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PML4 pGuestPml4; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPml4); AssertRCReturn(rc, NULL); #else PX86PML4 pGuestPml4 = pPGM->CTX_SUFF(pGstAmd64Pml4); # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 if (!pGuestPml4) pGuestPml4 = pgmGstLazyMapPml4(pPGM); # endif Assert(pGuestPml4); #endif return pGuestPml4; } /** * Gets the pointer to a page map level-4 entry. * * @returns Pointer to the PML4 entry. * @param pPGM Pointer to the PGM instance data. * @param iPml4 The index. */ DECLINLINE(PX86PML4E) pgmGstGetLongModePML4EPtr(PPGMCPU pPGM, unsigned int iPml4) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PML4 pGuestPml4; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPml4); AssertRCReturn(rc, NULL); #else PX86PML4 pGuestPml4 = pPGM->CTX_SUFF(pGstAmd64Pml4); # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 if (!pGuestPml4) pGuestPml4 = pgmGstLazyMapPml4(pPGM); # endif Assert(pGuestPml4); #endif return &pGuestPml4->a[iPml4]; } /** * Gets a page map level-4 entry. * * @returns The PML4 entry. * @param pPGM Pointer to the PGM instance data. * @param iPml4 The index. */ DECLINLINE(X86PML4E) pgmGstGetLongModePML4E(PPGMCPU pPGM, unsigned int iPml4) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PX86PML4 pGuestPml4; int rc = pgmR0DynMapGCPageInlined(PGMCPU2PGM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPml4); if (RT_FAILURE(rc)) { X86PML4E ZeroPml4e = {0}; AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPml4e); } #else PX86PML4 pGuestPml4 = pPGM->CTX_SUFF(pGstAmd64Pml4); # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 if (!pGuestPml4) pGuestPml4 = pgmGstLazyMapPml4(pPGM); # endif Assert(pGuestPml4); #endif return pGuestPml4->a[iPml4]; } /** * Gets the page directory pointer entry for the specified address. * * @returns Pointer to the page directory pointer entry in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. * @param ppPml4e Page Map Level-4 Entry (out) */ DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGMCPU pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e) { PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM); const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4]; if (pPml4e->n.u1Present) { PX86PDPT pPdpt; int rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdpt); AssertRCReturn(rc, NULL); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; return &pPdpt->a[iPdpt]; } return NULL; } /** * Gets the page directory entry for the specified address. * * @returns The page directory entry in question. * @returns A non-present entry if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. * @param ppPml4e Page Map Level-4 Entry (out) * @param pPdpe Page directory pointer table entry (out) */ DECLINLINE(X86PDEPAE) pgmGstGetLongModePDEEx(PPGMCPU pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe) { X86PDEPAE ZeroPde = {0}; PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM); const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4]; if (pPml4e->n.u1Present) { PCX86PDPT pPdptTemp; int rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp); AssertRCReturn(rc, ZeroPde); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; *pPdpe = pPdptTemp->a[iPdpt]; if (pPdptTemp->a[iPdpt].n.u1Present) { PCX86PDPAE pPD; rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPdptTemp->a[iPdpt].u & X86_PDPE_PG_MASK, &pPD); AssertRCReturn(rc, ZeroPde); const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; return pPD->a[iPD]; } } return ZeroPde; } /** * Gets the page directory entry for the specified address. * * @returns The page directory entry in question. * @returns A non-present entry if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(X86PDEPAE) pgmGstGetLongModePDE(PPGMCPU pPGM, RTGCPTR64 GCPtr) { X86PDEPAE ZeroPde = {0}; PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM); const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; if (pGuestPml4->a[iPml4].n.u1Present) { PCX86PDPT pPdptTemp; int rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp); AssertRCReturn(rc, ZeroPde); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; if (pPdptTemp->a[iPdpt].n.u1Present) { PCX86PDPAE pPD; rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPdptTemp->a[iPdpt].u & X86_PDPE_PG_MASK, &pPD); AssertRCReturn(rc, ZeroPde); const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; return pPD->a[iPD]; } } return ZeroPde; } /** * Gets the page directory entry for the specified address. * * @returns Pointer to the page directory entry in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGMCPU pPGM, RTGCPTR64 GCPtr) { PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM); const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; if (pGuestPml4->a[iPml4].n.u1Present) { PCX86PDPT pPdptTemp; int rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp); AssertRCReturn(rc, NULL); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; if (pPdptTemp->a[iPdpt].n.u1Present) { PX86PDPAE pPD; rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPdptTemp->a[iPdpt].u & X86_PDPE_PG_MASK, &pPD); AssertRCReturn(rc, NULL); const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; return &pPD->a[iPD]; } } return NULL; } /** * Gets the GUEST page directory pointer for the specified address. * * @returns The page directory in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. * @param ppPml4e Page Map Level-4 Entry (out) * @param pPdpe Page directory pointer table entry (out) * @param piPD Receives the index into the returned page directory */ DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGMCPU pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD) { PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM); const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4]; if (pPml4e->n.u1Present) { PCX86PDPT pPdptTemp; int rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp); AssertRCReturn(rc, NULL); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; *pPdpe = pPdptTemp->a[iPdpt]; if (pPdptTemp->a[iPdpt].n.u1Present) { PX86PDPAE pPD; rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPdptTemp->a[iPdpt].u & X86_PDPE_PG_MASK, &pPD); AssertRCReturn(rc, NULL); *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; return pPD; } } return 0; } #endif /* !IN_RC */ /** * Gets the shadow page directory, 32-bit. * * @returns Pointer to the shadow 32-bit PD. * @param pPGM Pointer to the PGM instance data. */ DECLINLINE(PX86PD) pgmShwGet32BitPDPtr(PPGMCPU pPGM) { return (PX86PD)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPGM->CTX_SUFF(pShwPageCR3)); } /** * Gets the shadow page directory entry for the specified address, 32-bit. * * @returns Shadow 32-bit PDE. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(X86PDE) pgmShwGet32BitPDE(PPGMCPU pPGM, RTGCPTR GCPtr) { const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK; PX86PD pShwPde = pgmShwGet32BitPDPtr(pPGM); if (!pShwPde) { X86PDE ZeroPde = {0}; return ZeroPde; } return pShwPde->a[iPd]; } /** * Gets the pointer to the shadow page directory entry for the specified * address, 32-bit. * * @returns Pointer to the shadow 32-bit PDE. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDE) pgmShwGet32BitPDEPtr(PPGMCPU pPGM, RTGCPTR GCPtr) { const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK; PX86PD pPde = pgmShwGet32BitPDPtr(pPGM); AssertReturn(pPde, NULL); return &pPde->a[iPd]; } /** * Gets the shadow page pointer table, PAE. * * @returns Pointer to the shadow PAE PDPT. * @param pPGM Pointer to the PGM instance data. */ DECLINLINE(PX86PDPT) pgmShwGetPaePDPTPtr(PPGMCPU pPGM) { return (PX86PDPT)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPGM->CTX_SUFF(pShwPageCR3)); } /** * Gets the shadow page directory for the specified address, PAE. * * @returns Pointer to the shadow PD. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGMCPU pPGM, RTGCPTR GCPtr) { const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM); if (!pPdpt->a[iPdpt].n.u1Present) return NULL; /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(PGMCPU2PGM(pPGM)->CTX_SUFF(pPool), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK); AssertReturn(pShwPde, NULL); return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pShwPde); } /** * Gets the shadow page directory for the specified address, PAE. * * @returns Pointer to the shadow PD. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGMCPU pPGM, PX86PDPT pPdpt, RTGCPTR GCPtr) { const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; if (!pPdpt->a[iPdpt].n.u1Present) return NULL; /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(PGMCPU2PGM(pPGM)->CTX_SUFF(pPool), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK); AssertReturn(pShwPde, NULL); return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pShwPde); } /** * Gets the shadow page directory entry, PAE. * * @returns PDE. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(X86PDEPAE) pgmShwGetPaePDE(PPGMCPU pPGM, RTGCPTR GCPtr) { const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; PX86PDPAE pShwPde = pgmShwGetPaePDPtr(pPGM, GCPtr); if (!pShwPde) { X86PDEPAE ZeroPde = {0}; return ZeroPde; } return pShwPde->a[iPd]; } /** * Gets the pointer to the shadow page directory entry for an address, PAE. * * @returns Pointer to the PDE. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDEPAE) pgmShwGetPaePDEPtr(PPGMCPU pPGM, RTGCPTR GCPtr) { const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; PX86PDPAE pPde = pgmShwGetPaePDPtr(pPGM, GCPtr); AssertReturn(pPde, NULL); return &pPde->a[iPd]; } #ifndef IN_RC /** * Gets the shadow page map level-4 pointer. * * @returns Pointer to the shadow PML4. * @param pPGM Pointer to the PGM instance data. */ DECLINLINE(PX86PML4) pgmShwGetLongModePML4Ptr(PPGMCPU pPGM) { return (PX86PML4)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPGM->CTX_SUFF(pShwPageCR3)); } /** * Gets the shadow page map level-4 entry for the specified address. * * @returns The entry. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(X86PML4E) pgmShwGetLongModePML4E(PPGMCPU pPGM, RTGCPTR GCPtr) { const unsigned iPml4 = ((RTGCUINTPTR64)GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM); if (!pShwPml4) { X86PML4E ZeroPml4e = {0}; return ZeroPml4e; } return pShwPml4->a[iPml4]; } /** * Gets the pointer to the specified shadow page map level-4 entry. * * @returns The entry. * @param pPGM Pointer to the PGM instance data. * @param iPml4 The PML4 index. */ DECLINLINE(PX86PML4E) pgmShwGetLongModePML4EPtr(PPGMCPU pPGM, unsigned int iPml4) { PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM); if (!pShwPml4) return NULL; return &pShwPml4->a[iPml4]; } /** * Gets the GUEST page directory pointer for the specified address. * * @returns The page directory in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. * @param piPD Receives the index into the returned page directory */ DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGMCPU pPGM, RTGCPTR64 GCPtr, unsigned *piPD) { PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM); const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; if (pGuestPml4->a[iPml4].n.u1Present) { PCX86PDPT pPdptTemp; int rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp); AssertRCReturn(rc, NULL); const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; if (pPdptTemp->a[iPdpt].n.u1Present) { PX86PDPAE pPD; rc = PGM_GCPHYS_2_PTR_BY_PGMCPU(pPGM, pPdptTemp->a[iPdpt].u & X86_PDPE_PG_MASK, &pPD); AssertRCReturn(rc, NULL); *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; return pPD; } } return NULL; } #endif /* !IN_RC */ /** * Gets the page state for a physical handler. * * @returns The physical handler page state. * @param pCur The physical handler in question. */ DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur) { switch (pCur->enmType) { case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE: return PGM_PAGE_HNDL_PHYS_STATE_WRITE; case PGMPHYSHANDLERTYPE_MMIO: case PGMPHYSHANDLERTYPE_PHYSICAL_ALL: return PGM_PAGE_HNDL_PHYS_STATE_ALL; default: AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType)); } } /** * Gets the page state for a virtual handler. * * @returns The virtual handler page state. * @param pCur The virtual handler in question. * @remarks This should never be used on a hypervisor access handler. */ DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur) { switch (pCur->enmType) { case PGMVIRTHANDLERTYPE_WRITE: return PGM_PAGE_HNDL_VIRT_STATE_WRITE; case PGMVIRTHANDLERTYPE_ALL: return PGM_PAGE_HNDL_VIRT_STATE_ALL; default: AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType)); } } /** * Clears one physical page of a virtual handler * * @param pPGM Pointer to the PGM instance. * @param pCur Virtual handler structure * @param iPage Physical page index * * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no * need to care about other handlers in the same page. */ DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage) { const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage]; /* * Remove the node from the tree (it's supposed to be in the tree if we get here!). */ #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE, ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias)); #endif if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD) { /* We're the head of the alias chain. */ PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pRemove != NULL, ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias)); AssertReleaseMsg(pRemove == pPhys2Virt, ("wanted: pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n" " got: pRemove=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias)); #endif if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK) { /* Insert the next list in the alias chain into the tree. */ PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE, ("pNext=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias)); #endif pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD; bool fRc = RTAvlroGCPhysInsert(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, &pNext->Core); AssertRelease(fRc); } } else { /* Locate the previous node in the alias chain. */ PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pPrev != pPhys2Virt, ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev)); #endif for (;;) { PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)); if (pNext == pPhys2Virt) { /* unlink. */ LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%RGp-%RGp]\n", pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast)); if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)) pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK; else { PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)); pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev) | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK); } break; } /* next */ if (pNext == pPrev) { #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pNext != pPrev, ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev)); #endif break; } pPrev = pNext; } } Log2(("PHYS2VIRT: Removing %RGp-%RGp %#RX32 %s\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc))); pPhys2Virt->offNextAlias = 0; pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */ /* * Clear the ram flags for this page. */ PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key); AssertReturnVoid(pPage); PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE); } /** * Internal worker for finding a 'in-use' shadow page give by it's physical address. * * @returns Pointer to the shadow page structure. * @param pPool The pool. * @param idx The pool page index. */ DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx) { AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx)); return &pPool->aPages[idx]; } #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPoolPage The pool page. * @param pPhysPage The physical guest page tracking structure. */ DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage) { /* * Just deal with the simple case here. */ # ifdef LOG_ENABLED const unsigned uOrg = PGM_PAGE_GET_TRACKING(pPhysPage); # endif const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage); if (cRefs == 1) { Assert(pPoolPage->idx == PGM_PAGE_GET_TD_IDX(pPhysPage)); PGM_PAGE_SET_TRACKING(pPhysPage, 0); } else pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage); Log2(("pgmTrackDerefGCPhys: %x -> %x pPhysPage=%R[pgmpage]\n", uOrg, PGM_PAGE_GET_TRACKING(pPhysPage), pPhysPage )); } #endif /* PGMPOOL_WITH_GCPHYS_TRACKING */ #ifdef PGMPOOL_WITH_CACHE /** * Moves the page to the head of the age list. * * This is done when the cached page is used in one way or another. * * @param pPool The pool. * @param pPage The cached page. */ DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { PVM pVM = pPool->CTX_SUFF(pVM); pgmLock(pVM); /* * Move to the head of the age list. */ if (pPage->iAgePrev != NIL_PGMPOOL_IDX) { /* unlink */ pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext; if (pPage->iAgeNext != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev; else pPool->iAgeTail = pPage->iAgePrev; /* insert at head */ pPage->iAgePrev = NIL_PGMPOOL_IDX; pPage->iAgeNext = pPool->iAgeHead; Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */ pPool->iAgeHead = pPage->idx; pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx; } pgmUnlock(pVM); } #endif /* PGMPOOL_WITH_CACHE */ /** * Locks a page to prevent flushing (important for cr3 root pages or shadow pae pd pages). * * @param pVM VM Handle. * @param pPage PGM pool page */ DECLINLINE(void) pgmPoolLockPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Assert(PGMIsLockOwner(pPool->CTX_SUFF(pVM))); ASMAtomicIncU32(&pPage->cLocked); } /** * Unlocks a page to allow flushing again * * @param pVM VM Handle. * @param pPage PGM pool page */ DECLINLINE(void) pgmPoolUnlockPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Assert(PGMIsLockOwner(pPool->CTX_SUFF(pVM))); Assert(pPage->cLocked); ASMAtomicDecU32(&pPage->cLocked); } /** * Checks if the page is locked (e.g. the active CR3 or one of the four PDs of a PAE PDPT) * * @returns VBox status code. * @param pPage PGM pool page */ DECLINLINE(bool) pgmPoolIsPageLocked(PPGM pPGM, PPGMPOOLPAGE pPage) { if (pPage->cLocked) { LogFlow(("pgmPoolIsPageLocked found root page %d\n", pPage->enmKind)); if (pPage->cModifications) pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */ return true; } return false; } /** * Tells if mappings are to be put into the shadow page table or not * * @returns boolean result * @param pVM VM handle. */ DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM) { #ifdef IN_RING0 /* There are no mappings in VT-x and AMD-V mode. */ Assert(pPGM->fDisableMappings); return false; #else return !pPGM->fDisableMappings; #endif } /** @} */ #endif